
Abstract. Properties of the nonclassical light (NCL) have been
considered with an emphasis on experimentally-observed fea-
tures, which are underlain by the well-knownMandel's formula
connecting the statistics of photocounts with that of light falling
on the detector. A systematic operational approach is presented
to study the NCL using two parallel sets of numbers measured:
probabilities of photocounts {pm} and normalized factorial mo-
ments of counts {gk}. Two particular examples are examined in
detail: a `heated' squeezed vacuum and a `heated' one-photon
state. An alternative method is proposed to discover the week
nonclassicality using `generalized' moments {ak(s)}. The effect
of the linear absorption (amplification) and of the beam-split-
ting on the NCL, and the relation between the NCL and the
absolute calibration of photodetectors are considered. The con-
ditions are elucidated whereat the beam-splitter realizes amath-
ematical operation of superposition of two one-mode fields
useful in studying the NCL.

1. Introduction

The concept of the nonclassical light (NCL) draws a great
attention in modern quantum optics. ByNCL is meant a light
whose observed properties cannot be described with custom-
ary visualization by considering a light beam as a set of waves.
In other terms, the NCL produces effects that have no
classical analogies.

The properties of light are usually thought of by analyzing
the properties of a photocurrent induced by the incident light
due to photoeffect. Traditional optical experiments primarily
focused on the mean current intensity proportional to the
mean light intensity. Observed deviations of the current from
its mean value are of a chaotic, random character. Such
Poissonian or shot noises of the current have been explained
by random moments of the photoelectron creation and
therefore have not come to the attention.

For the first time, the effect of thermal fluctuations of the
light intensity on the photocurrent fluctuations was discov-
ered about 40 years ago in the well-known experiments of
Brown and Twiss [1]. They used a light emitted by a mercury
lamp or a star and observed additional photocurrent noises
which were stronger than the Poissonian ones. (In fact, these
experiments revealed not the current fluctuations in one of the
detectors, but a correlation between fluctuations of currents in
two detectors, however these effects are tightly connected to
each other.) The excessive, superpoissonian noises of the
photocurrent have a trivial classical explanation: the ampli-
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tude of the light wave varies randomly resulting in the
synchronous change in number of photoelectrons generated
by the wave. Therefore the light studied in the Brown-Twiss
experiments should be related to the category of `classical
light', i.e. those described by the classical theory.

By irony of history, with the Brown±Twiss effect, which
can be successfully described in terms of classical optics, one
usually relates the date of birth of quantum optics. At the
beginning, this effect even met some difficulties when being
treated within the framework of quantum optics. Presently,
using visual photon language, it is explained by excessive,
superpoissonian fluctuations in the stream of particles
(photons), i.e. the phenomenon is thought to appear as a
result of some `bunching' of photons which is inherent in the
thermal sources of light.

The first optical experiments with theNCLwere described
in 1965 ± 1967 [2 ± 6]. These experiments used the sources
emitting photons by two in the form of tight pairs. Such a
light, referred to as a two-photon light, also produces extra
noises of the photocurrent, however their statistical proper-
ties are incompatible with classical notion of waves with
random amplitude. The two-photon light radiated during
two-quanta transitions between three atomic levels was
studied in [2, 3]. In 1967, the spontaneous parametric down-
conversion in transparent, birefringent piezo-crystals was
discovered [4 ± 6], during which the two-photon light is
emitted more efficiently. In 1977, the light with the antibun-
ching of photons or, in other words, the subpoissonian lightwas
observed for the first time [7], for which the photocurrent
fluctuations were smaller than the minimum value allowed by
classical theory. Another form of the NCL, the squeezed light
(also emitted most effectively during nonlinear parametric
processes) was observed for the first time in 1985 [8 ± 10].

In the squeezed light (more precisely, in the quadrature-
squeezed light) the fluctuations of one of the quadratures are
suppressed, `squeezed', and it contains an even number of
photons. Actually two types of the NCL, the two-photon-
parametric light and squeezed light, are described as limiting
cases of the same state (under weak and strong pumping,
respectively), which is denoted as a squeezed vacuum state.
The state with `squeezed' energy fluctuations corresponds to a
subpoissonian light.

The NCL allowed observation of some new optical effects
to be made. First of all, we notice the violation of Bell's
inequalities [11] (which proved inapplicability of classical
models with hidden parameters). This became possible due
to discovery of a new type of the intensity interference, called
later the two-photon interference. It may appear in two forms
(polarizational [3, 11] and ordinary [12] ones) and may have
almost a 100% visibility. This very last point permitted one to
observe the violation of Bell's inequalities in optics. The
subpoissonian shot noise [7 ± 10], two-photon diffraction [13],
two-photon image transmission [14] have been also observed.
Using the two-photon light the absolute photometry has been
practised [15]. One may already speak about the birth of the
`two-photon optics' (both the wave and geometrical [12 ± 16]
ones).

TheNCL results frommultiquantum transitions inmatter
and is tightly connected to the notion of an optical non-
linearity of matter [17]. Strictly speaking, ordinary thermal
radiation of a heated body studied by Kirchgoff and Planck
may be nonclassical, two-photon in particular, when con-
sidering multiquantum transitions [17]. However, practical
production of the NCL with a sizeable intensity requires

special conditions (which have been realized in [2 ± 16]). At
present, new experimental methods of NCL generation are
successfully being realized with the use, for example, of
semiconductor lasers [18 ± 20] and cubic nonlinearity of
semiconductors [21], as well as during generation of the
second harmonics [22 ± 24].

The interest to the NCL is primarily due to its possible
applications for information transmission and for very
precise interferometric measurements. In addition, the NCL
allows experimental demonstration of the nonadequacy of
classical description of some optical phenomena (see [25]). Its
photometric applications are less known.

Different aspects of the NCL have been studied theoreti-
cally (see reviews [25 ± 35] and references therein, as well as
special issues of journals [36 ± 38] and monographs [17, 39]).
At the same time, it seems that a systematic description of the
observable NCL features and of how the quantum efficiency
of the detector, linear absorption and amplification affect
these features is absent. The present paper tries to fill up this
gap.

What is the definition of the NCL? How it differs from a
classical light? An opinion is widespread that any kind of light
is generally nonclassical as it `consists of photons'. However,
the latter statement requires caution [25] and, in addition,
many papers are known justifying the adequacy of classical
concepts of optical phenomena. Essentially, the NCL is a
light whose statistics admits no description within the frame-
work of classical stochastic optics. The commonly accepted
and most general formal definition is as follows: the light for
which P-distribution of Glauber±Soudarshan takes negative
values or is an irregular (generalized) function is referred to as
nonclassical (definition I). (P-distribution is a classical analog
to classical probability distribution for the field amplitude,
see below.)

In the present paper we consider some more specific
features of the NCL. Part of them is apparently being studied
for the first time. The main attention is given to operational
criteria of the NCL, i.e. to experimentally examined features
(obviously, singularity of the P-distribution does not relate to
them). These features are based on the well-known Mandel's
formula [40] which connects the directly measured quantity,
the statistical distribution of current pulses at the detector's
output (the statistics of photocounts), with the statistics of light
incident on the detector. Here a stationary light flux in a free
space is assumed to be described by some classic or quantum
statistical ensemble. We shall also consider the effect of linear
absorption, amplification and beam-splitting on theNCLand
relation between the NCL and the absolute (etalon-free)
calibration of photodetectors. For simplicity, we consider
mainly experimental schemes with one detector, i.e. problems
of correlation between counts in two detectors are practically
not dealt with.Dynamical (spectral) properties of the fieldwill
not be analyzed as well since their quantumdescription differs
insignificantly from the classical one (see [35]).

A special position among many possible states of the field
is taken by the coherent state [41 ± 43] that describes the light
of an ideal laser in some approximation. For this state the P-
distribution takes the form of the d-function, i.e. it has the
simplest singularity not violating the nonnegativity condi-
tion. Such a distribution is classically admitted, so the
coherent state is assumed to describe the classical light.
According to [44], all other pure quantum states exhibit
stronger singularities. For example, a quantum state with a
given number of photons K is described by the P-distribution
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in the form of the K-th order derivative of the d-function.
Approximation of such a distribution by smooth functions
shows that the condition of nonnegativity is violated.

Thus the coherent state is at the interface between the sets
of classical and quantum field states. (Notice however that, as
shown in [45], it is possible to construct a state that is closer to
a classical monochromatic field with a certain amplitude and
phase than the coherent state.) Thermal (chaotic, Gaussian)
light belongs to a classical light. To the other side of the
boundary we find the squeezed light and the light with a
certain number of photons. These three types of statistical
states of light as well as their superpositions will be the main
subject of the present discussion. Different features of
nonclassicality will be analyzed using the example of several
particular field states with a parameterT allowing continuous
transition from the nonclassical to classical light.

The author tried to make the presentation as available as
possible for readers not acquainted with quantum optics, so
Sections 2 and 3 provides a general information on methods
of observation and description of the light statistics. No
knowledge of quantum theory is also required in Section 4,
where observable appearances of the light nonclassicality are
described. In Section 5, the backgrounds of quantum theory
of photocounts are presented. In Sections 6 and 7, two typical
examples of the NCL demonstrating different manifestations
of the nonclassicality are discussed. Sections 8 and 10 are
devoted to effects which the linear absorption, amplification
and mixing of two light beams by a beam-splitter have on the
light statistics. Section 9 considers the role of the detector
quantum efficiency and the possibility of its absolute mea-
surement. In the Appendices, we present some mathematical
relationships that permit one, in principle, to distinguish
classical and nonclassical light in the experiment.

2. Experimental procedure

2.1. Photocounts
In the vast majority of optical experiments information about
the field is extracted from the counts on the photoeffect-based
light detectors (PEM, semiconductor photodiods, etc.). The
most detailed unaveraged information on the statistical
properties of a stationary field at some point of space-time is
obtained when using a photon counter with a small area and
inertial time. Then the number of pulses m is counted
periodically at the detector's output (number of photocounts)
during some fixed small sample interval T. This number
fluctuates from one experiment to another. Multiple repeti-
tion of this procedure gives a set of numbers fmig. Statistical
processing of the array of numbers obtained allows, in
principle, the determination of full probability characteristics
of the discrete random variablem. The latter may be specified
using the probability distribution pm �

P
pm � 1,

m � 0; 1; 2; . . .� or moments of this distribution

hmki �
X1
m�0

mkpm ; �2:1�

where k � 1; 2; . . .

2.2. Antibunching of counts
The simplest two numerical parameters of the photocount
statistics are the mean number of counts hmi and their
variance

hDm2i � hm2i ÿ hmi2 :

From them the Fano factor and the parameter of count
bunching are derived by inspection:

F � hDm
2i

hmi ; g2 � 1� hDm
2i ÿ hmi
hmi2 � 1� Fÿ 1

hmi : �2:2�

These parameters characterize the difference of the statistics
from the Poissonian one. In the case of Poissonian statistics
hDm2i � hmi, so F � g2 � 1, therefore when F < 1 or g2 < 1
one speaks about subpoissonian statistics of photocounts or
about subpoissonian nonclassical light (it is equivalently, as a
rule, to speak about the effect of antibunching of counts or
photons; however, one should sometimes distinguish these
terms [29, 46]). Relative fluctuations of the number of counts
from sample to sample are characterized by the parameter
hDm2i=hmi2 � F=hmi that determines the signal-to-noise
ratio.

What is unusual in the property of the photoelectron flux
to meet hDm2i < hmi (or g2 < 1)? Why this is thought to be a
feature of the light nonclassicality? It is trivial by itself. For
example, this is characteristic for the electron stream in a
vacuum diode without saturation (when the shot noise is
suppressed by the space charge). The paradox appears only
within some interpretation of the pulses observed at the
photodetector output.

2.3. Corpuscular model
The simplest `corpuscular' model of the photoeffect is based
on a visual interpretation of the light beam incident upon the
detector cathode in the form of a photon flux. Let us suppose
for simplicity that the quantum efficiency of the detector Z is
100%, then the arrival of each photon causes the emission of
one photoelectron. As a result, the electron flux simply
duplicates the photon flux and the condition hDm2i 6� hmi
means only that the photon flux exhibits some regularity, the
photons being distributed in time in a nonchaotic manner.
When g2 > 1, photons have a tendency as to bunch together,
and when g2 < 1 ± to `repulse'. (We stress that these terms
have nothing to do with intrinsic properties of photons as
hypothetical elementary particles; they characterize only the
statistical properties of the light sources.)

Thus, the antibunching was observed in experiments
during resonance fluorescence of single atoms excited by a
laser [7]. After emitting a photon by the excited atom, its
repeated excitation occurs only after some finite time interval
Dt, so the moments of emission of two subsequent photons
are separated by an interval not less than Dt, i.e. close pairs of
photons cannot be emitted. This produces the subpoissonian
statistics for the counts. (The Poissonian distribution assumes
all moments of time to have equal rights, so the consecutive
counts may be observed arbitrarily close to each other). In the
ideal case of the full antibunching, the photons are emitted
regularly at a certain time interval, the number m being
nonfluctuated, so that F � g2 � hDm2i � 0.

Thus the condition g2 < 1 is quite natural within the
framework of the corpuscular model of light. This primitive
model of photon±balls describes qualitatively many experi-
ments. Within its framework any light is nonclassical and the
isolation of a subset of classical statistical states of light has no
sense because it is empty. The well-known difficulties, which
appear when describing interference and diffraction of light,
are connected to this model.
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2.4. Quantum model
For precise quantitative description of all the effects
observed, it is necessary to use, of course, quantum theory
for both the matter and field. Then the number of photons n
becomes an operator. It may be expressed through `base'
operators of annihilation a and creation ay of photons:
n̂ � aya. Quantum theory predicts (assuming a certain
model for the light source) the distribution of the number of
photons pn and the moments of this distribution hnki. All
known experiments agree very well with predictions of
quantum optics. In the case of an ideal detector, the observed
statistics of counts doubles quantum statistics of photons
specified by the density matrix of the field (see Section 5).
Within the framework of rigorous quantum theory, the
subpoissonian statistics of counts causes no astonishment as
well.

However, there is the third way of describing the photo-
counts' statistics that uses a semiclassical model for photo-
effect and does not allow the subpoissonian statistics. It is
within the framework of this approach that the concept of the
NCL appears.

