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Abstract. We review recent progress in the study of the anom-
alous baryon number non-conservation at high temperatures
and in high-energy collisions. Recent results on high tempera-
ture phase transitions are described, and applications to the
electroweak baryogenesis are considered. The current status
of the problem of electroweak instanton-like processes at high
energies is outlined.

1. Introduction

In his famous paper [1] A D Sakharov discussed for the first
time the possibility of explaining the charge asymmetry of the
Universe in terms of particle theory. The paper was submitted
to JETP Letters in September 1966, two years after the
discovery of CP-violation in K° decays [2] and one year after
the microwave black-body radiation, predicted by the Big
Bang theory [3], was found experimentally [4]. To explain
baryon asymmetry, A D Sakharov proposed an approximate
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character for the baryon conservation law, i.e., baryon
number non-conservation and proton decay. Three years
later Kuzmin published a paper [5] where a different model
leading to the baryon asymmetry was constructed. One of its
consequences was another process with B-non-conservation,
namely, neutron-antineutron oscillations. Since that time the
idea that baryon number may not be exactly conserved in
Nature has been elaborated upon considerably, both in the
context of the generation of the baryon asymmetry of the
Universe [6—11] (see also Refs [12—14]) and because of
theoretical developments that have lead to a unified picture
of fundamental interactions. In the mid-70’s, grand unified
theories with inherent violation of baryon number were put
forward [15—19]. Almost at the same time it was realised [20,
21] that non-perturbative effects related to instantons [22] and
the complex structure of gauge vacuum theory [20, 23, 24] lead
to the non-conservation of baryon number even in the
electroweak theory; it was understood later [25] that similar
effects are relevant for the baryon asymmetry.

In his paper [1] A D Sakharov wrote: “According to our
hypothesis, the occurrence of C-asymmetry is the conse-
quence of violation of CP-invariance in the nonstationary
expansion of the hot Universe during the superdense stage, as
manifest in the difference between the partial probabilities of
the charge-conjugate reactions.” Today, this short extract is
usually dubbed as Sakharov’s three necessary conditions for
baryon asymmetry generation from the initial charge sym-
metric state in the hot Universe, namely:

(1) baryon number non-conservation;
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(ii) C- and CP-violation;

(iii) deviations from thermal equilibrium.
All these conditions are easily understood.

(1) If the baryon number were conserved and the initial
baryonic charge of the Universe were zero, the Universe
today would be symmetric, rather than asymmetric.t The
statement of the necessity of the baryon number non-
conservation was quite revolutionary at that time. Today it
is very natural theoretically; still, lacking positive results from
experiments searching for B-non-conservation, the baryon
asymmetry of the Universe is unique observational evidence
in favour of it.

(i1) If C or CP were conserved, then the rate of reactions
with particles would be the same as the rate of reactions with
antiparticles. If the initial state of the Universe was C- or CP-
symmetric, then no charge asymmetry could develop fromit.}
In more formal language, this follows from the fact that if the
initial density matrix of the system p, commutes with C- or
CP-operations, and the Hamiltonian of the system is C- or
CP-invariant, then at any time the density matrix p(¢) is C- or
CP-invariant, so that the average of any C- or CP-odd
operator is zero.

(iii) Thermal equilibrium means that the system is sta-
tionary (no time dependence at all). Hence, if the initial
baryon number is zero, it is zero forever.

Clearly, the issue of the baryon asymmetry generation
requires the development of many different areas of theore-
tical physics, such as model building, the study of perturba-
tive and non-perturbative effects leading to B-violation, finite
temperature field theory and non-equilibrium statistical
mechanics and the theory of phase transitions.

This paper does not aim to give a complete review of the
various theories of baryogenesis proposed so far. The reader
may consult a number of reviews on this subject [12—14,
26—30]. Instead, we pick up a specific non-perturbative
mechanism of the baryon number non-conservation, asso-
ciated with triangle anomaly. The choice of this mechanism
is explained, partially, by the authors’ personal taste. In
addition, anomalous fermion number non-conservation is a
general phenomenon for theories with chiral fermions and is
present, e.g., in the Standard Model of electroweak interac-
tions. This mechanism, being operative at high temperatures,
may lead to the baryogenesis at the electroweak scale.

The possibility that baryon asymmetry may be due to
physics which is probed at accessible energies, has attracted
much attention recently and serves as a powerful motivation
for the development of high temperature field theory, the
theory of phase transitions and the non-equilibrium statistical
mechanics.

The fact that the baryon number is rapidly violated at high
temperatures [25] (see Refs [31, 8, 32] for earlier discussions)
and under other extreme conditions [33 —38] naturally leads
one to enquire whether electroweak baryon number non-

T Of course, there is a loop-hole in this argument, which A D Sakharov
knew. The Universe may be globally symmetric, but locally asymmetric
with the size of the baryonic cluster of matter large enough (say, of the
order of the present horizon size). The inflationary models of the Universe
expansion, together with specific models of particle interactions may
provide a mechanism of the local asymmetry generation, keeping the
conservation of the baryon number intract [13].

1 Again, there are exotic mechanisms making use of the inflationary stage
of the Universe expansion, when the underlying theory conserves C or CP,
the Universe as a whole is charge symmetric, but the visible part is not (see
review [13]).

conservations occurs at high enough rate in collisions of
energetic particles. This problem has attracted considerable
interest in recent years, after the first (and encouraging at that
time) quantitative results were obtained [39, 40]. In spite of
remarkable theoretical developments, this problem is still not
completely solved; existing results indicate that the electro-
weak baryon number violating processes occur at unobser-
vable rates even at very high energies.

The paper is organised as follows. In Section 2 we provide
the necessary background and discuss the mechanism of
anomalous non-conservation of fermionic quantum numbers
together with relevant bosonic classical solutions (instantons
and sphalerons). Section 3 contains a preliminary discussion
of the role of baryon number violating electroweak processes
in the early Universe. Fermion number non-conservation at
high temperatures is considered in Section 4. Section 5
considers recent developments in the theory of high tempera-
ture phase transitions. In Section 6 we briefly address the
question of survival of primordial baryon asymmetry. A
discussion of various electroweak baryogenesis mechanisms
is given in Section 7. We turn to electroweak baryon number
non-conservation in particle collisions in Section 8. Section 9
provides concluding remarks.

2. Basics of anomalous non-conservation
of fermion quantum numbers

Let us discuss non-perturbative non-conservation of fermion
quantum numbers in the context of a model with the gauge
group SU(2) and the massless left-handed fermionic doublets
w(L’), i=1,...,n.. The absence of global anomaly [41]
requires that np be even. We also add a Higgs doublet ¢ that
breaks the SU(2) symmetry completely. The theory, then, is a
simplified version of the electroweak sector of the minimal
Standard Model. All relevant features of the Standard Model
are present in this simplified theory; we shall comment below
on minor complications due to U(1)y gauge symmetry, right-
handed fermions and Yukawa interactions leading to fermion
masses. One may regard the simplified theory as the Standard
Model in the approximation where sin 8w and all fermion
masses are set to zero; for three families of quarks and leptons
one has n, = 12 and

' ={af" 1}, (2.1)
where /= 1,2, 3 is the family index and « = 1,2, 3 labels the
colour of quarks.

At the classical level, there exist np conserved global U(1)
currents,

T =iy

which correspond to the conservation of the number of each
fermionic species. At the quantum level, these currents are no
longer conserved due to the triangle anomaly [42 —44]

i 1 I
o) = 32 (FuFiw). (2.2)

Therefore, one expects that fermion numbers N<Fl> = d3x Jf)i)
are not conserved in any process where the gauge field evolves
in such a way, that

N[A] (23)

1 -
=92 [ d*xtr (FuFu) #0.
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Namely,

ANY = N[4), i=1,....n. (2.4)
It is clear from Eqn (2.3) that in weakly coupled theories, one
has to deal with strong fields: the field F,, = (g/2i)t“F},
should be of the order of 1, and A4, = O(g™"). Therefore, it
is natural that the (semi)classical treatment of bosonic fields is
often reliable.

Eqn (2.4) may be viewed as the selection rule: the
number of fermions changes by the same amount for every
species. In terms of the assignment (2.1), it implies, in

particular,

AN, = AN, = AN, = N[A4],

1
AB:§><3><3><N[A], (2.5)
where the factor of 1/3 comes from the baryon number of a
quark, while the factor of 3 x 3is due to colour and number of
generations. Thus, the amounts of non-conservation of
baryon and lepton numbers are related:

AN, = AN, = AN; :% AB,

(B — L) is conserved while (B + L) is violated.

The analysis of gauge field configurations with the non-
zero topological number (2.3) is conveniently performed in
the gauge Ay = 0. In this gauge, there exists a discrete set of
classical vacua, i.e. pure gauge configurations

Ai=wdo ',  ¢=owd,

where ¢, = (0,v/+/2) is the Higgs field in the trivial vacuum.
The gauge functions @ depend only on spatial coordinates
® = o(x) and are characterised by an integer:

nlw] = J Exd® tr(wdo™! x wdw ! x 0.

1
242

The vacua with different n[w] cannot be continuously
deformed into each other without generating non-vacuum
gauge fields, so these vacua are separated by a potential
barrier. Therefore, the gauge—Higgs system is similar to a
particle in periodic potential, as shown in Fig. 1. An explicit
construction of the minimum energy path, connecting the

Estat
Esph

n=2 A ¢

Figure 1. Schematic plot of the static energy as function of gauge and Higgs
fields. The minima correspond to the classical vacua.

neighbouring vacua, was carried out in Ref. [45] and the
fermion sea contribution to this path was evaluated in
Ref. [46].

The topological number density entering Eqn (2.3) is a
total derivative:

W tr(F,quw) = aHK,, 5

where

y 2
K,u = GHWLP tr (Fvﬂ,Ap — g AVA).Ap> .

If one is interested in vacuum—vacuum transitions, then
t=+00
N[A] = J d*xdro,K, = “ d3xK0]

= N[®=too] — N[W=—o0] -

So, the topological number of the gauge field is non-zero for
transitions between the distinct vacua.

At zero energies and temperatures, the transition between
vacua with different n[w] is a tunnelling event, which is
described by instantons [22] (constrained instantons in
theories with the Higgs mechanism [47]). In pure Yang-—
Mills theory an instanton is the solution to the Euclidean field
equations which is an absolute minimum of the Euclidean
action in the sector N[A4] = 1. Properties of instantons are
reviewed in Ref. [48]. The instanton field, up to gauge
transformations, is

1 2xY

Sy 2.6
gn;uax2+p2 ( )

a _
Aﬂf

where 17,,,,, are the ’t Hooft symbols, and p is an arbitrary scale
to be integrated over. The instanton action is

8n

Sinst =
2 b
g

and the tunnelling amplitude is proportional to

Ainst X exp(f‘sinsl) . (27)

In the electroweak theory, the tunnelling probability is
unobservably small:

4
Finst X EXP (— ﬁ) ~ 107170 (2.8)
where
=S 1
W 4n  sin? Ow 29 °

In theories with the Higgs mechanism there appears a
slight complication. There are no solutions to Euclidean field
equations, i.e. no exact minima of the Euclidean action in
sectors with N[A4] # 0. The reason is that the action for
configurations like (2.6), with appropriate Higgs field,
depends on the instanton size p and decreases as p tends to
zero. To evaluate the functional integral in that case one
introduces a constraint that fixes the size of the configuration
[47], then minimises the action under this constraint, and
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finally integrates over p. The outcome of this procedure is as
follows. The instanton contribution into the functional
integral becomes [21, 47]

d 8m2
J d*xo p—? u(p) exp (— z nzvzpz) ,

where Xy is the instanton position and u(p) is a function (that
varies relatively slowly) of g and p. The integral (2.9) is
saturated at p<Sv~!, so that the size of the constrained
instantons is smaller than the inverse W-boson mass
my = gv/2. The constrained instanton configuration is
conveniently described in the singular gauge, where the
original pure Yang— Mills instanton has the form

(2.9)

1 _ 202X

PR, S
u g"w 2212

(2.10)
The constrained instanton is given by Eqn (2.10) at x < my!
and exponentially decays at large x,

).

Clearly, the tunnelling rate is still suppressed by the exponen-
tial factor (2.8).

In this paper we discuss processes at high temperatures or
energies. The relevant energy scale is set by the height of the
barrier between different vacua as sketched in Fig. 1. This
height is determined by the static saddle point solution to the
Yang— Mills— Higgs equations, the sphaleron [49, 32]. This
solution was found previously in Refs [50—53], but its
relevance to topology was realised only in Ref. [32].

By simple scaling one obtains the static energy of the
sphaleron solution in our simplified model, which is equal to
the height of the barrier at zero temperature:

2
Eyn — mw B(mH) ’
ow mw

X

inst
A™" o exp(—mw

(2.11)

where my is the mass of the Higgs boson. The function
B(my/mw) has been evaluated numerically [32]; it varies
from 1.56 to 2.72 as my/my varies from zero to infinity.
So, the height of the barrier in the electroweak theory is of the
order of 10 TeV.

At energies above Eyp, the system can in principle evolve
from a neighbourhood of one vacuum to another in a classical
way, without tunnelling;{ as outlined above, this classical
process will lead to the non-conservation of baryon and
lepton numbers. Clearly, having enough energy is a necessary,
but not a sufficient condition for the absence of exponential
suppression of the baryon and lepton number violation rates.
Whether the exponential suppression actually disappears or
not is a matter of complicated dynamics, which is one of the
main subjects of this paper.

There are at least two possible ways to see that fermion
quantum numbers are indeed violated in instanton-like
processes. One of them [20, 21] makes use of zero fermion
modes in Euclidean background fields with N[A] # 0. This
approach is reviewed in Ref. [48] and its Minkowskian

+ At very large my /mw the situation is more complicated [54, 55], but the
estimate (2.11) remains valid.

1 Of course, this travel does not typically proceed exactly through the
sphaleron configuration. Some (not necessarily small) deformations of
sphalerons are considered in Refs [56 — 58] where topological properties of
these configurations are investigated.

counterpart is considered in Ref. [59]. A more intuitive way
[60, 59] is related to the phenomenon of level crossing, which
is as follows. Consider left-handed fermions in the back-
ground field A (x, 7), which changes in time from one vacuum
at 1 = —oo to another vacuum at ¢t = +oo (we again use the
gauge Ao = 0). At each time ¢ one can evaluate the fermionic
spectrum, i.e. the set of eigenvalues of the Dirac Hamiltonian
in the static background A(x,) where ¢ is viewed as a
parameter. The spectrum varies with z; some levels cross
zero from below and some cross zero from above. The
relevant quantity is the net change of the number of positive
energy levels, which is the difference between the total number
of levels that cross zero from above and from below in the
course of the entire evolution from ¢ = —oco to t = +o0. A
general mathematical theorem [61] says that this difference is
related to the topological number of the gauge field:

Ny — N_ = n[w—100] — B[wi=—o] = N[A]. (2.12)

Recall now that at vacuum value of A, the ground state of the
fermionic system has all negative energy levels filled and all
positive energy levels empty. A real fermion corresponds to
filled positive energy level and antifermion is an unoccupied
negative energy level. As the energy levels cross zero, the
number of real fermions changes and the net change in the
fermion number of each left-handed doublet is

ANY =N, - N_.

Combining this relation with Eqn (2.12) we see that the
fermion number is not conserved indeed, and the amount of
non-conservation is in perfect agreement with the anomaly
relation [see Eqn (2.4)].

Although the above discussion was for massless fermions,
the results remain valid for the standard electroweak theory
where fermions acquire masses via the Yukawa coupling to
the Higgs field [62—64]. Indeed, the triangle anomaly for
baryon and lepton currents remains valid in the Standard
Model, so that relation (2.5) must hold. The counting of
fermion zero modes in the instanton background confirms
this expectation [62, 64, 65]. Also, the level crossing phenom-
enon has been explicitly found in theories of this type [65—67].
So, the complications due to right-handed fermions and
fermion masses do not change the picture of baryon and
lepton number non-conservation.

Finally, the presence of U(l)y gauge symmetry in the
Standard Model does not modify the analysis to any
considerable extent either. There are no instantons of the
U(1)y gauge field, while the effect of the U(1)y interactions on
the measure u(p) for SU(2) instantons in Eqn (2.9) is tiny.
Also, the energy of the SU(2) sphaleron is still given by Eqn
(2.11) where the factor B depends also on sin® fy. For the
actual value sin” fw = 0.23, the deviation of B from its SU(2)
values is numerically small [32, 68, 69].

3. Baryon asymmetry: preliminaries

In this section we qualitatively discuss the issues relevant to
the main topic of this review, i.e. electroweak baryon number
non-conservation at high temperatures and generation of the
baryon asymmetry of the Universe. These issues will be
considered in much more detail in the following sections, so
this section may be regarded as a guide for a reader not
familiar with the subject. Most of what is said in this section
should not be taken too literally. We will somewhat over-
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simplify the picture of the electroweak physics in the early
Universe and, hence, will use fairly loose terms.

In hot Big Bang cosmology, there is an epoch of particular
interest from the point of view of the electroweak physics.
This is the epoch of the electroweak phase transition, the
relevant temperatures being of the order of a few hundred
GeV [70-73]. Before the phase transition (high tempera-
tures), the Higgs expectation value is zero, while after the
phase transition the Higgs field develops a non-vanishing
expectation value. The critical temperature 7, depends on the
parameters of the electroweak theory; in the Minimal
Standard Model (MSM) the only grossly unknown parameter
is the mass of the Higgs boson, my. In extensions of the MSM,
there are more parameters that determine 7.

At sufficiently small my in the MSM, the phase transition
is of the first order, while at large my the exact nature of the
phase transition is still unclear: it may be weakly first order,
second order or smooth cross-over. It is important that the
masses of W- and Z-bosons immediately after the phase
transition, mw(7c) and mz(7Tc), are smaller than their zero
temperature values; the precise behaviour of mw(7) and
myz(T) again depends on the parameters of the model (on
my in the MSM). Generally speaking, the stronger the first
order phase transition, the larger mw(7c) and mz(7c). The
electroweak phase transition is considered in more detail in
Section 5.

Let us now turn to the rate of the electroweak baryon
number non-conservation at high temperatures. While at zero
temperatures the B-non-conservation comes from tunnelling
and is unobservably small because of the tunnelling exponent,
it may proceed at high temperatures via thermal jumps over
the barrier shown in Fig. 1 [25]. At temperatures below the
critical one, T < T, the probability of finding the system at
the saddle point separating the topologically distinct vacua is
still suppressed, but now by the Boltzmann factor

FO(eXp(fESLT(T)), (3.1)
where
Egn(1) = 20D B(@)
w mw

is the free energy of the sphaleron. Once the system jumps up
to the saddle point (i.e. once the sphaleron is thermally
created), the system may roll down to the neighbouring
vacuum, and the baryon and lepton numbers may be violated.
Therefore, the factor (3.1) is also the suppression factor for
the rate of the electroweak baryon number non-conservation
at T < Te.

At T > T, the exponential suppression of the baryon
number non-conserving transitions is absent. The power-
counting estimate of the rate per unit time per unit volume
in the unbroken phase is then [74, 75]

I' = const x (och)4, (3.2)
where the constant is of the order of 1. The rate of the
electroweak B-non-conservation is considered in detail in
Section 4.

The rates (3.1) and (3.2) are to be compared with the rate
of expansion of the Universe:

1 T
—=const x [ — | T,
tu (MP1>

where the constant is of the order of 10!, Mp, is the Planck
mass. Clearly, in the unbroken phase the B-non-conservation
rate is much higher than the expansion rate in a wide interval
of temperatures,

T. < T <0.1Mp oy ~ 10" GeV.

Therefore, the electroweak B-non-conserving reactions are
fast at these temperatures. After the phase transition the
situation is more subtle: the rate of B-non-conservation
exceeds the expansion rate if the phase transition is weakly
first order [mw/(T,) is small] or second order or of the cross-
over type; on the other hand, the rate of B-violating processes
is much lower than the expansion rate if the phase transition is
strongly first order [mw (T;) is large enough]. The electroweak
B-non-conservation switches off immediately after the phase
transition if Egn(7.)/Te > 45 (see Sections 6 and 7) and
operates after the phase transition in the opposite case. This
inequality is not satisfied in the MSM (Section 7) with
my =175 GeV and experimentally allowed higgs mass
my > 65 GeV. So, the B-violating reactions are fast after the
phase transition in the MSM.

In the extensions of the MSM, the properties of the phase
transition are determined by more parameters than just the
zero temperature Higgs boson mass. So, for some region of
the parameter space, the electroweak B-non-conservation is
negligible after the phase transition.

Clearly, the above observations are directly relevant to the
problem of the generation of the baryon asymmetry of the
Universe whose quantitative measure is the dimensionless
ratio of the baryon number density to entropy density:

This quantity is almost constant during the expansion of the
Universe at the stages when baryon number is conserved, and
its present value is

Ag=(4+6)x 107",

Several possibilities to generate the baryon asymmetry are
discussed in the literature, which differ by the characteristic
temperature when the asymmetry is produced.

(i) Temperature of grand unification, T ~ 101> = 10'6 GeV.

A viable possibility is that the observed baryon asym-
metry is generated by baryon number violating interactions
of grand unified theories. The effect of the electroweak
processes is basically that (B+ L), generated at grand
unified temperatures, is washed out at some later time (recall
that (B — L) is conserved by anomalous electroweak pro-
cesses). The asymmetry may survive from the grand unifica-
tion epoch only if a large (B — L) asymmetry is generated at
T ~ 10" = 10'® GeV, and there are no strong lepton number
violating interactions at intermediate temperatures, 100
GeV < T < 102 GeV (otherwise, all fermionic quantum
numbers are violated at these temperatures, and the baryon
asymmetry is washed out). The first requirement points to
non-standard, (B — L) violating modes of proton decay,
though this indication is not strong. We discuss in Section
6 some issues related to this scenario of baryogenesis.

(i) Intermediate temperatures, 1 TeV < T < 10'° GeV.

An interesting possibility is that there exist lepton number
violating interactions at intermediate scales and these inter-
actions generate a lepton asymmetry of the Universe at
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intermediate temperatures. Then this lepton asymmetry is
partially reprocessed into baryon asymmetry by anomalous
electroweak interactions [76]. Possible manifestations of this
scenario are the Majorana neutrino masses (which actually
may be helpful from the point of view of solar neutrino
experiments, see, e.g., Ref. [77]) and/or lepton number
violating processes like @ — ey, @ — eee and p — e conver-
sion. A more detailed discussion of this possibility, together
with the analysis of concrete models, can be found in Refs
[78—-82].

Another mechanism able to generate the baryon asym-
metry at intermediate temperatures [83] deals with coherent
production of scalar fields carrying baryon number. At a later
stage the ‘scalar’ baryon number stored in scalar fields is
transferred into an ordinary one. The most recent considera-
tion of this interesting possibility in the framework of the
supersymmetric Standard Model can be found in Ref. [84].

(iii) Electroweak temperatures, T ~ (a few) x 100 GeV.

The remaining possibility is that the observed baryon
asymmetry is generated by anomalous electroweak interac-
tions themselves. Since the Universe expands slowly during
the electroweak epoch, a considerable departure from equili-
brium (the third Sakharov condition) is possible only from
the first order phase transition. Indeed, this transition, which
proceeds through the nucleation, expansion and collisions of
the bubbles of the new phase, is quite a violent phenomenon.
The dynamical aspects of the first order phase transitions in
the Universe are considered in Section 5.

