
Abstract. This paper examines elements of the general theory
of transitions with changing spacetime signature in quantum
gravity and cosmology as suggested in a pioneer work of A D -
Sakharov. Unlike the conventional formal method for func-
tional integration, this approach uses as the starting point the
Dirac ±Wheeler ±DeWitt operator quantization and its reduc-
tion to quantization in Arnowitt ±Deser ±Misner variables. It
has been demonstrated that motivation to consider Euclidean ±
Lorentzian transitions consists in global ambiguity of physical
reduction on the phase space of the theory (a gravitational
analog of the problem of Gribov's copies). This ambiguity in
particular results in the indefinite sign of the physical inner
product of quantum states and leads to the concept of third
quantization. An alternative approach is quantization in the
York gauge and in special variables of conformal superspace.
This quantization is likely to provide a global solution of the
ambiguity problem, but the problems of Euclidean ±Lorent-
zian transitions arise in this formalism in the language of
complexification of a conformal space of the Wick-rotation
type for the time variable in the Klein ±Gordon equation. The
problem of origin of the early Universe via gravitational tun-
nelling in Hartle-Hawking and Vilenkin quantum states is

considered to illustrate applications of the general theory.
The mechanism is described by which loop effects generate
the normalizable distribution function for the ensemble of
chaotic inflationary universes. In a model with a large non-
minimal coupling constant for the scalar inflaton, this mechan-
ism gives rise to a sharp probability peak at sub- Planckian
values for the Hubble constant which is in good agreement with
the contemporary observational status of the cosmological in-
flation theory.

1. Introduction

The theory of gravity and cosmology occupied a special place
among versatile scientific interests of A D Sakharov. These
issuesarecovered in17papers included in theCompleteWorks
of A D Sakharov published recently (excepting secret reports
on the construction of atomic weapons) [1]. They concern
induced gravitation, explanationof barionic asymmetry of the
Universe, multisheet Universe, cosmological models with the
reversal of timearrow, and finally quantumcosmology treated
in a paper on `Cosmological transitions with changing metric
signature' which was written in exile in 1984 [2]. (Some
fundamental works of A D Sakharov were also published in
a special issue ofUspekhi Fizicheskikh Nauk (Soviet Physics ±
Uspekhi) on the occasion of his seventieth birthday [3]).

The present paper is not designed to be a comprehensive
review although the Introduction lists a few selected topical
problems and approaches of gravity quantization. Science
has made considerable progress during 12 years that elapsed
after A D Sakharov had published his paper [2]. (``There are
miraculous achievements in science. Although I do not
believe in the possibility to have a universal theory in the
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near future (or to have it at all), I do see staggering, fantastic
progress evenwithinmy lifespan. I hope this onwardmarch of
science will never stop but will be continuously spreading and
growing.'' ÐADSakharov in [4], p 22). In fact, we think that
the `staggering, fantastic progress' in quantum gravity is
difficult to expect in the near future. Nevertheless, we try to
discuss some ideas of AD Sakharov's paper [2] with regard to
the current state of this discipline and to give more or less
rigorous mathematical formulation for selected heuristic
hypotheses of the author.

How to combine the general theory of relativity (GTR)
and quantum physics has been eagerly sought by a few
generations of physicists. But despite all rapid developments
that quantum gravity and quantum cosmology, its natural
application, have experienced during the last 10 ± 20 years, a
number of most important conceptual problems remain to be
solved. This is not without reason. Such terms as `time', `the
past and the future', `causality', `unitarity', `reference frames',
`event' are used to designate clear-cut physical notions or
basic principles both in GTR and in the quantum theory
although each of these words needs to be additionally defined
as soon as one begins to quantize the metric tensor, that is
when spacetime intervals are considered to be quantum
objects.

Assuming quantum fluctuations of the metric tensor and
following strong analogies with the string theory, one can
make a further step, that is include manifolds of different
topology, dimensions and signatures in the quantum
ensemble. Quantum functional averaging over spacetime
diffeomorphisms (`reference frame quantization') `spreads'
gauge-noninvariant objects which are represented in the
framework of GTR by any observables with a limited
spacetime support. The standard procedure of gauge fixa-
tion eliminates `spreading' but makes quantum predictions
gauge-dependent. At the same time, the use of only gauge-
invariant objects (topological numbers, integrals over the
entire spacetime...) raises the problem of the description of
local geometry in this language.

The requirement of invariance of quantum observables
and quantum `wave function of the Universe' under general
coordinate transformations means imposition of constraints.
In particular, time altogether drops out of the quantum
description of gravitation since all dynamical evolution can
be mimicked by time reparametrization. This well-known
problem of time in quantum gravity raises very important
questions: How can physical time be introduced? Is it possible
to do this unambiguously, taking a certain subsystem of the
quantum system as the `clock'?What does it mean to quantize
a system in which all observations are from `the inside' and
only relative probabilities make sense? These and related
questions have lately given rise to special fields of research.
We shall briefly discuss some quantization methods and
trends of reasoning, referring the reader to original publica-
tions and reviews whenever possible.

1.1 Canonical quantization
Canonical, non-covariant quantization of Einstein's GTR
has been developed in pioneering works of Dirac, Wheeler,
and DeWitt [5, 6, 7] (see, for instance, review [8]). The most
important result of quantization is a formal loss of spacetime;
the wave function satisfying the Wheeler ±DeWitt constraint
equation (00-component of the Einstein equations)

ĤxC�qi� � 0; �1:1�

depends only on the superspace point:

qi � �gab�x�;j�x�	 �1:2�

and is time-independent. Both the three-dimensional metric
gab�x� and the fields of matter j�x� on this three-dimensional
manifold constitute the primary language of the theory. It is
generally accepted that time (hence, 4-dimensionality) and the
light cone appear in this approach only in the semiclassical
approximation for the solution of Eqn (1.1).

However, it is possible to choose, from the very beginning,
a more natural physical way and postulate that only physical
degrees of freedom are subject to quantization (for free
gravitation in four dimensions, there are only two graviton
polarizations; in three dimensions, the number of physical
local gravitational degrees of freedom is equal to zero). This
unitary gauge approach based on the Arnowitt ±Deser ±
Misner (ADM) reduction to physical variables [9] has been
thoroughly examined in Ref. [8]. A large part of the present
paper is also concerned with further development of this
approach. Despite the fact that in the ADM quantum
reductionmethod, time, quantum-mechanical scalar product,
conserved probabilities, and physical Hilbert space are
introduced without any reference to the semiclassical regime,
there are intrinsic difficulties and problems: How much do
physical predictions depend on the choice of the gauge
condition (the choice of the reference frames)? What is the
physical meaning of emerging Gribov's copies? These pro-
blems are discussed below (Section 3).

In the framework of the operator quantization method
examined in the present paper, with superspace as the
language, the possibility to use one of the variables qi (1.2)
or their combination as the classical clock fixed by the gauge
condition is traditionally associated with the fact that the
signature of one of the superspace axes is negative (see
Section 2). However, any `monotonically changing' coordi-
nate can play the part of the clock. (Words in inverted
commas have sense only after the shape of the Hamiltonian
is given; by definition, `monotony' is broken when the
Poisson bracket of a given quantity with the Hamiltonian
vanishes). The signature of superspace is a priori unrelated to
the spacetime signature. The problem is that the gravitational
analog of Gribov's copies inevitably exists at superspace
caustics which preclude the global use of the gauge that fixes
monotonically changing time over the entire superspace qi.
This is actually the main incentive for the transition to third
quantization. In fact, a large part of the present paper is
devoted to this and related problems.

1.2 Covariant BVF quantization
A link between the canonical and covariant methods of
gravity quantization is constituted by the Batalin ±Vilko-
visky ±Fradkin (BVF) quantization [10] the relation of which
to the Dirac ±Wheeler ±DeWitt quantization and unitary
reduction has been discussed in detail in Ref. [8]. The BVF
quantization uses relativistic gauge when the Lagrange multi-
pliers become quantum dynamical variables; concurrently,
the Faddeev ± Popov ghosts need to be introduced to com-
pensate extra degrees of freedom, and the condition of the
vanishing Becchi ±Rouet ± Stora ±Tyutin (BRST) charge is
imposed upon vectors of the extended Hilbert space (see Ref.
[11]). This approach is very convenient for the construction of
S-matrix which, as can be proved in general form, is
independent of the gauge on the mass shell. However, in the
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cosmological context, where there is no such notion as the in-
limit at the asymptotically flat infinity of spacetime, this
method is either reduced to the Dirac ±Wheeler ±DeWitt
quantization or implies other types of operator quantization
which remain to be constructed.

1.3 Integration over trajectories
``However the split into three spatial dimensions and one time
dimension seems to be contrary to the whole spirit of
relativity. Moreover, it restricts the topology of spacetime to
be the product of the real line with some three-dimensional
manifold, whereas one would expect that quantum gravity
would allow all possible topologies of spacetime including
those which are not products''. This is a statement of
Hawking from his criticism of canonical quantization in a
paper for the book [12] issued on the occasion of Einstein's
centenary. In the covariant (non-canonical) approach, the
principal tool is the Feynman functional integral over space-
time fields (`trajectories'):

K�q; q0� �
�
exp

�
ÿ
�q�qM�
q0�qM0�

���
g
p

L d4x

�
�DgmnDj� : �1:3�

Here, L is Lagrangian, g � det gmn�x; t�, the gauge and the
measure are included in symbol �DgDj�; q0; q are the fields
(1.2) on the hypersurfaces qM0, qM bounding the 4-manifold
M. The covariant formula (1.3) is in agreement with the
canonical quantization method since the kernel K�q; q0� is the
solution of the Wheeler ±DeWitt equation (1.1) with respect
to each variable q; q0 if the functional integral in (1.3) is
defined properly [13 ± 16]. Specifically, Hartle and Hawking
obtained their celebrated solution of the Wheeler ±DeWitt
equation, the so-called `no-boundary' wave function of the
Universe, by postulating the Euclidean form, shrinking the
initial hypersurface qM 0 to a point, and requiring all the
fields at this point to be regular [17, 18]. For all that, the
analogy between the quantum-gravitational kernel (1.3) and
the Feynman kernel of quantum mechanics or quantum field
theory should be used with great caution. The standard
composition law used in Ref. [17] and based on the
integration over all end points at a given moment is
inapplicable in this case because K�q; q0� satisfies constraint
equations, and the naive integral over q is infinite (see
discussion in Section 2.3).

1.4 The effective action method
Instead of the amplitude (1.3), it is possible to formulate the
theory in the language of the explicitly covariant effective
action G��gmn; �j� defined by the Legendre transformation of
the generating functional of external currents. In the tree
approximation, G coincides with the initial classical action,
then the one-loop term of the �h order follows, etc. An
advantage of the effective action method is that it does not
deal with quantum states but yields covariant algorithm, i.e.
allows covariant regularization for quantum averages (to be
shown in Section 4, where this formalism is applied to the
problem of quantum birth of the Universe and makes it
possible to calculate the distribution function and to obtain
the inflationary scale). At the same time, the effective action
method cannot replace basic principles of operator quantiza-
tion. The form ofG depends on the choice of field asymptotics
in the functional integral (i.e. on the choice of the initial and
final states). Moreover, in the case of the standard definition
of the effective action, results of the calculation depend upon

parametrization of fields Ð arguments of the functional
integral. Off mass shell, G depends on the choice of gauge-
fixing condition. An important step to constructing the
unambiguous effective action has been made by Vilkovisky
and DeWitt based on an excellent idea of geometrization of
the space of `trajectories' [19, 20]. (See also Refs [21 ± 24] and
references therein for applications of this method.)

The functional representation of the Vilkovisky ±DeWitt
effective action in Refs [23, 24] accounts for the so-called
`residual', `large' diffeomorphisms (Gribov's copies Ð `zer-
oes' of the Faddeev ± Popov operators of the Landau ±
DeWitt relativistic gauge) which is physically equivalent to
the requirement of invariance of observables with respect to
these diffeomorphisms. It has been shown that this require-
ment is non-trivial, imposes restrictions on the admissible
background metric �gmn, and leads to the `quantum repulsion'
from `free' (without external sources) solutions of classical
dynamical equations. The environment and the external
sources arise in different contexts when one attempts to
obtain the rational classical limit in quantum cosmology.

1.5 Observational status of quantum gravity.
The problem of classical limit
One may think of two objections to the apparently explicit
and well-known statement that quantum gravity cannot be
(and will not be in the near future) experimentally verified
since the Planck scale � 10ÿ33 is absolutely unattainable.

The first `experimental site' is the early Universe, the
problem of the initial state. Similar to inflation theories that
establish close relations between theoretical ideas about
superhigh energy scales of Grand Unification and micro-
scopical structural features of the observed Universe, the
problem of choice of the quantum initial state of the Universe
may likewise prove to be of practical importance.

Another `test' for quantum cosmology is our everyday
experience, the indisputable fact of our living in the practi-
cally classical (3+1)-dimensional Riemann space in which
spacetime distances are sufficiently well-determined due to
the smallness of quantum metric dispersion. If the theory
encounters difficulty in `preparing' such a narrow-peaked
coherent quantum state of the Universe, it (the theory) must
be replaced and the basic principles must be revised, if
necessary. The problem of classical limit in quantum gravity
has become a serious test for the theory in question and gave a
new impetus to the re-examination of fundamentals of the
quantum theory (see Refs [25, 26] and references therein).
Almost all the authors concerned with the problem of
classical limit argue that neither time nor classical spacetime
can be constructed from the pure wave function of the
Universe since the systemmust be open and `external' degrees
of freedom are needed averaging over which would nullify
non-diagonal elements of the density matrix. However, it can
not be excluded that the general concern about basic
principles is unwarranted. It is universally known that in
quantum mechanics, the semiclassical nature of the wave
function is not sufficient for a particle to exhibit `classical'
behaviour. It requires the packet, the coherent state, the pre-
exponential multiplier whose maximum follows the classical
trajectory given by the Hamilton-Jacobi equations while the
dispersion about this trajectory must be small as well as the
spreading rate of the packet. Therefore, the problem of the
appearance of the approximately classical spacetime is the
problem of preparing the initial state of the Universe with
small dispersion of metric tensor components near the
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solution of the Hamilton-Jacobi equation. Section 4 demon-
strates that in the quantum creation of the Universe (tunnel-
ling from the state with the Euclidean spacetime signature),
such an initial state may occur if loop quantum gravitational
corrections are taken into account. Parameters of this initial
state agree with the observational status of the inflationary
Universe.

Also, it is worth noting that the popular requirement of
decoherence of various semiclassical Everett's branches of the
Universe evolution may prove superfluous because we
(observers) evidently belong to the same branch and actually
see everything from the inside; that is, we perform the
necessary reduction of the wave packet by our own existence.

1.6 A change of topology
Three-dimensional hypersurfaces qM, qM0 (boundaries of the
manifoldM in (1.3)) are not necessarily simply-connected. It
is quite possible to consider the `multiparticle' (`multi-
Universe') state

q�qM� � �g�1�ab �x1�j�1��x1� . . . g
�n�
ab �xn�;j�n��xn�

	
; �1:4�

where q�qM� is a set of field values on various 3-manifolds the
number of which in qM0 may generally speaking be different.
The idea of possible topological transitions (`spacetime
foam') in quantum gravity was first suggested by Wheeler
[27]. The inclusion of manifolds with complicated topology in
the arguments of kernel (1.3) and the description of theMega-
Universe naturally requires transition to third quantization
when the wave function of the Universe C�q� satisfying the
Wheeler ±DeWitt equation (1.1), i.e. the infinite number of
the Klein ±Gordon-type equations (equal the number of
points in the 3-space), is taken as the operator. New physics
arises in processes with the changing number of universes in
(1.3) which evidently requires the introduction of interactions
between universes (`relativistic particles'), i.e. the insertion of
nonlinear in C�q� terms into Eqn (1.1) [28, 29]. The key
questions are: What is responsible for this interaction? Is it
possible to extract it from theEinstein action, the initial action
of quantum gravity? Themost natural way (also ensuing from
analogy to the string theory) seems to determine the vertices of
this interaction of theorderNas follows: to cut out n4-`circles'
from the Euclidean 4-sphere and then to perform functional
averaging over all 4-geometries topologically equivalent to a
sphere, with fixed values of 3-geometries at the boundary of
each cut `circle' [17]. These distant 4-regions may be con-
sidered as wormhole throats joining the Euclidean 4-sphere
and other Euclidean spaces, or Lorentzian universes, in the
case of changing the signature. (The no-boundary Hartle-
Hawking wave function is the `vertex' of order 1; the creation
of the Lorentz Universe `from nothing' corresponds to a
change of the signature at themaximum radius of the `cutting'
which is in this case a hemisphere (see Fig. 3 and the discussion
in Section 2)). However, the amplitudes thus determined in
Ref. [17] must satisfy the Wheeler-DeWitt equation with
respect to each of their `tails' due to functional averaging
over lapse and shift functions; that is, in the language of the S-
matrix, they are localised on the `mass shell' and can not
therefore serve as `bare' vertices.

A special line of research is the theory of wormholes and
the development of a challenging idea of renormalization [30]
and, possibly, dynamical fixation of all constants of low-
energy physics due to the presence, at each point of a large
`parent' universe, of virtual wormholes which connect this

point with another point in the same universe or with a
`daughter' universes. In order to illustrate this situation, let
us give expressions for the metric of the simplest wormhole in
n-dimensional Euclidean space in three different parametriza-
tions of the radial coordinate:

ds2 � dr2 � �r2 � b2� dO�nÿ1� �1:5a�

�
�
1� b2

4z2

�2�
dz2 � z2 dO�nÿ1�

� �1:5b�

� R2

R2 ÿ b2
dR2 � R2 dO�nÿ1�: �1:5c�

Here, dO�nÿ1� is an element of �nÿ 1�-dimensional sphere
with unit radius;

r � zÿ b2

4z
�

����������������
R2 ÿ b2
p

: �1:6�

The expression (1.5a) is especially illuminating: at b � 0, there
is a flat metric in the spherical coordinate system whereas at
any arbitrarily small b 6� 0 there are two asymptotically flat
infinite spaces joined by a throat of radius b. Version (1.5b)
has been used in Ref. [31] which postulates the loss of
coherence by an initially `pure' quantum-mechanical state
due to irreversible leakage of information through worm-
holes. Quite different hypothesis concerning coherent effects
of wormholes has been suggested in Ref. [30]. In a recent
paper by Rubakov [32], the role of quantum transitions with
changing topology has been studied in the framework of the
string theory, i.e. in two-dimensional gravitation. The author
considers creation of `daughter' universes (strings) to be
nothing but standard emission of gravitons inD-dimensional
spacetime (`target space'). Also, it has been shown in Ref. [32]
that both phenomena (the loss of coherence and coherent
renormalization of phenomenological action constants, i.e.
fields in `the target space') take place, each in its own energy
region.

It is essential that the action

S �
�
R
���
g
p

dnx � bnÿ2 ;

calculated for metric (1.5) is small for small b, i.e. quantum
dynamics does not significantly suppress the appearance of
microscopic wormholes in each point of the `large' Universe.
The theory of renormalization of constants by wormholes
may formally be reduced to the standard diagram technique
in which specific supernonlocal (independent of `inlet' and
`outlet' points of a wormhole) Green's functions correspond
to lines while the vertices are represented by integrals of
various local operators over the entire volume. In the dilute
gas (non-interacting wormholes) approximation, this effec-
tively leads to the renormalization of observed constants.
Here, the main contribution comes from the deep infrared
region rather than the ultraviolet one (unlike the situation in
the standard quantum field theory), and the world's proper-
ties at large distances really influence the observed local
physics.