3. Semiclassical theory of photocounts

In the semiclassical theory, atoms of the detector are
considered quantum-mechanically, while the field of the
light wave Ð classically. Then the statistical properties of
the field are specified by some probability distribution laws.
Quantum theory is much more complicated than the
classical stochastic electrodynamics. Apart from having a
more complex mathematical apparatus, quantum formalism
is distinguished by allowing an interpretation (as a rule, the
`Copenhagen' variant of the interpretation is used) con-
nected with the abandonment of some customary physical
concepts (which manifests itself as the complementary
principle), so it is natural to try to describe electromagnetic
field in a classical way whenever possible, at least in optical
and radio wave ranges. It is managed to do in many cases
and a lot of attempts were undertaken to `legitimate' this
approach. However, during last decades some optical effects
have been discovered that could not been described ade-
quately in such a simplified manner. The term NCL just
distinguishes these cases.

3.1. One-mode detector
We use a maximum idealized model. Let the area of the
detector A be equal to the coherence area of the light falling
on the detector, and the sample interval T be equal to the
coherence time tcoh (which is on the order of the reverse
spectral bandwidth, tcoh � 2p=Do; during the coherence time
the field amplitude changes insignificantly). Such a detector
`sees' only one mode of the field, i.e. only one independent
vibrational degree of freedom (necessary corrections to this
idealization will be found in Section 9). Dynamical or
statistical description of onemode is equivalent to description
of a harmonic oscillator. (Multimode detectors average field
fluctuations in time and space, which leads ultimately to a
trivial Poissonian statistics of counts regardless of individual
properties of the field (see, for example, [47].)

In the case of a stationary quasi-monochromatic light
beam, the field on the detector has the form E0 sin�o0t� f�,
where E0 and f are the random slowly changing functions of
time. The characteristic time of changing these quantities is
just said to be the coherence time. The probability of

appearing the successive photoelectron in the detector is
taken to be proportional to the intensity E2

0 of the beam
incident on the detector's cathode at a given moment of time.

It is convenient to go over to a dimensionless quantity nÐ
the field energy fallen within the coherence volume
Vcoh � ctcohAcoh (which is coincident, according to our
suggestion, with the volume of detection Vdet � cTA) divided
by the energy of a photon:

n � E2
0Vcoh

8p�ho0
:

In the quantum theory, our classical variable n corresponds to
the operator of the number of photons in one mode n̂ that
possesses only discrete spectrum of integer values 0, 1, 2, ... In
contrast, here n is simply the field energy expressed in some
convenient dimensionless units, which takes on continuous
values from zero to infinity. Accordingly, the statistics of
photocounts in the quantum theory is determined by a
discrete distribution of the field energy pn, while in classical
theory Ð by a continuous distribution P�n�. It is this
difference in the type of distributions that makes it possible
to introduce an operational (using the statistics of the
observed photocounts) definition of the NCL.

Let, for example, the light flux incident upon the detector
have the power I � 10ÿ9 W, the wavelength l � 0:5 mm and
the spectral bandwidth D f � Do=2p � 109 Hz, then
n � Il=hcD f � 2:5 photons.

3.2. The Mandel's formula
The probability of appearing the successive photoelectron
over the time interval (t; t� dt) is accepted to be Zn dt=T,
where the dimensionless proportionality coefficient Z is called
the quantum efficiency of the detector. The mean number of
counts during the sample time T is hmi � Zhni. The efficiency
of modern detectors approaches 100% and we assume the
detector to be ideal, Z � 1 (in Section 9 we will take into
account the corrections due to Z < 1).

Let us suppose that the field intensity n is constant and
does not fluctuate (like the field of an ideal laser). Here all
moments of time are equivalent: a successive photoelectron
may appear with the same probability n dt=T within any time
interval dt insideT. The probability theory supposes that this
model leads to a Poissonian statistics for the number of
counts (see, for example, [48]):

pm � nm exp�ÿn�
m!

: �3:1�

Thus, even in the case of a light beam of constant amplitude
E0 (ideal laser) the photoelectrons are born at random points
in time (chaotically), which results in the Poissonian shot
noise. On average, n counts are observed during the timeT. In
our example hmi � n � 2:5 photons and m=0, 1, 2, 3, 4, 5
counts will be observed with probabilities pm=0.08; 0.20;
0.26; 0.21; 0.13; 0.07, respectively. Quantum fluctuations
(`photon noise') are introduced into the semiclassical theory
by assuming a stochastic character of energy transfer from the
field to the detector (see, for example, [35]). Expression (3.1)
provides a mapping n! pm; it expresses a mathematical
procedure of `discretization' and `stochastization' when a
random variable m taking on discrete values m=0, 1, 2, ...
with probabilities pm is put into correspondence to a
determined variable n.
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It seems obvious that all other, nonlasing sources of light
may cause only additional, `excessive' noises of the photo-
current connected with instability of their intensities n.
Excessive fluctuations may be described by assuming the
(solely) parameter of the Poissonian distribution n to be a
random variable. In classical stochastic electrodynamics, the
probability that the intensity of light incident on the detector
(expressed in the appropriate units) takes on some value in the
interval (n, n� dn) is P�n� dn. The distribution density P�n�
must satisfy the axioms of the probability theory: the
condition of normalization

�1
0 P�n� dn � 1 and nonnegativity

P�n�5 0. By averaging additionally the Poissonian distribu-
tion over the distribution P�n� for the variable n, we arrive at
the well-known Mandel's formula [40]

pm � 1

m!

�1
0

nm exp�ÿn�P�n� dn;

P�n�5 0;

�1
0

P�n� dn � 1: �3:2�

Thus, the distribution pm of the observable discrete
random variable m is connected with the assumed intensity
distribution of the incident light P�n� through the `Poisson
transformation'. Expression (3.2) contains a double stochas-
ticity: due to the noises of `discretization' and due to the light
intensity fluctuations. The second component is given the title
excessive noise.

Notice that according to (3.2) the quantities
am � m!pm=p0 may be considered as moments of the modified
distribution ~P�n� � P�n� exp�ÿn�=p0 (the factor 1=p0 is a
normalizing one) [39].

3.3. Factorial moments
As already mentioned, the results of the experiment on the
photons counting may be presented as a set of probabilities of
the count distribution pm (m � 0; 1; 2; . . .) or as moments of
this distribution hmki (k � 1; 2; . . .). These two sets are
related by expression (2.1). It is convenient to introduce also
the factorial moments of the distribution pm:

Gk �


m�mÿ 1� . . . �mÿ k� 1��

�
X1
m�k

m!

�mÿ k�! pm �
X1
m�0

�m� k�!
m!

pm�k : �3:3�

They make up linear combinations of ordinary moments
hmki, for example, G2 � hm2i ÿ hmi. If ordinary moments
hmii are known for 14 i4 k, then one can calculate the
factorial moments Gk as well, and vice versa.

It can be shown that the factorial moments of a discrete
distribution of counts pm determined from (3.2) coincide with
ordinary moments of the continuous energy distribution
P�n�:

Gk � hnki �
�
nkP�n� dn : �3:4�

Thus, owing to properties of the Poisson transformation
(3.2), the calculation of ordinary moments hnki of the original
light energy distribution P�n� gives the factorial moments Gk

of the count distribution pm, whereas the calculation of
moments of the modified distribution P�n� exp�ÿn�, `shor-
tened' by the exponent, provides the probabilities of counts
pm. From the latter, one can form ordinary moments of
counts hmki (see (2.1)).

In the quantum theory, for the case of an ideal detector
pm � rnn, i.e. Gk represent also the factorial moments of a
discrete photon distribution rnn (here r is the density
operator).

It is possible to express pm inversely through Gk. By
expanding the exponent in (3.2) in series, we find with regard
to (3.4):

pm � 1

m!

X1
k�0

�ÿ1�k
k!

Gm�k : �3:4a�

From the normalization conditions for pm it follows

X1
k�0

X1
m�0

�ÿ1�k
k!m!

Gm�k � 1 : �3:4b�

3.4. The amplitude distribution
When describing the field with the help of energy distribution
P�n� information on the phase of oscillation f is ignored. The
latter may be measured, in principle, using the homodyne
detection, i.e. by forming a superposition of the field under
study and the reference laser beam with a stable phase. For
full statistical description of the mode one should use two-
dimensional probability density Pz�z�, with

�
d2zPz�z� � 1.

Here z � z0 � iz00 � jzj exp�if� is the complex amplitude of
oscillations, which is normalized so that

jzj2 � n � E2
0Vcoh

8p�ho0
;

integration is performed over an entire complex plane playing
the role of the phase space for the oscillation mode, and
d2z � dz0 dz00 � jzj djzj df is an element of this plane. Now
(3.2) takes the form

pm � 1

m!

�
d2zPz�z�jzj2m exp

ÿÿjzj2� : �3:5�

Let us express the energy distribution P�n� through the
complex amplitude distribution Pz�z� � Pz�z0; z00�. In the
general case

P�n� � Pz

ÿjzj� djzj
dn
� 1

2

�2p
0

dfPz

ÿ ���
n
p

cosf;
���
n
p

sinf
�
:

�3:6�

In the case of a stationary field Pz is independent of the phase
and P�n� � pPz

ÿ ���
n
p �

.
Under superposition of two independent oscillations, the

distribution of the total field is equal, in accordance with the
rules of the probability theory, to the convolution of the
original distributions, viz.

Pz�z� �
�
d2z1P

�1�
z �zÿ z1�P�2�z �z1�

�
�
d2z1P

�1�
z �z1�P�2�z �zÿ z1� : �3:7�

Let the distribution P�2��z� � d�2��zÿ z0� � d�z0 ÿ z00��
d�z00 ÿ z000� describe a laser light with a certain complex
amplitude z0, then Pz�z� � P�1�z �zÿ z0�. Therefore, during
the homodyne detection the initial distribution P�1�z �z� is
simply shifted in the z-plane without changing the form.
Consequently, the status of the state does not alter: according
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to the definition I, the NCL remains nonclassical, and
classical light Ð classical as well.

4. Observable features of the NCL

4.1. The Lee's measure
As shown above, the property of being nonclassical is
invariant to homodyning with the help of a laser field
described by a coherent state with the amplitude distribution
Pz�z� � d�2��zÿ z0�.

This is not the case when the light under study is being
superimposed on a thermal field. The latter has an exponen-
tial intensity distribution and during the convolution with it,
the higher is the thermal field amplitude, the stronger the
original distribution is `smoothed' out. Then singular and
negative regions disappear and as a result the NCL may
become classical (examples are given below). Thus, the
superposition with a coherent field does not change the
character of the original field in contrast to the superposition
with a thermal field which `damages' the nonclassicality.

A convenient measure for the nonclassicality was pro-
posed byLee [49, 50]. LetT be themean number of photons in
one mode of the auxiliary thermal field. The minimum value
T � T0 at whichPz�z� remains a nonnegative regular function
can be taken, in accordance with definition I, as a quantitative
measure of the nonclassicality. Below we shall show that T0

changes from 1 for the most nonclassical (K-photon) states to
0 for the classical ones. Thus, adding a thermal field with the
mean number of photons in one mode equal to 1 makes
always any light classical. In the case of a squeezed vacuum
T0 �

����
N
p � G5 1 at low squeezing, and T0 � 1=2 at G4 1

(G is the amplification factor). The quantity T0 can, in
principle, be measured: for this, one should add to the light
involved (using, for example, a beam-splitter (see Section 10))
a thermal beamwith intensity that can be tuned.However, the
question still remains as to how to determine experimentally
the moment of the nonclassicality disappearance with
increased T0?

4.2. Operational determination of the nonclassicality
Let us return to the Mandel's formula (3.2). For a Poissonian
distribution it is characteristic to have the variance equal to
the mean value: hDm2i � hmi. Thus the ideal laser light yields
g2 � F � 1. It might appear that all other light sources can
only enhance the photocurrent noises due to instability of
their intensities. Therefore it seems impossible to observe
subpoissonian fluctuations with g2 < 1 within the framework
of semiclassical theory.

These qualitative considerations are confirmed by calcu-
lations. From (3.2) it follows that hmi � hni and
hDm2i � hmi � hDn2i. Since P�n�5 0 leads to hDn2i5 0,
then hDm2i5 hmi, i.e. the conditions g25 1, F5 1 should
always hold. As this takes place

g2 � 1� hm
2i ÿ hmi
hmi2 � 1� hDn

2i
hni2 :

Thus the value g2 � 1 is a lower boundary in the case of
the semiclassical theory of photocounts: g2 clas5 1 and the
simplest observable feature of the NCL is the inequality
g2 exp < 1, i.e. the photocount antibunching. It will be shown
later that in the general case for a light to be nonclassical it is
sufficient to fulfill at least one of the infinite set of conditions

of the form Dk < 1, k � 1; 2; . . . (D1 � g2). But even if none
of these conditions holds, the light can be nonclassical all the
same (see Appendix I).

Notice that in the quantum theory some bounds on the
moments also exist (see Appendix I). For example, from
hDm2i5 0 follows g25 1ÿ 1=hmi. The equality here is
reached in the case of the states with a definite number of
photons.

It is natural to accept the following operational definition
of the NCL: if the statistics of photocounts observed does not
agree with the Mandel's semiclassical formula (3.2) at
P�n�5 0, i.e. the light falling on the detector cannot be
described by some energy distribution P�n�, then the light is
referred to as nonclassical (definition II).

In particular, if a light produces the photon antibunching,
then it is nonclassical (for instance, if G1 � hmi � 10 and
G2 � hm2i ÿ hmi � 99).

One may test the light nonclassicality by studying the
probabilities of counts pm. Within the framework of quantum
theory, in principle, no restrictions may be imposed on the
sets of numbers fpmg observed (apart from, of course, the
normalization condition Spm � 1). Our idealized detector
provides us directly with information on the diagonal
components of the density matrix r for a one-mode field in
the Fock representation: pm � pn � rnn. Consequently, if one
uses corpuscular concepts and determines the counts' statis-
tics using discrete distribution of the field energy, then any
sets of numbers measured fpmg are admissible.

On the other hand, semiclassical formula (3.2), i.e. the
Poisson transformation, constrains in a certain manner the
sets observed, which permits us, on experimental grounds, to
split a possible set of statistical states of the field into two
classes, i.e. permits distinction between classical and non-
classical light to be drawn. For example, in Section 4.4 we
shall show that the numbers p0 � 0:23, p1 � 0:35, and
p2 � 0:22 are inconsistent with (3.2) if P�n�5 0.

In the general case, the problem of applying the definition
II to experimental results arises. A straightforward test on
being nonclassical includes obviously the attempt to reverse
the Mandel's formula (3.2), i.e. determination of the function
P�n� through the set of numbers measured fpmg or fGkg, and,
if it is successful, the subsequent testing of its nonnegativity,
P�n�5 0.

4.3. The problem of moments
Different ways of reversing transformation (3.2) were
described, for example, in [39, 48]. Generally, this procedure
is nontrivial and not uniquely defined, being connected with
the well-known mathematical problem of moments (see, for
instance, [51 ± 54]). Then one has to operate with generalized
functions similar to derivatives of the d-function.

