
Abstract. We present a detailed review of the electroweak ra-
diative corrections to the Z-boson decay, in the framework of
the Minimal Standard Model (MSM). After a short historical
introduction we describe the optimal parametrization of the
MSM, especially of the Born approximation, and derive ex-
pressions for the one-loop electroweak corrections. Finally a
global fit of all relevant experimental data is performed, result-

ing in fitted values of the t-quark mass, mt, and strong coupling
constant as. Allowed range for the value of the Higgs boson
mass, mH, is discussed. Various details of calculations are de-
scribed in 16 appendices.

1. Introduction

1.1 New theories, new symmetries,
new particles, new phenomena
The creation of the unified electroweak theory at the end of
the 1960s [1, 2] and of the quantum chromodynamics (QCD)
at the beginning of the 1970s [3] has dramatically changed the
entire picture of elementary particle physics. Its foundation
changed to gauge symmetries: the electroweak symmetry
SU�2�L �U�1� and the colour symmetry SU�3�c. It became
clear that the gauge symmetries determine the dynamics of the
fundamental physical processes in which the key players are
the gauge vector bosons, i.e. the well-familiar photon and a
host of new particles: W�-, Wÿ-, Z-bosons and eight gluons,
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which differ from one another in colour charge. Even though
the Higgs condensate, filling the entire space, remains
enigmatic in the electroweak theory, while the problem of
confinement is still unsolved in chromodynamics, the two
theories are nevertheless so inseparable from modern physics
that they were given the name of the Minimal Standard
Model (MSM). We assume in this review that the reader is
familiar with the basics of the MSM (see, for example, the
monographs [4]).

The concept of quarks has undergone dramatic expansion
in the process of creation of the MSM. In Ref. [1] the
electroweak theory was suggested for leptons (electron and
electron neutrino). The subsequent inclusion of quarks into
the theory led to the hypothesis that in addition to the three
quarks known at the time (u, d and s) there exists the fourth
quark, c. According to Ref. [2], if d- and s-quarks are
analogues, respectively, of e and m, then the mutually
orthogonal combinations u cos yC � c sin yC and
ÿu sin yC � c cos yC, where yC is the Cabibbo angle, must
constitute the analogues of ne and nm [5].

One of the important consequences of the electroweak
theory was the prediction of the weak neutral currents.
According to the theory, the neutral weak currents must be
diagonal; in other words, neutral currents changing quark
flavour (FCNC) are forbidden. This explained the absence of
such decays as K0 ! �ee, K0 ! �mm, and K� ! p��ee. Since
there is no neutral current �sd in the Lagrangian, these decays
cannot occur in the tree approximation: they require loops
with virtual W-bosons. This is also true for the transitions
K0 ! �K0 that are responsible for the mass difference between
the K0

L- and K
0
S-mesons.

Diagonal neutral currents were discovered in reactions
with neutrino beams [6], in rotation of the polarisation plane
of a laser beam in bismuth vapor [7], and in the scattering of
polarised electrons by deuterons [8].

The charmed quark c was discovered in 1974 [9]. Even
before that, Kobayashi andMaskawa [10] conjectured that in
addition to two generations of leptons and quarks,
�ne; e; u; d�, �nm; m; c; s�, there must exist the third generation
�nt; t; t; b�. The 2� 2 Cabibbo matrix for two generations,

cos yC sin yC
ÿ sin yC cos yC

 !

is replaced in the case of three generations by a 3� 3 unitary
matrix, that in its most general form contains three angles and
one phase; the phase is nonzero if the CP-invariance is
violated. This is how the mechanism of CP-violation at the
level of quark currents was proposed.

The t-lepton [11] and the b-quark [12] were discovered
experimentally in mid-1970s. The heaviest fermion, the t-
quark, was discovered only two decades later [13, 14]. As for
the mechanism of CP-invariance violation, it remains
unknown even now.

The renormalisability of the electroweak theory andQCD
[15] and the property of asymptotic freedom in QCD [16]
opened a wide field for reliable computations based on
perturbation theory. On the basis of such computations in
the tree-diagram approximation, it was possible to predict
such qualitatively novel phenomena as quark and gluon jets;
using the data on neutral currents, it proved possible to
perform preliminary computations of the masses and partial
widths of the W- and Z-bosons even before their actual
discoveries.

1.2 W- and Z-boson `factories'
To test the predictions of the electroweak theory, proton±
antiproton colliders were built at the beginning of the 1980s in
Europe (at CERN) and then in the USA (at FNAL). The
discovery of the W- and Z-bosons [17] provided spectacular
confirmation of the tree-diagram calculations [4] and made
feasible and urgent precision tests of the electroweak theory
with loops included. (When speaking about the tree (Born)
approximation and loops, we always mean the corresponding
Feynman diagrams.)

A unique object for such tests was the Z-boson. To carry
out a precision study of its properties, electron±positron
colliders were built at the end of the 1980s: LEP1 at CERN
and SLC at SLAC. Electron and positron in these colliders
collide at the centre-of-mass energy equal to the Z-boson
mass. This results in the resonance creation and decay of a Z-
boson (see Fig. 1).

The LEP1 completed its operations in October 1995;
about 2� 107 Z-bosons were detected in the four detectors
of this collider (ALEPH, DELPHI, L3, OPAL). The total
number of Z-bosons recorded at the SLC by the sole SLD
detector was approximately 105; however, since the colliding
electrons are longitudinally polarised, it was possible to study
the dependence of the annihilation cross section e�eÿ into the
Z-boson on the sign of beam polarisation. As a result, the
SLC proved its competitiveness even with substantially lower
statistics. The statistical and systematic accuracy achieved in
the study of the properties of the Z-boson are of the order of
10ÿ5 for the Z-boson mass and of the order of several
thousandths for the observables that characterise its decays.

1.3 What is the point of studying loop corrections?
A natural question is: why do we need to compare the
experimental data and the loop corrections of the electroweak
theory? We need it mostly to gather data on the not yet
discovered particles. For instance, even before the t-quark
was discovered on the Tevatron by CDF [13] and D0 [14]
collaborations, its mass was predicted by analyzing the
radiative loop corrections and the LEP1 and SLC data [18].
The main loop involving the virtual t- and �t-quarks is shown
in Fig. 2a.

The scalar Higgs boson (or simply the higgs) had not been
found yet. In the minimal version of the theory, the so-called
MSM, there is a single higgs: a neutral particle whose mass is
not fixed by the model. In the Minimal Supersymmetric
Standard Model (MSSM) we have three neutral and two

f

fe

e

Z

Figure 1. The Z-boson as a resonance in e�eÿ annihilations. A fermion±

antifermion pair in the Z-boson decay is denoted by f�f, where f can be

either a lepton �e; m; t; ne; nm; nt� or a quark �u; d; s; c; b�. In this last case a
quark-antiquark pair typically transforms, owing to interactions with

gluons, to a multi-hadron state. The outgoing arrow in this and subse-

quent diagrams corresponds to the emission of the fermion (f) and to the

absorption of the antifermion (e�); an incoming arrow denotes the

emission of the antifermion (�f) and the absorption of the fermion (eÿ).
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charged higgses. The lightest of the neutral higgses must not
be heavier than 135 GeV [19, 20]. The simplest diagram
involving a virtual higgs is shown in Fig. 2b.

When planning experiments on LEP1 and SLC, people
had great expectations that precision measurements would
detect pronounced deviations from the predictions of the
Standard Model and would thereby unambiguously point
to the reality of some sort of `new physics'. In fact, even
though some discrepancies with the MSM were found, they
go beyond the three standard deviations only in a single
case (that of the decay of a Z-boson to a b�b-pair). If these
discrepancies are not caused by some sort of systematic
error, they may indicate (see Conclusions) the existence of
the relatively light (� 100 GeV) squarks and gluino: the

supersymmetric partners of quarks and gluons, respec-
tively.

2. Brief history of electroweak
radiative corrections

The pioneer calculations of electroweak corrections in MSM
were performed in the 1970s, long before the discovery of the
W- and Z-bosons. The calculations were devoted to the muon
decay, and to the b-decays of the neutron and nuclei, and to
deep inelastic processes. In connection with the construction
of LEP and SLC, a number of teams of theorists carried out
detailed calculations of the required radiative corrections.
These calculations were discussed and compared at special
workshops and meetings. The result of this work was the
publication of two so-called `CERN yellow reports' [21, 22],
which, together with the `yellow report' [18], became the
`must' books for experimentalists and theoreticians studying
the Z-boson.

2.1 Muon and neutron decays
Sirlin [23] calculated the radiative corrections to the muon
decay due to one-loop Feynman diagrams (see Fig. 3).

We must emphasise that the purely electromagnetic
correction to the muon decay due to the exchange of virtual
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Figure 2. Contribution of the t�t to the Z-boson propagator (a). Contribu-
tion of the loop with virtual Z-boson and a higgs to the Z-boson

propagator (b).
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photons and the emission of real photons was calculated even
earlier [24], for the pointlike four-fermion interaction, i.e.
without taking the W-boson into account (see Fig. 4). It was
found that the correction is finite: it contained no divergences.
The four-fermion interaction constant Gm, extracted from the
muon lifetime tm,

1

tm
� Gm �

G2
mm

5
m

192p3
f

�
m2
e

m2
m

��
1ÿ a

2p

�
p2 ÿ 25

4

��
; �1�

where f �x� � 1ÿ 8x� 8x3 ÿ x4 ÿ 12x2 lnx, already includes
this electromagnetic correction proportional to a;
Gm � 1:16639�2� � 10ÿ5GeVÿ2. The finiteness of the purely
electromagnetic correction in themuon decay is caused by the
V-A nature of the interacting charged currents �nm m and �ene.

In the neutron decay, the purely electromagnetic correc-
tion to the four-fermion interaction (Fig. 4i) diverges
logarithmically. In view of the W-boson propagator
(Fig. 4h), the logarithmic divergence is cut off at the W-
boson mass.

This correction to the vector vertex in the leading
logarithmic approximation, calculated in Ref. [25], is given
by the factor

1� 3a
2p

ln
mW

mp
; �2�

where mp is the proton mass. Numerically, its value is of the
order of 1.7%. Only after this correction is taken into

account, does cos2 yC extracted from the nuclear b-decay
become equal to 1ÿ sin2 yC, where sin

2 yC is found from the
decays of strange particles (yC is the Cabibbo angle).
Although the correction we discuss now contains mW in the
logarithmic term, it is essentially electromagnetic and not
electroweak, since it is insensitive to details of the electroweak
theory at short distances, in contrast to, say, electroweak
corrections to the muon decay (Fig. 3).

Calculations of electroweak corrections to the muon
decay show that the main contribution, exceeding all others,
is caused by the vacuum polarisation of the photon (Fig. 5a).

At the first glance, this correction should not have
emerged in the m-decay in the one-loop approximation: it is
not there among the loops in Fig. 3. It does appear, however,
when Gm is expressed in terms of the fine structure constant a
and the masses of the W- and Z-bosons.

2.2 Main relations of the electroweak theory
It is well known [4] that in the Born approximation we have
(see Fig. 4a)
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Gm � g2

4
���
2
p

m2
W

; �3�

where mW is the W-boson mass and g is its coupling constant
to the charged current.

On the other hand, we have in the same approximation

mW � 1

2
gZ ; �4�

where Z is the vacuum expectation value of the higgs field.
Likewise,

mZ � 1

2
f Z ; �5�

wheremZ is the Z-boson mass and f is its coupling constant to
the neutral left-handed current.

Therefore,

mW

mZ
� g

f
: �6�

If we introduce the famousWeinberg angle [1], it becomes
obvious that the two definitions are equally valid in the Born
approximation:

cos yW � mW

mZ
and cos yW � g

f
: �7�

It is well known [1] that the angle yW in the electroweak theory
defines the relation between the electric charge e and the weak
charge g:

e � g sin yW: �8�

In the Born approximation, therefore,

Gm � g2

4
���
2
p

m2
W

� 1���
2
p
Z2
� pa���

2
p

m2
W sin2 yW

� pa���
2
p

m2
Z sin

2 yW cos2 yW
: �9�

If we now take into account the electroweak corrections, we
find

mW

mZ
6� g

f
:

2.3 Traditional parametrization of corrections
to the l-decay and the running a
Sirlin's definitions [23] are widely used in the literature (see the
review [35] and references therein); according to them

s2W � sin2 yW � 1ÿ c2W � 1ÿ cos2 yW � 1ÿm2
W

m2
Z

; �10�

Gm � pa���
2
p

m2
W s2W�1ÿ Dr�

; �11�

where

Dr � Drem � Drew

includes both the truly electroweak correction Drew for loops
in Fig. 3 and the purely electromagnetic correction Drem due
to a running from q2 � 0 to q2 � m2

W;m
2
Z. This correction

arises because

a � a�q2 � 0� � �137:035985�61��ÿ1 �12�

is defined for q2 � 0, while typical momenta of virtual
particles in the electroweak loop are of the order of the
intermediate boson masses. It is convenient to denote

�a � a�m2
Z� �

a
1ÿ Drem �

a
1ÿ da : �13�

Drem was calculated in a number of papers [26]; the necessary
formulas are given in Appendices II and III. The contribution
of the lepton loops to Drem is described by the expression

dal � Drlem �
a
3p

X
l

�
ln

m2
Z

m2
l

ÿ 5

3

�
� 0:03141 ; �14�

where l � e; m; t. The contribution of quark loops cannot be
calculated theoretically because the quark mass in the
logarithm has no rigorous theoretical definition. This reflects
our ignorance of strong interactions at large distances (small
momenta). The quark (hadron) part Drhem is therefore
calculated by substituting into the dispersion relation the
experimental data on the cross section of the e�eÿ-annihila-
tion into hadrons:

dah � Drhem �
m2
Z

4p2a

�1
4m2

p

ds

m2
Z ÿ s

she�eÿ ; �15�

where she�eÿ is the cross section of the e
�eÿ- annihilation into

hadrons via one virtual photon.
In this review we make use of the recent result reported in

Ref. [26]: Drhem � 0:02799�66�, so that
da � dal � dah � Drem � Drlem � Drhem � 0:05940�66� :

�16�

As follows from Refs (13) and (16),

�a � �128:896�90��ÿ1 : �17�

A summary of results of various calculations of �a is given in
Appendix III. Following tradition, the contributions of the t-
quark loop and the W-boson loop are not included into
a�mZ�. In the leading approximation in 1=m2

t , the contribu-
tion of the t-quark loop is

Drtem � ÿ
4

45

a
p

�
mZ

mt

�2

� ÿ0:00005 for mt � 180GeV;

�18�

and the exact formula [see Eqn (67)] corresponds to

Drtem � ÿ0:00006 for mt � 180GeV:

The contribution of theW-boson loop is gauge-dependent. In
the 't Hooft±Feynman gauge it is DrWem � 0:00050 [see Ref.
(66)].

2.4 Deep inelastic neutrino scattering by nucleons
A predominant part of theoretical work on electroweak
corrections prior to the discovery of the W- and Z-bosons
was devoted to calculating the neutrino±electron [27] and
especially nucleon±electron [28] interaction cross sections.
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The reason for this is that after the discovery of neutral
currents the quantity

s2W � 1ÿm2
W

m2
Z

was extracted precisely from a comparison of the cross section
of neutral currents (NC) and the charged currents (CC).
While a W-boson interacts with a charged current of V±A
type, for example,

g

2
���
2
p Wa �u �ga � gag5� d ; �19�

the Z-boson interacts with neutral currents that have a more
complex form,

f

2
Za �cf

�
T f
3gag5 � �T f

3 ÿ 2Qfs2W� ga
�
cf ; �20�

where T f
3 is the third projection of the weak isotopic spin of

the left-hand component of the fermion f (quark or lepton),
Qf is its charge, and cf is the Dirac spinor describing it. In the
tree approximation, the NC/CC cross section ratio for purely
axial interactions (and isoscalar target) equals unity, since in
this approximation the quantity

r � f 2

g2
m2
W

m2
Z

�21�

equals unity. With the vector current taken into account, the
ratio of NC and CC is a function of s2W. Measurements of this
ratio gave s2W � 0:23, which thus made it possible to predict
the masses of the W- and Z-bosons [from the formula for the
muon decay (9)]. More accurate measurements of NC/CC
made it possible to improve the accuracy of s2W to such an
extent that it became necessary to take into account the
electroweak radiative corrections both in s2W and in r, which
now, with the corrections taken into account, is not equal to
unity any more.

Veltman was the first to point out [29] that if mt=mZ4 1,
the main correction to r and s2W is caused by the violation of
the electroweak isotopic invariance by themasses of the t- and
b-quarks in loops of self-energies of the Z- andW-bosons. To
find r in the limit mt=mZ4 1, it is sufficient to consider these
loops neglecting the momentum of W- and Z-bosons q in
comparison with the masses of the W and Z, i.e. for q2 � 0.
Elementary calculation of the loops indicated above yields
(see Appendix VIII):

r � 1� 3aZ
16p

�
mt

mZ

�2

� 1� 3aW
16p

�
mt

mW

�2

� 1� 3Gmm
2
t

8
���
2
p
p2

:

�22�

Here and hereafter we denote

aZ � f 2

4p
; aW � g2

4p
: �23�

Since in real life mt=mZ ' 2, the sum of the remaining,
non-leading corrections is found to be comparable to the
correction proportional to m2

t (see below).
At the present moment, the quantity s2W extracted from

the data on deep inelastic nN-scattering is determined as
0:2260�48� (the global fit of the data from the collaborations

CDHS [30] and CHARM [31]), or 0:2218�59� (collaboration
CCFR) [32]. The accuracy of these data is poorer than found
by the direct measurement of the W-boson mass mW and of
the ratio mW=mZ by the collaborations UA2 in CERN [33]
and CDF at Tevatron [34]. According to PDG [35], the fitted
quantity is mW � 80:22�26�, which corresponds to
s2W � 0:2264�25�. Note that according to the most recent
data [36], the measurement accuracy is even higher for mW:
mW � 80:26�16�GeV. For this reason we will not discuss
further the deep inelastic scattering of the neutrino. More-
over, additional assumptions on the effective mass of the c-
quark and on the accuracy of the QCD corrections are
necessary for the interpretation of these experiments.

2.5 Other processes involving neutral currents
This is true to even greater degree for the parity violation in
eD-scattering [8], which, in addition, provides a considerably
less accurate s2W � 0:216�17�.

The measurement accuracy of the nme- and �nme-scattering
even in the highest-accuracy experiment CHARM II [37] is
not sufficient for revealing the genuine electroweak correc-
tions. However, after an analysis in the Born approximation,
this experiment has demonstrated for the first time that the
interaction constant of the current �nmnm with the Z-boson is in
satisfactory agreement with the theory (see Refs [38, 39]).