In other language, the dilute gas approximation corre-
sponds to the application of the mean field approximation to
the Wheeler ±DeWitt equation with nonlinear terms for the
third quantized wave function of the Universe. It should be
emphasized that these words and notions hardly understand-
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able in the context of 4-dimensionality become sufficiently
clear and unambiguous as soon as one discusses the string
theory (two-dimensionality) [33 ± 35].

Today, extensive studies on classical and quantum worm-
holes are underway (see Refs [36, 37] containing many useful
references). Speaking of wormholes, one cannot help men-
tioning another recent line of research the key words of which
are `Lorentzian wormholes' and `time machine', with all
accompanying questions like `What happens if someone
kills his grandmother?' inseparable from the backward
journey in time [38, 39].

It is worth noting close relationship between wormholes
and the signature change in the radial coordinate which is
most obvious if the wormhole metric is written in the form
(1.5c), where R is the scale factor of the �nÿ 1�-sphere.
Clearly, the coordinate R becomes timelike at R < b (the
classically forbidden region for metric (1.5)). It is this pole
expression for the g00-component of the metric that was used
by A D Sakharov to illustrate the idea of changing signature
(see below, (1.7)).

1.7 A change of signature
In Ref. [2], A D Sakharov suggested that Euclidean and
pseudo-Euclidean geometries with the different number of
time-axes should be considered on equal basis in the func-
tional integral (1.3); in this case, the imaginary unity before
the action emerges automatically due to the multiplier

���
g
p

in
the exponent of (1.3) for the Lorentzian signature (the odd
number of time axes, g < 0). The idea of additional time-
dimensions had been suggested earlier (see references in Ref.
[75] and comments by I D Novikov, V P Frolov, V A Ru-
bakov, I Ya Aref'eva, and I V Volovich on [2] in [1], pp 309 ±
313).

A D Sakharov illustrated the central idea of Ref. [2], the
possibility of quantum tunnelling transitions between spaces
with different signature, by a simple example of the sign
alteration of the g00-component of the metric tensor upon
crossing the pole at the coordinate x0, the boundary between
the Euclidean and Lorentzian regions:

g00 � l

x0 ÿ c
: �1:7�

At x > c and x < c one has the Euclidean and Lorentzian
metrics, respectively. According to Sakharov, the proper time
determined by the transformation of coordinates:

at x0 > c x0 ÿ c � t
2

4l
; g00 ! g000 � 1 ;

at x0 < c cÿ x0 � t2

4l
; g00 ! g000 � ÿ1 : �1:8�

can be introduced in either world. It will be shown in Section 3
that the pole form of the metric (1.7) naturally arises at the
bounce point, i.e. at the boundary of the Euclidean-Lorent-
zian transition in the system of coordinates corresponding to
the parametrization of time by the scale factor of the
Universe. The appearance of singularity of the (1.7) type has
been illustrated by formula (1.5) above. Unlike the wormhole
(1.5), the de Sitter Universe with the bounce is the Lorentzian
Universe at large values of the scale factor and the Euclidean
Universe at small ones.

The present paper discusses at length only the quantum-
cosmological aspect of changing spacetime signature, namely

with regard to the problem of the creation of the de Sitter
Lorentzian Universe from the Euclidean 4-sphere. The
consideration of the components of metric tensor as
complexified dynamical variables is presented in Refs [41,
42]. Ref. [42] attempts on formulating a dynamical principle
for the prediction of both the dimensionality and the
signature (ÿ���) of our Universe. Also, many studies
concern solutions for classical equations affecting signature
(see Refs [43 ± 45] and references therein). The authors of Ref.
[46] treated spacetime manifolds with different signatures in
the supermembrane language.

1.8 Fundamentally different approaches
to quantization of gravity
In the discussion of gravity quantization methods above, we
have assumed the Einstein action (or other gravitational
actions) to be the primary initial element of the theory.
However, a quite different approach (going back to Sakhar-
ov's idea of induced gravitation [47] andmaximally realized in
the string theory [48, 49]) turns out to be most promising.
According to this standpoint, both the gravitational action
and the spacetime continuum itself are likely to arise only in
the phenomenological, long wavelength limit of a more
fundamental theory. This revolutionary concept of spacetime
and gravitation unlimited by the expansion in the perturba-
tion theory has much in common with Regge's calculus, the
dynamical triangulation method, matrix models, the use of
the Ashtekar variables, and the treatment of quantum gravity
as the topological quantum field theory (see, for instance, the
special issue of Journ. Math. Phys. [50]). So far, the main
objective of these studies has been to define such fundamental
notions and quantities as topological vicinity, Hausdorff
dimensionality, introduction of the concept of distance in
the scaling limit, etc. None of these approaches has yet been
applied to cosmology.

Detailed bibliography on quantum gravity up to 1990 is
included in Ref. [51] (see also a recent Isham's review lecture
[52]). Quantum gravity has been discussed at length at the 1st
International Sakharov Conference on Physics (P N Lebedev
Physical Institute, Russian Academy of Sciences, Moscow,
21 ± 31 May, 1991, see Ref. [53]). We hope that this field of
research will be equally well represented at the 2nd Sakharov
Conference to be held in Moscow in May, 1996.

In the present paper we confine ourselves to examining the
most traditional canonical ADMquantization of the Einstein
theory. In Section 2, we introduce constraint equations,
investigate peculiarities of the inner product of wave func-
tions satisfying these equations, and show the inevitability of
the problem of time and transition to third quantization in
quantum gravity within the Dirac ±Wheeler ±DeWitt
method. In Section 3, quantization is performed by the
ADM reduction, i.e. in the unitary gauge when four arbitrary
functions of the superspace coordinates parametrized by
number t are excluded from the quantum ensemble. Section
3 also deals with the problem of Gribov's copies and the
possibility to use gauges in the absence of this problem which
may, in principle, eliminate the necessity of transition to third
quantization. Section 4 is devoted to the construction, in the
one-loop approximation, of the wave function of our Uni-
verse `created' from the Euclidean region, i.e. from the state
with positive-definite signature. In the Conclusions, we
discuss possible lines of further research as well as the
relationship between `anthropic' and `dynamical' approaches
to the explanation of the properties of the observed Universe.
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2. Gravitational constraints, the problem
of time, and third quantization

We begin this Section with a brief discussion of the special
features of Einstein's relativity which give rise to the well-
known problem of time and actually provide the basis for the
theory of quantum transitions with the changing spacetime
signature. The canonical action of the theory on the phase
space of three-dimensional metric coefficients gab, matter
fields j, and momenta conjugate to them pab; pj
(a; b; . . . � 1; 2; 3) has the form [6, 9, 54]

S �gab; pab; j; pj; N?; Na�

�
�
dt d3x � pab _gab � pj _jÿN?H? ÿNaHa�: �2:1�

Lapse (N? � �ÿ4g00�ÿ1=2) and shift (Na � gab4g0b) functions
enter this expression without time derivatives and may there-
fore be regarded as Lagrange multipliers in gravitational
constraints: the superhamiltonian and supermomenta

H? �gab; j; pab; pj� � 1

2
Gab; cd p

abpcd

ÿ ���
g
p 3R�Hmat

? �gab; j; pj�; �2:2�

Ha �gab; j; pab; pj� � ÿ2gabHcp
bc

�Hmat
a �gab; j; pj�;

�2:3�

where Gab; cd � gÿ1=2�gacgbd � gadgbc ÿ gabgcd� is the local
matrix of the DeWitt supermetric, while Hmat

? and Hmat
a are

the contributions of the matter fields whose specific form
depends on the choice of matter. This action gives rise to
canonical equations of motion for the coordinates and
momenta, by varying it with respect to phase-space variables,
while the variation of the Lagrange multipliers imposes non-
dynamical constraint equations

H? � 0; Ha � 0 ; �2:4�

and leaves N? and Na undefined. This arbitrariness is
equivalent to the invariance of the gravitational action with
respect to 4-dimensional diffeomorphisms. For phase vari-
ables, they are generated by canonical transformations with
gravitational constraints �H?;Ha� as the generators of local
infinitesimal diffeomorphisms, normal (?) and tangent (a) to
the constant time surfaces, respectively. Constraints (2.2),
(2.3) belong to the first class, according to Dirac's terminol-
ogy [5], and are in involution with respect to the Poisson
bracket f. . . ; . . .g on the phase space [6, 9, 54]�

H?�x�; H?�x0�
	 � gab�x�Hb�x� qad�x; x0� ÿ �x$ x0� ;�

H?�x�; Ha�x0�
	 � ÿH?�x0� qad�x0; x� ; �2:5��

Ha�x�; Hb�x0�
	 � Hb�x� qad�x; x0� ÿ �a; x$ b; x0� :

The Hamiltonian of a closed cosmological model with the
action (2.1) is a linear set of constraints and therefore vanishes
on their solutions. This feature is responsible for the well-
known problem of time in both classical and quantum
cosmologies. At the classical level this problem shows up in
the specific properties of the Hamilton ± Jacobi gravitational
function S �t; gab; j; t0; g0ab; j

0�, i.e. action (2.1), calculated
on a classical extremal joining configurations �g0ab; j0� and

�gab; j� taken at the initial (t) and final (t0) moments. Due to
gravitational constraints, function S �t; gab; j; t0; g0ab; j

0�
satisfies the system of Einstein-Hamilton-Jacobi equations
derived form (2.4) by substituting functional gradients of S
for the momenta

H?

�
gab; j;

dS
dgab

;
dS
dj

�
� 1

2
Gab; cd

dS
dgab

dS
dgcd

ÿ ���
g
p 3R�Hmat

?

�
gab; j;

dS
dj

�
� 0; �2:6�

Ha

�
gab; j;

dS
dgab

;
dS
dj

�
� ÿ2gabHc

dS
dgbc

�Hmat
a

�
gab; j;

dS
dj

�
� 0; �2:7�

Hence, the ordinary Hamilton ± Jacobi equation for
S�t; gab; j; t0; g0ab; j

0� is reduced to the independence of this
function of t (and t0)

S�t; gab; j; t0; g0ab; j
0� � S�gab; j; g0ab; j

0� : �2:8�

Thus, the Hamilton ± Jacobi function does not bear explicit
information about the time characterizing gravitational
system dynamics.

At the quantum level, the problem of time arises in the
ShroÈ dinger picture of the Dirac ±Wheeler ±DeWitt quantiza-
tion. This picture is essentially as follows. In contrast to what
is the case of the conventional non-gauge theory, gravita-
tional phase variables in the theory of gravity are not
independent and satisfy the constraints (2.4). A priori, in the
quantum theory, there is a freedom to take this fact into
consideration in two different ways. On the one hand, the
constraints may be regarded as equations on operators
gab; p

ab; j; pj which become (as they do in the classical
theory) dependent and satisfying special (Dirac's) commuta-
tion relations compatible with the constraints [9, 55, 10]. On
the other hand, it is possible to consider the operators of
phase-space variables as independent and to impose the
constraints as equations selecting physical states jW i in full
representation space of these operators [5, 6]

Ĥ?jW i � 0; Ĥa jW i � 0: �2:9�
The second approach is in fact Dirac's quantization scheme in
which independent canonical operators satisfy the Heisenberg
commutation relations. In the coordinate representation
�jW i � W �gab�x�; j�x��� of commutation relations

ĝab�x� � gab�x�; ĵ�x� � j�x�;

p̂ab�x� � �h

i

d
dgab�x� ; p̂j�x� � �h

i

d
dj�x� �2:10�

Eqns (2.9) assume the form

00�
ÿ �h2

2
Gab; cd

d2

dgabdgcd
ÿ ���

g
p 3R�Hmat

?

�
gab; j;

�h

i

d
dj

��00
�W �gab; j� � 0; �2:11�

00�
ÿ2 �h

i
gabHc

d
dgbc
�Hmat

a

�
gab; j;

�h

i

d
dj

��00
W �gab; j� � 0;

�2:12�
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where the double primes indicate that given functional
differential operators imply symbolic operator realization of
the classical constraints (2.2), (2.3) which implies both the
ordering of non-commuting factors and possible quantum
corrections proportional to �h.

The relations (2.11), (2.12) are basic dynamical equations
for the physical states in canonical quantum gravity and
cosmology, the former being known as the Wheeler ±DeWitt
equation. Their direct corollary is the time-independence of
physical states

i�h
q
qt
jW i �

�
d3x�N?Ĥ? �NaĤa� jW i � 0; �2:13�

which is a direct analog of the property (2.8) of the classical
Hamilton ± Jacobi function.

At first sight, this should lead to a paradoxical conclusion
that the system is totally lacking dynamics because the naively
calculated quantum averages of any ShroÈ dinger operator Ô,
hW jÔjW i do not display time-dependence. Actually, the
naivety of such calculations follows from the fact that the
quantum average itself and the corresponding scalar product
of physical states

hW 1 jW 2i �
�Y

x

dgab�x� dj�x�W �
1�gab;j�W 2�gab;j�

�2:14�

are poorly defined (diverge) owing to quantum constraints
(2.11), (2.12). In fact, these linear homogeneous differential
equations on �gab;j� imply that their solutions can not be
square-integrable (for example, Eqn (2.12) means that the
wave function is constant along the orbits of three-dimen-
sional spatial diffeomorphisms in superspace of variables
�gab;j� and integration over the corresponding directions in
this infinite space is likely todiverge).All this indicates that the
formalism of the aforementioned Dirac ±Wheeler ±DeWitt
quantization is not closed: it does not explicitly contain time
and has no physically meaningful inner product of quantum
states. It is natural to suggest that these difficulties result from
the fact that physical time is hidden (parametrized) among
variables of the superspace of 3-metrics andmatter fields or, in
a broader sense, among variables of the entire phase space.
This hypothesis is supported by additional arguments con-
cerning the structure of the Wheeler-DeWitt equation (2.11).
The kinetic term in the Hamiltonian constraint,

1

2
Gab; cd p

abpcd � 1���
g
p

�
pab p

ab ÿ 1

2
p2
�
;

p � gab p
ab; pab � gac gbd p

cd ; �2:15�

is indefinite, and the DeWitt supermetric has the hyperbolic
signature

SignGab; cd � �ÿ ������ �2:16�

with the `timelike' sign in the conformal mode sector of the 3-
metric. Hence, the Wheeler ±DeWitt equation may be inter-
preted as a hyperbolic differential equation that describes the
propagation of wave functions in time hidden in the con-
formal mode of superspace.

Such an interpretation elevates the canonical Dirac ±
Wheeler ±DeWitt quantization to a new conceptual level

similar to the situation at the dawn of the quantum field
theory when the substitution of the ShroÈ dinger equation for
the relativistic particle by theKlein ±Gordon equation has led
to second quantization and the description of processes with
the variable number of particles. In terms of quantum gravity,
such a procedure is usually referred to as third quantization
intended to describe creation and annihilation of multiple
universes. The necessity of multiple universes in the Klein ±
Gordon interpretation of the Wheeler ±DeWitt equation
follows, at least naively, from the properties of the inner
product on the space of its solutions.

Due to the hyperbolic nature of this equation and from
the analogy with the relativistic particle, the conserved inner
product must have the form of a flow across a certain surface
S in superspace

�W 1 jW 2� �
�
S
W �

1

00�Y
x

dSab�x�

�
�
Gab; cd

�hd
!

idgcd�x� ÿ
�hd
 

idgcd�x� Gab; cd

��00
W 2 : �2:17�

Similar to formula (2.11), the double primes denote here the
symbolic character of this expression first proposed by
DeWitt in Ref. [6]. The right-hand side of this equation must
be constructed on the assumption that this flow is indepen-
dent of the choice of the surface S based on the local
conservation law for the quasi-Klein ±Gordon current of
the DeWitt equation (2.11) and the supermomentum con-
straints (2.12). However, in quantum cosmology, even the
question of dimensionality of S is not wholly trivial: this
surface does not turn out to be a hypersurface and, hence, the
corresponding conservation law is based on Stokes' rather
than the Gauss theorem.

It is worth recalling that Eqns (2.11), (2.12) form not a
single Klein ±Gordon equation but a system of 1�13

second-order Wheeler ±DeWitt equations (one equation per
each point of the space) and 3�13 first order super-
momentum equations. Evidently, a set of these 4�13

equations allows one to formulate the same number of local
conservation laws of the continuity equation-type [56].
Hence, the global conservation law based on Stokes' theorem
can be formulated for the flow across the surface of
dimension 6�13 ÿ 4�13 � 2�13, by virtue of duality
in the superspace of three-dimensional metrics of dimension
6�13. This quantity is simply a formal dimensionality of
the Cauchy surface for the system of Eqns (2.11), (2.12)
whereas the surface S may be regarded as the initial data
surface.

Each of the 1�13 Wheeler ±DeWitt equations generates
the local current of the Klein ±Gordon type which includes
the first-order derivatives of the wave function over super-
space coordinates

$
d=dgab�x�. This explains the presence in

(2.17) of the product of such factors over points x . Conserved
currents of supermomentum equations (2.12) do not contain
derivatives with respect to gab which accounts for their
ultralocal contribution in superspace included in the measure
dSab in the definition of (2.17). The form of this measure and
the description of the surface S will be given below.

Following these extensive comments on special features of
the inner product (2.17) which distinguish it from the simplest
relativistic particle case, let us turn to their common proper-
ties. The most conspicuous feature shared by the formalisms
of theWheeler ±DeWitt andKlein ±Gordon equations is that
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the sign of their conserved currents is undefined: the norm of
the real wave function is zero, similar to that of the relativistic
particle; it can be negative for complex wave functions due to
the presence of derivatives

$
d=dgab�x� with the Wronskian

structure in the measure of the inner product. In particular,
for semiclassical wave functions of the form

W � � P� exp

�
� i

�h
S

�
; �2:18�

where S is the Hamilton ± Jacobian function satisfying Eqns
(2.6) ± (2.7), the action of these derivatives leads to the
appearance of a factor with the indefinite signÿ

W �jW �
� � �

S
jP�j2

Y
x

dSab�x�
�
�Gab; cd

dS
dgcd�x�

�
;

�2:19�

in the measure, which allows one to consider the two states
(2.18) as having norms with opposite signs (hence, having
positive and negative frequencies)ÿ

W �jW �
�
> 0;

ÿ
W ÿjW ÿ

�
< 0; �2:20�

with respect to such a choice of orientation of dSab at which{

dSab�x�Gab; cd
dS

dgcd�x� > 0 :

The absence of a positive-definite inner product rules out the
possibility of a meaningful probabilistic interpretation of the
wave function W �gab;j� because natural restriction of the
space of solutions of the Wheeler ±DeWitt equations to a
subset of positive-frequency wave functions results in dis-
regarding the obviously good (from the classical viewpoint)
states. Note that in the semiclassical context, the two states
(2.18) differ only in that they describe the motion of the
system along the same trajectory in superspace in chronolo-
gically opposite directions. In contrast to the relativistic
particle case, the superspace is a priori devoid of any causal
structure which makes the two directions of motion equally
permissible in terms of the classical approach. On the other

hand, superspace has no timelike Killing symmetries (i.e. the
supermetric and the potential term of the Wheeler ±DeWitt
equation are non-trivial functions of superspace coordinates)
which might single out preferred positive-frequency solu-
tions. For this reason, the construction of the Hilbert space
of states with the positive norm is not unique [57] which
provides an additional argument against the restriction of full
space of solutions for the Wheeler ±DeWitt equations. This
accounts for the universally accepted fact that the only
possibility is the third quantization, the analog of the
transition from quantummechanics of the relativistic particle
to the quantum field theory. Due to this, the key problem, i.e.
the indefinite scalar product of cosmological wave functions,
is resolved automatically: the wave function of theUniverse is
no longer the quantum state but becomes an operator acting
in a broader Hilbert space of states in which it is possible to
introduce a positive-definite inner product. ThisHilbert space
describes not a single quantummodel but many such models,
and the operators of solutions with positive frequency for the
Wheeler ±DeWitt equations induce the creation of new
universes whereas negative-frequency operators are respon-
sible for their annihilation.