A necessary condition for the electroweak baryogenesis is
that the baryon asymmetry created during the electroweak
phase transition should not be washed out after the phase
transition completes. In other words, the rate of the electro-
weak B-violating transitions has to be negligible immediately
after the phase transition. As outlined above, and discussed in
detail in Section 7, the latter requirement is not fulfilled in the
MSM, so the electroweak baryogenesis is possible only in
extensions of the MSM. Extending the minimal model is
useful in another respect: it generally provides extra sources
of CP-violation beyond the Kobayashi—Maskawa (KM)
mechanism, so that the second Sakharov condition is satisfied
more easily.t The phenomenological consequences of these
extra sources of CP violation are electric dipole moments of
neutron and electron [85, 86], whose values are expected, on
the basis of the considerations of baryogenesis [87], to be close
to existing experimental limits.

Several specific mechanisms of electroweak baryogenesis
are outlined in Section 7. The outcome is that the observed
baryon asymmetry may naturally be explained within
extended versions of the Standard Model. This result is
particularly fascinating as the physics involved will be probed
at LEP-II and the LHC relatively soon. Naturally, most of
our review is devoted to the topics related to the electroweak
baryogenesis.

4. Sphaleron rate at finite temperatures

In this section we attempt to describe the present situation
regarding the computation of the rate of fermion number
non-conservation at high temperatures. We shall try to
separate the exact results from (plausible) assumptions. We
shall begin with a qualitative discussion of the rate and derive

T Though it is still not excluded that the KM mechanism alone is sufficient
for baryogenesis (see Section 7).

the Van 't Hoff— Arrhenius type formulae for the rate, which
are valid at sufficiently low temperatures. Then we shall
derive an exact real-time Green function representation for
the rate and show how it can be related to the more qualitative
discussion. The quantum corrections to the rate are discussed.
Finally, we shall present some numerical results for the
sphaleron rate.

Of course, there is much similarity between the description
of sphaleron processes and reaction-rate theory in condensed
matter physics. The latter is reviewed, e.g., in Ref. [88].

4.1 Qualitative discussion

As outlined in Section 2, the anomalous fermion number non-
conservation is associated with the transitions of the bosonic
fields from the classical vacuum of Fig. 1 to the topologically
distinct one. For the case of zero temperatures, low fermion
densities and low energies of colliding particles, the initial
state of the system as well as the final state are close to the
vacuum configurations. So, to experience fermion number
non-conservation, the system has to tunnel through the
barrier. This process can be described by instantons and is
strongly suppressed by the semiclassical exponent
exp(—4n/aw).

In order to deal with topological transitions at non-zero
temperatures let us consider first a simple example of the
system with one particle in the double-well potential with the
Lagrangian:

1

=— i~ U(x), (4.1)
2
1
Ulx) =4 A=) (4.2)
The corresponding Hamiltonian is
1
H=-p +UKx), p=x (4.3)

2

and the curvature of the potential at its minimum, x = ¢, is

U'(x =c¢) =m*=22c*.

Suppose that a particle is initially in the left well and we
want to calculate the probability of finding this particle in the
other well. Let us first take the case of zero temperatures and
consider the transition from the classical ground state. The
probability of tunnelling can be found in the WKB approx-
imation and is of the order of

P ~exp(—2Sy), So= J V2U(x)dx.

It is exponentially suppressed, provided that the energy
barrier separating different classical ground states is suffi-
ciently high.

At finite temperatures, in addition to the ground state, in
the left well there are excited states with non-zero energy E.
The probability of the state with the energy F is given by the
Boltzmann distribution, exp(—E/T). Hence, the rate of the
transitions is proportional to the sum of the probabilities of
transitions from the excited levels with energy E, weighted
with the thermal distribution

P~ Zexp {f% — 2S(En):| )

(4.4)

(4.5)
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where

x(E)
dx/2[U(x) — E], U(x(E)) = E. (4.6)

S(E) = J
—x(E)

At temperatures 7 > m the sum can be approximated by the

integral over x

P avenf -2 o[ 4y oo - 0]

(4.7)

with the result

Pwexp(—%),

where Uy = U(0) = (1/4)Ac* is the height of the barrier. This
result is clear from the physical point of view. Namely, P in
Eqn (4.8) counts the number of states with energy higher than
the height of the barrier. At temperatures 7 < m the number
of these states is exponentially suppressed by the Boltzmann
exponent and their contribution is smaller than the contribu-
tion of tunnelling from the vacuum state. On the other hand,
at high temperatures 7> m the main contribution to the
transition rate comes from the states with energy higher than
the height of the barrier, which can overcome the barrier
classically. Hence, we can address the problem of interest by
the entirely classical calculation of the rate, which is equal to
the probability flux in one direction (from left to right) at the
point x = 0 (see Ref. [88] and references therein),

o .\ | dpdxexp(—H/T)3(x)0(p)p
= (30(0)5) = | dpdxexp(—H/T)

(4.8)

(4.9)

if T < Ujy. Note that the curvature of the potential near the
saddle point at x =0 does not enter the final result; the
quantum constant 7 does not appear in the answer at all. Note
also that the classical treatment of the problem is applicable
only if Uy/T < 2Sp. In the opposite case the rate of the
quantum tunnelling is higher than the rate of the classical
transitions. At the same time, the saddle point approximation
we used for the calculation of the integral (4.9) is valid only for
Uy/T > 1.1f the latter relation does not hold, the calculation
should go beyond the saddle-point approximation. This
discussion can easily be generalised to the case of the systems
with many degrees of freedom, in particular to the field theory
we are interested in Refs [89, 90].

Let us consider specifically sphaleron transitions. As in
the quantum mechanical example discussed previously, we
would like to put our system initially in the vicinity of one of
the topological vacua, say with n = 0, and determine the rate
at which the system moves to neighbouring vacuum sectors.
The sphaleron configuration, lying on a minimal energy path
connecting two close-by vacua with different topological
numbers, plays a crucial role in the computation.

The energy functional near the sphaleron configuration
can be written in the quadratic approximation as follows

1 1 1
H:Esph—Ew%xZ,JrEwaforEZp?, (4.10)

where x; and p; are the normal coordinates and momenta,
w; > 0 are corresponding frequencies, and the index ‘—’ refers
to the negative mode. Now, the surface x_ =0 in the
configuration space is the complete analogue of the saddle
point x = 0 in the single degree of freedom model considered
above. If we put our system on this surface and let it evolve
with time, then it will almost certainly move to the sector
n = 1(n = 0) (and remain there for long time) if the projection
of initial momenta to the normal to the surface is positive
(negative). So, to count the number of transitions with the
topological number change, we should calculate the prob-
ability flux through the surface x_ =0 in one particular
direction (cf. Refs [89, 90]). The rate per unit time and unit
volume is given by Refs [74, 91, 75]

1

N H
r Z I_/J H dx;dp;dx_dp_ d(x_)0(x_)x_exp <— 7) ,
(4.11)
where Z is the statistical sum
H
Z:JDPDQexp(—T> (4.12)

and V is the volume of the system. As in the simple example,
the rate does not depend on the curvature along the sphaleron
negative mode. After Gaussian integration over momenta the
result may be written in a compact form

1T o

== Im Fg, ,

TV ZorT (4.13)

where Im Fgyp, is the result of the formal computation of the
imaginary part of the free energy near the sphaleron in the
one-loop approximation (since the sphaleron is a saddle point
of the energy functional rather than its minimum, the
functional integral around it does not exist).

The treatment of the sphaleron zero modes is fairly
standard. The total number of sphaleron zero modes is 6.
Three translational zero modes restore the correct volume
dependence of the rate while SU(2) transformations intro-
duce some normalisation factor. The final result for the rate
reads [74]

T*o_ [(ow 4 2mw 7 Egpn

mw (H) Nerrol (0(W7T> exp<f T
Here the factors Ny ~ 26, Nyt = 5.3 x 103 come from the
zero mode normalisation [74], k is the determinant of non-
zero modes near the sphaleron. Again, this result is purely
classical and it does not contain 7. It is not applicable at very
low temperatures where Egpn/T > Singt (there quantum tun-
nelling is more important than classically allowed transi-
tions), and at high temperatures where the exponent is not
large compared to 1.

There are several important assumptions used in the
above derivation of the sphaleron rate. The first one is the
applicability of the classical theory to the description of the
topology change in high temperature plasma. The second one
is inherent in the classical theory itself. The thermodynamics
of the classical field theory is, strictly speaking, ill defined due
to the Rayleigh—Jeans instability (in field theory language
there are ultraviolet divergences). Even besides this, we
assumed that if the system is initially on the surface x_ =0

I'=x

). (4.14)



468 V A Rubakov, M E Shaposhnikov

Physics— Uspekhi 39 (5)

then it will move to the sector with topological charge n = 1
provided that p_ > 0 and ton = 01in the opposite case.T None
of these assumptions has been proved with any rigour up to
now. A number of quantum corrections to the rate, associated
with the contributions of high momentum particles (k ~ T),
can be taken into account, the infinities in the classical theory
can be properly dealt with at the one-loop level, but the
regular procedure of evaluating of higher order (two-loop,
etc.) contributions to the rate is not known. Moreover, the
approach discussed above does not shed any light on the rate
at high temperatures when the sphaleron approximation
breaks down.

Below we will describe Green’s function approach to the
problem of B-non-conservation, which follows from the first
principles of statistical mechanics and allows (at least in
principle) the discussion of the B-non-conservation rate
beyond the semiclassical approximation [75, 92, 93].

4.2 Green’s function approach
Let us consider first the behaviour of the quantity Q(r),

00 = j 4(x) d*x

0

(4.15)

at high temperatures in a quantum system without fermions.
Here ¢(x) is the topological number density:

g ~
q(x) =370 FﬁvF;tlv . (416)

If the system starts in the vicinity of one classical vacuum (say,
n = 0) then, due to the sphaleron-like transitions, it will move
randomly to the vicinity of the other vacua of Fig. 1. Because
of the periodicity of the static energy, these processes will not
increase the free energy. In other words, the quantity Q makes
a ‘random walk’ in the space of configurations and

(0%) =2rvi, (4.17)

t— 00,

where V is the volume of the system, (O) = tr (Op), and p is
the equilibrium density matrix, p = Z~'exp(—H/T). The
quantity I' is nothing but the rate of the transitions with a
change of the topological number per unit time per unit
volume. It is given by the correlation function

r :% lim lim Jt<(q(x)q(0) +4(0)q(x))) d*x.

=00 V—oo )

(4.18)

Now, we can derive a fluctuation—dissipation theorem,
showing that the kinetic coefficient describing the relaxation
of the fermion number is directly related to the rate I'. Let us
add left-handed (and right-handed) massless fermions to our
system, switch off the Yukawa interaction with scalar fields,
and suppose that the only deviation from the thermal
equilibrium is that associated with the presence of small
lepton and baryon numbers. In other words, all other
interactions are supposed to be faster than those associated
with anomalous B-non-conservation.f For simplicity we

T This is true only in the quadratic approximation of the energy functional
near the surface. Higher order terms in the expansion of the energy
functional will, in general, introduce recrossings of the surface [74] and
modification of the rate.

1 In reality this is not always the case. For example, the chirality breaking
reactions for massive light quarks and leptons due to Yukawa couplings
may be slower than the anomalous reactions. The modification of the
kinetic equations in this case is discussed in Refs [94—97].

assume that the averages of all conserved fermion numbers
are equal to zero.,§ so that the only non-vanishing global
charge is ((B+ L)) = nV. Here B and L are left baryon and
lepton numbers (in the massless limit only left-handed
particles participate in the anomalous processes).

In principle, the time dependence of the baryon number
can be found from the solution of the Liouville equation for
the density matrix p(¢):

op(1)
= 4.19
= =ilp.H] (4.19)
with the following initial condition at t = 0:
1. 1[H+ (B+1L)] (4.20)
Po =~ €XPy — Ho ; :

where y is the initial value of the chemical potential and Z in
the statistical sum. Then,

(B+ L)(1) = tr[p(1)(B+ L)] = tr[py(B(1) + L(1))] ,
(4.21)

where B, L, (B(t),L(1)) are the operators of baryon and
lepton numbers in Schrddinger (Heisenberg) representation.
We expect that if the density » is small compared with 73,
then the time dependence of n follows from the kinetic
equation

on

= _Ipn,

o (4.22)

where I'g is the rate of the fermion number non-conservation
we are interested in. Perhaps the easiest way to derive this
kinetic equation is to make use of the Zubarev formalism of
the non-equilibrium density matrix [98, 99]. Zubarev defines
two density matrices to be considered: the first one is the so-
called local equilibrium density matrix, which is time depen-
dent only through u(7) [the instant chemical potential for the
operator (B + L)]:

Pl = % exp{— % [H+ u(t)(B+L)] } . (4.23)

The magnitude of x slowly varies in time due to B and L non-
conservation. The average value of n is related to u(z) as
follows

n= Il/ tr[(B+ L)p,| = % u(t) TNy, (4.24)

where Ny is the number of fermion generations and we take
into account that the baryon number of a quark is 1/3 and the
number of colours is 3. The change in the baryon number is
related to the change in the chemical potential, On =
(2/3)N;T? 0u(t).

At the same time, due to the anomaly equation,

0

— n(t) = 2N¢tr(q(1)py) -

= (4.25)

The main difficulty is to compute the large time asymptotics
of this expression. Zubarev argues that at 7> I'g the

following so-called non-equilibrium density operator can be

§ A more general case is considered in Refs [94, 75, 97].
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used instead of p,:

where operators B and L are taken in the Heisenberg
representation and the limit ¢ — +0 is assumed. This density
matrix is static in this limit. Now, expanding the density
matrix (4.26) with respect to small y, integrating over ¢’ by
parts and neglecting the time derivative of u, one obtains
Q-
trla(D)pzu] =3 T°R(OT s, (4.27)

where the rate of the baryon number dilution is written in
terms of the retarded Green function:

e = % elir};lo Jioo di’ d’x [‘](l)7 n(l‘,)] _exp [—E([ _ t/)] .
(4.28)

Now, the use of the spectral decomposition for the correlation
function (4.18) and Green’s function (4.28) [92, 93] shows that
these two functions are in fact equal to each other up to a
coefficient containing the number of fermion generations.
Finally, one finds the desired relation

r
'y = 12N; 73 (4.29)
If the Yukawa interactions with the Higgs particles are faster
than the sphaleron transitions, then one obtains the coeffi-

cient 13/2 instead of 12 [95].

4.3 The relation to the ‘probability flux’ formulae

At first sight, the correlation function describing the rate of
topological transitions (4.28) has nothing to do with the
probability flux through the surface x_ = 0 we found in the
Section 4.1. Below we will see that they are in fact the same in
the Gaussian approximation to the classical theory [75], at
temperatures below the sphaleron mass but above the particle
masses. One may expect that the classical approximation to
the correlation function may be good enough, since the
quantum bosonic distribution functions at low momenta are
the same as the classical ones.

Consider for simplicity the purely bosonic theory. Notice
that expression (4.18) allows for the naive classical limit 7 — 0
(we shall leave aside the question of renormalisation for the
moment):

H(P, Q)

e = fim [ DPDGexp| - #7:2 00)g0). (430

where H(P, Q) is the classical Hamiltonian depending on the
generalised momenta and coordinates; ¢(0) is the density of
the topological charge at time 7= 0 expressed through
canonical coordinates and momenta P, Q; and Q(¢) is the
topological charge (4.15) where A(x, ) is the solution to the
classical equations of motion with initial conditions P, Q.
Derivation of the classical limit goes precisely along the lines
of the corresponding analysis for the quantum mechanics
given in Ref. [100].

Intuitively, the main contribution to the path integral
(4.30) comes from configurations that start in the vicinity of
one of the classical vacua of our system, evolve in time, pass
near the saddle point (sphaleron), and relax in the vicinity of
the other vacuum. For these configurations Q(o0) = £1,
depending on the direction of motion.

Consider the classical configurations crossing the surface
x_ = 0 near the sphaleron at some time #;. They have the

form:
)+ > xady
¢( ) +an¢n — X0, )

Here x¢ and Q are the collective coordinates corresponding to
the sphaleron translational and rotational zero modes and Xx;,
are small. According to the Liouville theorem, the phase space
is invariant, so that we can write

(DPDQ)(0) = (DPDQ)(11)

A(x) = Agpn(x — %0, Q2 (x —x0,Q),

Gpn (X — X0, Q2 (4.31)

= [[ Dxs DP, dxo dQ Ny Neot | P-| 11, (4.32)

n=1

where P, are the momenta corresponding to the coordinates
Xp, dx_ = |P_|dt1; Ny and Nyor are the normalisation factors
for the translational and rotational zero modes. Now,

[ dxo J; diy q(0) = J dxo J; i g(—xo,—11)  (4.33)

is nothing but the topological charge of the configuration,
which at time ¢, belongs to the surface x_ = 0. Then, if the
momentum corresponding to the negative mode is positive,
the configuration under consideration was evolving in time
with an increase in the coordinate x_, producing on average
the topological charge 1/2. In the opposite case, the average
topological charge is —1/2. So, for these configurations we
have

3l
I dxoj dr g(—x%0, 1) = % sign(P_) (4.34)
0

and Q(co
(4.30) is

) =sign(P_). Finally, the correlation function

1
I' = — NuNrot JDxn DP,|P_|d(P-) exp|[—H(x,, P,)]

2Z
(4.35)

coinciding with what was found previously. One can see that
the set of assumptions used in the computation of this
correlation function is precisely the same as that for the
estimate of the probability flux.

4.4 Quantum versus classical rate
In spite of the fact that we were able to write an exact
quantum real-time correlation function describing the spha-
leron rate, there are no regular methods which allow for the
actual computation. The Euclidean (Matsubara) field theory
perturbative methods are of little help here, since the
analytical continuation to the real time is necessary, which is
hardly feasible by making use of the perturbation theory.
The following arguments suggest that the leading quan-
tum effects may be absorbed into the parameters of the
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classical theory, at least at sufficiently high temperatures. In
considering the sphaleron rate, the most important role was
played by the properties of the static configurations of the
gauge and Higgs fields. They are certainly influenced by the
presence of the high-temperature excitations. Nevertheless, it
can be shown (see the discussion in Section 5) that all static
quantum temperature Green’s functions for bosonic fields
¢, A; coincide, up to O(g?) terms, with the static temperature
Green'’s functions for the classical bosonic theory with the
Hamiltonian

H= J d3x {%36)2 + P*(x)P(x)

a

+ L+ (D) (Dig) + (D)

(4.36)

U(p) = m*(T)plp + A(T) (')

Here E; and P are the momenta conjugate to the fields 4; and
¢.T The coupling constants g(7T), A(T) and the mass n?(T) of
the classical field theory can be found by well-defined
perturbative prescription, to be discussed in more detail in
Section 5. The classical theory does not contain fermions,
which are integrated out by the procedure of dimensional
reduction (see Section 5). Static classical Green’s functions
are finite, provided known one- and two-loop counterterms
are added to the Hamiltonian (4.36). The perturbative
transition to the classical theory is possible in weakly coupled
theories only. Moreover, the static correlation lengths in the
theory must be large enough [/ > (n7)"', /> (¢T) '] in order
for the approximation to be valid. The Rayleigh—Jeans
instability is nothing but the infinite renormalisation of the
vacuum energy in the three-dimensional (3d) theory, which
can be removed by vacuum counterterms. Therefore, we see
that the static energy barriers can be found from the analysis
of the saddle points of the energy functional defined in Eqn
(4.36). If m?(T) is negative, the symmetry is spontaneously
broken and the sphaleron solution does exist. Its energy now
depends on temperature via quantum corrections to the
parameters of the classical theory. The size of the high-
temperature sphaleron is of the order of the static correlation
length /and is much larger, according to our assumption, than
the inverse temperature (typical distance between particles).
Now, it will be recalled that in the classical computation of the
probability flux through the surface x_ = 0 the integration
over momenta is Gaussian [see Eqn (4.11)] and the main
contribution comes from momenta P2/2 ~ T. Therefore, for
the normal sphaleron modes with w, < T the real time
motion indeed can be considered as the classical one. This is
not true for w, > T, but high energy sphaleron modes with
w, > [~! are close to those around the vacuum configuration
and, therefore, cancel out in the rate computation.

In the symmetric phase, at m?(T) > 0, the sphaleron
solution does not exist. However, the typical static correlation
length in the system, / ~ (g° T)fl, is still much larger than the
inverse temperature. It is natural to assume that the typical

T To be more precise, the equivalence holds for any form of the kinetic part
of the classical Hamiltonian, provided it contains momenta only. Then for
static Green’s functions the integrations over momenta and coordinates
are factorised. This ensures the equivalence of the classical high tempera-
ture equilibrium statistics and quantum 3d zero temperature Euclidean
theory.

size of the configurations contributing to the rate is of the
order of the correlation length; then the argument given
above indicates the possibility of the classical description.

So, it is conjectured (although never proven) that the rate
of the fermion number non-conservation in quantum field
theory at high temperatures [T > mw(T), gT > mw(T)] is
given, up to terms O(g?), by the classical correlation function
(4.18) with the Hamiltonian (4.36). Since the statistical
mechanics of the classical field theory does not exist due to
ultraviolet divergences, the latter statement requires clarifica-
tion. To define the classical statistics, an introduction of some
high energy A cut off is necessary, together with 3d counter-
terms removing divergencies from the potential part of the
classical Hamiltonian. For this conjecture to be true, the
necessary condition is that the classical correlation function
(4.18) exists in the limit

lim lim lim JI {(q(x)q(0) + q(0)g(x))) d*x (4.37)

A—o0 t—00 V—oo 0

(the order of limits is essential here, see below). Some evidence
in favour of the latter statement has been found by a number
of direct real time Monte Carlo (MC) simulations, which will
be considered in the last section. If the above conjecture is
true, it allows an immediate determination of the parametric
dependence of the rate of sphaleron transitions:
A n12(T)>

I = (aw?)*f (?’ T (4.38)

since the rate has dimensionality (GeV)*, and the classical
dynamics of the theory is governed by the unique dimension-
ful coupling g>7 and two dimensionless ratios. Deeply in the
symmetric phase, at T'> T, the scalar degrees of freedom
decouple, since m*(T) > g*T2. Then I' ~ (aw T)* [74, 75].

Recently, another conjecture was put forward in Ref.
[101]. The authors suggest that instead of the classical
Lagrangian (4.36) one should use the Braaten-—Pisarski
effective action [102], which sums up so-called hard thermal
loops in the particle amplitudes. This action is a generating
functional for the gauge and matter fields at soft momenta; it
was used in Ref. [103] for the calculation of the damping rate
of fermions in plasma. One more suggestion is to use the
Langevin-type equations with a friction term together with a
random force [104], instead of any type of deterministic
equation of motion. The random force is served to mimic
the interaction of the classical soft momentum modes with the
short wave quantum fluctuations. These conjectures have not
been proved either.

4.5 The sphaleron rate in the broken phase
The discussion in the previous subsections shows that in the
broken phase, the rate of sphaleron transitions is given by
expression (4.35), where the classical static energy, which
should be used in the evaluation of the functional integral, is
given by Eqn (4.36), with temperature-dependent masses
and couplings. So, in this regime, the rate is given by Eqn
(4.14) with the replacement mwy — Mw(7T) [where Mw(T) =
(1/2)g(T)v(T)], and the expectation value of the Higgs field is
to be determined by the minimisation of the classical potential
U(¢).