In our case, the problem may be posed as follows. The
moments Gk of a nonnegative function P�x�5 0 are known
(we change n by x for a while). By definition,
Gk �

�1
ÿ1 xkP�x� dx > 0 (we assume P�x� / y�x�, where

y�x� is a step function). Let us go over to the Fourier-
representation

~P�o� �
�1
ÿ1

P�x� exp�iox� dx �
�1
0

P�x� exp�iox� dx :
�4:1�

This function is called the characteristic function. If io is
changed by ÿs (s5 0), i.e. one uses the Laplace transforma-
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tion, then we arrive at the generating function

C�s� �
�1
0

P�x� exp�ÿsx� dx � ~P�is� : �4:2�

Notice that ~P�0� � C�0� � 1 and

d

ds
C�s� � ÿ

�1
0

xP�x� exp�ÿsx� dx < 0 :

Generally, all even derivatives of C�x� are positive while odd
ones are negative, and C�s� is a continuously decreasing
function from 1 to 0 (such functions are referred to as
absolutely monotonic [54]). Violation of these properties
can, in principle, serve as one of the features of the NCL.

Differentiation of functions ~P�o� and C�s� allows us to
find the moments Gk and probabilities pm. Expanding
exponent in series in the vicinity of zero

~P�o� �
X1
k�0

�io�kGk

2pk!
; C�s� �

X1
k�0

�ÿs�kGk

k!
�4:3�

shows that the moments Gk of the function P�x� determine
coefficients of the power series for its Fourier- and Laplace-
images. The reverse Fourier-transformation of ~P�o� yields
the formal representation of P�x� as a sum of derivatives of
the d-function

P�x� �
�1
ÿ1

~P�o� exp�ÿiox� do
2p

�
X1
k�0

1

k!
Gk

�1
ÿ1
�io�k exp�ÿiox� do

2p

�
X1
k�0

�ÿ1�k
k!

Gkd
�k��x� ; �4:4�

here d�k� is the k-th order derivative of the d-function.
Assuming x � n, we obtain a formal solution to the problem
of recovering the energy distribution with factorial moments
of photocounts. Let, for example, only one moment be non-
zero: Gk � dkK, then P�n� � d�K��n�=K!. In other words, the
(generalized) function d�K��x� possesses only one moment. Of
course, such a distribution is unacceptable in the classical
statistical optics.

On the other hand, as already pointed out, according to
the Mandel's formula the probabilities pm, multiplied by m!
and divided by p0, may be considered as moments of a
modified distribution

~P�n� � P�n� exp�ÿn� 1
p0
;

(factor 1=p0 serves as a normalizing one)

am � m!
pm
p0
�
�1
0

nm ~P�n� dn : �4:5�

Therefore, it is possible to recover P�n� (or C�s�) using
probabilities of photocounts as well (we remind that the
probabilities pk multiplied by �ÿ1�k are the coefficients of
the C�s� expansion in series near the point s � 1). Indeed, the
change in (4.4) P�n� ! p0 ~P�n� exp n, andGk ! k!pk=p0 yields

P�x� � exp x
X1
k�0
�ÿ1�kpk d�k��x� : �4:6�

Consider now a pure quantum state jK i with a definite
number of photons K. Such a state, in accordance with
quantum theory, produces the counts' distribution measured
by an ideal detector in the form pm � dmK; these counts then
do not fluctuate, m � K at all times. According to (4.6) this
distribution satisfies (3.2) at

P�n� � �ÿ1�Kd�K��n� exp n :

Clearly, this singular function cannot describe classical
distribution of light intensity. This is obvious when using the
representation of the d-function in the form of the limit of
some regular function: derivatives of this function take
negative values. Therefore, the K-photon state corresponds
to the NCL.

Under specific calculations it is more convenient to
evaluate firstly the function ~P�o� (or C�s�), and then to find
its Fourier- (or Laplace-) image P�x�. As an example, let us
substitute factorial moments Gk � k!NK of thermal field into
(4.4), then

P�x� �
X1
k�0
�ÿN�k d�k��x� ;

where N is the mean number of photons. In order to make
sure that this series represents a regular function, let us take
the Fourier transform according to (4.1):

~P�o� �
X1
k�0
�ÿN�k

�1
ÿ1

dx exp�iox� d�k��x�

�
X1
k�0
�ioN�k � �1ÿ ioN�ÿ1 :

Here we used the definition of the d�k�-function according to
which the integral is equal to k-th derivative of the function
exp�iox� at x � 0 multiplied by �ÿ1�k, i.e. �ÿio�k. The
reverse Fourier transformation yields a regular distribution

P�x� � exp�ÿx=N�
N

; x > 0 :

Notice that it is sometimesmore convenient to search forP�x�
in the form of a series expansion in Laguerre polynomials [39,
48].

In the experiments, we always deal with a limited set of
numbers a1; . . . ; aK, using which it is impossible to fully
recover the function C�x� or P�n�. Additional difficulties
arise from a limited accuracy of statistical data measure-
ments. Nevertheless, successful experiments on the recon-
struction of the Wigner's quasi-distribution using a photo-
current statistics have been recently reported [55].

4.4. Relations between the moments
Consider an alternative approach to the problem of experi-
mental discovery of the nonclassicality. The experiment
provides us with an array of count numbers fmig. From
these numbers we can construct sets of probabilities fpkg,
factorial moments fGkg or, in the general case, sets of
generalized moments fak�s�g at some values of the parameter
s; for example, ak�0� � Gk and ak�1� � k!pk=p0 (see Appendix
II). For a fixed s we obtain an ordered set of real numbers
fakg. According to classical theory of photocounts, these
numbers present moments of some nonnegative function
P�x� exp�ÿsx�5 0, i.e. ak �

�
xkP�x� exp�ÿsx� dx, and, con-
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sequently, they must be restricted with a certain number of
inequalities (see Appendix I and [51 ± 59]).

For example, according to (I.10) for 14m4 n it turns
out that

aman4 amÿ1an�1 ; Dm � amÿ1am�1
a2m

5 1 : �4:7�

We emphasize that (4.7) make up necessary but not sufficient
conditions for a classicality. The inverse inequalities yield
sufficient but not necessary features of a nonclassicality.

Inequalities (4.7) have a simple geometrical significance.
Let us denote bm � ln am. Then Dmÿ1 � bm ÿ bmÿ1 is a change
in the function (of discrete argument) bm on shifting
mÿ 1! m. Now (4.7) takes the form Dmÿ14Dn, i.e. change
at the pointmÿ 1 is smaller than or equal to that at the point
n5m. This implies that the function bm � ln am in the case of
a classical light is concave everywhere, while in the case of the
NCL it possesses convexities. The conditionDm < 1 implies a
local `nonclassical' convexity on the plot of the function
bm � ln am at the point m.

Substituting ak � k!pk=p0 or ak � gk � Gk=G
k
1

(g0 � g1 � 1) into (4.7) we arrive at two infinite series of the
sufficient conditions for a nonclassicality:

Dk�1� � �k� 1� pkÿ1 pk�1
kp2k

< 1 ;

Dk�0� � gkÿ1 gk�1
g2k

< 1 : �4:8�

We shall call these conditions the Dk-criteria. In particular,
the condition D1�0� � g1 < 1 coincides with the most known
criterion of nonclassicality Ð antibunching of photocounts.
The condition Dk�0� < 1 for k5 2 is sometimes labelled as
higher-order antibunching. These quantities may also serve as
quantitativemeasures of the degree of nonclassicality:Dk � 0
corresponds to the maximum nonclassicality, and Dk � 1 Ð
to the minimum one (however one should remember of the
dependence of these quantities upon the choice of the
parameter s).

Let us consider some examples of using the Dk-criteria
(4.8).

1. An ideal laser light produces the Poisson distribution
(3.1) with the parameter hni � N � jz0j2. Here ak � Gk � Nk,
so that Dk�0� � Dk�1� � 1. The plot of the function
bk � ln ak � k lnN is a straight line. Therefore, this distribu-
tion lies on the boundary between the classical and non-
classical case.

2. A thermal distribution gives Gk � k!Nk,
ak � k!

�
N=�N� 1��k, so that Dk�0� � Dk�1� � �k� 1��

1=k > 1; plots of the functions lnGk and ln �pk=k!� are
concave.

3. Let the probability for some number of counts k tend to
zero: pkÿ1 6� 0, pk � 0 and pk�1 6� 0, then
Dkÿ1�1� � Dk�1�1� � 0 and the plot of ln �pk=k!� shows two
neighbouring `nonclassical' concavities. Similarly, if pkÿ1 � 0,
pk 6� 0 and pk�1 � 0, then Dk�1� � 0 and there appears a
`nonclassical' convexity. Any state with a `truncated' prob-
ability distribution of counts, when all probabilities are zero
beginning from a certain number, is nonclassical as well.

Dk-criteria considered above are very particular (although
the property of being subpoissonian is important for applica-
tions). Experimental testing of nonclassicality for a certain
mode of light field, strictly speaking, must include measure-

ments of an infinite set of moments or probabilities and
testing an infinite set of inequalities composed from them.
General necessary and sufficient features of classicality are
presented in Appendix I. They use Hankel's matricesHK and
HK 0 composed from moments a0 � 1, a1; . . . ; a2K. These
matrices in the classical case must be positively determined.
In practice, of course, a maximal order of measured moments
Gk or probabilities pk is limited (as well as their measurement
accuracy), so that the experimenter has in his disposal the
matrix HK of a certain order, and the testing on being
nonclassical reduces to the determination of the sign of
detHK or K� 1 eigenvalues l0; . . . ; lK of this matrix (one
may also use the Sylvester's criterion Ð the positivity of all
the angular minors ofHK [60]). If some of these quantities are
negative, the light is nonclassical. If all are positive, we should
pass to the next-order matrix. One may, in addition, measure
Dk�s� at some optimal value of s depending on the state of the
light studied.

4.5. Squeezing of quadratures
Let us define two quadratures of the field amplitude in a
mode:

q �
���
2
p

Re �z�; p �
���
2
p

Im �z� : �4:9�

A feature of the NCL is often considered as a `squeezing' of
fluctuations of one of the quadratures below the `vacuum'
value, hDq2i < 1=2 (see (6.4)). Quadratures of some weak
field can be studied by adding to it the strong coherent field
with an adjustable phase (homodyne detection, cf. [35]), i.e.
they can be considered as observable quantities. Then
fluctuations of the photocurrent induced by the superposi-
tional field are proportional to fluctuations of a certain
(depending on the homodyne phase) quadrature of the weak
field, i.e. the observed current distribution is coincident with
the distribution P�q� for one of the quadratures (disordered,
see [35]). The observed features of nonclassicality (antibunch-
ing, etc.) prove to be connected with the statistics of the
quadrature. Since the Fano factor for the current is equal to
twice the variance of a specific quadrature of the weak field,
F � 2hDq2i (see (6.21)), then the conditions of the quadrature
squeezing and the count antibunching (F < 1) are the same.
However, the squeezing condition by itself hDq2i < 1=2 does
not contradict classical theory, in which there are no restric-
tions on P�q; p� and hDq2i. Only within the framework of
quantum theory this condition is connected with the irregu-
larity of the Pz-distribution (see Section 6).

5. Quantum theory of photocounts

Quantum theory of photodetection is presented, for example,
in [39, 41, 47], so here we restrict ourselves to giving a short list
of necessary results. The Dirac notations in use are explained
in detail in [47, 61].

5.1. Discrete representation
In quantum theory, statistics of photocounts (as well as all
other observable quantities) is determined by the density
operator r for a free field which falls on the detector.

When using the discrete Fock's basis, the diagonal matrix
element in the case of our ideal detector immediately gives us
the probability of observation of n counts

pn � rnn � hnjrjni : �5:1�
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In the case of a pure state r � jcihcj, so that pn �
��hnjci��2.

The (ordinary) moments are defined as

hnki � 
�aya�k� � tr �rnk� �
X
n

rnnn
k : �5:2�

Normal (normally-ordered) moments of the general form
are calculated in the discrete representation as follows:

Gmn �

�ay�man� �X1

k�0

����������������������������������m� k�!�n� k�!p
k!

rm�k; n�k : �5:3�

In the stationary case rmn � rnndmn, so that Gmn � Gmmd �
Gmdmn. When m � n, normal moments are coincident with
factorial ones:

Gm � Gmm �


: nk :

� � 
n�nÿ 1� . . . �nÿm� 1��
�
X1
k�0

�m� k�!
k!

rm�k;m�k : �5:4�

Here n � aya and colons denote the operation of permutation
of operators ay to the left of operators a (under the
permutation one does not need to take into account non-
commutativity, for instance, :n2 :� �ay�2a2 � n2 ÿ n). Hence,
when identifying pm � rnn we obtain classical formula (3.3)
for factorial moments. The generating function for counts
may also be expressed via r :

C�s� � 
�1ÿ s�n̂� �X1
n�0
�1ÿ s�nrnn �



: exp�ÿsn̂� :�: �5:5�

Derivatives of C�s� at the points 0 and 1 determine cor-
respondingly the factorial moments Gk and probabilities of
counts pm.

5.2. Continuous representation
What is in common between quantum expression (5.1) and
classical Mandel's formula (3.5) for probabilities of photo-
counts? It turns out that the relationship pn � rnn may be
transformed to the form like (3.5). For this one should use a
continuous representation of vectors and operators by
coherent states jzi [39, 41 ± 43, 47]. Then the density operator
is being mapped by some function Pz�z� called the Glauber-
Sudarshan representation [41 ± 43]. This function determines
the distribution of counts via the Poisson transformation
which is coincident in form with the classical Mandel's
formula (3.2) or (3.5). The only difference is that the function
Pz�z� or P�n� � pPz�

���
n
p � is now defined via the density

operator and thus can be negative and irregular (therefore it
is called the `quasi-distribution'). With the use of Pz�z� it is
convenient to calculate normal operators, for example,

pm �


: n̂ m exp�ÿn̂�:�

m!
� 1

m!

�
d2zPz�z�jzj2m exp

ÿÿ jzj2� ;
Gk �



: n̂ k :

� � � d2zPz�z�jzj2k ;

C�s� � 
:exp�ÿsn̂�:� � � d2zPz�z� exp�ÿsjzj2� : �5:6�

Fourier-image of the function Pz�z� is designated the
normal (normally-ordered) characteristic function

w�w� � 
 exp�way� exp�ÿw�a�� � 
:exp�way ÿ w�a�:�
�
�
d2zPz�z� exp�wz� ÿ w�z� : �5:7�

The derivatives of this function at a zero point determine the
normal moments of the general form

Gmn � �ÿ1�n qm

qwm

qn

qw�n
w�w; w��

���
w�w��0

�5:8�
(the arguments w and w� are considered as independent).