The idea of third quantization offers conceptual pro-
blems, besides purely technical difficulties. The point is that
the success of second quantization was essentially due to
causality and relativistic invariance of the Klein ±Gordon
equation theory. Meanwhile, the theory of the Wheeler ±
DeWitt equation has been mentioned to be a priori devoid of
both of these properties: the superspace of three-dimensional
metrics is curved and although it contains a light cone analog
(due to the hyperbolic signature of supermetric{ (2.16)) this
cone does not separate the past and the future. The motion of
classical cosmological systems is possible in both directions
along the `timelike' coordinate and outside the cone, in the
`spacelike' direction, the latter being permitted by the variable
sign of the potential term in the Einstein ±Hamilton ± Jacobi
equation.

Another problem in the third quantization concept is the
construction of an interaction generating quantum transi-
tions with changing number of `particles', i.e. universes.
Direct analogy to the relativistic particle suggests that this
construction must be described by the non-linearity of the
Wheeler ±DeWitt equation, but the approach to this non-
linearity should be based on geometrical properties of the
processes creating mini- and macrouniverses rather than on
the well-known postulates of causality and locality in super-
space. In geometrical terms, these processes imply transitions
with changing topology of three-dimensional space, that is
such geometry of four-dimensional spacetime which makes
possible the time-dependent alteration of connectedness of its
spatial section (the number of disconnected components or
universes). In a typical case, this is geometry of four-
dimensional trousers embedded into a certain encompassing

{ Strictly speaking, the sign of the infinite product over continuum of

points
Q

x�ÿ1� is poorly defined which suggests the incorrectness of

formalism in the representation of continuous argument functions. An

alternative is the transition to the expansion of �gab�x�;j�x�� in the

discrete basis of some spatial harmonics in which functional superspace

arguments are replaced by countable sets of coefficients of such expansion.

It seems possible to demonstrate that quantum state frequency is deter-

mined by a homogeneous (constant in space) harmonic of such expansion

whereas the remaining modes enter in pairs (roughly speaking) and do not

contribute to the sign of the state norm. An example is provided by the

two-dimensional string model in the basis of paired right (n > 0) and left

(n < 0) moving modes and one spatially homogeneous (zero) mode

(n � 0). The homogeneous mode in superspace is known to describe the

minisuperspace reduction of gravitational systems. Therefore, the fre-

quency of quantum cosmological states turn out to be determined by the

minisuperspace sector and, in semiclassical terms, depends on the overall

sign of the phase in (2.18). In fact, it is possible to think of an even more

complicated situation when the sign of dSab�x�Gab; cd dS=dgcd�x� varies in
space. However, in such a case, there are points at which this quantity

vanishes due to its continuity, and the full measure in the scalar product is

nullified by the corresponding factor. Such a situation corresponds to the

appearance of a gravitational analog of the problem of Gribov's copies

which will be discussed below.

{At first sight, the Wheeler ±DeWitt equation seems to create an

additional problem related to the ultrahyperbolic character of the func-

tional supermetric having signature (2.16) at each point x, hence 1�13

`timelike' and 5�13 `spacelike' coordinates. However, it should be borne

in mind that the Wheeler ±DeWitt equation forms13 equations, instead

of one, which are compatible with one another due to the commutation

involution with supermomentum equations (see (2.5) and below). This

effectively eliminates both multidimensionality of the `time' coordinate in

the hyperbolic differential equation and difficulties encountered in the

formulation of the Cauchy problem inalienable in an ultrahyperbolic case.

436 B L Al'tshuler, A O Barvinsky Physics ±Uspekhi 39 (5)



manifold of large dimension, which describes the collapse of a
single closed universe 3M 0 into a pair of universes 3M1 [ 3M2

(Fig. 1) or nucleation of the closed model 3M from the open
universe 3R 0 (Fig. 2). The interaction in the third quantized
theory must be, at least approximately, constructed from the
semiclassical amplitude of such processes. It is however
known that they lead to the violation of causality in the
classical theory with the Lorentzian signature of spacetime
[58] and are forbidden by energy considerations in quantiza-
tion of matter [59]. Therefore, topological transitions may
possibly be described by such amplitudes but in a space with
the Euclidean signature

exp

�
� 1

�h
I

�
�2:21�

in terms of the Euclidean gravitational action I calculated on
the corresponding 4-dimensional spacetime. In the Lagran-
gian formalism, this action is derived from its Lorentzian
analog by analytic continuation to the imaginary time

t � ÿit; �2:22�

which formally makes the metric signature positive-definite.
Regions of Euclidean spacetime interpolating between
classically allowed Lorentzian 4-geometries (possibly of
different topology) constitute the physical picture of semi-
classical approximation in the third quantization theory
which underlies Sakharov's idea of cosmological transitions
with a change of the metric signature [2]. This idea has been
realized in the studies of quantum origin of the Universe
[17, 18, 60] and in the works exploring the problem of the
gravitational loss of quantum coherence in wormhole
physics [29, 31, 30].

To summarize, the problem of time in quantum gravity
and cosmology gives rise to the third quantization concept
which, in turn, leads to the idea of Euclidean-Lorentzian

transitions describing effects of gravitational tunnelling in the
imaginary time formalism. Possible alternatives to this
construction are discussed in the following section.

3. Types of gravity quantization
and the state of art: semiclassical methods

The scheme proposed in the previous section just outlines
prospects of the closed physical theory whose working
mathematical apparatus remains to be constructed. An
alternative approach (or approaches) can be based on a
more orthodox quantization technique for dynamical systems
with constraints that avoids principally new concepts and
therefore does not require new physical postulates, ideas of
multiple quantum cosmological universes, topological transi-
tions, etc. This section is focused on such methods and will
hopefully bring the reader to the belief that third quantization
is both necessary and desirable in view of intrinsic difficulties
of the formalismwhich are essentially due to the lack of global
applicability of the theory on its full phase space. Restriction
to local or quasi-local consideration on either configuration
or phase space does not allow one to go beyond the
semiclassical expansion which is known to probe only the
infinitesimal neighbourhood of the solutions of classical
equations. In particular, this explains why we are ready to
confine ourselves to loop expansion, the more so that up to
now it remains the only method applicable to more or less
general realistic problems. It will be shown that such an
approach allows for more explicit and rigorous formulation
of some problems mentioned above and facilitates their
solution.

3.1. The method of semiclassical time
The earliest and seemingly most fruitful (in terms of applic-
ability) method for the introduction of time into quantum
cosmology is based on the semiclassical approximation in
gravitational field [6, 61, 62, 90]. In this approximation, the
wave function is sought in the form

W �gab; j� � exp

�
i

�h
S�gab�

�
jC�gab�i ; �3:1�

where S �gab� is the Hamilton-Jacobi function of a purely
gravitational field satisfying the vacuum system of Eqns (2.6)
and (2.7) without contributions of matter Hmat

? and Hmat
a

while the Dirac bra- and ket-notations are used only for
quantum states in the Hilbert space of matter fields (the
Hilbert space being well-defined and having the positive
norm, for it actually represents the conventional quantum
field theory in curved space). The substitution of (3.1) into the
Wheeler ±DeWitt equation yields new equations for the
matter field state vector jC�gab�i parametrically depending
on metric

00�
�h

i
Gab; cd

dS
dgab

d
dgcd
� Ĥmat

? �gab� �
�h

2i
Gab; cd

d2S
dgabdgcd

ÿ �h2

2
Gab; cd

d2

dgabdgcd

�00
jC�gab�i � 0; �3:2�

00�
ÿ2 �h

i
gabHc

d
dgbc
� Ĥmat

a �gab�
�00
jC�gab�i � 0: �3:3�

3M1
3M2

3M0

Figure 1. Four-dimensional geometry embedded into a space of larger

dimensionality and describing the decay of one closed universe 3M 0 into a
pair of universes 3M1 [ 3M2.

3R0

3M

3R

Figure 2.Nucleation of a closed model 3M from the open Universe 3R 0.
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In the semiclassical approximation in gravitational field and
for a weak back reaction of quantum matter on the metric
background, these equations can be solved by iterations in
powers of the second order terms in functional derivatives,
that is, in fact, by the expansion in the small parameter Ð the
ratio of the quantummatter energy density to the Planck one.
In the lowest order, it is possible to neglect the third and the
fourth terms in (3.2) and consider jC�gab�i on the solution of
classical Einstein's vacuum equations gab�x; t� corresponding
to the Hamilton ± Jacobi function S �gab�
jC�t�i � jC�gab�x; t��i : �3:4�

With a certain choice of lapse and shift functions �N?; Na�,
this solution satisfies canonical equations

_gab�t� � N?Gab; cd
dS
dgcd
� 2H�aNb�; �3:5�

Therefore, the quantum state of matter (3.4) satisfies the
evolution equation obtained by substituting (3.5) into

i�h
q
qt

��C�t�� � � d3x _gab
d
dgab

��C�gab�� �3:6�

and taking into account (3.2) ± (3.3). The result in the lowest
order is the ShroÈ dinger equation for quantizedmatter fields in
the external classical gravitational field which defines the
semiclassical time

i�h
q
qt

��C�t�� � � d3x�N?Ĥmat
? �NaĤmat

a

	��C�t�� : �3:7�
Such a method of deriving the quantum field theory from

theWheeler ±DeWitt equation dates back, at the model level,
to the classical work of DeWitt [6] and was used by
Lapchinsky and Rubakov [61] for generic gravitational
systems. It turns out to be the most commonly used approach
and, in fact, the only currently available convenient way of
interpreting the cosmological wave function. It establishes
links between fundamental quantum cosmology and applied
physics of the early Universe. Physically, this method means
that the role of the time variable is played by a gravitational
background the quantum properties of which are neglected
whereas quantization is entirely carried out in the matter field
sector.

Unfortunately,this method is not fundamental despite its
significance in applications, because it does not allow the
quantum properties of gravitational background to be taken
into consideration in a regular manner even in the perturba-
tion theory. The point is that an attempt at solving Eqns (3.2)
and (3.3) beyond the lowest order in the quantum-gravita-
tional terms leads to a chain of recurrent equations for
quantum corrections which no longer have the form of a
homogeneous ShroÈ dinger equation, hence no simple inter-
pretation in terms of unitary evolution is available{. An

attempt at consistent unitary quantization of gravity is
undertaken in the next section; it is in fact quantization in a
reduced phase space first considered in the quantum context
by Arnowitt, Deser, and Misner (ADM) [9].

3.2. ADM quantization
Einstein's quantum gravity is actually a special case of the
general theory of systems with first class constraints. There
are well-established (and equivalent) quantization methods
for this theory, at least for the construction of perturbative
scattering matrix meeting the unitarity condition [55, 10, 64].
The starting point for all these methods is the reduction of the
theory to physical variables in an unitary (canonical) gauge.
The reduction procedure as well as subsequent quantization
suggests a complicated formalism. To overcome it, one needs
condensed DeWitt notations [6] which formally represent the
complicated field system in terms of a quantum-mechanical
model with the finite dimension of phase space and space of
local gauge transformations generated by the constraints.
This is achieved by the introduction of such notations for the
phase coordinates of the theory

qi � ÿgab�x�; j�x��; pi �
ÿ
pab�x�; pj�x�

�
; �3:8�

in which the condensed index i includes both discrete isotopic
indices and the three-dimensional spatial coordinate x.
Similar notations for the constraints

Hm�q; p� �
ÿ
H?�x�; Ha�x�

� �3:9�

suggest that the gauge index m `labels' the superhamiltonian
and supermomenta of the theory as well as their spatial
coordinates. Note that functional dependence on field
phase-space variables in these notations is represented in the
form of functions on phase space �qi; pi�while the contraction
of the condensed indices includes integration over x, along
with discrete summation over spin numbers. In the condensed
notations, the canonical action (2.1) has a simple form

S �q; p; N� �
�
dt
�
pi _qi ÿNmHm�q; p�

	
; �3:10�

and the system of its variational equations

_qi � fqi; HmgNm; _pi � fpi;HmgNm; �3:11�
Hm�q; p� � 0 �3:12�

conserves constraints in time and leaves the Lagrange multi-
pliers Nm, i.e. lapse and shift functions, absolutely arbitrary
since Hm�q; p� are the first class constraints. Their Poisson
bracket algebra (2.5) may be written in condensed notations
as

fHm; Hng � Ua
mnHa �3:13�

with certain structure functions Ua
mn � Ua

mn�q�. The super-
hamiltonian and supermomentum constraints
Hm � �H?;Ha�, quadratic and linear in phase momenta pi
respectively, in these notations have the form

H? � 1

2
Gik
? pi pk � V?; Ha � Hi

a pi : �3:14�
{For example, the third term in Eqn (3.2), ��h=2i�}Gab; cdd

2S=dgabdgcd},
effectively creates the anti-Hermitian contribution to the Hamiltonian in

the ShroÈ dinger equation [63], but its non-unitary interpretation would be

incorrect: this term is responsible for the divergence of congruence of

classical gravitational trajectories described by the Hamilton ± Jacobi

function S and can be correctly (in terms of unitarity) taken into account

with the help of an one-loop pre-exponential factor of the Pauli ± Van

Vleck type and a correct measure in the scalar product in the full field

space. However, such corrections are beyond the scope of the semiclassical

time approach and require quantization of all field models (see next

section).
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Here, indices ?� �?;x� and a � �a;x� are also supposed to
be condensed, Gik

? is the ultralocal three-point object contain-
ing the DeWitt contravariant supermetric matrix,V? denotes
the potential term of the superhamiltonian constraint, and Hi

a

is the generator of infinitesimal spatial diffeomorphism of the
variable qi. Gik

? and H
i
a in the sector of gravitational variables

have the form of the following d-function type kernels:

Gik
? � Gab; cdd�xi;xk� d�x?;xk�; i � �ab;xi�;

k � �cd;xk�; ?� �?;x?�; �3:15�

Hi
a � ÿ2ga �bHc� d�xa;xi�;

i � �bc;xi�; a � �a;xa�; �3:16�

which yield local gravitational constraints upon substitution
into (3.14) and integration over coordinates{.

Consistent consideration of both quantum and classical
dynamics in the theory with first class constraints results in
the observation that, first, phase variables of the theory are
not independent but obey these constraints (3.12) and,
second, they are subject to gauge transformations generated
by constraints with the local parameters F m � F m�t�

dqi � fqi;HmgF m; dpi � fpi;HmgF m : �3:17�

This explains why there are much fewer degrees of freedom in
the theory than the number of initial pairs of phase variables
�qi; pi�. In order to obtain them, one needs to solve the
constraints and separate physical phase variables �xA; pA�
from the purely gauge degrees of freedom in the remaining set
of variables. If the initial phase space dimensionality is
denoted by 2n (in the finite-dimensional context
i � 1; 2; . . . ; n) and the dimension of the space of constraints
as m; m � 1; 2; . . . ;m, then the dimensionality of physical
phase space equals 2�nÿm�; A � 1; 2; . . . ; nÿm. Techni-
cally, phase space variables can be obtained by imposing on
�qi; pi� m canonical additional constraints

wm�q; p; t� � 0 �3:18�

and by solving of the complete system of 2m constraint
equations and gauge conditions with respect to 2n unknown
variables �qi; pi�, in terms of physical coordinates and
momenta �xA; pA�. The canonical character of these
momenta is guaranteed by the fact that the initial symplectic
form pi _q

i undergoes transition to the symplectic form on
physical phase space pA _xA plus possible contribution of the
Hamiltonian caused by the non-stationary nature of the
canonical transformation.

The condition for the separation of physical subspace with
the help of gauge (3.18) is the transversality of the gauge
surface to the orbit of gauge transformation (3.17). This is
guaranteed by non-degeneracy of the Faddeev ± Popov
operator functional matrix

Jmn � fwm;Hng; J � det Jmn 6� 0 : �3:19�

The same condition ensures local solvability of the system of
constraints (3.12) and gauges (3.18) during reduction to
physical variables, as well as the unique choice of Lagrange
multipliers, i.e. lapse and shift functions Nm which can be
found from the requirement that the gauge conditions be
constant in time

d

dt
wm � fwm;HngNn � qw

m

qt
� 0 ; �3:20�

which has only one solution with respect to Nm under the
condition (3.19),

Nm � ÿJÿ1mn
qwm

qt
; �3:21�

where operator Jÿ1mn is the inverse of J
m
n .

Constraints (3.12) and gauge conditions (3.18) single out
2�nÿm�-dimensional physical subspace in full phase space
and, generally speaking, this embedding results in the non-
trivial mixing of coordinates and momenta. Such a situation
can be substantially simplified by choosing functions of (3.18)
to be independent of momenta pi

wm�q; t� � 0; �3:22�

which in turn allows physical coordinates xA to be chosen as
embedded into n-dimensional superspace of coordinates qi,
with the canonical nature of variables �xA; pA� explicitly
following from their construction. Indeed, Eqn (3.22)
describes embedding a certain �nÿm�-dimensional submani-
fold S into n-dimensional superspace which is possible to
parametrize by arbitrary internal coordinates xA:

qi � ei�xA; t�; wm
ÿ
ei�xA; t�; t� � 0: �3:23�

Without the loss of generality, they may be considered as
physical configuration coordinates of the theory. It follows
from the symplectic form transformation

pi _qi � pi
qei�x; t�
qxA

_xA � pi
qei�x; t�
qt

�3:24�

that the momenta conjugate to xA are equal to the projections
of the covector pi onto the surface S

pA � pi e
i
A; eiA �

qei �x; t�
qxA

; �3:25�

while the physical Hamiltonian is numerically coincident up
to the sign with the second term in (3.24), because the full
Lagrangian in the action (3.10) is reduced to the symplectic
form pi _qi on the solutions of constraints.