The experiment on measuring parity violation in cesium
133Cs55 [40] is also insufficiently sensitive, at the accuracy
achieved. Here the effect is produced by the interaction of the
nucleon vector current with the electron axial current. Since
the characteristic momentumof electron in an atom is small in
comparison with nuclear dimensions, all nucleons of a
nucleus `function' coherently and the nucleus is characterised
by an aggregate weak charge QW, which is experimentally
found to be Qexp

W � ÿ71:0� 1:8, while the theoretically
anticipated value is ÿ72:9� 0:1. A spectacular property of
QW is the fact that owing to an accidental cancellation of
protons' and neutrons' contributions, it is practically inde-
pendent of mt. On the contrary, QW is very sensitive to the
contribution of neutral bosons, Z0 and Z00, heavier than the Z-
bosons (if they exist).

The best object for testing the electroweak theory at the
loop level is therefore the Z-boson with which this review is
predominantly connected.

3. On optimal parametrization of the theory
and the choice of the Born approximation

The electroweak theory is in many ways different from
electrodynamics, in particular in the diversity of particle
interactions that must be taken into account when consider-
ing any effect in the loop approximation. The parametriza-
tion of QED is straightforward: fundamental quantities are
the electronmass and charge, which are knownwith very high
accuracy. It is therefore natural to express all theoretical
predictions of QED in terms of a and me.

3.1 Traditional choice of the main parameters
The choice of the main parameters in electroweak theory is
not equally obvious. Historically, those selected wereGm as an
experimentally measured with best accuracy weak decay
constant, s2W � 1ÿm2

W=m
2
Z, since W- and Z-bosons were

not yet directly observed at that time, while the value of s2W
was known from experiments with neutral currents, and
finally, a. This parametrization of the 1970s proved to be
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surprisingly long-lived; the loop parameters Dr and r con-
nected with it are widely used in the literature and are very
likely to survive beyond the end of this century.

In fact, this parametrization is far from being optimal
because mW (and thus sW as well) is measured experimentally
at much poorer accuracy than mZ:

mW � 80:26�16� GeV; �24�
mZ � 91:1884�22� GeV: �25�

As a result, s2W is extracted by fitting the loop formulas for
various observables. This extraction inevitably requires that
we fix the values of the t-quark mass and the higgs mass.
Another drawback of this parametrization is that the quantity
a, despite its superior accuracy, is not directly related to the
electroweak loops, which are characterised by a quantity �a,
and this we know with much less impressive accuracy. As a
result, the purely electromagnetic correction Drem is not
separated from the genuinely electroweak corrections, thus
blurring the interpretation of the experimental data.

3.2 Optimal choice of the main parameters
As follows from the above remarks, the currently optimal
parametrization is one based on Gm, mZ and �a. With this
parametrization it is convenient to introduce the weak angle
y, defined [by analogy to Eqn (9)] by the relation

Gm � p�a���
2
p

m2
Z s

2c2
; �26�

where s2 � sin2 y, c2 � cos2 y.
As follows from Eqn (26),

sin2 2y � 4p�a���
2
p

Gmm
2
Z

� 0:71078�50� ;

s2 � 0:23110�23�; c � 0:87687�13� : �27�
The angle y was introduced in mid-1980s [41]. However,

its consistent use began only after the publication of Ref. [42].
Using y instead of yW automatically takes into account the

running of a and makes it possible to concentrate on the
genuinely electroweak corrections. Using mZ instead of sW
allows one to explicitly single out the dependence on mt and
mH for each electroweak observable.

Note that a different definition of the Z-boson massmZ is
known in the literature, related to a different parametrization
of the shape of the Z-boson peak [43]. This massmZ is smaller
than mZ by approximately 30 MeV. In this review, we
consistently use only mZ, following the summary reports of
LEP collaborations [44].

Let us show how the parametrization in terms of Gm, mZ

and �a is applied to the decay amplitudes of Z-boson and to the
ratio mW=mZ.

3.3 Z-boson decays. Amplitudes and widths
In correspondence with equation (20), we rewrite the ampli-
tude of the Z-boson decay into a fermion±antifermion pair f�f
in the form

M �Z! f�f � � 1

2
�f Za�cf �gagVf � gag5gAf�cf : �28�

Here by definition �f is the value of the coupling constant f in
the Born approximation,

�f 2 � 4
���
2
p

Gmm
2
Z � 0:54866�4� : �29�

(The use of the same letter f to denote both the fermion and
the coupling constant cannot lead to confusion, to such an
extent are these objects different.) The high accuracy, with
which the numerical value of �f is known, comes from the fact
that �f is independent of �a. All electroweak radiative correc-
tions are `hidden' in dimensionless constants gVf and gAf.
These coefficients do not include the contribution of the final
state interactions due to the exchange of gluons (for quarks)
and photons (for quarks and leptons). The final state
interactions have nothing in common with the electroweak
corrections and must be taken into account as separate
factors in the expressions for the decay rates. These factors
are sometimes known as `radiators', since they cover not only
exchange of photons and gluons but also their emission.

Radiators are trivially unities in the case of decay to any of
the neutrino pairs ne�ne, nm�nm, nt�nt and therefore

Gn � G�Z! n�n� � 4G0�g2An � g2Vn� ; �30�

where G0 is the so-called standard width:

G0 � Gmm
3
Z

24
���
2
p
p
� 82:944�6� MeV: �31�

If neutrino masses are assumed to be negligible, then

gAn � gVn � gn; �32�

so that

Gn � 8G0g2n : �33�

For decays to any of the pairs of charged leptons l�l we
have [18]

Gl � G�Z! l�l�
� 4G0

�
g2Vl

�
1� 3�a

4p

�
� g2Al

�
1� 3�a

4p
ÿ 6

m2
l

m2
Z

��
; �34�

where the QED correction is taken into account only to the
lowest approximation in �a; we neglect terms on the order of
��a=p�2 � 10ÿ6. The term proportional to m2

l is negligible for
l � e; m and must be included only for l � t
(m2

t=m
2
Z � 3:8� 10ÿ4).

For decays to any of the five pairs of quarks q�q we have

Gq � G�Z! q�q� � 12G0
�
g2AqRAq � g2VqRVq

�
: �35�

Here the factor of 3, additional in comparison with
leptons, takes into account the three colours of each quark.
The `radiators' in the first approximation are identical for the
vector and the axial-vector interactions,

RVq � RAq � 1� âs
p
; �36�

where âs is the constant of interaction of gluons with quarks at
q2 � m2

Z. There are different conventions for the choice of âs.
In calculations of decays of the Z-boson, it is quite typical to
determine âs using the so-called modified minimal subtrac-
tion scheme, MS (see at the end of Appendix I). The
numerical value of âs, found from Z-boson decays, is of the
order of 0.12. For additional details on the value of âs and for
more accurate expressions for radiators see Appendix VI.
Here we only remark that vast literature is devoted to radiator
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calculations; they are calculated using perturbation theory up
to terms �âs=p�3, see Refs [45 ± 49]. The full hadron width is
(to the accuracy of very small corrections) the sum of widths
of five quark channels:

Gh � Gu � G d � Gs � Gc � Gb : �37�

The full width of the Z-boson is given by the obvious
expression:

GZ � Gh � Ge � Gm � Gt � 3Gn : �38�

The cross section of annihilation e�eÿ into hadrons at the Z-
peak is given by the Breit±Wigner formula:

sh � 12p
M2

Z

GeGh
G2Z

: �39�

Finally, the following notation for the ratio of partial widths
is widely used:

Rb � GbGh ; Rc � GcGh ; Rl � GhGl : �40�

(Note that in contrast to Rb and Rc, Gh in Rl is in the
numerator.)

3.4 Asymmetries
In addition to the total and partial widths of Z-boson decays,
experimentalists also measure effects due to parity non-
conservation, i.e. the interference of the vector and axial±
vector currents. For pairs of light quarks �u; d; s; c� and
leptons we determine the quantity

Af � 2gAfgVf

g2Af � g2Vf
: �41�

For the pair b�b (see Appendix VII),

Ab � 2gAbgVb

v2g2Ab � �3ÿ v2� g2Vb=2
v ; �42�

where v is the velocity of the b-quark (in units of c):

v �
�����������������
1ÿ 4m̂2

b

m2
Z

s
: �43�

Here m̂b is the value of the `running mass' of the b-quark with
momentum mZ, calculated in the MS terms [50]. The
forward±backward charge asymmetry in the decay to f�f
equals (see Appendix VII)

Af
FB �

NF ÿNB

NF �NB
� 3

4
AeAf ; �44�

where Ae refers to the creation of a Z-boson in e�eÿ-
annihilations, and Af refers to its decay into f�f.

The longitudinal polarisation of the t-lepton in the
Z! t �t decay is

Pt � ÿAt : �45�

If, however, we measure polarisation as a function of the
angle y between the momentum of a tÿ and the direction of

the electron beam, this permits the determination of not only
At but Ae as well:

Pt�cos y� � ÿAt�1� cos2 y� � 2Ae cos y
1� cos2 y� 2AtAe cos y

: �46�

The polarisation Pt is found from Pt�cos y� by separately
integrating the numerator and the denominator in Eqn (46)
over the total solid angle.

The relative difference between total cross sections in the
Z-peak for the left- and right-polarised electron, that collide
with non-polarised positrons (this quantity is measured at the
SLC collider), is

ALR � sL ÿ sRsL � sR � Ae : �47�

The measurement of the asymmetries outlined above
allows one to determine experimentally the quantities
gVf=gAf, since these asymmetries are caused by the inter-
ference of the vector and axial-vector currents. In their turn,
measurements of the widths Gf, Gh, GZ mostly permit the
experimental determination of gAf, since jgVqj2 < jgAqj2 for
quarks, and for leptons jgVlj25 jgAlj2. As for Gq and Gh,
getting these quantities allows one to find âs.

3.5 The Born approximation for hadronless observables
Before discussing the loop electroweak corrections, let us
consider expressions for mW=mZ, gAf and gVf=gAf in the so-
called �a-Born approximation. Using the angle y introduced
earlier (sin y � s and cos y � c), we automatically take into
account the purely electromagnetic correction due to the
running of a. It is easily shown that in the �a-Born approxima-
tion�

mW

mZ

�B
� c ; �48�

gBAf � T3f ; �49��
gVf
gAf

�B
� 1ÿ 4jQfj s2 : �50�

It is of interest to compare the Born values with their
experimental values. Table 1 presents this comparison for
the so-called `hadronless' observables (here and below the
experimental results are taken from Ref. [44].)

For the reader's convenience, the table lists different
representations of the same observables known in the
literature. Thus, according to widely used definitions,

s2W � 1ÿm2
W

m2
Z

; �51�

Table 1.

Observable Experiment �a-Born

mW=mZ

mW, GeV
s2W
gAl
Gl, MeV
gVl=gAl
s2l

0.8802(18)
80.26(16)
0.2253(31)
ÿ0.5011(4)
83.93(14)
0.0756(14)
0.2311(4)

0.8769(1)
79.96(2)
0.2311(2)
ÿ0.5000(0)
83.57(2)
0.0756(9)
0.2311(2)
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s2l � s2eff � sin2 y lepteff �
1

4

�
1ÿ gVl

gAl

�
: �52�

The experimental value of s2l in the table is the average of
two numbers, 0.2316(5) (LEP) and 0.2305(5) (SLC). It is
assumed in the table that the lepton universality holds, thus
the lepton decay data have been averaged over a number of
observables.

Table 1 shows that the �a-Born approximation provides
good description of the experimental data. (An agreement is
found for the hadron decays of Z-bosons as well). An
especially (and unexpectedly!) good agreement, and the
ensuing smallness of radiative corrections, is found for
gVl=gAl. The anomalous smallness of true electroweak correc-
tions was first pointed out in 1992 [42], when the �a-Born
approximation was applied for the first time. (Before that it
was hidden in the shadow of the large contribution of purely
electromagnetic running of a, that was not separated from
truly electroweak corrections). The LEP1 data of 1992 were
not sufficiently accurate to allow detecting them. Even the
data presented to the Marseilles conference in summer 1993
were not, as pointed out in a number of reports [51],
sufficiently accurate for the detection of radiative corrections.
At the Glasgow conference in summer 1994 corrections were
detectable at the level of 2:3s for gAl, 1:5s for mW and 1s for
gVl=gAl [52]. Note that the difference between most recent
experimental values s2W � 0:2253�31� and s2l � 0:2311�4� is a
2s manifestation of electroweak radiative corrections, which
is independent of either the choice of the Born approximation
or of the choice of calculation scheme.

4. One-loop corrections
to hadronless observables

The fact that the experimentally observed electroweak correc-
tions are small suggests that one-loop approximation would
be sufficient for describing them [42]. This idea is supported
by a thorough evaluation [18] of theoretical uncertainties
contributed by higher-order perturbation theory in electro-
weak interaction. There exists essentially a single two-loop
diagram that should be taken into account. It was calculated
in Ref. [53], and we will discuss its contribution and take it
into account below [see Eqn (79)].

4.1 Four types of Feynman diagrams
Four types of Feynman diagrams contribute to electroweak
corrections for the observables of interest to us here,
mW=mZ; gAl; gVl=gAl:

(1) Self-energy loops for W and Z-bosons with virtual
n; l; q;H;W and Z in loops. Examples of some of these
diagrams are shown in Figs 5b±5n.

(2) Loops of charged particles that result in Z$ g
transitions (Figs 5o±5r).

(3) Vertex triangles with virtual leptons and W- or Z-
boson (Figs 6a±6c).

(4) Electroweak corrections to lepton wavefunctions
(Figs 6d, e).

It must be emphasised that loops shown in Figs 5h±5n
contribute not only to the mZ mass and, consequently, to the
mW=mZ ratio but also to the Z-boson decay to l�l, to which
Z$ g transitions also contribute (Figs 5o±5r). This occurs
owing to the diagrams of the type of Figs 6f±6g, which give
corrections to the Z-boson wavefunction.

Obviously, electroweak corrections to mW=mZ; gAl and
gVl=gAl are dimensionless and thus can be expressed in terms
of �a; c; s and the dimensionless parameters

t �
�
mt

mZ

�2

; h �
�
mH

mZ

�2

;

where mt is the mass of the t-quark and mH is the higgs mass.
(We neglect the masses of leptons and all quarks except t.)

4.2 The asymptotic limit at m2
t 4m2

Z
It is convenient to split the calculation of corrections into a
number of stages and begin with calculating the asymptotic
limit for t4 1.

According to the reasons mentioned above [see Eqn (22)],
the main contribution comes from diagrams that contain t-
and b-quarks (Figs 5c, i, j). A simple calculation (see
Appendix VIII) gives the following result for the sum of the
Born and loop terms:

mW

mZ
� c� 3c

32ps2�c2 ÿ s2� �at ; �53�

gAl � ÿ 1
2
ÿ 3

64ps2c2
�at ; �54�

R � gVl
gAl
� 1ÿ 4s2 � 3

4p�c2 ÿ s2� �at ; �55�

gn � 1

2
� 3

64ps2c2
�at : �56�

4.3 The functions Vm(t, h), VA(t, h) and VR(t, h)
If we now switch from the asymptotic case of t4 1 to the case
of t � 1, then, first, the change in the contribution of the
diagrams 5c, i, j can be written in the form

t! t� Ti�t� ; �57�

Z

Z

Â b c

d e

f g

l l

l l

Z

W
l l

nl nl

Z

W
l

l
l nl

Z

Z

l

l

ll

Z

Z

ll

Z

g

ll

Z

W W

ll nl

Figure 6. Vertex triangular diagrams in the Z! l�l decay (a) ± (c). Loops
that renormalised the antilepton wavefunctions in the Z! l�l decay. (Of
course lepton has similar loops.) (d), (e). Types of diagrams that renorma-

lised the Z-boson wavefunction in the Z! l�l decay (f), (g). Virtual

particles in the loops are those presented in Fig. 5.
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where the index i � m;A;R, n formW=mZ; gAl; R � gVl=gAl
and gn, respectively. The functions Ti are relatively simple
combinations of algebraic and logarithmic functions. They
are listed in explicit form in Appendix IX. Their numerical
values for a range of values of mt are given in Table 2. The
functions Ti�t� thus describe the contribution of the quark
doublet t; b to mW=mZ, gA, R � gVl=gAl and gn. If, however,
we now take into account the contributions of the remaining
virtual particles, then the result can be given in the form

t! Vi �t; h� � t� Ti �t� �Hi �h� � Ci � dVi �t; h� : �58�
HereHi�h� contain the contribution of the virtual vector and
Higgs bosonsW;Z andH are functions of the higgs massmH.
[The masses of the W- and Z-bosons enter Hi�h� via the
parameters c; s, defined by Eqn (26)]. The explicit form of the
functions Hi is given in Appendix IX, and their numerical
values for various values of mH are given in Table 3.

The constants Ci in Eqn (58) include the contributions of
light fermions to the self-energy of the W- and Z-bosons, and
also to the diagrams in Fig. 3, describing the muon decay, and
in Figs 6a±6c, describing the Z-boson decay. The constantsCi

are relatively complicated functions of s2 (see Appendix XII).
We list here their numerical values for s2 � 0:23110ÿ ds2:

Cm � ÿ1:3497� 4:13 ds2; �59�
CA � ÿ2:2621ÿ 2:63 ds2; �60�
CR � ÿ3:5045ÿ 5:72 ds2; �61�
Cn � ÿ1:1641ÿ 4:88 ds2: �62�

4.4 Corrections dVi (t, h)
Finally, the last term in Eqn (57) includes the sum of
corrections of five different types. Their common feature is
that they are all quite small (except for dt2Vi) and that they
represent two loops (with the exception of a one-loop d1Vi

and a three-loop d3Vi).
(1) d1Vi contains contributions of the W-boson and the t-

quark to the polarisation of the electromagnetic vacuum
dWa � DrWem and dta � Drtem [see Figs 7a±7c and Eqn (16)],
which traditionally are not included into the running of a�q2�,
i.e. into �a. It is reasonable to treat them as electroweak
corrections. This is especially true for the W-loop that
depends on the gauge chosen for the description of the W-
and Z-bosons. Only after this loop is taken into account, the
resultant electroweak corrections become gauge-invariant, as
it should indeed be for physical observables. Here and
hereafter in the calculations the 't Hooft±Feynman gauge is
used (see Appendix I),

d1Vm �t; h� � ÿ 16
3
ps4

1

a
�dWa� dta� � ÿ0:055; �63�

Table 2.

mt, GeV t Tm TA TR

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

0
0.012
0.048
0.108
0.192
0.301
0.433
0.589
0.770
0.974
1.203
1.455
1.732
2.032
2.357
2.706
3.079
3.476
3.896
4.341
4.810
5.303
5.821
6.362
6.927
7.516
8.130
8.767
9.428
10.114
10.823

ÿ0.188
0.192
ÿ0.256
ÿ0.430
ÿ0.753
ÿ0.985
ÿ0.931
ÿ0.688
ÿ0.317
ÿ0.080
0.084
0.214
0.323
0.418
0.503
0.579
0.649
0.713
0.772
0.828
0.880
0.929
0.975
1.019
1.061
1.101
1.139
1.176
1.211
1.245
1.277

0.875
0.934
0.955
0.812
0.403
0.111
0.327
0.390
0.421
0.440
0.451
0.460
0.465
0.470
0.473
0.476
0.478
0.480
0.481
0.483
0.484
0.485
0.485
0.486
0.487
0.487
0.487
0.488
0.488
0.489
0.489

0.444
0.038
ÿ0.015
ÿ0.305
ÿ0.959
ÿ0.748
ÿ0.412
ÿ0.250
ÿ0.143
ÿ0.061
0.006
0.062
0.111
0.154
0.193
0.228
0.261
0.291
0.319
0.345
0.370
0.393
0.415
0.436
0.456
0.475
0.493
0.510
0.527
0.543
0.559

Table 3.

mH, GeV h Hm HA HR

0.01
0.10
1.00
10.00
50.00
100.00
150.00
200.00
250.00
300.00
350.00
400.00
450.00
500.00
550.00
600.00
650.00
700.00
750.00
800.00
850.00
900.00
950.00
1000.00

0.000
0.000
0.000
0.012
0.301
1.203
2.706
4.810
7.516
10.823
14.732
19.241
24.352
30.065
36.378
43.293
50.809
58.927
67.646
76.966
86.887
97.410
108.534
120.259

1.120
1.119
1.103
0.980
0.661
0.433
0.275
0.151
0.050
ÿ0.037
ÿ0.112
ÿ0.178
ÿ0.238
ÿ0.292
ÿ0.341
ÿ0.387
ÿ0.429
ÿ0.469
ÿ0.506
ÿ0.540
ÿ0.573
ÿ0.604
ÿ0.633
ÿ0.661

ÿ8.716
ÿ5.654
ÿ2.652
ÿ0.133
0.645
0.653
0.588
0.518
0.452
0.392
0.338
0.289
0.244
0.202
0.164
0.128
0.095
0.064
0.035
0.007
ÿ0.019
ÿ0.044
ÿ0.067
ÿ0.090

1.359
1.354
1.315
1.016
0.360
ÿ0.022
ÿ0.258
ÿ0.430
ÿ0.566
ÿ0.679
ÿ0.776
ÿ0.860
ÿ0.936
ÿ1.004
ÿ1.065
ÿ1.122
ÿ1.175
ÿ1.223
ÿ1.269
ÿ1.311
ÿ1.352
ÿ1.390
ÿ1.426
ÿ1.460

a
gg

t

t

W
g g

W

b W

g g

c

Figure 7. Virtual t-quarks (a) and W-bosons (b), (c) in the photon

polarisation of the vacuum.