5.3. Smoothed-out functions
In the case of the NCL, the function Pz�z� may refer to the
class of generalized functions. In order not to deal with
generalized functions, it is worthwhile to use `smoothed-
out', regular modifications of the function Pz�z�. For this we
define a new characteristic function as follows:

w�w;T� � exp�ÿTww�� w�w� ; w�w� � w�w; 0� : �5:9�
We also define the Fourier-image of this function:

~w�z; T� � pÿ2
�
d2w exp�zw� ÿ z�w� w�w;T�

� pÿ2
�
dw0 dw00 exp

�
2i�z00w0 ÿ z0w00�

ÿ T�w02 � w
002�� w�w0;w00� : �5:10�

The parameter T5 0 plays a double part: firstly, it limits the
characteristic function at infinity, which leads to the possibi-
lity of its Fourier transformation; secondly, w�w;T� describes
the superposition between the original field specified by the
function w�w; 0� � w�w�, and an independent thermal field
with themean number of photonsT. (We recall that under the
composition of two independent random processes their
characteristic functions are multiplied.)

Let us introduce the following notations:

w�w; 0� � w�w�; ~w�z; 0� � Pz�z� ;

w
�
w;

1

2

�
� wsym�w� ; ~w

�
z;
1

2

�
�W�z� ;

w�w; 1� � wA�w� ; ~w�z; 1� � Q�z� : �5:11�
At T � 0, the function w�w;T� is a normal characteristic
function, its derivatives at a zero point determine the normal
moments of the form Gkl �


�ay�kal� (see (5.3)). The Fourier
transform of w�w; 0� yields the Glauber±Sudarshan represen-
tationPz�z� for the density operator. The functionPz�z� plays
the part of (quasi-)distribution for normal operators.

When T � 1=2, the function w�w;T� possesses a symme-
trized characteristic function. Its Fourier-imageW�z� is called
the Wigner function. The latter is always regular (but may
takes negative values), it plays the part of the quasi-distribu-
tion for operators symmetrical with respect to the permuta-
tion of a and ay operators.

Finally, at T � 1 the function w�w;T� determines an anti-
normal characteristic function; its Fourier-image
Q�z� � 
zjrjz� is always nonnegative and plays the part of
the distribution for antinormal operators like



al�ay�k�.

The product of the characteristic functions corresponds to
the convolution of their Fourier-images. Therefore, the
Wigner function W�z� is equal to the convolution of Pz�z�
with the function exp�ÿjzj2=2�, whereas the function Q�z�
does that of Pz�z� with the function exp�ÿjzj2�. These
mathematical operations, which smooth-out peculiarities of
Pz�z�, can be realized by adding a thermal field with T � 1=2
or T � 1 [49, 50].
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5.4. The superposition with a thermal field
In what follows we assumeT to be a mean number of photons
in the additional thermal field, which is used as a measure of
nonclassicality of the original field according to Lee [49, 50].
Then the initial state behaves as if it is `heated'. For example,
the Wigner function of a total field has the form
W�z;T� � ~w�z;T� 1=2� and is determined from (5.11). With
the use of the Wigner function the distribution of counts and
generating function are determined according to the follow-
ing formulas [62, 63]:

pm � 2�ÿ1�m
m!

�
d2zW�z;T�Lm�4jzj2� exp�ÿ2jzj2� ; �5:12�

C�s� � 2

2ÿ s

�
d2zW�z;T� exp

�
ÿ 2sjzj

2

2ÿ s

�
: �5:13�

Here LK�x� are the Laguerre polynomials,

LK�x� � K !
XK
m�0

�ÿx�m
�m!�2�Kÿm�! ;

L1�x� � 1ÿ x ; L2�x� � 1ÿ 2x� x2

2
: �5:14�

In contrast with (5.6), the Wigner function is used here which
is regular for the NCL.

In the case of a stationary field, rnm � rnndnm and the
relationship takes place:

w�w;T� � exp�ÿTww��
X
n

rnnLn�jwj2� : �5:15�

5.5. Examples
1. The field of an ideal laser is described by the coherent

state

Pz�z� � d�2��zÿ z0� � d�z0 ÿ z00� d�z00 ÿ z000� : �5:16�

The Fourier-transform of this function yields

w�w� � exp�wz�0 ÿ w�z0� : �5:17�
Here the photocounts form a Poissonian process:
pm � nm0 exp�ÿn0�=m! with the parameter n0 � jz0j2, for
which

C�s� �
X
�1ÿ s�npn � exp�ÿsn0�; Gk � nk0 : �5:18�

2. One mode of the field or a harmonic oscillator in the
state of thermal equilibrium are described by a Gaussian
distribution for the amplitude and an exponential one for the
energy:

P�n� � pPz�
���
n
p � � 1

T
exp

�
ÿ n

T

�
: �5:19�

Here T is the mean energy divided by the energy of photon.
Two-dimensional Fourier-image of the function Pz�z� takes
the form

w�w� � exp�ÿTww�� : �5:20�
The density matrix therewith is diagonal

rmm � pm � Tm

�1� T�m�1 � p0 exp�ÿmb�;

exp�ÿb� � T

1� T
: �5:21�

Hence it is easy to find

C�s� �
X
�1ÿ s�n Tn

�1� T�n�1 �
1

1� sT
;

Gk � k!Tk : �5:22�

3. The superposition of the coherent and thermal fields is
obtained from (5.19) by translating over vector z0 (in
accordance with (3.7) and (5.16)):

Pz�z� � 1

pT
exp

�
ÿ jzÿ z0j2

T

�
: �5:23�

The characteristic function equals the product (5.17) and
(5.20)

w�w� � exp�ÿTww� � wz�0 ÿ w�z0� : �5:24�

4. The Scully±Lamb distribution [64]

pm � c
am

�b�m�! �
ab�m exp�ÿa�
�b�m�! ;

cÿ1 �
X1
m�0

am

�b�m�! � aÿbea �5:25�

describes the statistics of laser radiation below the excitation
threshold (a < b), close to the threshold (a � b), and above it
(a > b). The normalization factor c determines the prob-
ability of the count absence: p0 � c=b!. Approximate expres-
sions are valid under a significant excess above the threshold,
when a4 b and c5 1. The mean number of photons has the
form N � aÿ b�1ÿ p0� � aÿ b. In the limit b!1 this is a
thermal distribution, while at b! 0Ð a Poissonian one. The
plots of the function ln�m!pm� are concave, i.e. they show a
`classical' character. The generating function takes the form

C�s� � c
X1
m�0

am

�b�m�! �1ÿ s�m � exp�ÿas�
�1ÿ s�b �5:26�

(the approximate formula is valid at s5 1).
Other examples will be considered in Sections 6 and 7. In

Fig. 1 we present a scheme explaining the relations between
the introduced above functions allowing the determination of
the photocount statistics.

6. Heated squeezed vacuum

6.1. Light with an even number of photons
Whether the antibunching condition g2 < 1 (g2-criterion)
exhausts all the cases of the light nonclassicality, i.e. whether
is it sufficient? Consider as a simple counterexample the noise
emission of a degenerate parametric amplifier. This effect is
referred to as the parametric scattering or frequency down-
conversion [4 ± 6, 17]; the corresponding state of the field is
called the squeezed vacuum. According to quantum theory
hmi � sinh2G and hDm2i � 2hmi�hmi � 1� (G is the para-
metric amplification factor). Hence D1�0� � g2 �
3� hmiÿ1 > 3, i.e. a superpoissonian statistics of counts
takes place and according to the g2-criterion the light is
classical. (Moreover, in the experiments g2 is usually of
order 108, i.e. a `superbunching' occurs.)
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Why the squeezed vacuum is related to the category of
NCL? Theoretically this follows from definition I: we shall
show below that no regular Pz-distribution exists [66] in the
squeezed vacuum (excluding generalized functions from the
consideration). It is natural to try to find operational,
observable features of the nonclassicality for the squeezed
vacuum.

The density matrix calculation for the squeezed vacuum
yields rnn � 0 for odd n, i.e. from the corpuscular point of
view the squeezed vacuum consists of an even number of
photons. In the ideal case, odd numbers of photocounts
should not be observed at all, p2k�1 � 0. Intuition suggests
that such sharp `dips' in the probability distribution contra-
dict the Mandel's formula (3.2), according to which the
`adjacent' probabilities pmÿ1, pm, and pm�1 must apparently
have comparable values. This is confirmed by condition (4.8):
for even m we have Dm�1� � pmÿ1pm�1=p2m � 0, so that the
intrinsic noise of the parametric amplifier is nonclassical
despite the absence of antibunching. (In addition, we shall
verify that at small G the inequality D2n�0� < 1 is satisfied.)

In the limiting case of weak pumping (G5 1) the
parametric amplifier emits two-photon light. Then p25 p0
and other probabilities are negligibly small. Therefore, the
photons are either absent or emitted in pairs. Consequently,
D2�1� � 0 and the two-photon light (which is the limiting case
of a weakly-squeezed vacuum) is essentially nonclassical.

Notice that the parametric two-photon light in the non-
degenerate case is used to demonstrate another, more general
nonclassicality of light. This type of nonclassicality is based
upon opposing not to a classical stochastic optics, but to some
very general probabilistic model of Bell [67]. The Bell's
inequalities, which are composed of some combination of
the counts observed in two detectors therewith break down,
[11, 68, see also 26, 34, 69].

6.2. P-distribution
As already noted, the squeezed vacuum produces bunching of
photons: g2 � 3� 1=N (N � hmi). For N5 1 this is a super-
bunching, g24 1. To obtain the antibunching (g2 < 1), it is
necessary to add a coherent component z0 with an appro-
priate phase to the squeezed vacuum. Further, to estimate the
degree (`depth') of nonclassicality T0, one should also add a

thermal field with a known mean number of photons T.
According to Lee [49, 50], T0 is a minimum value of T
destroying the nonclassicality (after definition I). One may
try to evaluate T0 experimentally, for example, using the
condition g2�T0� � 1. Thus, the coherent field z0 creates the
antibunching, whereas the thermal field T destroys it.

The statistics of the superposition may be conveniently
determined through characteristic functions of initial fields,
which are then simply multiplied with each other. The
characteristic function of the squeezed vacuum can be found
on the basis of a quantum model for the parametric amplifier
[17, 47, 61, 66]:

w�w;w�� � exp

�
ÿNww� � 1

2
M�w2 � w�2�

�
: �6:1�

Here

N � hayai � sinh2�G� ; �6:2�
M � ha2i �

��������������������
N�N� 1�

p
� sinh�G� cosh�G� �6:3�

are the mean photon number and `anomalous' second
moment, respectively. The parameter M is assumed to be
real and positive, which corresponds to the extension of the
first quadrature and squeezing of the secondary quadrature:

hDq2i � N�M� 1

2
� 1

2
exp�2G� ;

hDp2i � NÿM� 1

2
� 1

2
exp�ÿ2G� : �6:4�

Here the quadratures are defined as follows:

q � �a� ay����
2
p ; p � �aÿ ay�

i
���
2
p :

Under superposition of the squeezed vacuum with a
coherent field of the amplitude z0 and a thermal field with
themean number of photonsT, function (6.1) is multiplied by
the corresponding characteristic functions, which yields

w�w;w�� � exp

�
ÿN 0ww� � 1

2
M�w2 � w�2� � z�0wÿ z0w

�
�
;

�6:5�

whereN 0 � N� T. The state described by (6.5) with indepen-
dent parameters N 0, M, z0 may be termed the generalized
Gaussian or quasi-Gaussian state [17]. Such a state may be
produced by mixing the output intrinsic noise of the degen-
erate parametric amplifier with the coherent and thermal light
through the use of a beam-splitter (see Section 10).

Another way is to supply the coherent and thermal light
beams to the amplifier input; in so doing the following change
of parameters in (6.5) should be made [17]:

T! Tin�cosh2G� sinh2G� � Tin�1� 2N� ;
M! �1� 2Tin� coshG sinhG � �2� 2Tin�

��������������������
N�N� 1�

p
;

z0 ! zin coshG� z�in sinhG :

HereN is themean number of photons at the amplifier output
in the absence of additional fields, Tin is the mean number of
photons of the thermal field at the input, and zin is the
amplitude of the coherent field at the input. The state of the
amplifier's output field is obtained then from the thermal

r w�w;T�

Q�z�

W�z�

P�z�

C�s�

P�n�

P�m�

Gk

(5.1)

(5.4)
(5.5)

(5.8)

(5.11) (5.12)

(5.13)

(3.6)

(3.2)
(4.4a)
(3.3) (3.4a)

(3.4)

(4.3)

(5.6) (4.4)

(5.9)

(4.2)

Figure 1. Relations between different functions used to calculate photo-

count statistics; formula numbers are shownin parentheses. The initial

theoretical quantity is the density operator r, measured quantities involve
count probabilities pm and factorial moments Gk; w�w; T� is the character-
istic function,W�z� is theWigner function,P�z� is theGlauber±Sudarshan
amplitude distribution, P�n� is the energy distribution, G�s� is its Laplace-
image (generating function), the function Q�z� � hzjrjzi defines antinor-
mally-ordered moments. For the nonclassical state the function W�z�
takes negative values, and the function P�z� also becomes negative or does
not exist at all as a regular function.
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state at the input by using operations of squeezing and
shifting [63]. At zin � 0 this state is spoken of as the squeezed
thermal state [70]. If Tin4 1=2, quantum effects may be
neglected and the output emission of the amplifier may be
termed the classical squeezed light [71,72].

In classical theory the absolute value of the mean square
of complex amplitude is less than or equal to the mean
intensity

ha2i �
�
d2zPz�z� z24


jaj2� � � d2zPz�z� jzj2 ;

i.e. M4N. At the same time, according to (6.2) and (6.3),
M > N. Hence we immediately find the lower boundary

T05MÿN �
���������������������
N �N� 1�

p
ÿN � 1

2

ÿ
1ÿ exp�ÿ2G��:

Notice that the smaller the amplification factor G, the larger
the nonclassicality parameter jMj=N � cothG of the
squeezed vacuum; in typical experiments jMj=N �����
N
p � 104. However this nonclassicality, which has been
noted in [73] (see also [56, 57]), is not directly observed since
M presents the unobservable quantity (see though (6.21)).
The same relates to the squeezing coefficient of ellipse s
defined via symmetrized variances (6.4) characterizing the
width of the Wigner distributions

s2 � Dq
2

Dp2
� N 0 �M� 1=2

N 0 ÿM� 1=2
� exp 4G : �6:6�

In the latter equality T � 0 is assumed.
Notice that in the case of the nondegenerate squeezed

vacuum the two modes are described by two complex
amplitudes a, b, and classical Cauchy±Schwartz-like inequal-
ities take place [56, 57, 74]:
jaj2jbj2�4 
jaj2�
jbj2� ; ��habi��24 
jaj2�
jbj2� : �6:6a�
The two-photon light yields strong inequalities of the reverse
meaning [56, 57, 73], which leads to a `superclassical' visibility
of the two-photon interference that is needed to demonstrate
the Bell's inequality violations [34, 72].