Eqns (3.25) define tangential projections of momentum pi
on the surface S in terms of physical degrees of freedom.
Addition of m constraint equations to these nÿm equations
yields a system which can be resolved with respect to all
momentum components, the solvability condition being
again provided by the non-degeneracy of the Faddeev ±
Popov matrix (3.19). Taken together with (3.23), this com-
pletes the procedure of classical reduction to physical degrees
of freedom. In physical phase space, the canonical action
takes the form

S
�
x; p
� � � dt �pA _xA ÿHphys�x; p; t�

� �3:26�

{ It is worthwhile to note that the object Gik
? itself is not the DeWitt

supermetric because it contains an additional d function absent in the

DeWitt supermetric (see Eqn (3.15)). Only functional contraction of Gik
?

and the lapse function N? � 1, which is constant in space, converts this

quantity into the ultralocal metric on superspace Gik
?N

? � Gik �
Gab;cdd�xi;xk�.
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with the physical Hamiltonian

Hphys�x; p; t� � ÿpi �xA; pA; t� qe
i�x; t�
qt

; �3:27�

while all the initial phase variables �qi; pi� and the Lagrange
multipliers Nm are constructed as functions of physical
coordinates and momenta [8, 56]

qi � ei�xA; t�; pi � pi�xA; pA; t�;

Nm � ÿJÿ1mn
qwm

qt

����
qi�ei�xA; t�; pi�pi�xA; pA; t�

: �3:28�

Clearly, the reduction of physical variables results in the
solution of the time problem: the action (3.26) acquires the
non-zero Hamiltonian by virtue of imposing of the canonical
gauge (3.22) explicitly dependent on the time parameter t.
The time-dependence of gauge conditions generates the
motion of the physical surface S�t� in superspace,
qi � ei�x; t�, and the non-zero lapse and shift functions
(3.28). There is a very illuminating interpretation of this
phenomenon. The geometrically invariant meaning of the
lapseN? and shiftNa functions is in that they are normal and
tangential projections of the four-dimensional velocity
_Xa�t;x� � dXa�t;x�= dt with which the spacelike section
xa � Xa�t;x� propagates in four-dimensional spacetime
with coordinates xa [54]:

N? � ÿna _Xa�t;x�; Na � gabeab
4gab _Xb�t;x�

((na; e
a
b) forms the basis of the normal and the triad of tangent

vectors to hyperspace t � const. This means that the non-
stationary surface S�t� is responsible for the many-fingered
time concept in superspace of variables qi: local variations of
this surface parametrized by the parameter t locally generate
variations of the lapse and shift functions; hence local
variations of constant time hyperspace in four-dimensional
space. From the dynamical viewpoint, the introduction of
time and the non-zero Hamiltonian is the result of the non-
stationary contact canonical transformation from the initial
variables �qi; pi� to physical ones �xA; pA�. This procedure is
inverse of the well-known canonical transformation from
current canonical variables to the initial data, constant in
time, the trivial dynamics of which is implied by zero
Hamiltonian.

Formal quantization of the theory reduced to physical
variables encounters no difficulty. Phase-space variables
�xA; pA� are independent and become, at the quantum
level, operators satisfying the Heisenberg commutation
relations:

�x̂A; pB̂� � i�hdAB :

Hermitian realization of the quantum Hamiltonian Ĥphys

must be in terms of these Hermitian operators, to define
unitary dynamics of physical states jC�t�� in the Hilbert space
of representation of Heisenberg commutation relations

i�h
q
qt

��C�t�� � Ĥphys

��C�t��: �3:29�
In the coordinate representation

ÿ
xjC�t�� � C�x; t�, x̂ � x,

p̂ � �hq=iqx, the positive-definite scalar product of state
vectors with the unit integration measure dx �QA dxA

�C1jC2� �
�
dxC�1�x�C2�x� �3:30�

will be the integral of motion of the ShroÈ dinger equation.
Then, the knowledge of operator realization of the initial
variables of the theory (3.28) with the desired Hermiticity
properties will allow one to calculate mean values and matrix
elements of all necessary observables of the theory.

ADM quantization in physical space forms a self-con-
sistent closed theory at least up to the problem of operator
realization of the physical Hamiltonian and other observa-
bles. In the generic non-gauge theory, this problem has no
intrinsic solution without an appeal to the experiment.
Strictly speaking, there is a similar situation in the theory
with constraints. However, in this case, the level of ambiguity
in operator realization of the physical Hamiltonian is lower
because the gauge theory, even being reduced to the physical
sector with certain gauge conditions, retains traces of local
gauge invariance explicit in the initial variables �qi; pi;Nm�. In
the first place, this invariance shows up in a particular
dependence of ADM quantization formalism on the choice
of gauge conditions. Evidently, the two quantization schemes
in the theories obtained by the reduction of one and the same
gauge theory in two different gauges must yield physically
equivalent results because a change of gauge can be mimicked
by gauge transformation. This requirement is trivially ful-
filled in the classical approximation and obviously imposes
some limitations on the quantum terms in operator realiza-
tion of the Hamiltonian and other observables. Construc-
tively, this property was realized in gauge theories as a
statement that the scattering matrix is independent of the
gauge used to build it. However, it was proved in the
framework of wider schemes of the BRST (BVF)-type [10]
rather than in the language of the reduction to physical sector,
largely in terms of formal functional integral which ignores
the ordering of local non-commuting operators taken at one
point. In the next section, we shall briefly outline how such
equivalence of ADMquantum schemes under different gauge
conditions can be formulated (at least in the one-loop
approximation) as their unitary equivalence to a single
Dirac-Wheeler-DeWitt quantization with a special scalar
product [65, 8, 56].

3.3 Unitary mapping between the ADM
and Dirac-Wheeler-DeWitt quantization schemes.
Note that the physical space section S in the previous Section
resembles the surface considered in Section 2 and used to
construct the conserved inner product in the space of
solutions of the Wheeler ±DeWitt equations. This observa-
tion prompts the idea that various ADM quantization
schemes may in fact be projections of one and the same (and
independent of the choice of gauges) formalism of theDirac ±
Wheeler ±DeWitt quantization in superspace. This turns out
to be true also for semiclassical states of a certain type in the
one-loop approximation.

Going back to the content of Section 2 in the non-
condensed DeWitt notations, it should be first of all noted
that quantum Dirac constraints on the physical states (2.11),
(2.12)

ĤmjW i � 0 �3:31�

must satisfy compatibility conditions which are quantum
generalizations of the Poisson bracket algebra (3.13)
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�Ĥm; Ĥn� � i�hÛl
mn Ĥl : �3:32�

It is remarkable that these conditions considered as equations
for unknown operators Ĥm; Û

l
mn, which satisfy the correspon-

dence principle with classical theory, may be solved in the
subleading approximation in the Planck constant [56]. The
answer may be given in the form of a normal qp-orderingN qp

(momenta are to the right of the coordinates) of c-numeric
symbols which are expanded in powers of �h

Ĥm � N qp

�
Hm ÿ i�h

2

q2Hm

qqi qpi
� i�h

2
Un
mn �O��h2�

�
; �3:33�

Ûl
mn � N qp

�
Ul
mn ÿ

i�h

2

q2Ul
mn

qqi qpi
ÿ i�h

2
Uls
mns �O��h2�

�
: �3:34�

This result holds for the theories with non-reducible first class
constraints of the most general form and includes the higher
order structure functions Ula

mns of gauge algebra [64] which
equal zero in the Einstein theory of gravity.

Moreover, in the theory of gravity with constraints of the
form (3.14), quadratic and linear in momenta, there is a
formal operator realization which closes commutation alge-
bra (3.32) exactly, beyond the perturbation theory in �h [66]. It
coincides with (3.33), (3.34) in the one-loop approximation
and is obtainable from classical gravitational constraints
(3.14) by replacing themomenta pi with functional derivatives
Di covariant with respect to the Riemannian connection
constructed with the help of the DeWitt supermetric and by
adding the functional trace of the structural functions i�hUn

mn=2
as the anti-Hermitian part:

Ĥ? � ÿ �h2

2
Gik
?DiDk � V? � i�h

2
Un
?n;

Ĥa � �h

i
Hi
aDi � i�h

2
Un

an : �3:35�

It is assumed in the definition of covariant derivatives, that
the wave functionW �q� at which they act is the scalar weight
of density 1/2. In the gravitational sector qi � gab�x�, the
contravariant supermetric Gik was defined in the footnote
following Eqns (3.15), (3.16); this may be rewritten in
condensed notations (and in full metric and matter super-
space) in the form of a contraction which converts the three-
index object into the two-index one

Gik � Gik
?N

?��
N?�1 : �3:36�

It has been shown inRefs [8, 66] that, due to the closed algebra
of constraints (3.35), this supermetric has generators of
spatial diffeomorphisms Hi

a

DiHk
a �Dk Hi

a � 0; Di � GikDk ; �3:37�

as the Killing vectors on superspace. Owing to its ultralo-
cality, Gik � d�xi;xk�, the covariant derivative preserves not
only the metric but also the three-index object Gik

? :
DmG

ik
? � 0. Therefore, kinetic terms of operator constraints

(3.35) do not require additional ordering prescriptions and,
moreover, they are Hermitian relative to the auxiliary
nonphysical inner product of wave functions (2.14)


W 1jW 2

� � � dqW �
1�q�W 2�q� : �3:38�

However, constraints (3.35) have the anti-Hermitian part as
well which is proportional to the trace of structure functions
and plays an important role in what follows.

Let us consider now the semiclassical approximation for
physical quantum states and look for the solution of the
Wheeler ±DeWitt equation (3.31) in the form

W �q� � P�q� exp
�
i

�h
S�q�

�
: �3:39�

Here, S�q� is the solution of Hamilton ± Jacobi equations
which may be briefly represented in condensed notations as

Hm

�
q;
qS
qq

�
� 0; �3:40�

while the expansion of the pre-exponential factor P�q� in
powers of �h starts with the one-loop contribution which we
shall restrict ourselves with. The knowledge of the operator
realization of quantum constraints beyond the tree-level
approximation allows one to write down the equations for
the one-loop prefactor

Di�Hi
mP

2� � Ul
mlP

2 ; �3:41�

Hi
m �

qHm

qpi

����
p � qS=qq

: �3:42�

They have the form ofm continuity equationsmodified by the
non-zero right-hand side which originates from the anti-
Hermitian contributions to quantum constraints.

It turns out that the solution of these quasi-continuity
equations can be written in a closed form [65, 8, 56]. It has the
simplest form for the two-point solution of quantum con-
straints which plays the role of a propagator of physical states
in superspace

K�q; q0� � P�q; q0� exp
�
i

�h
S�q; q0�

�
; �3:43�

where S�q; q0� is also the Hamilton ± Jacobi function with
respect to both arguments, which represents the classical
action (2.8) calculated on the extremal connecting the initial
q0 and final q points in superspace. The solution of interest is
the generalization of the known semiclassical Pauli ± Van
Vleck determinant of the matrix of second derivatives of this
function with respect to end points of the extremal [8]

Sik0 � q
2S�q; q0�
qqi qqk0

: �3:44�

The determinant of this matrix is zero because of its
degeneracy caused by zero-vectors (3.42)

Hi
mSik0 � 0; �3:45�

following from the differentiation of Eqns (3.40) with respect
to q0 (and by analogous right-hand zero-vectors Hk0

n ). How-
ever, there is an invariant procedure for calculating this
determinant on the non-degeneracy subspace of the matrix
(3.44), which is equivalent to the one-loop gauge fixing
procedure of Faddeev and Popov, leading to the solution of
Eqn (3.41). This procedure consists in the introduction of
arbitrary covariant vectors wmi at the point q having the non-
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degenerate matrix of scalar products with zero-vectorsHi
m and

analogous vectors wnk0 at the point q
0

Jmn � wmi Hi
n; J � det Jmn 6� 0;

J0mn � wmi 0Hi 0
n ; J0 � det J0mn 6� 0: �3:46�

Using the additional reversible matrix cmn, these vectors allow
one to replace the zero-blocks of the matrix Sik0 by the gauge-
fixing term, converting it into the reversible operator

Fik0 � Sik0 � wmi cmnwnk0 ; �3:47�

and to construct the one-loop pre-exponential factor in terms
of its own and `Faddeev ± Popov' determinants (3.46)

P � detFik0

JJ0 det cmn

� �1=2
: �3:48�

This expression does not depend on the choice of auxiliary
objects �wmi ; wnk0 ; cmn� which fix the gauge, due to a certain
analog of the Ward identity [8, 56], and is the solution of the
`continuity' equations (3.41).

Let us consider the projection of the constructed propa-
gator (3.43) with the pre-exponential factor (3.48) onto the
physical subspace (3.23), in order to establish the promised
unitary map between the Dirac ±Wheeler ±DeWitt and
ADM quantization schemes. Geometry of the local embed-
ding of S into superspace of coordinates qi has been
considered in much detail in Ref. [8]. Here, it is worth noting
that this embedding can conveniently be described in special
coordinates on superspace �qi � �xA; ym� in which xA are
internal coordinates on S (ADM physical configuration
coordinates), and ym are defined by equations of gauge
conditions

qi ! �qi � �xA; ym�; qi � ei�xA; ym�; ym � wm�q; t�:
�3:49�

The equation of the surface in the new coordinates is trivial
ym � 0, while the equation of embedding (3.23) coincides with
this reparametrization equation at ym � 0; ei�x; t� �
ei�x; 0; t�. Following from this reparametrization is the
relation between integration measures on superspace
dq � dnq and on S, dx � dnÿmx

dx � dq d�w�M; d�w� �
Y
m

d
ÿ
wm�q; t��;

M � ÿdet �eiA; eim��ÿ1; �3:50�
where the transformation Jacobian is built in terms of the
basis of vectors tangential and normal to the surface S

eiA �
qei

qxA
; eim �

qei

qym
:

Note that m covariant vectors normal to S are written as
gauge gradients

wmi �
qwm

qqi
; wmi e

i
n � dmn ; �3:51�

with which it is possible (without the loss of generality) to
identify auxiliary covectors used in the construction of the
one-loop pre-exponential factor above. It is also possible to

choose a combination of vectors eiA tangent to S and vectors
(3.42) as a complete local basis, due to the non-degeneracy of
the Faddeev ± Popov operator (3.19) which coincides in this
case with (3.46). Vectors (3.42) are re-expanded in basis
�eiA; eim� in accordance with Hi

m � ein J
n
m � eiA �. . .�A, whence

the following relation for the matrix determinant of the new
basis vectors �eiA; Hi

m� holds

det �eiA; Hi
m� �

J

M
: �3:52�

The projection of the propagator kernel (3.43) with
respect to its two arguments q and q0 on the two correspond-
ing physical spaces S�t� and S�t0� is performed using the
explicit relation between the Hamilton ± Jacobi functions on
superspace S�q; q0� and on the space of ADM physical
variables

S
ÿ
t; xjt0; x0� � S

ÿ
e �x; t�; e �x0; t0�� �3:53�

and also by expanding the matrix Fik0 in the basis �eiA; Hi
m�{.

The result of the projection

K
ÿ
t; xjt0; x0� � const

�
J

M

�1=2

� K�q; q0�
�
J0

M0

�1=2����
q�e�x;t�; q0�e�x0;t 0�

�3:54�

is the one-loop unitary propagator of the ADM quantum
scheme given by the known Pauli ±Van Vleck formula [67]

K
ÿ
t; xjt0; x0� � �det i

2p�h

q2S

qxA qxB
0

�1=2
exp

�
i

�h
S
ÿ
t; xjt0; x0��:
�3:55�

It satisfies the ShroÈ dinger equation with the Hermitian
operator realization of the physical Hamiltonian (3.27){.

The relation (3.54) is the desired unitary map between the
Dirac ±Wheeler ±DeWitt quantization in superspace and
ADM quantization in physical variables. This map for
propagators obviously implies the map for wave functions
W �q� and C�t; x� of these two schemes

C�t; x� �
�
J

M

�1=2

W �q�
����
q�e�x;t�

; �3:56�

and is actually unitary provided that the physical scalar
products of these two states coincide in both schemes

�CjC� � �W jW �: �3:57�

Proceeding from the ADM scalar product (3.30) and sub-
stituting (3.56) into the left-hand side of this equation, one
obtains, due to the replacement of integration variables
(3.50), an expression for the physical inner product of the

{The Hamilton ± Jacobi function of the system reduced to ADM physical

variables explicitly coincides with the action functional on the extremal

which connects points x and x0 at moments t and t0 and satisfies the

conventional Hamilton ± Jacobi equation qS=qt�Hphys�x; qS=qx� � 0

with the non-zero physical Hamiltonian (3.27).

{This realization is analogous to (3.33), (3.34) and satisfies the principle of
correspondence with classical theory [8, 56]:

Ĥphys � N xp�Hphys ÿ �i�h=2� q2Hphys=qx
AqpA �O��h2� �.
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Dirac wave functions

�W jW � �
�
dq d

ÿ
w�q; t��W ��q� JW �q�: �3:58�

Eqns (3.55) ± (3.58) constitute the essence of the unitary
reduction from the Dirac ±Wheeler ±DeWitt quantization to
the ADM quantization scheme. The ADM quantum schemes
in different gauges (hence, at different choices of physical time
and/or at differentmoments of the one and the same time) can
be obtained by projecting the superspace wave function
W �q�, independent of gauges and free of any information
about them, onto different physical subspaces S. This picture
is consistent largely due to time and gauge-independence of
the physical inner product (3.58). Unitarity of the ADM
quantum scheme accounts for t-independence of this inner
product, hence the integral on the right-hand side of (3.58)
actually taken over the surface S�t� in superspace must not
depend on the choice of this surface. Evidently, in the Dirac-
Wheeler ±DeWitt quantization formalism, this property
must be the result of quantum constraints (3.31) on wave
functions which does not depend on a given ADM reduction
to the physical sector. This is exactly the case in the one-loop
approximation considered here.

In order to demonstrate this, let us note that the measure
of integration over S�t� in (3.58) is non-trivial and, for
semiclassical states of the form (3.39) in the one-loop
approximation, is given by the state-dependent Faddeev ±
Popov determinant

J � det

�
qwm�q; t�
qqi

qHn�q; p�
qpi

�
p � qS=qq

� det �wmi Hi
n�: �3:59�

Using the fact that dqi � eiA dx
A on S and Eqns (3.50) and

(3.52), it is easy to rewrite the inner product (3.58) as the
integral of the external �nÿm�-form over the oriented
�nÿm�-dimensional surface S

�W jW � �
�
S
o�nÿm�; �3:60�

o�nÿm� � dqi1 ^ . . . ^ dqinÿm

m!�nÿm�!
� Ei1...inW ��q�Hinÿm�1

m1
. . .Hin

mm
W �q� Em1...mm ; �3:61�

where Ei1...in � �1 and E m1...mm � �1 are completely antisym-
metric tensor densities on n- and m-dimensional spaces,
respectively{. Using the continuity equations (3.41) for the
pre-exponential factor of wave functions and the closed Lie
brackets algebra of vector fields Hi

m (a consequence of the
closed algebra of constraints [8, 56])

Hi
mDiHn

n ÿ Hi
nDiHn

m � Ua
nmH

n
a ; �3:62�

it is equally easy to demonstrate that this form is closed

do�nÿm� � 0: �3:63�
Hence, by virtue of the Stokes' theorem for a �nÿm� 1�-
dimensional surface D responsible for cobordism of two

physical (oppositely oriented) spaces S and S0 (qD � S [ S0),�
S
o�nÿm� ÿ

�
S0
o�nÿm� �

�
D
do�nÿm� � 0; �3:64�

it follows that the inner product is independent of the choice
of S. This simple property accumulates both unitarity and
gauge-independence of the Dirac ±Wheeler ±DeWitt quanti-
zation formalism.

This integral ofmotion of theWheeler ±DeWitt equations
is nothing but the semiclassical conservation law for their
current discussed in Section 2. Comparison of (3.60) and
(3.61) with (2.17) and (2.19) is based on the fact that in the
exterior form (3.61) from the alternated product
Hi
m; H

i
m � �Hi

?;H
i
a�, it is possible to single out as a factor only

the product of quantities Hi
?. If one assumes that the

condensed index ?� x can take values ?� 1; 2; . . . ;M
(actually,M � 13), then this (nÿm)-form becomes

o�nÿm� � Hi1
1 . . .HiM

M dnÿmSi1...iM ; �3:65�

where the measure dnÿmSi1...iM includes all the rest (including
all gauge-fixing elements for spatial diffeomorphisms). Bear-
ing in mind that Hi

? � Gik
?� �qS=qqk, it is possible to arrive,

in the linear in �h approximation, at both representations
(2.17) and (2.19) for the scalar product of semiclassical wave
functions (3.39) considered in Section 2{

�W jW � �
�
S

��P�q���2 �Y
?
Gi?k
?

qS
qqk

�
dnÿmSi1 ...iM

�
�
S
W ��q�

Y
?

