К 75-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ А.Д. САХАРОВА

Электрослабые радиационные поправки в распадах Z-бозона

М.И. Высоцкий, В.А. Новиков, Л.Б. Окунь, А.Н. Розанов

Дан подробный обзор электрослабых радиационных поправок к распадам Z-бозона в рамках минимальной стандартной модели (MCM). После краткого исторического введения мы обсуждаем оптимальную параметризацию MCM, в частности, параметризацию борновского приближения, и выводим однопетлевые формулы для электрослабых поправок. Проводится глобальный анализ всей совокупности прецизионных экспериментальных данных, который позволяет зафиксировать значения массы t-кварка m_t и константы сильного взаимодействия α_s . Обсуждается разрешенная область для значений масс хиггса m_H . Многочисленные детали вычислений описаны в 16 приложениях.

PACS numbers: 12.15.Lk, 13.38.Dg

Содержание

1. Введение (539).

1.1. Новые теории, новые симметрии, новые частицы, новые явления. 1.2. "Фабрики" W- и Z-бозонов. 1.3. Зачем изучать петлевые поправки?

2. Из истории электрослабых радиационных поправок (541).

2.1. Распады мюона и нейтрона. 2.2. Основные соотношения электрослабой теории. 2.3. Традиционная параметризация поправок к μ-распаду и бег α. 2.4. Глубоко неупругое рассеяние нейтрино на нуклонах. 2.5. Другие процессы с участием нейтральных токов.

 Об оптимальной параметризации теории и выборе борновского приближения (544).

3.1. Традиционный выбор основных параметров. 3.2. Оптимальный выбор основных параметров. 3.3. Распады Z-бозонов. Амплитуды и ширины. 3.4. Асимметрии. 3.5. Борновское приближение для безадронных наблюдаемых.

- Однопетлевые поправки к безадронным наблюдаемым (547).
 4.1. Четыре типа фейнмановских диаграмм. 4.2. Асимптотический предел при m_t² ≥ m_Z². 4.3. Функции V_m(t, h), V_A(t, h) и V_R(t, h).
 4.4. Поправки δV_i(t, h). 4.5. Случайная (?) компенсация и масса t-кварка. 4.6. Как вычислить V_i? "Пять шагов".
- Адронные распады Z-бозона (552).
 Лидирующие кварки и адроны. 5.2. Распады на пары легких кварков. 5.3. Распады на пару bb.

М.И. Высоцкий, В.А. Новиков, Л.Б. Окунь. Институт теоретической и экспериментальной физики 117259 Москва, ул. Б. Черемушкинская 25 Тел. (095) 123-31-92. Факс (095) 123-65-84

E-mail: vysotsky@vxitep.itep.ru; novikov@vxitep.itep.ru;

okun@vxitep.itep.ru

А.Н. Розанов. ИТЭФ и СРРМ, IN2P3-CNRS, Marseille, France E-mail: rozanov@cppm.in2p3.fr

Статья поступила 31 января 1996 г.

 Сопоставление расчетов с экспериментальными данными LEP1 и SLC (554).

6.1. Компьютерная программа LEPTOP. 6.2. Общий фит.

7. Заключение (555).

7.1. Достижения. 7.2. Проблемы. 7.3. Перспективы.

Приложения (557).

I. Правила вычисления фейнмановских интегралов. II. Соотношение между $\bar{\alpha}$ и $\alpha(0)$. III. Сводка результатов расчетов $\bar{\alpha}$. IV. Как "ползут" $\alpha_W(q^2)$ и $\alpha_Z(q^2)$. V. Соотношения между $\bar{\alpha}$, G_{μ} , m_Z и голыми величинами. VI. Радиаторы R_{Aq} и R_{Vq} . VII. Вывод формул для асимметрий. VIII. Поправки, пропорциональные m_t^2 . IX. Явный вид функций $T_i(t)$ и $H_i(h)$. X. Вклад тяжелых фермионов в собственную энергию векторных бозонов. XI. Вклад легких фермионов в собственную энергию векторных бозонов. XII. Вклад векторных и скалярных бозонов в собственную энергию векторных бозонов. XIII. Вершинные части F_{Af} и F_{Vf} и константы C_i . XIV. Функции $\phi(t)$ и $\delta\phi(t)$ в распаде $Z \to b\bar{b}$. XV. Поправки $\delta_2 V_i$. XVI. Поправки $\delta_5 V_i$.

Список литературы (573).

1. Введение

1.1. Новые теории, новые симметрии, новые частицы, новые явления

Создание в конце 1960-х годов единой электрослабой теории [1, 2] и в начале 1970-х квантовой хромодинамики [3] радикально изменило всю картину физики элементарных частиц. Ее основой стали калибровочные симметрии: электрослабая $SU(2)_L \times U(1)$ и цветовая $SU(3)_c$. Выяснилось, что калибровочные симметрии определяют динамику фундаментальных физических процессов, ключевую роль в которой играют калибровочные векторные бозоны — давно известный фотон и плеяда новых частиц: W⁺-, W⁻-, Z-бозоны и восемь глюонов, отличающихся друг от друга своими цветовыми заря-

дами. И хотя в электрослабой теории продолжает оставаться загадочным хиггсов конденсат, заполняющий все пространство, а в хромодинамике не решена проблема конфайнмента, тем не менее обе теории настолько неотделимы от современной физики, что получили название минимальной стандартной модели (MCM). В этом обзоре мы будем предполагать знание читателями основ MCM (см., например, монографии [4]).

В процессе создания МСМ резко расширились представления о кварках. В работах [1] электрослабая теория была предложена для лептонов (электронов и электронных нейтрино). Последовательное включение в нее кварков заставило предположить, что наряду с известными в то время u-, d-, s-кварками существует четвертый кварк — с. Согласно [2], если d- и s-кварки являются аналогами е и μ соответственно, то аналогами v_e и v_{μ} должны являться взаимно ортогональные комбинации u cos $\theta_{\rm C}$ + c sin $\theta_{\rm C}$ и $-u \sin \theta_{\rm C} + c \cos \theta_{\rm C}$, где $\theta_{\rm C}$ — угол Кабиббо [5].

Одним из важных последствий построения электрослабой теории было предсказание слабых нейтральных токов. Согласно теории, нейтральные слабые токи должны быть диагональны, иными словами, нейтральные токи с изменением аромата кварков (FCNC) должны быть запрещены. Это объяснило отсутствие на опыте таких распадов как $K^0 \to \bar{e}e$, $K^0 \to \bar{\mu}\mu$, $K^+ \to \pi^+ \bar{e}e$. Из-за отсутствия в лагранжиане нейтрального тока $\bar{s}d$ эти распады не могут идти в древесном приближении, для них требуются петли с виртуальными W-бозонами. То же относится и к переходам $K^0 - \bar{K}^0$, обусловливающим разность масс K_L^0 - и K_S^0 -мезонов.

Диагональные нейтральные токи были открыты в реакциях с нейтринными пучками [6], в повороте плоскости поляризации лазерного луча в парах висмута [7], в рассеянии поляризованных электронов дейтонами [8].

Очарованный кварк с был открыт в 1974 г. [9]. Но еще до этого Кобаяши и Маскава [10] предположили, что в дополнение к двум поколениям лептонов и кварков, (v_e , e, u, d), (v_{μ} , μ , c, s), должно существовать третье поколение (v_{τ} , τ , t, b). Для трех поколений 2 × 2-матрица Кабиббо

$$\begin{pmatrix} \cos\theta_{\rm C} & \sin\theta_{\rm C} \\ -\sin\theta_{\rm C} & \cos\theta_{\rm C} \end{pmatrix}$$

заменяется унитарной матрицей 3×3 , содержащей в общем случае три угла и одну фазу; последняя отлична от нуля, если нарушается СР-инвариантность. Так был предложен механизм нарушения СР-инвариантности на уровне кварковых токов.

В середине 1970-х годов были открыты на опыте тлептон [11] и b-кварк [12]. Самый тяжелый фермион — tкварк был открыт лишь через два десятилетия [13, 14]. Что касается механизма нарушения СР-инвариантности, то он до сих пор не выяснен.

Перенормируемость электрослабой теории и квантовой хромодинамики (КХД) [15] и свойство асимптотической свободы КХД [16] открыли широкий простор для надежных расчетов, использующих теорию возмущений. На базе этих расчетов в древесном приближении были предсказаны такие качественно новые явления, как кварковые и глюонные струи; исходя из данных о нейтральных токах, еще до открытия W- и Z-бозонов были предвычислены их массы, а также полные и парциальные ширины.

1.2. "Фабрики" W- и Z-бозонов

Для проверки этих предсказаний электрослабой теории в начале 1980-х годов были построены протон-антипротонные коллайдеры в Европе (ЦЕРН), а затем в США (ФНАЛ). Открытие W- и Z-бозонов [17] блестяще подтвердило древесные расчеты [4] и сделало актуальным вопрос о прецизионной проверке электрослабой теории с учетом петель. (Говоря о древесном (борновском) приближении и петлях, мы здесь и в дальнейшем имеем в виду соответствующие фейнмановские графики.)

Уникальным объектом для такой проверки явился Zбозон, для прецизионного изучения свойств которого в конце 1980-х годов были построены электрон-позитронные коллайдеры: LEP1 в ЦЕРН и SLC в СЛАК. Электроны и позитроны в этих коллайдерах сталкиваются при энергии в центре масс, равной массе Z-бозона. В результате происходит резонансное рождение и распад Zбозона (рис. 1).

Рис. 1. Z-бозон как резонанс в аннигиляции e^+e^- . Пара фермионантифермион в распаде Z-бозона обозначается ff, где f может быть как лептоном (e, μ , τ , v_e , v_{μ} , v_{τ}), так и кварком (u, d, s, c, b). В последнем случае за счет взаимодействия с глюонами пара кварк–антикварк превращается, как правило, в многоадронное состояние. Выходящая стрелка на этой и последующих диаграммах отвечает испусканию фермиона (f) и поглощению антифермиона (e⁺), входящая — испусканию антифермиона (f) и поглощению фермиона (e⁻).

В октябре 1995 г. LEP1 завершил свою работу; на четырех детекторах этого коллайдера (ALEPH, DELPHI, L3, OPAL) зарегистрировано около 20×10^6 Z-бозонов. Полное число Z-бозонов на SLC, зарегистрированных единственным детектором SLD, составляет примерно 10^5 , однако из-за того, что электроны в SLC продольно поляризованы, на нем можно измерять зависимость сечения аннигиляции e^+e^- в Z-бозон от знака поляризации электрона. В результате даже при существенно меньшей статистике SLC оказывается конкурентоспособным. Достигнутые статистическая и методическая (систематическая) точности в изучении свойств Z-бозонов составляют порядка 10^{-5} для массы Z-бозона и порядка нескольких тысячных для наблюдаемых, характеризующих его распады.

1.3. Зачем изучать петлевые поправки?

Естественно задать вопрос: зачем нужно сравнивать с опытом петлевые поправки электрослабой теории? В основном, для того чтобы получать сведения о еще не открытых частицах. Так, еще до открытия t-кварка на Тэватроне, на установках CDF [13] и D0 [14], его масса была предсказана из анализа радиационных петлевых поправок и данных LEP1 и SLC [18]. Основная петля с участием виртуальных t- и t-кварков изображена на рис. 2a.

Все еще не открыт скалярный хиггсовский бозон, или просто хиггс. В минимальном варианте теории, так называемой минимальной стандартной модели (МСМ),

Рис. 2. Вклад пары tī в пропагатор Z-бозона (а). Вклад петли с виртуальными Z-бозоном и хиггсом в пропагатор Z-бозона (б).

имеется один хиггс — нейтральная частица, масса которой не фиксируется моделью. В минимальной суперсимметричной стандартной модели (МССМ) есть три нейтральных и два заряженных хиггса. Самый легкий из нейтральных хиггсов должен быть не тяжелее 135 ГэВ [19, 20]. Простейшая диаграмма с участием виртуального хиггса представлена на рис. 26.

При планировании экспериментов на LEP1 и SLC были велики ожидания, что прецизионные измерения обнаружат ярко выраженные отклонения от предсказаний стандартной модели и тем самым недвусмысленно укажут на существование какой-то "новой физики". И хотя некоторые несогласия с MCM имеются, они лишь в одном случае (в распаде Z-бозона на bb-пары) выходят за три стандартных отклонения. Если эти несогласия не связаны с какими-то систематическими ошибками, то они, возможно, указывают (см. заключение) на существование сравнительно легких (~ 100 ГэВ) скварков и глюино — суперсимметричных партнеров кварков и глюонов, соответственно.

2. Из истории электрослабых радиационных поправок

Первые расчеты электрослабых поправок в МСМ были проведены в 1970-х годах, задолго до открытия W- и Zбозонов. Они были посвящены распаду мюона и βраспадам нейтрона и ядер и глубоко неупругим процессам. В связи со строительством LEP и SLC многие теоретические группы провели детальные расчеты необходимых радиационных поправок. Эти расчеты были обсуждены и сопоставлены на специальных рабочих совещаниях. Результатом этих совещаний была публикация двух так называемых "желтых отчетов CERN" [21, 22], которые вместе с "желтым отчетом" [18] стали настольными книгами экспериментаторов и теоретиков, изучающих Z-бозон.

2.1. Распады мюона и нейтрона

Сирлин [23] вычислил радиационные поправки к распаду мюона, обусловленные однопетлевыми фейнмановскими диаграммами (рис. 3).

Рис. 3. Однопетлевые диаграммы в распаде мюона: петли в пропагаторе W-бозона (а – г), в W-вершине (д – ж) и внешних фермионных линиях (з – л) (аналогичные диаграммы для е и \bar{v}_e подразумеваются), а также диаграммы типа квадрата (м – п).

Следует подчеркнуть, что чисто электромагнитная поправка к распаду мюона, обусловленная обменом виртуальными фотонами и испусканием реальных фотонов, была вычислена ранее [24] еще для точечного четырехфермионного взаимодействия, т.е. без учета W-бозона (рис. 4). Оказалось, что она конечна — не содержит расходимостей. Константа четырехфермионного взаимодействия из времени жизни мюона τ_{μ} ,

$$\frac{1}{\tau_{\mu}} = \Gamma_{\mu} = \frac{G_{\mu}^2}{192\pi^3} f\left(\frac{m_e^2}{m_{\mu}^2}\right) \left[1 - \frac{\alpha}{2\pi} \left(\pi^2 - \frac{25}{4}\right)\right], \quad (1)$$

где $f(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$, уже учитывает эту электромагнитную поправку, пропорциональную α . Конечность чисто электромагнитной поправки в распаде мюона обусловлена V-A-характером взаимодействующих заряженных токов $\bar{v}_{\mu} \mu$ и $\bar{e}v_e$.

В распаде нейтрона чисто электромагнитная поправка к четырехфермионному взаимодействию (рис. 4и) логарифмически расходится. С учетом W-бозонного пропагатора (рис. 43) логарифмическая расходимость обрезается на массе W-бозона.

Вычисленная в работах [25] эта поправка к векторной вершине в лидирующем логарифмическом приближении дается множителем

$$1 + \frac{3\alpha}{2\pi} \ln \frac{m_{\rm W}}{m_{\rm p}} , \qquad (2)$$

где m_p — масса протона. Ее численное значение порядка 1,7 %. И только после учета этой поправки величина $\cos^2 \theta_C$, извлекаемая из ядерного β-распада, становится равной 1 — $\sin^2 \theta_C$, где $\sin^2 \theta_C$ извлекается из распадов странных частиц (θ_C — угол Кабиббо). Хотя обсуждаемая поправка и содержит под знаком логарифма m_W , она по существу является электромагнитной, а не электрослабой, поскольку нечувствительна к деталям электрослабой теории на малых расстояниях в отличие, скажем, от электрослабых поправок к распаду мюона (см. рис. 3).

При вычислении электрослабых поправок к распаду мюона выяснилось, что основная поправка, превосходящая все остальные, возникает из-за поляризации вакуума фотоном (рис. 5а).

На первый взгляд, эта поправка не должна была бы появиться в μ -распаде в однопетлевом приближении: ее нет среди петель рис. 3. Однако она появляется, когда G_{μ} выражают через постоянную тонкой структуры α и массы W- и Z-бозонов.

Рис. 4. Распад мюона в древесном (а) и локальном четырехфермионном (б) приближениях. Электромагнитные поправки к распаду мюона в локальном приближении (в – ж). Электромагнитные поправки к β-распаду нейтрона: в древесном (3), в четырехфермионном (и) приближениях.

Рис. 5. Фотонная поляризация вакуума, приводящая к логарифмическому бегу электромагнитного заряда *е* и "постоянной тонкой структуры" $\alpha \equiv e^2/4\pi$, как функции q^2 , где q — 4импульс фотона (а). Некоторые из диаграмм, дающих вклад в собственную энергию W-бозона (б – ж) и в собственную энергию Z-бозона (з – о). Некоторые из диаграмм, дающих вклад в переходы $Z \leftrightarrow \gamma$ (п – т).

2.2. Основные соотношения электрослабой теории

Хорошо известно [4], что в борновском приближении (рис. 4а)

$$G_{\mu} = \frac{g^2}{4\sqrt{2}m_{\rm W}^2} \,, \tag{3}$$

где m_W — масса W-бозона, g — его константа связи с заряженным током.

С другой стороны, в том же приближении

$$m_{\rm W} = \frac{1}{2} g\eta \,, \tag{4}$$

где *η* — вакуумное среднее хиггсова поля.

Аналогично,

$$m_{\rm Z} = \frac{1}{2} f\eta \,, \tag{5}$$

где m_Z — масса Z-бозона, а f — его константа связи с нейтральным левым током.

Таким образом,

$$\frac{m_{\rm W}}{m_{\rm Z}} = \frac{g}{f} \ . \tag{6}$$

Если ввести знаменитый угол Вайнберга [1], то очевидно, что в борновском приближении для него в равной степени справедливы два определения:

$$\cos\theta_{\rm W} = \frac{m_{\rm W}}{m_{\rm Z}} \quad \text{i} \quad \cos\theta_{\rm W} = \frac{g}{f} \,. \tag{7}$$

Как известно [1], угол θ_W в электрослабой теории определяет связь между электрическим зарядом *е* и слабым зарядом *g*:

$$e = g \sin \theta_{\rm W}.\tag{8}$$

Таким образом, в борновском приближении

$$G_{\mu} = \frac{g^2}{4\sqrt{2}m_{W}^2} = \frac{1}{\sqrt{2}\eta^2} = \frac{\pi\alpha}{\sqrt{2}m_{W}^2 \sin^2\theta_W} = \frac{\pi\alpha}{\sqrt{2}m_{Z}^2 \sin^2\theta_W \cos^2\theta_W} .$$
(9)

Если учесть теперь электрослабые поправки, то

$$\frac{m_{\rm W}}{m_{\rm Z}} \neq \frac{g}{f}$$
.