512 M I Vysotsky, V A Novikov, L B Okun, A N Rozanov Physics ±Uspekhi 39 (5)



d1VR �t; h� � ÿ 16
3
ps2c2

1

a
�dWa� dta� � ÿ0:181; �64�

d1VA �t; h� � d1Vn�t; h� � 0; �65�
where

dWa
a
� 1

2p

�
�3� 4c2�

�
�
1ÿ

���������������
4c2 ÿ 1
p

arcsin
1

2c

�
ÿ 1

3

�
� 0:0686; �66�

dta
a
� ÿ 4

9p

�
�1� 2t�Ft�t� ÿ 1

3

�
� ÿ 4

45p
1

t
� ::: � ÿ0:00768 : �67�

(Unless specified otherwise, we use mt � 175 GeV in numer-
ical evaluations.)

(2) The corrections d2Vi are caused by including virtual
gluons in electroweak loops in the order �aâs (see Figs 8a±8c);
similar diagrams can, of course, be drawn for W-bosons. In
addition to loops with light quarks q � u; d; s; c, there exist
similar loops with third-generation quarks t and b:

d2Vi�t� � dq2Vi � dt2Vi�t� :

The analytical expressions for corrections dq2Vi and d
t
2Vi�t�

are given in Appendix XV. Here we only give numerical

estimates for them:

dq2Vm � ÿ0:377 âsp ; �68�

dq2VA � 1:750
âs
p
; �69�

dq2VR � 0 ; �70�
dt2Vm�t� � ÿ11:67 âs�mt�

p
� ÿ10:61 âs

p
; �71�

dt2VA�t� � ÿ10:10 âs�mt�
p
� ÿ9:18 âs

p
; �72�

dt2VR�t� � ÿ11:88 âs�mt�
p
� ÿ10:80 âs

p
; �73�

since [16]

âs�mt� � âs
1� �23=12p� âs ln t : �74�

(For numerical evaluation, we use âs � âs�mZ� � 0:125.) We
have mentioned already that the corrections dt2Vi�t�, whose
numerical values were given in Eqns (71) ± (73), are much
larger than all other terms included in dVi. We emphasise that
the term in dt2Vi that is leading for high t is universal: it is
independent of i. As shown in Reef. [54], this leading term is
obtained bymultiplying theVeltman asymptotics t by a factor

1ÿ 2p2 � 6

9

âs�mt�
p

; �75�

or, numerically,

t! t

�
1ÿ 2:86

âs�mt�
p

�
: �76�

Qualitatively the factor (75) corresponds to the fact that the
running mass of the t-quark at momenta p2 � m2

t , that
circulate in the t-quark loop, is lower than `on the mass-
shell' mass of the t-quark. It is interesting to compare the
correction (76) with the quantity

~m2
t � m2

t �p2t � ÿm2
t � � m2

t

�
1ÿ 2:78

âs�mt�
p

�
; �77�

calculated in the Landau gauge in Ref. [55], p. 102. The
agreement is overwhelming. There is, therefore, a simple
mnemonic rule for evaluating the main gluon corrections for
the t-loop.

(3) Corrections d3Vi of the order of �aâ2s were calculated in
the literature [56] for the term leading in t (i.e. �aâ2s t). They are
independent of i (in numerical estimates we use for the
number of quark flavours Nf � 5):

d3Vi �t� � ÿ�2:38ÿ 0:18Nf� â2s �mt� t
� ÿ1:48â2s �mt� t � ÿ0:07 : �78�

The corrections d1Vi; d2Vi; d3Vi, are independent of mH,
the corrections d4Vi depend both onmt, and onmH, while the
corrections d5Vi are proportional to m2

H. In contrast to all
previous corrections, they arise due to the electroweak
interaction in two loops, not one.

(4) In the leading approximation in t the correction
d4Vi�t; h� produced by the diagrams of Figs 8d±8f is indepen-
dent of i and takes the form
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d4Vi �t; h� � ÿ �a
16ps2c2

A

�
h

t

�
t2 ; �79�

where the function A�h=t�, calculated in Ref. [53], is given in
Table 4 for mH=mt < 4. For mt � 175GeV and
mH � 300GeV

d4Vi � ÿ0:11 : �80�

The following expansion holds for mH=mt > 4:

A

�
h

t

�
� ÿ 49

4
ÿ p2 ÿ 27

2
ln rÿ 3

2
ln2 rÿ 1

3
r

� �2ÿ 12p2 � 12 ln rÿ 27 ln2 r�

ÿ r2

48
�1613ÿ 240p2 ÿ 1500 ln rÿ 720 ln2 r�; �81�

where r � t=h. d4Vi�t; h� is the greatest of the two-loop
corrections in electroweak interaction; however, it is also
several times smaller than the main gluon corrections dt2Vi.

(5) Corrections d5Vi due to two-loop diagrams of the type
of Figs 8g±8j are negligible, but for the sake of completeness
of the presentation, we list them in Appendix XVII.

4.5 Accidental (?) compensation
and the mass of the t-quark
Now that we have expressions for all terms in Eqn (58), it will
be convenient to analyze their roles and the general behaviour
of the functions Vi�t; h�. As functions of mt at three fixed
values of mH, they are shown in Figs 9a, 10a, 11a. In all these
figures, we see a cusp atmt � mZ=2. This is a typical threshold
singularity that arises when the channel Z! t�t is opened. It is
of no practical significance since experiments givemt4mZ=2.
What really impresses is that the functions Vi are nearly zero
for mt � 100� 200 GeV. This happens because of the
compensation of the leading term t and the rest of the terms,

which produce a negative aggregate contribution. This is
especially well pronounced in the function VR at mt ' 180
GeV. Here the main negative contribution comes from the
light fermions (the constant CR).

If we neglect the small correction d4Vi�t; h�which depends
both on t and on h, then each function Vi�t; h� is a sum of
functions one of which is t-dependent but independent of h,
while the second is h-dependent but independent of t (plus, of
course, a constant, which is independent of both t and h).
Therefore the curves for mH � 60 and 1000 GeV in Figs 9a,
10a, 11a are (mostly) produced by the parallel transfer of the
curve for mH � 300 GeV.

We see in Figs 9a, 10a and 11a that if the t-quarkwas light,
radiative corrections would be negative, and if it was very
heavy, they would be much larger. This looks like a con-
spiracy of the observable mass of the t-quark and all other

Table 4.

mH=mt A �mH=mt� t�2��mH=mt�� mH=mt A �mH=mt� t�2��mH=mt��

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

0.739
1.821
2.704
3.462
4.127
4.720
5.254
5.737
6.179
6.583
6.956
7.299
7.617
7.912
8.186
8.441
8.679
8.902
9.109
9.303
9.485

5.710
4.671
3.901
3.304
2.834
2.461
2.163
1.924
1.735
1.586
1.470
1.382
1.317
1.272
1.245
1.232
1.232
1.243
1.264
1.293
1.330

2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
3.40
3.50
3.60
3.70
3.80
3.90
4.00

9.655
9.815
9.964
10.104
10.235
10.358
10.473
10.581
10.683
10.777
10.866
10.949
11.026
11.098
11.165
11.228
11.286
11.340
11.390
11.436

1.373
1.421
1.475
1.533
1.595
1.661
1.730
1.801
1.875
1.951
2.029
2.109
2.190
2.272
2.356
2.441
2.526
2.613
2.700
2.788

* See Appendix XV.
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1000 GeV, according to Eqn (58). The dotted parabola t � �mt=mZ�2
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lines the same as in Fig. 9a) (b).
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parameters of the electroweak theory, as a result of which the
electroweak correction VR becomes anomalously small. Note
that the corrections do not vanish simultaneously because, if
we fix the value of mH, then Vm�t�, VA�t� and VR�t� cross the
horizontal lines Vi � 0 at different values of mt. What
happens is an approximate vanishing of the correction,
which as if corresponds to some broken symmetry. The
nature of this symmetry is not clear at all, and even its
existence is very problematic.

One should specially note the dashed parabola in Figs 9a,
10a and 11a corresponding to the Veltman term t. We see that
in the interval 0 < mt < 250 GeV it lies much higher than VA

andVR and approachesVm only in the right-hand side of Fig.
9a. Therefore, the so-called non-leading `small' corrections
that are typically replaced with ellipses in standard texts, are
found to be comparable with the leading term t.

A glance at Figs 9a, 10a, 11a readily explains how the
experimental analysis of electroweak corrections allows,
despite their smallness, a prediction, within the framework

of the MSM, of the t-quark mass. Even when the experi-
mental accuracy of LEP1 and SLC experiments was not
sufficient for detecting electroweak corrections, it was suffi-
cient for establishing the t-quark mass using the points at
which the curves Vi�mt� intersect the horizontal lines corre-
sponding to the experimental values of Vi and the parallel to
them dashed lines that show the band of one standard
deviation. The accuracy in determining mt is imposed by the
band width and the slope of Vi�mt� lines.

The dependence Vi�mH� for three fixed values of
mt � 150, 175 and 200 GeV (Figs 9b, 10b, 11b) can be
presented in a similar manner. As follows from the explicit
form of the terms Hi�mH�, the dependence Vi�mH� is
considerably less steep (logarithmic). This is the reason why
the prediction of the higgs mass extracted from electroweak
corrections has such a high uncertainty. We will see later
(Figs 13 ± 15) that the accuracy of prediction of mH will
greatly depend on what the t-quark's mass is going to be. If
mt � 150� 5 GeV, then mH < 200 GeV at the 3s level. If
mt � 200� 5 GeV, then mH > 120 GeV at the 3s level. If,
however, mt � 175� 5 GeV, we are hugely unlucky: there is
practically no constraint on mH.
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Before starting a discussion of hadronic decays of the Z-
boson, let us `go back to the roots' and recall how the
equations for Vi�mt;mH� were derived.

4.6 How to calculate V
i
? `Five steps'

An attentive reader should have already come up with the
question: what makes the amplitudes of the lepton decays of
the Z-boson in the one-loop approximation depend on the
self-energy of the W-boson? Indeed, the loops describing the
self-energy of the W-boson appear in the decay diagrams of
the Z-boson only beginning with the two-loop approxima-
tion. The answer to this question is as follows. We have
already emphasised that we find expressions for radiative
corrections to Z-boson decays in terms of �a, mZ and Gm.
However, the expression forGm includes the self-energy of the
W-boson even in the one-loop approximation. The point is
thus in expressing some observables (in this particular case,
mW=mZ, gA, gV=gA) in terms of other, more accurately
measured observables (�a, mZ, Gm).

Let us trace how this is achieved, step by step. There are
altogether `five steps to happiness', based on the one-loop
approximation.

Step I. We begin with the electroweak Lagrangian after it
had undergone the spontaneous violation of the
SU�2� �U�1�-symmetry by the higgs vacuum condensate
(vacuum expectation value ± VEV) Z and the W- and Z-
bosons became massive. Let us consider the bare coupling
constants (the bare charges e0 of the photon, g0 of the W-
boson and f0 of the Z-boson) and the baremasses of the vector
bosons:

mZ0 � 1

2
f0Z ; �82�

mW0 � 1

2
g0Z ; �83�

and also bare masses:mt0 of the t-quark andmH0 of the higgs.
Step II. We express �a, Gm, mZ in terms of f0, g0, e0, Z, mt0,

mH0 and 1=e (see Appendix V). Here, 1=e appears because we
use the dimensional regularization, calculating the Feynman
integrals in the space ofD dimensions (see Appendix I). These
integrals diverge at D � 4 and are finite in the vicinity of
D � 4. By definition,

2e � 4ÿD! 0 : �84�

Note that in the one-loop approximation mt0 � mt,
mH0 � mH, since we neglect the electroweak corrections to
the masses of the t-quark and the higgs. For the higgs this
approximation is quite legitimate, since the accuracy of
extracting its mass from radiative corrections is very poor.
As for the t-quark, this statement is also true at the current
accuracy of the experimental measurement of electroweak
corrections; however, this would become an unacceptably
crude approximation if this accuracy could be improved by an
order of magnitude at LEP and SLC. The situation here is
analogous to that for Gm and the self-energy of the W-boson.
Step II is almost physics: we calculate the Feynman diagrams
(we say ``almost'' to emphasise that observables are expressed
in terms of nonobservable, `bare', and generally infinite
quantities).

Step III. Let us invert the expressions derived at Step II
and write f0, g0, Z in terms of �a, Gm, mZ, mt, mH and 1=e. This
step is pure algebra.

Step IV. Let us express Vm, VA, VR (or the electroweak
one-loop correction to any other electroweak observable, all
of them being treated on an equal basis) in terms of f0, g0, Z,
mt, mH and 1=e. (Like Step II, this step is again almost
physics.)

Step V. Let us express Vm, VA, VR (or any other
electroweak correction) in terms of �a, Gm, mZ, mt, mH using
the results of Steps III and IV. Formally this is pure algebra,
but in fact pure physics, since now we have expressed certain
physical observables in terms of other observables. If no
errors were made on the way, the terms 1=e cancel out. As a
result, we arrive at Eqn (58), which gives Vi as elementary
functions of t, h and s.

The five steps outlined above are very simple and visually
clear. We obtain the main relations without using the `heavy
artillery' of quantum field theory with its counterterms in the
Lagrangian and the renormalisation procedure. This simpli-
city and visual clarity became possible owing to the one-loop
electroweak approximation (even though this approach to
renormalisations is possible in multiloop calculations, it
becomes more cumbersome than standard procedures). As
for the QCD-corrections to quark electroweak loops and the
two-loop higgs contribution hidden in the terms dVi in Eqn
(58), we take the relevant formulas from the calculations of
other authors.

5. Hadronic decays of Z-boson

5.1 The leading quarks and hadrons
As discussed above [see Eqns (35) ± (40) and the subsequent
Section 3.4], an analysis of hadronic decays reduces to the
calculation of decays to pairs of quarks: Z! q�q. The key role
is played by the concept of leading hadrons that carry away
the predominant part of the energy. For example, the Z! c�c
decay mostly produces two hadron jets flying in opposite
directions, in one of which the leading hadron is the one
containing the �c-quark, for example, Dÿ � �cd, and in the
other the hadron with the c-quark, for example, D0 � c�u or
L�c � udc. Likewise, Z! b�b decays are identified by the
presence of high-energy B or �B mesons. If we select only
particles with energy close to mZ=2, the identification of the
initial quark channels is unambiguous. The total number of
such cases will, however, be small. If we take into account as a
signal less energetic B-mesons, we face the problem of their
origin. Indeed, a pair b�b can be created not only directly by a
Z-boson but also by a virtual gluon in, say, a Z! c�c decay
(Fig. 12a) or Z! u�u, or s�s. This example shows the sort of
difficulty encountered by experimentalists trying to identify a
specific quark±antiquark channel. Furthermore, owing to
secondary pairs, the total hadron width is not strictly equal
to the sum of partial quark widths.

We remind the reader that for the partial width of the
Z! q�q decay we had (35)

Gq � G�Z! q�q� � 12G0 � g2AqRAq � g2VqRVq � ; �85�

where the standard width G0 is [according to Eqn (31)]

G0 � Gmm
3
Z

24
���
2
p
p
� 82:944�6�MeV ; �86�

and the radiators RAq and RVq are given in Appendix VI. As
for the electroweak corrections, they are included in the
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coefficients gAq and gVq. The sum of the Born and one-loop
terms has the form

gAq � T3q

�
1� 3�a

32ps2c2
VAq �t; h�

�
; �87�

Rq � gVq
gAq
� 1ÿ 4 jQqj s2 � 3jQqj

4p�c2 ÿ s2� �aVRq�t; h� : �88�

5.2 Decays to pairs of light quarks
Here, as in the case of hadronless observables, the quantities
V that characterise corrections are normalised in the standard
way: V! t as t4 1. Naturally, those terms in V that are due
to the self-energies of vector bosons are identical for both
leptons and quarks. The deviation of the differences
VAq ÿ VA and VRq ÿ VR from zero are caused by the
differences in radiative corrections to vertices Z! q�q and
Z! l�l. For four light quarks we have

VAu�t; h� � VAc�t; h� � VA�t; h� � 128ps3c3

3�a
�FAl � FAu� ;

�89�

VAd�t; h� � VAs�t; h� � VA�t; h� � 128ps3c3

3�a
�FAl ÿ FAd�;

�90�

VRu�t; h� � VRc�t; h�

� VR�t; h� � 16psc�c2 ÿ s2�
3�a

�
FVl ÿ �1ÿ 4s2�FAl

� 3

2

�
ÿ
�
1ÿ 8

3
s2
�
FAu � FVu

��
; �91�

VRd�t; h� � VRs�t; h�

� VR�t; h� � 16psc�c2 ÿ s2�
3�a

�
FVl ÿ �1ÿ 4s2�FAl

� 3

��
1ÿ 4

3
s2
�
FAd ÿ FVd

��
; �92�

where (see Appendix XIII):

FAl � �a
4p
�3:0099� 16:4ds2�; �93�

FVl � �a
4p
�3:1878� 14:9ds2�; �94�

FAu � ÿ �a
4p
�2:6802� 14:7ds2�; �95�

FVu � ÿ �a
4p
�2:7329� 14:2ds2�; �96�

FAd � �a
4p
�2:2221� 13:5ds2�; �97�

FVd � �a
4p
�2:2287� 13:5ds2�: �98�

The values of F are given here for s2 � 0:23110ÿ ds2. The
accuracy to five decimal places is purely arithmetic. The
physical uncertainties introduced by neglecting higher-order
loops manifest themselves already in the third decimal place.
It is necessary to point out that corrections of the type of that
shown in Fig. 12b have not yet been calculated.