In fact, the parameterM is always complex:M � exp�if�,
where f�t� is the inevitably drifting phase of the parametric
amplifier pumping (which has a double frequency), so for
observing the stationary effect it is necessary that the
pumping and the coherent field z0 were originated from a
common driving laser. Here the phase z0 is treated as an
adjustable phase shift introduced into the homodyne tract,
and for antibunching of counts the condition Re�z20� < 0 is
necessary. In what follows we assume the coherent field phase
to be optimal: z0 � i

���
n
p

, this condition provides the max-
imum photon antibunching and g2 � min.

The P-distribution represents the Fourier-image of the
characteristic function (6.5)

Pz�z� � pÿ2
�
d2w exp�zw� ÿ z�w�w�w�

� pÿ2
�
dw0 dw00 exp

�
2i�z00 ÿ z000�w0 ÿ 2i�z0 ÿ z00�w00

ÿN 0�w02 � w002� �M�w02 ÿ w002��
� 1

p
�����
ab
p exp

�
ÿ�z

0 ÿ z00�2
a

ÿ �z
00 ÿ z000�2
b

�
; �6:7�

a � N 0 �M � N� T�
��������������������
N�N� 1�

p
;

b � N 0 ÿM � N� Tÿ
��������������������
N�N� 1�

p
� Tÿ T0�N� :

This function at N 0 >M is the product of two Gaussian
distributions centred at the point (z00; z

00
0) and unequal

variances N 0 �M �T� �exp��2G�ÿ1�=2. At M > 0 the
uncertainty ellipse is squeezed along the vertical axis z00.

At M > N 0 the characteristic function (6.5), due to the
term �MÿN 0�w 02 in the exponent, is an unlimited function
and has no regular (not generalized) Fourier-image. Conse-
quently, according to definition I, function (6.5) at M > N 0

describes the NCL. From here we find the Lee's measure for
the squeezed vacuum

T0�N� �MÿN �
��������������������
N�N� 1�

p
ÿN � 1

2

ÿ
1ÿ exp�ÿ2G��:

�6:8�

At a low squeezing T0 �
����
N
p � G5 1, while at a high

squeezing T0 ! 1=2. Notice that T0 is independent of z0. In
contrast to the K-photon-state case, adding of an arbitrarily
weak thermal radiation does not render the P-distribution of
the squeezed vacuum regular.

When substituting T! T� 1=2, function (6.5) becomes
characteristic for the symmetrized moments and, correspond-
ingly, function (6.7) becomes a function of the Wigner
distribution. Similarly, the change T! T� 1 in (6.5) and
(6.7) yields the characteristic function for antinormally-
ordered moments and its Fourier-image, the so-called Q-
distribution, which is the diagonal matrix element of the
density matrix in the coherent representation:
Q�z� � 
zjrjz�5 0.

6.3. Direct detection
Consider at first the properties of the heated squeezed
vacuum without shifting when z0 � 0. This corresponds to
the direct detection (in contrast to the homodyne detection).
Let us find the energy distribution P�n� using the function
Pz�z� � Pz�z0; z00�. Then according to (3.6)

P�n� � 1

p
�����
ab
p

�2p
0

df exp
�
ÿ n cos2 f

a
ÿ n sin2 f

b

�

� 1

p
���
c
p exp

�
ÿN 0n

c

�
I0

�
Mn

c

�
;

c � ab � T 2 � 2TNÿN ; �6:9�

where we utilized�2p
0

df exp�x cos2 f� � 2p exp
�
x

2

�
I0

�
x

2

�
(I0�x� is the modified Bessel function).

The generating function for probabilities and factorial
moments of the state (6.5) counts has been found in the direct
form in [63]. At z0 � 0

C�s� � ��1� as��1� bs��ÿ1=2 : �6:10�

AtT � 0 it follows herefrom thatC�s� � �1�Ns�2ÿ s��ÿ1=2.
Plots of these functions are presented in Fig. 2. It is
characteristic that in the case of the NCL (at T < T0) the
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functionC�s� has a pole at the point s1 � ÿ1=b � �T0 ÿ T�ÿ1
and exceeds 1 for s1 > s > s1 � 2N 0=�M2 ÿN 02�, i.e. it is
unacceptable as a classical generating function defined as the
Laplace-image of P�n�. At the same time C�s� continues to
define moments and probabilities of counts according to its
`discrete' definition (5.5). At the point s � s1=2 even deriva-
tives of C�s� are positive, while the negative ones are zero (see
Fig. 2).

Consider now the g-criteria of nonclassicality. Differen-
tiating repeatedly (6.5) or (6.10) one may find the factorial
momentsGk. The general expression for them has been found
in [76]:

Gk � N 0k
Xk
p�0

�
k!

p!

�2
xp

2p�kÿ p�!
����Hp

�
iz0��������
2M
p

�����2 ;
x �

������������������
N�N� 1

p
N� T

� N� T0�N�
N� T

: �6:11�

Here Hj�x� are the Hermite polynomials. At z0 � 0,
H2m�1 � 0 and

H2m � �ÿ1�m2 �2mÿ 1�!
�mÿ 1�! ;

so that (6.11) takes the form [77]

gk �
X
p�0

�
k!

p!

�2
x2p

22p�kÿ 2p�!

� k!F

�
ÿ k

2
; ÿ kÿ 1

2
; 1; x2

�
; �6:12�

where F is the hypergeometric function, and gk � Gk=G
k
1 are

the normalized factorial moments (G1 � N� T). Hence at
T � 0 in the case of low squeezing (N � G25 1) it follows
that gk �

��kÿ 1�!!�2=Gk (even k) and gk � �k!!�2=Gk�1 (odd
k) [77], whereas at N4 1, gk � �2kÿ 1�!! [78].

The first several moments, according to (6.12), have the
form

g2 � 2� x2; g3 � 6� 9x2;

g4 � 24� 72x2 � 9x4; �6:13�
where x2 � 1� 1=N at T � 0. At low N and T, the factorial
moments reveal a nonmonotonic dependence on the number,
which testifies to `nonclassical' convexities (Fig. 3). This
effect, of course, reflects the property of p2k�1 � 0: from
(3.4a) it follows that Gk � k!pk under the conditions con-
sidered. According to (6.13), the parameter D2�0� at T � 0
has the form

D2 � 3
5� 3Nÿ1

3�Nÿ1
: �6:14�

This function is less than 1 (which is a feature of the NCL) at

N <

�����
33
p

12
ÿ 1

4
� 0:229 :

Now let us consider probabilities of counts at z0 � 0.
According to [63]

pm � f m1
fm�12

Pm

�
f3
f1 f2

�
; �6:15�

where

f 21 � N 02 ÿM2 � ab;

f 22 � �N 0 � 1�2 ÿM2 � ab� a� b� 1 ;

f 23 � N 0�N 0 � 1� ÿM2 � ab� 1

2
�a� b�

and Pm�x� are the Legendre polynomials. Plots of this
function, which have nonclassical convexities at T < T0, are
shown in Fig. 4.

At T � 0, the argument of Legendre functions in (6.15)
vanishes. With regard to P2m�0� � �ÿ1�m�2m�!=22m�m!�2,

0 1 2 3 4 5

1

s

C

1

2

3

Figure 2. The generating function of the heated squeezed vacuum for

N � 5 and thermal photon numbers T: 1Ð 0; 2Ð0.2; 3Ð0.5. The plots

(1) and (2) evidence for the statistics' nonclassicality. The points were

obtained in a numerical experiment consisting of 104 random count

numbers distributed in accordance with (6.15).
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Figure 3. Factorial moments of the squeezed vacuum Gk for differentN: 1

Ð 10ÿ3; 2Ð 10ÿ2; 3Ð 10ÿ1.
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P2m�1�0� � 0 we arrive at [39]

p2m � �2m�!
22m�m!�2

Nm

�N� 1�m�1=2
; p2m�1 � 0 : �6:16�

At T � 0, the `convexity' parameters Dm�1� are zero for
m � 2; 4; . . ., but all of them reach unity at T � T0=2.

Consider now more sensitive tests on being nonclassical
which are based on Hankel's matrices H

�n�
K �s� of the order

K� 1 > 2 (see Appendices). In the case of the squeezed
vacuum, only matrices H

�2n�1�
K �s� `feel' the nonclassicality.

For a given degree of nonclassicality, determined through the
parameter T, detH

�1�
K �s� become negative beginning only

from some order Kmin � 1 (Fig. 5). As it follows from the
plots, the necessary order of thematrix increases drastically as

T approaches the nonclassicality boundary T0 (equal to 0.41
for N � 1); in so doing the necessary number of probabilities
(s � 1) is notably smaller than the number of moments
(s � 0), i.e. p-criteria of nonclassicality are more sensitive.
Even more sensible are matrices composed of the generalized
moments at s � 2. The effect of the s parameter on the
nonclassicality is illustrated in Figs 5 ± 7.

6.4. Homodyne detection
Now we turn to the effect of squeezed vacuum shifting on the
antibunching. According to (6.11), at z0 6� 0 the first two
moments take the form

G1 � N� T� n0 � N 0 � n0 ;

G2 � 2N 02 � 4N 0n0 � n20 �M2 � 2MRe�z20� : �6:17�
Here n0 � jz0j2. The last term is negative at Re�z20� < 0 (this is
the necessary condition for antibunching). Below we assume

0 2 4 6

0.4

0.2

pm

m

1

2

Figure 4. The count probability distribution: 1 Ð for squeezed vacuum;

2 Ð for heated squeezed vacuum at T � T0�N� � 0:477. The squeezed
vacuum intensity N is equal to 5 photons per mode.

1 2 3 4 5 6

1

0

M

T=T0

Figure 5.Dependence of the reduced parameter T=T0 in the case of heated

squeezed vacuum with N � 1 on the Hankel's matrix order M � K� 1,

which follows from the condition det h
�1�
K �s;T� � 0 in accordance to (I.5):

~Ð s � 0; &Ð s � 1;^Ð s � 2.
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Figure 6. The function D2�s� for the squeezed vacuum at N � 5: 1 Ð

T � 0; 2Ð T � 0:1; 3Ð T � 0:2; 4Ð T � 0:3. The light is nonclassical if
at least at one s the function D2�s� is less than 1, so that at T � 0:3 the
parametersD2�0� andD2�1� do not reveal nonclassicality; at the same time
it is sufficient to measure, for example, D2�2�.
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Figure 7. Dependence of the generalized moments ak�s� on the number k:
+ Ð s � 0, ^ Ð a � 1, & Ð s � 2 in the case of the heated vacuum at

N � 0:1: (a) T0=T � 0:05 and all three types of moments exhibit non-

classical convexities; (b) T0=T � 0:5 and only the moment ak�2� shows the
convexities.
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z0 � i
�����
n0
p

. Then the uncertainty ellipse for the squeezed
vacuum is shifted along its small axis. Since T0 is independent
of z0, we verify once again that the antibunching is not a
necessary feature of the NCL. From (6.17) we find the
normalized moment

g2 � G2

G2
1

� 1� 1� x2 � 2y�1ÿ x�
�1� y�2 ; �6:18�

where x �M=N 0, y � n0=N
0. According to (6.18), for the

given mean energies of the squeezed vacuum N and thermal
field T there exists a minimum energy of the coherent
component nmin, which is necessary for antibunching onset,
g2 < 1 (Fig. 8):

ymin � x2 � 1

2�xÿ 1� : �6:19�

We draw our attention to a nonmonotonic character of the
nmin dependence on N at fixed T, which has a minimum: nmin
increases both for small N when T approaches the critical
value T0 destroying the nonclassicality, and for large N when
the strong coherent component is needed for antibunching
irrespective of T.

According to (6.18), the function g2�n� reaches minimum
at yopt � x�x� 1�=�xÿ 1�. Then

g2min � 1� �xÿ 1�2
�xÿ 1�2 ÿ 2x2

: �6:20�

It follows herefrom that at low squeezing (N5 1) one may
attain strong antibunching (g2 � 4

����
N
p

): it is necessary that
n0 �

����
N
p

and T5N. In this case G2 � 0 or hm2i � hmi. This
means that only m � 0 and m � 1 counts are observed, i.e.
p0 � 1ÿ n0, p1 � n0, p2 � 0 Ð the probability of detecting
two or more photons is suppressed. In typical experiments
N � 10ÿ8 and a `superbunching' takes place without shifting,
g2 � 108, whereas an addition of the coherent field with
n0 � 10ÿ4 yields antibunching with g2 � 4� 10ÿ4.

However, practically important parameters, such as Fano
factorF � 1� �N 0 � n0��g2 ÿ 1� and the signal-to-noise ratio
hDm2i=hmi2 � F=hmi, take small values only at large shifting
n0 and strong squeezing. Let n04N4T, then

F � 1� 2�NÿM� � 2hDp2i � exp�ÿ2G� : �6:21�
Thus, for a strong homodyne field the Fano factor is inversely
proportional to the squeezing of the uncertainty ellipse s (see
(6.6)). According to (6.21), the addition of a strong coherent
field allows measurements of the variance of the studied low-
field quadratures to be made. In so doing the condition of
`squeezing' for one of the quadratures (for example,
hDp2i < 1=2) at an appropriate phase z0 implies F < 1. The
notion of higher orders squeezing is also in use [79].

7. Heated one-photon state

Consider the superposition between a one-photon field and a
chaotic thermal field with the mean number of photons T.
The mean number of photons of the resulting field hni is
obviously T� 1. At T � 0 we have a pure one-photon state,
which, as already noted, according to a Dk�1�-criterion (by
convexity of the plot of function ln�k!pk�) is clearly non-
classical (according to [44], any pure state, apart from
coherent, is nonclassical).

From a naive corpuscular point of view the photon (and
count) distribution in the total field is determined elementary:
an addition of one photon simply shifts the geometrical
thermal distribution by unity to the right. Then p0 � 0, the
minimum number of counts is unity, D1�1� � 2p0p2=p

2
1 � 0,

and the state is nonclassical independently of T. (States of
such type have been considered in [59], their nonclassicality
being derived with matrix H2�0�, see (I.5).) However, this
consideration is correct only when considering the total
number of counts in two independent modes, it does not
take into account interference between two components of
the original fields.