�h

2i

�
Gi?k
?

q
!

qqk
ÿ q
 

qqk
Gki?
?

�
�W �q� dnÿmSi1...iM : �3:66�

Thus, we have shown that it is possible to come to the
Dirac ±Wheeler ±DeWitt quantization scheme in superspace
of 3-metrics and matter fields, based on quantization in
physical variables obtained by the ADM reduction. The
physical inner product of ADM wave functions (with the
trivial measure) coincides, at least semiclassically, with the
conserved current of the Wheeler ±DeWitt equations of the
quasi-Klein-Gordon type. Because of the complicated non-
Abelian nature of the gravitational field, it is known only in
the one-loop approximation, similar to quantum reduction at
large, from theDirac ±Wheeler ±DeWitt toADM formalism.
Obviously, the entire operator scheme of unitary equivalence
can be qeneralized to the highest loop-orders. This statement
is supported by powerful theorems of gauge-independence of
the formal functional integral in generic gauge theories [10,
64] }. In this case, however, one encounters the same

{ In the context of infinite-dimensional configuration (n � 6�13) and

gauge (m � 4�13) spaces, these tensor densities are certainly formal,

and the factorial coefficients should be understood as certain infinite

normalization multipliers.

{ Strictly speaking, the complete agreement with the heuristic formulas

(2.17) and (2.19) is hardly possible since the factorization of the measure

over space points in the form of dnÿmSi1 ...iM �
Q
? dSi? is either unattain-

able or exists in a narrow class of special gauge conditions.

}Note that the integration measure in both the gauge field functional

integral and the expression for the inner product (3.58) equally includes

the gauge condition and the Faddeev-Popov determinant, the only

essential difference being the functional dimensionality of the integration

space and the determinant: the space of time histories versus the space of

configuration coordinates at a fixed moment. Therefore, the nature of

gauge-independence as the independence of the choice of physical space

embedded into a wider gauge field space is the same in both cases and

requires similar methods.
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difficulties as in Section 2 which will be shown to serve as a
motivation for third quantization.

3.4. The problem of Gribov's copies, origin
of Euclidean regions, and motivation for third quantization
The ADM reduction to physical variables and the interpreta-
tion of the Dirac ±Wheeler ±DeWitt formalism in terms of
averages (3.58) are essentially based on non-degeneracy of the
Faddeev ± Popov operator as a function on phase space (3.19)
or a function on superspace (3.59) in the semiclassical
Hamilton ± Jacobi theory. For superspace gauges of the
form (3.22), the `column' of this matrix Jm? is linear in
momenta

Jm?�q; p� �
qwm�q; t�
qqi

G ik
? pk ; �3:67�

and certainly leads to its degeneracy on a certain submanifold
which includes pi � 0. The determinant J � det Jmn vanishes
on this submanifold and changes sign when crossing it. This
means that globally, on phase space in this type of gauge, the
ADM reduction procedure does not work: the solution for
constraint equationswith respect tomomenta pi in (3.28) is no
longer unique and the corresponding lapse and shift functions
become singular. Such a property is a canonical analogue of
the problem of Gribov's copies [68] when the system of
constraint and gauge equations does not single out a single
representative from the class of gauge-equivalent configura-
tions in the phase space. In the gravitational context, where
gauge imposition is concurrently used to introduce time, this
property means that the introduced variable does not cover
globally and unambiguously dynamical evolution of physical
degrees of freedom, that is it is not a function monotonically
changing along classical (and quantum) histories{.

At the quantum level in the one-loop approximation, the
same property means that the sign of the inner product (3.58)
is indefinite which leads to the third quantization concept, as
was discussed in Section 2. This concept is known to be
related to Euclidean ±Lorentzian transitions between states
with different spacetime signatures. Our objective is to show
how transitions of this type actually arise from global non-
positiveness of the Faddeev ± Popov determinant, when
submanifolds of its zeros describe sections in spacetime on
which a change of metric signature occurs.

It is well-known from quantum mechanics and the theory
of gauge field instantons that the imaginary time formalism
(2.22) (or the formalism of Euclidean spacetime) is used to
describe underbarrier effects of quantum tunnelling related to
the location of the system in classically forbidden regions of
the phase space. For quantum states of the form (3.39), a
classically forbidden region in superspace arises when the
congruence of extremals of classical equations defined by the
function S�q� does not reach points of this region and is
reflected from the caustic which separates it from the
classically allowed part of superspace. In the context of one-
dimensional configuration space, this is simply a turning
point whereas in multidimensional problems, the caustic is a
submanifold which may be described in the following way.
Let

qi � qi�t; x0� �3:68�

represent a flow of classical trajectories in superspace
described by the function S�q� and starting at t � 0 at the
points x0 � xA0 of the initial Cauchy surface (ADM physical
space at the initial moment). The initial physical coordinates
label individual trajectories in their bunch (3.68), and
derivatives with respect to them form the system of vectors
qiA0 � qqi�t; x0�=qxA

0
transversal to the bunch. By virtue of

canonical equations of motion, tangent vectors to the
trajectories are equal to

_qi�t; x0� � Nm qHm

qpi

����
p � qS=qq

� NmHi
m : �3:69�

The caustic emerges when the congruence of trajectories gets
folded in such a way that their tangent vector falls in the plane
spanned by transversal vectors qiA 0 ; _qi�t; x� � vAqiA 0 which
means a linear dependence of qiA0 and H

i
m:

det �qiA0 ;Hi
m� � 0: �3:70�

On the other hand, the embedding into a superspace of
physical space S�t�, to which the point (3.68) belongs, implies
that

qi�t; x0� � ei
ÿ
x�t; x0�; t�;

qiA0 � eiBu
B
A0 ; uBA0 �

qxB�t; x0�
qxA

0 ; �3:71�

where x�t; x0� is a congruence of classical trajectories in the
ADM physical space parametrized by the initial data x0,
while the reversible matrix uBA0 � uBA0 �t� forms the system of
basis functions of linearized equations of motion in the
reduced theory. Therefore, the equation for the envelope of
the family of trajectories (3.70) takes (in view of (3.52)) the
form

det
�
eiA0 ;H

i
m

�
det uAB0 � det uAB0

J

M
� 0: �3:72�

It is not difficult to choose the physical embedding in
superspace in such a way that the Jacobian M in (3.50) is
globally non-degenerate. Therefore, the condition of the
caustic in superspace breaks into two: the condition for the
formation of the caustic in physical configuration space

det uAB 0 �t� � 0; �3:73�
and/or the condition for the formation of Gribov's copies

J � 0: �3:74�
Unlike a theory without constraints, quantum gravitation has
freedom conditioned by the difference between caustics in
physical space S and superspace. Analysis of specific cases of
multi-dimensional gravitational tunnelling, e.g. in a model of
quantum creation of a chaotic inflationary Universe (see
Section 4), shows that there are caustics in superspace without
singularities (3.73), although Eqn (3.74) is satisfied{

{Generally speaking, the sign of the lapse function in (3.28) changes when
the determinant J � det Jmn crosses zero which means an actual decrease in

physical time of the observer N? dt < 0 as the parameter t continues to

monotonically grow. Transition from the Lorentzian to Euclidean regime

corresponds to a change of the sign in N?2, i.e. complexification of J m?.

{Note that the problem (3.73) can be eliminated by the identification of

physical variables and initial data x0 which implies uAB 0 �t� � dAB 0 and
converts det uAB 0 �t� into unity. This means that Eqn (3.68) is considered

to be a function of physical space embedding into superspace. Transition

from x�t� to x0 is evidently a non-stationary canonical transformation in
ADM variables which again nullifies the physical Hamiltonian obtained

by the ADM reduction from the parametrized theory with the Hamilto-

nian vanishing on gravitational constraints.
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and therefore has an invariant content and is inseparable
from the problem ofGribov's copies. Here, Gribov's copies at
the qualitative level appear when physical space crosses the
classical extremal at least twice: one branch is crossed before
the caustic and the other Ð after the reflection from the
caustic. Hence, ambiguity of the ADM reduction and the
indefinite sign of the physical state norm arise due to the
contribution of opposite signs originating from these
branches.

It is well-known that the extension of trajectories beyond
the caustic is possible at the cost of complexification of the
time argument in the solutions of equations (the simplest case
being theWick rotation (2.22)) and, in the general case, by the
complexification of configuration variables themselves. The
former case has been intensively considered in the context of
under-barrier phenomena described by instantons whereas
complex tunnelling was given less attention because it is
exponentially suppressed in conventional theories of the
non-gravitational type [69]. In the gravitational context,
`real' tunnelling known as Euclidean quantum gravity was
also extensively studied [70, 71] and served as a basis of the
wormhole physics [30]. However, the theory of gravitational
tunnelling is wider than that of Ref. [69], and one of the most
interesting applications of Euclidean quantum gravity, the
theory of the quantum origin of the inflationary Universe,
deals (beyond the leading approximation) with complex fields
and geometries. We shall not consider complex tunnelling
here (elements of its general theorywere discussed inRef. [69])
and restrict ourselves with a brief summary of the present
section: that there is a class of gravitational Gribov's copies
connected with caustics in the Einstein ±Hamilton ± Jacobi
theory whose equation is given by zeroes of the Faddeev-
Popov determinant. The corresponding points in superspace
aremapped on the spacetime section; at these points, a change
of the signature (in the case of real tunnelling) and complex-
ification of classical extremals themselves (in a more compli-
cated case) occur. In either case, the Hamilton ± Jacobi
function acquires the imaginary part

S! S� iI ; �3:75�

which, in the former case, can be identified with the Euclidean
gravitational action calculated on regions with the positive
signature and defining the semiclassical amplitude (2.21).
This amplitude characterizes (non-perturbative in �h) effects
of the Universe creation which can probably be consistently
interpreted only in terms of third quantization. It is therefore
clear that, proceeding from a consistent gravity quantization
scheme by means of preliminary reduction to the ADM
physical sector, we have to deal with the problem of Gribov's
copies which once again brings us to the problem of third
quantization.

Now, we can tell much more about the formalism of third
quantization than in Section 2. In particular, we can see,
regardless of any model restrictions, that in the one-loop
approximation for `positive'-frequency (J > 0) solutions of
the form (3.39), the inner product of ADM quantization
coincides with the conserved `quasi-Klein-Gordon' current of
the Wheeler ±DeWitt equations (3.58) or (3.66). However,
this current is known only in the one-loop approximation
and, for the general semiclassical states of the form

W �q� �
X
I

PI�q� exp
�
i

�h
SI�q�

�
; �3:76�

including negative-frequency components, it is conserved
only in the form (3.66) where momenta in the measure
J�q; qS=qq� are replaced by Wronskian type operators

p � qS
qq
! �h

2i
q
$
q � �h

2i

�
q
!

qq
ÿ q
 

qq

�
; �3:77�

that act on the wave functions W �q� and W ��q�, which may
be rewritten with the same accuracy as{

�W jW � �
�
dq d

ÿ
w�q; t��W ��q� J

�
q;

�h

2i
qq
$�

�W �q� �O��h� : �3:78�
Given negative frequencies in the superposition (3.76),

unitary mapping (3.56) between the ADM quantum states
and Dirac ±Wheeler ±DeWitt states does not make sense
even in the one-loop approximation. This is quite evident
from the factor �J=M�1=2 in (3.55) which is imaginary for the
components of the wave function having a negative fre-
quency. Therefore, the interpretation of the Wheeler ±
DeWitt equations in terms of unitary reduction to ADM
quantization may be correct only for a subclass of their
solutions �J > 0�, or may be an approximate concept dis-
regarding the interaction between the sectors of opposite
frequencies.

3.5. Relativistic particle and second quantization
A relativistic particle provides a simple example when the
quantum-mechanical problem of Gribov's copies serves as a
motivation for second quantization. Dynamics of the relati-
vistic particle follows from the action

S
�
x�t�� � ÿm

�
dt
ÿÿgab _xa _xb

�1=2
;

gab � diag �ÿ1; 1; 1; 1�; a � 0; 1; 2; 3; �3:79�

which gives rise, in the canonical formalism, to the super-
hamiltonian constraint on the phase space of coordinates
qi � xa and momenta pi � pa

H � gabpa pb �m2 � 0 ; �3:80�
which, in theDirac quantization scheme, becomes theKlein ±
Gordon equation for the wave function:

�ÿ�h2&�m2�W �x� � 0: �3:81�

{Conservation of diagonal terms is due to the mechanism discussed

above. For non-diagonal terms (integrals of the products of the I-th and

J-th components with I 6� J in (3.76)), the steepest descent method equates

only the projections of the I-th and J-th momenta tangential to S at the

stationary point (since the integral is taken only over S) while the normal
components from the solution of constraint equations have the same

absolute values. However, the action of theWronskian leads to the sum of

these normal components in the measure; therefore they must have the

same sign to avoid cancellation. This property accounts for the necessity of

the Wronskian-type operator measure to ensure the orthogonality of

components with different frequencies and the conservation of the normof

superpositions (3.76). Further proof that non-diagonal contributions with

SI�q� 6� SJ�q� vanish perturbatively is standard: there can be no identical
real extremals for different Hamilton ± Jacobi functions satisfying the

sameCauchy data, therefore the saddle point must lie in the complex plane

and its contribution must be exponentially suppressed by the imaginary

part of the action. A similar proof of conservation (perturbative suppres-

sion) holds for matrix elements of different quantum states.
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It is easy to demonstrate that the algorithm (3.43) ± (3.48) for
the two-point solutions of this equation with two Hamilton ±
Jacobi functions of the form

S�x; x 0� � �m
�����������������������������������������������������
ÿgab�x a ÿ x a

0 ��xb ÿ x b
0 �

q
�3:82�

leads to Wightman functions having positive and negative
frequencies respectively [8, 56]. The ADM reduction in the
natural gauge

w �x; t� � x0 ÿ t � 0 �3:83�

identifies physical degrees of freedom with spatial compo-
nents of coordinates and momenta �xA; pA� � �x;p� and is
ambiguous: the two physical Hamiltonians are in fact two
roots of the superhamiltonian constraint

Hphys �x;p� � �op; op �
�����������������
p2 �m2

p
: �3:84�

This ambiguity means the presence of two Gribov's copies
separated by zeroes of the Faddeev ± Popov `determinant'

J � 2p0: �3:85�

In the absence of external fields for a massive particle, these
zeroes lie in a classically forbidden region p2 �m2 � 0;
therefore, the two sectors of solutions having positive and
negative frequencies are explicitly separated. Solutions with
positive frequency, specifically

W ����x� �
�

d3p

�2p�h�3=2
a�p� exp�i�ÿopx

0 � p � x��; �3:86�
are unitarily mapped onto physical Newton ±Wigner wave
functions

C����x� �
�

d3p

�2p�h�3=2
a�p� ���������

2op

p
exp
�
i�ÿopx

0 � p � x��;
�3:87�

where
���������
2op

p
is the factor �J=M�1=2, M � 1, of Eqn (3.55) in

the momentum representation. The inner product on the
space of solutions for the Klein ±Gordon equation for
positive frequencies is positive and coincides with the inner
product of the Newton ±Wigner statesÿ eW���jW���� � ÿ �h

2i

�
d4x d�x0 ÿ t� eW�����x� q$0W ����x�

�
�
d3p �2op� ea��p�a�p� � ÿeCjC� : �3:88�

If non-linearity is included in the Klein ±Gordon equa-
tions or external fields which can effectively lead to the non-
positive square of massm2, the separation of solutions having
positive and negative frequencies into the two non-interacting
theories disappears, and their unification is achieved in the
framework of second quantization. Critical for its success is
the causal spacetime structure which allows for the creation
and propagation of physically observable particles only in
one direction inside the light conewhereas negative-frequency
modes travelling `backward' in time are used to describe
effects of their annihilation.

3.6 An alternative: third quantization or York gauge
formalism?
Einstein's theory of gravity is essentially different from the
relativistic particle theory, because the evolution in super-
space qi � ÿgab�x�;j�x��, an infinitely-dimensional analog of
space xa, is possible in all directions including those outside
the `light' cone of the DeWitt supermetric (due to indefinite-
ness of the potential term in the Wheeler ±DeWitt equation).
Therefore, bouncing off a caustic or at a turning point in
superspace accompanied by a change in the direction of
motion along the coordinate chosen as `time' should not
necessarily be interpreted as an exotic phenomenon like the
creation or annihilation of theUniverse. Simply, the choice of
gauge which singles out this time coordinate in superspace
was wrong: it is unable to globally parametrize the motion on
both trajectory branches, before and after the bounce. In a
class of gauges depending only on superspace coordinates
(3.22), the solution of this problem is impossible because, as
was shown before, caustics cause degeneracy of the Faddeev ±
Popov operator and lead to the problem of Gribov's copies.
However, there is a gauge involving momenta which solves
this problem.

This gauge was first introduced byYork [72] and describes
slicing of spacetime by a family of hyperspaces with the mean
extrinsic curvature constant on each of them. The constant
value of this mean curvature may be identified with time t,
and as the trace of the extrinsic curvature coincides with the
trace of gravitational momentum up to the scalar coefficient
of weight unity, such a gauge has the form

w?�q; p; t� � 2

3
gÿ1=2gab pab ÿ t � 0 : �3:89�

Note that this gauge is a scalar with respect to spatial
diffeomorphisms generated by supermomentum constraints;
therefore,

J?a � fw?;Hag � w? ; �3:90�

and the Faddeev ± Popov determinant factorizes on equations
of gauge conditions

J
��
w?�0� det J??0 det J

a
b : �3:91�

Since Ja
b � fwa;Hbg does not introduce Gribov's copies

related to the problem of time, one may forget gauges wa�q�
fixing spatial diffeomorphisms and concentrate on gauge
(3.89).