To determine the rate completely, one should calculate the
3d determinant of small fluctuations around the sphaleron
solution, which is also temperature-dependent. Formally, it
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diverges linearly with ultraviolet cut off, but this divergence is
removed by the one-loop counterterm for the scalar mass
m?(T). Recently, this computation has been performed
numerically in Refs [109—111] where the values of the
determinant can be found at different scalar coupling con-
stants. For the small ratio of A(7)/g*(T) the result has a
simple form. Namely, instead of taking the tree value for the
vacuum expectation value for the scalar field, one may obtain
it from the minimisation of the one-loop effective potential

1 1. 1
Vi(g) = 3 m*(T)$* + Z AMT)p* — o (6m3T +m] + 3m§> ;

(4.39)
where the mean field-dependent masses are defined as
mr =3 &N, = mdls) + 34D
m3 = m3(us) + A(T)* . (4.40)

Then the 3d determinant k & 1; the precise numbers are given
in Ref. [111]. This is the most complete calculation of the
sphaleron rate in the framework of 3d approach done up to
now.

Recently both the bosonic and fermionic determinants in
the background of the sphaleron have been calculated for any
temperatures in Refs [105, 106]. Probably, this is the most
involved and non-trivial computation done for the sphaleron
rate until now. Also, the change of the fermion number and
behaviour of the relevant fermion level during the sphaleron
transition has been followed. The authors conclude that the
fermionic contribution is numerically important for
m, = 175 GeV. However, those calculations become unreli-
able close to T.T Fortunately, the full theory in the vicinity of
T. can be reduced to a 3d problem and one can show that
almost entire effect of the determinants can be absorbed into
the definition of coupling constants of the effective 3d theory
(see Section 4.4 and Ref. [107]). If one uses these couplings to
redefine the sphaleron solution, the remaining contributions
are shown to be small [108]. As a result, the sphaleron rate in
the Higgs phase is reliably calculable at the critical tempera-
ture for the theory with the scalar self-coupling up to
J(T)/g*(T) < 0.04 (see discussion in Section 7.1).

The evaluation of further corrections to the rate is a
problem, which has not been solved; even the strategy of the
necessary computation is not known. Parametrically, they are
O[gT/Mw(T)].

4.6 Real time numerical simulations

Making use of the conjecture on the possibility to calculate
the quantum sphaleron rate within the classical field theory,
one can compute the rate by the numerical simulations [112—
114]. The discretization of space, necessary for the numerical
methods, provides a natural ultraviolet cut off. Probably, the
most convenient discrete formulation is provided by the
lattice gauge theories.

The MC numerical computation of the correlation func-
tion <Q2(t)> consists of two steps. First, one should generate a
set of configurations (coordinates and momenta) in accor-
dance with the Boltzmann distribution exp(—H/T). Then,
these configurations are used as initial conditions for the
classical equations of motion. These equations are solved

1 We thank D Diakonov and K Goeke for discussion of this point.

numerically, and the topological charge is computed as a
function of time. Finally, the averaging of the quantity Q?(¢)
is performed. The computation should be repeated for
different volumes of the system and for different lattice
spacings; the extrapolation to the continuum limit is to be
performed at the end. Many details of the described proce-
dure can be found in the original papers [113—121]; here we
present merely a few results.

Up to now, real time MC simulations of the topological
number change have been performed for three different gauge
field theories. The first one is the (1 + 1)-dimensional U(1)
Higgs model, the second is SU(2) gauge-Higgs system, and
the third is a pure Yang— Mills SU(2) theory.

U(1) theory in (1 + 1) dimensions. The Lagrangian of the
U(1) Higgs model has the form:

L= —1 F,qu,uv + (Dlt¢)T(DH¢) - V(¢) )

i (4.41)

where F,, = 0,4, — 0,4, is the gauge field strength, ¢ is the
charged scalar field, D, = 0, —ied,, and V(¢) is the scalar
potential,

V) =506 - ) (442)

The topological number in this theory in (1 + 1) dimensions is

i (4.43)

o) = iJ d’x €nFuy .
The static high temperature effective one-dimensional action
is just [(quﬁ)T(Dld)) + V(¢)]. It corresponds to finite field
theory in one dimension. The classical statistical mechanics of
this system is described by the Hamiltonian

1

5 B2+ PP+ (D19) (D1g) + V(9). (4.44)
together with the Gauss constraint

01E—ie(¢p"P—pP*) =0 (4.45)

imposed on the admissible states.

Let us put this system in a one-dimensional box of length
L (—L/2 < x < L/2) and impose periodic boundary condi-
tions on the fields. Then in the limit L — oo the saddle point
of this action (sphaleron) is a gauge transformation of the
usual kink of the scalar field theory [112—114]:

. 1mx Myux
b =1 7 exXp — tanh 7 (4.46)
b
Ay = oL (4.47)

The high temperature sphaleron rate in this theory has been
calculated in Refs [91, 122]:

_ 3E5Ph i 2 Mw Esph
F—|:TET:| MHfM—H exp—T s

where the sphaleron mass is given by Eg, = V8ic*/3. The
function f{x) for large x has been evaluated in Ref. [91]
[f(x) = (y/x/4m)2>~3/4] and, for arbitrary x, in Ref. [122].
The real time dynamics of the classical system was studied
on the lattice in Refs [113, 114, 120, 121]. The results of the
real time MC simulations show that the rate of sphaleron
transitions, indeed, does not depend on the lattice spacing,

(4.48)
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provided it is small enough. Moreover, quantitative agree-
ment with one-loop formulae is found at T < Egp,. At very
high temperatures, 7 > Eg,p, the rate cannot be calculated
analytically, and only the numerical results exist there [123].
The numerical simulations with Langevin-type equations
replacing the real time dynamics can be found in Ref. [104].

SU(2) gauge—Higgs system. The study of the sphaleron
transitions in the symmetric phase of the SU(2) gauge-Higgs
theory was performed in Refs. [115, 116]. The sphaleron
transitions were clearly observed with different lattice spa-
cings and volumes. However, the quality of the lattice data
did not allow the extrapolation of the results to the continuum
limit. All the data are consistent with the rate I' = r(ow T)*
forx > 0.4.7

SU(2) pure gauge theory. Recently, the systematic study of
the sphaleron transitions has been performed in a pure SU(2)
theory [119]. The use of the pure Yang—Mills theory instead
of the full gauge—Higgs system is legitimate at the tempera-
tures far above the critical one. At these temperatures the
scalar fields have masses ~ g7 and decouple from the long-
range fluctuations k ~ g>T, which are believed to govern the
topology change. The 3d part of the classical model is a field
theory free from ultraviolet divergences. The authors show
convincing evidence that the classical rate exists (i.e. that it
does not depend on the volume, if it is large, and lattice
spacing, if it is small). Numerically,

I'=x(owT )4 ,

k=1.09+0.04. (4.49)

Near the phase transition the scalar degrees of freedom have
masses of the order of g>7 and do not decouple from the
gauge fields. However, since the parameter g>7 provides the
only dimensionful scale of the problem, the parametric
dependence of the rate is still the same, but the numerical
coefficient may be different.

4.7 Strong sphalerons

We include in this section also a discussion of other high
temperature processes, associated with anomaly, but now in
QCD. They change the chirality of quarks and, since
anomalous B-violation deals with left-handed fermions, may
be relevant to the discussion of the baryon asymmetry.

It is well known that the quark axial vector current has an
anomaly and, therefore, is not conserved. The rate of chirality
non-conservation at high temperatures I, is related to the
rate of topological transitions in QCD (‘strong’ sphalerons
[92, 125]):

005 _ 72

ot = _F FstrQS 5 (450)

where Qs is the axial charge. By analogy with the weak
sphalerons, the rate of the strong sphaleron transitions is
given by

Tye = ksu@)(osT)*, (4.51)

where xgy(3) is an unknown pure number. The characteristic
time of these transitions is therefore

1
ir = ——————— . 4.52
Fstr 72163U(3)0(§T ( )

T In Ref. [116] the corresponding constraint reads as k > 0.1; an arithmetic
error of a factor of 4.4 in this estimate was corrected in Ref. [124].

Taking as an estimate xgy(3) = 1 <+ 3, this time is of order of
(30 +100)/T, i.e. the rate of strong sphaleron transitions is
comparable to or even higher than the rate of chirality-flip
transitions mediated by the Yukawa coupling of the t-quark.

4.8 Concluding remarks

It is well established by now that there is no suppression of the
fermion number non-conservation at high temperatures.
However, the quantitative formalism allowing for the calcula-
tion of the rate beyond the lowest order semiclassical
approximation is still lacking. From our point of view, the
most important challenge here is to establish the relation
between the quantum rate and the classical rate; the latter can
then be computed with some kind of MC numerical analysis.
Even in the framework of the classical physics it would be
important to gain an analytical understanding of the finite-
ness of the rate in the continuum limit. Of course, the real time
MC simulations in the broken phase of the SU(2) gauge—
Higgs system would be very important, in particular because
the rate is now known in the Gaussian approximation.

5. Phase transitions in gauge theories

Potentially, phase transitions provide a source of deviations
from thermal equilibrium in the early Universe. Usually, in
the theories with scalars (such as grand unified theories or
the electroweak theory), symmetry is restored at high
temperatures and, at low temperatures, it is broken [70, 71].
If the phase transition is of the first kind, it proceeds through
the nucleation of bubbles of a new phase [126, 127].
Depending on the parameters of a model, this process can
be quite violent, the motion of the domain walls disturbs the
plasma and may trigger the baryon asymmetry generation.
In order to have the detailed non-equilibrium picture of the
phase transition, a number of very difficult problems must
be solved. The questions potentially interesting for baryo-
genesis include the bubble nucleation rate, the structure of
the domain walls, their velocity, the distribution densities of
particles near the domain walls, etc. It is hard to get reliable
answers to these questions, since they all deal with compli-
cated non-equilibrium phenomena. Moreover, even the
equilibrium treatment of the phase transitions faces a
number of difficulties, associated with the so-called infrared
problem in thermodynamics of gauge fields.

There are many excellent reviews and books devoted to
the study of the phase transitions in gauge theories (see, for
instance Refs [128—131]). Our purpose in this section is to
report on the progress that has been achieved in this area in
the last few years. Our special interest is in the study of the
first order phase transitions, which are strong enough to
suppress the B-violating reactions in the Higgs phase (see
Sections 3 and 7.1). The dynamics of much weaker phase
transitions may be different and is a topic of extensive studies
of Refs [132—-135].

In Section 5.1 we shortly discuss the validity of the
equilibrium approximation to the description of the phase
transition and present some useful equations for the determi-
nation of the bubble nucleation rate. Then we review the
‘rules of the game’, which allow an estimate of the relevant
parameters of the phase transition with the help of a unique
function: the perturbative effective potential for the Higgs
field. Everything contained in these sections has been known
for a long time and is presented here for the sake of
completeness. In Section 5.3 we shall explain why the
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perturbation theory fails to describe the high temperature
phase transitions. In Sections 5.4 and 5.5 we describe the
formalism, which allows us to determine reliably the para-
meters of the phase transition in weakly coupled theories. The
specific results for the electroweak phase transition are
discussed in Section 5.6. Section 5.7 is devoted to the
dynamics of the phase transition.

5.1 Equilibrium approximation

Let us take for simplicity the MSM of electroweak interac-
tions and consider it in the cosmological context. Suppose
that the temperature of the system 7 is of the order of the W-
boson mass (the scale where the electroweak phase transition
is expected to take place). The first question that arises is
whether the equilibrium description of this system is possible
in the expanding Universe at all. In order to check this, we
may compare the rates of different particle reactions in the
Standard Model with the rate of the Universe expansion 7.
The Universe age ty is given by

My

Here, My = Mp;/1,66N'/? ~ 10'8 GeV and N is the effective
number of the massless degrees of freedom. The expansion
rate of the Universe is the unique non-equilibrium parameter
of the system before or some time after the phase transition;
during the phase transition another typical non-equilibrium
time scale, associated with the motion of the bubble walls, is
relevant. This time scale is smaller than the Universe
expansion rate by many orders of magnitude (see below)
and thus the deviations from the thermal equilibrium are
much more pronounced.

Before or after the phase transition, the fastest perturba-
tive reactions are those associated with strong interactions
(e.g., q@ — GG); their rate is of the order of (fm)f1 ~
(onv) ~ o2 T. Here, o is the cross-section of the reaction, 7 is
the particle concentration, v is the relative velocity of the
colliding particles. The typical weak reactions, say ev — ev,
occur at the rate (rweak)_l ~ oc%\, T, and the slowest reactions
are those involving chirality flips for the lightest fermions, e.g.
egH — VW with the rate (.)”' ~ Sf2awT, where f; is the
electron Yukawa coupling constant. Now, the ratio t;/ty
varies from 10~'* for the fastest reactions to 1072 for the
slowest ones; this means that particle distribution functions of
quarks and gluons, intermediate vector bosons, Higgs parti-
cles and left-handed charged leptons, and neutrino are equal
to the equilibrium ones with an accuracy better than 10~13;
the largest deviation from thermal equilibrium (~ 1072) is
being expected for the right-handed electron.

These estimates show that the equilibrium description of
the system is a very good approximation before the phase
transition and soon after it is completed.t Moreover, since the
phase transition is expected to proceed through bubble
nucleation, the equilibrium description of the plasma is
possible in the regions far enough from the moving domain
walls.

The above remarks suggest that the equilibrium statistical
mechanics may be applied to the evaluation of the ‘static’
properties of the phase transitions, such as the critical

tu

T Clearly, this is a model-dependent statement. For instance, if the
Universe was as hot as, say, 107 GeV, then the equilibrium description
of the (grand unified) phase transitions would be questionable, since the
ratio #;/ty would be of the order of 1.

temperature 7., latent heat, jump of the order parameter
(expectation value of the scalar field), interface tension
(surface energy density of the plane domain wall separating
different phases). Another important feature is the metast-
ability range: at the upper 7. (lower 7_ ) spinodial decom-
position temperature, broken (symmetric) phase ceased to
exist as a metastable state (Fig. 2). The static correlation
lengths for various operators may help to understand the
structure of the domain walls.

V(¢)

Figure 2. Effective potential evolution at first order phase transition.

The first order phase transition in the early Universe is not
an instant process and its total duration is of the order of the
Universe’s age. The bubbles of the new phase start to nucleate
at temperatures somewhat lower than 7¢; the bubbles expand
and finally fill out the Universe with the new phase. This
happens at temperatures above 7_. The fraction of the
volume of the Universe occupied by a new phase, P(¢), can
be estimated in the following way [136]. Suppose that the
bubble nucleation rate per unit time per unit volume is R(T)
and the velocity of the bubble walls is constant} and equal to
v. Then,

P(1) =1 —exp[-A(1)], (5.2)

where V(t,10) = (4n/3)v3(t — 1)’ is the volume that the
bubble nucleated at time 7y occupies at time #:

1

At) = [ do V(t,10)R(T (1)) , (5.3)

Ji,

i In the hot plasma, contrary to the vacuum case, there is a friction force
acting on the bubble wall. This ensures the constant velocity of the wall.
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and ¢, is the time, corresponding to the critical temperature,
T(t;) = T.. This equation does not take into account the red
shift of the bubble velocity, which is in fact negligent at the
electroweak scale. Introducing the variable

.- T
==

and assuming that it is small (this is satisfied in the
electroweak case), one obtains a simplified expression

64mv® (Mo\* [*R(T)
A= == 3dx. 4
3 <Tc> Jo T x”dx (5.4)
The phase transition is completed when
A=~1. (5.5)

Since the electroweak scale is much smaller than the Plank
scale, the probability of the bubble nucleation R at the
percolation time is very small:

R(T) T.\*
3 c
~ (=) ~exp(—150).
Ti <M0) exp(—150)

The typical bubble size is of the order of R ~ 2vMox/T2,
where x is to be found from Eqn (5.5).

Computation of the bubble nucleation rate in the general
case is a very complicated problem, which has yet to be
solved. Reliable estimates exist only in the so-called thin wall
approximation and the leading contribution can be read off
from the Landau-Lifshitz book on statistical mechanics.
Suppose that the temperature of the system is 7 < 7T, and
x < 1. Then the free energy of the critical bubble can be found
from the minimisation condition

3
67F _ 4nR A
OR

0, F(R)=4nR*s — P, (5.6)

where Ap = Lx is the pressure difference, L is the latent heat
of the transition, and ¢ is the surface tension. From the latter
relation one immediately obtains

R =«kT!exp[-S(x)], (5.7)
where the bounce action is given by
16mo’

and corrections O(x) are model dependent. Indeed, the
domain wall thickness is of the order of the typical correlation
length ¢ in the system, which means that the radius of the
bubble is defined up to corrections of the order of &. This
produces an uncertainty in the action 8S/S ~ Léx/o and
gives an obvious requirement of the validity of the thin wall
approximation R > &. The calculations of the bounce action
in various models can be found in Refs [131, 137].

If R ~ ¢&, then the thin wall approximation breaks down,
the nucleation rate cannot be expressed only through macro-
scopic parameters of the phase transition (latent heat and
surface tension) at the critical point. In this case the phase
transition is delayed and the Universe is supercooled in the
symmetric phase. The calculation of the bubble nucleation
rate in this case cannot be done for a generic gauge theory
because of an infrared problem in the thermodynamics of the

gauge fields (see below), but it is feasible for weakly coupled
pure scalar theory. A detailed study of the bubble nucleation
in the scalar mean field theory defined by potential (5.13) is
contained in Ref. [138]. Naturally, the bubble nucleation rate
receives dependence on the scalar correlation length & at the
phase transition, in addition to the surface tension and the
latent heat. We refer here to Refs [131, 137, 139] for more
details. The more complicated problem is to determine the
prefactor in the expression for the bubble nucleation rate. Its
computation in one-loop approximation in scalar models and
electroweak theory has been done in Refs [140—143].

5.2 Simple estimates

To describe the high temperature phase transitions in any
given theory it is very important to have a relevant calcula-
tional formalism. The traditional tool is the effective potential
for the scalar field ¢. It is defined as the value of the free
energy of the system (pressure with the minus sign) in a
uniform background field ¢. The minima of this potential
correspond to the (meta)stable states of the system. The
system undergoes a first order phase transition if there are
two degenerate minima of this potential, separated by the
energy barrier. In general, the effective potential is a gauge-
dependent quantity; perturbative calculations often produce
complex terms. However, the values of the potential at its
minima are gauge-invariant; this allows for the gauge-
invariant definition of the critical temperature and latent
heat.

The following simple strategy ( drawbacks of which we
shall discuss later) gives a reasonable qualitative description
of the phase transitions and often allows fairly accurate
estimates [144]:

Step I. Take your model and calculate the one-loop high
temperature effective potential V(¢, T).

Step II. Define from it the critical temperature, jump of
the order parameter, latent heat, and surface tension with the
use of the following equations for T;. and the order parameter

b
aV(qu, TC)

——2=0, Vg, Te) = V(0,T¢) . 5.9
0 (9o Te) = V10, T) (59)
Latent heat and surface tension are
0
L=T. a—T [V((bca Tc) - V(07 TC)] ) (510)

d)C
O':J V2V(p, T,) do. (5.11)

0

Step III. Calculate the bubble nucleation rate in the thin

wall approximation and compare it with the rate of the
Universe expansion. Determine the bubble nucleation tem-
perature and check the validity of the thin wall approxima-
tion. If it does not work, evaluate the bubble nucleation rate
for a thick wall. To this end, find O(3) symmetric configura-
tions, extremalizing the 3d action

1

S = ?J d*x E @i)> + V($, T) (5.12)

with the boundary condition ¢ — 0 at x — co. The bubble
nucleation rate is then R ~ exp(—S).

An example is provided by the MSM. Here the one-loop
effective potential in the high temperature approximation is
(for simplicity, we take the case when the Higgs boson is
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sufficiently light, and neglect the effects of the U(l)y
interactions):

V(g,T) = % )(T? = T7)¢? —% aT¢? % apt. (5.13)

For the Standard Model with the t-quark mass m one has

IR

" _3 1 mt2
Y A

2+§A+— (5.14)

and the lower metastability temperature 7_ is related to the
higgs mass mj; = 2/v* through
my
= 5.15
- (5.15)
Due to the presence of the cubic term, the potential predicts
the first order transition with the critical temperature

P L (5.16)

V1 =202/92y

and the jump of the order parameter

o(Te) % o

=37 (5.17)

The phase transition gets weaker when the scalar self-
coupling increases. This is seen from the behaviour of the
order parameter, latent heat, and the surface tension; all of
them decrease with the increase of 1. At large A the bubble
nucleation rate can be determined in the thin wall approxima-
tion, while at small 2 (1 ~ g3) it breaks down, and the phase
transition occurs with considerable supercooling. Qualita-
tively, the one-loop description gives correct results, but
concrete numbers may be quite different from those obtained
by a more refined treatment. The effect of the Debye screen-
ing on the effective potential was discussed in Refs[137, 145—
147] and the two-loop computation has been done in Refs
[148—155]. Various aspects of the phase transition were
discussed in Refs [156—159].

5.3 The infrared problem and factorization

It was realised a long time ago [160, 161] that the perturbation
theory for non-Abelian gauge theories with small coupling
constants inevitably breaks down at high temperatures, at
least in the symmetric phase. The physical reason is that at
high temperatures, instead of the usual four-dimensional (4d)
expansion parameter g° the relevant parameter is
p ~ g*np(E), where

is the Bose distribution function, E is the typical energy of a
given process in the plasma. At E < T the expansion
parameter is greater than that at zero temperatures, namely,
p ~ g>T/E, accounting for the typical Bose amplification of
the amplitudes. In the symmetric phase, gauge bosons are
massless in perturbation theory, there is no infrared cut off,
and the expansion parameter can be arbitrarily large. In the
broken phase, the infrared cut off is provided by the vector
boson mass and perturbation theory converges provided
g>T/mw < 1. Below we shall provide a more formal descrip-
tion of the infrared catastrophe.

The fact that the perturbation theory breaks down at
T # 0 poses non-trivial difficulties for the description of the

phase transition. Indeed, the phase transition occurs when the
free energy of the broken phase is equal to that of the
symmetric phase; but the latter cannot be calculated pertur-
batively. The latent heat of the transition receives contribu-
tions from both the symmetric and broken phases; the same is
true for the surface tension. In the Universe, the phase
transitions occur when it is cooling, so that the initial phase
is the phase where perturbation theory breaks down. For the
strongly first order phase transitions, the leading contribution
to the above parameters comes from the broken phase, where
perturbation theory is applicable; in that case the perturbative
description may be reliable. However, the infrared problem is
fatal for an attempt of the perturbative quantitative study of
the weakly first order phase transitions. Unfortunately, the
direct MC lattice simulations of high temperature gauge
theories are not possible at present for realistic theories,
containing chiral fermions, due to well-known difficulties in
discretisation of the chiral fermion determinant. The purely
bosonic sector of the models can be put on 4d lattice and
extensive 4d numerical simulations have been carried out in
Refs [162—-166], for a summary of results see a nice review
[167].

Recently, an approach was suggested, which allows for a
solution of the equilibrium problem of phase transitions in
weakly coupled (at zero temperatures) gauge theories [152,
168, 107, 169]. It combines both perturbative analysis and
numerical MC methods. The main idea of the method is the
factorization of the different scales appearing in the descrip-
tion of the high temperature plasma. At the first stage, a much
simpler effective theory, incorporating all essential non-
perturbative dynamics of the phase transition, is constructed
by perturbative methods. The idea of this construction,
known as dimensional reduction, goes back to papers [170,
171]. It was developed in Refs [152, 168, 107, 169] in
application to the phase transitions and applied later to hot
QCD in Refs [172—-176]. Different aspects of dimensional
reduction have also been studied in Refs [177—182]. At the
second stage the effective 3d theory is analysed by non-
perturbative methods (MC lattice simulations). In the
discussion below we shall follow Ref. [107].

The idea of dimensional reduction comes from an
observation that the equilibrium finite temperature field
theory is equivalent to the Euclidean zero temperature field
theory defined on a finite ‘time” interval § = 1/T and supplied
with periodic boundary conditions for bosons and antiper-
iodic ones for fermions.