5.3 Decays to b�b pair
In the Z! b�b decay it is necessary to take into account
additional t-dependent vertex corrections:

VAb�t; h� � VAd�t; h� ÿ 8s2c2

3�3ÿ 2s2�
�
f�t� � df�t��; �99�

VRb�t; h� � VRd�t; h� ÿ 4s2�c2 ÿ s2�
3�3ÿ 2s2�

�
f�t� � df�t��: �100�

Here the term f�t� calculated in Ref. [57] corresponds to Fig.
12c and the term df�t� calculated in Refs [58, 53] corresponds
to the leading gluon and higgs corrections to the termf�t� (see
Fig. 12d). Expressions for f�t� and df�t� are given in
Appendix XIV. For mt � 175 GeV, âs�mZ� � 0:125,
mH � 300 GeV,

f�t� � 29:9 ; �101�
df�t� � ÿ3:0 ; �102�

and correction terms in Eqns (99) and (100) are very large:
they are equal to ÿ5:0 and ÿ1:8, respectively.

6. Comparison of theoretical results
and experimental LEP1 and SLC data

6.1 LEPTOP code
A number of computer programs (codes) were written for
comparing high-precision data of LEP1 and SLC. The best
known of these programs in Europe is ZFITTER [59], which
takes into account not only electroweak radiative corrections
but also all purely electromagnetic ones, including, among
others, the emission of photons by colliding electrons and
positrons. Some of the first publications in which the t quark
mass was predicted on the basis of precision measurements
[60], were based on the code ZFITTER. Other European
codes, BHM [61], WOH, TOPAZO [62], somewhat differ
from ZFITTER. The best known in the USA are the results
generated by the code used by Langacker [35].
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Figure 12. The Z! c�c decay producing a secondary b�b pair created by a
virtual gluon g (a). The Z! q�q decay with a virtual gluon g which

connects a side of the quark triangle with an external quark line. Diagrams

of this type have not been calculated yet (b). The vertex electroweak

diagram involving t-quarks and contributing to the Z! b�b decay (c). One
of the diagrams (d) describing gluon corrections to (c) diagram.
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The original idea of the authors of this review in 1991±
1993 was to derive simple analytical formulas for electroweak
radiative corrections, which would make it possible to predict
the t-quark mass using no computer codes, just by analyzing
experimental data on a sheet of paper. Alas, the diversity of
hadron decays of Z-bosons, depending on the constants of
strong gluon interaction âs, was such that it was necessary to
convert analytical formulas into a computer program which
we jokingly dubbed LEPTOP [63]. The LEPTOP calculates
the electroweak observables in the framework of the MSM
and fits experimental data so as to determine the quantities
mt,MH and âs�mZ�. The logical structure of LEPTOP is clear
from the preceding sections of this review and is shown in the
Flowchart. The code of LEPTOP can be downloaded from
the Internet home page: http://cppm.in2p3.fr/leptop/intro lep-
top.html.

A comparison of the codes ZFITTER, BHM, WOH,
TOPAZO, and LEPTOP, carried out in 1994±95 [18], has
demonstrated that their predictions for all electroweak
observables coincide with accuracy that is much better
than the accuracy of the experiment. The results of
processing the experimental data using LEPTOP are
shown below.

6.2 General fit
Table 5 shows experimental values of the electroweak
observables, obtained by averaging the results of four LEP
detectors (part a), and also SLC data (part b), and the data on
W-boson mass (part c). (The data on theW-boson mass from
the p�p-colliders are also shown, for the reader's convenience,
in the form of s2W, while the data on s

2
W from nN-experiments

are also shown in the form of mW. These two numbers are
given in italics, emphasising that they are not independent
experimental data.) We take experimental data from Ref.
[44].

Table 5 sums up the experimental data used for determin-
ing (fitting) the parameters of the Standard Model mt and
âs�mZ� (see Table 7). The central values in the third column of
Table 5 were calculated for mH � 300 GeV. Shown in
brackets is the uncertainty of the last significant decimal
places due to the uncertainty of the fitted values mt and âs.
Above and below we give the shifts in the last significant
decimal places corresponding to mH � 1000 GeV and
mH � 60 GeV, respectively. The last column shows the value
of the `pull'. By definition, the pull is the difference between
the experimental and the theoretical values divided by
experimental uncertainty. The pull values show that the
maximum discrepancy between the experimental data and
theMSM is found forRb (3:8s). Deviations at the level of 2:5s
are also found for Rc and sin2 ylepteff � s2l in ALR (SLC). For
most observables the discrepancy is less than 1s. At the same

Flowchart.

Choose three observables:
Gm, mZ, a�mZ� � �a.

Determine angle y (s � sin y, c � cos y)
in terms of Gm, mZ, �a: Gm � �p=

���
2
p � �a=s2c2m2

Z.

Introduce bare coupling constants in the framework of the MSM
(a0, aZ0, aW0), bare masses (mZ0, mW0, mH0, mt0, mq0)

and the vacuum expectation value (VEV) of the higgs éeld Z.

Express a0, aZ0, mZ0 in terms of Gm, mZ, �a
in one-loop approximation, using dimensional

regularization (1=e; m).

Express one-loop electroweak corrections to all
electroweak observables in terms of a0, aZ0, mZ0, mt, mH,

and hence, in terms of Gm, mZ, �a, mt, mH. Check
cancellation of the terms (1=e; m).

Introduce gluon corrections to quark loops
and QED (and QCD) énal state interactions

(in hadron decays), given in terms of �a, âs�mZ�, mb�mZ�, mt.

Compare the predictions of the Born approximation
and the approximation Born + one loop with the experimental

data on Z-decays.

Perform global ét for the three parameters
mt, âs�mZ�, mH or for the érst two, with the third éxed.

Derive theoretical predictions of the central values
for all electroweak observables and of

the corresponding uncertainties (`errors').

Table 5.

Observable Experimental
data

Fit standard
model

Pull

(Â) LEP
shape of Z-peak
and lepton asymmetries:
mZ, GeV
GZ, GeV
sh, nb
Rl

Al
FB

t-polarisation:
At
Ae

Results for b-and
c-quarks:
Rb

Rc

Ab
FB

Ac
FB

Charge asymmetry for pairs
of light quarks q�q:
s2l �hQFBi�

(b) SLC
ALR

s2l �ALR�
Rb

Ab

Ac

(c) p�p and nN
mW, GeV �p�p�

1ÿm2
W=m

2
Z �nN�

91.1884(22)
2.4963(32)
41.488(78)
20.788(32)
0.0172(12)

0.1418(75)
0.1390(89)

0.2219(17)
0.1543(74)
0.0999(31)
0.0725(58)

0.2325(13)

0.1551(40)
0.2305(5)
0.2171(54)
0.8410(530)
0.6060(900)

80.26(16)
0.2253(31)
0.2257(47)
80.24(24)

ì
2.4976(26)�6ÿ16
41.450(20)�3ÿ7
20.770(24)ÿ5�11
0.0158(6)ÿ2�3

0.1450(26)ÿ7�13
0.1450(26)ÿ7�13

0.2155(3)ÿ7�7
0.1724(1)�2ÿ2
0.1017(19)ÿ6�10
0.0726(14)ÿ4�7

0.2318(3)�1ÿ2

0.1450(26)ÿ7�13
0.2318(3)�1ÿ2
0.2155(3)ÿ7�7
0.9345(2)ÿ3�4
0.6670(12)ÿ3�6

80.35(5)�1ÿ3

0.2237(9)ÿ2�5

ì
ÿ0.4
0.5
0.6
1.2

ÿ0.4
ÿ0.7

3.8
ÿ2.5
ÿ0.6
0.0

0.6

2.5
ÿ2.5
0.3
ÿ1.8
ÿ0.7

ÿ0.5

0.4
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time, Table 6 shows that the value s2l � 0:23186�34� extracted
from all asymmetries at LEP agrees quite well with the fitted
MSMvalue s2l � 0:2321�4� from the LEP data, and for all sets
of data.

Table 6 gives experimental values of s2l . The third column
was obtained by averaging of the second column, and the
fourth by cumulative averaging of the third; it also lists the
values of w2 over the number of degrees of freedom (d.o.f.).

Table 7 gives the fitted values mt and âs � âs�m2
Z�, and

also the values of w2 times the number of degrees of freedom
for various sets of data, wheremW stands for both the data of
mW measurements in p�p collisions and the values of s2W,
extracted from experiments with nN. The lower part of the
table gives the values of

s2l � sin2 ylepteff �
1

4

�
1ÿ gVl

gAl

�
; s2W � 1ÿm2

W

m2
Z

;

calculated in one-loop electroweak approximation in the
framework of the MSM using fitted values of mt and âs.
Errors given in parentheses are due to uncertainties in mt, âs
and �a, and were calculated by summation of squares, ignoring
correlations. Note that the errors in the values of s2W
calculated using the fits are substantially lower than in the
experimental values of this quantity (see Table 5); at the same
time, the errors for s2l are practically identical for the
experimental (Table 6) and the theoretical (Table 7) values.
Note that the first and second rows of the lower part of Table
7 carry identical information; the same is true for the third,
fourth and fifth rows.

7. Conclusions

7.1 Achievements
What are the main results obtained with four detectors of the
LEP1 collider and one detector of the SLC?

Judging by the criteria of accelerator and experimental
techniques, the highest imaginable level has been achieved in
the team creativity. The impossible became the reality owing
to a never before dreamt-of sophistication of equipment of
gigantic high-precision detectors. Twentymillion decays of Z-
bosonsweremeasuredwith better accuracy than that admired
in gemstone cutting.

From the physics standpoint, the main result is the
experimental proof of the statement that there exist only
three generations of quarks and leptons with light neutrinos.
The number of light neutrinos, found from the sum width of
the invisible Z-boson decays, is

Nn � 2:990�16�: �103�

The lower limit on the masses of the heavy neutrinos in the
additional generations, provided they exist, is close to mZ=2
and equals 44 GeV.

No new particles were found in Z-boson decays. In
particular, the higgs was not found. From LEP1 data, the
lower limit on the higgs mass is

mH > 60 G|W : �104�

The high-precision measurement of the Z-boson mass, its
total and partial decay widths and also of the P- and C-
violating asymmetries made it possible to determine experi-
mentally the electroweak radiative corrections. A comparison
of these experimental values with the results of theoretical
calculations based on the MSM led to prediction of the t-
quark mass mt and the constant of strong interaction for
gluons âs:

mt � 180�7��18ÿ21 GeV; �105�
âs � 0:124�4��2ÿ2 : �106�

Shown in parentheses here is the uncertainty (one standard
deviation) due to the uncertainty of the experimental data.
The central value corresponds to the assumption that
mH � 300 GeV, and the upper and lower `shifts' correspond
to mH � 1000 GeV and 60 GeV, respectively. Radiative
corrections depend only weakly onmH, so one cannot extract

Table 6.

Observable s2l Average over
groups
of observables

Cumulative
average and w2/d.o.f.

Al
FB

At
Ae

Ab
FB

Ac
FB

hQFBi

ALR (SLD)

0.23096(68)
0.23218(95)
0.2325(11)

0.23209(55)
0.2318(13)

0.2325(13)

0.23049(50)

0.23160(49)

0.23205(51)

0.2325(13)

0.23049(50)

0.23160(49) 1.9/2

0.23182(35) 2.4/4

0.23186(34) 2.6/5

0.23143(28) 7.8/6

Table 7.

Physical quantities LEP LEP+SLC LEP+mW LEP+SLC+mW

mt, GeV
âs
w2/d.o.f.

171(9)18ÿ21
0.125(4)�2ÿ2
18/9

182(7)�18ÿ22
0.123(4)�2ÿ2
29/13

170(8)�17ÿ21
0.125(4)�2ÿ2
18/11

180(7)�18ÿ21
0.124(4)�2ÿ2
30/15

s2l
gVl=gAl
s2W
mW=mZ

mW, GeV

0.2321(4)�1ÿ2
0.07116(16)ÿ4�8
0.2247(9)ÿ2�4
0.8805(5)�1ÿ2
80.29(5)�1ÿ2

0.2317(3)�1ÿ2
0.0732(12)ÿ4�8
0.2234(9)ÿ2�5
0.8813(5)�1ÿ3
80.36(5)�1ÿ3

0.2321(4)�1ÿ2
0.0716(16)ÿ4�8
0.2237(9)ÿ2�4
0.8804(5)�1ÿ2
80.28(5)�1ÿ2

0.2318(3)�1ÿ2
0.0728(12)ÿ4�8
0.2237(9)ÿ4�5
0.8811(5)�2ÿ3
80.35(5)�1ÿ3
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the value ofmH from them. The t-quarkmass predicted on the
basis of the radiative corrections within the currently known
experimental uncertainties is in excellent agreement with the
results of direct measurements ofmt in CDF andD0 detectors
at the Tevatron{:

mt � 176�13� GeV �CDF�13��; �107�
mt � 199�30� GeV �D0�14��: �108�

After the t-quark mass uncertainty is further reduced,
radiative corrections can be used for determining the region
in which the higgs mass can lie. Figs 13 ± 15 show that the
results will greatly depend on luck. If mt � 150�5� GeV,
Fig. 13 demonstrates that mH < 150 GeV at the 3s level. If
mt � 200�5� GeV, then mH > 120 GeV at the 3s level
(Fig. 15). If, however, mt � 175�5�, then the higgs can have
any mass within 3s.

7.2 Problems
A cursory glance at Table 5 is sufficient for identifying the
main problem of the Z-boson physics: the discrepancy
between the measured width of decay into a pair b�b and its
theoretical prediction.

The supersymmetrization of the Standard Model may
help solving this problem [66] (see Fig. 16a, this diagram with
superpartners increases Rb). The introduction of additional
vector boson Z0 may be of help as well.

Let us turn now to âs�mZ�. A number of papers [67, 68]
pointed out that the value 0:124�4��2ÿ2, shown in Table 7, is in
contradiction with the measurements of âs�q2� for
q29(10 GeV)2 in deep inelastic scattering [69], in hadron
decays of the U-meson [70] and especially in the spectrum of
upsilonium levels [71]. If the low-energy values
âs�q29 (10 GeV)2) are extrapolated in the framework of the

standard QCD to q2 � m2
Z, we find âs�m2

Z� � 0:110� 0:118.
As for the uncertainty in this range, the authors of Refs [68 ±
71] do not come to a common opinion. The most cautious
scientists evaluate it as�0:005 [69, 70]. The bravest one insists
on �0:001 [68, 71]. In the last case, there is an obvious
contradiction with the value derived by analyzing the Z-
boson decay data. This contradiction served as a basis for
hypotheses [67] that the MSM predictions for hadron widths
are modified by the contribution of some new unknown
particles to electroweak radiative corrections, for example,
squarks and gluino, that is, the supersymmetric partners of
quarks and gluons. For loops with these particles to result in
sufficiently strong deviations from the MSM, it is necessary
that squarks and gluino were sufficiently light, with masses of
the order of 100 GeV. A deviation of the observable value of
Rb by more than 3s from the values predicted in theMSM on
the basis of the global fit (see Table 5) is also considered as an
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mH, GeV

Figure 13. Isolines of w2 in the mt;mH plane, obtained by fitting the

electroweak corrections under the assumption that direct measurements of

the t-quark mass will give mt � 150� 5 GeV.

{At the spring 1996 conferences, more accurate data have been presented:
mt � 175:6� 5:7� 7:4GeV (CDF , see Ref. [64]),

mt � 170� 15� 10GeV (D0, see Ref. [65]).
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Figure 14. The same as in Fig. 13, for mt � 175� 5 GeV.

60 80 100 120 140 160 180 200 220 240

1000

900

800

700

600

500

400

300

200

100

mt, GeV

mH, GeV

Figure 15. The same as in Fig. 13, for mt � 200� 5 GeV.
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independent argument in favour of the view that the new
physics `lurks round the corner'. Two other deviations from
theMSM in Table 5 are less serious:Rc andALR are off by 2.5
standard deviations. Note that in the latter case we witness a
discrepancy not only with MSM but also with the measure-
ments of the lepton asymmetries at LEP1, since, according to
Eqn (47), ALR � Al.

Various parametrizations of themanifestations of the new
physics can be found in the literature. The better known ones
are the parameters S;T;U [72] and e1, e2, e3, eb [73].

7.3 Prospects
The LEP collider completed its work in the LEP1 mode in
autumn 1995 and began working in the LEP2 mode. It is
expected that the total energy of the electron and positron
collision will be raised to 192GeV.What are themain goals of
LEP2 [74]?

A careful measurement of the cross section of the reaction
e�eÿ !W�Wÿ needed to measure the W-boson mass with
accuracy of the order of 50 MeV and to test whether the
interaction of W-bosons with photons and with the Z-boson
agrees with the Standard Model (see Fig. 16b).

A search for a higgs with a mass up to 92 GeV in the
reaction e�eÿ ! HZ (Fig. 16c).

A search for light superparticles (sleptons, squarks).
A search for the unanticipated.
Further prospects for testing the Standard Model and for

searching for `new physics' beyond its limits are rooted in the
Large Hadron Collider (LHC) (a decision to build it has
already been made at CERN) and in the so-called `Next
Linear Collider' for electrons and positrons, which is so far at
the stage of discussion of competing projects.
Acknowledgements.We are grateful to A V Novikov for help
in preparing this review; A N Rozanov is grateful to CNRS-
IN 2 P3/CPPM for support; M I Vysotsky, V ANovikov and
L B Okun are grateful to RFBR for the grant 93-02-14431;
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Appendices
I. Feynman rules in the electroweak theory

A consistent derivation of Feynman rules for theories with
spontaneous violation of gauge symmetry can be found in
textbooks (see, for example, Itzykson, Zuber; Ramond;

Slavnov, Faddeev in Ref. [4]). In this appendix we only give
a summary of results, accompanied by brief comments.