It is remarkable by the fact that the time variable it
introduces on phase space,

T � 2

3
gÿ1=2gab pab ; �3:92�

is likely to carry out unambiguous ADM reduction to the
physical sector and globally cover both classical and quantum
histories. This property was proved by York [72, 73] in a
special parametrization of phase space variables which make
use of the conformal properties of the metric. For sake of
simplicity, we shall restrict ourselves to a pure gravitational
theory without matter sources even though this formalism is
easy to generalize to the case with matter. Let us consider
conformal expansion of a 3-dimensional metric and its
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conjugate momenta

gab � f4 egab ; �3:93�

pab � fÿ4 ep ab � 1

2
eg 1=2 eg abf2T ; egab ep ab � 0 ; �3:94�

where egab is a conformally invariant metric built in a certain
conformal gauge (a function of five independent variables), f
is the conformal factor, and ep ab is the traceless part of
momentum. Transformation of the symplectic form

pab _gab � ep ab _egab ÿ eg 1=2f6 _T� d

dt
�. . .� �3:95�

shows that ep ab are conjugate to the components of the
conformal metric egab while the momentum conjugate to T is
equal to

PT � ÿeg 1=2f6 � ÿg1=2 : �3:96�

The substitution of (3.93), (3.94) into the superhamiltonian
constraint leads to the Lichnerowicz equation for the con-
formal factor

eg 1=2

�eDÿ 1

8
eR�f� 1

8

ep 2eg 1=2

1

f7
ÿ 3

64
eg 1=2T 2f5 � 0 ; �3:97�

eD � eg ab eHa
eHb ; ep 2 � egac egbd ep ab ep cd �3:98�

in the conformal treatment of the initial value problem; as
shown in Refs [72, 73], this equation `almost everywhere' has
the only limited positive solution, that is excepting the set of
measure zero of physically unacceptable values of variables{egab; ep ab. The unique solution means that the linear operator
obtained by varying (3.97) with respect to f is non-degen-
erate; hence, the diagonal block of the Faddeev ± Popov
operator{

J??0
���
H?�0

� 2f3
�eDÿ 1

8
eRÿ 7

8

ep 2eg 1

f8
ÿ 15

64
T 2 f4

�
d�x;x0�
f3

;

?� x ; ?0� x0 �3:99�
is also non-degenerate which is in fact the necessary
criterion for unambiguous ADM reduction. It follows
from (3.95), (3.96) that the physical Hamiltonian in con-
formal phase space variables egab; ep ab is obtained by sub-
stituting the solution of the Lichnerowicz equation
f
�egab�x�; ep ab�x�;T�x�� into (3.96) and is numerically coin-

cident with the three-dimensional volume of the Universe

Hphys�t�
�egab; ep ab

� � � d3x eg 1=2
ÿ
f� egab; ep ab; t��6 � � d3x g 1=2:

�3:100�

The remaining reduction to physical variables in this Hamil-
tonian is achieved by imposing coordinate gauges on five
independent components egab and their solution together with
supermomentum constraints that acquire, in new variables

(3.94), the formeHa ep ab � 0 ; �3:101�
which eventually reduces the system to two independent
degrees of freedom.

The fact that the global time (3.92) is defined by the
conformal part of gravitational momenta suggests that Dirac
quantization may also be carried out in new phase variables
�T;PT; egab; ep ab�, with the `conformal' superspace of variables
�T; egab� being chosen to serve as coordinates. Then, the
constraint equation is the Lichnerowicz equation in which
the conformal factor f � �ÿPT=eg 1=2�1=6 plays the role of the
momentum conjugate to T. Since it is non-polynomial in f,
this equation is very inconvenient from the viewpoint of the
operator realization (recall that the formal operator realiza-
tion which closes the algebra of quantum constraints exactly
can be found when they are quadratic in momenta; see
Section 3.2 and Refs [8, 66]). However, it turns out that by
multiplying the Lichnerowicz equation by f7 and performing
additional canonical transformation to variables �U;P ;egab; epab�

T � ÿ 2
3
eg 1=4 U

P1=2
; PT � ÿeg ÿ1=4P3=2 ; �3:102�

ep ab � ep ab ÿ 1

6
UPeg ab ; �3:103�

it is once again possible to make the superhamiltonian
constraint quadratic in all the momenta �P ; ep ab�

H? � f4H? � 1eg 1=2
�
2PeDP ÿ 3

2
�eHP�2

ÿ eRP 2 ÿ 1

4
U2P 2

�
� ep ab epabeg 1=2 : �3:104�

Evidently, this expression is not only quadratic but also
homogeneous in momenta, so that it assumes the form of
the `massless' equation}

H?�q; p� � G ik? pipk ; �3:105�
qi � ÿU�x�; egab�x�� ; pi �

ÿ
P�x�; ep ab�x�� �3:106�

in condensed notations for conformal superspace, even
though it contains the nonultralocal UU-sector of the three-
point function

G ik? � diag
�
G�x?jxi;xk�; ga�cgbd�d�x?;xi�d�x?;xk�

�
;

�3:107�

G�x?jx;x0� � 1eg 1=2
�
d�x?;x�eDd�x?;x0�

ÿ 3

2
eg abeHad�x?;x�eHbd�x?;x0�

ÿ
� eR� 1

4
U2

�
d�x?;x� d�x?;x0�

�
:�3:108�

{ In the full quantum theory, this set apparently falls into the integration

range of quantum field values and therefore requires special consideration.

{Note that all the terms in this operator are negative-definite with the

exception of the 3-dimensional scalar curvature in the conformal Lapla-

cian eDÿ eR=8; therefore, the proof of its non-degeneracy, trivial for eR > 0,
requires in the opposite case more subtle conformal superspace methods

[72, 73].

}Note that this homogeneity property is analogous to that of the

Hamiltonian constraint in the Ashtekar variables [74], although it is

achieved without using the complex triad formulation and without

increasing the number of constraints. Generally speaking, homogeneity

in momenta disappears in the presence of matter. In the case of a

conformally-invariant electromagnetic field, the superhamiltonian ac-

quires a term linear inP .
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Operator realization of the Hamiltonian constraint
(3.105) in the conformal superspace of coordinatesÿ
U�x�; egab�x�� is beyond the scope of the present paper. It is
worthwhile to note only that in the main, it reduces to the
replacement of the momentum P�x� by the functional
derivative P�x� � �hd=idU�x�. The P2 term in (3.105) being
negative-definite, the resultant equation will again be of the
hyperbolic type and will seemingly have solutions of different
frequencies. However, semiclassical solutions having negative
frequency (P < 0) are irrelevant because the phase-space
momentum region (conformal factor)

P � f4eg 1=2 �3:109�

belongs to the positive semiaxis. This explains the mechanism
of the semiclassical selection of solutions having positive
frequency for the Wheeler ±DeWitt equation in conformal
superspace which may also be realized at the non-perturba-
tive level.

Thus, the York gauge formalism and the related con-
formal superspace resolves the problem of time as the
problem of gravitational Gribov's copies. Third quantization
seems to be unnecessary, however this concept and physics of
Euclidean ±Lorentzian transitions prove to be possible via a
different mechanism. Indeed, the description of a classically
forbidden state with the help of imaginary time implies
complexification of the conformal superspace

T � ÿiT �3:110�
(momentum and its trace become imaginary when the
Euclidean space is sliced by hypersurfaces of the constant
Euclidean time T �x� � t). This complexification makes the
`conformal' time variable

U � ÿ 3
2
f2T � 3

2
if2T

purely imaginary and explicitly converts the Wheeler ±
DeWitt equation from hyperbolic to the elliptic one. This is
the absolute analog of the transition from the hyperbolic to
elliptic Klein ±Gordon equation under the Wick rotation. In
a conventional metric superspace, this analogy was implicit;
specifically, transition to the Euclidean space did not imply a
change of the DeWitt supermetric signature. On the contrary,
in a conformal superspace, transition into the Euclidean
region of spacetime is closely associated with its Euclidization
achieved by the Wick rotation of the conformal mode

U ! ÿiU : �3:111�

Quantization in a conformal superspace requires a further
study. Clearly, this formalism does not remove the possibility
of third quantization and underbarrier phenomena with a
change of the spacetime signature. But here, these phenomena
are of different nature and have a somewhat different
interpretation. In the first place, these differences are related
to the behaviour in the vicinity of possible caustics in super-
space. In a conformal superspace, caustics (if any) do not raise
the problem of time and nor do they lead to a naive
interpretation of one and the same Universe, considered
prior to and after bouncing off a caustic, as the quantum
superposition of two simultaneously existing states; in other
words, the surface of constant (external) time (3.92) does not
cross quantum histories more than once and does not give rise
to Gribov's copies.

3.7 ADM quantization of the simplest minisuperspace
model
The relativistic particle example considered in Section 3.5 is
too simple and lacking many important features of real
cosmological models (including the possibility of a dynamical
change of the signature).

Let us illustrate the ADM reduction to physical variables
for a two-dimensional minisuperspace �a;j�, where a�t� is the
scale factor of a closed homogeneous Universe with metric

ds2 � ÿN 2 dt 2 � a2 dl 2 ; �3:112�

j�t� is the spatially homogeneous mode of a scalar field with
the minimal coupling and the self-interaction potential U�j�.
This theory is the standard field for modelling Universe
creation (see Section 4); its minisuperspace action is

S � m2
P

�
a3
�
ÿ _a2

a2N 2
� 1

m2
P

_j2

2N 2
ÿ
�
H 2�j� ÿ 1

a2

��
dt

�
�
dt
�
pa _a� pj _jÿNH� ; �3:113�

where mP is the Planck mass. The superhamiltonian con-
straint is

H � ÿ p2a
4m2

Pa
� p2j

2a3
�m2

Pa
3

�
H 2�j� ÿ 1

a2

�
� 0 : �3:114�

Let us now perform the ADM reduction to physical
variables in two different gauges (3.22).

(1) Let us first choose as the `clock' the scale factor of the
Universe or its function

w � aÿ f�t� � 0 : �3:115�

In accordance with the general formulas in Section 3.2, the
Faddeev ± Popov determinant J?? � J, the lapse function
N? � N, and the physical Hamiltonian (3.27) are expressed
through the momentum pa

J � � 1

2m2
Pa
jpaj ; �3:116�

N � df

dt

1

J
� � 2m

2
Pa

jpaj
df

dt
; �3:117�

Hphys � � df

dt
jpaj ; �3:118�

where pa is the function of physical variables obtained by the
solution of the constraint equation (3.114) taking into
account (3.115):

jpaj �
���
2
p

mP

f�t�
���������������������������
m2�j; t� � p2j

q
; �3:119�

m2�j; t� � m2
P f

4
ÿ
H 2�j�f 2 ÿ 1

�
: �3:120�

Quantum dynamics is defined by the action (3.26) [in the
given case, coordinates of the physical phase space x and
momenta conjugate to them p correspond to the pair (j; pj)]:

S�j; pj� �
�
dt
�
pj _jÿHphys

� �3:121�
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and the ShroÈ dinger equation (3.29):

i�h
q
qt
jCi � � df

dt

���
2
p

mP

f�t�
���������������������������
m2�j; t� � p2j

q
jCi �3:122�

for the wave function jCiwith the conserved norm (3.30). We
do not discuss here the problem of ordering the operators
j; pj in (3.119); in the generally accepted weak scalar field
dependence of H�j�, the corresponding correction terms are
of the lowest order.

Here, the fundamental difference from the relativistic
particle (Section 3.5) consists in the explicit time-dependence
of parameters of the physicalHamiltonian, e.g. particle `mass'
(3.120). At H 2a2 < 1, this theory describes a particle with
imaginary mass, a tachyon. It is known that the solutions of
classical dynamical equations obtained using the variation of
the action (3.113) reveal [following the fixation of the
reference frame (3.115)] strict correlation between j and pj
values at each moment. Quantum gravity must answer in the
affirmative the following questions of special interest from
the viewpoint of conformity with observations: How can the
coherent stateC�j; t�with small dispersions and correspond-
ing �j$ pj� correlation be prepared? What is the spreading
rate of this wave packet? The answer to the latter question is
in the system dynamics. Specifically, the packet should be
expected to spread extensively at the moment when `mass'
(3.120) vanishes even if the mean value of the momentum
pj 6� 0 and the region m2 < 0 is classically accessible (the
expression under the root sign in (3.119) remains positive).

The ShroÈ dinger equation (3.122) is usually considered in
the semiclassical approximation. The quantum mechanical
problem (3.122) evidently deserves a more detailed examina-
tion. In any case, it has the exact solution at dm=dj � 0, i.e.
when the moment pj is conserved. The fact that the sign ofm

2

is indefinite in this problem is physically non-trivial.
The lapse function (3.117) and, consequently, proper time

t �
�t2
t1

N dt �
�a2
a1

2m2
Pa

jpaj da �3:123�

between the states of the Universe with scale factors a1; a2
[invariant t is independent of the choice of f�t�] are operators.
In calculating the integral over time in (3.123), j; pj should
be regarded as time-dependent Heisenberg operators. In a
semiclassical regime, when m24 p2j, quantum dispersion of
proper time is small, but it is certain to grow dramatically near
the `turning point'. If a1; a2 are localized at different sides of
the turning point, with a1 lying in the Euclidean region and a2
in the Lorentzian one, then t consists of two terms, imaginary
and real, as was expected:

t � itE � tL : �3:124�

Note that the choice as the time variable of the scale factor
itself [a � t, i.e. f�t� � t in (3.115)] leads, in accordance with
(3.117), to the expression for the g00-component of the metric

g00 � ÿN 2 � ÿJÿ2 � ÿ 2m2
Pa

4

m2 � p2j
; �3:125�

which has, in neglect of p2j, a simple pole

g00 � 1

aÿHÿ1�j� �3:126�

near the classical turning point. It is this expression [see
Introduction, (1.7)] that Sakharov proposed to illustrate a
change of the time signature.

(2) Let us now take as a `clock' the scalar field j, that is
assume that

w � jÿ t � 0 : �3:127�

Using the constraint equation (3.114) and following general
formulas (3.19), (3.21), and (3.27), we have

J � � jpjj
a3

; �3:128�

N � Jÿ1 � � a3

jpjj ; �3:129�

Hphys � �jpjj ; �3:130�
where

jpjj � a���
2
p

mP

������������������������
p2a ÿU�a; t�

q
; �3:131�

U�a; t� � 4m4
Pa

2
ÿ
H 2�t�a2 ÿ 1

�
: �3:132�

In this case, unlike the case of gauge (3.115), dependence
of the physical Hamiltonian (3.130) on the `coordinate' a is
more important than its `time'-dependence. At U > 0, we
have an unstable situation reminiscent of an `overturned'
oscillator, i.e. roll-down of a semiclassical packet the centre of
which moves along the classical trajectory a�t� that corre-
sponds to the evolution of the Lorentzian Universe in time. It
is however incorrect to regard superspace regions with U > 0
as Lorentzian and those with U < 0 as Euclidean ones. In
fact, a change of the signature (a change of sign N 2) occurs
upon a change in the sign of the expression under the root in
(3.131) which is not directly related to a change of sign of
U�a; t�.

Here, like in the York gauge case, the use of a `mono-
tonically' changing variable as a clock eliminates the problem
of Gribov's copies and requires a different interpretation of
the signature change (see Section 3.6). The quantum-mechan-
ical problem

i�h
qC�a; t�
qt

� a���
2
p

mP

������������������������������������
ÿ�h2

q2

qa2
ÿU�a; t�

s
C�a; t� �3:133�

is non-trivial. The meaning of a signature change in the
language of solutions for Eqn (3.133) should be addressed in
further studies.

Section 4 discusses the origin of the early Universe in the
theory (3.113) in gauge (3.115), under the assumption that H
weakly depends on j and that, in accordance with the Hartle
and Hawking `no-boundary' prescription, the initial (at
a � 0) state C�j� is a state with zero momentum pj, i.e. j-
independent.

4. Quantum origin of the early Universe

The theory of the quantum origin of the early Universe is
currently a most productive field for the application of
physics of transitions with the changing spacetime signature.
In the early 1980s, the synthesis of ideas of cosmological
inflation [75, 40] and quantum state [17, 18, 60], creating
initial conditions for the inflationary scenario, gave a power-
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ful impact to the development of quantum cosmology. It
eventually resulted in the invention of the Euclidean quantum
gravity that brought scientists to the concept of third
quantization, physics of wormholes, and the cosmological
constant fixing mechanism first suggested by Coleman [30].
This chapter is devoted to quantum cosmology of the early
Universe and gives examples illustrating the general formal-
ism and problems considered in previous sections. A key
problem of this theory which was not discussed above
concerns a search for a state W�q� that might be useful for
the description of an early, essentially quantum Universe
whose evolution leads to the present large-scale classical
picture of the world.{

A particular problem to be solved in the framework of
quantum cosmology of the early Universe is the demonstra-
tion of the validity of the semiclassical expansion at the initial
quantum stage of inflation and the calculation of its energy
scale. The inflationary paradigm is especially attractive
because it allows one to avoid unreliable predictions of
quantum gravity, by making use of sub-Planckian physics
with the characteristic value of the Hubble constant
H � _a=a � 10ÿ5mP much lower than the Planck mass
mP � G 1=2. The predictions of the inflation theory strongly
depend on this energy scale which must be chosen in such a
way as to ensure a sufficiently large parameter of exponential
expansion expN � exp�60� during the inflationary stage and
generate the necessary level of perturbations to create a
contemporary large-scale structure. However, this scale in
the inflation theory is a free parameter and can hardly be fixed
without invoking the ideas of quantum gravity and quantum
cosmology. These ideas imply that the quantum state of the
Universe in a semiclassical regime gives rise to an ensemble of
inflationary universes with different values of the Hubble
constant which later evolve approximately according to
classical equations of motion. The quantum state allows one
to find the distribution function of such an ensemble and to
interpret its probable maximum (if any) as generating the
energy scale of inflation. We shall demonstrate that although
the realization of such an idea in the tree-level approximation
of quantum cosmology has failed [77, 78], it proves to be
possible in the one-loop approximation [79, 8, 80, 69] which
requires to use in full the quantum gravity formalism
discussed in previous sections.

4.1 Hartle ±Hawking and Vilenkin quantum states
as a source of inflationary Universe
Today, the inflationary stage in the early Universe is widely
accepted to fairly well explain the problem of the creation of a
contemporary large-scale structure of the observable part of
spacetime and its microwave background [40, 75]. The
inflationary stage is a period in dynamics of the early
Universe described by the de Sitter or quasi-de Sitter
geometry created by the effective cosmological constant L
which is in its turn generated by other slowly varying fields.
For example, in the chaotic inflation model with the scalar
inflaton field f minimally coupled to the metric tensor Gmn

L�Gmn;f� � G1=2

�
m2
P

16p
R�Gmn� ÿ 1

2
�Hf�2 ÿU�f�

�
; �4:1�

in the approximation of the slow roll down the potential
barrier U�f� (assumed to be monotonically growing with f)
when the rate of time dependence of f is much lower than the
inflation rate of the scale factor a (Hubble constantH � _a=a),
equations of motion assume the form

_f ' ÿ 1

3H

qU
qf
5Hf ; �4:2�

H � H�f� '
����������������
8pU�f�
3m2

P

s
; �4:3�

and the effective cosmological constant L � 3H 2 is defined
by the inflaton field potential. It remains approximately
constant throughout the inflationary stage due to the slow
decrease of f and essentially decreases only at the end of this
stage. This leads to the decay of the effective cosmological
constant into inflaton oscillations the energy of which leads to
the reheating of matter in the Universe and its transition first
to the radiation-dominated and then to thematter-dominated
stage. The objective of quantum cosmology is to prepare, at
the quantum level, the necessary initial data for such a picture
by choosing an appropriate quantum state of the Universe
W�q� the general theory of which has been considered above.
One of the fruitful ideas for the realization of this task which
dates to the pioneering works of Hartle ±Hawking and
Vilenkin [17, 18, 60] consists in the fact that such initial data
emerge as a result of quantum tunnelling described by the
wave function W�q� and representing a transition with
changing spacetime signature.

In the context of closed cosmology, de Sitter Lorentzian
spacetime may be considered as a result of quantum tunnel-
ling from the classically forbidden domain described by the de
Sitter Euclidean geometry. A simple picture of tunnelling
geometry illustrating such amechanism is shown in Fig 3. The
de Sitter solution of Einstein's equations with the cosmologi-
cal constant L � 3H 2

ds2L � ÿ dt 2 � a2L�t� cab dxa dxb ; �4:4�

aL�t� � 1

H
cosh �Ht� �4:5�

describes the expansion of a spherical hypersurface with the
metric of a 3-dimensional sphere cab and the scale factor aL�t�.

L

E

SB

Figure 3.Graphical representation of the Lorentzian spacetime L nucleat-

ing from the Euclidean manifold E, with the topology of a 4-dimensional

ball, at the bounce surface SB. This construction is used in the Hartle ±

Hawking prescription for the cosmological quantum state.