Periodic and antiperiodic boundary conditions enable one
to decompose the Bose (¢) and the Fermi (i) fields in the
Fourier series with respect to the finite time interval:

Bt = D g expliofo), (5.18)
) = 3 v expliof), (5.19)

n=—00

where @? = 2nnT, o = (2n+ 1)nT. Therefore, 4d finite
temperature field theory is equivalent to the 3d theory with

T Whenever the comparison between 3d and 4d simulations is possible,
they are in agreement, indicating the correctness of the dimensional
reduction beyond perturbation theory. Generically the errors in 4d
simulations are considerably larger than those in 3d [167], because of
rather stringent requirements to the lattice size in 4d (see Ref. [168]).
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an infinite number of fields, and 3d boson and fermion masses
are just frequencies w? and wY. One can easily recognise here
a perfect analogy to the Kaluza — Klein theories with compact
higher-dimensional space coordinates. The equilibrium
dynamics of the theory is completely characterised by the set
of Matsubara (imaginary time, or the Euclidean) Green’s
functions, G, (w;, k), where w; are discrete frequencies, n is the
number of legs. The static bosonic Green’s functions (fermio-
nic Green’s functions are never static, since the fermion
frequencies are odd) play an important role in the phase
transition. For example, the expectation value of the scalar
field is just G1(0,0); the static correlation lengths can be
extracted from two-point Green’s functions, etc.

Assume now that the theory is weakly coupled and the
expectation value of the Higgs field in the broken phase is
small enough, so that the vector boson masses are much
smaller than the temperature. Then the description of the
phase transition (i.e. static bosonic Green’s functions) can be
obtained within a simpler 3d theory, which contains only
bosonic fields corresponding to the n =0 sector of the
Fourier decomposition. In loose terms,‘superheavy’ (we
keep the word ‘heavy’ for other fields defined below) fields
are integrated out. This theory is valid up to momenta k < T.
To specify the dynamics of the effective theory one writes
down the most general 3d super-renormalisable Lagrangian,
containing zero modes only, and determines its parameters by
the matching condition. This condition requires that the 2-, 3-
and 4-point one-particle irreducible Green’s functions, eval-
uated in the effective theory and in the full 4d theory, should
be the same up to some power of the coupling constant. The
effective theory approximately describes then all static
Green’s functions of the high temperature 4d theory. As
discussed in Ref. [107], the maximum accuracy that can be
reached with a super-renormalisable 3d theory is

AG

<~ 0(g"). (5.20)

To be more explicit, take as an example the MSM
Lagrangian. Then the 3d effective theory is an SU(2) x U(1)
bosonic theory, which contains the Higgs doublet, the scalar
triplet [zero component of the SU(2) gauge field], and the
scalar singlet [zero component of the U(1) field] with the
action

] a a 1
§= [ d’x {Z, GGy + 4 FiFyj + (D;®)!(D;®) + midt
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where

G =0,A! — 0jA! + g3 A} A, Fy=0;B;— 0B,

A4 B,
D;® = (ai —igyt” 7’+ig3’ 5)‘157

(3 + iy, Py +igy)"
Vi .

DiAf = ;A + g3 AL Ay, D=

Here, t* are the Pauli matrices. The factor 1/T, multiplying
the action, has been scaled into the fields and the coupling
constants, so that the fields have the dimension GeV'/? and
the couplings g%, 23, A4, /.45 have the dimension GeV.

The complete one-loop calculation of 3d coupling con-
stants and two-loop calculation of 3d masses of the effective
theory can be found in Refs [152, 107]; we present here only
simple tree relations for the coupling constants:

§=¢T, g’ =¢"T, J=iT,
1 1
hy=3&T, hi=7g"T,
)LAIO, )\.AB:gg,T, iB:jLABIO, (522)
and one-loop relations for the doublet scalar mass:
1 o 302 o R
2 2 3,28 8 | 8y
__1 (22428 85 L &Y 5.23
mi =5+ (3R ) sy
and for triplet and singlet masses:
1 5
mp = (—+ﬁ>g’2T2, (5.24)
6 9
2 1 n
2 F\ 272
=|lz+=-4+—= T . 5.25
"D <3+6+ 3>g (5.25)

Here, my is the zero temperature higgs mass, gy is the
Yukawa coupling constant corresponding to the t-quark,
gy = gy T, and ng = 3 is the number of fermion generations.

Clearly, is is much easier to study this 3d model than the
initial 4d theory, since it contains considerably fewer degrees
of freedom. Another important fact is that the only remnant
of fermions is their contribution to the 3d masses and
coupling constants.

An inspection of relations (5.23) and (5.25) shows that
further simplification of the effective theory is possible.
Indeed, at the tree level at m3 < 0 the symmetry is broken
and at m% > 0 it is restored. In other words, the phase
transition takes place near m3 = 0. At this point the hierarchy
m} < mdy and m3 < m{? holds, allowing for the construction
of the effective theory containing the Higgs doublet and
SU(2) x U(1) gauge fields only. The ‘heavy’ scale of the
order of gT is integrated out and the super-renormalisable
Lagrangian of the effective theory is merely

1 1
S= J d3x |:4_1 GG+ FyFyt

4
+ (D;®) (D) + 3Dt d + I3 (0T @)?| . (5.26)
In the one-loop approximation
1
w3 (1) = m3 — — (3hsmp + himy)) (5.27)

47

and 13 = 23 at the tree level. Higher order corrections to these
relations can be found in Refs [152, 107]. In fact, the
possibility of integrating out the heavy scale has a general
character and can be applied to any gauge theory. The
effective description in terms of the super-renormalisable
Lagrangian for the ‘light’ modes only provides an accuracy

AG

=~ 0(&) (5.28)
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for Green’s functions for ‘light’ (static gauge bosons and
scalars) fields. This theory is valid for k < g7, but k may be as
large as g2 T. The effective potential for the scalar field in 3d
coincides with the hard loop resumed potential in 4d at high
temperatures [149, 151, 152].

Since all four parameters of the 3d theory are dimension-
ful, the theory is uniquely fixed by three dimensionless ratios:

2 =2 ~/\ 2
,YET:;, yzrfl—j, ZE(‘ﬁ)

— (5.29)
83 &3 83

and the overall scale g7, on which the physics does not
depend. The temperature variation changes the parameter y,
while x and z depend on T only through logarithmic
corrections. So, we arrive at the important conclusion that
the dynamics of the electroweak phase transition depends on
one dimensionless number (x) only, since z is related to the
known weak mixing angle, z ~ 0.3, and y is fixed by the
requirement that the temperature is equal to the critical one.
The dependence of the parameter x on the physical higgs mass
in MSM was found in Ref. [107] (Fig. 3).

0.06

0.02 | | |

20 40 60 80 100
my

Figure 3. The critical value x. = /3/g3 as a function of the physical higgs
mass my and the t-quark mass m; equal to: 7 — 205 GeV; 2— 195 GeV; 3
— 185 GeV; 4 — 175 GeV; 5 — 165 GeV; 6 — 155 GeV. In general, x
depends on the higgs mass, the top mass, and logarithmically on the
temperature [169].

In fact, the 3d theory defined by Eqn (5.26) plays the role
of the universal theory describing the phase transition not
only in the MSM, but in many of its extensions, including
supersymmetry, two Higgs doublets, etc. [107]. Let us take as
an example the two Higgs doublet model. The integration
over the superheavy modes gives a 3d SU(2) x U(1) theory
with an extra Higgs doublet in addition to the theory
considered above. Construct now the one-loop scalar mass
matrix for the doublets and find the temperatures at which
one of its eigenvalues is zero. Take the higher temperature;
this is the temperature near which the phase transition takes
place. Determine the mass of the other scalar at this
temperature. Generally, it is of the order of g7 and, therefore,

is heavy. Integrate this heavy scalar out together with the
heavy triplet and singlet, the result is the simple SU(2) x U(1)
model. When both scalars are light near the critical tempera-
ture, a more complicated model, containing two scalar
doublets, should be studied. It is clear, however, that this
case requires fine tuning. The consideration of the phase
transitions in the two Higgs doublet model at the one-loop
level can be found in Refs [183—190].

The same strategy is applicable to the Minimal Super-
symmetric Standard Model (MSSM). If there is no breaking
of colour and charge at high temperature (breaking is
possible, in principle, since the theory contains squarks),
then all degrees of freedom, excluding those belonging to the
two Higgs doublet model, can be integrated out. We then
return back to the case considered previously. The conclusion
in this case is similar to the previous one, namely that the
phase transition in the MSSM can be described by a 3d
SU(2) x U(1) gauge-Higgs model, at least in a considerable
part of the parameter space. A one-loop analysis of this
theory was carried out in Refs [191—194].

Of course, effective super-renormalisable 3d theories do
not provide an exact description of the phase transitions.
Parametrically, AG/G is proportional to O(g*) or O(g%),
depending on the level of dimensional reduction. The numer-
ical estimate of uncertainty is model-dependent. For the
standard electroweak theory, corresponding estimates were
given in Ref. [107], with the result that the effective descrip-
tion provides an accuracy of the order of 1% for higgs masses
from 30 GeV up to few hundred GeV. For smaller higgs
masses the phase transition is too strong and the vector boson
masses are of the order of temperature, i.e. the assumption of
the scale hierarchy does not hold; if the higgs mass is close to
the unitarity bound, the perturbation theory, used in the
construction of the effective Lagrangian, breaks down.

To summarise this discussion, in order to study phase
transitions in weakly coupled gauge theories, one may
construct simpler 3d theories, the parameters of which can
be perturbatively calculated. This calculation is free from any
infrared divergences, and its ultraviolet divergences are
removed by the usual counterterms of the zero-temperature
perturbation theory. A unique 3d theory plays a role of
universal theory for the description of the phase transition
in many 4d models. In particular, the strength of the
electroweak phase transition depends on the unique number,

5.4 Phase structure of three-dimensional theory
The construction of the effective 3d theory is free from
infrared divergences. However, the perturbative calculations
in 3d are infrared divergent in the symmetric phase. This is
easy to see by simple power counting. For example, the Nth
loop contribution to the vacuum energy in 3d (with
dimension GeV?) must contain the factor (g%)Nfl. There-
fore, starting from N = 5 some dimensionful parameter (say,
the typical momentum scale k) should appear in the denomi-
nator of each term of the expansion (i.e. the expansion
parameter is g3/k). In the symmetric phase the infrared cut
off is absent and perturbation theory breaks down. The first
(logarithmically) divergent contribution to the vacuum
energy appears in four loops and is of the order of (g§)3,
giving a contribution of the order of g8T* to the free energy.
This means that the 3d theory should be treated in a non-
perturbative way. At present, non-perturbative studies of the
complete 3d SU(2) x U(1) model are absent and most results
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were derived for an SU(2) gauge-Higgs system. Let us
consider first the general structure of the phase diagram of
this theory. In the SU(2) gauge-Higgs model there are no
known local gauge invariant order parameters, which would
acquire a non-zero value only in one of the two phases of the
model. In other words, there is no symmetry breaking or
restoration in this model, and the gauge symmetry is always
intact (see, for instance, Refs [195, 196]). An often saying, that
the vector bosons are massless in the symmetric phase and
massive in the broken one, is incorrect, since vector degrees of
freedom are massive at any choice of parameters. A good
statistical analogue of this system is an ordinary liquid, which
may undergo the first order liquid—vapor phase transition
without restoration or breaking of any symmetry. The phase
diagram of the latter system usually has a critical point, where
the line of the first order phase transition ends. At this point
the phase transition is of the second order and there is a
massless scalar excitation in the physical spectrum.

The absence of the true order parameter in the gauge—
Higgs system suggests two possible phase diagrams in the
(x,y) plane, shown schematically in Fig. 4. In the first case
(Fig. 4a) the line of the first order phase transitions has an end
point at finite x, while in the second case (Fig. 4b) the end
point is at x = co. By dashed lines we show the upper and
lower spinodial decomposition temperatures. In the first case
there exists a critical scalar self-coupling above which there is
no phase transition at all, while in the second case a first order
phase transition occurs for all physical parameters. It is
important for cosmological applications to clarify the type
of the phase diagram. For example, if there exists an end point
of the line of the first order phase transition and the physical
value of x is to the right of this end point, then there is a
smooth cross-over transition without any strong deviations

y a

Figure 4. The schematical phase diagrams for gauge—Higgs SU(2) system.
A is the critical point.

from thermal equilibrium. In the latter case there are no
observational consequences from the electroweak epoch.

The following approaches were applied to SU(2) gauge—
Higgs system: ¢-expansion [197], exact renormalisation group
approach [198—201], the Schwinger —Dyson equation [202],
perturbation theory [152], and the lattice MC simulations
[169, 203, 204]. The first two approaches favour the second
type of the phase diagram while the third one argues in favour
of the end point of the critical line. In general, perturbation
theory well describes different characteristics of the phase
transition at small scalar self-coupling constants while ¢-
expansion is more suitable in the regime when /3/g3 > 1
[205—-207]. The lattice MC simulations cannot resolve the
order of the phase transition at large scalar self-coupling
constant.

We shall review here the results of the lattice 3d MC
simulations only [208, 209, 168, 169, 203, 210]. A comprehen-
sive presentation of all existing approaches would make the
discussion too lengthy; our emphasis on MC simulations is
mostly because this is the only approach which is based on the
first principles and does not require any extra assumptions.
For example, e-expansion relies on the hope that ¢ = 1 may
appear to be a small expansion parameter. Exact renormalisa-
tion group approach requires some truncation of the equa-
tions, and the Schwinger — Dyson equations are constructed
with the use of the perturbation theory which may appear to
be inapplicable. The lattice MC simulations produce a set of
‘true’ characteristics of the phase transition (provided the
quality of the data is such that extrapolation to the continuum
limit is possible), which can then be used in cosmological
applications. Of course, MC simulations do not provide an
analytical understanding of the dynamics of the transition,
but they may be considered as an ‘experimental’ basis for
construction or testing of different phase transition theories.
The lattice MC simulations fail to describe very weakly first
order phase transitions. However, only sufficiently strong
first order electroweak phase transition is of interest to
cosmology, i.e. the lattice simulations can cover the entire
relevant range of parameters.

5.5 The lattice formulation
The 3d gauge theory defined by the action

] a
S = J d3x {Z GiGl + (Di@) (D:i®)

+miole 4 h(qﬁ*‘qﬁ)ﬂ , (5.30)
has a number of remarkable properties. It contains only
dimensionful coupling constants and, therefore, it is super-
renormalisable. The only ultraviolet infinities are those in the
scalar mass renormalisation while the § functions for g and
A3 are equal to zero. The exact f function for the mass
parameter is known [152]

om(u 1
n 63/,(L ) = _Wﬁnw (5-31)
where
51 4 2 2
Jom = i 9/3g3 — 1245 (5.32)

The lattice version of the continuum theory (5.30) is
defined by the following action:
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S = ﬁGZ;( trP,/>
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+Z— tr(DT

(x)@(x + 1)

2

HﬁRZB tr & (x)d(x) — 1
(5.33)

Here U;(x) and P; are the link and plaquette variables and @
is the scalar field. The action depends on the three dimension-
less parameters fg, fy, Pr (recall that the continuum
dynamics is completely described by two numbers, x and y).
The fact, that the theory under consideration is super-
renormalisable, enables one to find an exact (in the con-
tinuum limit) match between the lattice variables and the
physical parameters. The corresponding calculation has been
carried out in Refs [168, 211]; it provides the relation between
the lattice renormalisation scheme and the MS scheme in
continuum. The continuum limit is fg — oo, fy — 1/3,
pr — 0 in such a way that the physical parameters x and y,
defined as

e  Pefs

4 By
Bg (1 2xBy\ | 32Bg
y_?G<E—3— Ao >+ o (1 +4x)

, (5.34)

e N (e ]
+16n2{(16+9J 12x>< +C>+i7+17x},

(5.35)

remain constant. Equation (5.35) depends on several con-
stants arising from the lattice perturbation theory;
2 =3.17591, { =0.09, = 5.0, and 5 = 5.2 were computed
in Refs [168, 211].

If we denote by « the lattice spacing, which has dimension
of length, then the overall continuum scale g3 is related to it as

4

g3a = [3 (5.36)

G

i.e. the continuum limit corresponds to a — 0. The relation of
the lattice variables to the continuum fields in this limit is

2a .1
®— VR, Ri:—aqﬁTqS:ztr@T@,
H

U; = exp <% iag3raA?> , (5.37)
where V'is a unitary SU(2) matrix, Ry is the radial mode of the
Higgs field, 7, are the Pauli matrices.

Eqns (5.34) and (5.35) serve as the basis for relating the
results of the lattice simulations to the physical reality. Here
we shall not go into the technical details of the lattice
simulations [169]. Instead, we shall merely review the general
strategy for the lattice study of the phase transition. The
reader who is unfamiliar with MC computations may
consider the computer as a device for calculating the
Euclidean functional integral

AD¢ O(A4, ) exp(—S)
DAD¢ exp(—S) ’

(0(4,¢)) =12 (5.38)

where O(A,¢) is some gauge-invariant functional of the
gauge and scalar fields and S'is the lattice action. The integral
should be computed for different volumes of the system and
different lattice spacings, and extrapolation of the results to
the infinite volume and zero a must be taken at the end. By
choosing the specific 8-function form of this functional,

0=38(c—G(4,¢)), (5.39)
one can construct probability distributions for various order
parameters G(4, ¢), essential for the study of the phase
transition.

5.5.1 The critical temperature. Let us fix i (i.e. the ultraviolet
cut off) and vary parameters iy and i in such a way that the
physical variable x remains constant. In 4d language this
corresponds to varying the temperature. The existence of the
first order phase transition means that at some critical value
of fy there are two degenerate ground states with different
properties. In particular, expectation values of the gauge
invariant observables are different in distinct states. For
example, the average value of R? is expected to be smaller in
the symmetric phase than in the Higgs phase. This means that
the probability distribution at the critical point has non-
trivial form and contains two peaks rather than one. The
typical picture of the distribution evolution is shown in Fig. 5.
At large fy; (low temperatures) there is a unique value of the
order parameter R2, corresponding to the Higgs phase, while
at some Sy a double peak structure develops, which is a signal
of the first order phase transition. The critical value of f can
be found from the requirement that the areas under the two
peaks are equal to each other. Of course, it must be checked
that the double peak structure is not a lattice artefact and
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Figure 5. The evolution of the distribution of (R? ) with iy (temperature);
B = 12, my = 80 GeV [168].




480 V A Rubakov, M E Shaposhnikov

Physics— Uspekhi 39 (5)

passes different tests singling out the first order behaviour
[169]. After the critical value of fy is found, it may be
converted to the critical temperature of the underlying 4d
theory.

5.5.2 The latent heat. The latent heat L (the energy released in
the transition) can be calculated from

L A T

T d
T dT v dT var it

a7 (5.40)

where the derivatives are evaluated at the critical tempera-
ture, Ap is the difference of the pressures in the symmetric and
broken phases, and AP is the difference in the probabilities of
the phases in volume V. In Eqn (5.40), T is the physical (4d)
temperature. The quantity AP is directly proportional to the
difference of the areas under the two peaks in the order
parameter distributions near T.; it may be computed by
performing simulations at fj; close to the critical one.

5.5.3 The jump in order parameter. The order parameter
usually discussed in the study of the effective potential is the
vacuum expectation value (vev) v of the Higgs field. This
quantity, however, is not gauge-invariant. The gauge-invar-
iant substitute of it is the scalar condensate (¢'¢). This is a
composite operator, whose expectation value contains linear
divergence at the one-loop level and logarithmic divergence at
the two-loop level. These divergences can be removed, e.g., by
the MS prescription; the resulting condensate is then depen-
dent on the scale parameter u. Because of the fact that the 3d
theory is super-renormalisable, an exact relation between the
lattice quantity (R?) and (¢'$) can be found [168]:
T
<¢ ¢(H)> - BsBu ((R2> _i)

g% 8 By
3 (0 3ot 2 ) < 1 )
- log —>2 — =90 o(—].
(4n)2<0g 2 +{+ n + Ao
(5.41)

Numerically { + 22/4 — § = 0.67. Thus, the extrapolation of
lattice measurements of the quantity (R?) to the limit
P — oo allows one to determine an ‘exact’ value of the scalar
condensate. The comparison of the lattice results with known
two-loop perturbative expansion allows the extraction of the
magnitude of the higher order perturbative terms. In this way
a three-loop correction to the effective potential has been
numerically determined in Ref. [169]. For estimates, the

relation

10 (9'¢(7)

272 T
can be used. The effective potential for the gauge-invariant
condensate was constructed in Ref. [212].

The jump of the quantity (¢'¢) at the phase transition
(difference between condensates in the broken and symmetric
phases at the critical temperature) is a finite and scale
independent quantity, which can be directly measured on
the lattice as the distance between the positions of the two
peaks in the R? distribution:

A'9)) = 5 Pl ((RY). (542)

It can be shown that A((qugb)) is directly related to the latent
heat of the transition [168, 169, 213].

5.5.4 The interface tension. The interface tension is one of the
most important quantities which characterise the strength of
the phase transition. It can be measured by constructing
probability distributions of a local order parameter. At the
critical temperature, a system in finite volume predominantly
resides in either the Higgs or the symmetric phase, but it can
also exist in a mixed state consisting of domains of the two
states. The probability of the mixed state is suppressed by the
extra free energy associated with the interfaces between the
phases. This causes the typical two-peak structure of the
probability distribution of the order parameter at the critical
temperature (see Fig. 6): the midpoint between the peaks
corresponds to a state, which consists of equal volumes of the
symmetric and broken phases. Because of the associated extra
free energy, the area of the interfaces tends to minimise.
Assuming lattice with periodic boundary conditions and
geometry L2 x L, (where L, < L.) the minimum area is
2x A= 2(an)2; the factor of 2 appears because there are
two separate interfaces. The interface tension ¢ can be
extracted from the limit

g . 1 Prax

T~ A (2A log Pmm> ’ (543)
where P« is the maximum of the probability distribution in
the peak and P, is the minimum of distribution between the
peaks in Fig. 6. At sufficiently large size of the system in the z
direction, the probability distribution has a characteristic
plateau, corresponding to the translational zero mode of the
domain wall. Other methods for determination of the surface
tension are discussed in Refs [165, 166], the estimate of the

higher order perturbative corrections is contained in Ref.
[214].
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Figure 6. The probability distribution of the average Higgs length squared,
R?, used for a surface tension determination [169]; Lf, X L, equals to: 1 —
20% x 140; 2 — 24% x 120; 3 — 30% x 120.
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5.6 Some lattice results

The 3d lattice simulations have been made for four values of
the continuum parameter x, namely, x = 0.01830, 0.06444,
0.08970, and x ~ 0.1188 [169, 210]. These values correspond
to different 4d physical parameters in different models. For
definiteness, let us take the SU(2) sector of the Standard
Model with t-quark mass m; = 175 GeV. Then the first value
of x cannot be realised with any value of the higgs mass (see
Fig. 3), while the others correspond to my ~ 51.2, 68.0,
81 GeV, respectively. The latter numbers come from the
one-loop relations between the MS and physical parameters
of the Standard Model and the one-loop dimensional reduc-
tion [107]. Because of the large value of the top Yukawa
coupling constant the one-loop corrections are quite sub-
stantial for small higgs masses, for example, dmy /my ~ 15%
for my ~ 50 GeV. A naive estimate of the two-loop correc-
tions (taken as square of the one-loop contribution) indicates
that the accuracy of the one-loop computation of the physical
masses at fixed 3d parameter x is approximately 2% for
x = 0.06444 and better for larger x.