7.1. P-distribution
When calculating consecutively the composition of two
independent random fields, both with quantum and classical
approaches, the total field distribution Pz�z� is made equal to
the convolution of two initial Pz-distributions.

Let us find the characteristic function of the one-photon
state:

w�w� � 
1j exp�way� exp�ÿw�a�j1� : �7:1�
For any w we have

exp�ÿw�a�j1� � �1ÿ w�a� w�2a2

2
ÿ . . .

�����1�
� j1i ÿ w�j0i :

Hence

w�w� � 1ÿ ww� : �7:2�
Now we add a thermal field. When composing indepen-

dent states, the characteristic functions are multiplied with
each other:

w�w� � �1ÿ ww�� exp�ÿTww��

�
�
1� q

qT

�
exp�ÿTww�� : �7:3�
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Figure 8. Dependence of the minimal energy of the coherent component

nmin needed for the count antibunching on the squeezed vacuum energyN

for the thermal energy T equal to: 1Ð 0; 2Ð 0.1; 3Ð 0.2; 4Ð 0.3.
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Pz-distribution for the thermal field takes the form

PT
z �z� �

1

p2

�
dw0 exp�2iz00w0 ÿ Tw 0 2�

�
�
dw00 exp�2iz0w00 ÿ Tw02� � 1

pT
exp

�
ÿ jzj

2

T

�
: �7:4�

By differentiating this expression with respect to T and in
accordance with (7.3) we arrive at

Pz�z� �
�
1� q

qT

�
P�T�z �z�

� 1

pT
exp

�
ÿ jzj

2

T

��
1ÿ 1

T
� jzj

2

T2

�
: �7:5�

In a similar way one may find the P-distribution for the
superposition of a thermal field with a K-photon state [50]:

P�n� � �Tÿ 1�K
TK�1 exp

�
ÿ n

T

�
LK

�
n

T�1ÿ T�
�
: �7:6�

In particular, for K � 2 we have a `smoothed-out' second
derivative of the d-function

P�n� � 1

T
exp

�
ÿ n

T

��
ÿ
�
Tÿ 1

T

�2

� 2
Tÿ 1

T 3
n� n3

2T 4

�
:

�7:7�

According to [50], for T! 0 functions (7.6) represent
derivatives of the d-function, and for T5 1 these functions
are nonnegative and may be considered as classical distribu-
tion functions.

Let us turn back now to the one-photon state. From (7.5)
it follows

P�n� � pPz

ÿ �����
jzj

p � � 1

T
exp

�
ÿ n

T

��
1ÿ 1

T
� n

T 2

�
: �7:8�

Figure 9 displays the plots of function (7.8), which represents
a `smoothed-out' first derivative of the d-function, and of
function (7.7) as well.

7.2. Measures of nonclassicality
As a quantitative measure of nonclassicality, it is natural to
choose a parameter connected with areas S� enclosed by the
function P�n� within intervals where P�n� > 0 and P�n� < 0,
respectively (see Fig. 9). These areas have the form

S� �
�1
0

P�n� yÿ� P�n�� dn ; �7:9�

where y�x� is the step function. The normalization conditions
imply S� � Sÿ � 1. In the case of a classical light Sÿ � 0,
while at most nonclassical light yields S� � 1ÿ Sÿ4 1. If we
denote S � 1=S�, then by going over from the maximum
nonclassical light to a classical one the parameter S changes
monotonically over the interval (0,1).

The Poisson transformation (3.2) of the distribution (7.8)
produces the following count probabilities (Fig. 10):

pm � Tm

�1� T�m�1
�
1ÿ 1

T
� 1�m

T �1� T�
�
: �7:10�

Factorial moments of this distribution are equal to the
ordinary moments of the distribution (7.8): Gk � k!Tkÿ1�
�k� T�. The normalized factorial moments have the form

gk�T� � Gk�T�
hmik � k!Tkÿ1 k� T

�1� T�k : �7:11�

In particular,

g2 � 2
�
1ÿ �1� T�ÿ2� : �7:12�

Different parameters of nonclassicality are compared in
Fig. 11.

From (7.6) we obtain the generating functions for the
superposition of K-photon and thermal states (Fig. 12):

CK�s� �
�
1� s �Tÿ 1��K
�1� sT�K�1 : �7:13�

Unlike the case of the heated squeezed vacuum, these
functions are real for any real s.
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Figure 9.The energy quasi-distribution P�n� for the heated one-photon (a)
and two-photon (b) states. Themean number of thermal photonsT is: 1Ð

0.5; 2 Ð 0.75; 3 Ð 1.25. At T < 1, the functions P�n� become negative,
which is a feature of the NCL by definition. The solid curves also show the

Wigner distribution for pure one- and two-photon states at T � 0.
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Figure 10.Count probabilities pm (a) and quantities bm ÿ log�m!pm=p0� (b)
in the case of a heated one-photon state:^Ð T � 0:55; & Ð T � 0:75.
When passing from T � 0:75 to T � 0:55 in the case (b), a convexity

appears at the pointm � 1 clearly demonstrating the field's nonclassicality

according to theD1�1�-criterion. At the same time, in the case (a) the field
nonclassicality does not manifest itself clearly, although the set of adjacent

probabilities 0.23; 0.35 and 0.22 at m � 0; 1 and 2 is inadmissible in the

classical variant of the Mandel's formula.
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8. Effect of absorption and amplification
on the NCL

Let the light under study pass before detection through a
linear absorber with the intensity transmission coefficient Z.
In classical theory, the absorber simply diminishes the
intensity of the passing light: n! n0 � Zn. The appropriate
change in the distribution has obviously the form

P�n� ! P 0�n� � 1

Z
P

�
n

Z

�
: �8:1�

Thus, linear absorption does not modify the distribution
shape and change its scale solely by `pinching' it into the low
energy region.

The possibility of such a simple description of the
absorption holds in the quantum theory as well, provided it
is applied to normal operators only (see, for example, [80]).
For such operators the contribution of quantum noises is
excluded and consequently they behave as the appropriate
classical quantities in the course of linear transformations. In

particular, onemay considerP�n� in (8.1) as a quantumquasi-
distribution. Correspondingly, the characteristic and gener-
ating functions also change merely their scales:

w0�w; w�� � wÿ ���
Z
p

w;
���
Z
p

w�
�
; �8:2�

C 0�s� � C�Zs� :
Factorial moments of the count distribution are simply

multiplied by the appropriate power of Z: G
0
k � ZkGk, and

normalized factorial moments just prove to be invariants of
the transformation (8.2): g0k � G

0
k=�G

0
1�k � gk. The generat-

ing function for the normalized factorial moments ~C�s� �
C
ÿ
s=hmi� is invariant with respect to linear absorption:

~C 0�s� � ~C�s�.
From here it follows that the fact of light nonclassicality

determined by irregularity and sign of function P�n� (or by
unboundedness of the characteristic function w�w�, and by
nonabsolute monotonicity of the generating function C�s�) is
not affected by the absorption: if the function P�n� has taken
negative values, the same is done by P�n=Z�. Thus, the NCL
after an arbitrarily strong absorption remains nonclassical.
Similarly, linear absorption leaves a classical light classical (a
paradoxical exception to this rule was considered in [35]). On
the other hand, nonlinear absorption may be used to turn
laser light into the NCL [32, 65, 81].

Therefore, quantitative measures of nonclassicality deter-
mined through normalized factorial moments gk, also do not
alter under absorption. This relates to a Lee's measure T0 as
well. At the same time, the parameters determined through
unnormalized moments Gk and count probabilities pm, are
varied. For example, the Fano factor is transformed as

F! F 0 � 1� hmi0�g2 ÿ 1�

� 1� Zhmi�g2 ÿ 1� � 1� Z�Fÿ 1� : �8:3�

For an ideal initial antibunching g2 � 1ÿ 1=hmi and F � 0;
after absorption F 0 � 1ÿ Z. Under a sufficiently strong
absorption, when Z! 0, F! 1 and the statistics becomes
Poissonian, even if before the absorption the ideal antibunch-
ing has taken place, F � 0, or inversely, a strong bunching,
F4 1, has occurred. In this sense, the absorption `Poisso-
nizes' any light. The relative noise at the absorber output is
determined by the parameter hDm2i0=hmi02 � F 0=hmi0, which
increases on absorption. In the ideal case,
hDm2i0=hmi02 � �1ÿ Z�=hmi0.

Consider now the change of the count probabilities under
absorption. First, from (8.2), (II.2) we find the transforma-
tion of the generalized moments

a 0k�s� � �ÿ1�k dkC 0�s�
dsk

� Zkak�Zs� : �8:4�

Assuming s � 0, we get G
0
k � ZkGk. Further, using (II.3) we

arrive at

a 0k�s� � Zk
X1
m�0

�sÿ Zs�m
m!

ak�m�s�

� Zk
X1
n�k

�sÿ Zs�nÿk
�nÿ k�! an�s� : �8:5�

At s � 1 and ak�1� � k!pk we obtain herefrom thewell-known
transformation for probabilities [82]
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Figure 11. Dependence of the parameter D1�s� on the mean number of

thermal photonsT in the case of superposition of one-photon and thermal

states: 1Ð s � 0; 2Ð s � 1; 3Ð s � 2; 4Ð s � 3, and with the parameter

S defined by (7.9). The inequalityD1�s� < 1 is a feature of light nonclassi-

cality. With increasing s the sensitivity to nonclassicality grows (bunching

parameter g2 � D1�0� is least sensitive).
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p0m �
X1
k�m

Cm
k Z

m�1ÿ Z�kÿm pk : �8:6�

Substitution of 1=Z for Z yields the reverse transformation
p0 ! p (this follows from ak�s� � Zÿka0k�s=Z�), by means of
which we may reconstruct the original distribution pk using
the absorption-changed probabilities p0k. Notice a limitation
from above on 1=Z that results from the condition pk5 0 in
the case of the NCL: a0k�1=Z�5 0 (in general, from Gk5 0,
pk5 0 it follows ak�0�5 0, ak�1�5 0).

In a general way, transformation (8.2) changes the
distribution shape considerably. However, there exist some
types of distributions which are `stable' against this transfor-
mation. As this takes place, only numerical parameters of the
distribution vary, while its functional form remains
unchanged. For example, in the case of Poissonian and
thermal distributions the solely parameter of the distribution
hmi is replaced by Zhmi. At the same time, there appear
unstable distributions whose shape alters notably. The well-
known example is provided by the state with a definite
number of photons jKi. Then pm � dKm and from (8.6) it
follows

p0m � Cm
K Z

m�1ÿ Z�Kÿm : �8:7�

Similarly, dips for odd number of counts in the case of the
squeezed vacuum (see Fig. 4) are smoothed out in the course
of absorption. In the next Section we shall show that a light
with unstable statistics may be used for photometrical
purposes.

Above we considered a cool absorber. In a general way, its
own thermal radiation should be taken into account. Then,
according to [17, 80], the field statistics at the detector output
is described by the following characteristic function (cf. (8.2)):

w0�w;w�� � wÿ ���
Z
p

w;
���
Z
p

w�
�
exp

�ÿ ww�T�1ÿ Z�� : �8:8�
Here T � �exp bÿ 1�ÿ1 is the mean number of photons in the
equilibrium field with an absorber's temperature �hokb.
Therefore, the influence of thermal radiation of a heated
absorber is equivalent to the superposition with a thermal
field having the mean photon number ~T � T�1ÿ Z�. The
latter relationship is analogous to the Kirchhoff's law for a
thermal radiation; 1ÿ Z plays a part of the `absorption
capability' of matter.

Transformation (8.8) holds also in the case of the field
amplification by a quantum amplifier with an effective (spin)
temperature �ho=kb < 0 and the gain Z > 1 [17, 80]. For full
inversion of populations in the amplifier �ho=kb � ÿ0 and
T � ÿ1, so that the number of photons in the equivalent
superposition field equals ~T � Zÿ 1 (this is a Kirchhoff's law
for negative temperatures, which describes intrinsic noises of
the quantum amplifier). But earlier we convinced ourselves
that the superposition with a thermal field having a mean
photon number equal or greater than 1 always makes any
field classical. Therefore, an amplifier with Z > 2 (i.e. with the
gain larger than 3 dB) `dequantizes' surely any NCL.

In contrast to the cold absorber case, the normalized
factorial moments now change as well. For example, in the
one-photon state case, by substituting T � Zÿ 1 into (7.12)
we obtain g 02 � 2�1ÿ Zÿ2�. Antibunching disappears after the
amplification by the factor

���
2
p

.

9. Allowance for the detector's nonideality
and absolute photometry

We assumed above that the detection volume Vdet and
coherence volume Vcoh are the same. In fact, however, in
order to obtain unaveraged information on the field's
statistics it is essential usually that a stronger condition
Vdet5Vcoh is fulfilled. Then the energy the detector `sees'
decreases by Vdet=Vcoh times, and the count statistics
changes as if the light underwent the absorption with
Z � Vdet=Vcoh.

Similarly, the quantum efficiency of the detector Zdet < 1
also leads to effective absorption of the field energy. Both
these factors can be taken into account assuming the light to
undergo a general additional absorption with
Z � ZdetVdet=Vcoh. Thus, these factors taken into considera-
tion, the count statistics is described by equations from
Section 8 with a parameter Z changed by ZdetVdet=Vcoh.

Justification is required for using the one-mode descrip-
tion of a stationary light beam in a free space. According to
classical picture, an ideal broad-band detector at T5 tcoh
measures time fluctuations of the energy fluxR�t� (divided by
�ho0) through its surface; then hmi � ZdethRiT (here hmi is the
quantity averaged over a large number of counts fmig
measured for a total time much longer than tcoh, and hRi is
the mean in time flux). A question arises as to whether one
may consider the R fluctuations as those of energy over an
ensemble describing one equivalent classical or quantum
oscillator?

The beam with one transverse mode contains many
longitudinal modes (Fourier-components) whose statistics
can be specified through a set of Glauber correlation
functions Gn�t1; . . . ; tn� [41 ± 43]. Factorial moments of the
detector's counts take the form G0n � �ZdetT�nGn�0; . . . ; 0� at
T5 tn, where tn is the characteristic time of change of the
function Gn�t1; . . . ; tn�. The dimension of Gn�t1; . . . ; tn� is cÿn,
and G1�t1� � hRi has a meaning of the mean photon flux
(independent of time in a stationary beam). In the general case
different coherence times tn correspond to functions
Gn�t1; . . . ; tn� and a one-mode description is impossible. Let,
however, all tn be the same, tn � tcoh (the beam is passed, for
example, through a filter with the reverse frequency band
tcoh4 tn; another possibility is considered in [90]), then
Gn�0; . . . ; 0� � �tcoh�ÿnGn, where Gn �



: n̂n0 :

�
are the factor-

ial moments of the number of photons in some effective
mode. As a result, G

0
n � ZnGn, where Z � ZdetT=tcoh. Thus the

observed count statistics after the reverse transformation
(`amplification' by the factor Zÿ1) coincides with the count
statistics for a single effective mode.