I.1 Gauges and propagators
Quantization of gauge fields (in the MSM this isW�m , Zm and
Am) requires fixing gauge. The most popular is the so-called
Rx gauge which corresponds to adding gauge fixing new terms
dLGF to the classical Lagrangian:

dLGF � ÿ 1

2xA
�qmAm�2 ÿ 1

2xZ
�qmZm ÿmZxZG

0�2

ÿ 1

xW
�qmW�m ÿ imWxWG

�� �qmWÿm � imWxWG
ÿ�; �I:1�

where G�;G0 andH are the components of the higgs doublet
F in the parametrization

F �
G��x�

1���
2
p �

Z�H�x� � iG0�x��
0B@

1CA: �I:2�

In what follows we use the particular case of Rx gauge,
namely

xA � xW � xZ � x:
With gauge fixed, it is possible to determine the propagators
DW
mn�p�, DZ

mn�p� and DA
mn�p� of the fieldsW�m , Zm and Am:

DW
mn�p� � ÿ

i

p2 ÿm2
W � ie

�
gmn ÿ �1ÿ x� pm pn

p2 ÿm2
Wx� ie

�
� ÿ i

p2 ÿm2
W � ie

�
gmn ÿ pmpn

m2
W

�
ÿ i

pm pn

m2
W

1

p2 ÿm2
W x� ie

;

�I:3�

DZ
mn�p� � ÿ

i

p2 ÿm2
Z � ie

�
gmn ÿ �1ÿ x� pm pn

p2 ÿm2
Zx� ie

�
� ÿ i

p2 ÿm2
Z � ie

�
gmn ÿ pmpn

m2
Z

�
ÿ i

pm pn

m2
Z

1

p2 ÿm2
Zx� ie

;

�I:4�

DA
mn�p� � ÿ

i

p2 � ie

�
gmn ÿ �1ÿ x� pm pn

p2 � ie

�
: �I:5�

The case x � 1 corresponds to the 't Hooft±Feynman
gauge, x � 0 to the Landau gauge, x!1 to the Proca gauge.

As follows from Eqns (I.3) and (I.4), the propagators of
massive vector fields can bewritten as sums of a propagator in
the Proca gauge that describes the propagation of physical
degreesof freedomofavectorparticle, andascalarpropagator
with a gauge-dependent pole which corresponds to the
propagation of non-physical degrees of freedom. As a result,
diagrams with virtual W�-, Z-bosons contain non-physical
threshold singularities whose positions depend on the gauge
parameter x. These non-physical singularities partially cancel
out after the appropriate diagramswith the virtualGoldstone
bosons G�, G0 [arising from the higgs doublet F (I.2)] are
added. TheGoldstone boson propagators have the form:

DG��p� � i

p2 ÿm2
Wx� ie

; �I:6�

DG0�p� � i

p2 ÿm2
Zx� ie

: �I:7�

a

~W

Z

b b

~t~t

Z

e

e

Z

H

Z,g

e

e

Wÿ

W+ cb

Figure 16. A vertex with virtual ~t squarks and a wino ~W (a). The reaction

e�eÿ !W�Wÿ with a virtual photon or Z-boson (b). The reaction

e�eÿ ! HZ (c).
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A complete restoration of unitarity (cancellation of non-
physical singularities) and of gauge invariance (validity of the
Ward identities) are achieved if one takes into account the
diagrams with the Faddeev±Popov ghosts Z�, ZZ and ZA,
which interact only with gauge fields and the Goldstone fields
and which do not correspond to any physical degrees of
freedom.

Ghost propagators take the form

DZ��p� � i

p2 ÿm2
Wx� ie

; �I:8�

DZZ�p� �
i

p2 ÿm2
Zx� ie

; �I:9�

DZA�p� �
i

p2 � ie
: �I:10�

Ghosts obey the Fermi statistics, so an additional sign �ÿ1�
must be ascribed to ghost loops, as one does for fermion
loops.

The propagators of other fields are written as
for the higgs field:

DH�p� � i

p2 ÿm2
H � ie

; �I:11�

for fermion fields:

D̂f �p� � i

p̂ÿmf � ie
: �I:12�

In order to describe numerous three-particle vertices, it is
convenient to unify the notations. Let us fix the momenta
once and for all, as shown in Fig. 17, and let us denote a vertex
by a set of fields in the following order: (ACB). The Feynman
rules for three-particle vertices are then written as follows.

I.2 Interaction between gauge fields and fermions

�fAm f� : ÿieQf gm ;

�fZm f� : ÿi f
4
�gVgm � gAgmg5� ;

�neWÿm l� : ÿi
g

2
���
2
p gm �1� g5� ;

�UWÿmD� : ÿi
g

2
���
2
p VDUgm �1� g5� : �I:13�

where Qf is the charge of the fermion f, T f
3 is the third

projection of the isotopic spinor, describing the left-handed
component of the fermion f, gA � 2T f

3, gV � 2T f
3 ÿ 4Qf sin

2 y;
U and D denote any of the quarks with T f

3 � 1=2 and
T f
3 � ÿ1=2, respectively, and VDU is an element of the

Kobayashi±Maskawa matrix.

I.3 Interaction of scalar fields with fermions

�fHf� : ÿ ig

2mW
mf ;

�fG0f� : ÿ g

4

mf

mW
Tf
3 ;

�UGÿD� : ÿ i

2
���
2
p g

mW

��mD ÿmU� � g5�mD �mU�
�
;

�DG�U� : ÿ i

2
���
2
p g

mW

��mD ÿmU� ÿ g5�mD �mU�
�
: �I:14�

I.4 Three-boson interactions
Three gauge bosons:

�W�l AnW�m � : ie
��r� q�l gmn ÿ �q� p�n glm � �pÿ r�m gnl

�
;

�W�l ZnW�m � : ig cos y
��r� q�l gmn

ÿ �q� p�n glm � �pÿ r�m gnl
�
: �I:15�

Two gauge bosons and one scalar boson (G or H):

�W�mGÿAn� : iemWgmn ;

�W�mGÿZn� : ÿigmZgmn sin
2 y ;

�W�mHW�n � : igmWgmn ;

�ZmHZn� : ig
m2
Z

mW
gmn : �I:16�

One gauge boson and two scalar bosons (GG or GH):

�G�AmG�� : ÿie �p� q�m ;

�G�ZmG�� : ÿig cos 2y
2 cos y

�p� q�m ;

�G0W�mG
�� : 1

2
g �p� q�m ;

�HW�mG�� : ÿ
1

2
ig �p� q�m ;

�G�WÿmG0� : ÿ 1
2
g �p� q�m ;

�G�WÿmH� : ÿ
1

2
ig �p� q�m ;

�HZmG0� : g

cos y
�p� q�m : �I:17�

Interaction of higgses with goldstones and among them-
selves:

�G�HG�� : i

2
g
m2
H

mW
;

�GÿHGÿ� : ÿ i

2
g
m2
H

mW
;

�G0HG0� : ÿ i

2
g
m2
H

mW
;

�HHH� : ÿ 3i
2

g
m2
H

mW
: �I:18�

Interaction between ghosts and gauge fields:

�Z�AmZ�� : ÿieqm ;
�ZÿAmZÿ� : ieqm ;

�ZÿW�m Zg� : ÿieqm ;
�Z�Wÿm Zg� : ieqm ;

[ ] (ACB)

C

r

p q
A B

Figure 17. Three-particle vertex.
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�ZgW�m Z�� : ieqm ;

�ZgWÿm Zÿ� : ÿieqm ;
�Z�ZmZ�� : ÿig cos yqm ;
�ZÿZmZÿ� : ig cos yqm ;

�ZÿW�m ZZ� : ÿig cos yqm ;
�Z�Wÿm ZZ� : ig cos yqm ;

�ZZW�m Z�� : ig cos yqm ;

�ZZWÿm Zÿ� : ÿig cos yqm : �I:19�
Interaction of ghosts with a higgs or a goldstone:

�ZÿHZÿ� : ÿ i

2
gxmW ;

�ZÿG0Zÿ� : ÿ 1
2
gxmW ;

�Z�G0Z�� : 1

2
gxmW ;

�ZgG�Z�� : ÿiexmW ;

�ZZG�Z�� : ÿ i

2
g
cos 2y
cos y

xmW ;

�ZÿG�ZZ� : i

2
gxmZ : �I:20�

I.5 Four-boson interactions
To describe four-boson vertices, we introduce the notation
(ABCD), see Fig. 18.

In this notation, the interactions of four vector bosons
take the form

�W�lWÿmW�n Wÿr � : ig2�2glngmr ÿ gmnglr ÿ gmlgnr� ;
�W�lWÿmAnAr� : ÿie2�2gnrgml ÿ gmrgnl ÿ gmnglr� ;
�W�lWÿmZnZr� : ÿig2 cos2 y �2gnrgml ÿ gmrgnl ÿ gmnglr� ;
�W�lWÿmAnZr� : ÿieg cos y �2gnrgml ÿ gmrgnl ÿ gmnglr� :

�I:21�

Interaction between two vector bosons and HH, GG or HG:

�W�mWÿn HH� :
i

2
g2gmn ;

�W�mWÿn G0G0� : i

2
g2gmn ;

�W�mWÿn GÿG�� :
i

2
g2gmn ;

�AmAnGÿG�� : 2ie2gmn ;

�ZmZnHH� : i

2
g2 sec2 ygmn ;

�ZmZnG0G0� : i

2
g2 sec2 ygmn ;

�ZmZnGÿG�� : i

2
g2 sec2 y cos2 2ygmn ;

�AmW�n G�H� :
i

2
eggmn ;

�AmW�n GÿH� :
i

2
eggmn ;

�AmW�n G�G0� : ÿ 1
2
eggmn ;

�AmWÿn GÿG0� : 1

2
eggmn ;

�AmZnGÿG�� : i eg sec y cos 2ygmn ;

�ZmW�n G�H� :
i

2
g2 sec y

�
1

2
cos 2yÿ 1

�
gmn ;

�ZmWÿn GÿH� :
i

2
g2 sec y

�
1

2
cos 2yÿ 1

�
gmn ;

�ZmW�n G�G0� : ÿ 1
2
g2 sec y

�
1

2
cos 2yÿ 1

�
gmn ;

�ZmWÿn GÿG0� : 1

2
g2 sec y

�
1

2
cos 2yÿ 1

�
gmn : �I:22�

Interactions of GGGG, HHHH or GGHH :

�G�GÿGÿG�� : ÿ i

2
g2

m2
H

m2
W

;

�G�GÿG0G0� : ÿ i

4
g2

m2
H

m2
W

;

�G�GÿHH� : ÿ i

4
g2

m2
H

m2
W

;

�HHHH� : ÿ 3
4
ig2

m2
H

m2
W

;

�G0G0G0G0� : ÿ 3
4
ig2

m2
H

m2
W

;

�G0G0HH� : ÿ i

4
g2

m2
H

m2
W

: �I:23�

I.6 Regularization of Feynman integrals
Integrals corresponding to diagrams with loops formally
diverge and thus need regularization. Note that there does
not exist yet a consistent regularization of electroweak theory
in all loops. A dimensional regularization can be used in the
first several loops; this corresponds to a transition to a D-
dimensional spacetime in which the following finite expres-
sion is assigned to the diverging integrals:�

dDp

mDÿ4
�p2�s

�p2 �m2�a �
pD=2

G�D=2�
G�D=2� s�G�aÿD=2ÿ s�

G�a�

� �m
2�D=2ÿa�s
mDÿ4

; �I:24�

where m is a parameter with mass dimension, introduced to
conserve the dimension of the original integral.

This formula holds in the range of convergence of the
integral. In the range of divergence, a formal expression (I.24)
is interpreted as the analytical continuation. Obviously, the

Crs

p qA B

D

[ ] (ABCD)

Figure 18. Four-particle vertex.
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integral allows a shift in integration variable in the conver-
gence range as well. Therefore, a shift p! p� q for arbitrary
D can also be done in (I.24). This factor is decisive in proving
the gauge invariance of dimensional regularization.

At D � 4 the integrals in (I.24) contain a pole term

D � 2

4ÿD
� ln 4pÿ gÿ ln

m2

m2
; �I:25�

where g � 0:577::: is the Euler constant. Choice of constant
terms in (I.25) is a matter of convention.

The algebra of g-matrices in the D-dimensional space is
defined by the relations

gmgn � gngm � 2gmn � I ; �I:26�
gmm � D ; �I:27�
gmgngm � �2ÿD�gn ; �I:28�

where I is the identity matrix.
As for the dimensionality of spinors, different approaches

can be chosen in the continuation to theD-dimensional space.
One possibility is to assume that the g matrices are 4� 4
matrices, so that

tr I � 4 : �I:29�

The D-dimensional regularization creates difficulties
when one has to define the absolutely antisymmetric tensor
and (or) g5 matrix. For calculations in several first loops, a
formal definition of g5,

g5gm � gmg5 � 0 ; �I:30�
g25 � I ; �I:31�

does not lead to contradictions.
Thus, the amplitudes of physical processes, once they are

expressed in terms of bare charges and bare masses, contain
pole terms of the order of �Dÿ 4�ÿ1.

If we eliminate bare quantities and express some physical
observables in terms of other physical observables, then all
pole terms cancel out. The general property of renormalisa-
bility guarantees this cancellation. (We have verified this
cancellation directly in Ref. [42].) This renormalisation
procedure is employed in this review.

In order to avoid divergences in intermediate expressions,
one can agree to subtract from each Feynman integral the
pole terms of the order of �4ÿD�ÿ1, since they will cancel out
anyway in the final expressions. Depending on which con-
stant terms (in addition to pole terms) are subtracted from the
diagrams, different subtraction schemes arise: theMS scheme
corresponds to subtracting the universal combination

2

4ÿD
ÿ g� ln 4p :

II. Relation between �a and a(0)

We begin with the following famous relation of quantum
electrodynamics [75]:

a�q2� � a�0�
1� Sg�q2�=q2 ÿ S0g�0�

: �II:1�

Here the fine structure constant a � a�0� is a physical
quantity. It can bemeasured as a residue of the Coulomb pole
1=q2 in the scattering amplitude of charged particles. As for
the running coupling constant a�q2�, it can be measured from
the scattering of particles with large masses m at low
momentum transfer: m4

�������jq2jp
. In the Standard Model we

have the Z-boson, and the contribution of the photon cannot
be identified unambiguously if q2 6� 0. Therefore, the defini-
tion of the running constant a�q2� becomes dependent on
convention and on details of calculations.

At q2 � m2
Z, the contribution ofW-bosons to �a � a�m2

Z� is
not large, so it is convenient to make use of the definition
accepted in QED:

�a � a
1ÿ da ; �II:2�

where

da � ÿPg�m2
Z� � S0g�0� ;

Pg�m2
Z� �

1

m2
Z

Sg�m2
Z� : �II:3�

One-loop expression for the self-energy of the photon can
be rewritten as [76]:

Sg�s� � a
3p

X
f

Nf
cQ

2
f

�
sDf � �s� 2m2

f �F�s;mf;mf� ÿ 3

2

�
ÿ

ÿ a
4p

�
3sDW � �3s� 4m2

W�F�s;mW;mW�
�
; �II:4�

where s � q2, the subscript f denotes fermions, the sum
P

f

runs through lepton and quark flavours, andN f
c is the number

of colours. The contribution of fermions to Sg�q2� is
independent of gauge. The last term in Eqn (II.4) refers to
the gauge-dependent contribution ofW-bosons; the 't Hooft±
Feynman gauge was used in Eqn (II.4).

The singular term Di is:

Di � 1

e
ÿ g� ln 4pÿ ln

m2
i

m2
; �II:5�

where 2e � 4ÿD (D is the variable dimension of spacetime,
e! 0), g � ÿG0�1� � 0:577::: is the Euler constant and m is an
arbitrary parameter. Both 1=e and m vanish in relations
between observables.

The function F�s;m1;m2� is defined by the contribution to
self-energy of a scalar particle at q2 � s, owing to a loop with
two scalar particles (with masses m1 and m2) and with the
coupling constant equal to unity:

F�s; m1;m2� � ÿ1�m2
1 ÿm2

2

m2
1 ÿm2

2

log
m1

m2

ÿ
�1
0

dx log
x2sÿ x�s�m2

1 ÿm2
2� �m2

1 ÿ ie
m1m2

: �II:6�

The function F is normalised in such a way that it vanishes at
q2 � 0, which corresponds to subtracting the self-energy at
q2 � 0:

F �0;m1;m2� � 0 : �II:7�

The following formula holds for m1 � m2 � m:
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F�s; m; m� � F�t�

�
2

�
1ÿ �������������

4tÿ 1
p

arcsin
1�����
4t
p

�
; 4t > 1,

2

�
1ÿ �������������

1ÿ 4t
p

ln
1� �������������

1ÿ 4t
p�����
4t
p

�
; 4t < 1;

8>>><>>>:
where t � m2=s.

To calculate the contributions of light fermions, the t-
quark and the W-boson to da, we need the asymptotics F�t�
for small and large t:

F�t� � ln t� 2� :::; jtj5 1 ; �II:8�
F�t� � 1

6t
� 1

60t2
� :::; jtj4 1 ; �II:9�

F 0�s; m;m� � d

ds
F �s; m;m� �s!0 1

m2

�
1

6
� 1

30t

�
: �II:10�

As a result we obtain

Pg�m2
Z� �

Sg�m2
Z�

m2
Z

� a
3p

X
8

Nf
cQ

2
f

�
DZ � 5

3

�
� a
p
Q2
f

�
Dt � �1� 2t�F �t� ÿ 1

3

�
ÿ a
4p

�
3DW � �3� 4c2�F �c2�� ; �II:11�

where t � m2
t =m

2
Z, and

S0g�0� �
a
3p

X
9

Nf
cQ

2
fDf ÿ

a
4p

�
3DW � 2

3

�
; �II:12�

da � a
p

(X
8

Nf
cQ

2
f

3

�
ln
m2
Z

m2
f

ÿ 5

3

�
ÿQ2

t

�
�1� 2t�F �t� ÿ 1

3

�
�
��

3

4
� c2

�
F �c2� ÿ 1

6

��
:

�II:13�
Therefore, da is found as a sum of four terms,

da � dal � dah � dat � daW ; �II:14�

dal � a
3p

X
3

�
ln

m2
Z

m2
l

ÿ 5

3

�
� 0:03141 ; �II:15�

dat ' ÿ ap
4

45

�
mZ

mt

�2

� ÿ0:00005�1� ; �II:16�

where we have used mt � 175� 10 GeV. Note that dat is
negligible and has the antiscreening sign (the screening of the
t-quark loops in QED begins at q24m2

t , while in our case
q2 � m2

Z < m2
t �.

Finally, the W loop gives

daW � a
2p

�
�3� 4c2�

�
1ÿ

���������������
4c2 ÿ 1
p

arcsin
1

2c

�
ÿ 1

3

�
� 0:00050 : �II:17�

The value of daW depends on gauge [77]; here we give the
result of calculations in the 't Hooft±Feynman gauge.
Traditionally, the definition of �a takes into account the

contributions of leptons and five light quarks; the terms dat
and daW are taken into account in the electroweak radiative
corrections. In our approach, these terms give the corrections
d1Vi.