For the ‘large’ value of the higgs mass (81 GeV) it was not
possible to resolve the order of the phase transition on the
lattices up to 483 and the data are compatible with the smooth
cross-over, second order phase transition or very weakly first
order phase transition. For smaller higgs masses the transi-
tion is of the first order.

The most complete study has been done for x = 0.06444.
This value may be quite realistic for extended versions of the
electroweak theory, but is excluded experimentally in the
MSM (it corresponds to my ~ 51.2 GeV). Below we shall
present the specific numbers for MSM with m; = 175 GeV,
derived with the use of one-loop relations. The critical
temperature of the phase transition is 7, = 89.79 GeV and
the vev-to-temperature ratio at 7. isv/ T, = 0.64. The domain
wall, separating the broken and symmetric phases, has the
surface tension o ~ 0.00ZTS, and the latent heat is
L/T#=0.12. At T> T, =89.93 GeV only the symmetric
phase is stable and at 7' < T_ = 89.36 only the broken phase
is stable, while at temperatures between 7_ and T, both
phases can exist simultaneously. The scalar correlation
lengths in the symmetric and Higgs phases are approximately
equal to 6/ T, and 8/ T, respectively. The statistical errors of
the lattice numbers are 0.015% for the critical temperature,
1% for the expectation value of the Higgs field and the latent
heat, and about 20% for the interface tension. The two-loop
corrections may introduce extra uncertainties in these num-
bers of the order of 2%.

The bubble nucleation temperature Ty, lies somewhere
between T, and 7_ and may be estimated with the use of the
surface tension and latent heat, found on the lattice. Inserting
the lattice numbers in the relations (5.5), (5.8), (5.7) gives an
estimate AT/ T, ~ 0.0004, i.e. the bubble nucleation tempera-
ture is very close to the critical one. The smallness of AT/ T is
due to fact that the ratio ¢ /L2 T, ~ 2 x 10~%is so small [215].
Since AT/(T, — T-) ~ 0.1 is also small, one is in the thin wall
regime; indeed, the size of the bubbles, when they nucleate, is
at least R, ~ 110/T,, which is much larger than the scalar
correlation length in either the broken or the symmetric phase
at Typup. Because Ty 1S very close to the critical temperature,
the expectation value of the Higgs field at Ty, is almost the
same as at T¢. In other words, the transition is very weakly
first order.

The lattice results can be compared with the perturbative
calculations of the two-loop effective potential. The predic-

tions of the critical temperature, latent heat, and the jump of
the order parameter appear to be quite reasonable and are
within a few per cent for these quantities. However, the
perturbation theory fails to describe the surface tension
(and, therefore, the bubble nucleation rate) at least for
x = 0.06444: the perturbative value is about 3 times larger
than the lattice one.

5.7 Dynamics of the phase transition

In the case of the ‘vacuum phase transitions’, i.e. false vacuum
decay at zero temperatures, the energy, stored in the
metastable vacuum, transforms into kinetic energy of the
domain walls [126, 127]. As a result, the velocity of the
domain wall increases and approaches the speed of light.
Then in the collisions of domain walls, their kinetic energy is
released and transforms into heat, and the system is reheated
up to a certain temperature.

At non-zero temperatures, nucleated bubbles expand in
the medium, and the latent heat of the transition may be
released by many different mechanisms. In the idealistic case
of very slow expansion of the Universe, the temperature stays
constant during the phase transition, Fig. 7 (see, e.g., Ref.
[138]). Every point on the plateau corresponds to a mixed
state containing domains of broken and symmetric phase; the
left point of the plateau corresponds to the pure symmetric
phase and the right one corresponds to the pure broken phase.
The release of the latent heat of the transition is accommo-
dated by the expansion of the Universe.

Figure 7. The temperature evolution at the electroweak phase transition in
the adiabatic case.

In fact, the Universe expands not so slowly at the
electroweak scale and is supercooled in the symmetric phase.
One can distinguish several different epochs in the phase
transition. The first one is the bubble nucleation, the second
one is the bubble growth, the third one is the bubble
percolation, i.e. the period when different bubbles collide.
At this stage the Universe may be reheated up to the critical
temperature (see Fig. 7). If this happens, then the later
evolution may be close to an ideal case described above.

We have already discussed the bubble nucleation rate and
determination of the bubble nucleation temperature Thyp,. Let
us now consider the bubble expansion from the macroscopic
point of view in more detail [138, 156, 215—221].

Initially, the bubble of a new phase is a microscopic object
with the size of several correlation lengths. At the bubble
nucleation temperature, the energy density in the symmetric
phase is larger than that in the broken phase:



482 V A Rubakov, M E Shaposhnikov

Physics— Uspekhi 39 (5)

2 2
T

4
— NegT ™,

€sym = 20 (5.44)

T
€Higgs :% NeffT4 —L.

Here, Ny = Ny + (7/8)ns is the effective number of the
massless degrees of freedom and L is the latent heat. For the
MSM Ny = 106%. The general hydrodynamical considera-
tion of the bubble evolution leads to two possible types of
bubbles, known as deflagration and detonation bubbles [216,
217].

Consider an isolated macroscopic bubble. For a large
enough bubble, its curvature may be neglected and the
interface may be taken as a planar domain wall. Let us
proceed in the rest frame of the domain wall and denote by v,
the velocity of the medium falling on the domain wall
(symmetric phase) and by v, the velocity of the medium inside
the bubble. Then, if v; < ¢s, where ¢ ~ 1/\/§ is the velocity of
sound in the medium, then the phase transition proceeds
through deflagration. In this case the medium is accelerated
when it passes through the domain wall, v; > v;. If, on the
contrary, v; > ¢, then v; > v, and we have detonation
bubbles. The realisation of one of these two mechanisms of
the bubble walls propagation depends on the relationship
between the latent heat of the transition, surface energy
density, and the rate of entropy generation on the phase
boundary [217]. The latter is to be found from the microscopic
analysis of the interaction of particles with the bubble walls
[223, 137,224 -228].

If we choose now the reference frame to be the rest frame
of the plasma before the bubble has nucleated, then the
medium should be at rest in the centre of the bubble and far
from it. Then, for the deflagration bubbles, the medium in
front of the bubble wall is accelerated by the motion of the
wall, and there is a shock wave in the symmetric phase,
moving with the velocity vshock > Vbub, and vpyp = v; is the
bubble wall velocity. The velocity of the symmetric phase
plasma between the shock front and the bubble wall is given
by

V2 — U]

VUsym — 77— -
Y 1—1)1’[)2

The temperature of the medium between the shock front and
the bubble wall Typock and the temperature inside the bubble
T: are different from the bubble nucleation temperature
(temperature outside the shock front) Tyy,. They depend, in
general, on the distance from the bubble centre. Usually the
inequality Tpup < Ty < Tshock holds true [217], but T} < Tpup
at high rates of entropy generation at the domain walls [215].
The latent heat of the transition transforms into the kinetic
energy of plasma in the symmetric phase and to heating of the
plasma inside the shock wave front.

The detonation bubbles have a different structure. The
velocity of the domain wall is larger than the speed of sound,
the symmetric phase plasma is at rest right in front of the
domain wall and has temperature Tpup. The plasma just
behind the wall (in the Higgs phase) is accelerated by it and
has velocity vy, = (v — v2)/(1 — vv;). Finally, the plasma is
stopped at some surface inside the bubble by a rarefaction
wave. As in the previous case, the temperatures inside the
front of the rarefaction wave T, and behind the bubble wall
Ty: are different from Tyyp.

T As was shown in Ref. [222], the domain walls are stable against small
perturbations.

Recent analysis carried out in Refs [228, 227] suggests that
for a sufficiently wide range of the parameter space of the
Standard Model, my < 90 GeV, an isolated bubble expands
as a weak deflagration (‘weak’ means that the velocity of the
bubble wall is supersonic). The velocity vy, was found to be
in the range from 0.38 to 0.45, while the velocity of the shock
front is close to the speed of sound in the medium,
Ushock = Cs =~ 0.58. When the shocks coming from different
bubbles begin to collide, the single bubble approximation
breaks down. At this time, roughly, a (Ubub/cs)3 ~ 0.3 part of
the Universe volume is in the broken phase. The subsequent
evolution of bubbles depends on the temperature in the
symmetric phase, which will emerge as a result of shock
waves interaction. This temperature can be estimated as
follows [215, 229]. Suppose that all latent heat of the
transition is immediately released in the form of heat in the
broken phase. Then the reheating temperature can be found
from energy conservation condition:

n’ 4 n’ 4
30 Negt Ty, = 30 NegT," — L, (5.45)
so that
T — Toup 15 L
= — . 5.46
TC ZTEZNeff T4 ( )
Now, if
Tc - Tbub s Tr - Tbub
T, T. ’

then the reheating process may be disregarded. However, in
the opposite case, the heat release is important and the
expansion of the bubbles of a new phase should slow down.

Simple estimates can be done in a thin wall approxima-
tion. The bubble nucleation temperature is given by

T. — Tbub N l6ng3
T.  \3L2T.Sy’

where Sy ~ 160 is the action for the critical bubble and ¢ is the
surface tension. For example, for the MSM with my = 51.2
GeVi and m =175 GeV we get T,=288.93 GeV,
L/T*=0.124,6/T3 = 0.0023 [169], and

Tr - Tbub —4 Tc - Tbub
———=9%x 107" > ———
T: T:

(5.47)

=3x10*.  (548)

So, for this choice of parameters, the Universe should reheat
to the critical temperature, the speed of the domain walls is
greatly reduced, the broken phase bubbles expand slowly due
to the Universe expansion. At the final stage of the phase
transition, the remnants of the symmetric phase shrink, again
due to the Universe expansion. This picture is also true for
higher values of the MSM higgs masses, provided the phase
transition is still of the first order.

1 Of course, no such Higgs boson exists in the MSM due to the
experimental constraint. This value is taken because it is the highest
MSM Higgs mass for which the magnitude of the surface tension is known
reliably from the lattice simulations (see Section 5.5). While unrealistic for
MSM, this example is phenomenologically acceptable for the extensions of
the standard model.



May, 1996

Electroweak baryon number non-conservation in the early Universe and in high-energy collisions 483

An estimate of the bubble wall velocity at a late stage of
the phase transition (under the assumption that the Universe
is reheated up to the critical temperature) can be found from a
simple thermodynamical consideration [230] (see also Ref.
[229]). Suppose that the average bubble size is Ry, and that
the part of the volume of the space occupied by the broken
phase is P. Then the requirement that the Universe expands
adiabatically is given by

Rbub
Ryup

PL=sH, (5.49)

where s is the entropy density in the symmetric phase,

272
§= 4—5 NeffT4 ,

and H is the Hubble constant. The average bubble size can be
found from the following consideration. The (non-normal-
ised) distribution of the bubbles in sizes at moment ¢ is given
by

P(R,t)dR ~R(1;), (5.50)
where R (7)) is the bubble nucleation probability at time ¢,

and 1, is related to R and ¢ by the obvious condition that
t; =t — R/vpyp. Then

_ JRP(R,1)dR

(R)(1) = TP(R.1)dR (5.51)

In the thin wall approximation

TR

R(t) ~ exp [—
with 4 = 647[(;3/(3L2 T.), and ¢ is the time corresponding to
the temperature 7,. The average bubble radius at time 7 is

_ 3
(R~ 2 1

C

(5.53)

and at the percolation temperature it is

Vpuble A 172
<R>(t) ~ 2 S3/2 .
0

For example, for the numerical values of the parameters given
above one finds 4 ~ 5.3 x 107>, HRpu, ~ 107% and

P HRow

Roup = Vpup ~ = 107 54
bub = Ubub L P 0 (55)

for P~ 0.3. This value becomes larger if the scalar self-
coupling is decreased. For example, reheating up to the
critical temperature may occur for stronger phase transition
and the velocity of the domain wall from the estimate of Ref.
[229] may be higher by a factor of about 10.

Of course, the estimates given above are rather rough as
they are based on the assumption of instantaneous latent heat
release. Nevertheless, they show that it is quite plausible that
the slow stage of the phase transition takes place for the
interesting range of the parameters of the underlying theory
[229].

6. Survival of primordial baryon asymmetry

The anomalous electroweak processes are rapid at sufficiently
high temperatures. Their rate I's,, exceeds the rate of the
Universe expansion 72/ M, in the standard Big Bang scenario
in the following temperature range:

100 GeV ~ T* < T < T* = o, Mp; = 10> GeV, (6.1)

where the lower temperature 7* is to be found from the
condition of decoupling of the sphaleron processes in the
broken phase of the electroweak theory [231, 232],

ESPh(T*)
T*

Clearly, the equilibrium character of B-violating reactions
has an important impact on the survival of the primordial
baryon asymmetry. Several different cases can be distin-
guished, depending on initial conditions and on the rate of
B- and L-non-conservation due to processes other than those
associated with sphalerons.

(1) Suppose that the Universe is asymmetric with respect to
the anomaly free fermionic charges

B

A,':Ll‘ff
ng

~ 45, (6.2)

of the Standard Model at 7> T** and assume that at
T < T** there is no B- or L-violating interactions besides
the electroweak anomalous processes. The origin of the
primordial asymmetry is not essential here. Then anomalous
reactions convert the initial asymmetry to the baryonic one at
T = T*. For the MSM the relationship is given by Refs [94,
75] (see also Refs [96, 97]),

_ 8ng+ 4
T 2p 13 ED

0 (6.3)

4 I m(T)
K- i A
137(2; (T*)> "

where m? is the lepton mass of a given generation, K ~ 1. The
first term in the right hand side of this equation tells that
(B — L)-asymmetry is reprocessed into the baryon asymme-
try while (B + L) tends to be washed out; the second term is
the correction coming from slightly different behaviour of
quarks with different masses in the plasma. If the initial value
of (B — L) is nonzero (coming, say, from the grand unified
theories) then the baryon asymmetry, up to a possible
contribution from the electroweak phase transition (see
below), has a primordial character. If, on the contrary, the
initial (B — L)-asymmetry is absent, we can rely only on the
second term in Eqn (6.3). For three lepton generations one
gets a suppression Ag ~ 3 x 107°A;. So, to have a non-
negligible effect, the initial asymmetry A; must be very large,
or the standard theory should be extended by adding heavy
leptons.

(i) Suppose now that there are some reactions, which do
not conserve all A; and which are in thermal equilibrium for
some period between T* and 7**. At this intermediate epoch
B and L are non-conserved separately and, according to the
third Sakharov condition, all baryonic and leptonic asymme-
tries are washed out. Hence, the existence of these reactions is
fatal for the primordial baryon asymmetry. If the baryon
asymmetry is not produced at a later time, the requirement of
the absence of these reactions may appear to be a powerful
tool for constraining the properties of new particle interac-
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tions [96, 233 —-235]. However, it was realised recently that
most of these constraints are drastically weakened due to the
smallness of some Yukawa coupling constants in the Stan-
dard Model or its supersymmetric extensions [236—241].

Let us discuss the main idea of these estimates on the
example of lepton number violating interactions, leading to
the Majorana neutrino masses my; [240]. We take for
simplicity the MSM and add to it lepton number violating
interactions. The SU(2) x U(1) symmetric low energy
Lagrangian with AL = 2 has the form

1 — e

o mi(Lid)(9'L5), (64)
where L; and L are a lepton doublet and its charge conjugate,
respectively, ¢ is the scalar doublet, v is the vacuum
expectation value of the Higgs field v = 246 GeV. The rate
of L non-conserving reactions L¢ — L°¢* at high tempera-
tures has been found in Ref. [240]

97 ,
N5 M (6.5)
where 1, is an average Majorana neutrino mass:
_ 5
iy = 3 meel + ey | + e (6.6)

These reactions were initially required [96] to be out of
thermal equilibrium at 7 < 7**; this leads to a very stringent
constraint

2

v
————~1072eV.
M T ‘

(6.7)

iy <

An implicit assumption in the derivation above is that the set
of conserved numbers A; is a complete one below 7'= T**. In
fact, this is not true due to the smallness of the right-handed
electron Yukawa coupling constant. In the limit when this
constant is zero, the right-handed electron number is con-
served and the asymmetry in it propagates to the asymmetry
in baryon number. The rate of reactions not conserving the
right-handed electron number (say, egcH — er W) is of the
order of

FR ~ OtwfeQT, (68)
where f; is the electron Yukawa coupling constant. These
reactions are out of equilibrium at 7 > Tr = 3 TeV [240]. Itis
this temperature which should be used in Eqn (6.7) instead of

T**. Thus, we arrive at much weaker constraint [239, 240,
242]

my < 8keV, (6.9)

which must be satisfied in any case because of the known
laboratory limits and other cosmological considerations.

The same type of considerations apply to other possible
interactions breaking lepton and baryon numbers. The
general conclusion is that the initial charge asymmetry can
survive during the epoch at which anomalous reactions are at
thermal equilibrium. Moreover, initial asymmetries in fer-
mionic quantum numbers, different from the baryon number,
are usually transferred to baryon asymmetry towards the end
of the equilibrium sphaleron period.

The history of the Universe is poorly known at very high
temperatures (say, at 7> 1 TeV). It is possible that the
Universe was symmetric with respect to all fermion charges
at T > 10'> GeV. This assumption, being a bit arbitrary, may
be in fact a natural consequence of inflation, which exponen-
tially dilutes the densities of all global quantum numbers (e.g.,
baryonic or leptonic). If true, baryon asymmetry should be
produced at relatively late stages of the Universe expansion.
As pointed out in Section 3, this may happen either at
intermediate temperatures (1 TeV < T < 10'> GeV) or at the
electroweak temperature (T ~ (a few) x 100 GeV).

Our main topic is the discussion of baryogenesis in the
case where the only relevant source of B- and L-non-
conservation is the electroweak anomaly. In a sense, this is
the most conservative possibility, since it relies only on
physics we trust experimentally. We constrain ourselves and
consider the MSM or its natural extensions, such as the two
Higgs doublet model or supersymmetry. In these models, the
only known possibility to generate the observed baryon
asymmetry is that associated with the electroweak phase
transition. Further extensions of the standard theory, con-
taining topological defects (such as strings) can also lead to
baryogenesis via anomalous reactions. The discussion of this
interesting possibility can be found in Refs [243 —247].

7. Electroweak baryogenesis

7.1 Strength of the phase transition

There is a general condition that should be satisfied in any
particle physics model used for the generation of the baryon
asymmetry at the electroweak scale [231, 232, 95]. Namely,
the baryon asymmetry created by some mechanism must not
be erased by the anomalous reactions. In other words, the
sphaleron processes should be out of thermal equilibrium
immediately after the electroweak phase transition (in the
broken phase), i.e. inequality (6.2) must be satisfied. The
temperature 7 * can be as large as the critical temperature 7T,
if the Universe is reheated up to it, or as small as the bubble
nucleation temperature Tyyp. The requirement (6.2) places a
strong constraint on the strength of the phase transition and,
therefore, on the parameters of the electroweak theory. The
recent discussion of this bound, incorporating the results of
numerical simulations of the electroweak phase transition, is
contained in Ref. [169]. We sketch here the main points of the
analysis.

As discussed in Section 5, the 3d SU(2) x U(1) gauge—
Higgs theory plays a role of universal theory of the electro-
weak phase transition in the MSM and a number of its
extensions. The 3d effective theory is characterised by a
unique parameter, x = /3/g3, completely defining its
dynamics; in particular, the effective sphaleron mass is a
function of it. In the one-loop approximation [109, 110]

Egn(T) _ (%3 2572 ¢ o)
T g3 T7 '

g

where ¢ is the scalar field expectation value determined from
the one-loop effective potential. The two-loop corrections to
the sphaleron mass are unknown; parametrically

3Espn(T) _ A< g% )2

7.2
Espn Ty (7.2)
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where mr is defined by Eqn (4.40). The perturbative and
numerical analysis of various quantities in the broken phase
(such as free energy, correlation lengths, vacuum expectation
value of the Higgs field) suggests that the ‘true’ expansion
parameter is kg3 /(umr) with k ~ 1. So, it is natural to assume
that |A4| ~ 1. Then, from Eqns (6.2) and (7.1) one obtains
v/T> 1.2 or v/T > 1.5, depending on the sign of A. To
establish a conservative upper bound, a bubble nucleation
temperature Ty, Which is somewhat smaller than the critical
temperature, should be taken. If the perturbative description
of the bubble nucleation based on two-loop effective potential
is valid, then at Ty, the ratio v/ T is about 20% larger than
that at the critical temperature and we may require
v(Te)/Te > 1. Now, the ratio v/T at the critical temperature
is a function of x. The use of the lattice MC results, together
with perturbation theory, allows us to determine this function
quite reliablyt and the lower limit of the vacuum expectation
value is converted to the upper limit of the ratio of constants,
x < 0.043. For an extreme opposite case, when 4 > 0 and the
Universe is reheated up to the critical temperature, the
constraint is somewhat stronger, x < 0.026. To summarise,
electroweak baryogenesis requires that the parameter 43 /g3 in
the 3d SU(2) x U(1) gauge—Higgs effective theory is bounded
from above:

43
22 <0026 + 0.043. (7.3)

83

In order to obtain the constraints, following from this
requirement, of the particle spectrum of the underlying 4d
theory, one has to express this ratio through the physical
parameters of the 4d theory at the critical temperature. This
computation may be quite involved [107], but it is very clear
from the point of view of physics and does not contain any
infrared divergences. An essential point is that only one-loop
graphs have to be computed in weakly coupled gauge theories,
such as the MSM or the MSSM.

The application of the constraint of Eqn (7.3) to the case
of the MSM follows from Fig. 3. For experimental numbers
me = 175 £ 20 GeV and my > 65 GeV, one finds x > 0.07,
which is inconsistent with Eqn (7.3). Moreover, for
my =175 GeV no higgs mass can ensure the necessary
requirement of Eqn (7.3).i So, in the MSM the baryon
number non-conservation is in thermal equilibrium after the
phase transition. This points to new physics at the electro-
weak scale, which may strengthen the first order nature of the
electroweak phase transition.

The two Higgs doublet model has more freedom and the
results of Refs [183, 184] show that the constraint (7.3) can be
satisfied there. The reason is that the effective 3d scalar self-

+The complete SU(2) x U(1) gauge-Higgs model in 3d has never been
simulated on the lattice, so that the treatment of the U(l) factor is
perturbative.

1 The upper bound on the higgs mass has been evolving in time quite a bit.
The first estimate of the critical higgs mass, based on the one-loop effective
potential for the scalar field with small mass of the t-quark (which was
unknown at that time), gave a value of my < 45 GeV [232, 95]. The
accounting for the large t-quark mass and Debye screening effects in the
one-loop effective potential reduced this number to my < 35 GeV [137].
The two-loop effects [148, 149] somewhat relaxed this condition, while the
assumption about the large non-perturbative effects in the symmetric
phase [248] allowed a sufficiently strong first order phase transition with
experimentally allowed Higgs boson. The lattice simulations [169, 165]
reduced all uncertainties substantially.

coupling constant is a complicated combination of different
scalar and pseudoscalar masses and mixing angles. The
extensions of the Standard Model (supersymmetric or not),
including scalar singlets, can also help [249—-251].

According to Refs [191, 193, 194] the phase transition in
the MSSM in the most part of the parameter space occurs in
the same way as it does in the MSM. So, the MSSM also often
fails to preserve the baryon asymmetry after the phase
transition. However, in a recent paper [252] a specific part of
the parameter space of the MSSM, where electroweak
baryogenesis is possible, has been found.§ It is important
that fairly strong constraints of the masses of the Higgs
bosons and squarks have been derived.