2.3. Традиционная параметризация поправок к μ-распаду и бег α

В литературе (см. обзор Лангакера и Эрлера [35] и ссылки в нем) широко используются определения Сирлина [23], согласно которым

$$s_{\rm W}^2 \equiv \sin^2 \theta_{\rm W} \equiv 1 - c_{\rm W}^2 \equiv 1 - \cos^2 \theta_{\rm W} = 1 - \frac{m_{\rm W}^2}{m_Z^2} ,$$
 (10)

$$G_{\mu} = \frac{\pi \alpha}{\sqrt{2}m_{\rm W}^2 s_{\rm W}^2 (1 - \Delta r)} , \qquad (11)$$

где

$$\Delta r = \Delta r_{\rm em} + \Delta r_{ew}$$

включает в себя как истинно электрослабые поправки $\Delta r_{\rm ew}$ от петель рис. 3, так и чисто электромагнитную

поправку $\Delta r_{\rm em}$, обусловленную бегом α от $q^2 = 0$ до $q^2 \sim m_{\rm W}^2, m_Z^2$. Эта поправка возникает от того, что значение

$$\alpha \equiv \alpha(q^2 = 0) = [137, 035985(61)]^{-1}$$
(12)

определено при $q^2 = 0$, в то время как характерные импульсы виртуальных частиц в электрослабых петлях — величины порядка массы промежуточных бозонов. Удобно обозначить

$$\bar{\alpha} \equiv \alpha(m_Z^2) = \frac{\alpha}{1 - \Delta r_{\rm em}} \equiv \frac{\alpha}{1 - \delta \alpha} .$$
 (13)

Величина $\Delta r_{\rm em}$ вычислялась в целом ряде работ [26]; необходимые формулы даны в приложениях II и III. Вклад лептонных петель в $\Delta r_{\rm em}$ описывается выражением

$$\delta \alpha^{\rm l} \equiv \Delta r_{\rm em}^{\rm l} = \frac{\alpha}{3\pi} \sum_{\rm l} \left(\ln \frac{m_Z^2}{m_{\rm l}^2} - \frac{5}{3} \right) = 0,03141 , \qquad (14)$$

где $l = e, \mu, \tau$. Вклад кварковых петель не может быть вычислен теоретически, так как масса кварка, входящая под знак логарифма, не имеет строгого теоретического определения. Тесно связано с этим и другое обстоятельство — глюонные поправки. Поэтому кварковую (адронную) часть $\Delta r_{\rm em}^{\rm h}$ находят, подставляя в дисперсионное соотношение экспериментальные данные по сечению e^+e^- -аннигиляции в адроны:

$$\delta \alpha^{\rm h} \equiv \Delta r^{\rm h}_{\rm em} = \frac{m_Z^2}{4\pi^2 \alpha} \int_{4m_\pi^2}^{\infty} \frac{\mathrm{d}s}{m_Z^2 - s} \sigma^{\rm h}_{\rm e^+e^-} , \qquad (15)$$

где $\sigma^{\rm h}_{{\rm e}^+{\rm e}^-}$ — сечение аннигиляции ${\rm e}^+{\rm e}^-$ в адроны через один виртуальный фотон.

В этом обзоре мы используем недавний результат Егерленера и Эйдельмана [26]: $\Delta r_{\rm em}^{\rm h}=0,02799(66),$ так что

$$\delta \alpha = \delta \alpha^{l} + \delta \alpha^{h} \equiv \Delta r_{em} = \Delta r_{em}^{l} + \Delta r_{em}^{h} = 0,05940(66) .$$
(16)

Из (13) и (16) следует, что

$$\bar{\alpha} = \left[128, 896(90)\right]^{-1}$$
 (17)

Сводку результатов различных расчетов $\bar{\alpha}$ см. в приложении III. Согласно традиции, в $\alpha(m_Z)$ не включают вклады t-кварковой и W-бозонной петель. В лидирующем приближении по $1/m_t^2$ вклад t-кварковой петли равен

$$\Delta r_{\rm em}^{\rm t} = -\frac{4}{45} \frac{\alpha}{\pi} \left(\frac{m_{\rm Z}}{m_{\rm t}}\right)^2 = -0,00005 \text{ для } m_{\rm t} = 180 \,\Gamma \Im B,$$
(18)

точная формула (см. (67)) отвечает

$$\Delta r_{
m em}^{
m t} = -0,00006$$
 для $m_{
m t} = 180$ ГэВ.

Вклад W-бозонной петли зависит от калибровки. В калибровке 'т Хофта-Фейнмана он равен $\Delta r_{\rm em}^{\rm W} = 0,00050$ (см. (66)).

2.4. Глубоко неупругое рассеяние нейтрино на нуклонах

Большинство теоретических работ по электрослабым поправкам до открытия W- и Z-бозонов было посвящено расчетам сечений взаимодействия нейтрино с электронами [27] и особенно с нуклонами [28]. Это объясняется тем, что после открытия нейтральных токов именно из сравнения сечений нейтральных токов (NC) и заряженных токов (CC) извлекалась величина

$$s_{\rm W}^2 \equiv 1 - \frac{m_{\rm W}^2}{m_Z^2} \,.$$

Если W-бозон взаимодействует с заряженными токами типа V-A, например,

$$\frac{g}{2\sqrt{2}} W_{\alpha} \bar{u} \left(\gamma_{\alpha} + \gamma_{\alpha} \gamma_{5} \right) d , \qquad (19)$$

то Z-бозон взаимодействует с нейтральными токами, имеющими более сложный вид

$$\frac{f}{2} Z_{\alpha} \bar{\psi}_{\rm f} \big[T_3^{\rm f} \gamma_{\alpha} \gamma_5 + (T_3^{\rm f} - 2Q^{\rm f} s_{\rm W}^2) \gamma_{\alpha} \big] \psi_{\rm f} , \qquad (20)$$

где $T_3^{\rm f}$ — третья проекция слабого изотопического спинора, описывающего левую компоненту фермиона f (кварка или лептона), $Q^{\rm f}$ — его заряд, а $\psi_{\rm f}$ — описывающий его дираковский спинор. В древесном приближении отношение сечений NC и CC для чисто аксиальных взаимодействий (на изосколярной мишени) равно единице, поскольку величина

$$\rho = \frac{f^2}{g^2} \frac{m_{\rm W}^2}{m_{\rm Z}^2} \tag{21}$$

равна единице в этом приближении. С учетом векторного тока отношение NC и CC зависит от s_W^2 . Измерение этого отношения дало значение $s_W^2 \approx 0,23$ и, следовательно, позволило предсказать массы W- и Z-бозонов (из формулы для распада мюона (9)). Более точное измерение NC/CC позволило уточнить s_W^2 настолько, что понадобилось учесть электрослабые радиационные поправки как в s_W^2 , так и в значении ρ , которое теперь, с учетом поправок, не равно единице.

Как впервые отметил Вельтман [29], если $m_t/m_Z \gg 1$, то основная поправка в ρ и s_W^2 обусловлена нарушением электрослабой изотопической инвариантности массами t- и b-кварков в петлях собственных энергий Z- и Wбозонов. Для нахождения ρ в пределе $m_t/m_Z \gg 1$ достаточно рассмотреть эти петли, пренебрегая импульсом Wи Z-бозонов q по сравнению с их массами, т.е. при $q^2 = 0$. Элементарный расчет упомянутых петель дает (см. приложение VIII)

$$\rho = 1 + \frac{3\alpha_Z}{16\pi} \left(\frac{m_t}{m_Z}\right)^2 = 1 + \frac{3\alpha_W}{16\pi} \left(\frac{m_t}{m_W}\right)^2 = 1 + \frac{3G_\mu m_t^2}{8\sqrt{2}\pi^2} .$$
(22)

Здесь и в дальнейшем

$$\alpha_Z = \frac{f^2}{4\pi} , \qquad \alpha_W = \frac{g^2}{4\pi} . \tag{23}$$

Поскольку в реальной жизни $m_t/m_Z \simeq 2$, сумма остальных, не лидирующих, поправок оказывается сравнимой с поправкой, пропорциональной m_t^2 (см. ниже).

В настоящее время величина s²_W, извлекаемая из данных по глубоко неупругому vN-рассеянию, соста-

вляет 0,2260(48) (глобальный фит данных коллабораций CDHS [30] и CHARM [31]) или 0,2218(59) (коллаборация CCFR [32]). Точность этих данных хуже, чем из непосредственного измерения массы W-бозона m_W и отношения m_W/m_Z коллаборациями UA2 в ЦЕРН [33] и CDF на Тэватроне [34]. Согласно PDG [35], фитированная величина $m_W = 80,22(26)$, что отвечает $s_W^2 =$ = 0,2264(25). Заметим, что, согласно новейшим данным [36], точность измерения m_W еще выше: $m_W = 80,26(16)$ ГэВ. Поэтому в дальнейшем мы глубоко неупругого рассеяния нейтрино обсуждать не будем. Тем более, что для интерпретации этих опытов необходимы дополнительные предположения об эффективной массе с-кварка и о точности КХД-поправок.

2.5. Другие процессы с участием нейтральных токов

В еще большей степени это относится к нарушению четности в еD-рассеянии [8], которое к тому же дает существенно менее точное значение $s_W^2 = 0,216(17)$.

Точность измерения $v_{\mu}e$ - и $\bar{v}_{\mu}e$ -рассеяния даже в наиболее точном эксперименте CHARM II [37] недостаточна, чтобы увидеть истинные электрослабые поправки. Однако будучи проанализирован в борновском приближении, этот эксперимент впервые показал, что константа взаимодействия тока $\bar{v}_{\mu}v_{\mu}$ с Z-бозоном находится в согласии с теорией (см. [38, 39]).

Недостаточно чувствителен при достигнутой точности и эксперимент по измерению нарушения четности в ¹³³Сs₅₅ [40]. Здесь эффект обусловлен взаимодействием нуклонного векторного тока с аксиальным электронным током. Поскольку характерный импульс электронов в атоме мал по сравнению с ядерными размерами, все нуклоны ядра "работают" когерентно, и ядро характеризуется суммарным слабым зарядом Q_W , который на опыте оказывается равным $Q_{\rm W}^{\rm exp} = -71, 0 \pm 1, 8$, в то время как теоретически ожидаемое число составляет $-72,9\pm0,1$. Замечательным свойством величины $Q_{
m W}$ является то, что в силу случайного сокращения вклада протонов и нейтронов она практически не зависит от *m*_t. Зато значение Q_W очень чувствительно к вкладам нейтральных бозонов Z', Z", более тяжелых, чем Z-бозоны, если они существуют.

Итак, наилучшим объектом для изучения электрослабой теории на петлевом уровне является Z-бозон, которому в основном и посвящен данный обзор.

3. Об оптимальной параметризации теории и выборе борновского приближения

Электрослабая теория отличается от электродинамики во многих отношениях и, в частности, обилием различных частиц и взаимодействий, которые необходимо принимать во внимание при рассмотрении любого эффекта в петлевом приближении. Параметризация КЭД не вызывает размышлений: фундаментальными величинами являются масса и заряд электрона, которые к тому же известны с очень высокой точностью. Так что в КЭД естественно все теоретические предсказания выражать через α и m_e .

3.1. Традиционный выбор основных параметров

В случае электрослабой теории выбор основных параметров не столь очевиден. Исторически в качестве таких параметров были выбраны G_{μ} как наиболее точно измеренная на опыте константа слабого распада, $s_W^2 \equiv 1 - m_W^2/m_Z^2$, поскольку непосредственно W- и Zбозоны в то время еще не наблюдались, а значение s_W^2 было известно из опытов с нейтральными токами, и, наконец, α . Эта параметризация 70-х годов оказалась очень живучей, она и связанные с нею петлевые параметры $\Delta r \, u \, \rho$ широко используются в литературе и имеют все шансы сохраниться и после конца этого столетия. Вместе с тем эта параметризация далека от оптимальной, поскольку на опыте масса m_W (и, следовательно, s_W) измерена с гораздо худшей точностью, чем m_Z :

$$m_{\rm W} = 80,26(16) \ \Gamma \Im \mathbf{B},$$
 (24)

$$m_{\rm Z} = 91,1884(22) \ \Gamma
i B.$$
 (25)

В результате s_W^2 извлекается путем фитирования петлевыми формулами самых разных наблюдаемых. Однако при таком извлечении приходится задавать значения масс t-кварка и хиггса. Другим недостатком обсуждаемой параметризации является то, что величина α при всей ее поразительной точности не имеет прямого отношения к электрослабым петлям, которые характеризуются величиной $\bar{\alpha}$, известной с гораздо более низкой точностью. В результате чисто электромагнитная поправка $\Delta r_{\rm em}$ не отделяется от истинно электрослабых поправок, что затемняет интерпретацию экспериментальных данных.

3.2. Оптимальный выбор основных параметров

Из сказанного выше следует, что оптимальной в настоящее время является параметризация, основанная на G_{μ} , m_Z и $\bar{\alpha}$. При такой параметризации оказывается удобным ввести слабый угол θ , определяемый (по аналогии с уравнением (9)) соотношением

$$G_{\mu} = \frac{\pi \bar{\alpha}}{\sqrt{2} m_Z^2 s^2 c^2} , \qquad (26)$$

где $s^2 \equiv \sin^2 \theta$, $c^2 \equiv \cos^2 \theta$. Из уравнения (26) следует

$$\sin^2 2\theta = \frac{4\pi\bar{\alpha}}{\sqrt{2} G_{\mu} m_Z^2} = 0,71078(50) ,$$

$$s^2 = 0,23110(23), \qquad c = 0,87687(13) . \tag{27}$$

Угол θ был введен в середине 1980-х годов [41]. Однако его последовательное использование началось с работы [42].

Использование θ вместо θ_W автоматически учитывает бег α и позволяет сосредоточиться на истинно электрослабых поправках. Использование m_Z вместо s_W позволяет явным образом выделить зависимость от m_t и m_H для каждой электрослабой наблюдаемой.

Следует отметить, что в литературе существует другое определение массы Z-бозона \overline{m}_Z , связанное с другой параметризацией формы пика Z-бозона [43]. Эта масса \overline{m}_Z меньше m_Z приблизительно на 30 МэВ. В этом обзоре мы последовательно используем только m_Z , следуя сводным отчетам коллабораций LEP [44].

Покажем, как параметризация в терминах $G_{\mu}, m_Z, \bar{\alpha}$ применяется к амплитудам распадов Z-бозонов и к отношению m_W/m_Z .

3.3. Распады Z-бозонов. Амплитуды и ширины

В соответствии с уравнением (20) запишем амплитуду распада Z-бозона в фермион-антифермионную пару $f\bar{f}$ в виде

$$M(\mathbf{Z} \to \mathbf{f}\bar{\mathbf{f}}) = \frac{1}{2} \, \bar{f} \, \mathbf{Z}_{\alpha} \bar{\psi}_{\mathbf{f}} \left(\gamma_{\alpha} g_{\mathbf{V}\mathbf{f}} + \gamma_{\alpha} \gamma_{5} g_{\mathbf{A}\mathbf{f}} \right) \psi_{\mathbf{f}} \,. \tag{28}$$

Здесь, по определению, \bar{f} — значение константы связи f в борновском приближении:

$$\bar{f}^2 = 4\sqrt{2} G_{\mu} m_Z^2 = 0,54866(4).$$
 (29)

(Использование одной и той же буквы f для обозначения фермиона и константы связи не может внести путаницы, настолько различны эти объекты.) Высокая точность, с которой известно численное значение f, обусловлена тем, что \bar{f} не зависит от $\bar{\alpha}$. Все электрослабые радиационные поправки "спрятаны" в безразмерных константах gvf и g_{Af}. Эти коэффициенты не включают вклада взаимодействий в конечном состоянии, обусловленных обменом глюонами (для кварков) и фотонами (для кварков и лептонов). Взаимодействия в конечном состоянии не имеют ничего общего с электрослабыми поправками и должны быть учтены в виде отдельных множителей при переходе от амплитуды процесса к его ширине. Эти множители иногда называют "радиаторами", поскольку они учитывают не только обмен фотонами и глюонами, но и их испускание.

В случае распадов на любую из пар $v_e \bar{v}_e$, $v_\mu \bar{v}_\mu$, $v_\tau \bar{v}_\tau$ радиаторы тривиально равны единице и поэтому

$$\Gamma_{\nu} = \Gamma(Z \to \nu \bar{\nu}) = 4\Gamma_0 (g_{A\nu}^2 + g_{V\nu}^2) , \qquad (30)$$

где *Г*₀ — так называемая стандартная ширина:

$$\Gamma_0 = \frac{G_{\mu} m_Z^3}{24\sqrt{2}\pi} = 82,944(6) \text{ M} \Im \text{B}.$$
(31)

При пренебрежении массами нейтрино

$$g_{\mathrm{A}\nu} = g_{\mathrm{V}\nu} \equiv g_{\nu}, \tag{32}$$

так что

$$\Gamma_{\nu} = 8\Gamma_0 g_{\nu}^2 \,. \tag{33}$$

Для распадов на любую из пар заряженных лептонов II [18]

$$\Gamma_{\rm l} \equiv \Gamma(Z \to l\bar{\rm l}) =$$

$$= 4\Gamma_0 \left[g_{\rm Vl}^2 \left(1 + \frac{3\bar{\alpha}}{4\pi} \right) + g_{\rm Al}^2 \left(1 + \frac{3\bar{\alpha}}{4\pi} - 6 \frac{m_{\rm l}^2}{m_{Z}^2} \right) \right], \quad (34)$$

где квантовоэлектродинамическая поправка учтена лишь в низшем приближении по $\bar{\alpha}$; членами порядка $(\bar{\alpha}/\pi)^2 \sim 10^{-6}$ мы пренебрегаем. Член пропорциональный m_1^2 пренебрежимо мал для $l = e, \mu$, и его следует учитывать лишь для $l = \tau (m_{\tau}^2/m_Z^2 = 3, 8 \times 10^{-4})$.

Для распада на любую из пяти пар кварков q \bar{q}

$$\Gamma_{\mathbf{q}} \equiv \Gamma(\mathbf{Z} \to \mathbf{q}\bar{\mathbf{q}}) = 12 \,\Gamma_0 \left[g_{\mathbf{A}\mathbf{q}}^2 R_{\mathbf{A}\mathbf{q}} + g_{\mathbf{V}\mathbf{q}}^2 R_{\mathbf{V}\mathbf{q}} \right]. \tag{35}$$

Здесь дополнительный по сравнению с лептонами множитель 3 учитывает три цвета каждого из кварков. "Радиаторы" в первом приближении одинаковы для векторного и аксиально-векторного взаимодействий:

$$R_{\rm Vq} = R_{\rm Aq} = 1 + \frac{\ddot{\alpha}_{\rm s}}{\pi} , \qquad (36)$$

где $\hat{\alpha}_{s}$ — константа взаимодействия глюонов с кварками при $q^2 = m_Z^2$. Существуют различные конвенции при выборе $\hat{\alpha}_{s}$. При расчете распадов Z-бозона общепринято определять $\hat{\alpha}_{s}$ в так называемой модифицированной схеме минимального вычитания $\overline{\text{MS}}$ (см. конец приложения I). Численное значение $\hat{\alpha}_{s}$, определенное из распадов Z-бозона, порядка 0,12. Более подробно о величине $\hat{\alpha}_{s}$ и более точных выражениях для радиаторов см. приложение VI. Здесь заметим лишь, что расчету радиаторов посвящена обширная литература и они вычислены по теории возмущений вплоть до членов ($\hat{\alpha}_{s}/\pi$)³ включительно [45–49]. Полная адронная ширина с точностью до очень малых поправок представляет собой сумму ширин пяти кварковых каналов:

$$\Gamma_{\rm h} = \Gamma_{\rm u} + \Gamma_{\rm d} + \Gamma_{\rm s} + \Gamma_{\rm c} + \Gamma_{\rm b} \ . \tag{37}$$

Полная ширина Z-бозона дается очевидным соотношением:

$$\Gamma_{\rm Z} = \Gamma_{\rm h} + \Gamma_{\rm e} + \Gamma_{\mu} + \Gamma_{\tau} + 3\Gamma_{\nu} . \qquad (38)$$

Сечение аннигиляции е⁺е⁻ в адроны в Z-пике в соответствии с формулой Брейта–Вигнера равно

$$\sigma_{\rm h} = \frac{12\pi}{M_Z^2} \frac{\Gamma_{\rm e} \Gamma_{\rm h}}{\Gamma_Z^2} \ . \tag{39}$$

Наконец, широко используются следующие обозначения для отношения парциальных ширин:

$$R_{\rm b} = \frac{\Gamma_{\rm b}}{\Gamma_{\rm h}}, \qquad R_{\rm c} = \frac{\Gamma_{\rm c}}{\Gamma_{\rm h}}, \qquad R_{\rm l} = \frac{\Gamma_{\rm h}}{\Gamma_{\rm l}}.$$
 (40)

(Обратите внимание на то, что в R_l в отличие от R_b и R_c значение Γ_h стоит в числителе.)