Photocount theory allows absolute (i.e. etalon-free)
measuring of the light intensity and the detector's quantum
efficiency [15, 33, 65, 83]. For example, according to (6.13) at
T � 0 the relationship takes place

g2 � 3� 1

hni ; �9:1�

where hni is the mean number of photons in a single mode of
the light incident on the detector, which is connected with the
light intensity I and effective frequency band Do (with one
transverse mode): I � �hoDohni=2p. The quantum efficiency
of the detector (as well as absorption) does not affect the
normalized factorial moments of counts, so in order to
measure the parameter g2 one needs not to know Z and from
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(9.1) can determine hni:

hni � �g2 ÿ 3�ÿ1; g2 � hm
2i ÿ hmi
hmi2 : �9:2�

It follows herefrom that

Z � hmihni � hmi�g2 ÿ 3� : �9:3�

All the parameters in the last part of expression (9.3) are
determined by photocounts, i.e. they are measured without
using any calibrated devices.

For practical application of this general principle of
absolute photometry a nondegenerate parametric scattering
(when photons in a pair are emitted in different directions
and/or with different polarizations) and two-detector scheme
of photocounts coincidence [15] are used.

According to (7.12), one may also use a `heated' one-
photon light. In so doing hni � 1� T and g2 � 2

ÿ
1ÿ hniÿ2�,

so that the parameter T is excluded and

hni �
�
1ÿ g2

2

�ÿ1=2
; Z � hmi

�
1ÿ g2

2

�1=2

: �9:4�

In the case of Scully±Lamb distribution (5.21) it is sufficient
to measure g2 and g3 [65].

Generally, for absolute calibration of detectors it is
necessary that normalized factorial moments be dependent
upon distribution's parameters, and this dependence should
be reversible and known [65]. Then the discrete statistics of
photons (and counts) alters its functional form as a result of
absorption (or detection), in common, for example, with the
case of a K-photon light (see (8.7)). At the same time the
coherent or thermal light conserves the shape of distribution
in the course of absorption. The generating function for
normalized factorial moments ~C�s� � C�s=hmi� is not varied
on absorption (detection) and it contains full information on
the light one can obtain using a detector with unknown
efficiency. Consequently, for absolute photometry it is
necessary that the function ~C�s� be dependent on hmi and
other parameters of the distribution. But this is not so in the
case of `ordinary' light sources.

In an ideal case the measured function C 0�s� is `squeezed'
by the transformation s! ks �k > 1� until it coincides with a
given function C�s�; then Z � 1=k. An equivalent probability
transformation is determined from (8.6) by replacement
pm $ p0m, Z! k (the latter transformation in the case of the
NCL may lead to negative pm).

A question arises as to whether the NCL is necessary for
absolute detector calibration? The relationship (9.4) is valid at
T > 1 as well, i.e. when one-mode field state is not non-
classical. Similarly, in the case of `heated' squeezed vacuum
equation (6.13) allows measurement of the parameter x to be
made using count statistics independently of the nonclassi-
cality parameter T0 (to transit from x to N and T, one may
repeat measurements by decreasing T, for example, twofold).
Therefore, the `calibrating' light for absolute photometry
should not obligatorily relate to a nonclassical class. In [65],
some examples of such light preparation have been consid-
ered. In principle, it is possible to use a laser radiation close to
the threshold provided that its statistics is described by the
Scully-Lamb distribution (5.18) [64], as well as an ordinary
light, Poissonian or thermal, after nonlinear (two-photon or
with saturation effect) absorption.

10. Effect of a beam-splitter on the NCL

When accounting for the phase shift in the absorber bulk one
needs to introduce an amplitude transmission coefficient
t � ���

Z
p

exp�if�; then (cf. (8.1), (8.2)) it follows
P0z�z� � tÿ1Pz�tÿ1z�; w0�w;w�� � w�tw; t�w�� : �10:1�

Similar in form relations are correct under an arbitrary linear
transformation of a multimode field [80, 84].

An important example is provided by mixing two light
beams with the aid of a beam-splitter Ð a semitransparent
mirror or polarization prism. A lot of papers has been
devoted to quantum theory of light beam-splitting (see [32,
80, 85 ± 89]). We shall follow here the paper [80]. In a classical
optics, the beam-splitter's action is described by the following
transformation of amplitudes of two beams:

a 0 � ta� rb; b0 � ÿr�a� t�b : �10:2�

Here t, r are the phenomenological coefficients of transmis-
sion and reflection, respectively. In the absence of losses
jtj2 � jrj2 � 1. Quantities with primes relate to output beams.

When passing to quantum theory, one should treat a, b as
the photon annihilation operators, and a�, b� Ð as photon
creation operators ay, by (here ay

0 � t�ay � r�by,
by
0 � ÿray � tby), and (10.2) also may be applied, but only

after transforming the operator functions of a, b, ay, by to a
normal (normally-ordered) form [80]. This rule ensures
invariance of commutation relations between operators.

Let us express the input amplitudes a, b through output a0,
b0 using the transformation reversal to (10.2):

a � t�a0 ÿ rb0; b � r�a0 � tb0 : �10:3�

Let the input beams be independent, then their joint statistics
is determined by a product of the original characteristic
functions

w�u; v� � wa�u� wb�v� : �10:4�

As shown in [80], the normal characteristic function of the
transformed (output) field coincides with (10.4) after the
right-hand-side arguments u, v have been replaced by
u � t�u0 ÿ rv0, v � r�u0 � tv0 in accordance with (10.3). As a
result we find

w0�u0; v0� � wa�t�u0 ÿ rv0� wb�r�u0 � tv0�

or, by omitting primes on the arguments,

w0�u; v� � wa�t�uÿ rv� wb�r�u� tv� : �10:5�

Here u, v arguments relate to output beams a, b, respectively.
The output beams are, of course, not independent, their
statistics are `mixed'.

Let we are interested in light statistics in one output beam
only, say a, then it is determined from (10.5) at v � 0 as
follows:

w�u� � w0a�u� � w0�t�u� wb�r�u� : �10:5a�

At the same time, in the case of superposition of two
independent fields w�u� � wa�u� wb�u�. A comparison with
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(10.5a) shows that the superposition of two initial fields
already subjected to amplitude absorption t� and r�, respec-
tively, is formed at the beam-splitter output. It is clear that the
realization of the undistorted superposition using a beam-
splitter is only possible under three conditions: at least one of
the field (`homodyne') must have a stable against absorption
field's statistics (as, for example, a coherent or thermal field),
t � 1 is required and correspondingly the stable field intensity
b should be jrjÿ24 1 times increased.

According to (5.4), moments of the superposition
w�u� � wa�u� wb�u� are expressed through the initial fields'
moments in accordance with the rule of differentiation of
the product of two functions:

Gmn � �ÿ1�n qm

qum
qn

qu�n
�wawb�

���
u�u��0

�
Xm
k�0

Xn
l�0

m

k

� � n

l

� �
G
�a�
kl G

�b�
mÿk; nÿl ; �10:6�

where m
k

ÿ �
are the binomial coefficients ofm elements taken k

at a time.
In the stationary case

Gm �
Xm
k�0

m

k

� �2
G
�a�
k G

�b�
mÿk : �10:7�

According to (10.5) we substitute G
�a�
kl , G

�b�
mÿk; nÿl in (10.6) by

~G
�a�
kl � �t��k tlG�a�kl ;

~G
�b�
mÿk; nÿl � �r��mÿkrnÿlG�b�mÿk; nÿl : �10:8�

Here ~G
�a�
kl ,

~G
�b�
kl are the moments of the two initial fields that

underwent effective amplitude absorption t and r, respec-
tively. As a result, we express the moments in one output
beam through moments of two input light beams:

Gmn �
Xm
k�0

Xn
l�0

m

k

� � n

l

� �
~G
�a�
kl

~G
�b�
mÿk; nÿl : �10:9�

Consider some particular cases.
1. Vacuum at the input b, G

�b�
mÿk; nÿl � dmkdnl, so that

G
0
mn��t��mtnG�a�mn and Gm�ZmG�a�m (here Z � jtj2). This is a

particular case of absorptionwhen the beam-splitter acts as an
absorber. True dissipation is absent in this case, the `absorbed'
energy goes into the second, unobservable, channel.

2. In the stationary case

G
0
m �

Xm
k�0

m

k

� �2
Zk�1ÿ Z�mÿkG�a�k G

�b�
mÿk : �10:10�

Let states with a definite number of photons Na and Nb be at
the input, then

G
�a�
k � Na�Na ÿ 1� . . . �Na ÿ k� 1�;

G
�b�
mÿk � Nb�Nb ÿ 1� . . . �Nb ÿm� k� 1� : �10:11�

Hence

G0m �
Xm
k�0

m

k

� �2 ZkNa!

�Na ÿ k�!
�1ÿ Z�kNb!

�Na ÿ n� k�! : �10:12�

In particular,

G01 � ZNa � �1ÿ Z�Nb ;

G02 � Na�Na ÿ 1� Z2 � 4Z�1ÿ Z�NaNb

�Nb�Nb ÿ 1��1ÿ Z�2 : �10:13�

As a result, we find the Fano factor at the output

F 0 � 1ÿ Z
2Na ÿ 2Z�1ÿ Z�NaNb � �1ÿ Z�2Nb

ZNa � �1ÿ Z�Nb
: �10:14�

AtNb � 0 we have F 0 � 1ÿ Z. It is characteristic that energy
fluctuations F 0 6� 0 are present at the output despite the
`noiseless' input. This can be explained by the mutual
influence of `noises of splitting' and effective absorption.

3. b-Field is coherent, G
�b�
mÿk; nÿl � �z�0�mÿkznÿl0 . From

(10.8) it follows

G 0mn �
Xm
k�0

Xn
l�0

m

k

� � n

l

� �
�t��ktlG�a�kl �r�z�0�mÿk�rz0�nÿl : �10:15�

In a general way this expression does not describe a shifted
state a. But if t � 1, then we obtain (with some limited
accuracy) the result desired. In doing so the initial amplitude
of the coherent field must be 1=r4 1 times increased.

4. b-Field is thermal,G
�b�
mÿk � �mÿ k�!Tmÿk. From (10.10)

one finds

G 0m �
Xm
k�0

m

k

� �2
ZkG�a�k �mÿ k�!��1ÿ Z�T�mÿk : �10:16�

Again, in order to realize the undistorted superposition,
t � 1, r � 0 should be necessary and the corresponding
increase of the intensity T of the thermal filed is required.

11. Conclusions

Thus, the semiclassical Mandel's formula for the photocount
statistics gives rise to some observable features of the NCL,
i.e. the light which cannot be considered as a sum of waves of
random intensity n with some nonnegative distribution P�n�.
These features are directly connected with the well-known
Stieltjes' mathematical problem of moments. Many of them
have been observed with a high reliability degree over last
years.

Let us track out once again the initial reason for incon-
sistency of the quantum and semiclassical descriptions of the
photodetection process. In quantum models, the process of
energy transfer from an excited to unexcited system is
determined by normally-orderedmoments of the transmitting
system and antinormally-ordered moments of the receiving
system(see, forexample, [47]); thenormalorderingprovides, in
particular, the lack of contribution fromvacuum fluctuations.
The normally-ordered moments are not the `true' moments of
some nonnegative distribution and therefore they do not obey
usual relationships of Cauchy-Schwartz type, in contrast to
the classical moments. It is this difference that allows one to
isolate a class of the field states having no classical analogs.

In this review we tried to systematize an operational
approach to the NCL on the ground of two alternative sets
of measurable parameters: photocount probabilities fpmg
and normalized factorial moments of counts fgkg. Within
the framework of classical optics, both sets must be the
moment like, i.e. they must be determined through a non-
negative distribution function P�n� for the light intensity; the
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corresponding generating functionC�s�must decrease mono-
tonically from1 to 0. This leads to an infinite set of inequalities
between functions of pm and gk. Accordingly, experimental
criteria of the nonclassicality are subdivided into two classes:
p- and g-criteria.Apparently, p-criteria are consideredhere for
the first time. In some cases they proved to be more sensitive.

The simplest classical inequalities possess a clear geome-
trical image Ð concavity of ln�gk� or ln�m!pm� plots. In
particular, convexity of the ln�gk� plot at the point k � 1
yields the mostly known and practically important g2-
criterion of theNCLÐ antibunching of the number of counts.

We also introduced the generalizedmoments ak�s�with an
additional parameter s, which allows one to combine and
generalize these approaches (a0�s� � C�s�, ak�0� � Gk,
ak�1� � k!pk). Under the appropriate choice of s, conditions
ak�s� > 0 allow the discovery of weak nonclassicalities.

All the observable features of the NCL follow from the
conditions of negativeness for the Hankel's matrices H

�n�
K �s�

(K, n � 1; 2; . . .) composed from ak�s� at a fixed s. It is
sufficient to use matrices of two main types: H

�0�
K � HK or

H
�1�
K � H 0K, so that the observable features of the nonclassi-

cality may be subdivided into two classes according to the
type of the Hankel's matrix in use: H orH 0.

The nonclassicality measure T suggested by Lee [49] (see
also [91]) allows tracking for the continuous transition of light
from being maximum nonclassical (T � 0) to classical (T is
the mean number of photons of the auxiliary thermal
radiation, which is added to the light under study). For each
quantum state there exists a minimum value T � T04 1 at
which it appears a classical energy distribution for the
superpositional state. A comparison of T0 with T value at
which the loss of some NCL feature occurs, permits one to
compare the sensitivity of different observational criteria of
the nonclassicality.

Two particular examples Ð a `heated' squeezed vacuum
(I) and a `heated' one-photon state (II) Ð were analyzed in
more detail. These examples revealed the existence of two
types of nonclassical states: in the case I, the regular P-
distribution exists only at T > T0, while in the case II, the
regular P-distribution may be found at arbitrarily small T
(but it is negative within the interval [0, T0]). Apart from this,
these cases differ from each other by the type of the Hankel's
matrix which is sensitive to the nonclassicality:H 0 in the case
I, and H in the case II. Many other types of the NCL are
known (both realistic and not as much), for which a similar
analysis would be interesting.