In order to explain the basic idea of Ref. [252] let us add to
the MSM an SU(2) singlet but colour triplet scalar field
(scalar quark) y with the potential

1
U(y, ®) = -3 3 D+ A DT D)+ mPy

+ 2hy @ D + J(17 7). (7.4)
Assume now that the expectation value of the field y is zero at
all temperatures (this is possible at some particular choice of
parameters). Then the contribution of this field to the
effective high temperature Higgs potential is

2x3

3/2
12n ’

[m*(T) + hep*] (7.5)
Now, if the effective high temperature mass m(T) is small near
the electroweak phase transition, mz(T ) =~ 0, then this term
increases the magnitude of the cubic coupling « in the effective
potential (5.13), « — 9¢3/(32n) + 343/2/(2r). This, in turn,
makes the phase transition to be the stronger first order and
the value ¢(7¢)/ T, [see Eqn (5.17)], crucial for the electro-
weak baryogenesis, increases.

In the case of the MSSM the role of SU(2) singlet is played
by the right-handed light stop [252]. Its high temperature
effective mass m?(T) contains two essential contributions.
The first one is the soft supersymmetry breaking mass and the
second one is positive temperature contribution ~ g272,
where gs is the strong gauge coupling constant. To make the
idea to work, the soft supersymmetry breaking mass must be
negative and approximately equal to the high temperature
contribution at the critical temperature. Previously, the
negative values of the mass have not been considered because
of the danger of colour breaking; the authors of Ref. [252]
have shown that it is possible to satisfy simultaneously the
requirements of the absence of colour symmetry breaking,
strong enough first order phase transition and experimental
bounds on supersymmetric particles. The region of para-
meters allowing for electroweak baryogenesis requires that
the higgs mass is smaller than Z mass, the lightest stop mass is
smaller than the top mass, and tan # < 3. This range of masses
is accessible for experimental search at LEP-IT and Tevatron.

One more possibility to have strong enough first order
phase transition may be realised in the models of dynamical
electroweak symmetry breaking [253, 254]. In these models,

§ We thank M Carena, M Quiros and C E M Wagner for describing their
results prior to publication.

9 A similar idea of introducing SU(3) x SU(2) x U(1) scalar singlets in
order to enhance the strength of the electroweak phase transition has been
suggested in Ref. [249]. A new element of Ref. [252] is the account for the
high temperature contributions to the SU(2) singlet scalar mass.
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the phase transition occurs in strong coupling regime both in
the symmetric and Higgs phases and high temperature 3d
description does not work. Models of this type predict new
(strongly interacting) physics at the TeV scale.

7.2 Sources of CP-violation in the electroweak

theory and its extensions

To produce baryon asymmetry, particle interactions must
break C- and CP-symmetry. C-symmetry is broken due to the
chiral character of electroweak interactions. In the MSM, the
conventional source of CP-violation is that associated with
KM mixing of quarks. The Yukawa interaction of quarks
with the Higgs boson in the MSM has the following form:

Ly = {OLKMyDr + 01 M U +hc}, (7.6)

\/_ myy
where M, and M, are diagonal mass matrices of up and down
quarks, K is the KM mixing matrix, containing one CP-
violating phase dcp. The MSM also contains another source
of CP-violation, associated with the QCD vacuum angle 0. It
is constrained experimentally, 0 < 10~2.

A popular extension of the MSM is a model with two
Higgs doublets, ¢, and ¢,. In order to suppress flavour
changing neutral currents, the interaction of Higgs bosons
with fermions is chosen in such a way that ¢, couples only to
right-handed up quarks while ¢, couples only to down
quarks. The other possibility is that ¢, decouples from
fermions completely and ¢, gives masses to all the fermions.
In addition to the KM mixing, this model contains CP
violation in the Higgs sector. The scalar potential has the
form [255]:

V="1i1(e191 — Ul) +/b2(€02¢2 - Uz)

2
+ /13[ <P1(P1 - Ul (fl’z(/’z - Uz)}

+ 24[( — (¢l02)(050))]

<P1(P1 (Pz‘/’z

[(
5[Re @l ¢y) — v1v; cos ﬂ
[

6 Im QDIQDZ — V102 sin é] (77)
& being a CP-violating phase.

In the supersymmetric extensions of the Standard Model
the Higgs potential is CP-invariant and CP is violated by the
soft supersymmetry breaking terms. In the simplest version of
MSSM there are two extra CP-phases and the relevant
interaction has the form [256] (for a review see Ref. [257]):

[,uﬁ[?']F + my [A(ﬁﬁuéﬁ+ DE,OH'

+ E¢gLH") + upHH']  +hec., (7.8)

where [7, 5, Q, I: E, H and H' are the quark, lepton and
Higgs superfields, respectively; parameters u and A4 are
complex and flavour matrices ¢ are assumed to be real, m, is
the gravitino mass. In this model, extra CP-violating phases
appear in the vertices containing superpartners of ordinary
particles.

7.3 Electroweak baryogenesis: how to state the problem

Switching off the sphaleron transitions in the broken phase is,
clearly, not enough for the production of asymmetry.
According to the third Sakharov condition, baryogenesis
requires deviations from thermal equilibrium in reactions

that break CP. This is provided by the first order nature of
the phase transition, which proceeds through the bubble
nucleation. Before the bubbles percolate, the largest devia-
tions from thermal equilibrium (e.g., in the particle number
densities) are at the fronts of the shock waves of the
deflagration bubbles and near bubble walls. At the time of
percolation, deviations from thermal equilibrium arise
because of collisions of the domain walls and shock fronts.
The latter effect cannot give substantial contribution to the
baryon asymmetry since it is proportional to the fraction of
the Universe volume occupied by domain walls,

¢

~ 10~ 10
Roub '

(7.9)

where £ is the thickness of a domain wall (scalar correlation
length), Rpyp is the typical bubble size (for numerical
estimates of ¢ and Ryyp see Section 5). The shock fronts
propagate in the symmetric phase, where the rate of fermion
number non-conservation is higher than the rate of the
Universe expansion, or in the broken phase, where B-
nonconservation is switched off. So, baryogenesis cannot
happen near shock fronts and the only possibility is to
associate it with domain walls.

For the most part of their life, bubbles of the broken phase
are macroscopic (their size is much larger than the typical
correlation length); the domain walls move with constant
velocity before percolation; after it the Universe may or may
not be reheated up to the critical temperature, depending on
parameters of the model. If it does, the velocity of the bubble
walls drops considerably down to values v ~ 1072 = 1073,
and then slowly varies depending on the bubble size. There-
fore, the picture of a planar domain wall, ‘eating up’ the
symmetric phase with some velocity v, is a good approxima-
tion to the problem.

What should the solution of the baryogenesis problem
look like? In very general terms, the answer is following. Write
down the kinetic equations accounting for all relevant
processes, supply them with appropriate boundary condi-
tions (equilibrium in the symmetric phase far from the
domain wall), and then determine the baryon number deeply
in the broken phase by solving these equations. Besides the
two obvious types of processes [(1) B-non-conservation,
which is rapid in the symmetric phase and slow in the broken
one; (2) CP-violating interactions of various particles with the
domain wall and with each other] a number of other reactions
should be taken into account.

The first group of phenomena deals with B- and L-
conserving processes.

(1) Ordinary strong and weak interactions tend to make
momentum dependence of distribution functions for quarks,
leptons, gauge bosons and higgses to be an equilibrium one.
These processes govern the diffusion of the CP-asymmetries
in fermion number, created in the vicinity of the domain walls.

(2) Chirality flip interactions of quarks and leptons come
from interactions with higgses and from strong sphalerons.
These reactions tend to make the concentrations of left-
handed and right-handed particles equal to each other. Since
anomalous B- and L-non-conservation deals with left-handed
fermions, the left-right transitions influence the B-violating
reactions.

(3) Debye screening of the long range gauge forces tends
to damp any non-trivial distribution of the dynamical
charges, such as hypercharge [258] (see also Ref. [259]).
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The second group of phenomena deals with the description
of the relevant degrees of freedom at high temperatures.

(1) High temperature physical excitations are different
from those at zero temperatures. Therefore, the correspond-
ing kinetic equation should deal with quasiparticles rather
than particles [147, 260, 124].

(2) Simultaneous interaction of quasiparticles with the
heat bath and varying scalar field results in the mixing,
analogous to that of the neutrino in matter [261, 262]. So,
quasiparticles are to be described by their density matrices
rather than their particle number distributions [263 —266)].

(3) Quasiparticles in the plasma have finite lifetime, i.e.
they should be characterised by an energy and momentum
simultaneously. In general, the kinetic equation should be
able to account for this.

To our knowledge, the complete programme outlined
above has never been carried out. The main difficulty is the
construction of a kinetic equation, which incorporates all the
necessary features. Some of the effects mentioned above were
taken into account, but the complete picture is still missing.
So, we consider, at the qualitative level, various ideas and
estimates of the baryon asymmetry, that is produced at the
electroweak phase transition.

7.4 Uniform scalar fields

A good theoretical laboratory, allowing an understanding of
physical processes, which give rise to the charge asymmetry, is
the consideration of the uniform but time-dependent scalar
fields. Probably, this situation is never realised, but such a
case is much simpler than that of the bubble wall propagation.

Suppose that we have a kind of spinodial decomposition
phase transition. The scalar field is initially near ¢ = 0 and
the system is in the symmetric phase. Sphaleron processes are
in thermal equilibrium. Then the scalar field uniformly rolls
down to the true vacuum, where the SU(2) x U(1) symmetry
is broken and sphaleron processes are suppressed. The first
rough estimates of the baryon asymmetry in this case were
given in Ref. [267] and a lot of work on this subject has been
done in Refs [268 —273] and many others, for relatively recent
reviews see Refs [29, 30] and references therein.

We shall consider the main idea on the example of the two
Higgs doublet model. Our scalar fields ¢, and ¢, are uniform
in space but change from ¢ = 0 to ¢ = ¢, during time At of
the spinodial decomposition phase transition. Suppose that
this time is small enough, Az/t, < 1, where 7, is a typical time
of t-quark chirality flip (the t-quark is most important since it
has the largest Yukawa coupling constant). Then the t-quark
distribution has no time to adjust itself to the changing scalar
field. So, it may be integrated out with the use of the
equilibrium Matsubara technique. This was carried out in
Ref. [271] with the result that the effective action has the
following form:

Sp = uNcs, (7.10)
where
. 7 m 2 2
n=-i300)(%) 20w,
O(py) = (¢l Do, — (Do) 1) (7.11)

and my is the mass of the t-quark, { is the Riemann {-function.

The effective bosonic action now breaks P and CP
simultaneously, with CP-violation in the scalar field potential
and P-violation in Eqn (7.10). This allows us to generate the
non-zero value of the topological charge Q, which is P- and
CP-odd.T Note also that in more complicated models the
operator p may appear to be P- and CP-even [e.g.,
i~ 0 (p')]. In the latter case the effective action (7.10)
itself breaks P and CP simultaneously. Estimates of the
baryon asymmetry, produced in this case, were made in Refs
[267, 272].

The zero-temperature bosonic effective action of this
model also contains parity odd term 0(x)g(x), where 6(x) is
the relative phase of the scalar fields. This important fact was
discovered by Turok and Zadrozny and applied to baryogen-
esis in Ref. [269].

If At is not too small, i.e.

Atm(T) > 1,

where m(T) is the typical mass scale at high temperatures,
then the term (7.10) may be considered as the chemical
potential for the Chern—Simons number and the number
density of fermions created during the transition is

ng = an dt Fspn () (1),
0

(7.12)

where Iy is the time-dependent rate of the sphaleron
transitions and ny = 3 is the number of fermion generations.
The sphaleron rate I's,, rapidly decreases when the mass of
the vector boson increases. A natural way to estimate it in the
entire range of W-boson masses is to use Eqn (4.14) for some
mw > My and Eqn (4.49) for the opposite case where
Myis = Tow T is found] from the relation I'y; = I'gym. In this
approximation
ng ~ ne(aw T)*u(t*), (7.13)
where u(¢*) is the chemical potential at the ‘freezing’ time
my (1*) = Mi. The asymmetry was estimated in Ref. [271]
and recently corrected in the detailed analysis of Ref. [87] for
the spinodial decomposition phase transition. The asymme-
try reads
22
~ 21:—15\%“ Ko, sin® 20 cp m T , (7.14)

U? v

with N being the number of effectively massless degrees of
freedom,

/ICP = (/LS — )(,) sin 250 5

and

~—

tano =

m3 (T,
;( ¢ (7.15)
2

m5(Te) ’

with m;(T.) being the temperature-dependent scalar masses at
the moment of the phase transition (see, e.g., Ref. [183]). An

T The presence of fermions is essential here. The purely bosonic tree action
conserves P and the net topological charge cannot be produced.

T A factor of 2—3 instead of 7 was found in Ref. [274] from other
considerations. Clearly, these estimates are qualitative rather than quan-
titative.
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analogous dependence on the coupling constants was found
in Ref. [274]. In spite of the rather high power of the coupling
constants, this estimate can give an asymmetry consistent
with observations.}

This consideration can be easily generalised to more
complicated models. First, one calculates an effective bosonic
action, which breaks P and CP, and defines an effective
potential for the CS number. Then, an estimate of the net
production of fermions is given by (7.12).

An essential assumption in the estimates presented above
is that the time of the phase transition is shorter than that of
kinetic reactions. An ‘exact’ solution to the problem in the
opposite case for quite a specific situation has been suggested
in Ref. [273]. Since this example is instructive, we shall
reproduce here the main idea of this paper, using correct
coefficients from Ref. [125].

Let us take again the two Higgs doublet model. For
simplicity, we set all Yukawa couplings, except for that of
the t-quark, to zero, i.e. the Yukawa interaction is assumed to
be

Ly = /1Q3U3¢, . (7.16)
Here Q; are the left-handed fermion doublets; U;, D; are right-
handed quark fields, and i is the generation index. We also
disregard the reactions with quark chirality flip associated
with strong sphalerons.

We put 1s = ¢ = 0in Eqn (7.7); with these couplings the
potential has an extra global U(1) symmetry, which is
spontaneously broken. Let us consider this model in an
external Higgs background of a special form, namely, 0 = 0¢
att > 0and 6 = 0 at ¢ < 0, where 0 is the Goldstone mode,

Im (¢T¢2)

tanf = ——————= . (7.17)

Re (¢ ¢,)
Suppose that at 7 < 0 the system was in thermal equilibrium
and was charge symmetric. We want to determine the baryon
number of the system at 1 — oo. The density matrix p() of the
system obeys the Liouville equation:

N0

2L — [H(0,p(1)], (7.18)

where H(1) is the time-dependent Hamiltonian of the system
in the background field. Now, one can make an anomaly free
hypercharge rotation of the fermion fields in such a way that
the time dependence disappears from the Yukawa coupling
(7.16). Because of the global U(1) symmetry this converts the
time-dependent Hamiltonian to a time independent one:

H(t) — wr=H—0Yp,

where Y is the fermionic hypercharge operator:

’;
—~[1 = 4 _

Ye =) {g 0i10Qi + 3 UnoUi
pas

[\

— < DipoD;i — LiyoLi — 2EppoE;| .

. (7.19)

TOne can obtain a similar estimate for the asymmetry from different
consideration (Refs [267, 269, 270]) dealing with non-perturbative fluctua-
tions of the Chern— Simons number in the symmetric phase [275].

At t — oo the system must be in thermal equilibrium,
dp(z)/dt = 0. Since in the new representation of the Hamilto-
nian is time independent, the density matrix is

p(o0) = % exp |:_%1(Heff - H,-Xi)} ; (7.20)

where X; is a complete set of conserved charges (operators
commuting with the Hamiltonian). Their average must be
equal to zero. This requirement fixes the chemical potentials
u; and allows the unambiguous determination of the baryon
number of the system. A complete list of the conserved
charges can be found in Ref. [125] and we quote here the
final result for the baryon number only:

2
Nge Yy n;

By =——T0[1+0(—

() 6+ 11ng [ + (tzﬂ’

where 1, = 2 is the number of the scalar doublets.

The result (7.21) is quite amazing. It does not contain the
Yukawa coupling constant, the scalar vacuum expectation
value, or the rate of sphaleron transitions. One might even
think that it is wrong, since if f; or v or Iy is zero, then,
obviously, one must have (B) = 0. Nevertheless, it is correct.
The key point is that the time, when the asymptotic value of
the baryon number is reached, tends to infinity when the
above-mentioned quantities tend to zero. Many conclusions
based on the straightforward analysis of the perturbation
theory break down at large times, when the application of the
kinetic theory is essential, and this is one of the examples. For
typical values of the parameters, the t-quark chirality equili-
bration time is 7, ~ 30/7T and the B-non-conservation time is
Tsph ~ 103/ T; the result (7.21) is valid only for ¢ > Tsph- The
discussion of intermediate time t; < ¢ < Tph IS contained in
Refs [273, 125].

It is worth noting that high temperature sphalerons, and
other chirality flip reactions, may change the estimate (7.21).
In particular, strong sphalerons, discussed in Section 4, have
the physical effect of maintaining the same chemical potential
for left- and right-handed baryonic numbers and diminishing
the set of conserved quantum numbers in the system. This
leads to the suppression of the baryon number by a factor of
order of (m/nT)* [125]. Other aspects of the role of strong
sphalerons in baryon asymmetry were discussed in Ref. [276].

We conclude this discussion by pointing out that the use of
U(1) global symmetry was essential in the derivation of
Eqn (7.21). Without this symmetry, the hypercharge rotation
would not remove the time-dependence from the Hamilto-
nian and the solution of the Liouville equation could not be
found in such a straightforward way. This point is discussed
in more detail in Refs [274, 277].

(7.21)

7.5 Asymmetry from fermion—domain wall interactions

In reality, though, the phase transition proceeds through
bubble nucleation rather than as spinodial decomposition.
This is an additional challenge, since the baryon number (or,
in general, asymmetries in particle number densities) can now
be distributed in a non-uniform way and depend on the
distance from the domain wall. Correspondingly, the analysis
of the kinetic equations is much more complicated.

Two different cases are usually considered, depending on
the relation between the mean free paths of particles and
domain wall thickness. The physics of thick wall baryogenesis
was originally considered in Refs [271, 272] and has much in
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common with the quasi-adiabatic case of uniform fields
discussed in the previous subsection. P or CP non-invariant
interactions of fermions with the moving domain wall
together with CP-breaking scalar dynamics induces P- and
CP-odd terms in the bosonic effective action, which bias the
sphaleron transitions inside the domain wall. The excess of
quarks generated in this way is absorbed then by the
expanding bubble. (Another, equivalent way to say this
[273] is that the particle densities of fermions gradually
adapt to scalar background changing in space and time in
such a way that an excess of right quarks and left antiquarks is
created. Left antiquarks are destroyed by the sphaleron
reactions while the right fermion number is intact and is
converted into baryon number at the end.)

A nice physical picture of thin domain wall baryogenesis
was suggested in Refs [278-280]. Since the masses of
fermions are different in the symmetric and broken phases,
they scatter on domain walls (they are reflected or trans-
mitted). CP-violation manifests itself in different reflection
coefficients for particles and antiparticles. So, the moving
domain wall acts like a separator for different types of
fermion numbers, filling the bubble with fermions and the
outer space with antifermions (or vice versa, depending on the
sign of CP-violation). Of course, the interactions of fermions
with domain wall conserve the fermion number, i.e. the
number of fermions flying into the broken phase is equal to
the number of antifermions moving into the symmetric phase.
Antifermions, injected into the symmetric phase, participate
in the anomalous reactions, which change fermion number,
while fermions injected into the broken phase do not. As a
result, non-zero baryon and lepton asymmetries are estab-
lished in the broken phase.

Clearly, reliable calculations of the effect in realistic
theories are quite complicated because of the large number
of different particle species participating in interactions.
Moreover, a number of effects, discussed above, should be
taken into account. A number of papers is devoted to the
study of the origin of the CP-violating fermion currents and
their propagation in front of domain walls [281—284]; the
most recent (and probably most elaborate) treatment can be
found in Refs [285-287, 277, 189].

Below we shall discuss the qualitative features of the
domain wall baryogenesis. Our consideration is by no means
complete and the reader may consult the original papers for
details.

At sufficiently small velocities of the domain walls we can
divide the problem into two parts.tf The first one is the
microscopic calculation of various fermion currents at the
domain wall. The second one is the consideration of the
diffusion of the particle number densities in front of the wall
and their dissipation in different processes.

We begin with the first part [278 —280]. Let us disregard
for the time being any high temperature effects. The simplest
case is that of the thin domain wall moving with some
constant velocity v. Let us choose the rest frame of the wall
and consider the scattering of fermions on it. For example,
left-handed fermions incident in the symmetric phase may be
reflected back to the symmetric phase as right-handed
fermions (because of the spin conservation) or can be
transmitted through. The transmission and reflection coeffi-
cients r;; (/is the label of an incident fermion and jis that of the

T This is not possible if the diffusion tails (see below) are comparable with
the thickness of the domain walls.

final state) can be found from the Dirac equation:

.0
w+1— M L
Ox

MT w—1

(7.22)

with appropriate boundary conditions.i Here L and R
correspond to up and down components of two-dimensional
Weyl spinors. The x-dependent matrix M is complex, giving
rise to CP-violation. In general, r; for particles are different
from #j; for antiparticles. This leads to non-zero fermionic
currents:

(i) =

[0 () — meo ]~ 717, 729

(2m)?

where nk is the Fermi distribution for the incident particles,
o+ = o F vpy; py and p)| are the momenta of fermions, which
are tangential and parallel, respectively, to the domain wall.
This expression vanishes if the domain wall is at rest (v = 0) or
if there is no CP-violation. The total baryonic current
Jep = JL + Jr, which results from the solution of the Dirac
equation (7.22), vanishes, but the currents of left-handed (J)
and right-handed (Jr) fermions are non-zero.

The construction of the Dirac equation for quasiparticles,
accounting for leading high temperature effects, was done in
Ref. [260, 124], where generalised expressions for the particle
currents can be found. The major qualitative effect of high
temperature corrections is that the currents of left-handed
and right-handed fermions do not compensate each other and
the total baryon current is produced. Physically, this happens
because left-handed particles participate in the weak interac-
tions but right-handed particles do not and Jcp ~ awJL.

The thin wall description of the fermion scattering is
applicable only if the mean free path of fermions at high
temperatures is much larger than the domain wall thickness.
This allows us to use distribution functions of fermions
undisturbed by the domain wall and impose ordinary
boundary conditions for the scattering problem at spatial
infinity. The thick wall case (the mean free path is small
compared with the thickness) is much more complicated.
Clearly, the scattering description is not adequate in that case.
The physical phenomenon to be taken into account is the
modification of the particle distributions across the domain
wall. A number of interesting effects arising in the latter
situation are discussed in Refs [286, 277, 285].

The second problem is particle transport. Several
approaches have been applied to the consideration of it. The
first one is that of MC simulations of the injected flux of
particles [280], the second one is diffusion equations [124, 277,
287, 285, 189, 288]. Limitations of the diffusion approxima-
tion were considered in Ref. [289]. In the discussion below we
closely follow Ref. [124] where the analytical approximation
to the problem was constructed for a simple case.

Given the flavour and chirality structure of the fermionic
currents, the diffusion equations should be written for all
particle species. Fermions participate in many processes on
both sides of the wall with different time scales. In order to
understand what the relevant time scales are, let us consider
the fate of a particle after it has been reflected from the

i A method for high precision numerical evaluation of reflection coeffi-
cients was considered in Ref. [124].
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domain wall towards the unbroken phase. Roughly, its
typical distance from the bubble wall is given by v/Dr — vt,
D is the diffusion coefficient. The first term describes the
random walk of the particle in the rest frame of the plasma
and the second term describes the motion of the bubble wall.
This particle will be trapped by the bubble after the time
interval tp ~ D/v?, so that all processes with characteristic
time T < fp must be taken into account. The examples of the
relevant processes include B-violation, the elastic scattering of
quarks and gluons, chirality flipping transitions of heavy
quarks and strong sphalerons.