3.4. Асимметрии

Наряду с полной и парциальными ширинами распадов Zбозона на опыте измеряются также эффекты, обусловленные несохранением четности, т.е. интерференцией векторного и аксиально-векторного тока. Для пар легких кварков (u, d, s, c) и лептонов определим величину

$$A_{\rm f} = \frac{2g_{\rm Af}g_{\rm Vf}}{g_{\rm Af}^2 + g_{\rm Vf}^2} \,. \tag{41}$$

Для пары bb (см. приложение VII)

$$A_{\rm b} = \frac{2g_{\rm Ab}g_{\rm Vb}}{v^2 g_{\rm Ab}^2 + (3 - v^2) g_{\rm Vb}^2/2} \ v , \qquad (42)$$

где v — скорость b-кварка (в единицах c):

$$v = \sqrt{1 - \frac{4\hat{m}_{\rm b}^2}{m_{\rm Z}^2}}.\tag{43}$$

Здесь \hat{m}_b — значение "бегущей массы" b-кварка при импульсе m_Z , вычисленное в схеме $\overline{\text{MS}}$ [50]. Зарядовая асимметрия вперед-назад (по отношению к сталкивающимся пучкам) при распаде на ff равна (см. приложение VII)

$$A_{\rm FB}^{\rm f} \equiv \frac{N_{\rm F} - N_{\rm B}}{N_{\rm F} + N_{\rm B}} = \frac{3}{4} A_{\rm e} A_{\rm f} , \qquad (44)$$

где $A_{\rm e}$ относится к рождению Z-бозона при e⁺e⁻-аннигиляции, а $A_{\rm f}$ — к его распаду на ff. По определению "вперед" означает, что импульсы f и е направлены в одну и ту же сторону.

Продольная поляризация $\tau\text{-}лептона$ в распаде $Z\to\tau\bar{\tau}$ равна

$$P_{\tau} = -A_{\tau} . \tag{45}$$

Если же измерять поляризацию как функцию угла θ между импульсом τ^- и направлением пучка электронов, то это позволяет определить не только A_{τ} , но и A_{e} :

$$P_{\tau}(\cos\theta) = -\frac{A_{\tau}(1+\cos^2\theta)+2A_{\rm e}\cos\theta}{1+\cos^2\theta+2A_{\tau}A_{\rm e}\cos\theta} . \tag{46}$$

Поляризация P_{τ} получается из $P_{\tau}(\cos \theta)$ интегрированием числителя и знаменателя в (46) по полному телесному углу.

Относительная разность полных сечений в Z-пике для лево- и правополяризованных электронов, сталкивающихся с неполяризованными позитронами (эта величина измеряется на коллайдере SLC), равна

$$A_{\rm LR} \equiv \frac{\sigma_{\rm L} - \sigma_{\rm R}}{\sigma_{\rm L} + \sigma_{\rm R}} = A_{\rm e} \ . \tag{47}$$

Измерение перечисленных выше асимметрий позволяет определить на опыте величины g_{Vf}/g_{Af} , поскольку эти асимметрии обусловлены интерференцией векторных и аксиально-векторных токов. В свою очередь измерения ширин $\Gamma_f, \Gamma_h, \Gamma_Z$ позволяют в основном определить на опыте g_{Af} , поскольку для кварков $|g_{Vq}|^2 < |g_{Aq}|^2$, а для лептонов $|g_{Vl}|^2 \ll |g_{Al}|^2$. Что касается Γ_q и Γ_h , то их знание позволяет также найти значение $\hat{\alpha}_s$.

3.5. Борновское приближение для безадронных наблюдаемых

Прежде чем обсуждать петлевые электрослабые поправки, рассмотрим выражения для m_W/m_Z , g_{Af} и g_{Vf}/g_{Af} в так называемом $\bar{\alpha}$ -борновском приближении. Используя введенный выше угол θ , его синус *s* и косинус *c*, мы автоматически учитываем чисто электромагнитную поправку, обусловленную бегом α . Легко видеть, что в $\bar{\alpha}$ -борновском приближении

$$\left(\frac{m_{\rm W}}{m_{\rm Z}}\right)^{\rm B} = c \,, \tag{48}$$

$$g_{\rm Af}^{\rm B} = T_{\rm 3f},\tag{49}$$

$$\left(\frac{g_{\rm Vf}}{g_{\rm Af}}\right)^{\rm B} = 1 - 4|Q_{\rm f}|s^2.$$
(50)

Интересно сравнить борновские значения с их экспериментальными значениями. Таблица 1 содержит такое сравнение для так называемых "безадронных" наблю-

	Т	a	б	ш	Ц	a	1
--	---	---	---	---	---	---	---

Наблюдаемая	Эксперимент	α-борн-приближение
$m_{\rm W}/m_{\rm Z}$	0,8802(18)	0,8769(1)
$m_{\rm W}, \Gamma$ эВ	80,26(16)	79,96(2)
s_{W}^{2}	0,2253(31)	0,2311(2)
gAl	-0,5011(4)	-0,5000(0)
Γ_1 , МэВ	83,93(14)	83,57(2)
$g_{\rm Vl}/g_{\rm Al}$	0,0756(14)	0,0756(9)
s_1^2	0,2311(4)	0,2311(2)

даемых (здесь и ниже экспериментальные результаты взяты из [44]).

Для удобства читателя в таблице приведены различные представления одних и тех же наблюдаемых, используемые в литературе. Так, согласно широко используемым определениям,

$$s_{\rm W}^2 = 1 - \frac{m_{\rm W}^2}{m_{\rm Z}^2} , \qquad (51)$$

$$s_{\rm I}^2 \equiv s_{\rm eff}^2 \equiv \sin^2 \theta_{\rm eff}^{\rm lept} \equiv \frac{1}{4} \left(1 - \frac{g_{\rm VI}}{g_{\rm AI}} \right). \tag{52}$$

Экспериментальное значение s_1^2 в таблице представляет собой среднее двух чисел 0,2316(5) (LEP) и 0,2305(5) (SLC). Предполагается, что имеет место лептонная универсальность и данные по лептонным распадам относятся к усредненным по различным наблюдаемым значениям.

Из таблицы 1 следует, что α-борновское приближение хорошо описывает экспериментальные данные. (Не худшее согласие имеет место и для адронных распадов Zбозонов.) Особенно (и неожиданно!) хорошее согласие и, следовательно, малость электрослабых радиационных поправок имеет место для g_{Vl}/g_{Al} . Впервые аномальная малость истинно электрослабых поправок была отмечена в 1992 г. [42], когда впервые было применено αборновское приближение. (До этого она маскировалась большим вкладом от чисто электромагнитного бега α, который не отделялся от истинно электрослабых поправок.) Данные LEP1 в 1992 г. были недостаточно точны, чтобы вообще увидеть их. Даже данные, представленные на конференции в Марселе летом 1993 г., как отмечалось в ряде докладов [51], были все еще недостаточно точны для регистрации радиационных поправок. На конференции в Глазго летом 1994 г. поправки были видны на уровне 2,3 σ для g_{Al} , 1,5 σ для m_W и 1 σ для g_{Vl}/g_{Al} [52]. Заметим, что разность между современными экспериментальными значениями $s_W^2 = 0,2253(31)$ и $s_1^2 =$ = 0,2311(4) есть проявление электрослабых радиационных поправок, которое не зависит ни от выбора борновского приближения, ни от выбора схем расчета и составляет 2σ.

4. Однопетлевые поправки к безадронным наблюдаемым

То, что на опыте электрослабые поправки малы, наводит на мысль, что для их описания будет достаточно отнопетлевого приближения [42]. Эта мысль подтверждается тщательной оценкой [18] теоретических неточностей, вносимых высшими порядками теории возмущений по электрослабому взаимодействию. По существу, есть только одна диаграмма, которую следует принять во внимание. Она была вычислена в работах [53], и мы обсудим ее вклад ниже (см. формулу (79)) и учтем его.

4.1. Четыре типа фейнмановских диаграмм

В электрослабые поправки для интересующих нас наблюдаемых $m_W/m_Z, g_{AI}, g_{VI}/g_{AI}$ дают вклад четыре типа фейнмановских диаграмм:

1. Собственно-энергетические петли для W- и Zбозонов с виртуальными v, l, q, H, W и Z в петлях. Примеры некоторых из этих диаграмм приведены на рис. 56–0. 2. Петли заряженных частиц, приводящие к переходам $Z \leftrightarrow \gamma$ (рис. 5п–о).

3. Вершинные треугольники с виртуальными лептонами и W- или Z- бозоном (рис. 6а–в).

4. Электрослабые поправки к волновым функциям лептонов (рис. 6г, д).

Рис. 6. Вершинные треугольные диаграммы в распаде $Z \rightarrow l\bar{l}$ (a - в). Петли, перенормирующие волновую функцию лептона в распаде $Z \rightarrow l\bar{l}$ (аналогичные петли имеются, разумеется, и у антилептона) (г, д). Типы диаграмм, перенормирующие волновую функцию Z-бозона в распаде $Z \rightarrow l\bar{l}$ (е, ж). Виртуальные частицы в петлях те же, что и на рис. 5.

Следует подчеркнуть, что петли, представленные на рис. 53–о, дают вклад не только в массу m_Z и, следовательно, в отношение m_W/m_Z , но и в распад Z-бозона на пары II, в который дают вклад также переходы Z $\leftrightarrow \gamma$ (рис. 5п–т). Это происходит из-за диаграмм, показанных на рис. 6е–ж, дающих поправки к волновой функции Zбозона.

Очевидно, что электрослабые поправки к $m_W/m_Z, g_{Al}$ и g_{Vl}/g_{Al} безразмерны, поэтому они должны выразиться через $\bar{\alpha}, c, s$ и безразмерные параметры

$$t = \left(\frac{m_{\rm t}}{m_{\rm Z}}\right)^2, \quad h = \left(\frac{m_{\rm H}}{m_{\rm Z}}\right)^2,$$

где m_t — масса t-кварка, а m_H — масса хиггса. (Массами лептонов и всех кварков, кроме t, мы пренебрегаем.)

4.2. Асимптотический предел при $m_t^2 \gg m_Z^2$

Вычисление поправок удобно разбить на ряд этапов и начать с вычисления асимптотического предела при $t \ge 1$.

Согласно тому, что отмечалось выше (см. (22)), основной вклад при этом дают диаграммы, содержащие t- и b-кварки (рис. 5в, и, к). Простой расчет (см. приложение VIII) дает для суммы борновского и петлевого слагаемых

$$\frac{m_{\rm W}}{m_{\rm Z}} = c + \frac{3c}{32\pi s^2(c^2 - s^2)} \,\bar{\alpha}t \,, \tag{53}$$

$$g_{\rm AI} = -\frac{1}{2} - \frac{3}{64\pi s^2 c^2} \ \bar{\alpha}t \ , \tag{54}$$

$$R \equiv \frac{g_{\rm VI}}{g_{\rm AI}} = 1 - 4s^2 - \frac{3}{4\pi(c^2 - s^2)} \ \bar{\alpha}t \ , \tag{55}$$

$$g_{\nu} = \frac{1}{2} + \frac{3}{64\pi s^2 c^2} \ \bar{\alpha}t \ . \tag{56}$$

4.3. Функции $V_m(t, h)$, $V_A(t, h)$ и $V_R(t, h)$

Если теперь от асимптотического случая $t \ge 1$ перейти к случаю $t \sim 1$, то, во-первых, изменение вклада диаграмм (рис. 5в, и, к) можно представить в виде

$$t \to t + T_i(t) , \qquad (57)$$

где i = m, A, R и v для m_W/m_Z , g_{Al} , $R \equiv g_{Vl}/g_{Al}$ и g_v соответственно. Функции T_i представляют собой сравнительно несложные комбинации алгебраических и логарифмических функций. В явном виде они приведены в приложении IX. Их численные значения для различных m_t приведены в табл. 2. Итак, функции $T_i(t)$ описывают вклад в величины m_W/m_Z , g_A , $R = g_{Vl}/g_{Al}$ и g_v кваркового дублета t, b. Если же учесть теперь вклады остальных виртуальных частиц, то суммарный результат можно представить в виде

$$t \to V_i(t,h) = t + T_i(t) + H_i(h) + C_i + \delta V_i(t,h)$$
. (58)

Здесь $H_i(h)$ содержит вклад виртуальных векторных и хиггсовых бозонов W, Z и H и является функцией массы хиггса $m_{\rm H}$ (массы W- и Z-бозонов входят в H_i через параметры c, s, определенные уравнением (26)). Явный вид функций H_i приведен в приложении IX, а их численные значения для различных $m_{\rm H}$ даны в табл. 3.

Таблица	2
---------	---

$m_{\rm t}, \Gamma$ эВ	t	T_m	T_{A}	T_R
0	0	-0,188	0,875	0,444
10	0,012	0,192	0,934	0,038
20	0,048	-0,256	0,955	-0,015
30	0,108	-0,430	0,812	-0,305
40	0,192	-0,753	0,403	-0,959
50	0,301	-0,985	0,111	-0,748
60	0,433	-0,931	0,327	-0,412
70	0,589	-0,688	0,390	-0,250
80	0,770	-0,317	0,421	-0,143
90	0,974	-0,080	0,440	-0,061
100	1,203	0,084	0,451	0,006
110	1,455	0,214	0,460	0,062
120	1,732	0,323	0,465	0,111
130	2,032	0,418	0,470	0,154
140	2,357	0,503	0,473	0,193
150	2,706	0,579	0,476	0,228
160	3,079	0,649	0,478	0,261
170	3,476	0,713	0,480	0,291
180	3,896	0,772	0,481	0,319
190	4,341	0,828	0,483	0,345
200	4,810	0,880	0,484	0,370
210	5,303	0,929	0,485	0,393
220	5,821	0,975	0,485	0,415
230	6,362	1,019	0,486	0,436
240	6,927	1,061	0,487	0,456
250	7,516	1,101	0,487	0,475
260	8,130	1,139	0,487	0,493
270	8,767	1,176	0,488	0,510
280	9,428	1,211	0,488	0,527
290	10,114	1,245	0,489	0,543
300	10,823	1,277	0,489	0,559

Таблица З

<i>т</i> _Н , ГэВ	h	H_m	$H_{\rm A}$	H_R
0,01	0,000	1,120	-8,716	1,359
0,10	0,000	1,119	-5,654	1,354
1,00	0,000	1,103	-2,652	1,315
10,00	0,012	0,980	-0,133	1,016
50,00	0,301	0,661	0,645	0,360
100,00	1,203	0,433	0,653	-0,022
150,00	2,706	0,275	0,588	-0,258
200,00	4,810	0,151	0,518	-0,430
250,00	7,516	0,050	0,452	-0,566
300,00	10,823	-0,037	0,392	-0,679
350,00	14,732	-0,112	0,338	-0,776
400,00	19,241	-0,178	0,289	-0,860
450,00	24,352	-0,238	0,244	-0,936
500,00	30,065	-0,292	0,202	-1,004
550,00	36,378	-0,341	0,164	-1,065
600,00	43,293	-0,387	0,128	-1,122
650,00	50,809	-0,429	0,095	-1,175
700,00	58,927	-0,469	0,064	-1,223
750,00	67,646	-0,506	0,035	-1,269
800,00	76,966	-0,540	0,007	-1,311
850,00	86,887	-0,573	-0,019	-1,352
900,00	97,410	-0,604	-0,044	-1,390
950,00	108,534	-0,633	-0,067	-1,426
1000,00	120,259	-0,661	-0,090	-1,460

Константы C_i в (58) включают вклады легких фермионов в собственные энергии W- и Z-бозонов, а также в диаграммы рис. 3, описывающие распад мюона, и рис. 6а–в, описывающие распад Z-бозона. Константы C_i представляют собой довольно сложные функции s^2 (см. приложение XII). Мы даем их численные значения для $s^2 = 0,23110 - \delta s^2$:

$$C_m = -1,3497 + 4,13\,\delta s^2,\tag{59}$$

$$C_{\rm A} = -2,2621 - 2,63\,\delta s^2,\tag{60}$$

$$C_R = -3,5045 - 5,72\,\delta s^2,\tag{61}$$

$$C_{\rm v} = -1,1641 - 4,88\,\delta s^2.\tag{62}$$

4.4. Поправки $\delta V_i(t, h)$

Наконец, последнее слагаемое в уравнении (58) содержит сумму поправок пяти различных типов. Их объединяет то, что они очень малы (за исключением $\delta_2^t V_i$) и отвечают двум петлям (за исключением однопетлевой $\delta_1 V_i$ и трехпетлевой $\delta_3 V_i$).

1. Поправка $\delta_1 V_i$ содержит вклады W-бозона и tкварка в поляризацию электромагнитного вакуума $\delta_W \alpha \equiv \Delta r_{em}^W$ и $\delta_t \alpha \equiv \Delta r_{em}^t$ (рис. 7а–в и уравнение (16)), которые по традиции не включаются в бег $\alpha(q^2)$, т.е. в величину $\bar{\alpha}$. Их разумнее рассматривать как электрослабые поправки. В особенности это относится к W-петле, которая зависит от калибровки, выбранной для описания W- и Z-бозонов. Только с учетом этой петли суммарные электрослабые поправки становятся калибровочно-инвариантными, как и должно быть для физических наблюдаемых. Здесь и в дальнейшем при вычислениях используется калибровка тХофта–Фейнмана (см. приложение I):

$$\delta_1 V_m(t,h) = -\frac{16}{3} \pi s^4 \frac{1}{\alpha} (\delta_W \alpha + \delta_t \alpha) = -0,055,$$
(63)

Рис. 7. Виртуальные t-кварки (а) и W-бозоны (б, в) в фотонной поляризации вакуума.

$$\delta_1 V_R(t,h) = -\frac{16}{3} \pi s^2 c^2 \frac{1}{\alpha} (\delta_W \alpha + \delta_t \alpha) = -0,181, \quad (64)$$

$$\delta_1 V_{\mathcal{A}}(t,h) = \delta_1 V_{\mathcal{V}}(t,h) = 0, \tag{65}$$

где (см. приложение II)

$$\frac{\delta_{\rm W}\alpha}{\alpha} = \frac{1}{2\pi} \left[(3+4c^2) \times \left(1 - \sqrt{4c^2 - 1} \ \arcsin \frac{1}{2c}\right) - \frac{1}{3} \right] = 0,0686, \quad (66)$$

$$\frac{\delta_{t}\alpha}{\alpha} = -\frac{4}{9\pi} \left[(1+2t) F_{t}(t) - \frac{1}{3} \right] \simeq$$
$$\simeq -\frac{4}{45\pi} \frac{1}{t} + \dots \simeq -0,00768 .$$
(67)

(Здесь и в дальнейшем мы, если не оговорено особо, используем для численных оценок $m_t = 175 \ \Gamma \Im B$.)