III. Summary of the results for �a

Among the three input parameters �a,Gm andmZ, the first one
has the maximum uncertainty; this uncertainty leads to the
uncertainty�5GeV in the value of the t-quarkmass extracted
from the measurements of mW and the decay parameters of
the Z-boson. According to Appendix II,

�a � a
1ÿ da ; da � dal � dah;

dal � 0:0314 :

In Ref. [26] (Burkhardt et al.) dah was calculated by
substituting experimental data on se�eÿ!hadrons into the
dispersion integral at

��
s
p

< 40 GeV and the parton model
result at

��
s
p

> 40 GeV:

da�Burkh�h � 0:0282�9�; �a�Burkh� � �128:87�12��ÿ1 : �III:1�

In Ref. [26] (Vysotsky et al.) it was pointed out that the
simplest model (the lightest vector meson + the QCD-
improved parton continuum in each flavour channel) pro-
duces a surprisingly close result:

da�Vys�h � 0:0280�4� ; �a�Vys� � �128:90�6��ÿ1 : �III:2�

The model with infinite number of poles (see Ref. [26],
Geshkenbein and co-auth.) yields the determination of dah
with very high accuracy:

da�Gesh�h � 0:0275�2� ; �a�Gesh� � �128:96�3��ÿ1 : �III:3�

A recent analysis of experimental data (see Ref. [26],
Swartz and Ref. [26], Martin and co-auth.) yielded consider-
ably lower values of dah:

da�Sw�h � 0:0265�8� ; �a�Sw� � �129:10�12��ÿ1 ; �III:4�

da�Ma�
h � 0:0273�4�; �a�Ma� � �128:99�6��ÿ1 : �III:5�

In this review we make use of the results of a recent
analysis (see Ref. [26], Eidelman and co-auth.),

da�Eid�h � 0:0280�7� ; �a�Eid� � �128:896�90��ÿ1 : �III:6�

IV. How aW(q2) and aZ(q
2) `crawl'

The effect of `running' of electromagnetic coupling constants
a�q2� (logarithmic dependence of the effective charge on
momentum transfer q2) is known for more than four decades)
[75]. In contrast to a�q2�, the effective constants of W- and Z-
bosons aW�q2� and aZ�q2� in the region 0 < q29m2

Z `crawl'
rather than run [78].

If we define the effective gauge coupling constant g2�q2� in
terms of the bare charge g20 and the bare massm0, and sum up
the geometric series with the self-energy S�q2� inserted in the
gauge boson propagator, this gives the expression
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g2�q2� � g20

�
1� g20

S�q2� ÿ S�m2�
q2 ÿm2

�ÿ1
; �IV:1�

here m is the physical mass, and S�q2� contains the
contribution of fermions only, since loops with W-, Z- and
H-bosons do not contain large logarithms in the region
jq2j4m2

Z.
The bare coupling constant in the difference

gÿ2�q2� ÿ gÿ2�0� is eliminated, which gives a finite expression.
The result is

1

aZ�q2� ÿ
1

aZ�0� � bZ F �x�; x � q2

m2
Z

; �IV:2�

1

aW�q2� ÿ
1

aW�0� � bW F �y�; y � q2

m2
Z

; �IV:3�

F �x� � x

1ÿ x
ln jxj : �IV:4�

If x4 1, Eqns (IV.2) and (IV.3) define the logarithmic
running of charges owing to leptons and quarks, and bZ and
bW represent the contribution of fermions to the first
coefficient of the Gell-Mann±Low function:

bZ � 1

48p

�
Nu3

�
1�

�
1ÿ 8

3
s3
�2�

�Nd3

�
1�

�
ÿ 1� 4

3
s2
�2�

�Nl

h
2� ÿ1� �1ÿ 4s2�2�i� ; �IV:5�

bW � 1

16p

�
6Nq � 2Nl

�
;

where Nu;d;q;l are the numbers of quarks and leptons with
masses that are considerably lower than

�����
q2

p
.

For q29m2
Z, the numerical values of the coefficients bZ;W

are [78]

bZ � 0:195; bW � 0:239 :

The massive propagator �q2 ÿm2�ÿ1 in Eqn (IV.1) greatly
suppresses the running of aW�q2� and aZ�q2�. Thus, according
to Eqns (IV.2) and (IV.3), the constant aZ�q2� grows by
0.85% from q2 � 0 to q2 � m2

Z,�
aZ�m2

Z�
�ÿ1 � 22:905 ;�

aZ �m2
Z�
�ÿ1 ÿ �aZ�0��ÿ1 � ÿ0:195 ; �IV:6�

and the constant aW�q2� grows by 0.95%,�
aW�m2

Z�
�ÿ1 � 28:74 ;�

aW�m2
Z�
�ÿ1 ÿ �aW�0��ÿ1 � ÿ0:272 ; �IV:7�

while the electromagnetic constant a�q2� increases by 6.34%:�
a�m2

Z�
�ÿ1 ÿ �aW�0��ÿ1 � 128:90ÿ 137:04 � ÿ8:14 :

�IV:8�

With the accuracy indicated above, we can thus assume

aZ�m2
Z� � aZ�0� ; aW�m2

Z� � aW�0� : �IV:9�

At the same time, a�m2
Z� differs greatly from a�0�; there-

fore the latter has no connection to the electroweak physics
but only to the purely electromagnetic physics.

V. Relation between �a , Gl , mZ and the bare
quantities

The bare quantities are marked by the subscript `0'. In the
electroweak theory, three bare charges e0, f0 and g0 that
describe the interactions of g, Z and W are related by a single
constraint:�

e0
g0

�2

�
�
g0
f0

�2

� 1 : �V:1�

The bare masses of the vector bosons are defined by the
bare vacuum expectation value of the higgs field Z0:

mZ0 � 1

2
f0Z0 ; mW0 � 1

2
g0Z0 : �V:2�

The fine structure constant a � e2=4p is related to the bare
charge e0 by the formula

a � a�q2 � 0� � e20
4p

�
1ÿ S0g�0� ÿ 2

s

c

SgZ�0�
m2
Z

�
; �V:3�

where S0�0� � limq2!0 S�q2�=q2. In the Feynman gauge

SgZ�0� � ÿ a
2p

m2
W

cs

1

e
;

where the dimension of spacetime is D � 4ÿ 2e. In the
unitary gauge SgZ�0� � 0.

The simplest way to verify the presence of the term
2�s=c�SgZ�0�=m2

Z is to consider the interaction of a photon
with the right-handed electron eR. Note that in this case there
are no weak vertex corrections due to theW-boson exchange.
(Note also that the left-handed neutrino remains neutral even
when loop corrections are taken into account, since the
diagram with the g±Z±�nLnL interaction is compensated for
by the vertex diagram with the W-exchange).

Our first basic equation is the renormalisation group
improved relation between �a � a�q2 � m2

Z� and a0:

�a � a0
�
1ÿPg�m2

Z� ÿ 2
s

c
PgZ�0�

�
; �V:4�

where Pg�q2� � Sg�q2�=m2
Z,PgZ�q2� � SgZ�q2�=m2

Z.
The second basic equation is:

m2
Z � m2

Z0

�
1ÿPZ�m2

Z�
� � m2

W0

c20

�
1ÿPZ�m2

Z�
�
: �V:5�

A similar equation holds for m2
W:

m2
W � m2

W0

�
1ÿPW�m2

W�
�
; �V:6�

where Pi�q2� � Si�q2�=m2
i , i �W;Z.

Finally, the third basic equation is
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Gm � g20

4
���
2
p

m2
W0

�
1�PW�0� �D

�
; �V:7�

wherePW�0� � SW�0�=m2
W comes from the propagator ofW,

whileD is the contribution of the box and the vertex diagrams
(minus the electromagnetic corrections to the four-fermion
interaction) to themuon decay amplitude. According to Sirlin
(Ref. [23])

D � �a
4ps2

�
6� 7ÿ 4s2

2s2
ln c2 � 4DW

�
; �V:8�

where

DW � D�mW� � 2

4ÿD
� ln 4pÿ gÿ ln

m2
W

m2
: �V:9�

VI. The radiators RAq and RVq

For decays to light quarks q � u; d; s, we neglect the quark
masses and take into account the gluon exchanges in the final
state up to terms of the order of a3s [45 ± 48], and also one-
photon exchange in the final state, and the interference of the
photon and the gluon exchanges [49]. These corrections are
slightly different for the vector and the axial channels.

For decays to quarks we have

Gq � G�Z! q�q� � 12�g2AqRAq � g2VqRVq�G0 ; �VI:1�

where the factors RA;V are responsible for the interaction in
the final state (in our previous papers, we used letterG instead
of R). The results presented in Refs [45 ± 48] are

RVq � 1� âs
p
� 3

4
Q2
q

�a
p
ÿ 1

4
Q2
q

�a
p
âs
p

�
�
1:409� �0:065� 0:015 ln t� 1

t

��
âs
p

�2

ÿ 12:77

�
âs
p

�3

� 12
m̂2
q

m2
Z

âs
p
dvm ; �VI:2�

RAq � RVq ÿ 2T3q

�
I2�t�

�
âs
p

�2

� I3�t�
�
âs
p

�3�
ÿ 12

m̂2
q

m2
Z

âs
p
dvm ÿ 6

m̂2
q

m2
Z

d1am ÿ 10
m̂2
q

m2
t

�
âs
p

�2

d2am ; �VI:3�

where m̂q is the running quark mass (see below),

dvm � 1� 8:7
âs
p
� 45:15

�
âs
p

�2

; �VI:4�

d1am � 1� 3:67
âs
p
� �11:29ÿ ln t�

�
âs
p

�2

; �VI:5�

d2am �
8

81
� ln t

54
; �VI:6�

I2�t� � ÿ3:083ÿ ln t� 0:086

t
� 0:013

t2
; �VI:7�

I3�t� � ÿ15:988ÿ 3:722 ln t� 1:917 ln2 t ; �VI:8�

t � m2
t

m2
Z :

Terms of the order of �âs=p�3 caused by the diagrams with
three gluons in intermediate state were calculated in Ref. [79].
For RVq they are numerically very small (� 10ÿ5); for this
reason, we dropped them from Eqn (VI.2).

For the Z! b�b decay, the b-quark mass is not negligible;
it reduces Gb by about 1 MeV (� 0:5%). The gluon correc-
tions result in a replacement of the pole mass mb � 4:7 GeV
by the running mass, the virtuality being
mZ : mb ! m̂b�mZ�. We express m̂b�mZ� in terms of mb,
âs�mZ� and âs�mb� using standard two-loop equations in the
MS scheme (see Ref. [50]).

For the Z! c�c decay, the running mass m̂c�mZ� is of the
order of 0:5 GeV and the corresponding contribution to Gc is
of the order of 0:05 MeV. We have included this infinitesimal
term in the LEPTOP code, since it is taken into account in
other codes (see, for example, Ref. [18]).

We need to remark in connection with Gc that the term
I2�t�, given by Eqn (VI.7), contains interference terms of the
order of �âs=p�2. These terms are related to three types of final
states: one quark pair, a quark pair and a gluon, two quark
pairs. This last contribution comes to about 5% of I2 and is
infinitesimally small at the currently achievable experimental
accuracy. Nevertheless, in principle these terms require
special consideration, especially if these quark pairs are of
different flavours, for example, b�bc�c. Such mixed quark pairs
must be discussed separately.

Note that âs stands for the strong interaction constant in
the MS subtraction scheme, with m2 � m2

Z.

VII. Derivation of formulas for the asymmetries

Asymmetry in the processes e�eÿ ! Z! f�f is calculated with
the masses of e and f neglected in comparison with the Z-
boson mass. (Mass corrections for f � b will be taken into
account below). The amplitude (20) of the interactions of the
Z-boson with massless fermions f�f can be conveniently
rewritten in the form

M�Z! f�f� � 1

2
�fZa
�
g fL j

L
a � g fR j

R
a

�
; �VII:1�

where �f 2 � 4
���
2
p

Gmm
2
Z,

jL;Ra � �cL;R ga cL;R ;

cL;R �
1

2
�1� g5�c ;

g fL;R � gVf � gAf :

The chirality is a conserved quantum number for massless
fermions (anomalies do not yet manifest themselves in the
approximations we deal with here) and coincides with a
fermion's helicity up to the sign.

Therefore, the pairs eÿLe
�
L and eÿRe

�
R do not transform

into the Z-boson at all, and the pairs eÿLe
�
R and eÿRe

�
L create a

Z-boson with the polarisation �1, respectively (along the
positron beam). The scattering amplitudes thus have the
form
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T �eÿL;Re� ! fL;R�f � � geL;R g
f
L;RT0 �1� cos y� ;

T �eÿL;Re� ! fR;L�f � � geL;R g
f
R;L T0 �1ÿ cos y� ; �VII:2�

where coefficient T0 is unimportant at the moment [it can be
reconstructed from Eqn (VII.1)], and y is the angle between
the momenta of eÿ and f. The sign in front of cos y is chosen
for the helicity to be conserved in forward and backward
scattering.

Once the form of the amplitude (VII.2) is known, all
asymmetries are immediately found.

(a) Left±right asymmetry ALR is defined as the ratio

ALR � sL ÿ sRsL � sR ;

where sL;R � s�eL;Re� ! f�f�. Hence

ALR � �g
e
L�2 ÿ �geR�2
�geL�2 � �geR�2

� Ae : �VII:3�

(b) Longitudinal polarisation Pt�cos y� is defined as the
ratio of the difference to the sum of differential cross sections,
� ds= dy�R;L � � ds= dy��e�e! tR;L�t�:

Pt�cos y� � � ds= dy�R ÿ � ds= dy�L� ds= dy�R � � ds= dy�L
; �VII:4�

where�
ds
dy

�
R

� 1

2m2
Z

jT0j2�gtR�2
��geR�2�1� cos y�2

� �geL�2�1ÿ cos y�2� ;�
ds
dy

�
L

� 1

2m2
Z

jT0j2�gtL�2
��geL�2�1� cos y�2

� �geR�2�1ÿ cos y�2� : �VII:5�

Substituting Eqn (VII.5) into the definition (VII.4), we obtain

Pt�cos y� � ÿAt�1� cos2 y� � 2Ae cos y
1� cos2 y� 2AeAt cos y

; �VII:6�

where Ae and At are defined according to Eqn (VII.3). The
longitudinal polarisation Pt, averaged over directions of t-
leptons, is defined as the following ratio of the total cross
sections

sL;R �
�1
ÿ1

d cos y
�
ds
dy

�
L;R

and has the form:

Pt � s
t
R ÿ stL
stR � stL

� ÿ
� 1
ÿ1 d cos y

�
At�1� cos2 y� � 2Ae cos y�

�� 1
ÿ1 d cos y�1� cos2 y� 2AeAt cos y�

� ÿAt :

�VII:7�

(c) Forward±backward asymmetryAf
FB is calculatedmore

simply in terms of gA;V. The squared matrix element of the

process e�e! f�f is proportional to

jMj2 /
�
�g2Ae � g2Ve�

��g2Af � g2Vf��1� v2 cos2 y�

� �g2Af ÿ g2Af��1ÿ v2�
�� 1

2
�gVe gAe gVf gAf� v cos y

�
;

�VII:8�

where y is the scattering angle and v � 1ÿ 4m2
f =m

2
Z is the

velocity of fermion f. This immediately implies that

Af
FB �

3

4
Ae

�
2gAf gVf v

g2Afv
2 � g2Vf �3ÿ v2�=2

�
: �VII:9�

Themassmf is negligible in all channels with the exception
of f � b, where the nonzeromass produces effects of the order
of 2� 10ÿ3. Gluon corrections in the final state (see
Appendix II) replace the pole mass mb � 4:7 GeV in Eqns
(VII.8), (VII.9) by the running mass at the mZ scale:
mb ! m̂b�mZ�.

Note that starting from gluon corrections of the order of
�as=p�2, it is impossible to unambiguously separate different
quark channels, since additional pairs of `alien' quarks are
created in this order. We do not consider corrections �as=p�2
in asymmetries. In our approximation the ratio gVf=gAf is not
renormalised by the gluonic interaction in the final state.
Therefore, the expected accuracy of Eqn (VII.9) is
�as=p�2 � 2� 10ÿ3, which is by an order of magnitude better
than the experimental accuracy.

VIII. Corrections proportional to m 2
t

This appendix gives a simple mnemonic recipe for the
derivation of corrections proportional to m2

t . A rigorous
derivation requires careful regularization of Feynman inte-
grals.

The terms proportional to m2
t contribute to radiative

corrections to bare masses (squared) of theW- and Z-bosons,
but not to the corrections to the bare coupling constants. This
follows from dimensional arguments. Indeed, the dimension
of self-energy S for the boson, equalsm2; therefore, the terms
proportional tom2

t remain inS�q2� in the limit q2 ! 0. On the
other hand, the corrections to coupling constants are propor-
tional to dS= dq2 and do not contain terms of the order ofm2

t .
Therefore, it is easy to evaluate the contribution of the t-
quark to the parameter r � �aZ=aW��m2

W=m
2
Z� in the approx-

imation of am2
t order (the Veltman approximation [29]),

neglecting the terms of the order of a:

r � aZ0
aW0

m2
W0 ÿ SW�m2

W�
m2
Z0 ÿ SZ�m2

Z�
� 1� SZ�0�

m2
Z

ÿ SW�0�
m2
W

� 1�PZ�0� ÿPW�0� : �VIII:1�

The evaluation of the difference PZ�0� ÿPW�0� is elemen-
tary:

PW�0� � SW�0�
m2
W

� 3aW
8pm2

W

�1
0

p2 dp2

p2 �m2
t

� 3aW
8pm2

W

�1
0

dp2 ÿm2
t

�1
0

dp2

p2 �m2
t

: �VIII:2�
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(As we have neglected the mass of the b-quark, the propa-
gator of the b-quark compensates the factor p2 in the
numerator.)

PZ�0� � SZ�0�
m2
Z

� 3aZ
8pm2

Z

�
1

2

�1
0

dp2 � 1

2

�1
0

p4 dp2

�p2 �m2
t �2
�

� 3aZ
8pm2

Z

�
1

2

�1
0

dp2 � 1

2

�1
0

dp2 ÿm2
t

�1
0

dp2

p2 �m2
t

� 1

2
m2
t

�
:

�VIII:3�

Taking into account that in one-loop approximation we
can set in Eqns (VIII.2) and (VIII.3)

aW
m2
W

� aZ
m2
Z

; �VIII:4�

we see that quadratic and logarithmic divergences cancel out
and that finally

r � 1� Drt � 1� 3aZ
16p

m2
t

m2
Z

� 1� 3aZ
16p

t ; �VIII:5�

Drt �
3�a

16ps2c2
t ; �VIII:6�

where t � m2
t =m

2
Z and we assume that t4 1.

Let us express the leading in t corrections to the main
quantities mW=mZ, gAl and gVl in terms of Drt.