In order to get a better feeling of the physics involved,
consider the simplest case when the total baryonic current
originated from CP non-invariant interactions is not zero and
neglect all processes besides the elastic scattering of fermions
and anomalous B- and L-non-conservation. Let us take a
planar domain wall, which moves through the plasma with
sufficiently small velocity v (we shall see below how small it
should be in order that this consideration works). We take a
reference frame associated with the domain wall; let the
broken phase be to the right and the symmetric one be to the
left, and x be the distance from the domain wall. Assume that
the thickness of the domain wall is small enough (again, we
shall see below what this means). We denote by ng(x, ¢) and
np(x, t) the densities of baryon and lepton numbers in the rest
frame of the wall. The diffusion equations for the broken
phase, where sphalerons do not operate, are

o 0
ng ng
a B DB @ — v a O
ot B o2 d
nL 0 L i v e nL
(7.24)
For x < 0 we have
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where I' = 9F5ph/T3, Dg and Dy are diffusion constants for
quarks and leptons, respectively. An estimate gives [277, 287]
Dy ~6/T, DL ~ 100/T.

We are looking for a steady state (time independent)
solution to these equations. In the broken phase the only
solution consistent with the boundary conditions is constant
density:

ng = np, = const = B, . (7.26)

In the symmetric phase, the solution is a combination of dying
exponentials. We present it in two limiting cases. The first one
deals with ‘large’ velocities:

Dgl
LAY
(%

Physically, this corresponds to the situation when an extra
antibaryon, injected into the symmetric phase, is exposed to
the B-violating reactions for short times ¢ ~ Dg/v?, before it
is trapped by the moving domain wall. One finds [124]
VX vX
ng = Cyexp — np = Crexp — 7.27
B 1 €Xp Dg ) L 2€Xp Dy ’ ( )
corresponding to the diffusion of quarks and leptons to the
distances Dg/vand Dy /v, respectively. In the opposite case of
low velocity, the transitions from quarks to leptons due to
sphaleron processes are essential and the solution reads

RI% [ 5I
nB:C3exp%+C4exp( 2—DBX)’
3 VX Dg 5r
= > Cyexp — + Cy — \e=—x).
n 5 3 eXp Dy + Cy Dy exp( 2D5 x)

One of the requirements for the validity of the diffusion
approximation is that the diffusion tail (the shortest one is
for the quarks) should be much longer than the domain wall
thickness /, namely, / < Dg/v.

The constants Cy, C,, C3, C4 can be determined from the
matching conditions at the domain wall. If we denote by Jcp
the total CP-odd baryonic current originating from interac-
tions of quarks with the domain wall and assume that CP-
asymmetry in the leptonic current is zero, then

12

B, = 5 Jep fspn(p)

where fipn(p) = 1for p > 1 and fion(p) = (5/6)p for p < 1.

The asymmetry inside the bubble has an interesting
velocity dependence. If Jcp ~ v, as in the quantum mechan-
ical consideration of the thin wall case, then the maximum
asymmetry is produced at p ~ 1,i.e. v ~ /3I'Dg ~ 0.01. Itis
worth noting that these small velocities are quite possible at
the final stage of the phase transition if the Universe is
reheated up to the critical temperature. The analysis of the
consequences of this scenario can be found in Ref. [229]. Fora
more realistic thick wall case one effectively has Jcp ~ v*[286,
277, 287t and the asymmetry is velocity independent. The
same conclusion has been reached also in Ref. [285].

In the realistic case of many particle species, this con-
sideration must be generalised. Instead of the CP-violating
flavour independent baryonic current considered above,
many CP-odd currents appear, resembling the flavour
dependent interaction of fermions with the domain wall.
The left- and right-handed currents must be distinguished,
since particles of different chiralities have different interac-
tions with the heat bath and sphalerons. Quantitatively, the
results are model-dependent. For example, in some schemes
the lepton interactions with domain walls produce more
asymmetry than quark interactions [290]. Serious investiga-
tions of realistic models have been carried out in very
interesting papers [285, 287, 277, 189], and we refer the reader
to them for more detail.

(7.28)

(7.29)

7.6 Strength of CP-violation and baryon asymmetry

Extensions of the Standard Model, having strong enough first
order phase transition, may not contain any new source of
CP-violation. The question arises whether the KM source of
CP-violation (or QCD vacuum angle) alone can be respon-

T We thank Michael Joyce for the clarification of this point.
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sible for the baryon asymmetry. Let us begin with the KM
mechanism of CP-violation.t

An important property of the interaction (7.6) is that the
CP-violating phase Jdcp can be rotated away by phase
transformation of the fermion fields if there is a degeneracy
in the up or down quark sectors, or if some mixing angle
between different generations is zero. In other words, in the
Standard Model, CP-violation vanishes together with the
Jarlskog determinant [291],

dcp = sin 015 sin 0,3 sin 043 sin dcp

(o — (o — ) o — )
X (02— ) — ) =), (130)

where 0;; are the mixing angles and my; are the quark masses.

The structure of the KM mechanism of CP-violation
makes baryogenesis a very non-trivial problem. Indeed, the
electroweak phase transition, where strong deviations from
thermal equilibrium are expected, occurs at temperatures of
order 100 GeV. It seems, therefore, that quark masses
(perhaps with the exception of the t-quark) can be treated as
perturbations, so that the dimensionless measure of CP
violation is just dcp ~ dcp/T !> ~ 10720 [231, 232]. Clearly,
this number is too small to account for the observed
asymmetry. However, there may be loop-holes in this no-go
argument and a number of dynamical mechanisms, in which
the KM source of CP-violation may be enhanced, have been
suggested [232, 260, 124, 292].

If there is a dynamical spontaneous CP-violation in the
electroweak theory before [232] or during [292, 284] the
electroweak phase transition, then the Universe contains
domains with different CP-parity at some stage in its
evolution. The small explicit CP-violation breaks the degen-
eracy between the different CP-states, so that more energeti-
cally favourable domains ‘eat’ those with the opposite CP-
parity. The fact, that the age of the Universe at 7'~ 100 GeV
is macroscopic, gives rise to an enhancement factor of the
order of Mp;/T* ~ 10'¢[232]. In this mechanism, the baryon
asymmetry does not depend on the magnitude of CP-
violation but does depend on its sign [232, 292] and a power-
counting estimate of the effect gives

L 5

A~ Oy - (7.31)

Nesr

We should stress, however, that the possibility of sponta-
neous CP breaking at high temperatures in electroweak
theory is very speculative.

Another possible caveat in the no-go argument presented
above has been discussed in Refs [260, 124]. The no-go
theorem relies on the applicability of the perturbation theory
in quark masses and makes use of the assumption that the
typical energy scale relevant to the estimate of the asymmetry
is the temperature of the phase transition. In fact, these
assumptions break down when the interaction of fermions
with domain walls is considered. Namely, if the energy of the
quark in the unbroken phase is smaller than its mass in the
broken phase, it will be reflected from the domain wall with
unit probability independently of the value of its mass. The

T Of course, this possibility is rather unnatural: the only known way to
strengthen the phase transition is to add extra scalar particles. This means
that new scalar interactions appear. In general, they contain complex
phases and lead to CP-violation.

perturbation theory does not work only in a small fraction of
the phase space determined by the quark masses, but the loss
in the phase space factor may be smaller than the gain in CP-
violating amplitude. The maximum asymmetry comes from
the strange quark complete reflection: the GIM cancellation
does not occur for it, and what is left over from dcp is just the
product of mixing angles and CP-violating phase} of the
order of 1073, The estimates of the asymmetry presented in
Ref. [124] are rather uncertain, A ~ 10710 = 103, but they
indicate that the KM mechanism of CP-violation cannot be
discounted as a source of the baryon asymmetry of the
Universe.

The possible impact of the strong CP-violation (asso-
ciated with QCD vacuum angle ) on the electroweak
baryogenesis has been analysed in Ref. [299]. It was con-
cluded that it does not play any significant role because strong
CP-effects at the electroweak phase transition temperature
are suppressed by at least semiclassical exponent
exp(—2m/og) ~ 1072°, another suppression factors come
from Yukawa couplings. The same statement holds true in
the models with axions, where effective angle 0 may be of the
order of 1 at the electroweak scale.

While convincing arguments showing that the Standard
Model CP-violation is sufficient to generate the baryon
asymmetry are absent, the extensions of the electroweak
theory naturally provide new sources of CP-violation. In
spite of the fact that the existing estimates of the baryon
asymmetry are valid, probably, within an order of magnitude,
itis clear that extended versions of the electroweak theory can
accommodate the observed baryon asymmetry of the Uni-
verse. The specific estimates for the two Higgs doublet model
can be found in Refs [285, 277, 287, 189] and for the
supersymmetric theories in Refs [300—303].

8. Instanton-like processes in high energy
collisions

As discussed in Section 2, instanton-like transitions may
occur at unsuppressed rates at sufficiently high energies.
This possibility is definitely realised at high temperatures. It
is natural to ask whether collisions of highly energetic
particles may lead to baryon and lepton number non-
conservation with exponentially unsuppressed cross sections.
The relevant energy scale, Egn ~ mw/aw (10 TeV in the
electroweak theory), is not too far from collider energies, so
this problem is not of academic interest only.

In this section we shall outline the current status of this
very complicated problem. We summarise the results of
perturbative calculations about the instanton, which show
that the cross section indeed increases exponentially with
energy at £ < Egpn. However, the perturbation theory about
the instanton is unreliable in the most interesting energy
region E ~ Egp, so the perturbative calculations cannot tell
whether the instanton factor (2.8) is overcome. We present
below a rather general argument based on unitarity and
conventional perturbation theory, which shows that the
instanton-like transition rates are most likely exponentially
small at all energies. This argument, however, does not
exclude the possibility that the suppression disappears
asymptotically at £ — oo, and that the actual values of the

i In Refs [293—-296] an opposite conclusion was reached. The calcula-
tional procedure of these works was criticised in Refs [297, 298], where it
was argued that the claims of Refs [293 —296] are not justified.
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suppression factor are not too small at realistic values of
coupling constants and energies. So, the computation of the
instanton-like transition probabilities remains an interesting
problem, whose solution requires non-perturbative
approaches. We shall outline in this section one of these
approaches and the first non-perturbative results; these
results indicate that the instanton-like cross sections are
indeed unobservably small at all energies.

In spite of the considerable progress in understanding the
instanton-like processes in high energy collisions, this pro-
blem is still not solved completely. The non-perturbative
techniques adequate to this problem are still being developed.
It is worth pointing out that electroweak B- and L-non-
conservation in high energy collisions belongs to a broader
class of processes, which includes false vacuum decay induced
by particle collisions, induced decays of metastable solitons
[304], and, notably, production of multiparticle final states in
the trivial vacuum sector (without instantons) [305—309]. We
shall not discuss the latter problem, which is also of potential
phenomenological interest, but refer to a review [310].
However, we stress that its solution also requires novel non-
perturbative techniques, which should have much in common
with the approaches relevant to instanton-like processes.

8.1 Summary of perturbative analysis about the instanton
Perturbative analysis about the instanton was started in Refs
[39, 40] and has led to the picture of exponentially increasing
total instanton-like cross sections at relatively low centre-of-
mass energies, E < Egp. It also suggested the functional form
of the cross section, which indicated that the cross section
may be calculable in a semiclassical way [311-313]. We do
not consider the technical details of the perturbative calcula-
tions, which are reviewed in Refs [314—316], and present only
basic ideas and main results.

Consider a process where two W-bosons scatter into n W-
bosons and the system simultaneously makes the transition
from one vacuum of Fig. 1 to a neighbouring vacuum. The
topological number N[A] of the relevant field configurations,
given by Eqn (2.3), should be equal to 1 (in fact, in the case of
a finite number of incoming and outgoing particles, it is more
appropriate to measure the change in the vacuum number
n[w] by the winding number of the Higgs field [317]). Let us
disregard fermions (they play a minor role as far as the cross
sections are concerned [318]) and consider the bosonic sector
of SU(2) theory with one Higgs doublet, i.e. the bosonic
sector of the simplified model introduced in Section 2. To
evaluate the amplitude of this process we begin with the
(2 4 n)-point Euclidean Green’s function

G;1+2(X17X27YI, v 7y") =

= JDA D¢ exp(—S[A4, ¢]) A(x1)A(x2) A1) .. A(vn)
(8.1)

where spatial and group indices are omitted. Since the
instanton is a minimum of the Euclidean action (in fact, we
have to deal with constrained instantons considered in
Section 2), we make use of the semiclassical approximation
and obtain in the leading order

2
V) = J d*xo % u(p) exr><— Ziz - nzpzvz)

lead
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X A x) — x05p) ... Ay, — x05p) . (8.2)

Here xy and p are the usual collective coordinates of the
instanton and the measure is the same as in Eqn (2.9). The
constrained instanton configuration is described by Eqns
(2.10) and (2.7). One should also integrate over the instanton
orientations; this integral is not explicitly written in Eqn (8.2).
The Green function (8.2) may be picturized as shown in Fig. 8.
It is worth pointing out that the dependence on coordinates in
Eqn (8.2) factorizes, up to the integration over the instanton
position, ensuring the overall momentum conservation. This
means that, in the leading semiclassical order, the Green
function has a point-like structure. So, in this order, the cross
section of the process 2W — nW will exhibit a power-law
increase with energy.

Figure 8. Leading order contribution to the instanton-induced amplitude.

To obtain the cross section, one performs the analytical
continuation into the Minkowski space-time and then makes
use of the LSZ procedure. This can be done easily, as the only
dependence on coordinates in Eqn (8.2) is through 4™, Since
the constrained instanton field decays in the Euclidean space-
time according to Eqn (2.7), its Fourier transform, indeed,
has a pole at p> = —m3,. The residue at this pole can in fact be
obtained directly from Eqn (2.10): the Higgs mechanism
shifts the pole of the instanton field from p>=0 to
p? = —m?, but does not change the residue, up to small
corrections. In this way one obtains the residue

1
R(p;p) =§p2|p|7 (8.3)

where we omitted the tensor structure depending on the
instanton orientation. Thus, the amplitude has the following
form:

. dp 8n?
Aoy b)) ~ [ u(p)eXP<—? - nzpzvz)

X R(klap) B R(pl17p)8(kl + k2 —Pr—- _Pn) 7(84)

where ki, ky and py, ..., p, are the momenta of incoming and
outgoing particles, respectively. The integration over p is
straightforward, while the integration over orientations,
implicit in Eqn (8.4), is quite complicated. Ignoring the latter
complication we obtain the following estimate for the
amplitude,

8m? 1\"?
lead
it el ) ()
x [ki|[ka|[pi] - - - [PalO(K = p1 — ... = pa), (8.5)

where K = (E, 0) is the total centre-of-mass (c.m.) 4-momen-
tum. Equation (8.5) leads to the following estimate for the
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2W — nW instanton-like cross section at n > 1:

1 J o dPp ,

lead i lead |2
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where we assumed for simplicity that the outgoing particles
are relativistic, i.e. E/n > mw. As expected, the cross section
exhibits power-law growth with energy [39, 40]. The toral
cross section, in the leading semiclassical order, grows
exponentially,

lead d
5y (E) = Y 05, (E)

161‘52 4\ 1/3
x exp {—? + const X (gz_v“) } . (8.6)

where the sum is saturated at the number of particles of the
order of

E4 1/3
nN<g2v4> '

The exponential growth of the cross section was found first
[319] in the context of multi-Higgs final states, which have
turned out to be subdominant at relatively low energies,
where the leading order calculations are reliable. This type
of behaviour is inherent in all models with instantons [315]
and also for the processes of multiparticle production without
instantons [320, 321, 310].

In the case of 2W — nW processes, there exist at least two
ways of actually calculating the cross section including the
constant in Eqn (8.6). One is to make use of instanton —anti-
instanton configurations [322, 323] and another is based on
the coherent state formalism [311]. Both techniques lead to
the same result:

} ; (8.8)

. 4n 9 (EN*?
olzeidany(E) x GXP{E [—1 +3 (F())

where Ey = \/értmw/ocw ~ 15 TeV is of the order of the
sphaleron energy in the electroweak theory. In writing Eqn
(8.8) we made use of the fact that

| ( 1 >1/3
ocwE(;W P .

For the same reason, the number of W-bosons produced can
be written as follows

1/ E\Y?
Note that the average energy per outgoing particle is of the
order of

E EN'3
Ip| N;NWIW(FO) .

(8.7)

(8.9)

(8.10)

Therefore, at E < Ej the final particles are relativistic, while
at E ~ Ey they are soft, E/n ~ mw. Note also that the typical

instanton size is of the order of

pN@NL(ﬂ)m. (8.11)

This estimate follows from Eqns (8.2), (8.3) and (8.9).

We conclude that the leading order total cross section
becomes unsuppressed exponentially at E ~ E, and at these
energies the number of final particles becomes of the order of
1/O€w.

Clearly, the actual cross section of the instanton induced
process 2W — nW should not be described at all energies by
the leading order result (8.8): at Ex E, this expression
contradicts unitarity. So, corrections to the leading order
formula must be large at least at E= Ey. These corrections
appear when the gauge field in Eqn (8.1) is written as

A:Ainst+8A

and 84 is treated as quantum field. In the next-to-leading
order, the action in Eqn (8.1) is quadratic in 6 4; n fields in the
integrand remain 4™ and two fields are 4. Upon integra-
tion over 84 one obtains the first correction to the Green
function, which is similar to Eqn (8.2) but with two of the
instanton fields substituted by the propagator in the instanton
background, Ding(z — X0,2" — X¢), where z, z’ are any two of
the coordinates xy,x2, yi,...,V,. The first correction to the
amplitude is then determined by the residue of the Fourier
transform Ding(q,¢q’) at the double pole ¢* = —m3,
q"* = —mg,. The diagrammatic representation of this correc-
tion is shown in Fig. 9.

a b c

Figure 9. First corrections to the amplitude 2W — nW. Dots represent the
residues of the instanton field, solid lines correspond to residues of the
propagator, in the instanton background, on the mass shell for both
momenta.

There are basically three types of corrections, which we
shall discuss in turn.

8.1.1 Soft-soft corrections. These appear, in the next-to-
leading order, when two instanton fields in Eqn (8.2)
corresponding to final particles are substituted by the
propagator, as shown in Fig. 9a. As compared with the
leading term (8.4) this contribution is suppressed by g>
because 4™t is proportional to 1/g while Diyg is O(g°), but
is enhanced by the combinatorial factor n%/2 (the number of
legs in Fig. 9a that can be joined). The residue of the
propagator at the double pole at low momenta is of the
order of [324—326]

2

g
Res Dins (i, pj) ~ PZ ~ W R(p;; P)R(Pj; P,

where R is the residue of the instanton field [see Eqn (8.3)].
Combining all factors and recalling Eqns (8.9)—(8.11) one
finds that the soft—soft correction to the amplitude at relevant
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n is of the order of

soft—soft lead g2n2 lead 1 E ?
A ~ A p? ~ A . (Eo) . (8.12)
We see that this correction exceeds the leading order
amplitude even at E < E;. However, it has been shown
[311-313], that the soft—soft corrections to the total cross
section exponentiate, so that the total cross section with these
corrections included has the form

adsofts 4 9/EN*? 9 (E\?
6§id31;0ft750ft x exp{£ |:_1 + g (E_O) _ E (E_O)

(8.13)

where we inserted a numerical coefficient of 9/16 calculated in
Refs [324-327].

Higher order soft—soft corrections have also been shown
to exponentiate, so the total cross section with all soft—soft
corrections included has the following functional form [311—
313]:

O_lzeidat;oftfsoft x exp |:4_TC F<£):| ,
aw  \Eo

where F(E/Ey) is an unknown function, which, at small E/ Ey,
is represented by a series whose first terms are given by Eqn
(8.13). It has been found [311] that the soft—soft contributions
into the exponent F(E/Ey) come from tree diagrams about
the instanton, while loops contribute to the pre-exponential
factor only.

(8.14)

8.1.2 Hard-hard corrections [328, 329]. They are due to
diagrams in Fig. 9b. There is no combinatorial enhancement
of these diagrams, but they produce large contributions
nevertheless. The reason is that the residue of the propagator
is larget at high momenta |k| ~ E:

Res Ding ~ g°p° (k1 - ko) In(ky - ka) R(ky; p) R(ka; p) -

Therefore, the first hard—hard correction into the amplitude
at relevant n is of the order of

4/3
Ahardfhard ~ Alead L (£> / E2 In E2

m%v E()
1 /EN'3

NAIC&dT(F) InE?, (8.15)
W 0

which is again large even at E < E,. Higher order hard—hard
corrections come from loop diagrams like those shown in
Fig. 10. There exist strong arguments showing that hard—hard
and hard—soft corrections exponentiate [329, 331], i.e. the

Figure 10. Higher order hard-hard correction.

+ This property holds for a wide class of models [330].

total cross section has the form (8.14). Unfortunately, the
complete proof of the exponentiation is still lacking.

8.1.3 Hard-soft corrections. They come from diagrams in
Fig. 9c. They contain both the combinatorial and energy
factors. The estimate analogous to Eqns (8.12) and (8.15) is,
up to logarithms,

8/3
Ahardfsofl ~ Alcad 1 E /
ow E() '

As mentioned previously, these corrections are also likely to
exponentiate.

To summarise, the perturbation theory about the instan-
ton strongly suggests that the total cross section has the
exponential form

; 4n E
05y OC €XP [@ F<EO>} .

The exponent is perturbatively calculable at E/Ey < 1, where
it is represented by a series in (E/ Eo)z/ 3 (up to logarithms),

o E 1915“/39156/3
<E0> - TR <E0) 16 <E0> T
Hard-soft corrections contribute at the order (E/Ey)”"”; this
order has been studied in Refs [331-333]. Hard-hard
corrections begin from the order (E/Ey)'"/>. While soft-soft
corrections to the exponent F come from tree diagrams about
the instanton, hard—hard and hard—soft contributions include
all loops.

Clearly, the series (8.17) blows up at E/Ey ~ 1. Therefore,
the perturbative calculations about the instanton cannot tell
whether the exponential suppression disappears at E ~ E; or
if it persists at all energies. The analysis of this most
interesting problem requires entirely non-perturbative tech-
niques.

(8.16)

(8.17)

8/3

8.2 Unitarity

Before presenting non-perturbative approaches to the evalua-
tion of the cross sections of instanton-like processes, let us
give a general argument in favour of the exponential suppres-
sion of these cross sections at all energies except, perhaps,
exponentially high ones. This argument is in the spirit of Ref.
[334] and is based on unitarity and conventional perturbation
theory at low momenta (see also Refs [335, 336, 316]).

Let us consider the full propagator of the W-boson as
shown in Fig. 11, and take the momentum of virtual W to be
the Euclidean and small, say Q> = mj,. Then the dispersion
relation relates this propagator to the total cross section of
‘vee-annihilation’ (at c.m. energy ./s) into an arbitrary
number of W-bosons:

Tot(S)

s+ 0?7

G(Q* ~ i) o J ds (8.18)

W@M_ZM@WM

Figure 11. W-boson propagator at low Q? with perturbative and non-
perturbative (instanton —anti-instanton) contributions.
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Here ‘vee-annihilation’ means just the production of a virtual
W-boson by an external probe, as shown in Fig.12.