{The possibility of the creation of the initial inhomogeneity spectrum by

primary quantum fluctuations has been discussed in one of the Sakharov's

pioneering works [76].
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Its Euclidean analogue with the de Sitter metric of the positive
signature

ds2 � dt2 � a2�t� cab dxa dxb ; �4:6�

a�t� � 1

H
sin �Ht� �4:7�

describes geometry of a 4-dimensional sphere with radius
R � 1=H and 3-dimensional sections parametrized by the
latitude angle y � Ht. The two metrics are related by the
analytic continuation to the complex plane of the Euclidean
time t [81, 82]

t � p
2H
� it ; aL�t� � a

�
p
2H
� it

�
: �4:8�

This analytic continuation may be interpreted as a quantum
tunnelling from the Lorentzian spacetime to the Euclidean
one and is shown in Fig. 3 as two manifolds (4.4) ± (4.7)
matched together along the equatorial section of the 4-
dimensional sphere t � p=2H �t � 0� Ð the bounce surface
SB.

The two known quantum states that semiclassically give
rise to such a mechanism for the creation of inflationary
universes are theHartle ±Hawking wave function [17, 18] and
the Vilenkin tunnelling wave function [60]. In the approxima-
tion of two-dimensional minisuperspace consisting of two
variables, the scale factor a and the inflaton scalar field f,

q i � �a; f� ; �4:9�

these wave functions WNB�a;f� and WT�a;f� satisfy the
minisuperspace Wheeler ±DeWitt equation and, in semiclas-
sical terms, represent its linearly independent solutions

WNB�a;f� � exp
�ÿI�a;f�� ; WT�a;f� � exp

��I�a;f��;
�4:10�

in which the Euclidean Hamilton ± Jacobi function I�a;f� is
evaluated on a particular family of solutions for classical
Euclidean equations of motion satisfying special Hartle ±
Hawking boundary conditions at a � 0 and boundary condi-
tions �a;f� at the end point, the argument of this function. At
a � 0, the scalar field derivative with respect to the Euclidean
time t must be zero and da=dt � 1 (t measures the proper
distance). This is equivalent to the requirement of regularity
of the 4-metric in the vicinity of the pole of a 4-dimensional
sphere (4.6), (4.7) at t � 0. In the leading order of the slow roll
approximation, when the inflaton field is constant, such a
solution just coincides with this metric at the Hubble constant
(4.3) while the Hamilton ± Jacobi function equals

I�a;f� � ÿ pm
2
P

2H 2

n
1ÿ �1ÿH 2�f�a2�3=2o;

H 2�f� � 8pU�f�
3m2

P

: �4:11�

Till the point �a;f� remains in the two-dimensional super-
space region under the curve (see Fig. 4)

a � 1

H�f� ; �4:12�

the Universe is in the underbarrier state described by the
Euclidean spacetime with the metric of a 4-dimensional
sphere. Euclidean extremals originating at a � 0 have caus-
tic{ (4.12) and can not enter region a > 1=H�f�. However,
they can be extended to this region in the complex time (4.8),
and the Euclidean function I �a;f� acquires the Lorentzian
part

I�a;f� � I�f� � iS�a;f� ; a >
1

H�f� ; �4:13�

S�a;f� � ÿ pm
2
P

2H 2

�
H 2�f� a2 ÿ 1

�3=2
: �4:14�

Here, I�f� is the Euclidean action of a theory with the
Lagrangian (4.1) calculated on a gravitational semi-instan-
ton, i.e. hemisphere (4.6) (04t4p=2H)

I�f� � ÿ 3m4
P

16U�f� : �4:15�

This action defines the amplitude of the wave functions (4.10)
in the classically-allowed region

WNB�a;f� � exp
�ÿI�f�� cos�S�a;f� � p

4

�
; �4:16�

WT�a;f� � exp
��I�f� � iS�a;f�� ; a >

1

H�f� ; �4:17�

a

f

f0

SB

Figure 4. Two-dimensional minisuperspace of the scale factor a and the

inflaton scalar field f in the chaotic inflation model. Euclidean extremals

(in the slow roll approximation) start at a � 0 and large initial values off0,
with the Hartle ±Hawking boundary condition df=daja�0 � 0 in the form

of trajectories reflected from caustic SB, a ' 1=H�f� and running into the
region f!1; a! 0. Their analytic continuation into the plane of

complex time t ' p=2H� it gives rise to classical trajectories which

describe Lorentzian spacetime. The causticSB in superspace is a boundary
of transition with the changing spacetime signature and is formed by a

one-dimensional family of zeroes of the Faddeev ±Popov `determinant'

J � 0 although it does not contain zeroes of Eqn (3.73) in gauge (4.22), in

perfect agreement with the discussion in Section 3.

{ In the lowest order of the slow roll approximation, the problem is

actually a one-dimensional one. Therefore, Eqn (4.12) represents just a set

of turning points, although beyond this approximation the curve really

turns out to be the envelope of a family of Euclidean trajectories [83].
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which is interpreted in the tree-level (the lowest in �h)
approximation as a distribution function of the ensemble of
inflationary universes described by the Hamilton ± Jacobi
function (4.14) in Lorentzian spacetime. The main parameter
characterizing these universes is the value of the effective
Hubble constant H � H�f� or the scalar curvature of de
Sitter space the distribution over which is contained in the
corresponding Hartle-Hawking rNB�f� [17] and Vilenkin
rT�f� [84] functions:

rNB�f� � exp
�ÿ2I�f�� ; rT�f� � exp

��2I�f�� :�4:18�
The Hartle ±Hawking wave function differs from the

Vilenkin wave function (as well as their distribution functions
do) by the boundary conditions in superspace: while the
tunnelling state WT�a;f� at a > 1=H�f� contains only an
outgoing wave and describes an expanding Universe, the
Hartle ±Hawking wave functionWNB�a;f� in the Lorentzian
region is a superposition of oppositely evolving cosmologies
which may be interpreted, in the context of the discussion in
Sections 2 and 3, as components with different frequencies of
the solution of theWheeler ±DeWitt equation. The tunnelling
wave function is defined with the help of the aforementioned
boundary conditions of an outgoing wave in the Lorentzian
region of superspace and an additional condition of f-
independence of WT�a;f� at a � 0 [78, 85]. There is a more
fundamental and model-independent prescription for the
Hartle ±Hawking wave function in the form of a functional
integral over Euclidean geometries [17, 18] which, in the tree-
level approximation, leads to expression (4.16) as a dominant
contribution of the saddle point of this integral, i.e. the
Euclidean ±Lorentzian extremal (4.4) ± (4.7).

The distribution functions rNB�f� and rT�f� describe
opposite results of the most probable underbarrier tunnelling
to the minimum and maximum of the inflaton potential
U�f�5 0, respectively (although the minimum U�f� � 0 is,
generally speaking, beyond the scope of applicability of the
slow roll approximation). The above equations hold for the
model (4.1), but they equally apply to the theory with non-
minimal coupling of the scalar inflaton j

L�gmn;j� � g1=2
�
m2
P

16p
R�gmn� ÿ 1

2
xj2R�gmn� ÿ 1

2
�Hj�2

ÿ 1

2
m2j2 ÿ l

4
j4
�
; �4:19�

provided that L�Gmn;f� is considered to be Einstein's para-
metrization of Lagrangian L�gmn;j�, with fields

�Gmn;f� �
��

1� 8pjxjj2
m2
P

�
gmn;f�j�

�
;

being related to �gmn;j� through known conformal transfor-
mations [86 ± 88]. Given a negative constant of the non-
minimal coupling x � ÿjxj, this model easily leads to the
chaotic inflationary scenario [89] with the inflaton potential
in the Einstein parametrization

U�f�
����
f�f�j�

� m2j2=2� lj4=4ÿ
1� 8pjxjj2=m2

P

�2 ; �4:20�

including the case of a spontaneously broken symmetry at
scale v (m2 � ÿlv2 < 0) in the Higgs potential l�j2 ÿ v2�2=4.
At greater j, the potential (4.20) becomes constant and

displays two types of behaviour at intermediate values of the
inflaton field, depending on the parameter

d � ÿ 8pjxjm
2

lm2
P

� 8pjxjv2
m2
P

:

At d > ÿ1, it has no local maxima and generates a slow
decrease of the scalar field leading to a standard scenario with
the finite duration of the inflationary stage, whereas for
d < ÿ1, it has the local maximum at

�j � m����������������
lj1� djp

and, owing to the negative slope of the potential, leads to
inflation of unlimited duration for all models with the scalar
field growing from the initial value jI > �j.

The tree-level distribution functions (4.18) for such a
potential do not suppress over-Planckian scales and cannot
be normalized at large j:�1

djrNB;T�j� � 1 ;

which calls in question the validity of the semiclassical
expansion. It is only for a tunnelling wave function at
d < ÿ1 that the distribution rT�f� has a local peak at �j
whichmay serve as a source of the most probable energy scale
of inflation at reasonable sub-Planckian values of the Hubble
constant. However, this peak requires large positive mass of
the inflaton field m2 > lm2

P=�8pjxj� which is too big for the
reasonable values x � ÿ2� 104, l � 0:05 [86] and formally
generates the infinite duration of the inflationary stage (since
it starts from inflaton potential maximum).

4.2 One-loop distribution function of inflationary universes
It is worth noting that the above calculation of the tree-level
distribution functions did not practically require to know the
correct probabilistic inner product of cosmological wave
functions which was given so much attention in Sections 2
and 3. It was sufficient to calculate and square the wave
function amplitude which, due to specific features of the
model, turned out to be a function on the section of a two-
dimensional minisuperspace transversal to the coordinate a
which normally plays the role of time. Therefore, the
distribution function thus obtained proved to be defined on
a physical subspace of correct dimensionality, i.e. one-
dimensional space of the inflaton field. The situation changes
beyond the tree-level approximation: calculations are impos-
sible without knowing both the correct inner product and the
wave function with the pre-exponential factor in the required
approximation. Also one needs to go beyond the minisuper-
space approximation because now the distribution function
includes a non-trivial contribution of the integration over
virtual quantum fields frozen in the tree-level approximation.
In the one-loop order, which we restrict ourselves with, these
fields can be taken into account in a linear approximation. As
before, the main approximation in the theory of chaotic
inflationary Universe consists in the minisuperspace model
with the scale factor a and the spatially homogeneous scalar
inflaton j whereas inhomogeneous fields of all possible spins
are considered as perturbations on this background. Taken
together, they form the superspace of variables

q i � ÿa; j; j�x�; c�x�; Aa�x�; ca�x�; hab �x�; . . .
�
:�4:21�
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In order to calculate and interpret distribution functions,
we shall need specific reduction to ADM variables x as
described in Section 3. This reduction is reasonable to carry
out separately in the minisuperspatial sector of full super-
space �a;j� and in the inhomogeneous mode sector. Let us
choose, as above, an inflaton field j as a physical variable
whose distribution function needs to be calculated, taking the
solution of classical equations of motion (4.5) withH � H�j�
as a gauge

w?�a;j; t� � aÿ 1

H�j� cosh
�
H�j�t� � 0 ; �4:22�

which simultaneously plays the role of the parametrization of
minisuperspace coordinates in terms of physical variable j.{
The ADM reduction for linearized inhomogeneous field
modes reduces to the choice of their transversal (T) and
transvers-traceless components (TT) which results in the
following complete set of physical variables

xA � �j; f� ; f � ÿj�x�; c�x�; AT
a �x�; cTa �x�; hTTab �x�; . . .

�
:

�4:23�

The ADM reduction at the quantum level is easy to
perform as described in Section 3 for the tunnelling state
(4.17). However, it encounters serious difficulty when applied
to the Hartle ±Hawking function (4.16) which contains both
positive and negative frequencies and gives rise, in gauge
(4.22), to Gribov's copies corresponding to components with
different frequencies. It has been shown in Section 3.6 above
that these copies are artifacts of using an inappropriate gauge
condition the surface of which crosses the classical extremal
(4.5) of one and the same Universe twice, before and after
bouncing off the minimal value of the scale factor
a � 1=H�j�. This results in interpreting the components
with different frequencies in (4.16) as superpositions of two
simultaneously existing states of an expanding and contract-
ing Universe. It is possible to overcome this problem by
quantization in the conformal superspace of Section 3.6,
whereas in the semiclassical approximation it is sufficient to
consider the quantum ADM reduction for individual posi-
tive-frequency (or negative-frequency) components (4.16)
and obtain the corresponding wave function of physical
variablesC�x; t� � C�j; f jt�. Then, the distribution function
of the inflaton field j should be regarded as a diagonal
element of the pure state density matrix trfjC

�

Cj. It can be

obtained from jC� � C�f; f j t� by averaging over the
remaining physical field modes f

r �f j t� �
�
df C��f; f j t�C�f; f j t� ; �4:24�

and this does not simply reduce to squaring the wave
function.

The calculation of the Hartle ±Hawking and Vilenkin
wave functions, both in the one-loop order in �h and
perturbatively in inhomogeneous modes f (4.23) on the
background of the Robertson ±Walker metric, has been
reported by many authors [90, 82, 91, 85, 79, 69, 80]. It may
use either the functional integration over regular fields in
Euclidean space with metric (4.6), (4.7) or the generic one-

loop kernel (3.55) (more specifically, its Euclidean analog) by
composing it with a special wave function at the initial
moment.{ The two wave functions are actually a Gaussian
function of variables f Ð their Euclidean vacuum invariant
with respect to the de Sitter group.} This makes integration
over f in (4.24) trivial and leads to the fundamental algorithm
for the one-loop distribution function which is valid for both
the Hartle ±Hawking quantum state [79, 8, 69, 93, 80] and the
tunnelling quantum state [92]

rNB;T�j� �
1

H2�j� exp
��2I�j� ÿ C 1ÿ loop�j�

�
: �4:25�

It turns out that the one-loop corrections to the both
functions are identical and largely depend on the Euclidean
effective action of the complete system of quantum fields x�x�

C 1ÿ loop�j� � 1

2
tr

�
ln

d2I�x�
dx�x� dx�y�

����
DS

�
: �4:26�

The effective action is computed on the (quasi-)de Sitter
gravitational instanton, a 4-dimensional sphere with radius
1=H�j�, and is therefore a function of j. Such closed
Euclidean manifold is obtained by doubling a semi-instanton
[69], that is by matching together two hemispheres along the
equatorial hypersurface SB (at which quantum transition
with the changing signature occurs). The procedure for
calculating the distribution function is graphically depicted
in Fig 5. The wave function and its conjugate involved in the

{This gauge is very convenient because in the semiclassical approximation
it corresponds to the choice of the proper time with the lapse function

N? � 1 [8].

{The Euclidean analog of (3.55) can be obtained by replacing the

Lorentzian Hamilton ± Jacobi function by the Euclidean one with Eu-

clidean times t and t 0. The Hartle ±Hawking and Vilenkin wave functions
are derived from this expression by shrinking the spatial section at t 0 � 0
to a point and integrating over all values of x 0 with a unit measure.
}This is a Gaussian function also in the Euclidean region, but its

dispersion obtained from basis functions of linearized Euclidean equa-

tions of motion [69, 92] tends to infinity at t! 0. This corresponds to the
infinite dispersion at the initial moment for the wave function involved in

constructing the Hartle ±Hawking and Vilenkin quantum states by means

of the above composition with the kernel of the Euclidean evolution.

L

L�

Mÿ

M�

SB

SB

SB

� 2M

Figure 5. Graphical representation of the calculation of the quantum

distribution function for Lorentzian universes. Composition of Euclidean-

Lorentzian spacetime Mÿ [ L and its complex-conjugate and oppositely

oriented copy M� [ L� leads to the doubled Euclidean manifold 2M, a

gravitational instanton, which carries the Euclidean effective action of the

theory. Mutual cancellation of Lorentzian regions L and L� reflects

unitarity of the theory in physical spacetimewith the Lorentzian signature.
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scalar product (4.24) can be represented by two Euclidean-
Lorentzian manifolds; in calculating the inner product, the
contributions of Lorentzian regions are mutually cancelled
due to unitarity of the theory and the remnant is the Euclidean
effective action computed on a closed instanton, obtained by
gluing two hemispheres of the above type [69, 93].

Formula (4.25) possesses a number of remarkable proper-
ties. Note that, since we started from the quantum state of the
ADM physical variables in a certain gauge and used it to
calculate the distribution function (which seemingly had to be
dependent on the choice of this gauge), the final result is
gauge-invariant and gauge-independent. For the classical
action (4.25), this holds by definition whereas the effective
action C 1ÿ loop�j� does not depend on the choice of gauge
condition because it is calculated on the mass shell [6, 94], and
the pre-exponential factor 1=H 2�j� is virtually gauge-invar-
iant since it is expressed through the scalar curvature{
R�gmn� � 4L � 12H 2. Thus, the function (4.25) describes the
distribution of a gauge-invariant observable, i.e. the scalar
curvature in a quantum ensemble of de Sitter universes. This
accounts for its gauge-invariance and gauge-independence.

Another property of the algorithm (4.25) is related to
unitarity of the theory. Note that formula (4.25) is given for
the distribution function of universes at the initial moment of
their quantum nucleation from the Euclidean semi-instanton
t � 0. The distribution function (4.24) is derived from (4.25)
in accordance with the relation

r �f j t� � rNB;T
ÿ
j�f; t������qj�f; t�qf

���� ; �4:27�

where j�f; t� is the field value at this nucleation as a function
of field f to which the Universe evolves by the moment t
[whose distribution function r �f j t� is being calculated] [8,
69]. This relation proves unitarity of the theory, that is a
conservation of the full probability

�
dfr�f j t� � const. The

transformation Jacobian
��qj�f; t�=qf�� � 1=uj�t� is

expressed through the linearized mode (basis function) of
the inflaton field [see Eqn (3.71) in Section 3 in which f and j
play the roles of x and x 0, respectively]. Both this Jacobian
and the basis function remain regular on the caustic in two-
dimensional minisuperspace separating the Euclidean and
Lorentzian regions, but the corresponding Faddeev ± Popov
determinant degenerates, which serves to illustrate the general
discussion in Section 3. To sum up, the full distribution
function decomposes into the gauge-dependent, non-invar-
iant Jacobian

��qj�f; t�=qf��which ensures explicit unitarity of
the theory and the gauge-invariant distribution function for
gravitational instantons (4.25) which accumulates quantum
corrections in a manifestly covariant form.

The latter property follows from the fact that the effective
action (4.25) calculated in physical variables can be identi-
cally transformed to the manifestly covariant form (in the
background-fields covariant gauge [6, 94]). Then, it can be
calculated by covariant methods, e.g. by covariant regular-

ization of its ultraviolet divergences. Only this guarantees
correct calculation of the high-energy scaling behaviour
C 1ÿloop�j� and distribution functions. Indeed, in the high-
energy limit of a large inflaton field which corresponds to the
Hubble constant limit

H�j� '
����������
l

12jxj

s
j!1

in the model (4.19), the effective action is calculated and
renormalized on the de Sitter instanton of vanishing sizeHÿ1.
Therefore, it is asymptotically defined by the total anomalous
scaling behaviour Z of the theory on such a space

C 1ÿloop

���
H!1

' Z ln
H

m
: �4:28�

Here m is the renormalization mass parameter or the dimen-
sional cut-off parameter generated by the finite fundamental
string theory provided that the model (4.19) is considered as
its effective sub-Planckian limit.