2. Поправки $\delta_2 V_i$ возникают из-за учета виртуальных глюонов в электрослабых петлях в порядке $\bar{\alpha}\hat{\alpha}_s$ (рис. 8а– в); аналогичные диаграммы есть, конечно, и у Wбозонов. Кроме петель с легкими кварками q = u, d, s, с есть аналогичные петли с кварками третьего поколения t, b:

$$\delta_2 V_i(t) = \delta_2^{\mathbf{q}} V_i + \delta_2^{\mathbf{t}} V_i(t) \,.$$

Аналитические выражения для поправок $\delta_2^q V_i$ и $\delta_2^t V_i(t)$ приведены в приложении XV. Здесь мы дадим лишь их численные оценки:

$$\delta_2^q V_m = -0,377 \,\frac{\hat{\alpha}_s}{\pi} \,, \tag{68}$$

$$\delta_2^q V_A = 1,750 \ \frac{\alpha_s}{\pi} \ , \tag{69}$$

$$\delta_2^q V_R = 0, \qquad (70)$$

$$\delta_2^t V_m(t) = -11,67 \frac{\omega_s(m_t)}{\pi} = -10,61 \frac{\omega_s}{\pi}, \qquad (71)$$

$$\delta_2^t V_{\mathbf{A}}(t) = -10, 10 \, \frac{\alpha_s(m_t)}{\pi} = -9, 18 \, \frac{\alpha_s}{\pi} \,, \tag{72}$$

$$\delta_2^t V_R(t) = -11,88 \, \frac{\alpha_s(m_t)}{\pi} = -10,80 \, \frac{\alpha_s}{\pi} \,, \tag{73}$$

поскольку [16]

$$\hat{\alpha}_{\rm s}(m_{\rm t}) = \frac{\hat{\alpha}_{\rm s}}{1 + (23/12\pi)\,\hat{\alpha}_{\rm s}\ln t}\,. \tag{74}$$

(Для численных оценок мы используем $\hat{\alpha}_s \equiv \hat{\alpha}_s(m_Z) = 0, 125.)$ Мы уже писали о том, что поправки $\delta_2^t V_i(t)$, численные значения которых приве-

Рис. 8. Глюонные поправки к электрослабой кварковой петле собственной энергии Z-бозона (а – в). Хиггсовы поправки к электрослабой t-кварковой петле Z-бозона (г – е). Двухпетлевые хиггсовы поправки (ж – к).

дены в (71)–(73), значительно больше всех других слагаемых, входящих в δV_i . Подчеркнем, что лидирующий при больших *t* член в $\delta_2^t V_i$ универсален — не зависит от *i*. Как показано в работах [54], этот лидирующий член получается умножением асимптотики Вельтмана *t* на

$$1 - \frac{2\pi^2 + 6}{9} \frac{\hat{\alpha}_{\rm s}(m_{\rm t})}{\pi} , \qquad (75)$$

или численно,

$$t \to t \left[1 - 2,86 \, \frac{\hat{\alpha}_{\rm s}(m_{\rm t})}{\pi} \right] \,. \tag{76}$$

Качественно множитель (75) соответствует тому, что бегущая масса t-кварка при импульсах $p^2 \sim m_t^2$, циркулирующих по t-кварковой петле, меньше, чем на массовой поверхности t-кварка. Интересно сравнить поправку (76) с величиной

$$\tilde{m}_{\rm t}^2 \equiv m_{\rm t}^2(p_{\rm t}^2 = -m_{\rm t}^2) = m_{\rm t}^2 \left[1 - 2,78 \, \frac{\hat{\alpha}_{\rm s}(m_{\rm t})}{\pi} \right] \,, \tag{77}$$

вычисленной в калибровке Ландау ([55], с. 102). Согласие поразительное. Так что для оценки главной глюонной поправки к t-петле имеется простое мнемоническое правило.

3. Поправки $\delta_3 V_i$ порядка $\bar{\alpha} \hat{\alpha}_s^2$ были вычислены в [56] для лидирующего по *t* члена (т.е. $\bar{\alpha} \hat{\alpha}_s^2 t$). Они не зависят от *i*:

$$\delta_3 V_i(t) \simeq -(2, 38 - 0, 18N_f) \hat{\alpha}_s^2(m_t) t \simeq \simeq -1, 48 \hat{\alpha}_s^2(m_t) t = -0, 07$$
(78)

для числа легких ароматов кварков $N_{\rm f} = 5$.

Если поправки $\delta_1 V_i$, $\delta_2 V_i$, $\delta_3 V_i$ не зависели от $m_{\rm H}$, то поправки $\delta_4 V_i$ зависят как от $m_{\rm t}$, так и от $m_{\rm H}$, а поправки $\delta_5 V_i$ пропорциональны $m_{\rm H}^2$. В отличие от всех предыдущих они возникают от учета электрослабого взаимодействия не в одной, а в двух петлях.

4. Поправка $\delta_4 V_i(t,h)$, возникающая от диаграмм рис. 8г–е, в лидирующем по *t* приближении не зависит от *i* и имеет вид

$$\delta_4 V_i(t,h) = -\frac{\bar{\alpha}}{16\pi s^2 c^2} A\left(\frac{h}{t}\right) t^2 , \qquad (79)$$

где функция A(h/t), вычисленная в работах [53], дается в табл. 4 для $m_{\rm H}/m_{\rm t} <$ 4. Для $m_{\rm t} = 175$ ГэВ и $m_{\rm H} = 300$ ГэВ

$$\delta_4 V_i = -0, 11 . (80)$$

Таблица 4

$m_{\rm H}/m_{\rm t}$	$A\left(m_{\rm H}/m_{\rm t}\right)$	$\tau^{(2)}(m_{\rm H}/m_{\rm t})^*$	$m_{\rm H}/m_{\rm t}$	$A\left(m_{\rm H}/m_{\rm t}\right)$	$\tau^{(2)}(m_{\rm H}/m_{\rm t})^*$
0,00	0,739	5,710	2,10	9,655	1,373
0,10	1,821	4,671	2,20	9,815	1,421
0,20	2,704	3,901	2,30	9,964	1,475
0,30	3,462	3,304	2,40	10,104	1,533
0,40	4,127	2,834	2,50	10,235	1,595
0,50	4,720	2,461	2,60	10,358	1,661
0,60	5,254	2,163	2,70	10,473	1,730
0,70	5,737	1,924	2,80	10,581	1,801
0,80	6,179	1,735	2,90	10,683	1,875
0,90	6,583	1,586	3,00	10,777	1,951
1,00	6,956	1,470	3,10	10,866	2,029
1,10	7,299	1,382	3,20	10,949	2,109
1,20	7,617	1,317	3.30	11,026	2,190
1,30	7,912	1,272	3,40	11,098	2,272
1,40	8,186	1,245	3,50	11,165	2,356
1,50	8,441	1,232	3,60	11,228	2,441
1,60	8,679	1,232	3,70	11,286	2,526
1,70	8,902	1,243	3,80	11,340	2,613
1,80	9,109	1,264	3,90	11,390	2,700
1,90	9,303	1,293	4,00	11,436	2,788
2,00	9,485	1,330			
* См. приложение XV.					

Для $m_{\rm H}/m_{\rm t} > 4$ имеет место следующее разложение:

$$A\left(\frac{h}{t}\right) = -\frac{49}{4} - \pi^2 - \frac{27}{2} \ln r - \frac{3}{2} \ln^2 r - \frac{1}{3}r \times \times (2 - 12\pi^2 + 12\ln r - 27\ln^2 r) - -\frac{r^2}{48} (1613 - 240\pi^2 - 1500\ln r - 720\ln^2 r) , \quad (81)$$

где r = t/h. Итак, $\delta_4 V_i(t,h)$ — самая большая двухпетлевая по электрослабому взаимодействию поправка, однако и она в несколько раз меньше, чем основные глюонные поправки $\delta_2^t V_i$.

5. Поправки $\delta_5 V_i$ обусловлены двухпетлевыми диаграммами типа рис. 8ж-к. Они пренебрежимо малы, но для полноты изложения также приведены в приложении XVI.

4.5. Случайная (?) компенсация и масса t-кварка

Теперь, когда все слагаемые в формуле (58) выписаны, уместно проанализировать их роль и общее поведение функций $V_i(t,h)$. Как функции m_t при трех фиксированных значениях m_H они изображены на рис. 9а, 10а, 11а. На

Рис. 9. V_m как функция m_t для значений $m_{\rm H} = 60$, 300 и 1000 ГэВ согласно (58). Пунктирная парабола $t = (m_t/m_Z)^2$ соответствует приближению Вельтмана. Сплошная горизонтальная линия отвечает экспериментальному значению $V_m^{\rm exp}$, а штриховые горизонтальные линии дают его верхний и нижний пределы на уровне 1 σ (а). V_m как функция $m_{\rm H}$ для значений $m_t = 140$, 180 и 220 ГэВ согласно (58). Горизонтальные линии имеют тот же смысл (б).

500 600

700 800

900 1000 *т*_H, Гэ**B**

100 200 300 400

всех этих рисунках имеется излом (так называемый касп) при $m_t = m_Z/2$. Это обычная пороговая особенность, возникающая при открытии канала $Z \rightarrow t\bar{t}$. Практического интереса она не представляет, поскольку на опыте $m_t \ge m_Z/2$. Другое, что бросается в глаза, это то, что функции V_i близки к нулю в интервале $m_t \sim 100-200$ ГэВ. Это происходит в результате компенсации лидирующего слагаемого t и остальных слагаемых, в сумме дающих отрицательный вклад. Особенно ярко это проявляется в функции V_R при $m_t \sim 180$ ГэВ. Здесь основной отрицательный вклад дают легкие фермионы (константа C_R).

Если пренебречь малой поправкой $\delta_4 V_i(t,h)$, зависящей одновременно и от t, и от h, то функции $V_i(t,h)$ представляют собой сумму функций, одна из которых зависит от t и не зависит от h, а вторая зависит от h и не зависит от t (плюс, разумеется, константа, не зависящая ни от t, ни от h). Поэтому

Рис. 10. $V_{\rm A}$ как функция $m_{\rm t}$ (а) и $m_{\rm H}$ (б); остальные пояснения аналогичны пояснениям к рис. 9.

кривые, отвечающие $m_{\rm H} = 60$ и 1000 ГэВ, на рис. 9а, 10а, 11а получаются (в основном) параллельным переносом кривой для $m_{\rm H} = 300$ ГэВ.

Из рис. 9а, 10а, 11а видно, что если бы t-кварк был легким, радиационные поправки были бы отрицательны, а если очень тяжелым, они были бы гораздо больше. Имеет место как бы конспирация между наблюдаемой величиной массы t-кварка и всеми остальными параметрами электрослабой теории, приводящая к тому, что электрослабая поправка V_R становится аномально мала. Заметим, что одновременного обращения в нуль поправок не происходит, так как, если фиксировать величину $m_{\rm H}$, то $V_m(t)$, $V_A(t)$ и $V_R(t)$ пересекают горизонтальные линии $V_i = 0$ при различных значениях m_t . Имеет место приближенное зануление, отвечающее как бы какой-то нарушенной симметрии. Природа этой симметрии нам не ясна, и само ее существование весьма проблематично.

Рис. 11. V_R как функция m_t (а) и m_H (б); остальные пояснения аналогичны пояснениям к рис. 9.

Следует обратить внимание на пунктирную параболу на рис. 9a, 10a, 11a, отвечающую вельтмановскому члену t. Видно, что в интервале $0 < m_t < 250$ ГэВ она расположена гораздо выше V_A и V_R и приближается к V_m лишь в правой части рис. 9a. Таким образом, так называемые нелидирующие "малые" поправки, которые в стандартных текстах обычно заменяют многоточием, оказываются сравнимы с лидирующим членом t.

Глядя на рис. 9а, 10а, 11а, легко понять, как, несмотря на малость электрослабых поправок, их экспериментальное изучение позволяет предсказать в рамках минимальной стандартной модели массу t-кварка. Даже в то время, когда точность экспериментов на LEP1 и SLC была недостаточна, чтобы увидеть электрослабые поправки, она была достаточна, чтобы установить массу t-кварка по точкам, в которых кривые $V_i(m_t)$ пересекают горизонтальные линии, отвечающие экспериментальным значениям V_i и параллельные им штриховые линии, указывающие коридор в одно стандартное отклонение. Точность в определении m_t определяется шириной коридора и крутизной линий $V_i(m_t)$.

Аналогичным образом можно построить зависимость $V_i(m_{\rm H})$ для трех фиксированных значений *m*_t = 140, 180 и 220 ГэВ (рис. 96, 106, 116). Из явного вида слагаемых $H_i(m_{\rm H})$ следует, что зависимость $V_i(m_{\rm H})$ гораздо более пологая (логарифмическая). Именно поэтому предсказание массы хиггса, извлеченное из электрослабых поправок, обладает столь большой неопределенностью. Как мы увидим (см. рис. 13-15), точность предсказания m_H будет сильно зависеть от масса окажется того, какой t-кварка. Если $m_{\rm t} = 150 \pm 5$ ГэВ, то $m_{\rm H} < 200$ ГэВ на уровне З σ . Если $m_{\rm t} = 200 \pm 5$ ГэВ, то $m_{\rm H} > 120$ ГэВ на уровне 3 σ . Если же $m_{\rm t} = 175 \pm 5 \ \Gamma$ эВ, то нам крупно не повезет: ограничения для *т*_Н практически не возникнет.

Прежде чем переходить к рассмотрению адронных распадов Z-бозона, вернемся "к истокам" и покажем, как были получены формулы для $V_i(m_t, m_H)$.

4.6. Как вычислить Vi? Пять шагов

Вдумчивый читатель уже давно должен был задать вопрос: каким образом в однопетлевом приближении амплитуды лептонных распадов Z-бозона оказываются зависящими от собственной энергии W-бозона? Ведь в диаграммах распада Z-бозона петли, описывающие собственную энергию W-бозона, не входят: они появляются лишь начиная с двухпетлевого приближения. Ответ на этот вопрос в следующем. Как уже подчеркивалось выше, мы выражаем радиационные поправки к распадам Z через $\bar{\alpha}$, m_Z и G_{μ} . Но выражение для G_{μ} содержит собственную энергию W-бозона уже в однопетлевом приближении. Итак, все дело в том, что мы выражаем одни наблюдаемые (в данном случае m_W/m_Z , g_A , g_V/g_A) через другие, более точно измеренные наблюдаемые ($\bar{\alpha}$, m_Z , G_{μ}).

Проследим шаг за шагом, как это делается. Всего будет "пять шагов к счастью", основанных на однопетлевом приближении.

Шаг I. Начнем с электрослабого лагранжиана после того, как в нем произошло спонтанное нарушение $SU(2) \times U(1)$ -симметрии хиггсовым вакуумным конденсатом η и W- и Z-бозоны стали массивными. Рассмотрим голые константы связи (голые заряды фотона e_0 , Wбозона g_0 и Z-бозона f_0) и голые массы векторных бозонов

$$m_{\rm Z0} = \frac{1}{2} f_0 \eta \;, \tag{82}$$

$$m_{\rm W0} = \frac{1}{2} g_0 \eta \,, \tag{83}$$

а также голые массы t-кварка *m*_{t0} и хиггса *m*_{H0}.

Шаг II. Выразим $\bar{\alpha}$, G_{μ} , m_Z через f_0 , g_0 , e_0 , η , m_{t0} , m_{H0} и $1/\varepsilon$ (см. приложение V). Здесь $1/\varepsilon$ появляется из-за того, что мы используем размерную регуляризацию, вычисляя фейнмановские интегралы в пространстве D измерений (см. приложение I). Эти интегралы расходятся при D = 4 и конечны в окрестности D = 4. По определению

$$2\varepsilon = 4 - D \to 0 . \tag{84}$$

Заметим, что в однопетлевом приближении $m_{t0} = m_t$, $m_{H0} = m_H$, поскольку электрослабыми поправками к массам t-кварка и хиггса мы пренебрегаем. Для хиггса это приближение вполне законно, так как его масса извлекается из радиационных поправок с очень низкой точностью. Что касается t-кварка, то при современном

уровне точности измерения электрослабых поправок это тоже справедливо, но могло бы стать слишком грубым приближением, если бы эта точность на LEP и SLC улучшилась на порядок. Здесь ситуация аналогична G_{μ} и собственной энергии W-бозона. Шаг II — это почти физика: вычисление фейнмановских диаграмм. (Слово "почти" подчеркивает, что наблюдаемые выражаются через ненаблюдаемые, "голые", вообще говоря, бесконечные величины.)

Шаг III. Обратим выражения, полученные в шаге II, и выразим f_0, g_0, η через $\bar{\alpha}, G_{\mu}, m_Z, m_t, m_H$ и $1/\epsilon$. Этот шаг — чистая алгебра.

Шаг IV. Выразим V_m , V_A , V_R (или электрослабую однопетлевую поправку к любой другой электрослабой наблюдаемой, которые все рассматриваются на равном основании) через f_0 , g_0 , η , m_t , m_H и $1/\varepsilon$. (Этот шаг подобно шагу II — снова почти физика.)

Шаг V. Выразим V_m , V_A , V_R (или любую другую электрослабую поправку) через $\bar{\alpha}$, G_{μ} , m_Z , m_t , m_H , используя результаты шагов III и IV. Формально — это чистая алгебра. По существу же — чистая физика, так как теперь мы выразили одни физические наблюдаемые через другие физические наблюдаемые. Если по дороге не было сделано ошибок, то члены $1/\varepsilon$ взаимно уничтожаются. В результате мы получаем соотношение (58), выражающее V_i в виде элементарных функций t, h и s.

Описанные выше пять шагов очень просты и наглядны. Мы приходим к нашим основным соотношениям, не используя "тяжелую артиллерию" квантовой теории поля с ее контрчленами в лагранжиане и процедурой перенормировок. Такая простота и наглядность стали возможны благодаря однопетлевому приближению по электрослабому взаимодействию. (В многопетлевых расчетах такой подход к перенормировкам, хотя и возможен, однако становится более громоздким, чем стандартные процедуры.) Что касается КХД-поправок к кварковым электрослабым петлям и двухпетлевому вкладу хиггса, спрятанным в членах δV_i в уравнении (58), то формулы для них мы берем из расчетов других авторов.

5. Адронные распады Z-бозона

5.1. Лидирующие кварки и адроны

Как уже обсуждалось выше (см. формулы (35)-(40) и следующий за ними раздел 3.4), рассмотрение адронных распадов сводится к расчету распадов на пары кварков: $Z \rightarrow q\bar{q}$. При этом ключевую роль играет понятие лидирующих адронов, уносящих основную долю энергии распавшегося Z-бозона. Например, при распаде $Z \rightarrow c\bar{c}$ в основном возникают две струи адронов, летящие в противоположные стороны, в одной из которых лидирующим будет адрон, содержащий с-кварк, например, $D^- = \bar{c}d$, а в другой — адрон, содержащий с-кварк, например, $D^0 = c \bar{u}$ или $\Lambda_c^+ = u dc$. Аналогичным образом по присутствию энергичных В- или В-мезонов идентифицируются распады $Z \rightarrow b\bar{b}$. Если отбирать только частицы с энергиями близкими к m_Z/2, то идентификация исходных кварковых каналов однозначна. Однако полное число таких случаев будет мало. Если же учитывать в качестве сигнала В-мезоны меньших энергий, то возникает проблема их происхождения. Ведь пара bb может быть рождена не только Z-бозоном, но и виртуальным глюоном в распаде, скажем, $Z \rightarrow c\bar{c}$ (рис. 12а) или $Z \rightarrow u\bar{u}$ или ss. Этот пример показывает, с какими трудностями сталкиваются экспериментаторы при идентификации того или иного кварк-антикваркового канала. Кроме того, из-за вторичных пар полная адронная ширина оказывается равной сумме парциальных кварковых ширин хотя и с высокой, но конечной точностью.