The analysis performed also demonstrated that the
condition of the light nonclassicality is not obligatory for
absolute measurements of the detectors efficiency using the
photocount statistics. In this connection it seems important to
search for types of light states which are optimal for
photometry and methods of light beam preparation.

Finally, the conditions were found whereupon the beam-
splitter realizes the mathematical operation of superpositing
the two one-mode fields, which is frequently used to study the
NCL.

Only one-point statistics of counts was considered for the
case with a single one-mode photon counter. The study on
dynamics of the field and its spectral properties is of great
significance for practical applications of the NCL, however it
has not to change our conclusions substantially. Multimode
detectors provide no new information about the light, they
only average the field's statistics over the time-space detection
volume.

Correlation measurements with two (or more) detectors
are more interesting. Some features of the nonclassicality are
known for this case as well (see (6.6a), (I.12 ± I.14) and [27, 41,
56, 57, 74, 92]), however, more systematic studies, in
particular p-criteria examinations, are apparently of interest.
In a general way we have n modes and the same number of
one-mode detectors. Experiments result in sets of joint
probabilities p�m1; . . . ;mn� or factorial moments. In classical
optics they are the moment sets, i.e. the latter are determined
via a nonnegative joint distribution of n-mode amplitudes. As
a result, to determine operationally the nonclassicality of
multimode light, it is necessary to consider the problem of
moments for n variables. Notice that a nontrivial multimode
statistics leading, in particular, to intensity interference with a
100% visibility and violation of Bell's inequalities assumes a
nonfactorized vector of the field state; such states are referred
to as entangled states (see [93]).

To conclude, we note some paradox Ð the quantum
nature of a light leads to shot (photon) noises under its
detection, but it also suggests a method for eliminating them
with the help of subpoissonian nonclassical light. However,
this possibility is still to be used in practice and presently the
only technical application of the NCL is apparently the
absolute photometry.

One more concluding remark: it seems nontrivial that
simple models of quantum optics with a small number of
phenomenological parameters describe perfectly all known-
to-date optical experiments with macrodevices consisting of
� 1023 atoms and separated sometimes by a distance of some
hundreds of meters. Probably, this is one more example of a
general regularity: all macroevents described by phenomen-
ological dynamical equations obey the corresponding quan-
tum laws at sufficiently low temperatures.

12. Appendices

I. Constraints on the moments
The existence conditions for the problem of moments are
formulated by means of a set of Hankel's matrices [39,51-54].
Let us compose a K� 1-order matrix H � H

�0�
K from the

moments a0 � 1; a1; . . . ; a2K according to the rule

Hij � ai�j �
�1
0

dxP�x� xi�j ; �I:1�

i.e.

H �

1 a1 a2 . . . aK

a1 a2 a3 . . . aK�1

a2 a3 a4 . . . aK�2

. . . . . . . . . . . . . . .

aK aK�1 aK�2 . . . a2K

266666664

377777775 : �I:2�

This matrix determines the quadratic form
Q�u� �Pi; j Hijuiuj Ð a function of K� 1 variables
u � �u0; . . . ; uK�. Substituting here the definition of moments
ai through P�x�5 0, we arrive at the inequality

Q�u� �
�1
0

dxP�x�
XK
i�0

XK
j�0

uiujx
ix j

�
�1
0

dxP�x�
�XK

i�0
uix

i

�2

5 0 ; �I:3�
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which is valid for any u. The form Q�u� (as well as the matrix
Hij corresponding to it) satisfying this inequality is spoken of
as nonnegatively determined. Further, this condition is
equivalent to the requirement of the determinant nonnega-
tiveness detH5 0 [60].

As experimental moments are determined with a finite
accuracy, one may ignore the case of the equality in (I.3) (and
in the inequalities below) and restrict oneself to considering
the condition of positive definiteness of the matrix H, i.e.
det H > 0.

Consequently, in the case of classical light all the eigen-
values of the moment matrix Hij must be positive: li > 0,
i � 0; 1; . . . ;K. This forms a necessary condition that the set
a0; . . . ; a2K is amoment like, i.e. it is determined through some
nonnegative distribution P�x�. It can be shown that passing
to normalized moments a 0k � gk � Gk=G

k
1 reduces to the

multiplication of detH by G
K�K�1�
1 and does not change the

condition detH > 0.
An equivalent condition consists in the positiveness of all

angular (adjacent to the upper left corner of the matrix H)
minors (Sylvester's criterion [60]), i.e. all determinants of the
Hankel's matrices of preceding orders, K 0 � 1; 2; . . . ;Kÿ 1.

Let us consider also matrices H
�n�
K � �ai�j�n� `shifted' to

the right by n steps. For them, similar to (I.3), we find

Q�u� �
�1
0

dxP�x�
XK
i�0

XK
j�0

ui uj x
i�j�n

�
�1
0

dxP�x� xn
�XK

i�0
ui x

i

�2

5 0 : �I:4�

Thus, necessary conditions of the light classicality take the
form:

detH
�0�
1 �

1 a1

a1 a2

�����
�����5 0 ; detH

�1�
1 �

a1 a2

a2 a3

�����
�����5 0 ;

detH
�2�
1 �

a2 a3

a3 a4

�����
�����5 0 ; �I:5�

detH
�0�
2 �

1 a1 a2

a1 a2 a3

a2 a3 a4

��������
��������5 0 ;

detH
�1�
2 �

a1 a2 a3

a2 a3 a4

a3 a4 a5

��������
��������5 0 ; . . . ; �I:6�

where ak � Gk or ak � k!pk=p0. The reverse inequalities make
up sufficient conditions of the nonclassicality. For a coherent
state yielding a Poissonian statistics, all these determinants
vanish. The solution to the problem ofmoments exists (i.e. the
light is classical) if and only if the determinants of all matrices
behave as detHK � detH

�0�
K > 0 and detH 0K � detH

�1�
K > 0

(K � 1; 2; . . .) [53].
The detHK > 0 criteria at ak � Gk were used in [59],

where some field state was considered, for which detH1 > 1
(i.e. no antibunching occurred) but detH2 < 1. To obtain a
quantitative measure of the nonclassicality, a normalization
of detHK was introduced on the determinants of Hankel's
matrices composed from ordinary (not factorial) moments
hnki. These matrices, as will be shown below, are always
nonnegative.

From (I.5), the simplest necessary conditions of the
classicality are written in the form (cf. (4.7))

Dk � detH
�kÿ1�
1

a2k
� 1 � akÿ1 ak�1

a2k
5 1; k � 1; 2; . . . �I:7�

For example,

a25 a21; a1a35 a22 : �I:8�
In a quantum theory similar constraints on (ordinary)

moments hnki occur and they follow from the density matrix
nonnegativeness. If one considers ak as hnki and substitutes in
(I.1), (I.3) the classical averaging by the quantum one, then all
inequalities given above remain valid, now regardless the field
state. For example, D15 1 now means hn2i5 hni2, i.e.
G25 hni�hni ÿ 1�.

The conditions (I.7) can easily be derived in a direct way.
For this, let us consider the product of two moments of the
distribution P�x�5 0:

akal � hxkihyli �
�1
0

dx

�1
0

dyP�x�P�y� xkyl � hxkyli :
�I:9�

Here k, l � 0; 1; 2; . . .. Let lÿ k� 1 � m5 0. There is a need
to prove the inequality [58]

akal4 akÿ1al�1 ; �I:10�
(at k � l we obtain (I.7); a more general case is considered in
[58]). This inequality may be represented as
hxkyli4 hxkÿ1yl�1i or
hxkyl � ykxli4 hxkÿ1yl�1 � ykÿ1xl�1i :

Since P�x�P�y�5 0, it is sufficient to prove that for all
x; y5 0 the inequality

xkyl � ykxl4 xkÿ1yl�1 � ykÿ1xl�1

holds.
At x, y � 0 this inequality is valid, so without loss of

generality we may consider x, y > 0. After dividing the both
sides by xkÿ1yl�1 and denoting x=y � e > 0, we obtain
e� em4 1� em�1 or em ÿ 14e�em ÿ 1�. At e � 1 this
inequality holds. Let us divide the both sides by em ÿ 1. If
e > 1, then em ÿ 1 > 0 and on dividing the inequality its sign
does not change, which yields the result 1 < e consistent with
the original assumption; at e < 1 we divide the inequality by
em ÿ 1 < 0 with the sign changing, which again yields the
correct result 1 > e.

Some constraints on the moments follow immediately
from Cauchy±Schwartz inequalities [60]��hfgi��4 ��������������������

hf�fihg�gi
p

4
1

2

�hf�fi � hg�gi� ; �I:11�

where f � f �x; y; . . .�, g � g �x; y; . . .� and x; y; . . . are the
random variables. Assuming f � x�mÿk�=2, g � x�n�k�=2 we
obtain (for even �m� n�=2)
�a�m�n�=2�24 amÿkan�k : �I:12�
In the case of two modes we have two random intensities

x, y and the moments

am;n � hxmyni �
� �

dx dyP�x; y� xmyn

(cf. (I.9)). Assuming in (I.11)

f 2 � xmyn; g2 � x2kÿmy2lÿn ;
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we get

�ak; l�24 amn a2kÿm; 2lÿn : �I:13�

In addition, similarly to (I.10) we may prove the inequality
[92]

ak; l � al; k4 ak�1; lÿ1 � al�1; kÿ1 �k5 l � 1; 2; . . .� : �I:14�

Assuming amn � Gmn or amn � m!n!pmn, we reach some
constraints on the factorial moments Gmn and joint prob-
abilities of counts in two detectors pmn (the latter are
determined by a two-dimensional Poisson transformation).
For example,

�p11�24 4p00p22; �G11�24G22;

�p11�24 4p02p20; �G11�24G02G20 : �I:15�

The high visibility of intensity interference when using a two-
photon light [3, 12, 13] evidences for a violation of two latter
inequalities.

II. Generalized moments
The examples of states considered in Sections 6 and 7 showed
that the experimental checks for the nonclassicality based on
the probabilities pm and factorial moments Gk possess
different sensitivity. It is natural to try to find an optimal
method for processing the counts array fmig providing a
maximum sensitivity to the light nonclassicality.

Let us determine the generalized moments as follows:

ak�s� �
X1
m�k

pm�1ÿ s�mÿk m!

�mÿ k�!

�
�1
0

xk exp�ÿsx�P�x� dx � 
 : n̂k exp�ÿsn̂� :� �II:1�
�s5 0� :

Hence ak�s� > 0 in the classical theory. At s � 0 (II.1) yields
ordinary factorial moments Gk, and at s � 1 Ð the prob-
abilities pk multiplied by k!. According to (II.1) and (4.2), the
moment ak�s� is equal to the k-th derivative of the generating
function C�s�multiplied by �ÿ1�k:

a0�s� � C�s�; ak�s� � �ÿ1�k dkC�s�
dsk

;

dak�s�
ds

� ÿak�1�s� : �II:2�

After multiplying (II.1) by the factor 1ÿ exp�ÿs 0x��P�s 0x�m=m!, we arrive at

ak�s� �
X1
m�0

�s 0 ÿ s�m
m!

ak�m�s 0� : �II:3�

Relationships (3.3) and (3.4a) follow herefrom as particular
cases at �s; s 0� equal to (0,1) and (1,0), respectively. The
normalization condition

P
pm � 1 yieldsX1

k;m�0

�sÿ 1�m
k!m!

ak�m�s� � 1 : �II:4�

The operational definition by means of the array fmig has
the form

ak�s� � 1

M

XM
i�1
�1ÿ s�miÿk mi �mi ÿ 1� . . . �mi ÿ k� 1� �II:5�

�mi5 k� :

At s! 1 only terms with mi � k are nonzero, i.e. ak�1�=k!
coincides with the empirical definition of the probability pk.

The convergence radius smax of the power series for the
functions ak�s� depends on the shape of the pk distribution.

From (II.1) it follows that in the classical case the
generalized moments must satisfy all the inequalities for
factorial moments and probabilities considered above; now,
however, we have an additional parameter s in our disposal.

Already the inequalities a0�s� > 1, ak�s� < 0 at any smay
serve as a sufficient feature of the NCL. The first condition in
the case of the heated squeezed vacuum holds, according to
(6.10), at

s > s1 � 2�N� T�
N�N� 1� ÿ �N� T�2 : �II:6�

At s � s1=2, the odd moments vanish, which yields
D2k�1�s1� � 0.

In the case of the heated one-photon state with the mean
number of photons 1� T, the moment a0�s� is negative
according to (7.14), i.e. it reveals the nonclassicality at
s > 1=�1ÿ T�. For example, in order to discover the non-
classicality at t � 0:5, one needs to find
a0�2� �


�ÿ1�m� �Mÿ1
P

i �ÿ1�mi (i is the ordinal number,
andM is the number of trials). This procedure may prove to
be more precise than the calculation of high-order Hankel's
matrix determinants. It is clear from Fig. 9 why the function
a0�s� happens to be negative for sufficiently large arguments:
the exponential factor in (II.1) stresses the contribution from
the initial portions of the distribution P�n�, where it takes
negative values (for T < 1).

According to (II.2), the `shift' of the Hankel's matrices is
equivalent to their differentiating with respect to the para-
meter s:

H
�n�1�
K �s� � ÿ dH

�n�
K �s�
ds

: �II:7�
One may also define the complex moments

ck�o� �
�1
0

exp�ikon�P�n� dn � 
:exp�ikon̂�:�;
ck�o� � cÿk�o�� � ck�ÿo�� �II:8�

at k � 0;�1; . . . ;N. These quantities coincide with
~P�ko� � C�ÿiko�, where ~P�o� and C�s� are the character-
istic and generating functions of the number of counts (see
(4.1), (4.2)). Let us compose Hermitian matrices�
HN�o�

�
kl
� ckÿl�o�, N � 1; 2; . . . and the corresponding

quadratic forms

Q�u� �
XN
k; l

ckÿl�o� uku�l �
�
dnP�n�

����XN
k

exp�ikon� uk
����2
�II:9�

(at o � 2p they are termed the Toeplitz's forms [52]). In
classical theory P�n�5 0, so that matrices HN�o� are non-
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negatively determined. Thus, the conditions detHN�o� �
det
�

~P
��kÿ l�o�	5 0 may also be employed as tests on the

nonclassicality. For example, for N � 1 and 2 we obtain

1ÿ �� ~P�o���25 0;

1� 2Re
�

~P�2o� ~P�o�2��ÿ �� ~P�2o���2 ÿ 2
�� ~P�o���25 0 : �II:10�

In the case of the heated one-photon state, these condi-
tions reveal the nonclassicality only atT < 0:41 andT < 0:55,
respectively, i.e. they have no advantages with respect to the
tests that are based on the real moments ak�s�.
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