In the one-loop approximation, the parameter Z is
defined by the second DeWitt coefficient [6, 94] of all
covariant field multiplets integrated over the de Sitter
instanton volume

Z � 1

16p2

�
DS

d4x g1=2a2�x; x� ; �4:29�

and is critically dependent on the phenomenological model of
particles which includes the Lagrangian (4.19) as the grav-
iton-inflaton sector. This quantity determines the complete
set of one-loop logarithmic divergences and a set of corre-
sponding b-functions.

The use of Eqns (4.25) and (4.28), with account for
H � j�j!1�, shows that the quantum distribution func-
tion, unlike its tree-level approximation, contains a Z-
dependent factor

rNB;T�j� �
1

jZ�2 exp
��2I�j�� : �4:30�

This modification can make the Hartle ± Hawking and
Vilenkin wave functions normalizable at over-Planckian
energies provided that parameter Z satisfies the inequality

Z > ÿ1 ; �4:31�

which serves as the criterion for the choice of a consistent field
model of particles in the early Universe and is a conclusive
argument in favour of the applicability of the semiclassical
loop expansion [79, 95]. Although, strictly speaking, Eqn
(4.30) holds only in the limit j!1, it may equally be used
for the qualitative description at intermediate energies.
Distribution of (4.30) in this region can give rise to the
probability peak at j � jI with quantum dispersion s,
sÿ2 � ÿ d2 ln r�jI�=dj2I :

j2I �
2jI1j
Z� 2

; s2 � jI1j
�Z� 2�2 ;

I1 � ÿ24p jxjl �1� d�m
2
P ; �4:32�

{ It is known that the theory of gravity has no local gauge invariants with
respect to diffeomorphism transformations because even spatial scalars

with respect to these diffeomorphisms undergo transformation by the term

containing the Lie derivative. However, in a given setting of the problem,

the scalar curvature on a homogeneous (quasi-)de Sitter space is approxi-

mately constant; hence, it may be regarded as a local invariant within the

approximation used in the present paper.
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where I1 is the second coefficient of expansion of the
Euclidean action in inverse powers of j,

2I�j� � I0 � I1
j2
�O

�
1

j4

�
:

For the Hartle ±Hawking quantum states and the tunnel-
ling state, this peak is realized in complementary ranges of the
parameter d. In the case of the Hartle ±Hawking state, it
exists only at d < ÿ1 �I1 > 0� and thus corresponds to the
infinite duration of inflation with the field j located at the
negative slope of the inflaton potential (4.20) and infinitely
growing from the initial value jI > �j. For the tunnelling
state, this peak occurs at d > ÿ1 and leads to the finite
duration of the inflationary stage with the parameter of the
exponential expansion [80]

N�jI� �
8p2jxjÿ1� 6jxj�

l�Z� 2� :

We shall examine this case in the following section because it
describes the generally recognized inflationary scenario with
the radiative-dominant stage following inflation.

4.3 Non-minimal inflation and particle physics in the early
Universe
The status of the inflation theory was recently confirmed by
observations of cosmic microwave background in satellite
experiments COBE [96] and RELICT [97]. In the inflationary
model with the non-minimal inflaton field (4.19), the pertur-
bation spectrum compatible with these observations can be
obtained for coupling constants of order l=x2 � 10ÿ10 [86, 98]
(experimental restriction on gauge-invariant [99] density
perturbation Pz�k� � N 2

k �l=x2�=8p2 in the kth mode which
crosses the horizon at the moment of expansion expNk). The
main advantage of this model is the possibility to avoid
unnaturally low values of l in the minimal inflaton model
[40, 75] and substitute them by those compatible with the
grand unification theory, l ' 0:05, provided that constant
x ' ÿ2� 104 is chosen to be of the same order as the ratio of
Planckian to typical grand unification scales, jxj � mP=v.
With such coupling constants, the known bound on the
parameter of exponential expansion during the inflationary
stage exp

�
N�jI�

�
5 exp�60� when generated by the prob-

ability peak (4.32) leads to enormously large anomalous
scaling Z � 1011. A remarkable feature of the non-minimal
inflaton model is that such a value may be induced by large
constant x. Indeed, the expression for Z1ÿloop, well-known in
the generic theory [6, 94], contains the fourth-order contribu-
tion in effective particle masses which is easy to calculate on
the de Sitter background [100]

Z1ÿloop � �12H 4�ÿ1
�X

w

m4
w � 4

X
A

m4
A ÿ 4

X
c

m4
c

�
� . . . ;

�4:33�
where the summation is over all Higgs' scalars w, vector gauge
bosonsA, and spinorsc. Their effectivemasses for largej are
actually given by contributions m2

w � lwj2=2, m2
A � g2Aj

2,
m2
c � f 2cj

2 induced, through the Higgs mechanism, by their
Lagrangian of interaction with the inflaton field

Lint �
X
w

lw
4
w2j2 �

X
A

1

2
g2AA

2
mj

2 �
X
c

fcj�cc�

� interaction with derivatives: �4:34�

Thus, by virtue of relation j2=H 2 � 12jxj=l, full anomalous
scaling of the theory

Z1ÿloop � 6
x2

l
A�O�x� ; �4:35�

A � 1

2l

�X
w

l2w � 16
X
A

g4A ÿ 16
X
c

f 4c

�
�4:36�

contains the same large dimensionless ratio x2=l ' 1010 and
the universal combination of coupling constantsA defined by
the particle model (neither graviton nor inflaton field con-
tributes to A, as well as gravitino when it does not interact
with inflaton).

For such Z1ÿ loop, parameters of the probabilistic infla-
tionary peak have the form

jI � mP

��������������������
8p�1� d�
jxjA

s
; s � jI���������

12A
p

���
l
p

jxj ; �4:37�

H�jI� � mP

���
l
p

jxj

��������������������
2p�1� d�

3A2

s
; N�jI� �

8p2

A
�4:38�

and satisfy the constraintN�jI�5 60 with the only condition
on A4 1:3.

At d5 1 (d � 8p=jxj for jxj � mP=v) and A ' 1, the
resultant numerical parameters describe a very sharp and
narrow probability peak with the sub-Planckian Hubble
constant

jI ' 0:03mP ; s ' 10ÿ7mP ; H�jI� ' 10ÿ5mP ; �4:39�

which forms a realistic region for the inflationary scenario. It
is worth noting that the relative width of the peak

s
jI

� DH
H
� 10ÿ5 �4:40�

corresponds to the observed anisotropy level of microwave
background even though it is not quite clear whether
quantum dispersion s is directly observable at present, due
to stochastic noise of the same order of magnitude generated
during inflation and superimposed on s.

All these conclusions are sufficiently universal and (except
the choice of jxj and l) universally depend on parameter A
(4.36) of the particle model in the early Universe. This
parameter must satisfy the constraints

l
jxj 5A4 1:3 ; �4:41�

in order that the large jxj approximation in (4.35) be adequate
to guarantee the suppression of over-Planckian energy scales
(the lower bound) and sufficiently long inflation (the upper
bound). These constraints suggest the (quasi)supersymmetric
nature of themodel of particles in the earlyUniverse [95] since
only supersymmetry is likely to ensure the balance of
contributions of bosons and fermions in (4.36) and fit the
constant A in the range (4.41).

Let us briefly summarise the results obtained by apply-
ing gravitational tunnelling methods in the theory of
quantum origin of the early Universe. Evidently, the
quantum mechanism which suppresses the contribution of
over-Planckian scales also generates a narrow probability
peak in the distribution of tunnelling inflationary universes
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and suggests (quasi)supersymmetric nature of the field model
for the early Universe. This peak occurs at a sub-Planckian
value of the Hubble constant which justifies the semiclassical
expansion for quantum gravitational effects and is in a good
agreement with observations of the microwave radiation
background in the non-minimal inflaton field model. A
distinctive feature of the theory is that its results are based
on one small parameter, i.e. the dimensionless ratio of two
fundamental scales, that of the grand unification theory and
the Planck scale given by the combination of constants���
l
p

=jxj ' 10ÿ5. Certainly, a specific value of this combination
also needs explanation which may be available with the help
of renormalization group methods (or their generalization to
perturbatively non-renormalizable theories) [88].

From the viewpoint of quantum cosmology of the early
Universe, these results give a strong preference to the
tunnelling quantum state as opposed to the Hartle ±Hawking
state. Advantages of either state have been a matter of a long-
standing discussion [40, 75, 60, 84, 101, 78]. Today, the
tunnelling state appears to be more useful and conceptually
clear in the cosmological context because its interpretation
does not require using of questionable ideas of third quantiza-
tion which arise in the case of the Hartle ±Hawking wave
function, e.g. its expansion in positive and negative compo-
nents and separate calculation of their probability distribu-
tions. On the other hand, the formulation of the tunnelling
state is not aesthetically closed because it uses a boundary
condition with positive frequency behind the potential
barrier, normalization to a constant under the barrier at
a � 0, the requirement of normalizability with respect to
inhomogeneous modes f, etc. All this is quite different from
the closed formulation in the form of functional integral for
the Hartle ±Hawking wave function which automatically
guarantees many of these properties. At the same time, the
tunnelling prescription for the wave function seems useless
outside the cosmological context, e.g. in physics ofwormholes
and black holes. Moreover, at the overlap of cosmological
problems and the theory of virtual black holes, it leads to the
unnatural conclusion that the quantum birth of large black
holes is more likely to occur than that of the Planck-size black
holes [102].

These arguments can hardly be conclusive beyond the
scope of a consistent theory that must establish the status of
third quantization and solve an open problem of correct
quantization of the conformal mode in Einstein's Lagran-
gian, etc. This and related problems do not seem to play a
major role in the theory of quantum birth of the early
Universe. It should be emphasized that the normalizability
criterion for the wave function and algorithm (4.25) do not
refer to the low energy limit j! 0 where the naively
calculated Hartle ±Hawking wave function blows up to
infinity, and the slow roll approximation becomes inapplic-
able. Fortunately, this region is separated from the probabil-
istic inflationary peak by a wide `desert' with practically zero
density of quantum distribution which justifies the above
conclusions neglecting the phenomena of ultra-infrared
physics of baby universes and Coleman's cosmological
constant theory [30].

5. Conclusions

The key issue of the present paper is that the principal object
of quantum gravity, the so-called `wave function of the
Universe', has no sense from the quantum-mechanical point

of view because it obeys constraint equations and, conse-
quently, cannot be normalized in superspace. The normal-
izable wave function and its dynamical evolution, the
ShroÈ dinger equation, which it obeys are introduced by
imposing gauge conditions (3.18) or (3.22), parametrized by
number t, on superspace coordinates. The question arises:
Does the theory make sense when all the dynamics is given by
the choice of gauge conditions, i.e. when ``What we call time
changes the physics'' (Karel Kuchar in Ref. [103], p. 504)?

Note that this is exactly the case in both classical and
quantumGTRwhere `dynamics' understood as explicit time-
dependence of fields obviously changes with transformation
of coordinates; in other words, it depends on the choice of
reference frame (i.e. the choice of gauge conditions). How-
ever, in the classical GTR there is a standard procedure to
transform one reference frame to another, whereas in
quantum gravity the situation is less transparent. Quantum
ADM theories constructed using different gauge conditions
may prove to be physically nonequivalent.

It is well-known that the quantum vacuum state of the
Minkowski space is not `empty' in an accelerated reference
frame [104], and a freely falling observer who falls in the black
hole space can see neither the event horizon nor Hawking
radiation even though they are objectively recorded by
instruments at rest in the asymptotic region. This `discre-
pancy' called `the information paradox' has recently led to the
formulation of a `principle of black hole complementarity'
[105, 106] which, according to the authors, ``will change all
our ideas of quantum gravity''.

We believe, however, that the problem is not so much that
the dynamics is given by the choice of gauge conditions;
rather, it is in the necessity to formulate the rules for the
construction of gauge conditions corresponding to the choice
of physical reference frames given by physical bodies, which is
not easy to do in the framework of quantum theory: suffice it
to recall that even such usual words as `free fall' has the
operator meaning in quantum gravity. In any case, the choice
of such physically motivated gauge conditionsmust depend on
the dynamical properties of the system and possibly on the
background geometry (leading approximation in semiclassi-
cal expansion in powers of the Planck constant). Such a
dependence of quantization procedure on the initial point of
perturbation theory introduces fundamental nonlinearity
which is absent in the conventional quantum theory.

The problem of choosing gauge conditions has a different
aspect in the third quantization formalism where the `wave
function of the Universe' is taken as the operator. Obviously,
the definition of equal-time commutators necessary in this
approach requires that the notion of `synchronization', i.e.
slicing of superspace by hypersurfaces, be introduced which is
achieved by the choice of gauge conditions. Conversely, the
use of the `S-matrix' language covariant in superspace which
does not require gauge fixation implies the introduction of
sources into the right-hand side of the Wheeler ±DeWitt
equation, that is extension beyond the `mass-shell' of the
constraint equation.

It should be emphasized that a direct analogy of quantum
gravity with the relativistic particle theory and its second
quantization is relevant only as far as minisuperspace models
are concerned. In the general case, 13 Wheeler ±DeWitt
equations (by the number of points in the 3-space), rather
than one, are valid. Thus, strictly speaking, quantum gravity
corresponds to 13 relativistic particles propagating in a
finite-dimensional (by the number of fields estimated with
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regard for supermomentum constraints) minisuperspace and
interacting with one another due to the presence of terms with
x derivatives in the original Lagrangian. Formulas of the
present paper are certainly applicable to this general case as
well. However, quantization by the ADM reduction method
in the problem of two interacting relativistic particles (not to
say about their infinite number) is non-trivial and requires
special consideration. This is quite different from the case of
`one-particle' problems discussed in Sections 3.5 and 3.7.

Returning to basic principles, we shall try to specify the
initial `technical' reason for quantum gravity to be so difficult
and so interesting a science. It is known that the trajectory of a
nonrelativistic particle propagating in a stationary potential
U�x� with energy E can be obtained by varying the so-called
`truncated' Maupertuis action [107]

SM �
� ��������������������

T�EÿU�
p

dt �5:1�

(T is kinetic energy), which formally describes the propaga-
tion of a relativistic particle with variable mass or, in other
words, its propagation in a conformally-flat space with the
scale factor (EÿU). Classical extremals (with energy E) of
the standard action with the Lagrangian (TÿU) and action
(5.1) obviously coincide, but quantization of the theory (5.1) ,
i.e. a system placed on the constant energy surface, leads to
essentially different results which are impossible to obtain in
the framework of a non-relativistic problem. (Quantization of
systems with constraints has been described in Ref. [108]). In
GTR, an analog of (5.1) was obtained by substituting the g00-
component of the metric expressed from the �00�-component
of Einstein's equations into the Einstein action; it was first
suggested by Baierlein, Sharp, Wheeler (BSW) in 1962 [109]
(see also Refs [110, 111]).

Generally speaking, BSW gravitation (i.e. gravitation in
which the Wheeler ±DeWitt constraint is valid) in asympto-
tically flat spaces is not equivalent to standard GTR and can
be obtained from GTR by imposing an additional constraint
that the surface integral which defines the energy-momentum
of gravitational field andmatter vanishes. Indeed, most of the
conceptual problems of quantum gravity (the problem of
time, etc.) result from imposing this constraint which is
always valid in closed spaces. The difficulties encountered in
the interpretation of quantum gravitation near the `turning
point' are due to degeneracy of the action similar to (5.1) at
EÿU � 0. In connection with this it appears appropriate to
mention the time arrow problem which is not considered in
the present paper but was at the focus of A D Sakharov's
interests (see the introductory article in the jubilee issue of
Uspekhi FizicheskikhNauk (Soviet Physics-Uspekhi) [112]). In
an early paper, Hawking argued [113] that maximum expan-
sion of the Universe must be accompanied by the reversal of
thermodynamic arrow of time, but later he regarded this
assertion to be his most serious mistake. (See Refs [114, 115]
and also a recent publication [116] in which the authors still
advocate the idea of reversal of the direction of time following
themaximum expansion of theUniverse). There is little doubt
that these conflicting views reflect real difficulties of the
theory.

Another fundamental issue is related to the problem of a
`turning point' in the vicinity of which the semiclassical
approximation is inapplicable. The question is whether
quantum gravity with the superhamiltonian constraint
admits the construction of a semiclassical wave packet

describing stationary spacetime, e.g. the Minkowski space.
In a sense, the stationary state is a `permanent turning point'.
In view of this, many authors maintain that GTR with the
Wheeler ±DeWitt constraint satisfies Mach's principle which
treats the empty Minkowski space as a physically inadmis-
sible object [23, 24, 103, 110, 117].

In conclusion, it is worthwhile to dwell on two virtually
incompatible approaches to explaining fundamental proper-
ties of the observable Universe: dimensionality, signature,
constants ... One, known as the `anthropological selection'
principle, was advocated by A D Sakharov: ``We believe, in
the spirit of the anthropological principle, that the observable
Universe is singled out by the sum of parameter values
favouring the development of life and intellect. In particular,
the signature ... may be one of such parameters'' [2]. More-
over: ``In space P, an infinite number of U-insertions should
be considered (for the whole complex of trajectories and even
for a single trajectory); parameters of the infinite number of
them may be arbitrarily close to the parameters of the
observable Universe. It is therefore supposed that the number
of universes similar to our Universe, in which structures, life
and intellect are possible, may be infinite. This does not rule
out the possibility that life and intellect occur in an infinite
number of universes of essentially different classes, which
form either finite or infinite number of classes of `similar'
universes including those with the signature different from the
signature of our Universe'' [2]. (Here, P is Euclidean space of
positive signature, U is the Universe with single time).
Sakharov was adherent to the idea of multiple universes
which naturally arises in third quantization of gravity and
also in chaotic inflation models (see many of his works and
also the Nobel lecture).

This incredible variety of options makes one think of
hiding oneself in the shell of naive anthropomorphism. The
`dynamical predetermination' approach opposite to the
anthropic principle does not deny the existence of `spacetime
foam' on the Planck scale, but it relies on the possibility to
formulate principles and equations which would allow to
calculate fundamental constants and explain why universes
with dimensionalities and signatures other than 3� 1 can not
be large and semiclassical. An infinite number of universes
postulated by Sakharov and all talks about their spacetime
characteristics make sense only in the semiclassical approx-
imation; the situation may be much less ambiguous at the
fundamental quantum level. Motivated by basic principles
strict requirements for existence of the semiclassical limit (a
phase of broken symmetry of general-coordinate diffeo-
morphisms) may be of predictive value for explaining proper-
ties of a macroscopic universe. Here, quantum gravity clears
the way for generating new ideas. However, the most
important, `crazy' (as Bohr put it) idea remains to be
suggested. Having no claim on throwing light on all the
particulars of the problem of `dynamical predetermination',
which needs a special review to be comprehensively discussed,
we would like to bring to readers' attention Refs [118 ± 120] in
which the authors endeavoured to explain 3-dimensionality
of space in the framework of string theory. The theory of
virtual wormholes and `big fix' of Coleman, Giddings, and
Strominger [30] (see Section 1.6 of the Introduction) appears
to have been designed in an attempt to realize the `dynamical
predetermination' principle. Unfortunately, it has not yet
proved its value, despite the original optimism of its suppor-
ters. Results presented in Section 4, which describe the
distribution function with a maximum for the Hubble
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constant determining the inflation rate, should also be
considered in the context of striving for dynamic (as opposed
to anthropic) predetermination of the properties of the
observable Universe.
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