Рис. 12. Распад $Z \to c\bar{c}$, сопровождаемый вторичной парой $b\bar{b}$, рожденной виртуальным глюоном g (a). Распад $Z \to q\bar{q}$ с виртуальным глюоном g, который связывает сторону кваркового треугольника с внешней кварковой линией. Диаграммы такого типа пока не вычислены (б). Вершинная электрослабая диаграмма с участием t-кварков, дающая вклад в распад $Z \to b\bar{b}$ (в). Одна из диаграмм, описывающих глюонные поправки к предыдущей диаграмме (г).

Напомним, что для парциальной ширины распада $Z \rightarrow q\bar{q}$ мы имели соотношение (35):

$$\Gamma_{q} \equiv \Gamma(Z \to q\bar{q}) = 12\Gamma_{0} \left[g_{Aq}^{2} R_{Aq} + g_{Vq}^{2} R_{Vq} \right], \qquad (85)$$

где стандартная ширина Γ_0 согласно (31) есть

$$\Gamma_0 = \frac{G_\mu m_Z^3}{24\sqrt{2}\pi} = 82,944(6) \text{ M}\Im\text{B}, \qquad (86)$$

а радиаторы R_{Aq} и R_{Vq} приведены в приложении VI. Что касается электрослабых поправок, то они содержатся в коэффициентах g_{Aq} и g_{Vq} . Сумма борновского и однопетлевого слагаемых имеет вид

$$g_{Aq} = T_{3q} \left[1 + \frac{3\bar{\alpha}}{32\pi s^2 c^2} V_{Aq}(t,h) \right],$$
(87)

$$R_q \equiv \frac{g_{\rm Vq}}{g_{\rm Aq}} = 1 - 4 |Q_q| s^2 + \frac{3|Q_q|}{4\pi(c^2 - s^2)} \bar{\alpha} V_{\rm Rq}(t, h) . \quad (88)$$

5.2. Распады на пары легких кварков

Здесь, как и в случае безадронных наблюдаемых, величины V, характеризующие поправки, нормированы стандартным образом: $V \to t$ при $t \ge 1$. Естественно, что те слагаемые в V, которые обусловлены собственными энергиями векторных бозонов, одинаковы для лептонов и кварков. Отличие от нуля разностей $V_{Aq} - V_A$ и $V_{Rq} - V_R$ связано с различием радиационных поправок к вершинам $Z \to q\bar{q}$ и $Z \to l\bar{l}$. Для четырех легких кварков имеем

$$V_{\rm Au}(t,h) = V_{\rm Ac}(t,h) = V_{\rm A}(t,h) + \frac{128\pi s^3 c^3}{3\bar{\alpha}} \left(F_{\rm Al} + F_{\rm Au}\right),$$
(89)

$$V_{\rm Ad}(t,h) = V_{\rm As}(t,h) = V_{\rm A}(t,h) + \frac{128\pi s^3 c^3}{3\bar{\alpha}} \ (F_{\rm Al} - F_{\rm Ad}),$$
(90)

$$V_{Ru}(t,h) = V_{Rc}(t,h) =$$

$$= V_{R}(t,h) + \frac{16\pi sc(c^{2} - s^{2})}{3\bar{\alpha}} \left\{ F_{Vl} - (1 - 4s^{2}) F_{Al} + \frac{3}{2} \left[-\left(1 - \frac{8}{3}s^{2}\right) F_{Au} + F_{Vu} \right] \right\}, \qquad (91)$$

$$V_{Rd}(t,h) = V_{Rs}(t,h) =$$

$$= V_{R}(t,h) + \frac{16\pi sc(c^{2} - s^{2})}{3\bar{\alpha}} \left\{ F_{Vl} - (1 - 4s^{2}) F_{Al} + 3\left[\left(1 - \frac{4}{3}s^{2}\right) F_{Ad} - F_{Vd} \right] \right\}, \quad (92)$$

где (см. приложение XIII)

$$F_{\rm Al} = \frac{\bar{\alpha}}{4\pi} \ (3,0099 + 16,4\delta s^2), \tag{93}$$

$$F_{\rm Vl} = \frac{\bar{\alpha}}{4\pi} \ (3,1878 + 14,9\delta s^2), \tag{94}$$

$$F_{\rm Au} = -\frac{\bar{\alpha}}{4\pi} \ (2,6802 + 14,7\delta s^2), \tag{95}$$

$$F_{\rm Vu} = -\frac{\bar{\alpha}}{4\pi} \ (2,7329 + 14,2\delta s^2), \tag{96}$$

$$F_{\rm Ad} = \frac{\bar{\alpha}}{4\pi} \ (2,2221+13,5\delta s^2), \tag{97}$$

$$F_{\rm Vd} = \frac{\bar{\alpha}}{4\pi} \ (2,2287 + 13,5\delta s^2). \tag{98}$$

Здесь значения *F* приведены для $s^2 = 0,23110 - \delta s^2$. Точность в пять значащих цифр является чисто арифметической. Физические неопределенности, связанные с пренебрежением высшими петлями, проявляются уже для третьей значащей цифры. Следует отметить, в частности, что до сих пор не вычислены поправки типа той, которая изображена на рис. 126.

5.3. Распады на пару bb

В распаде $Z \rightarrow bb$ необходимо учесть дополнительные вершинные поправки, зависящие от *t*:

$$V_{\rm Ab}(t,h) = V_{\rm Ad}(t,h) - \frac{8s^2c^2}{3(3-2s^2)} \left[\phi(t) + \delta\phi(t)\right], \quad (99)$$

$$V_{Rb}(t,h) = V_{Rd}(t,h) - \frac{4s^2(c^2 - s^2)}{3(3 - 2s^2)} \left[\phi(t) + \delta\phi(t)\right]. (100)$$

Здесь член $\phi(t)$, вычисленный в работах [57], отвечает рис. 12в, а член $\delta\phi(t)$, вычисленный в работах [58, 53] отвечает лидирующим глюонным и хиггсовым поправкам к члену $\phi(t)$ (рис. 12г). Выражения для $\phi(t)$ и $\delta\phi(t)$ приведены в приложении XIV. Для $m_t = 175$ ГэВ, $\hat{\alpha}_s(m_Z) = 0, 125$ и $m_H = 300$ ГэВ

$$\phi(t) = 29,9\,,\tag{101}$$

$$\delta\phi(t) = -3, 0, \qquad (102)$$

и поправочные члены в уравнениях (99) и (100) очень велики: они равны -5,0 и -1,8 соответственно.

6. Сопоставление расчетов с экспериментальными данными LEP1 и SLC

6.1. Компьютерная программа LEPTOP

Для сравнения прецизионных данных LEP1 и SLC был создан ряд компьютерных программ (кодов). Наиболее известной в Европе является программа ZFITTER [59], которая учитывает не только электрослабые радиационные поправки, но и все чисто электромагнитные и, в частности, испускание фотонов сталкивающимися электронами и позитронами. Одна из первых работ, где, исходя из прецизионных измерений, была предсказана масса t-кварка [60], была основана на программе ZFITTER. Несколько отличаются от кода ZFITTER другие европейские коды BHM [61], WOH, TOPAZO [62]. В США наиболее известны результаты программы, используемой Лангакером [35].

Первоначальная идея авторов этого обзора в 1991– 1993 гг. заключалась в получении простых аналитических формул для электрослабых радиационных поправок, которые позволяли бы, не используя компьютерные коды (программы), анализируя экспериментальные данные на листе бумаги, предсказать массу t-кварка. Однако из-за многообразия адронных распадов Z-бозонов, зави-Схема

Выберите три наиболее точно измеренных наблюдаемых: $G_{\mu}, m_{\mathbb{Z}}, \alpha(m_{\mathbb{Z}}) \equiv \bar{\alpha}.$ Определите угол θ ($s \equiv \sin \theta$, $c \equiv \cos \theta$) через $G_{\mu}, m_{\mathbb{Z}}, \bar{\alpha}: G_{\mu} = (\pi/\sqrt{2}) \, \bar{\alpha}/s^2 c^2 m_{\mathbb{Z}}^2$ Введите в рамках МСМ голые константы связи $(\alpha_0, \alpha_{Z0}, \alpha_{W0})$, голые массы $(m_{Z0}, m_{W0}, m_{H0}, m_{t0}, m_{q0})$ и вакуумное среднее хиггсова поля η. Выразите $\alpha_0, \alpha_{Z0}, m_{Z0}$ через $G_{\mu}, m_Z, \bar{\alpha}$ в однопетлевом приближении, используя размерную регуляризацию $(1/\epsilon, \mu)$. Выразите однопетлевые электрослабые поправки ко всем электрослабым наблюдаемым через $\alpha_0, \alpha_{Z0}, m_{Z0}, m_t, m_H$, а следовательно, через G_{μ} , m_Z , $\bar{\alpha}$, m_t , m_H . Проверьте взаимное сокращение членов ($1/\varepsilon$, μ). Введите глюонные поправки в кварковые петли и КЭД- (и КХД-) взаимодействия в конечных состояниях (в адронных распадах), выраженные через $\bar{\alpha}$, $\hat{\alpha}_{s}(m_{Z})$, $m_{b}(m_{Z})$, m_{t} . Сравните предсказания борновского приближения и борновского приближения + одна петля с экспериментальными данными по Z-распадам. Сделайте глобальный фит для трех параметров $m_{\rm t}$, $\hat{\alpha}_{\rm s}(m_{\rm Z})$, $m_{\rm H}$ или для первых двух, фиксируя третий. Теоретически предскажите центральные значения всех электрослабых наблюдаемых и соответствующие неопределенности ("ошибки").

сящих от константы сильного глюонного взаимодействия $\hat{\alpha}_s$, пришлось перевести аналитические формулы в компьютерную программу, которую мы шутливо назвали LEPTOP [63]. Программа LEPTOP производит вычисление электрослабых наблюдаемых в рамках минимальной стандартной модели и фитирование экспериментальных данных для определения из них величин $m_t, m_H \, u \, \hat{\alpha}_s(m_Z)$. Логическая конструкция LEPTOP ясна из предыдущих разделов и представлена на схеме. Компьютерная программа LEPTOP может быть получена по компьютерной сети INTERNET *http://cppm.in2p3.fr./leptop/intro_leptop.html*.

Сравнение кодов ZFITTER, BHM, WOH, TOPAZO и LEPTOP, проведенное в 1994–1995 гг. [18], показало, что их предсказания для всех электрослабых наблюдаемых совпадают между собой с точностью, намного превосходящей точность эксперимента. Ниже приведены результаты обработки экспериментальных данных с помощью программы LEPTOP.

6.2. Общий фит

В таблице 5 приведены экспериментальные значения электрослабых наблюдаемых, полученные усреднением результатов четырех детекторов LEP (часть а), а также данные SLC (часть б) и данные по массе W-бозона (часть в). (Данные по массе W-бозона из экспериментов на рр̄-коллайдере для удобства читателя представлены также в виде s_W^2 , а данные по s_W^2 из vN-экспериментов представлены также в виде s_W^2 , а данные по s_W^2 из числа выделены

Таблица 5

Наблюдаемые	Эксперимен-	Фит стандарт-	Тага
Паозподаемые	тальные	ной модели	1 AI a
	данные		
a) LEP			
Форма Z-пика			
и лептонные асимметрии:			
<i>т</i> _Z , ГэВ	91,1884(22)		
$\Gamma_{Z}, \Gamma_{2}B$	2,4963(32)	$2,4976(26)^{+6}_{-16}$	-0,4
<i>σ</i> _h , нб	41,488(78)	$41,450(20)^{+3}_{-7}$	0,5
R_1	20,788(32)	$20,770(24)^{-5}_{+11}$	0,6
	0,0172(12)	$0.0158(6)^{-2}$	1,2
т-поляризация:	· · · ·	/ ()+3	
A_{τ}	0,1418(75)	$0,1450(26)^{-7}$	-0.4
Ac	0.1390(89)	$0.1450(26)^{+13}_{-7}$	-0.7
Результаты по b-	.,		-) -
и с-кваркам:			
R _b	0,2219(17)	$0.2155(3)^{-7}$	3,8
	0,1543(74)	$0.1724(1)^{+2}$	-2,5
ABB	0.0999(31)	$0.1017(19)^{-6}$	-0.6
$A_{\rm FP}^{\rm c}$	0,0725(58)	$0.0726(14)^{+10}_{+7}$	0,0
Зарядовая асимметрия пар	, , , , , , , , , , , , , , , , , , ,	, , , , +,	
легких кварков ад:			
$s_1^2(\langle O_{\rm FB} \rangle)$	0.2325(13)	$0.2318(3)^{+1}$	0.6
	-, (- ,		- , -
б) SLC			
AIR	0.1551(40)	$0.1450(26)^{-7}$	2.5
$s_1^2(A_{\rm LR})$	0.2305(5)	$0.2318(3)^{+1}$	-2.5
Rb	0.2171(54)	$0.2155(3)^{-7}_{-7}$	0.3
Ab	0.8410(530)	$0.9345(2)^{-3}$	-1.8
Å _c	0,6060(900)	$0,6670(12)^{+4}$	-0.7
, č	,	/ / / /+0	
в) рри vN			
$m_{\rm W}, \Gamma \ni B(p\bar{p})$	80.26(16)	$80,35(5)^{+1}$	-0.5
	0.2253(31)	/	.,.
$1 - m_{\rm W}^2 / m_{\pi}^2$ (vN)	0.2257(47)	$0.2237(9)^{-2}$	0.4
W/Z ()	80.24(24)		~,.

курсивом, чтобы подчеркнуть, что они не являются независимыми экспериментальными данными.)

Таблица 5 суммирует экспериментальные данные, использованные для определения (фитирования) параметров стандартной модели m_t и $\hat{\alpha}_s(m_Z)$. Центральные значения в третьей колонке вычислены для $m_{\rm H} = 300 \, \Gamma$ эВ. В скобках указаны неопределенности в последних значащих цифрах, обусловленные неопределенностями фитированных значений m_t и $\hat{\alpha}_s$. Сверху и снизу указаны сдвиги в последних значащих цифрах, отвечающие $m_{\rm H} = 1000 \ \Gamma$ эВ и $m_{\rm H} = 60 \ \Gamma$ эВ соответственно. В последней колонке указаны значения "тяги". Тяга (pull) по определению представляет собой разность между экспериментальным и теоретическим значением, деленную на экспериментальную неточность. Из величины тяг видно, что наибольшее расхождение экспериментальных данных с минимальной стандартной моделью имеет место для $R_{\rm b}$ (3,8 σ). Расхождение на уровне 2,5 σ имеется также у R_c и $\sin^2 \theta_{\text{eff}}^{\text{lept}} \equiv s_1^2$ из A_{LR} (SLC). Для большинства наблюдаемых расхождение менее 1 . В то же время, как видно из табл. 6, значение $s_1^2 = 0,23186(34)$, извлеченное из всех асимметрий на LEP, хорошо совпадает с фитированным значением MCM $s_1^2 = 0,2321(4)$ по данным LEP и вообще по любым данным.

В таблице 6 приведены экспериментальные значения

Таблица 6

Наблюлаемое	s_1^2	Среднее	Кумулятивное
Theomogane in the	51	по группам	среднее и $\chi^2/d.o.f.$
		наблюдений	
$A_{\rm FB}^{\rm l}$	0,23096(68)		
A_{τ}	0,23218(95)		
Ae	0,2325(11)	0,23160(49)	0,23160(49) 1,9/2
$A_{\rm FB}^{\rm b}$	0,23209(55)		
$A_{\rm FB}^{\rm c}$	0,2318(13)	0,23205(51)	0,23182(35) 2,4/4
1.5			
$\langle O_{\rm FB} \rangle$	0.2325(13)	0.2325(13)	0.23186(34) 2.6/5
(2.5)	,	,	/ (////////////////////////////////////
$A_{\rm LR}$ (SLD)	0,23049(50)	0,23049(50)	0,23143(28) 7,8/6

 s_1^2 . Третья колонка получена усреднением второй, четвертая — кумулятивным усреднением третьей, в ней указано также значение χ^2 на число степеней свободы (degrees of freedom). Экспериментальные данные табл. 5, 6 взяты из работы [44].

В таблице 7 приведены фитированные значения m_t и $\hat{\alpha}_s \equiv \hat{\alpha}_s(m_Z^2)$, а также значения χ^2 на число степеней свободы для различных наборов данных, где под m_W

Таблица	7
---------	---

подразумеваются как прямые данные по измерению m_W в pp̄-столкновениях, так и значения s_W^2 , извлеченные из vN-опытов. В нижней части таблицы приведены значения

$$s_1^2 \equiv \sin^2 \theta_{\text{eff}}^{\text{lept}} \equiv \frac{1}{4} \left(1 - \frac{g_{\text{VI}}}{g_{\text{AI}}} \right), \quad s_{\text{W}}^2 \equiv 1 - \frac{m_{\text{W}}^2}{m_Z^2}$$

вычисленные в однопетлевом электрослабом приближении в рамках минимальной стандартной модели с использованием фитированных значений m_t и $\hat{\alpha}_s$. Ошибки (в скобках) обусловлены неточностями m_t , $\hat{\alpha}_s$ и $\bar{\alpha}$ и вычислялись суммированием квадратов без учета корреляций. Заметим, что ошибки в вычисленном на основе фита значении s_W^2 существенно меньше, чем в экспериментальном значении этой величины (см. табл. 5), в то же время для s_1^2 ошибки в экспериментальных (табл. 6) и теоретическом (табл. 7) числах практически совпадают. Заметим, что в нижней части табл. 7 первая и вторая строки несут одну и ту же информацию, то же относится и к третьей, четвертой и пятой строкам.

7. Заключение

7.1. Достижения

Каковы основные итоги работы четырех детекторов на коллайдере LEP1 и одного на SLC?

С точки зрения ускорительной техники и техники эксперимента достигнут высочайший уровень коллективного творчества. Невиданная доселе оснащенность прецизионных гигантских установок сделала возможным невозможное: 20 миллионов распадов Z-бозонов измерены с точностью, превосходящей ювелирную.

С точки зрения физики основным результатом является экспериментальное доказательство, что существуют только три поколения кварков и лептонов с легкими нейтрино. Число легких нейтрино, определенное по суммарной ширине невидимых распадов Zбозонов, равно

$$N_{\rm v} = 2,990(16). \tag{103}$$

Нижний предел для массы тяжелых нейтрино, входящих в дополнительные поколения, если таковые существуют, близок к $m_Z/2$ и составляет 44 ГэВ.