We define

c2a �
aW
aZ

; s2a � 1ÿ c2a : �VIII:7�

Then

Gm � paW���
2
p

m2
W

� p���
2
p
r

�a
c2as

2
am

2
Z

�VIII:8�

and hence

s2ac
2
a �

s2c2

1� Drt
: �VIII:9�

Solving the last equation, we obtain

c2a � c2
�
1� s2

c2 ÿ s2
Drt

�
; �VIII:10�

s2a � s2
�
1ÿ c2

c2 ÿ s2
Drt

�
; �VIII:11�

and therefore,

m2
W

m2
Z

� c2a�1� Drt� ' c2
�
1� c2

c2 ÿ s2
Drt

�
�VIII:12�

and

mW

mZ
� c� 3�a

32p
c

�c2 ÿ s2�s2 t : �VIII:13�

Likewise,

g2n � g2Al �
1

4

�a
c2as

2
a

�
�a

c2s2

�ÿ1
� 1

4
�1� Drt�

� 1

4

�
1� 3�a

16ps2c2
t

�
; �VIII:14�

gVl
gAl
� 1ÿ 4s2a � 1ÿ 4s2 � 4c2s2

c2 ÿ s2
Drt

� 1ÿ 4s2 � 3�a
4p�c2 ÿ s2� t : �VIII:15�

The corrections proportional to m2
t were first pointed out

by Veltman [29], who emphasised the appearance of such
corrections for a large difference m2

t ÿm2
b which violates the

isotopic symmetry. In this review, the coefficients in front of
the factors t in Eqns (VIII.13) ± (VIII.15) are used as
coefficients for normalised radiative corrections Vi.

IX. Explicit form of the functions Ti (t)
and Hi (h)

The equations for Ti�t� andHi�h� are [42, 63]:
(a) i � m:

Tm�t� �
�
2

3
ÿ 8

9
s2
�
ln tÿ 4

3
� 32

9
s2 � 2

3
�c2 ÿ s2�

�
�
t3

c6
ÿ 3t

c2
� 2

�
ln

����1ÿ c2

t

����� 2

3

c2 ÿ s2

c4
t2

� 1

3

c2 ÿ s2

c2
t�
�
2

3
ÿ 16

9
s2 ÿ 2

3
tÿ 32

9
s2t

�
Ft�t� ;

Hm�h� � ÿ h

hÿ 1
ln h� c2h

hÿ c2
ln

h

c2
ÿ s2

18c2
hÿ 8

3
s2

�
�
h2

9
ÿ 4h

9
� 4

3

�
Fh�h� ÿ �c2 ÿ s2�

�
�
h2

9c4
ÿ 4

9

h

c2
� 4

3

�
Fh

�
h

c2

�
� 1:1203ÿ 2:59ds2 ; �IX:1�

where ds2 � 0:23110ÿ s2 (note the sign!).
(b) i � A:

TA�t� � 2

3
ÿ 8

9
s2 � 16

27
s4 ÿ 1ÿ 2tFt�t�

4tÿ 1
�
�
32

9
s4 ÿ 8

3
s2 ÿ 1

2

�
�
�
4

3
tFt�t� ÿ 2

3
�1� 2t� 1ÿ 2tFt�t�

4tÿ 1

�
;

HA�h� � c2

1ÿ c2=h
ln

h

c2
ÿ 8h

9�hÿ 1� ln h

�
�
4

3
ÿ 2

3
h� 2

9
h2
�
Fh�h� ÿ

�
4

3
ÿ 4

9
h� 1

9
h2
�
F 0h�h�

ÿ 1

18
h� 0:7752� 1:07ds2 ; �IX:2�

(c) i � R:
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TR�t� � 2

9
ln t� 4

9
ÿ 2

9
�1� 11t�Ft�t� ;

HR�h� � ÿ 4
3
ÿ h

18
� c2

1ÿ c2=h
ln

h

c2

�
�
4

3
ÿ 4

9
h� 1

9
h2
�
Fh�h� � h

1ÿ h
ln h

� 1:3590� 0:51ds2 ; �IX:3�
(d) i � n:
Tn�t� � TA�t� ;
Hn�h� � HA�h� : �IX:4�
The functions Ft and Fh are the limiting cases of the

function F�s;m1;m2�, described in Appendix II. The explicit
formulas for Ft�t� and Fh�h� are given in Appendix X [Eqn
(X.3)] and Appendix XII [Eqn (XII.11)], respectively.

X. The contribution of heavy fermions
to the self-energy of the vector bosons

Let us give the expressions for the contribution of third-
generation quarks �t; b� to the polarisation operators (self-
energies) of the vector bosons. We use the following nota-
tions: t � m2

t =m
2
Z, b � m2

b=m
2
Z, �b5 1�, h � m2

H=m
2
Z,

Pg�q2� � Sgg�q2�=m2
Z, PgZ�q2� � SgZ�q2�=m2

Z,
PW�q2� � SW�q2�=m2

W.
The dimensional regularization yields the terms

Di � 2

4ÿD
ÿ g� ln 4pÿ ln

m2
i

m2
; �X:1�

where i � t; b;W;Z; . . .,D is the variable dimension of space-
time, �4ÿD � 2e, e! 0�, g � ÿG0�1� � 0:577 . . . (we follow
Ref. [80], p. 53).

We begin with an auxiliary function Ft�t�, obtained as a
limiting case of the function F�s;m1;m2� (see Appendix II and
Ref. [80], p. 54; Ref. [81], p. 88),

Ft�t� � F�s � m2
Z;mt;mt� � F�1; t; t� ; �X:2�

and get, using Ref. [80],

Ft�t� �
2

�
1ÿ �������������

4tÿ 1
p

arcsin
1����
4t
p

�
; 4t > 1 ,

2

�
1ÿ �������������

1ÿ 4t
p

ln
1� �������������

1ÿ 4t
p����
4t
p ; 4t < 1 :

8>>><>>>: �X:3�

The asymptotics of Ft are

Ft � ln t� 2 ; t! 0 ;

Ft � 1

6t
� 1

60t2
; t!1 :

�X:4�

Differentiation gives

F 0t � m2
Z

dF

dm2
Z

� ÿt d
dt

Ft � 1ÿ 2tFt
4tÿ 1

: �X:5�

In this Appendix, Pi stands for the contribution of the
doublet �t; b� to the corresponding polarisation operator:

Pg�0� � 0 ; �X:6�

Pg�m2
Z� �

�a
p

�
Q2
t

�
Dt � �1� 2t�Ft�t� ÿ 1

3

�
�Q2

b

�
Db � 5

3
� ln b

��
; �X:7�

PgZ�0� � 0 ; �X:8�

PgZ�m2
Z� �

�a
csp

��
Qt

4
ÿ s2Q2

t

��
Dt � �1� 2t� Ft�t� ÿ 1

3

�
ÿ
�
Qb

4
� s2Q2

b

��
Db � 5

3
� ln b

��
; �X:9�

PW�0� � ÿ �a
4ps2c2

�
3

2
tDt � 3

4
t

�
; �X:10�

PW�m2
W� �

�a
4ps2

��
1ÿ 3t

2c2

�
Dt � 5

3
ÿ t

c2
ÿ t2

2c4

ÿ
�
1ÿ 3t

2c2
� t3

2c6

�
ln

����1ÿ c2

t

���� � ; �X:11�

PZ�m2
Z� �

�as2

pc2

�
Q2
t

�
Dt � �1� 2t�Ft�t� ÿ 1

3

�
�Q2

b

�
Db � 5

3
� ln b

��
ÿ �a
2pc2

�
�
Qt

�
Dt � �1� 2t�Ft�t� ÿ 1

3

�
ÿQb

�
Db � 5

3
� ln b

��
� �a
8ps2c2

�
�
�2ÿ 3t�Dt � �1ÿ t�Ft�t� � 4

3
� ln t

�
; �X:12�

PZ�0� � ÿ �a
4ps2c2

�
3

2
tDt

�
; �X:13�

S0�m2
Z� �

�as2

pc2

�
Q2
t

�
Dt � Ft ÿ 1

3
� �1� 2t�F 0t

�
�Q2

b

�
Db � 5

3
� ln b

��
ÿ �a
2pc2

�
�
Qt

�
Dt � Ft ÿ 1

3
� �1� 2t�F 0t

�
ÿQb

�
Db � 5

3
� ln b

��
� �a
8ps2c2

�
�
2Dt � Ft � 4

3
� ln t� �1ÿ t�F 0t ÿ 1

�
� �as2

ps2

�
Q2
t

�
Dt � 4� 2t

3�4tÿ 1� �
1ÿ 2t� 4t2

1ÿ 4t
Ft

�
�Q2

b

�
Db � 5

3
� ln b

��
ÿ �a
2pc2

�
Qt

�
Dt � 4� 2t

3�4tÿ 1�

� 1ÿ 2t� 4t2

1ÿ 4t
Ft

�
ÿQb

�
Db � 5

3
� ln b

��
� �a
8ps2c2

�
2Dt � ln t� 2� t

3�4tÿ 1� �
2t2 � 2tÿ 1

4tÿ 1
Ft

�
;

�X:14�
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PZ�m2
Z� ÿ S0Z�m2

Z� �
�
2tFt�t� ÿ �1� 2t�F 0t �t�

�
�
�

�as2

pc2
Q2
t ÿ

�a
2pc2

Qt ÿ �a
16ps2c2

�
� 3�a
8ps2c2

tDt

� �a
16ps2c2

�
2ÿ 3F

0
t �t�
�� �a

2pc2
Qb � �as2

pc2
Q2
b :

�X:15�

Substituting the expressions for the polarisation operators
into the formulas for physical observables, we verify the
cancellation of the terms of the order of Di, and also the
terms proportional to ln b, since the limit mb ! 0 does not
produce divergences. It is convenient to get rid of the terms of
the order of Db and of the order of ln b already in the
expression for the polarisation operators using equation

Db � ln b � Dt � ln t �X:16�

and then making sure that the terms of the order of Dt are
indeed eliminated.

Our definition of the wavefunction of the Z-boson differs
in sign from that assumed in Ref. [80]; hence the quantityPgZ

we use also differs in sign from the expression given in Ref.
[80]. With our definition, the interaction of Z-bosons with
Weyl fermions is

ÿi f �f gm f �T3 ÿQs2�Zm ;

and that of photons is

ÿieQ �fgm f Am :

The latter vertex coincides with the one given in Eqns (8), (9)
of Ref. [80], while the former differs in sign.

Let us look at the formulas for physical observables.
The quantity Tm�t� [see Eqn (IX.1)] is defined as the

following combination of polarisation operators:

t� Tm�t� � 16ps4

3�a

�
c2

s2
�
PZ�m2

Z� ÿPW�m2
W�
�

�PW�m2
W� ÿPW�0� ÿPg�m2

Z�
�
; �X:17�

since PgZ�0� � 0 for fermion loops.
Using Eqns (X.7), (X.10) ± (X.12) we obtain

t� Tm�t� � t�
�
2

3
ÿ 8

9
s2
�
ln tÿ 4

3
� 32

9
s2 � c2 ÿ s2

3c2
t

� 2

3
�c2 ÿ s2�

�
t3

c6
ÿ 3t

c2
� 2

�
ln

����1ÿ c2

t

����� 2�c2 ÿ s2�
3c4

t2

�
�
2

3
ÿ 16

9
s2 ÿ 2

3
tÿ 32

9
s2t

�
Ft�t� ; �X:18�

where we have taken into account that Pg�m2
Z� cancels out

with the sum of terms proportional toQ2
t andQ

2
b inPZ�M2

Z�.
The terms proportional to t arise from PW�0� and PW�M2

Z�;
those proportional to t2 arise from PW�m2

W�; the terms
proportional to ln t and the constants arise from PW�m2

W�
andPZ�m2

Z�; ln j1ÿ c2=t j corresponds to the threshold �t�b� in
PW�m2

W�, and finally, the only source of terms proportional
to Ft�t� isPZ�m2

Z�.

The infinities in the contribution of the doublet �t; b� to
the observables must cancel each other since the introduction
of an additional fermion family into the electroweak theory
does not violate its renormalisability.

Substituting the terms proportional to Dt in Eqn (X.17)
and taking into account Eqn (X.16), we obtain zero:

Dt

�
c2

s2

�
�a

8ps2c2
�2ÿ 3t� ÿ �a

2pc2
ÿ �a
4ps2

�
1ÿ 3t

2c2

��
� �a
4ps2

�
1ÿ 3t

2c2

�
� �a
4ps2c2

3

2
t

�
� 0 : �X:19�

The expression for TA�t� is

t� TA�t� � 16ps2c2

3�a

�
PZ�m2

Z� ÿ S0Z�m2
Z� ÿPW�0�

�
: �X:20�

Using Eqns (X.10), (X.12), and (X.14), we have

t� TA�t� � t� 2

3
ÿ 8

9
s2 � 16

27
s4 ÿ F 0t

�
�
32

9
s4 ÿ 8

3
s2 ÿ 1

2

��
4

3
tFt ÿ 2�1� 2t�

3
F 0t

�
: �X:21�

The terms proportional toDt obviously cancel out.PW�0�
gives a contribution proportional to t, while all other terms
arise from the differencePZ�m2

Z� ÿ S0Z�m2
Z�.

Finally, we look at TR�t�:

t� TR�t� � ÿ 16pc
2s2

3�a

��c2 ÿ s2�
cs

PZg�m2
Z� �Pg�m2

Z�

ÿPZ�m2
Z� �PW�0�

�
: �X:22�

The terms proportional to Q2
t and Q2

b cancel out, so that
only PW�0� remain, as well as terms that do not contain Q2

t;b

coming from PZg and PZ. Substituting Eqns (X.10), (X.9)
and (X.12), we have

t� TR�t� � t� 4

9
� 2

9
ln tÿ 2

9
�1� 11t�F�t� : �X:23�

Here t comes from PW�0�, the term proportional to Ft�t� is
fromPZ, and 4=9� �2=9� ln t comes fromPZ and PZg.

Cancellation of infinities in Eqn (X.22) follows from

Dt

�
�c2 ÿ s2� a

4pcs
� cs

�
a

2pc2
ÿ �2ÿ 3t�a

8pc2s2
ÿ 3ta
8ps2c2

��
� 0 :

�X:24�

XI. The contribution of light fermions
to the self-energy of the vector bosons

The contribution of the doublet of light fermions to the
polarisation operators is readily obtained using the formulas
of the preceding Appendix.

To achieve this, DZ;W must be substituted into the
formulas of Appendix X instead of Dq � ln�mq=mZ;W�2. The
physical reason for the absence of terms proportional to the
logarithm of the mass of light quarks and leptons is the
infrared stability of the quantities that are analyzed in this
Appendix. In the Eqns (XI.4) and (XI.7) we use the equality
Qu ÿQ d � 1. The subscripts u and d stand for the upper and
lower components of the doublet:
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Pg�0� � 0 ; �XI:1�

Pg�m2
Z� �

Nc�a
3p
�Q2

u �Q2
d�
�
DZ � 5

3

�
; �XI:2�

PgZ�0� � 0 ; �XI:3�

PgZ�m2
Z� �

Nc�a
3csp

�
DZ � 5

3

��
1

4
ÿ �Q2

u �Q2
d� s2

�
; �XI:4�

PW�0� � 0 ; �XI:5�

PW�m2
W� �

Nc�a
12ps2

�
DW � 5

3

�
; �XI:6�

PZ�m2
Z� �

Nc�a
3ps2c2

�
DZ � 5

3

��
1

4
ÿ s2

2
� s4�Q2

u �Q2
d�
�
;

�XI:7�

PZ�0� � 0 ; �XI:8�

S0Z�m2
Z� �

Nc�a
3ps2c2

�
DZ � 2

3

��
1

4
ÿ s2

2
� s4�Q2

u �Q2
d�
�
:

�XI:9�
Eqns (XI.1) ± (XI.9) must be used for three lepton

doublets �ne; e�, �nm; m� and �nt; t� with Nc � 1 and two
quarks doublets �u; d� and �c; s� with Nc � 3.

Substituting Eqns (XI.1) ± (XI.9) into expressions for
physical observables in terms of polarisation operators
(XII.16), (XII.20) and (XII.24), we arrive at the contributions
to the constants Ci owing to the self-energies.

XII. The contribution of the vector and scalar
bosons to the self-energy of the vector bosons

This appendix gives formulas for boson contributions to
polarisation operators that we reproduced from Ref. [80],
pp 53, 54. (There is a misprint in [80]: the term proportional to
DW in the expressions forPW�q2�must be multiplied by 1/3).

The polarisation operators in Ref. [80] depend on cW and
sW via coupling constants and depend dynamically on the
ratio mW=mZ, which arises from Feynman integrals. We
substitute everywhere c for cW (and mW=mZ) and s for sW. In
the framework of the one-loop approximation, this substitu-
tion is justified. After this substitution, we find expressions
for physical observables; ultraviolet divergences of polarisa-
tion operators cancel out in these expressions.