\ \ 2
\ \
\\ \\
Otot (S) = Z / + /
// //
/ /

Figure 12. Total cross section with perturbative and instanton contribu-
tions.

The left-hand side of Eqn (8.18) is believed to be a nice
asymptotic series in ow, whose finite number of terms, say,
k < 1/aw, are given by ordinary perturbation theory (pertur-
bative diagrams in Fig. 11). Indeed, at low Q2 ~ m3,, there is
no reason to suspect that non-perturbative contributions like
instanton — anti-instanton shown in Fig. 11 are not exponen-
tially suppressed. Thus,

k
G(Q* ~my) =Y Cuoyy + O(oy).

i=1

where Cj are determined by conventional perturbation
theory and k is fixed in the limit aw — 0. These k terms are
precisely matched by perturbative contributions to the total
cross section on the right-hand side of Eqn (8.18) (perturba-
tive graphs in Fig. 12), which include the production of k final
particles or less. So, the instanton contribution into the right-
hand side of Eqn (8.18) is small,

inst
J ds Jtot () < const x oy, (8.19)

s+ 02

at Q% ~ miy;, k < 1/ow. This certainly excludes the possibility
that the instanton-like cross sections are large (of the order of
oy with finite n) at energies of the order of Ey ~ my /ow. Itis
straightforward to generalise this argument to collisions of
two real vector bosons and other processes with a small
number of incoming particles. In all cases, the relation like
Eqn (8.19) must hold.

This argument is consistent with the expected functional
form of the total instanton-like cross section, Eqn (8.16). It
shows that the exponent F is negative at all energies, i.e. the
instanton-like processes are always exponentially suppressed.
This general argument does not, however, exclude a still very
interesting possibility that F tends to zero as E — oo; in this
case the cross section may not be numerically small at still
reasonable energies. In any case, a theoretical understanding
of an actual exponential behaviour is definitely of interest.

Let us note in passing that the same argument implies the
exponential suppression of the production, in a trivial
vacuum, of a large number of final particles, n ~ 1/g°.
These processes have been actively studied in recent years;
for a review see Ref. [310].

Except unitarity, the above argument assumes the validity
of the ordinary perturbation theory as an asymptotic expan-
sion in aw for few-point exact Green’s functions at low Q2.
So, there remains a logical possibility that the perturbation
theory is badly flawed starting at some finite order in aw. We
shall see below that this logical possibility, which would be
revolutionary for the entire quantum field theory, is not
supported by existing (albeit limited) calculations.

8.3 From many — many to few — many

The exponential form of the instanton-like cross section looks
semiclassical, the failure of the naive semiclassical procedure
is reflected by the fact that the inverse coupling constant
enters not only the overall factor 4m/ow but also the
characteristic energy scale Ey ~ my /oaw. Therefore, it is
natural to expect that there exists an appropriate modifica-
tion of the naive semiclassical procedure, which would enable
one to evaluate the exponent of the cross section. Since
F(E/Ey) is determined both by tree graphs about the
instanton (soft—soft contributions) and by loops (hard—hard
and hard-soft contributions), the correct semiclassical proce-
dure should incorporate the relevant part of loops. Clearly,
the very existence of a semiclassical scheme, which would
incorporate loops, is far from obvious and it is a challenging
problem to invent such a scheme.

The latter difficulty may be rephrased in the following
way. At energies of interest, the final particles are soft (their
average energy per particle does not contain the large
parameter 1/aw) and numerous, n ~ 1/oyw. So, it is natural
that these particles may be described in classical terms:
roughly speaking, these are classical waves. On the other
hand, the initial particles are few in number and carry a
momentum proportional to the large parameter 1/oyw. The
problem is that these energetic initial particles are hard to
describe in (semi)classical terms.

On the basis of the above observations, the following
approach to few — many instanton-like transitions was
suggested [337, 338]. As an intermediate step, consider
many — many transitions, where the number of incoming
particles is

v

Nin = —,

aw

where v is a variable parameter. In the limit

aw — 0, (8.20)
when E/Ej and v are fixed, the number of incoming particles
is large, their energy per particle is of the order of my /v and
independent of aw, so these particles, as well as outgoing
ones, may be described in (semi)classical terms. We shall see
that the total probability for the optimum choice of the initial
state at given n;, has the exponential form:

. 4 E
™Y (E, niy) o exp [a—n F(F’ v>]
w 0

and the exponent F(E/Ey, v) is semiclassically calculable.

One argues that F(E/Ep,v) decreases (becomes more
negative) as v (i.e. the number of incoming particles)
decreases. Indeed, processes with fewer incoming particles
may be viewed as a subset of processes with larger n;,, with
some incoming particles not participating in the scattering.
So, many — many transitions provide an upper bound on
few — many:

(8.21)

inst inst _
G2Hany(E) <o (E7 Nin = )
ow

(8.22)

for any v in the regime (8.20). Furthermore, one can argue
that the exponent F(E/E;) for few — many probability is
obtained from F(E/Ej,v) in the limit v — 0, i.e. with
exponential accuracy, one has
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; 4 E
75y (E) o< exp {— F(F7V — 0)] .

. - (8.23)
This expectation has been confirmed by explicit perturbative
calculations about the instanton [339]. The reason for Eqn
(8.23) is that in the limit v — 0 the overlap between the two-
particle initial state and initial states with ny, = v/aw particles
is not exponentially small [315].

Thus, the idea of Refs [337, 338] is to evaluate F(E/Ey, v)
semiclassically and study the limit v — 0 then, to obtain the
exponent for 2 — any cross section.

To implement this idea, one considers the quantity [337,
338]

mst
(E, nip)

Z\ 11813)|

(8.24)

The sum runs over all initial states obeying the constraints

N|iy = nywliy, Hliy=Eli)y, Pli)y=0,

where N, H and P are the particle number operator, the
Hamiltonian and the operator of total spatial momentum in
the Fock space of initial states. The final states in the sum
(8.24) are arbitrary and S is S-matrix in the instanton sector.
The quantity o(E, ni,) may be viewed as the ‘microcanonical’
probability for instanton transitions from states with given
c.m. energy and number of incoming particles. It is this
quantity that enters Eqns (8.21) and (8.22).

A convenient basis in the space of initial states is provided
by coherent states |a). Let us recall that S-matrix is given, in
the coherent state representation, by the following functional
integral [340, 341]

<b|‘§‘a> = S(b*v a) = JDd)in D¢ﬁn D¢

X eXp [Bin(d’ina a) + Bﬁn((ﬁﬁnab*) + iSTimTl'm} ) (8'25)

where the integration is over initial (z = Tj,), final (t = Tjy),
and intermediate values of the field(s), the boundary terms
are:

1
By, = — 3 [ &k apa_y, exp(—2iwg Tin)

- %J d*k iy (K) bin (—K)
+ J d3k \/ﬁ ak¢ill(_k)

exp(—iwg Tin),
Bfin = _%J &k bb”  exp(2iwy Thin)
_%jd%amm4m¢m«k>
+J &’k /20 by (—k)

€Xp (iwk Tﬁn)

and the limit 75, — —oo, T, — +oo 1s assumed. All bosonic
fields are denoted generically by ¢. Summation over states is
represented by the integration over the coherent state vari-
ables with exponential weight

> - JDak Daj exp <f J d*k a,tak> .

i

(8.26)

The microcanonical probability can be written in the follow-
ing form:

2
o(E, niy) : (8.27)

Z‘ bISP(P,) P(my)|a)

where P(P,) and P(n;,) are projectors onto the subspace of a
fixed number of incoming particles and a fixed total 4-
momentum P, = (£,0). Summation in Eqn (8.27) runs over
all initial and final states. It can be shown [342, 337] that the
matrix elements of the projection operators are

<oc|13(Pﬂ)|a> = J d*¢ exp {—iPuﬁ“ + J &k ofay exp(ikﬁ)} ,

21
(| P(nin)|a) = L dn exp [—inmn + J &k o exp(in)} .
(8.28)

Combining Eqns (8.25), (8.26) and (8.28) and performing
trivial integrations and changes of variables, one obtains the
double functional integral representation for the probability:

O_inst (E7 nin)

_ J d*¢ d*¢' dndyf Dag Da; Dby Db Dp(x) D' (')
X exp{fiP”(f" — &M —inn(n —n')

- Jd3k agagexp[—iP(& — &) —imn(n — n')]

- J d*k b,’;bk} exp [Bin(hin, @) + Brin(dpin; 0*)

+ Bm( in» & ) + Bti:n((b;'mib) + IS(¢) - IS(d)l)] . (829)
The integrand here does not depend on (¢4 ¢’) due to
translational invariance; the integration over d(¢ + £') pro-
duces the usual volume factor. Similarly, the integration over
d(n + n') produces an irrelevant pre-exponential factor.

The remaining integrations are of the saddle point
character in the regime (8.20): upon introducing the variables
¢ = g¢ and a,b = ga, gb, all terms in the exponent become
explicitly proportional to 1/g?. So, the general form of the
probability, Eqn (8.21), is immediate. Furthermore, the
exponent in Eqn (8.21), (4n/aw)F(E/Ey,v), is equal to the
extremum value of the exponent in Eqn (8.29).

Thus, one has to extremalize the functional

D(p,¢';a,a*;b,b*; T;0)
= ET + n;,0 — J Pk agar exp(ET + nin0)
—j&k@m+3m¢m@+3mwmﬁv

+ By (b, @) + B ($fin: ) +1S(¢) —iS(¢")  (8.30)
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Im ¢

)

Figure 13. The contour, in complex time plane, appropriate for the
formulation of the boundary value problem for many — many transitions.

with respect to all its variables. Here we introduced the
notation

& —&=iT, n-n'=i0.

Without loss of generality one considers only real values of T
the imaginary part of 7’ may be removed by time translation.
Perturbative calculations [338] suggest also that the saddle
point value of 6 is real. Extremalization of the functional
(8.30) is conveniently performed by moving the contour in the
complex time plane from the real axis to the contour ABCD
shown in Fig. 13. At this contour one obtains the following
boundary value problem [343]:

(1) the field ¢ obeys the usual field equations, 85/3¢ = 0;

(2) in the future asymptotics, region D, the field is real, i.e.
it is real on the line CD, ¢|, is real.

(3) In the past asymptotics, where t = iT/2 + 1,  is real,
and 7 =— —oo (region A), the field is a collection of linear
waves whose positive and negative frequency parts are related
to each other

(k1) = frexp(ioet ) + exp(—0) f{ exp(—iwi) . (8.31)
The values of T and 0 are related to E and n;, through

E= J &Ek o fif; exp(—0), (8.32)

Nip = J &k fi [ exp(—0) . (8.33)
Eqn (8.32) is the natural result of the fact that the energy of
the classical solution is equal to the energy of the scattering
process, while Eqn (8.33) is the analogue of the usual relation
between the Fourier components of linear classical fields and
the corresponding number of particles. The exponent
F(E/Ey,v) is equal to the extremum value of the functional
(8.30) evaluated along the contour ABCD (in fact, only the
part ABC is relevant). Of course, one has to make sure that
the solution to this boundary value problem indeed describes
the instanton-like transition, i.e. that the topological numbers
ofinitial and final vacua differ by one. In fact, an appropriate
quantity in the case of a finite number of incoming and
outgoing particles is the winding number of the Higgs field
[317].

As expected, requirements (1)—(3) represent a purely
classical field theory problem. However, the fields are
necessarily complex on the contour ABC: Eqn (8.31) is the
spatial Fourier transform of a complex field. Also, the field

must have singularities somewhere between the real axis and
the line AB, otherwise the conditions (2) and (3) would
contradict each other. It is natural that when F(E/Ey,v) <0
(we assume implicitly that this is indeed the case), the classical
problem is formulated on the contour in the time plane that
contains both the Minkowskian and the Euclidean parts: we
are dealing with a kind of tunnelling (‘Euclidean’) process,
but incoming and outgoing particles live in the Minkowskian
time.

A special case of the above boundary value problem
emerges at 0 =0 when the field both at final and initial
asymptotics is real. In this case, the classical solution is real
on the entire contour ABCD in Fig. 13 and, hence, has
turning points at t =0 and 1 =17/2 (points B and C) [342]
for all x:

0,¢(x,t=0) za,qb(x,t:ig) =0

In other words, the solution is real in the Euclidean space-
time and periodic in the Euclidean time with period 7. This
periodic instanton describes the instanton-like transition with
maximum probability at a given energy F, and the correspond-
ing number of incoming particles is the optimum number at
this energy [342]. The maximum probability is determined by
the truncated Euclidean action of the periodic instanton:
o™ (E) o< exp[ET — Sper (0, T)] -

At low energies, the periodic instanton is represented by the
instanton —anti-instanton chain, while at E close to Egy, its
fields are those of the sphaleron plus small oscillations in the
sphaleron Minkowskian negative mode (which is the only
positive mode in the Euclidean time). At E = Eg,, the
maximum probability becomes unsuppressed. The corre-
spondent number of incoming particles is equal to that
produced in the decay of the sphaleron:

1

h~—.

US
P ow

At E > Eg,p, the instanton-like transitions are unsuppressed at
some n;, and the periodic instanton does not exist. Periodic
instantons in various models have been obtained numerically
for all energies in Refs [344—346] and analytically in
Ref. [347].

The approach outlined above is of a fairly general nature.
It enables one to study, at least in principle, various processes
similar to instanton-like transitions induced by particle
collisions. In fact, most extensive results obtained within this
approach up to now refer to false vacuum decay induced by
collisions of highly energetic particles in scalar theories. The
reason is that solving classical field equations is easier in
scalar theories. Also, the form of the scalar potential may be
suitably adjusted. Since the false vacuum decay is, in many
respects, analogous to instanton-like processes in gauge
theories, it serves as a theoretical laboratory to probe various
sets of ideas [346—353].

A particular model, where the boundary value problem
formulated above can be solved analytically in a wide range of
the parameters E/Ej and v, is provided by the theory of one
scalar field in (1 + 1)-dimensional space-time described by
the scalar potential [347]:

V@) =2 6 =" e {zA (% - 1)} ,

(8.34)
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where v? > 1is the parameter that plays the role of the inverse
coupling constant. A is another free parameter, which is
chosen to be large, 4 > 1 (but A4 < v). The potential has the
form shown in Fig. 14. At large A, it is quadratic almost up to
¢ = v and has a steep cliff at ¢ > v. The problem, that is
addressed, is the decay of the metastable vacuum ¢ =0
induced by collisions of energetic particles in this vacuum.

V(¢)

; \ )

Figure 14. The scalar potential with unstable vacuum at ¢ = 0.

At low energies this process is described by the bounce
[127], which is the analogue of the instanton. There also exists
an analogue of the sphaleron, which is a critical bubble [126].
Its energy equals the height of the barrier separating the two
phases (the ‘true vacuum’ in this model is ¢ = oo, but this
pathological property is irrelevant to the problem of the false
vacuum decay). The sphaleron energy in this model is

Esph = I’sz

and the characteristic number of incoming particles is

2
2
Nsph — — VU .
P T

At E > Egy and niy > ngp, the induced false vacuum decay
occurs without exponential suppression. The parameters
appearing in the classical boundary value problem are
E/Eypn and nin/ngn, and the probability of the induced
vacuum decay has the form

o(E, nip) o exp [SBF(L, v; A)} ,
Esph
where Sy = const x v? is the action of the bounce and
F(E/Egn — 0) = —1. The question is whether the exponent
F becomes zero at some energy for v <1 and, most
importantly, whether it becomes zero at high enough energies
or remains always negative in the limit v — 0.

The way to solve the classical boundary value problem in
this model is to solve the free massive field equation in the
region of the space-time (on the contour in Fig. 13), where
¢ < v, to solve the massless Liouville equation in the region,
where ¢ > v, and then match the solutions [347]. In this way it
is possible to analyse the initial multiplicities, which are not
too low:

v:ni > A",

8.35
oo (8.35)

The result for the function F as function of energy at various v
is shown in Fig. 15.

Fig. 15 shows that there exists, at n;, obeying Eqn (8.395),
some critical energy Fit (i) when F becomes equal to zero

0.01 10 100 E/Egy

e

25, L

Figure 15. Exponent of the total probability F(E) at different v in the
exponential model [347]: ] — periodicinstanton; 2—v = 0.8;3—v = 0.5;
4—v=02.

and the exponential suppression disappears. At
1 > nin/ngph > A~! the expression for this critical energy is
fairly simple:

4 2 ngpp i \ 2
Ecrit(nin) = E eXp (X ’;p — l) <I’l mh> Esph .
in sp!

Clearly, E.j; rapidly grows as n; becomes small. These results
show that, at nj, < ngpn, one can still have unsuppressed
instanton-like transitions at the expense of increasing the
energy. Furthermore, at sufficiently large n;,, namely nj,
obeying Eqn (8.35), there exist real classical solutions to the
field equation in the Minkowski space-time [353] that describe
the false vacuum decay induced by n;, incoming particles in
purely classical (hence unsuppressed) manner at
E> Ecrit(nin)-

Unfortunately, analytical solutions to the boundary value
problem are lacking at ni, /ngpn <A ' In particular, the limit
v — 0 cannot be studied even in the specially designed model
(8.34). However, it has been shown [353] that there are no
classical Minkowskian solutions describing unsuppressed
induced false vacuum decay at niy/ngph < n?/A and any
energies. This means that the false vacuum decay induced by
collisions of wo particles is exponentially suppressed at all
energies, in accord with the general unitarity argument.

The above boundary value problem is suitable, at least in
principle, for numerical calculations: after all, one has to solve
classical field equations with specified boundary conditions.
The numerical study of induced false vacuum decay has been
undertaken in Ref. [346] in the context of (3 + 1)-dimensional
scalar theory with the potential

2 ;L
V) ="5 ¢ 5 ¢*

which is similar to Fig. 14. The main result of this study is
summarised in the plot of the lines of constant F(e,v) in the
(e,v) plane, where e¢=E/Egpy, and v =ny/ngn (here
Egpn ~ m/Aand ng,, ~ 1/J are again the energy of the critical
bubble and the characteristic number of incoming particles).
This plot is shown in Fig. 16.

The most interesting region, v < 1, was not accessible to
numerical calculations for technical reasons. However,
because of inequality (8.22) the results presented in Fig. 16
show that the false vacuum decay induced by two-particle
collisions is exponentially suppressed at least at £ < 3Eg.
Indeed, the line of unsuppressed induced vacuum decay,
F =0, is above v ~ 0.4 at these energies (i.e. nj, should be
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Figure 16. Lines of constant Fin the plane (¢ = E/Egp, v = nin /Nspn) in 4d
scalar model [346].

larger than 0.4ng,;, for the transitions to be unsuppressed).
Further analysis [346] reveals that the region of this suppres-
sion extends at least up to 10E,p,, and, most likely, to infinity.
This is again in accordance with the unitarity argument.

Another approach closely related to the one discussed
above is to consider real classical solutions to the Minkows-
kian field equations, i.e. scattering of classical waves. To
every classical solution that disperses into free waves at
t — +oo one can assign the number of incoming and out-
going particles, both of them are naturally of the order of
1/ow. The probability of the scattering of these multiparticle
states is not suppressed. At a given energy, one tries to
minimise the number of incoming particles under the condi-
tion that the topological number changes by 1 (instanton-like
transitions) or that the phase of the system changes (false
vacuum decay). If the minimum number of incoming particles
tends to zero (in units 1/ow) as the total c.m. energy
approaches some E., then few — many processes are not
suppressed exponentially at E > E, (this includes the more
likely possibility that E.; = oo; in this case the exponential
suppression of few — many cross sections disappears at
asymptotically high energies). In the opposite case, when the
minimum number of incoming particles needed to induce the
classical transition remains larger than const x (1/aw), the
exponential suppression of few — many persists at all ener-
gies, but the actual exponent cannot be calculated by studying
classical scattering.

We have pointed out already that the two approaches
(complex time and real time) nicely match in the (1 + 1)-
dimensional model (8.34) and that, in this model, the number
of incoming particles required for the instanton-like transi-
tions to occur classically is finite in units ngpy. The classical
real time approach is also fairly suitable for numerical
analysis; considerable progress in this direction has been
reported in Ref. [354], where it has also been found that the
instanton-like transitions may proceed classically at n;, some-
what below ngpy at sufficiently high energies.

Let us stress that the idea of using many — many
transitions as an intermediate step to few — many is not the
only way (and, maybe, not the best way) to study the
instanton-like processes semiclassically. A completely differ-
ent and promising approach is the generalisation of the
Landau technique for calculation of semiclassical matrix
elements [355] to quantum field theory [307, 356—360]. It
remains to be seen whether this approach will be able to
provide new insight into electroweak B- and L-violation at
high energies.

To conclude, the existing calculations suggest the follow-
ing overall picture of the instanton-like transition in high
energy collisions. When the number of incoming particles is of
the order of 1/ow, the instanton-like processes occur at
unsuppressed rates, provided that the energy is sufficiently
high. This is perfectly consistent with the calculations of the
sphaleron rate at high temperatures: multiparticle collisions
are possible in high temperature plasma and they are
responsible for the high rate of electroweak B- and L-
violation. On the other hand, if the number of colliding
particles is small (say, two), the instanton-like processes
occur at exponentially low rates at all energies, which is in
accord with the unitarity argument. The actual suppression
factor is, unfortunately, still unknown for the most interesting
range of energies. While this suppression factor may be of
limited interest for the electroweak theory [the suppression by
exp(—const/aw), with almost any constant in the exponent,
will make the transitions unobservably rare], it may become
important for the study of similar processes in QCD (for the
discussion of instanton-induced processes in QCD see Refs
[361-364)).

9. Conclusions

The non-conservation of baryon number in the early Uni-
verse, giving rise to the baryon asymmetry, was proposed by
Sakharov almost thirty years ago. Its particle physics origin,
however, has yet to be established. Certainly, there were
baryon number violating interactions operating at tempera-
tures well above 100 GeV (these were anomalous electroweak
reactions), but whether the baryon asymmetry came entirely
from this source or was a combined effect of the electroweak
processes and grand unified or/and intermediate scale inter-
actions is unclear at the moment. In any case, the explanation
of the existing baryon asymmetry requires at least a mild
extension of the MSM.

One expects substantial further progress, in coming years,
in our understanding of the electroweak baryon number non-
conservation and its role in the early Universe. On the
theoretical side, quantitative estimates of the regions in the
parameter space where the observed amount of baryon
asymmetry is produced, are to be obtained in various
extensions of the MSM. This requires further development
of the kinetics of the electroweak phase transition, B-violating
reactions and non-equilibrium description of baryogenesis.
The calculations of the suppression factor for the anomalous
reactions in high energy collisions are to be done in MSM and
its extensions, and the relevance of similar reactions for hard
processes in QCD is to be understood in detail. Most
remarkable progress is expected, however, on the experi-
mental side. Uncovering the physics at the energy scale of a
few hundred GeV to a few TeV (MSM? Supersymmetry?
Extended Higgs sector? Technicolor-type symmetry break-
ing? ...) will be crucial for establishing or ruling out the
electroweak origin of the baryon asymmetry of the Universe.
Finding out the mechanism of CP-non-conservation in
Nature (B-meson physics, electric dipole moments of neutron
and electron) will become another important step. Possible
experimental discovery of lepton number violation (the
Majorana neutrino masses, neutrino oscillations, muon
number non-conservation in p-decays) and/or proton decay
would be a strong indication of the early origin (7' > 1 TeV)
of baryon asymmetry. Having understood, to a considerable
extent, highly non-trivial aspects of the electroweak physics in
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the early Universe, one needs strong experimental input to
solve one of the most challenging problems in cosmology.
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