Никаких новых частиц в распадах Z-бозонов не найдено. В частности, не найден хиггс. Нижний предел для массы хиггса составляет по данным LEP1

$$m_{\rm H} > 60 \ \Gamma \mathfrak{g} \mathbf{B} \,. \tag{104}$$

Физические величины	LEP	LEP+SLC	$LEP + m_W$	$LEP + SLC + m_W$
$m_{\rm t}, \Gamma$ β B $\hat{\alpha}_{\rm s}$ $\chi^2/{\rm d.o.f.}$	$ \begin{array}{c} 171(9)^{18}_{-21} \\ 0,125(4)^{+2}_{-2} \\ 18/9 \end{array} $	$182(7)^{+18}_{-22} \\ 0,123(4)^{+2}_{-2} \\ 29/13$	$ \begin{array}{c} 170(8)^{+17}_{-21} \\ 0,125(4)^{+2}_{-2} \\ 18/11 \end{array} $	$ \begin{array}{c} 180(7)^{+18}_{-21} \\ 0,124(4)^{+2}_{-2} \\ 30/15 \end{array} $
$s_{\rm I}^2$ $g_{\rm VI}/g_{\rm AI}$ $s_{\rm W}^2$ $m_{\rm W}/m_Z$ $m_{\rm W}, \Gamma_{\rm 2B}$	$\begin{array}{c} 0,2321(4)^{+1}_{-1} \\ 0,07116(16)^{-4}_{+8} \\ 0,2247(9)^{-2}_{+4} \\ 0,8805(5)^{+1}_{-2} \\ 80,29(5)^{+1}_{-2} \end{array}$	$\begin{array}{c} 0.2317(3)^{+1}_{-1} \\ 0.0732(12)^{+4}_{+8} \\ 0.2234(9)^{-2}_{+5} \\ 0.8813(5)^{+1}_{-3} \\ 80,36(5)^{+1}_{-3} \end{array}$	$\begin{array}{c} 0.2321(4)^{+1}_{-1} \\ 0.0716(16)^{+4}_{+8} \\ 0.2237(9)^{-2}_{+4} \\ 0.8804(5)^{+1}_{-2} \\ 80.28(5)^{+1}_{-2} \end{array}$	$\begin{array}{c} 0.2318(3)^{+1}_{-1} \\ 0.0728(12)^{+4}_{+8} \\ 0.2237(9)^{+4}_{+5} \\ 0.8811(5)^{+2}_{-3} \\ 80,35(5)^{+1}_{-3} \end{array}$

Прецизионное измерение массы Z-бозона, его полной и парциальных ширин распада, а также зеркально- и зарядово-нечетных асимметрий распадов дали возможность найти на опыте величины электрослабых радиационных поправок. Сопоставление этих экспериментальных величин с теоретическими расчетами на основе минимальной стандартной модели позволили предсказать массу t-кварка *m*_t и константу сильного взаимодействия глюонов на масштабе массы Z-бозона $\hat{\alpha}_s$:

$$m_{\rm t} = 180(7)^{+18}_{-21} \ \Gamma \mathfrak{sB},\tag{105}$$

$$\hat{\alpha}_{\rm s} = 0,124(4)^{+2}_{-2}.$$
 (106)

Здесь в скобках указана неопределенность (одно стандартное отклонение), обусловленная неточностью экспериментальных данных. Основная величина отвечает предположению, что $m_{\rm H} = 300$ ГэВ, а верхний и нижний "сдвиги" отвечают $m_{\rm H} = 1000$ ГэВ и 60 ГэВ соответственно. Из-за слабой зависимости радиационных поправок от $m_{\rm H}$ извлечь из них величину $m_{\rm H}$ не удается. Предсказанная из радиационных поправок масса tкварка в пределах существующих в настоящее время неопределенностей находится в прекрасном согласии с прямым измерением $m_{\rm t}$ в детекторах CDF и D0 на Тэватроне¹

 $m_{\rm t} = 176(13) \ \Gamma \ni \mathbf{B} \ (\text{CDF}[13]),$ (107)

$$m_{\rm t} = 199(30) \ \Gamma
i B \ (D0[14]).$$
 (108)

При дальнейшем уточнении массы t-кварка, измеренной на LEP1, радиационные поправки могут быть использованы для уточнения области, в которой находится масса хиггса. При этом, как видно из рис. 13–15, все будет сильно зависеть от того, насколько нам повезет.

Рис. 13. Изолинии χ^2 в плоскости m_t , m_h , полученные фитированием электрослабых поправок в предположении, что прямые измерения массы t-кварка дадут $m_t = 150 \pm 5$ ГэВ.

¹ Приведем уточненные весной 1996 г. данные: $m_t = 175, 6 \pm 5, 7 \pm 7, 4 \Gamma$ эВ (CDF [64]),

 $m_{\rm t} = 170 \pm 15 \pm 10$ ГэВ (D0 [65]).

Рис. 14. То же, что на рис. 13, для $m_t = 175 \pm 5 \Gamma$ эВ.

Если $m_{\rm t} = 150(5)$ ГэВ, то из рис. 13 следует, что $m_{\rm H} < 150$ ГэВ на уровне 3 σ . Если $m_{\rm t} = 200(5)$ ГэВ, то $m_{\rm H} > 120$ ГэВ на уровне 3 σ (рис. 15). Если же $m_{\rm t} = 175(5)$ ГэВ, то в пределах 3 σ хигтс может иметь любую массу.

7.2. Проблемы

Беглого взгляда на таблицу 5 достаточно, чтобы увидеть основную проблему физики Z-бозона: несоответствие измеренной ширины распада в пару bb теоретическим предсказаниям.

Суперсимметризация стандартной модели может помочь в решении этой проблемы (рис. 16а) [66] (диаграмма с суперпартнерами рис. 16а имеет правильный знак — увеличивает R_b).

Обратимся теперь к $\hat{\alpha}_{s}(m_{Z})$. В ряде работ [67, 68] отмечалось, что значение 0, $124(4)^{+2}_{-2}$, указанное в табл. 7, противоречит измерениям $\hat{\alpha}_{s}(q^{2})$ при $q^{2} \leq (10 \ \Gamma \Im B)^{2}$ в

Рис. 16. Вершина с виртуальными \tilde{t} -скварками и вино \tilde{W} (а). Реакция $e^+e^- \rightarrow W^+W^-$ с виртуальным фотоном или Z-бозоном (б). Реакция $e^+e^- \rightarrow HZ$ (в).

глубоко неупругом рассеянии [69], адронных распадах Үмезона [70] и особенно в спектре уровней ипсилония [71]. Если проэкстраполировать в рамках стандартной КХД низкоэнергетические значения $\hat{\alpha}_{s}(q^{2} \lesssim (10 \ \Gamma \Im B)^{2})$ до $q^2 = m_Z^2$, то получается $\hat{\alpha}_s(m_Z^2) = 0,110-0,118$. Что касается точности этого интервала, то среди авторов [68-71] нет единства. Наиболее осторожные оценивают ее как ±0,005 [69, 70]. Наиболее решительный настаивает на ±0,001 [68, 71]. В последнем случае имеется явное противоречие с величиной, полученной из анализа распадов Z-бозона. Это противоречие послужило основанием для предположений [67] о том, что предсказания МСМ для адронных ширин модифицируются вкладом в электрослабые радиационные поправки каких-то новых частиц, например скварков и глюино — суперсимметричных партнеров кварков и глюонов. Для того чтобы петли с этими частицами привели к достаточно сильным отклонениям от МСМ, необходимо, чтобы скварки и глюино были достаточно легкими, с массами порядка 100 ГэВ. Как независимый аргумент в пользу того, что новая физика "ждет нас за ближайшим углом", рассматривается также отклонение более чем на 3 о наблюдаемой величины R_b от ее значения, предсказываемого в рамках МСМ на основе глобального фита (см. табл. 5). Два других отклонения от МСМ в табл. 5 менее серьезны: *R*_c и A_{LR} отклоняются на 2,5 стандартных отклонения. Заметим, что в последнем случае имеется расхождение не только с МСМ, но и с измерениями лептонных асимметрий на LEP1, поскольку, согласно уравнению $(47), A_{LR} = A_{l}.$

В литературе существуют различные параметризации проявлений новой физики. Особенно широко известны параметры S, T, U [72] и $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_b$ [73].

7.3. Перспективы

Осенью 1995 г. коллайдер LEP завершил работу в режиме LEP1 и начал работу в режиме LEP2. Предполагается довести суммарную энергию электрона и позитрона до 192 ГэВ. Каковы основные задачи LEP2 [74]?

Тщательное измерение сечения реакции $e^+e^- \rightarrow W^+W^-$ для измерения массы W-бозона с точностью порядка 50 МэВ и проверки того, что взаимодействие *W*-бозонов с фотоном и Z-бозоном соответствует стандартной модели (рис. 166).

Поиски хиггса с массой до 92 ГэВ в реакции $e^+e^- \rightarrow HZ$ (рис. 16в).

Поиски легких суперчастиц (слептонов, скварков). Поиски неожиданностей.

Дальнейшие перспективы проверки стандартной модели и поисков "новой физики" за ее пределами связаны с большим адронным коллайдером (LHC, решение о его строительстве в ЦЕРН уже принято) и так называемым следующим линейным коллайдером электронов и позитронов (NLC — Next Linear Collider), находящимся пока в стадии обсуждения конкурирующих между собой проектов.

Мы благодарны А.В.Новикову за помощь в подготовке статьи; А.Н.Розанов благодарен CNRS-IN 2 Р3/ СРРМ за поддержку; М.И. Высоцкий, В.А. Новиков и Л.Б. Окунь благодарны Российскому фонду фундаментальных исследований за грант 93-02-14431; М.И. Высоцкий и В.А. Новиков благодарны INTAS за гранты 93-3316 и 94-2352, которые способствовали выполнению данной работы.

Приложение I Правила вычисления фейнмановских интегралов

Последовательный вывод правил Фейнмана для теорий со спонтанным нарушением калибровочных симметрий можно найти в учебниках (см., например, Ициксон, Зюбер; Рамон; Славнов, Фаддеев [4]). В этом приложении мы приводим лишь сводку результатов с краткими комментариями.

I.1. Калибровка и пропагаторы

Квантование калибровочных полей (в МСМ — это W_{μ}^{\pm} , Z_{μ} и A_{μ}) требует фиксации калибровки. Наиболее часто используется так называемая R_{ξ} -калибровка, которая отвечает добавлению к классическому лагранжиану новых членов $\delta \mathcal{L}_{\text{GF}}$ (GF — Gauge Fixing):

$$\begin{split} \delta \mathcal{L}_{\rm GF} &= -\frac{1}{2\xi_{\rm A}} \, \left(\partial_{\mu} A_{\mu} \right)^2 - \frac{1}{2\xi_{\rm Z}} \, \left(\partial_{\mu} Z_{\mu} - m_{\rm Z} \xi_{\rm Z} G^0 \right)^2 - \\ &- \frac{1}{\xi_{\rm W}} \, \left(\partial_{\mu} W_{\mu}^+ - \mathrm{i} m_{\rm W} \xi_{\rm W} G^+ \right) \left(\partial_{\mu} W_{\mu}^- + \mathrm{i} m_{\rm W} \xi_{\rm W} G^- \right), \, ({\rm I}.1) \end{split}$$

где G^\pm, G^0 и H — компоненты хиггсова дублета \varPhi в параметризации

$$\Phi = \begin{pmatrix} G^+(x) \\ \frac{1}{\sqrt{2}} \left(\eta + H(x) + \mathbf{i}G^0(x) \right) \end{pmatrix}.$$
 (I.2)

В дальнейшем мы используем только частный случай R_{ξ} -калибровки, а именно,

$$\xi_{\rm A}=\xi_{\rm W}=\xi_{\rm Z}=\xi.$$

После фиксации калибровки можно определить пропагаторы $D^{\rm W}_{\mu\nu}(p), D^{Z}_{\mu\nu}(p)$ и $D^{\rm A}_{\mu\nu}(p)$ полей W^{\pm}_{μ}, Z_{μ} и A_{μ} :

$$D_{\mu\nu}^{W}(p) = -\frac{i}{p^{2} - m_{W}^{2} + i\epsilon} \left\{ g_{\mu\nu} - (1 - \xi) \frac{p_{\mu} p_{\nu}}{p^{2} - m_{W}^{2} \xi + i\epsilon} \right\} \equiv \equiv -\frac{i}{p^{2} - m_{W}^{2} + i\epsilon} \left(g_{\mu\nu} - \frac{p_{\mu} p_{\nu}}{m_{W}^{2}} \right) - i \frac{p_{\mu} p_{\nu}}{m_{W}^{2}} \frac{1}{p^{2} - m_{W}^{2} \xi + i\epsilon},$$
(I.3)

$$D_{\mu\nu}^{Z}(p) = -\frac{i}{p^{2} - m_{Z}^{2} + i\epsilon} \left\{ g_{\mu\nu} - (1 - \xi) \frac{p_{\mu} p_{\nu}}{p^{2} - m_{Z}^{2} \xi + i\epsilon} \right\} = -\frac{i}{p^{2} - m_{Z}^{2} + i\epsilon} \left(g_{\mu\nu} - \frac{p_{\mu} p_{\nu}}{m_{Z}^{2}} \right) - i \frac{p_{\mu} p_{\nu}}{m_{Z}^{2}} \frac{1}{p^{2} - m_{Z}^{2} \xi + i\epsilon},$$
(I.4)

$$D^{\rm A}_{\mu\nu}(p) = -\frac{{\rm i}}{p^2 + {\rm i}\varepsilon} \left[g_{\mu\nu} - (1-\xi) \, \frac{p_{\mu} \, p_{\nu}}{p^2 + {\rm i}\varepsilon} \right]. \tag{I.5}$$

Случай $\xi = 1$ отвечает калибровке Фейнмана– 'т Хофта, $\xi = 0$ — калибровке Ландау, $\xi \to \infty$ — калибровке Прока.

Как следует из (I.3) и (I.4), пропагаторы массивных векторных полей представляются в виде суммы пропагатора в калибровке Прока, описывающего распространение физических степеней свободы векторной частицы, и скалярного пропагатора с полюсом, зависящим от калибровки, который отвечает распространению нефизических степеней свободы. В результате диаграммы с виртуальными W[±]-, Z-бозонами содержат нефизические пороговые особенности, положение которых зависит от калибровочного параметра ξ . Частично эти нефизические особенности сокращаются после добавления соответствующих диаграмм с виртуальными голдстоуновскими бозонами, возникающими из хиггсова дублета Φ (I.2), G^{\pm} , G^{0} . Пропагаторы голдстоуновских бозонов имеют вид

$$D_{G^+}(p) = \frac{1}{p^2 - m_{\rm W}^2 \xi + i\varepsilon} , \qquad (I.6)$$

$$D_{G^0}(p) = \frac{1}{p^2 - m_Z^2 \xi + i\varepsilon} \,. \tag{I.7}$$

Полное восстановление унитарности (сокращение нефизических особенностей) и калибровочной инвариантности (выполнение тождеств Уорда) достигается при учете диаграмм с духами Фаддеева и Попова η^{\pm} , η^{Z} и η^{A} , которые взаимодействуют только с калибровочными полями и голдстоуновскими полями, которым не отвечают никакие физические степени свободы.

Пропагаторы духов имеют вид

$$D_{\eta^{+}}(p) = \frac{i}{p^{2} - m_{W}^{2}\xi + i\varepsilon}, \qquad (I.8)$$

$$D_{\eta^Z}(p) = \frac{\mathrm{i}}{p^2 - m_Z^2 \xi + \mathrm{i}\varepsilon} , \qquad (\mathrm{I.9})$$

$$D_{\eta^{\mathrm{A}}}(p) = \frac{1}{p^2 + \mathrm{i}\varepsilon} \,. \tag{I.10}$$

Духи подчиняются статистике Ферми, и в духовых петлях нужно писать дополнительный знак (-1), как и в фермионных петлях.

Пропагаторы других полей имеют следующий вид: для поля хиггса

$$D_{\rm H}(p) = \frac{{\rm i}}{p^2 - m_{\rm H}^2 + {\rm i}\varepsilon} ,$$
 (I.11)

для фермионных полей

$$\hat{D}_{\rm f}(p) = \frac{\mathrm{i}}{\hat{p} - m_{\rm f} + \mathrm{i}\varepsilon} \,. \tag{I.12}$$

Чтобы описать многочисленные трехчастичные вершины, удобно унифицировать обозначения. Зафиксируем навсегда импульсы, как показано на рис. 17, и будем обозначать вершину набором полей в следующем порядке (*ACB*). С учетом этих обозначений запишем правила Фейнмана для трехчастичных вершин.

Рис. 17. Трехчастичная вершина.

I.2. Взаимодействие калибровочных полей с фермионами

$$(f A_{\mu} f): -ie Q_{f} \gamma_{\mu},$$

$$(f Z_{\mu} f): -i \frac{f}{4} [g_{V} \gamma_{\mu} + g_{A} \gamma_{\mu} \gamma_{5}],$$

$$(v_{e} W_{\mu}^{-} l): -i \frac{g}{2\sqrt{2}} \gamma_{\mu} (1 + \gamma_{5}),$$

$$(U W_{\mu}^{-} D): -i \frac{g}{2\sqrt{2}} V_{DU} \gamma_{\mu} (1 + \gamma_{5}).$$
(I.13)

где $Q_{\rm f}$ — заряд фермиона f, $g_{\rm A} = 2T_3^{\rm f}$, $g_{\rm V} = 2T_3^{\rm f} - 4Q_{\rm f}\sin^2\theta$; $T_3^{\rm f}$ — третья проекция изоспина левой компоненты фермиона f; U и D обозначают любой из кварков с $T_3^+ = 1/2$ и $T_3^{\rm f} = -1/2$ соответственно, $V_{\rm DU}$ — элемент матрицы Кобаяши–Маскавы.

I.3. Взаимодействие скалярных полей с фермионами

$$(fHf): -\frac{1g}{2m_{W}} m_{f}, (fG^{0}f): -\frac{g}{4} \frac{m_{f}}{m_{W}} T_{3}^{f}, (UG^{-}D): -\frac{i}{2\sqrt{2}} \frac{g}{m_{W}} [(m_{D} - m_{U}) + \gamma_{5}(m_{D} + m_{U})], (DG^{+}U): -\frac{i}{2\sqrt{2}} \frac{g}{m_{W}} [(m_{D} - m_{U}) - \gamma_{5}(m_{D} + m_{U})].$$
(I.14)

I.4. Трехбозонные взаимодействия

Три калибровочных бозона:

$$\begin{aligned} & (W_{\lambda}^{+}A_{\nu}W_{\mu}^{+}) \colon \mathrm{ie}\left[(r+q)_{\lambda}g_{\mu\nu} - (q+p)_{\nu}g_{\lambda\mu} + (p-r)_{\mu}g_{\nu\lambda}\right], \\ & (W_{\lambda}^{+}Z_{\nu}W_{\mu}^{+}) \colon \mathrm{ig\cos\theta}\left[(r+q)_{\lambda}g_{\mu\nu} - (q+p)_{\nu}g_{\lambda\mu} + (p-r)_{\mu}g_{\nu\lambda}\right]. \end{aligned}$$

Два калибровочных бозона и скалярный бозон (G или H):

$$(W_{\mu}^{+}G^{-}A_{\nu}): iem_{W}g_{\mu\nu},$$

$$(W_{\mu}^{+}G^{-}Z_{\nu}): -igm_{Z}g_{\mu\nu}\sin^{2}\theta,$$

$$(W_{\mu}^{+}HW_{\nu}^{+}): igm_{W}g_{\mu\nu},$$

$$(Z_{\mu}HZ_{\nu}): ig\frac{m_{Z}^{2}}{m_{W}}g_{\mu\nu}.$$
(I.16)

Один калибровочный бозон, два скалярных бозона (GG или GH):

$$\begin{array}{ll} (G^{+}A_{\mu}G^{+}) &: -\mathrm{i}e\,(p+q)_{\mu}\,, \\ (G^{+}Z_{\mu}G^{+}) &: -\mathrm{i}g\,\frac{\cos 2\theta}{2\cos\theta}\,\,(p+q)_{\mu}\,, \\ (G^{0}W_{\mu}^{+}G^{+}) &: \, \frac{1}{2}\,\,g\,(p+q)_{\mu}\,, \\ (HW_{\mu}^{+}G^{+}) &: \, -\frac{1}{2}\,\,\mathrm{i}g\,(p+q)_{\mu}\,, \\ (G^{+}W_{\mu}^{-}G^{0}) &: \, -\frac{1}{2}\,\,g\,(p+q)_{\mu}\,, \\ (G^{+}W_{\mu}^{-}H) &: \, -\frac{1}{2}\,\,\mathrm{i}g\,\,(p+q)_{\mu}\,, \\ (HZ_{\mu}G^{0}) &: \, \frac{g}{\cos\theta}\,\,(p+q)_{\mu}\,. \end{array}$$
(I.17)

Взаимодействие хиггсов с голдстоунами и между собой:

$$(G^{+}HG^{+}): \frac{i}{2} g \frac{m_{\rm H}^{2}}{m_{\rm W}},$$

$$(G^{-}HG^{-}): -\frac{i}{2} g \frac{m_{\rm H}^{2}}{m_{\rm W}},$$

$$(G^{0}HG^{0}): -\frac{i}{2} g \frac{m_{\rm H}^{2}}{m_{\rm W}},$$

$$(HHH): -\frac{3i}{2} g \frac{m_{\rm H}^{2}}{m_{\rm W}}.$$
(I.18)

Взаимодействие духов с калибровочными полями:

Взаимодействие духов с хиггсом или голдстоунами:

.

$$\begin{aligned} &(\eta^{-}H\eta^{-}): \ -\frac{1}{2} \ g\xi m_{\rm W} \,, \\ &(\eta^{-}G^{0}\eta^{-}): \ -\frac{1}{2} \ g\xi m_{\rm W} \,, \\ &(\eta^{+}G^{0}\eta^{+}): \ \frac{1}{2} \ g\xi m_{\rm W} \,, \\ &(\eta^{\gamma}G^{+}\eta^{+}): \ -\mathrm{i}e\xi m_{\rm W} \,, \\ &(\eta^{Z}G^{+}\eta^{+}): \ -\frac{\mathrm{i}}{2} \ g \ \frac{\cos 2\theta}{\cos \theta} \ \xi m_{\rm W} \,, \\ &(\eta^{-}G^{+}\eta^{Z}): \ \frac{\mathrm{i}}{2} \ g\xi m_{Z} \,. \end{aligned}$$
 (I.20)

I.5. Четырехбозонные взаимодействия

Для описания четырехбозонных вершин мы введем обозначение (*ABCD*) (рис. 18).