In the following formulas Pi denotes only boson con-
tributions to the corresponding polarisation operator (all
calculationswere performed in the 't Hooft±Feynman gauge):

Pg�m2
Z� � ÿ

�a
4p

�
3DW � 2�3� 4c2�

�
�
1ÿ

���������������
4c2 ÿ 1
p

arcsin
1

2c

��
� ÿ �a

4p
�3DW � 1:53� ; �XII:1�

Pg�0� � 0 ;

PgZ�0� � ÿ �a
4pcs

�2c2DW� � ÿ c�a
2ps

DW ;
�XII:3�

PgZ�m2
Z� � ÿ

�a
4pcs

��
5c2 � 1

6

�
DW � 2

�
1

6
� 13
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c2 � 4c4
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�
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1ÿ
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4c2 ÿ 1
p

arcsin
1

2c

�
� 1

9

�
� ÿ �a

4p

�
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6cs
DW � 3:76

�
; �XII:4�

PW�0� � �a
4ps2

��
s2

c2
ÿ 1

�
DW � 3

4
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�ÿ1
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h
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8c2

� s2 � s4
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ÿ 1
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12
�
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4
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ÿ h
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�
;

�XII:5�
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�
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h

c2

�
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4�c2 ÿ h� ln
h

c2

�
; �XII:6�

PZ�m2
Z� �

�a
4ps2

��
7s2 ÿ 25

6
� 7

6

s2

c2

�
DW � 73

36c2
ÿ 2

9

� 13

12c2
ln c2 �

�
2� 1� 8c2

6c2
�c2 ÿ s2�2 ÿ 20
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c2�1� 2c2�

�
�
�
1ÿ

���������������
4c2 ÿ 1
p

arcsin
1

2c

�
ÿ 1

c2
ÿ h

6c2
� 3h

4c2�1ÿ h� ln h

�
�
1

c2
ÿ h

3c2
� h2

12c2

�
Fh�h�

�
� �a
4ps2

��
7s2 ÿ 25

6
� 7

6

s2

c2

�
� DW ÿ 0:58ÿ h

6c2
� 3h

4c2�1ÿ h� ln h

�
�
1

c2
ÿ h

3c2
� h2

12c2

�
Fh�h�

�
; �XII:7�

S0Z�m2
Z� �

dSZ�s�
ds

����
s�m2

Z

� �a
4p

�
3ÿ 19

6s2
� 1

6c2

�
DW

� �a
48ps2c2

��ÿ40c4 � �c2 ÿ s2�2�
�
�
2ÿ 2

���������������
4c2 ÿ 1
p
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1

2c

�
� �12c2 � �8c2 � 1��c2 ÿ s2�2 ÿ 40c4�1� 2c2��
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�
�
ÿ1� 4c2���������������

4c2 ÿ 1
p arcsin

1

2c

�
� �1ÿ �hÿ 1�2�

� Fh�h� �
�
11ÿ 2h� �1ÿ h�2�F 0h�h�

�
�
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2�hÿ 1� ln hÿ
1

2
ln

h

c4

�
� 2

3

�
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��
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h

6
ÿ h2
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12�1ÿ h� ln hÿ 1:67

�
: �XII:8�

The functions Fh�h� and F 0h�h� are defined as
Fh�h� � F�s;mZ;mH�

��
s�m2

Z

� F�1; 1; h� ; �XII:9�

F 0h�h� � s
dF�s;mZ;mH�

ds

����
s�m2

Z

: �XII:10�

Using Ref. [81], p. 88, we obtain

Fh�h� � 1�
�

h
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ÿ h

2
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� h

�����������
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� �����������
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r
�

���
h

4
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�
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ÿ h

2
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ÿ h

�����������
4

h
ÿ 1

r
arctan

�����������
4

h
ÿ 1

r
; h < 4 : �XII:11�

If h!1,

Fh�h� � 1

2h
ÿ 1

h2

�
1� 4

h2

�
ln h� 5

3h2
� 59

12h3
: �XII:12�

If h! 0,

Fh�h� � 1ÿ p
���
h
p
�
�
1ÿ 3

2
ln h

�
h : �XII:13�

Finally, for F 0h�h� we have

F 0h�h� � ÿ1�
hÿ 1

2
ln h� �3ÿ h�

�
�����������
h

hÿ 4

r
ln

� �����������
hÿ 4

4

r
�

���
h

4

r �
; h > 4 ;
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2
ln h� �3ÿ h�

�
�����������
h

4ÿ h

r
arctan

�����������
4ÿ h

h

r
; h < 4 : �XII:14�

If h!1,

F 0h�h� �
1

2h
ÿ 1

h2
ln h : �XII:15�

All infinities in Eqns (XII.1) ± (XII.8) are collected into
the factors DW by replacing the factors DZ and DH using the
equation

Di � Dj � ln
m2

j

m2
i

:

The function Hm�h� is

Hm�h� � 16ps4

3�a

�
c2

s2
�
PZ�m2

Z� ÿPW�m2
W�
��PW�m2

W�

ÿPW�0� ÿPg�m2
Z� ÿ 2

s

c
PgZ�0�

�
ÿ divHm ;

�XII:16�
where divHm denotes the sumof terms, proportional toDW, in
polarisation operators in Eqn (XII.16). Substituting the finite
parts of the formulas for polarisation operators from this
Appendix, we obtain

Hm�h� � ÿ h

hÿ 1
ln h� c2h

hÿ c2
ln

h

c2
ÿ s2

18c2
h

�
�
h2

9
ÿ 4h

9
� 4

3

�
Fh�h� ÿ �c2 ÿ s2�

�
�
h2

9c4
ÿ 4h

9c2
� 4

3

�
Fh

�
h

c2

�
� 0:50 ; �XII:17�

where the term proportional to Fh�h� arises fromPZ, and the
term proportional to Fh�h=c2� arises fromPW�m2

W�. The term
proportional to ln h originates fromPZ, while ln�h=c2� arises
both fromPW�m2

W� and fromPW�0�. The term proportional
to h is contained in PZ, PW�m2

W� and PW�0� and finally, all
four polarisation operators make contribution to the con-
stant.

Collecting the terms proportional to DW in the polarisa-
tion operators in Eqn (XII.16), we get

divHm � 16ps4

3�a
DW

�
�a

4ps2
c2

s2

�
7s2 ÿ 25

6
� 7

6

s2

c2
� 25

6
ÿ s2

c2

�
� �a
4ps2
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ÿ 19

6

�
� 3�a
4p
� 2

s

c

c

s

�a
2p

�
� 16ps4

3�a
DW

�a
ps2

:

�XII:18�
Note that thedivergent terminD [seeEqns (V.8)and(XIII.26)]
exactly compensates for the divergence in Eqn (XII.18),which
justifies the subtraction of infinity in Eqn (XII.16).

The function HA�h� is expressed in terms of polarisation
operators as follows:

HA�h� � 16ps2c2

3�a

�
PZ�m2

Z� ÿ S0Z�m2
Z� ÿPW�0�

�ÿ divHA:

�XII:19�

Substituting the finite parts of the polarisation operators,
we obtain

HA�h� � hc2

hÿ c2
ln

h

c2
ÿ 8h

9�hÿ 1� ln h�
�
4

3
ÿ 2

3
h� 2

9
h2
�

� Fh�h� ÿ
�
4

3
ÿ 4h

9
� h2

9

�
F 0h�h� ÿ

h

18
� 0:78 ;

�XII:20�

May, 1996 Electroweak radiative corrections in Z boson decays 533



where ln�h=c2� stems fromPW and ln h stems fromPZ. Fh�h�
arises both from PZ and from S0Z, while the only source of
F 0h�h� is S0Z. The term linear in h is contained in PZ and PW,
while all three polarisation operators contribute to the
constant.

Adding up the divergent terms, we have

divHA � 16

3
c2s2DW � 16ps2c2

3�a
DW

�a
p
: �XII:21�

Note that the divergent part ofDA [see Eqns (XIII.18) and
(XIII.14)] is:

divDA � ÿ 16c
2

3
DW � ÿ 16ps

2c2

3�a
DW

�a
ps2

: �XII:22�

Vertex parts also contain ultraviolet divergences [see Appen-
dix XIII, Eqns (XIII.11), (XIII.15)]:

div ~FA � ÿ
�
16

3
c2s2 ÿ 16

3
c2
�
DW � 16ps2c2

3�a
DW

c2

s2
�a
p
:

�XII:23�

The sum of terms (XII.21) Ð (XII.23) equals zero.
Finally, the expression forHR�h� is

HR�h� � ÿ 16p
3�a

c2s2
��c2 ÿ s2�

cs
PZg�m2

Z� �Pg�m2
Z�

ÿPZ�m2
Z� �PW�0� � 2

s

c
PgZ�0�

�
ÿ divHR�h� :

�XII:24�

Collecting the finite parts of the polarisation operators,
we find

HR�h� � ÿ h

18
� c2h

hÿ c2
ln

h

c2
�
�
4

3
ÿ 4

9
h� 1

9
h2
�
Fh�h�

� h

1ÿ h
ln h� 0:03 : �XII:25�

The term proportional to Fh�h� stems fromPZ, just as ln h
does.PW generates the term of the order of ln�h=c2�. The term
linear in h is contained both in PZ and in PW, and all
polarisation operators with the exception of PgZ�0� contri-
bute to the constant.

Adding up the divergent parts of the polarisation opera-
tors in Eqn (XII.24), we obtain

divHR�h� � DW
�
2

9
�c2 ÿ s2��1� 30c2� � 4c2s2 � 4

3
c2

�
�
7s2 ÿ 25

6
� 7

6

s2
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� 4

3
c2 ÿ 4

3
s2 � 16

3
c2s2

�
� DW�8c2 ÿ 16

3
c4� : �XII:26�

Taking into account the divergent term inD, yielding [see
Eqns (V.8), (XIII.14), (XIII.18)]

divDR � ÿ 16
3
c2DW ; �XII:27�

and in ~FR [see Appendix XIII, Eqns (XIII.11) and (XIII.22)],
yielding

div ~FR �
�
16

3
c4 ÿ 8

3
c2
�
DW ; �XII:28�

we confirm that divergences cancel out in expressions for R.

XIII. The vertex parts of FAf

and FVf and the constants Ci

This Appendix collects the vertex functions that form a part
of one-loop electroweak corrections to Z! n�n, Z! l�lÿ,
Z! u�u, c�c, d�d and s�s decays. In the case of the Z! b�b decay,
a t-quark can propagate in the loop, so vertex corrections are
not reducible to numbers but are functions of mt (see
Appendix XIV).

The finite parts of vertex functions are given in Ref. [80],
pp 29, 30. The corresponding expressions depend on cW�sW�
and mW=mZ. In the framework of the one-loop approxima-
tion, we replace cW andmW=mZ with c, and sW with s. For this
reason, while vertex functions in Ref. [80] depend on mt, mH

and the new physics, ours are numbers (see also Appendix
XII).

This Appendix also gives the infinite parts absent from
[80] and required for testing whether the infinities in physical
observables do cancel out.

We begin with the Z! n�n decay:

Fn � FVn � FAn � �a
4p

1

4cs

�
1

4c2s2
L2�m2

Z; mZ�

� 2s2 ÿ 1

2s2
L2�m2

Z; mW� � 3c2

s2
L3�m2

Z; mW�
�
: �XIII:1�

For the decay to a pair of charged leptons or quarks we have

FVf � �a
4p

�
vf�v2f � 3a2f �L2�m2

Z;mZ� � F f
L

�
; �XIII:2�

FAf � �a
4p

�
af�3v2f � a2f �L2�m2

Z;mZ� � F f
L

�
; �XIII:3�

where al � a d � ÿ1=4sc, au � 1=4sc, vf � �T f
3 ÿ 2Qfs2�=2sc

(T l
3 � T d

3 � ÿ1=2, T u
3 � 1=2, Ql � ÿ1, Q d � ÿ1=3,

Qu � 2=3). The functions F f
L are

F l
L �

1

8s3c
L2�m2

Z;mW� ÿ 3c

4s3
L3�m2

Z;mW� ; �XIII:4�

F u
L � ÿ

1ÿ 2s2=3

8s3c
L2�m2

Z;mW� � 3c

4s3
L3�m2

Z;mW�; �XIII:5�

F d
L �

1ÿ 4s2=3

8s3c
L2�m2

Z;mW� � 3c

4s3
L3�m2

Z;mW� : �XIII:6�

For calculating FVf and FAf we need to determine the
values of three constants: L2�m2

Z;mW�, L2�m2
Z;mZ�, and

L3�m2
Z;mW�:

L2�m2
Z;mW� � ÿ 7

2
ÿ 2c2 ÿ �2c2 � 3� ln c2

� 2�1� c2�2
�
ln c2 ln

�
1� c2

c2

�
ÿ Sp

�
ÿ 1

c2

��
; �XIII:7�

where we have used mW=mZ � c; Sp�x� is the Spence
function:

Sp�x� � ÿ
�1
0

dt

t
ln�1ÿ xt�; Sp�ÿ1� � ÿ p

2

12
: �XIII:8�
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Using Eqns (XIII.7) and (XIII.8), we find

L2�m2
Z; mZ� � ÿ 7

2
ÿ 2ÿ 8Sp�ÿ1� : �XIII:9�

Finally,

L3�m2
Z;mW� � 5

6
ÿ 2

3
c2 � 2

3
�2c2 � 1�

�
���������������
4c2 ÿ 1
p

arctan
1���������������

4c2 ÿ 1
p

ÿ 8

3
c2�c2 � 2�

�
arctan

1���������������
4c2 ÿ 1
p

�2

: �XIII:10�

The expressions for divergent parts of the vertex func-
tions, describing the coupling of the Z-boson to the leptons,
are

divFn � �a
8p

c

s3
DW; divFVl � divFAl � ÿdivFn : �XIII:11�

We switch to the calculation of the constants Ci. We begin
with definitions. According to Ref. [42],

Vn�t; h� � t� Tn�t� �Hn�h� � Ln �Dn � ~Fn : �XIII:12�

The value of Ln represents the contribution of leptons and
light quarks to the polarisation operators of the vector bosons
and can be easily obtained from the formulas of Appendix XI
for polarisation operators:

Ln � 4ÿ 8s2 � 304

27
s4 : �XIII:13�

Dn originates from the box and vertex electroweak
corrections to the m-decay [23]. The expression for D see in
Appendix V, Eqn (V.8). For Dn we have

Dn � ÿ 16ps
2c2

3�a

�
Dÿ �a

ps2
DW

�
: �XIII:14�

Finally,

~Fn � 128ps3c3

3�a
Fn : �XIII:15�

Comparing Eqns (XIII.12) and (58), we arrive at the expres-
sions for Cn whose ingredients are now all determined:

Cn � Ln �Dn � ~Fn : �XIII:16�

Let us switch to VA:

VA�t; h� � t� TA�t� �HA�h� � LA �DA � ~FA : �XIII:17�

The expressions for LA and DA are already there:

LA � Ln; DA � Dn ; �XIII:18�

the formula for the vertex function is

~FA � ÿ 128ps
3c3

3�a
FAl : �XIII:19�

Finally,

CA � LA �DA � ~FA : �XIII:20�

We now move to VR:

VR�t; h� � t� TR�t� �HR�h� � LR �DR � ~FR ;

�XIII:21�

whereDR � Dn and LR � 0 sincePW�m2
W� is absent from the

ratio gV=gA.
For ~FR we have

~FR � 16p�c2 ÿ s2�cs
3�a

�ÿFVl � �1ÿ 4s2�FAl
�
; �XIII:22�

and the formula for CR is

CR � LR �DR � ~FR : �XIII:23�

We end this Appendix with formulas for Cm:

Cm � Lm �Dm ; �XIII:24�
Lm � 4�c2 ÿ s2� ln c2 ; �XIII:25�
Dm � ÿ 16ps

4

3�a

�
Dÿ �a

ps2
DW

�
: �XIII:26�

XIV. The functions f(t) and df(t)
in the Z!b�b decay

For the function f�t� we use the expansion from Ref. [57]:

f�t� � 3ÿ 2s2

2s2c2

�
t� c2

�
2:88 ln

t

c2
ÿ 6:716

� 1

t

�
8:368c2 ln

t

c2
ÿ 3:408c2

�
� 1

t2

�
9:126c4 ln

t

c2

� 2:26c4
�
� 1

t3

�
4:043c6 ln

t

c2
� 7:41c6

�
� . . .

��
;

�XIV:1�
and for df�t� we use the leading approximation calculated in
Refs [58] and [53]:

df�t; h� � 3ÿ 2s2

2s2c2

�
ÿ p

2

3

âs�mt�
p

t� 1

16s2c2
�a
p
t2t�2�b

�
h

t

��
;

�XIV:2�
where the function t�2�b is tabulated in Table 4 formH=mt < 4.
For mH=mt > 4 we use the expansion [53]:

t�2�b

�
h

t

�
� 1

144

�
311� 24p2 � 282 ln r� 90 ln2 r

ÿ 4r�40� 6p2 � 15 ln r� 18 ln2 r� � 3

100
r2

� �24209ÿ 6000p2 ÿ 45420 ln rÿ 18000 ln2 r�
�
;

�XIV:3�
where r � t=h. For mt � 175 GeV and mH � 300 GeV
t�2�b � 1:245.

XV. The d 2Vi corrections

The corrections d2Vi � �aâs arise from gluon exchanges in
quark electroweak loops [54] (see also Ref. [82]). For two
generations of light quarks �q � u; d; s; c� we have
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dq2Vm�t; h� � 2
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� �ÿ0:377� ; �XV:1�
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9
s4
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p
� 1:750 ; �XV:2�

dq2VR�t; h� � 0 : �XV:3�

The result of calculations for the third generation is
obtained in the form of fairly complicated functions of the t-
quark mass:
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�
ÿ 1

4
A01

�
1

4t

�
�
�
1ÿ 8

3
s2
�2�

tV1

�
1

4t

�
ÿ 1

4
V 01

�
1

4t

��
�
�
1

2
ÿ 2

3
s2 � 4

9
s4
�
ÿ 4tF1�0�

�
; �XV:5�

dt2VR�t; h� � 4

3

âs�mt�
p

�
tA1

�
1

4t

�
ÿ 5

3
tV1

�
1

4t

�
ÿ 4tF1�0� � 1

6
ln t

�
; �XV:6�

where

âs�mt� � âs�mZ�
�
1� 23

12p
âs�mZ� ln t

�ÿ1
: �XV:7�

Note that d2Vi are independent of mH. The functions
V1�r�, A1�r� and F1�x� have rather complex form and were
calculated in Ref. [54]. Their expansions for sufficiently small
values of arguments are (we have added cubic terms to the
expansions from Ref. [54]):

V1�r� � r

�
4z�3� ÿ 5

6

�
� r2

328

81
� r3

1796

25� 27
� . . . ; �XV:8�

A1�r� �
�
ÿ6z�3� ÿ 3z�2� � 21

4

�
� r

�
4z�3� ÿ 49

18

�
� r2

689

405
� r3

3382

7� 25� 27
� . . . ; �XV:9�

F1�x� �
�
ÿ 3
2
z�3� ÿ 1

2
z�2� � 23

16

�
� x

�
z�3� ÿ 1

9
z�2� ÿ 25

72

�
� x2

�
1

8
z�2� � 25

3� 64

�
� x3

�
1

30
z�2� � 5

72

�
� . . . ;

�XV:10�

where z�2� � p2=6; z�3� � 1:2020569::::

Adding up the contributions (XV.4) ± (XV.6) and using
the expansions (XV.8) ± (XV.10), we obtain (up to terms of
the order of t3):

dt2Vm�t; h� � âs�mt�
p

�
ÿ2:86t� 0:46 ln tÿ 1:540

ÿ 0:68

t
ÿ 0:21

t2

�
� âs�mt�

p
� �ÿ11:67�; �XV:11�

dt2VA�t; h� � dt2Vn�t; h� �
âs�mt�
p

�
ÿ2:86t� 0:493

ÿ 0:19

t
ÿ 0:05

t2

�
� âs�mt�

p
� �ÿ10:10�; �XV:12�

dt2VR�t; h� � âs�mt�
p

�
ÿ2:86t� 0:22 ln tÿ 1:513ÿ

ÿ 0:42

t
ÿ 0:08

t2

�
� âs�mt�

p
� �ÿ11:88�: �XV:13�

These formulas hold for mt > mZ. In the region mt < mZ we
either set dt2Vi � 0 or make use of the massless limit

dt2Vi � 1

2
dq2Vi :

In any case this region gives negligible contribution to the
global fit.

XVI. The d 5Vi corrections

In the second order of weak interactions quadratic depen-
dence on the mass of the Higgs boson is given by expressions
[83]:

d5Vm � �a
24p

m2
H

m2
Z

� 0:747

c2
� 0:0011; �XVI:1�

d5VA � d5Vn � �a
24p

m2
H

m2
Z

� 1:199

s2
� 0:0057; �XVI:2�

d5VR � ÿ �a
24p

m2
H

m2
Z

c2 ÿ s2

s2c2
� 0:973 � ÿ0:0032: �XVI:3�

The numerical evaluations above were made with
mH � 300 GeV.
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