В этих обозначениях взаимодействия четырех векторных бозонов имеют вид

$$\begin{aligned} & (W_{\lambda}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\rho}^{-}) \colon \operatorname{ig}^{2}[2g_{\lambda\nu}g_{\mu\rho} - g_{\mu\nu}g_{\lambda\rho} - g_{\mu\lambda}g_{\nu\rho}], \\ & (W_{\lambda}^{+}W_{\mu}^{-}A_{\nu}A_{\rho}) \colon -\operatorname{ie}^{2}[2g_{\nu\rho}g_{\mu\lambda} - g_{\mu\rho}g_{\nu\lambda} - g_{\mu\nu}g_{\lambda\rho}], \\ & (W_{\lambda}^{+}W_{\mu}^{-}Z_{\nu}Z_{\rho}) \colon -\operatorname{ig}^{2}\cos^{2}\theta\left[2g_{\nu\rho}g_{\mu\lambda} - g_{\mu\rho}g_{\nu\lambda} - g_{\mu\nu}g_{\lambda\rho}\right], \\ & (W_{\lambda}^{+}W_{\mu}^{-}A_{\nu}Z_{\rho}) \colon -\operatorname{ie}g\cos\theta\left[2g_{\nu\rho}g_{\mu\lambda} - g_{\mu\rho}g_{\nu\lambda} - g_{\mu\nu}g_{\lambda\rho}\right]. \end{aligned}$$

$$(I.21)$$

Взаимодействие двух векторных бозонов с *HH*, *GG* или *HG*:

$$\begin{aligned} & (W_{\mu}^{+}W_{\nu}^{-}HH): \frac{i}{2} g^{2}g_{\mu\nu}, \\ & (W_{\mu}^{+}W_{\nu}^{-}G^{0}G^{0}): \frac{i}{2} g^{2}g_{\mu\nu}, \\ & (W_{\mu}^{+}W_{\nu}^{-}G^{-}G^{+}): \frac{i}{2} g^{2}g_{\mu\nu}, \\ & (A_{\mu}A_{\nu}G^{-}G^{+}): 2ie^{2}g_{\mu\nu}, \\ & Z_{\mu}Z_{\nu}G^{0}G^{0}: \frac{i}{2} g^{2}\sec^{2}\theta g_{\mu\nu}, \\ & Z_{\mu}Z_{\nu}G^{0}G^{0}: \frac{i}{2} g^{2}\sec^{2}\theta \cos^{2}2\theta g_{\mu\nu}, \\ & Z_{\mu}Z_{\nu}G^{-}G^{+}: \frac{i}{2} g^{2}\sec^{2}\theta \cos^{2}2\theta g_{\mu\nu}, \\ & A_{\mu}W_{\nu}^{+}G^{+}H: \frac{i}{2} egg_{\mu\nu}, \\ & A_{\mu}W_{\nu}^{+}G^{-}H: \frac{i}{2} egg_{\mu\nu}, \\ & A_{\mu}W_{\nu}^{+}G^{-}G^{0}: -\frac{1}{2} egg_{\mu\nu}, \\ & A_{\mu}W_{\nu}^{-}G^{-}G^{0}: \frac{1}{2} egg_{\mu\nu}, \\ & Z_{\mu}W_{\nu}^{-}G^{-}G^{0}: \frac{i}{2} g^{2}\sec^{2}\theta \cos^{2}\theta g_{\mu\nu}, \\ & Z_{\mu}W_{\nu}^{+}G^{+}H: \frac{i}{2} g^{2}\sec^{2}\theta \cos^{2}\theta g_{\mu\nu}, \\ & Z_{\mu}W_{\nu}^{+}G^{-}H: \frac{i}{2} g^{2}\sec^{2}\theta \cos^{2}\theta g_{\mu\nu}, \\ & Z_{\mu}W_{\nu}^{+}G^{-}H: \frac{i}{2} g^{2}\sec^{2}\theta \cos^{2}\theta g_{\mu\nu}, \\ & Z_{\mu}W_{\nu}^{+}G^{-}H: \frac{i}{2} g^{2}\sec^{2}\theta \cos^{2}\theta g_{\mu\nu}, \\ & Z_{\mu}W_{\nu}^{+}G^{-}G^{0}: -\frac{1}{2} g^{2}\sec^{2}\theta (\frac{1}{2}\cos^{2}\theta - 1)g_{\mu\nu}, \\ & Z_{\mu}W_{\nu}^{+}G^{-}G^{0}: \frac{1}{2} g^{2}\sec^{2}\theta (\frac{1}{2}\cos^{2}\theta - 1)g_{\mu\nu}, \\ & Z_{\mu}W_{\nu}^{+}G^{-}G^{0}: \frac{1}{2} g^{2}\sec^{2}\theta (\frac{1}{2}\cos^{2}\theta - 1)g_{\mu\nu}. \end{aligned}$$

$$(G^{+}G^{-}G^{-}G^{+}): -\frac{i}{2} g^{2} \frac{m_{H}^{2}}{m_{W}^{2}},$$

$$(G^{+}G^{-}G^{0}G^{0}): -\frac{i}{4} g^{2} \frac{m_{H}^{2}}{m_{W}^{2}},$$

$$(G^{+}G^{-}HH): -\frac{i}{4} g^{2} \frac{m_{H}^{2}}{m_{W}^{2}},$$

$$(HHHH): -\frac{3}{4} ig^{2} \frac{m_{H}^{2}}{m_{W}^{2}},$$

$$(G^{0}G^{0}G^{0}G^{0}): -\frac{3}{4} ig^{2} \frac{m_{H}^{2}}{m_{W}^{2}},$$

$$(G^{0}G^{0}HH): -\frac{i}{4} g^{2} \frac{m_{H}^{2}}{m_{W}^{2}}.$$
(I.23)

I.6. Регуляризация фейнмановских интегралов

Интегралы, отвечающие диаграммам с петлями, формально расходятся и требуют регуляризации. Следует отметить, что последовательной регуляризации электрослабой теории во всех петлях до сих пор не существует. В нескольких первых петлях можно использовать размерную регуляризацию, которая отвечает переходу к *D*мерному пространству-времени, в котором расходящимся интегралам приписывается следующее конечное выражение:

$$\int \frac{\mathrm{d}^{D} p}{\mu^{D-4}} \frac{(p^{2})^{s}}{(p^{2}+m^{2})^{\alpha}} = \frac{\pi^{D/2}}{\Gamma(D/2)} \frac{\Gamma(D/2+s)\Gamma(\alpha-D/2-s)}{\Gamma(\alpha)} \times \frac{(m^{2})^{D/2-\alpha+s}}{\mu^{D-4}}, \qquad (I.24)$$

где *µ* — параметр размерности массы, вводимый для сохранения размерности исходного интеграла.

Эта формула справедлива в области сходимости интеграла. В области расходимости формальное выражение (I.24) понимается как аналитическое продолжение. Очевидно, что в области сходимости интеграл допускает сдвиг переменной интегрирования. Поэтому в (I.24) можно сделать сдвиг переменной $p \rightarrow p + q$ также и для любых D. Это обстоятельство является решающим при доказательстве калибровочной инвариантности размерной регуляризации.

Вблизи *D* = 4 интегралы (I.24) содержат полюсный член

$$\Delta = \frac{2}{4-D} + \ln 4\pi - \gamma - \ln \frac{m^2}{\mu^2}, \qquad (I.25)$$

где $\gamma = 0,577...$ — постоянная Эйлера. Включение константных членов в (I.25) есть некоторая условность и зависит от соглашения (см. ниже).

Алгебра *у*-матриц в *D*-мерном пространстве определяется соотношениями

$$\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2g_{\mu\nu} \times I, \qquad (I.26)$$

$$g_{\mu\mu} = D, \qquad (I.27)$$

(I.28)

$$\gamma_\mu\gamma_
u\gamma_\mu=(2-D)\gamma_
u\,,$$

где *I* — единичная матрица.

Что касается размерности спиноров, то при продолжении в *D*-мерное пространство можно опять поступать разными способами. Одна из возможностей — принять, что γ -матрицы есть матрицы 4 \times 4, так что

$$\text{Tr } I = 4.$$
 (I.29)

Трудности с *D*-мерной регуляризацией возникают, когда надо определить, что такое абсолютно антисимметричный тензор и (или) γ_5 -матрица. Для вычислений в нескольких первых петлях формальное определение γ_5 ,

$$\gamma_5 \gamma_\mu + \gamma_\mu \gamma_5 = 0 \,, \tag{I.30}$$

$$\gamma_5^2 = I, \tag{I.31}$$

не приводит к противоречиям.

Таким образом, амплитуды физических процессов, будучи выраженными в терминах голых зарядов и голых масс, содержат полюсные члены $\sim (D-4)^{-1}$.

Если исключить голые величины и выражать одни физические наблюдаемые через другие физические наблюдаемые, то все полюсные слагаемые сокращаются. Общее свойство перенормируемости гарантирует такое сокращение. (В работе [42] мы проверили это сокращение непосредственно.) Такая процедура перенормировок используется и в этом обзоре.

Чтобы избежать расходимостей в промежуточных выражениях, можно условиться вычитать из каждого фейнмановского интеграла полюсные члены $\sim (4 - D)^{-1}$, поскольку в окончательных выражениях они все равно должны взаимно сократиться. В зависимости от того, какие константные члены (наряду с полюсными) вычитаются из диаграмм, возникают различные схемы вычитаний: $\overline{\text{MS}}$ -схема отвечает вычитанию универсальной комбинации

$$\frac{2}{4-D}-\gamma+\ln 4\pi\,.$$

Приложение II Соотношение между $\bar{\alpha}$ и $\alpha(0)$

Начнем со следующего знаменитого соотношения, имеющего место в квантовой электродинамике [75]:

$$\alpha(q^2) = \frac{\alpha(0)}{1 + \Sigma_{\gamma}(q^2)/q^2 - \Sigma_{\gamma}'(0)} \,. \tag{II.1}$$

Здесь постоянная тонкой структуры $\alpha \equiv \alpha(0)$ является физической величиной. Она может быть измерена как вычет при кулоновском полюсе $1/q^2$ в амплитуде рассеяния заряженных частиц. Что касается бегущей "константы" связи $\alpha(q^2)$, то она может быть измерена по рассеянию частиц с массами *m* при малых передачах импульса: $m \ge \sqrt{|q^2|}$. В стандартной модели имеется Z-бозон, и при $q^2 \neq 0$ однозначно выделить вклад фотона невозможно. Поэтому определение бегущей константы $\alpha(q^2)$ становится зависящим от конвенций и от деталей вычислений.

При $q^2 = m_Z^2$ вклад W-бозонов в $\bar{\alpha} \equiv \alpha(m_Z^2)$ невелик, поэтому удобно пользоваться принятым в КЭД определением:

$$\bar{\alpha} = \frac{\alpha}{1 - \delta \alpha} \,, \tag{II.2}$$

где

$$\begin{aligned} \delta \alpha &= -\Pi_{\gamma}(m_Z^2) + \Sigma_{\gamma}'(0) ,\\ \Pi_{\gamma}(m_Z^2) &= \frac{1}{m_Z^2} \ \Sigma_{\gamma}(m_Z^2) . \end{aligned} \tag{II.3}$$

Однопетлевое выражение для собственной энергии фотона может быть представлено в следующем виде [76]:

$$\Sigma_{\gamma}(s) = \frac{\alpha}{3\pi} \sum_{f} N_{c}^{f} Q_{f}^{2} \left[s \varDelta_{f} + (s + 2m_{f}^{2}) F(s, m_{f}, m_{f}) - \frac{3}{2} \right] - \frac{\alpha}{4\pi} \left[3s \varDelta_{W} + (3s + 4m_{W}^{2}) F(s, m_{W}, m_{W}) \right], \quad (II.4)$$

где $s \equiv q^2$, индекс f означает фермионы, сумма Σ_f идет по флэйворам лептонов и кварков, N_c^f — число цветов. Вклад фермионов в $\Sigma_{\gamma}(q^2)$ не зависит от калибровки. Последний член в (II.4) относится к калибровочнозависимому вкладу W-бозонов; в уравнении (II.4) использовалась калибровка 'т Хофта-Фейнмана.

Сингулярный член Δ_i равен

$$\Delta_i = \frac{1}{\varepsilon} - \gamma + \ln 4\pi - \ln \frac{m_i^2}{\mu^2} , \qquad (\text{II.5})$$

где $2\varepsilon = 4 - D$ (D — переменная размерность пространства-времени, $\varepsilon \to 0$), $\gamma = -\Gamma'(1) = 0,577...$ — постоянная Эйлера, μ — произвольный параметр. Как $1/\varepsilon$, так и μ исчезают в соотношениях между наблюдаемыми.

Функция $F(s, m_1, m_2)$ равна вкладу в собственную энергию скалярной частицы при $q^2 = s$ за счет петли с двумя скалярными частицами (с массами m_1 и m_2) и с константой связи, равной единице:

$$F(s, m_1, m_2) = -1 + \frac{m_1^2 - m_2^2}{m_1^2 - m_2^2} \log \frac{m_1}{m_2} - \int_0^1 dx \log \frac{x^2 s - x(s + m_1^2 - m_2^2) + m_1^2 - i\varepsilon}{m_1 m_2}.$$
 (II.6)

Функция *F* нормирована так, что при $q^2 = 0$ обращается в нуль, что отвечает вычитанию собственной энергии при $q^2 = 0$:

$$F(0, m_1, m_2) = 0.$$
 (II.7)

При $m_1 = m_2 = m$ имеет место следующая формула:

$$F(s, m, m) \equiv F(\tau) = \begin{cases} 2\left[1 - \sqrt{4\tau - 1} \arcsin\frac{1}{\sqrt{4\tau}}\right], & 4\tau > 1, \\ 2\left[1 - \sqrt{1 - 4\tau} \ln\frac{1 + \sqrt{1 - 4\tau}}{\sqrt{4\tau}}\right], & 4\tau < 1, \end{cases}$$

где $\tau = m^2/s$.

Для того чтобы вычислить вклады легких фермионов, t-кварка и W-бозона в $\delta \alpha$, мы нуждаемся в асимптотиках $F(\tau)$ при малых и больших τ :

$$F(\tau) \simeq \ln \tau + 2 + ..., \quad |\tau| \ll 1,$$
 (II.8)

$$F(\tau) \simeq \frac{1}{6\tau} + \frac{1}{60\tau^2} + ..., \quad |\tau| \ge 1$$
, (II.9)

$$F'(s, m, m) = \frac{\mathrm{d}}{\mathrm{d}s} F(s, m, m) \stackrel{s \to 0}{\simeq} \frac{1}{m^2} \left[\frac{1}{6} + \frac{1}{30\tau} \right].$$
 (II.10)

В результате получим

$$\Pi_{\gamma}(m_Z^2) \equiv \frac{\Sigma_{\gamma}(m_Z^2)}{m_Z^2} = \frac{\alpha}{3\pi} \sum_8 N_c^f Q_f^2 \left(\Delta_Z + \frac{5}{3} \right) + \\ + \frac{\alpha}{\pi} Q_f^2 \left[\Delta_t + (1+2t) F(t) - \frac{1}{3} \right] - \\ - \frac{\alpha}{4\pi} \left[3\Delta_W + (3+4c^2) F(c^2) \right], \qquad (\text{II.11})$$

где $t = m_t^2/m_Z^2$, и

$$\Sigma_{\gamma}'(0) = \frac{\alpha}{3\pi} \sum_{9} N_{\rm c}^{\rm f} Q_{\rm f}^2 \varDelta_{\rm f} - \frac{\alpha}{4\pi} \left(3\varDelta_{\rm W} + \frac{2}{3} \right), \qquad ({\rm II}.12)$$

$$\delta \alpha = \frac{\alpha}{\pi} \left\{ \sum_{8} \frac{N_c^f Q_f^2}{3} \left(\ln \frac{m_Z^2}{m_f^2} - \frac{5}{3} \right) - Q_t^2 \left[(1+2t) F(t) - \frac{1}{3} \right] + \left[\left(\frac{3}{4} + c^2 \right) F(c^2) - \frac{1}{6} \right] \right\}.$$
(II.13)

Таким образом, δα дается суммой четырех членов:

$$\delta \alpha = \delta \alpha_{\rm l} + \delta \alpha_{\rm h} + \delta \alpha_{\rm t} + \delta \alpha_{\rm W} \,, \tag{II.14}$$

$$\delta \alpha_{\rm l} = \frac{\alpha}{3\pi} \sum_{3} \left[\ln \frac{m_Z^2}{m_{\rm l}^2} - \frac{5}{3} \right] = 0,03141 \,, \tag{II.15}$$

$$\delta \alpha_{\rm t} \simeq -\frac{\alpha}{\pi} \frac{4}{45} \left(\frac{m_Z}{m_{\rm t}}\right)^2 = -0,00005(1),$$
 (II.16)

где было использовано значение $m_t = 175 \pm 10$ ГэВ. Отметим, что поправка $\delta \alpha_t$ пренебрежимо мала и имеет антиэкранировочный знак (экранировка петель t-кварка в КЭД начинается при $q^2 \gg m_t^2$, тогда как в нашем случае $q^2 = m_Z^2 < m_t^2$).

Наконец, W-петля дает

$$\delta \alpha_{\rm W} = \frac{\alpha}{2\pi} \left[(3+4c^2) \left(1 - \sqrt{4c^2 - 1} \arcsin \frac{1}{2c} \right) - \frac{1}{3} \right] =$$

= 0,00050. (II.17)

Величина $\delta \alpha_W$ зависит от калибровки [77]; здесь приведен результат вычисления в калибровке 'т Хофта–Фейнмана. Традиционно в определении $\bar{\alpha}$ учитывается сдвиг α только за счет лептонов и пяти легких кварков; вклад $\delta \alpha_t$ и $\delta \alpha_W$ учитывается в собственно электрослабых радиационных поправках. В нашем подходе этот вклад приводит к поправкам $\delta_1 V_i$.

Приложение III Сводка результатов расчетов а

Среди трех входных параметров $\bar{\alpha}$, G_{μ} и m_Z первый имеет наибольшую неопределенность; эта неопределенность приводит к неопределенности ± 5 ГэВ в значении массы t-кварка, извлекаемой из измерений m_W и параметров распада Z-бозона. Согласно формулам приложения II,

$$\begin{split} \bar{\alpha} = & \frac{\alpha}{1-\delta\alpha} \;, \qquad \delta\alpha = \delta\alpha_l + \delta\alpha_h, \\ \delta\alpha_l = & 0,0314 \,. \end{split}$$

В работе [26а] значение $\delta \alpha_h$ было вычислено подстановкой в дисперсионный интеграл экспериментального сечения $\sigma_{e^+e^- \rightarrow hadrons}$ при $\sqrt{s} < 40$ ГэВ и сечения, вычисленного в партонной модели при $\sqrt{s} > 40$ ГэВ:

$$\begin{split} \delta \alpha_h^{[Burkh]} = 0,0282(9), \ \ \bar{\alpha}^{[Burkh]} = [128,87(12)]^{-1} \ [26a] \ . \end{split} \label{eq:delta}$$

В работах [26в] отмечено, что простейшая модель (легчайший векторный мезон + улучшенный по КХД партонный континуум в каждом флэйворном канале) приводит к удивительно близкому результату:

$$\delta\alpha_h^{[Vys]} = 0,0280(4)\,, \ \ \bar{\alpha}^{[Vys]} = [128,90(6)]^{-1}\,[26\text{B}]. \ \ (\text{III.2})$$

Модель бесконечного числа полюсов [266] дает значение δα_h с очень высокой точностью:

$$\begin{split} &\delta\alpha_h^{[Gesh]}=0,0275(2)\,, \ \ \bar{\alpha}^{[Gesh]}=[128,96(3)]^{-1}\,[266]. \end{split} \label{eq:gesh}$$

Недавний анализ экспериментальных данных [26г, д] привел к заметно меньшим значениям δα_h:

$$\delta \alpha_h^{[Sw]} = 0,0265(8)\,, \ \ \bar{\alpha}^{[Sw]} = [129,10(12)]^{-1}\,[26r]\,,\,(III.4)$$

$$\delta\alpha_h^{[Ma]}=0,0273(4),\ \ \bar{\alpha}^{[Ma]}=[128,99(6)]^{-1}\,[26\text{d}]\,.\ (\text{III.5})$$

В данном обзоре мы используем результаты недавнего анализа [26е]:

$$\delta \alpha_{h}^{[Eid]} = 0,0280(7), \quad \bar{\alpha}^{[Eid]} = [128,896(90)]^{-1} [26e]. \quad (III.6)$$

Приложение IV Как "ползут" $\alpha_W(q^2)$ и $\alpha_Z(q^2)$

Эффект "бега" электромагнитной константы связи $\alpha(q^2)$ (логарифмической зависимости эффективного заряда от переданного импульса q^2) известен более четырех десятилетий [75]. В отличие от $\alpha(q^2)$ эффективные константы W- и Z-бозонов $\alpha_W(q^2)$ и $\alpha_Z(q^2)$ в области $0 < q^2 \leq m_Z^2$ не бегут, а скорее "ползут" [78].

Если, как обычно, определить эффективную калибровочную константу связи $g^2(q^2)$ через голый заряд g_0^2 и голую массу m_0 , суммируя геометрический ряд со вставками собственной энергии $\Sigma(q^2)$ в пропагатор калибровочного бозона, то возникает выражение

$$g^{2}(q^{2}) = g_{0}^{2} \left[1 + g_{0}^{2} \frac{\Sigma(q^{2}) - \Sigma(m^{2})}{q^{2} - m^{2}} \right]^{-1},$$
 (IV.1)

где *т*— физическая масса, а $\Sigma(q^2)$ содержит вклад только фермионов, поскольку в области $|q^2| \leq m_Z^2$ петли с W-, Z-и H-бозонами не содержат больших логарифмов.

В разности $g^{-2}(q^2) - g^{-2}(0)$ голая константа связи выпадает, и возникает конечное выражение. В результате

$$\frac{1}{\alpha_{\rm Z}(q^2)} - \frac{1}{\alpha_{\rm Z}(0)} = b_{\rm Z} F(x), \qquad x = \frac{q^2}{m_{\rm Z}^2}, \qquad (\text{IV.2})$$

$$\frac{1}{\alpha_{\rm W}(q^2)} - \frac{1}{\alpha_{\rm W}(0)} = b_{\rm W} F(y), \qquad y = \frac{q^2}{m_Z^2}, \qquad ({\rm IV.3})$$

$$F(x) = \frac{x}{1-x} \ln|x|.$$
 (IV.4)

При $x \ge 1$ уравнения (IV.2) и (IV.3) определяют логарифмический бег зарядов за счет лептонов и кварков, и b_Z и b_W представляют вклад фермионов в первый коэффициент функции Гелл-Манна–Лоу:

$$b_{Z} = \frac{1}{48\pi} \left\{ N_{u} 3 \left[1 + \left(1 - \frac{8}{3} s^{3} \right)^{2} \right] + N_{d} 3 \left[1 + \left(-1 + \frac{4}{3} s^{2} \right)^{2} \right] + N_{l} \left[2 + \left(1 + \left(1 - 4s^{2} \right)^{2} \right) \right] \right\}, \qquad (IV.5)$$
$$b_{W} = \frac{1}{16\pi} \left(6N_{q} + 2N_{l} \right),$$

где $N_{u,d,q,l}$ — числа кварков и лептонов с массой, заметно меньшей, чем $\sqrt{q^2}$.

Для $q^2 \leq m_Z^2$ коэффициенты $b_{Z,W}$ численно равны [78]

$$b_{\rm Z} \simeq 0, 195, \qquad b_{\rm W} \simeq 0, 239.$$

Массивный пропагатор $(q^2 - m^2)^{-1}$ в (IV.1) сильно подавляет бег $\alpha_W(q^2)$ и $\alpha_Z(q^2)$. Так, от $q^2 = 0$ до $q^2 = m_Z^2$, согласно (IV.2) и (IV.3), константа $\alpha_Z(q^2)$ возрастает на 0,85 %:

$$\left[\alpha_{Z}(m_{Z}^{2})\right]^{-1} = 22,905,$$

$$\left[\alpha_{Z}(m_{Z}^{2})\right]^{-1} - \left[\alpha_{Z}(0)\right]^{-1} = -0,195,$$
 (IV.6)

константа $\alpha_{\rm W}(q^2)$ возрастает на 0,95 %:

$$\begin{split} \left[\alpha_{\mathbf{W}}(m_{\mathbf{Z}}^2) \right]^{-1} &= 28,74 \,, \\ \left[\alpha_{\mathbf{W}}(m_{\mathbf{Z}}^2) \right]^{-1} - \left[\alpha_{\mathbf{W}}(0) \right]^{-1} &= -0,272 \,, \end{split} \tag{IV.7}$$

тогда как электромагнитная константа $\alpha(q^2)$ возрастает на 6,34 %:

$$\left[\alpha(m_Z^2)\right]^{-1} - \left[\alpha_W(0)\right]^{-1} = 128,90 - 137,04 = -8,14.$$
(IV.8)

Таким образом, с указанной точностью можно считать

$$\alpha_{\rm Z}(m_{\rm Z}^2) \simeq \alpha_{\rm Z}(0)\,, \qquad \alpha_{\rm W}(m_{\rm Z}^2) \simeq \alpha_{\rm W}(0)\,. \tag{IV.9}$$

В то же время $\alpha(m_Z^2)$ сильно отличается от $\alpha(0)$, и поэтому последняя не имеет отношения к электрослабой физике, а только к чисто электромагнитной.

Приложение V Соотношение между $\bar{\alpha}, G_{\mu}, m_Z$ и голыми величинами

Затравочные (голые) величины отмечаем индексом 0. В электрослабой теории три затравочные заряда e_0, f_0 и g_0 , описывающие взаимодействия γ , Z и W, связаны одним соотношением:

$$\left(\frac{e_0}{g_0}\right)^2 + \left(\frac{g_0}{f_0}\right)^2 = 1.$$
 (V.1)

Затравочные массы векторных бозонов определяются затравочным вакуумным средним поля хиггса η_0 :

$$m_{Z0} = \frac{1}{2} f_0 \eta_0$$
, $m_{W0} = \frac{1}{2} g_0 \eta_0$. (V.2)

Постоянная тонкой структуры $\alpha = e^2/4\pi$ связана с затравочным зарядом e_0 следующим соотношением:

$$\alpha \equiv \alpha(q^2 = 0) = \frac{e_0^2}{4\pi} \left[1 - \Sigma_{\gamma}'(0) - 2 \frac{s}{c} \frac{\Sigma_{\gamma Z}(0)}{m_Z^2} \right], \qquad (V.3)$$

где $\varSigma'(0) = \lim_{q^2 \to 0} \varSigma(q^2)/q^2.$ В калибровке Фейнмана

$$\Sigma_{\gamma Z}(0) pprox - rac{lpha}{2\pi} \; rac{m_W^2}{cs} \; rac{1}{arepsilon} \; ,$$

где размерность пространства-времени $D = 4 - 2\varepsilon$. В унитарной калибровке $\Sigma_{\gamma Z}(0) = 0$.

Проще всего в присутствии члена $2(s/c)\Sigma_{\gamma Z}(0)/m_Z^2$ убедиться, рассматривая взаимодействие фотона с правым электроном e_R . При этом слабые вершинные поправки за счет обмена W-бозоном отсутствуют. (Заметим, что левое нейтрино остается нейтральным и при учете петлевых поправок, так как диаграмма со взаимодействием $\gamma - Z - \bar{\nu}_L \nu_L$ компенсируется вершинной диаграммой с обменом W.)

Наше первое базовое уравнение — это улучшенное с помощью ренормгруппы соотношение между $\bar{\alpha} = \alpha (q^2 = m_Z^2)$ и α_0 :

$$\bar{\alpha} = \alpha_0 \left[1 - \Pi_{\gamma}(m_Z^2) - 2 \frac{s}{c} \Pi_{\gamma Z}(0) \right], \qquad (V.4)$$

где $\Pi_{\gamma}(q^2) = \Sigma_{\gamma}(q^2)/m_Z^2, \ \Pi_{\gamma Z}(q^2) = \Sigma_{\gamma Z}(q^2)/m_Z^2.$

А вот и второе базовое уравнение:

$$m_{\rm Z}^2 = m_{\rm Z0}^2 \left[1 - \Pi_{\rm Z}(m_{\rm Z}^2) \right] = \frac{m_{\rm W0}^2}{c_0^2} \left[1 - \Pi_{\rm Z}(m_{\rm Z}^2) \right].$$
(V.5)

Аналогичное уравнение справедливо для $m_{\rm W}^2$:

$$m_{\rm W}^2 = m_{\rm W0}^2 \left[1 - \Pi_{\rm W}(m_{\rm W}^2) \right], \qquad (V.6)$$

где $\Pi_i(q^2) = \Sigma_i(q^2)/m_i^2$, i = W, Z. Наконец, третье базовое уравнение:

$$G_{\mu} = \frac{g_0^2}{4\sqrt{2}m_{W0}^2} \left[1 + \Pi_W(0) + D\right], \qquad (V.7)$$

где $\Pi_{\rm W}(0) = \Sigma_{\rm W}(0)/m_{\rm W}^2$ приходит от пропагатора W, D представляет собой вклад квадрата и вершинной диаграммы (за вычетом электромагнитных поправок к четырехфермионному взаимодействию) в амплитуду распада мюона. Согласно Сирлину [23],

$$D = \frac{\bar{\alpha}}{4\pi s^2} \left(6 + \frac{7 - 4s^2}{2s^2} \ln c^2 + 4\Delta_{\rm W} \right), \qquad (\rm V.8)$$

где

$$\Delta_{\rm W} \equiv \Delta(m_{\rm W}) = \frac{2}{4 - D} + \ln 4\pi - \gamma - \ln \frac{m_{\rm W}^2}{\mu^2} \,. \tag{V.9}$$

Приложение VI Радиаторы *R*_{Aq} и *R*_{Vq}

Для распадов на легкие кварки q = u, d, s мы пренебрегаем массами кварков и учитываем обмены глюонами в конечном состоянии до членов $\sim \alpha_s^3$ [45 – 48], а также однофотонный обмен в конечном состоянии и интерференцию фотонного и глюонных обменов [49]. Эти поправки слегка отличаются для векторного и аксиального каналов.

Для распадов на кварки имеем

$$\Gamma_{\mathbf{q}} = \Gamma(\mathbf{Z} \to \mathbf{q}\bar{\mathbf{q}}) = 12[g_{\mathbf{A}\mathbf{q}}^2 R_{\mathbf{A}\mathbf{q}} + g_{\mathbf{V}\mathbf{q}}^2 R_{\mathbf{V}\mathbf{q}}]\Gamma_0, \qquad (\text{VI.1})$$

где факторы $R_{A,V}$ отвечают за взаимодействие в конечном состоянии (в наших предыдущих работах вместо буквы R мы использовали букву G). В работах [45 – 48] получено

$$R_{\rm Vq} = 1 + \frac{\hat{\alpha}_{\rm s}}{\pi} + \frac{3}{4} Q_{\rm q}^2 \frac{\bar{\alpha}}{\pi} - \frac{1}{4} Q_{\rm q}^2 \frac{\bar{\alpha}}{\pi} \frac{\hat{\alpha}_{\rm s}}{\pi} + \left[1,409 + (0,065 + 0,015\ln t)\frac{1}{t}\right] \left(\frac{\hat{\alpha}_{\rm s}}{\pi}\right)^2 - 12,77 \left(\frac{\hat{\alpha}_{\rm s}}{\pi}\right)^3 + 12 \frac{\hat{m}_{\rm q}^2}{m_Z^2} \frac{\hat{\alpha}_{\rm s}}{\pi} \delta_{\rm vm}, \qquad (\rm VI.2)$$

$$R_{Aq} = R_{Vq} - 2T_{3q} \left[I_2(t) \left(\frac{\hat{\alpha}_s}{\pi} \right)^2 + I_3(t) \left(\frac{\hat{\alpha}_s}{\pi} \right)^3 \right] - 12 \frac{\hat{m}_q^2}{m_Z^2} \frac{\hat{\alpha}_s}{\pi} \,\delta_{vm} - 6 \frac{\hat{m}_q^2}{m_Z^2} \,\delta_{am}^1 - 10 \frac{\hat{m}_q^2}{m_t^2} \left(\frac{\hat{\alpha}_s}{\pi} \right)^2 \delta_{am}^2 \,, \quad (VI.3)$$

где \hat{m}_{q} — бегущая кварковая масса (см. ниже),

$$\delta_{\rm vm} = 1 + 8, 7\frac{\hat{\alpha}_{\rm s}}{\pi} + 45, 15\left(\frac{\hat{\alpha}_{\rm s}}{\pi}\right)^2, \qquad (\rm VI.4)$$

$$\delta_{am}^{1} = 1 + 3,67 \, \frac{\hat{\alpha}_{s}}{\pi} + (11,29 - \ln t) \left(\frac{\hat{\alpha}_{s}}{\pi}\right)^{2},$$
 (VI.5)

$$\delta_{am}^2 = \frac{8}{81} + \frac{\ln t}{54} , \qquad (VI.6)$$

$$I_2(t) = -3,083 - \ln t + \frac{0,086}{t} + \frac{0,013}{t^2}, \qquad (VI.7)$$

$$I_{3}(t) = -15,988 - 3,722 \ln t + 1,917 \ln^{2} t, \qquad (VI.8)$$
$$t = \frac{m_{t}^{2}}{m_{Z}^{2}}.$$

Члены порядка $(\hat{\alpha}_s/\pi)^3$ за счет диаграмм с тремя глюонами в промежуточном состоянии были вычислены в работах [79]. Для $R_{\rm Vq}$ они численно очень малы (~ 10⁻⁵), поэтому мы не учли их в формуле (VI.2).

Для распада Z \rightarrow bb массой b-кварка пренебрегать нельзя; она уменьшает Γ_b примерно на 1 МэВ ($\sim 0, 5$ %). Глюонные поправки приводят к замене "полюсной" массы $m_b \simeq 4, 7$ ГэВ на бегущую массу при виртуальности m_Z : $m_b \rightarrow \hat{m}_b(m_Z)$. Мы выражаем $\hat{m}_b(m_Z)$ через $m_b, \hat{\alpha}_s(m_Z)$ и $\hat{\alpha}_s(m_b)$ при помощи стандартных двухпетлевых уравнений в схеме $\overline{\text{MS}}$ (см. [50]).

8*

[УФН 1996

Для распада Z $\rightarrow c\bar{c}$ бегущая масса $\hat{m}_c(m_Z)$ порядка 0, 5 ГэВ и соответствующий вклад в Γ_c порядка 0, 05 МэВ. Мы включили этот ничтожный член в программу LEPTOP, так как в других программах он учитывается (см., например, [18]).

В связи с Γ_c отметим, что член $I_2(t)$, даваемый уравнением (VI.7), содержит интерференционные члены $\sim (\hat{\alpha}_s/\pi)^2$. В этих членах учтены три типа конечных состояний: одна кварковая пара, кварковая пара и глюон, две пары кварков. Последний вклад составляет примерно 5% от I_2 , и при современной экспериментальной точности он бесконечно мал. Тем не менее, в принципе, эти члены нуждаются в специальном рассмотрении, особенно, когда эти кварковые пары имеют различный флэйвор, например bbcī. Такие смешанные кварковые пары должны обсуждаться отдельно.

Укажем, что под $\hat{\alpha}_s$ подразумевается константа сильного взаимодействия в схеме вычитаний $\overline{\text{MS}}$ при $\mu^2 = m_Z^2$.

Приложение VII Вывод формул для асимметрий

Асимметрии в процессах $e^+e^- \rightarrow Z \rightarrow f\bar{f}$ можно вычислять, пренебрегая массами е и f по сравнению с массой Z-бозона. (Массовые поправки для f=b имеют величину порядка 2×10^{-3} и будут нами учтены ниже.) Амплитуду (20) взаимодействия Z-бозона с безмассовыми фермионами ff удобно переписать в виде

$$\begin{split} M(\mathbf{Z} \to \mathbf{f} \mathbf{\bar{f}}) &= \frac{1}{2} \ \bar{f} Z_{\alpha} \big[g_{\mathrm{L}}^{\mathrm{f}} j_{\alpha}^{\mathrm{L}} + g_{\mathrm{R}}^{\mathrm{f}} j_{\alpha}^{\mathrm{R}} \big] , \qquad (\text{VII.1}) \\ \text{где} \ \bar{f}^{2} &= 4\sqrt{2} \ G_{\mu} m_{Z}^{2} , \\ j_{\alpha}^{\mathrm{L},\mathrm{R}} &= \bar{\psi}_{\mathrm{L},\mathrm{R}} \ \gamma_{\alpha} \psi_{\mathrm{L},\mathrm{R}} , \\ \psi_{\mathrm{L},\mathrm{R}} &= \frac{1}{2} \ (1 \pm \gamma_{5}) \psi , \end{split}$$

$$g_{\rm L,R}^{\rm I} = g_{\rm Vf} \pm g_{\rm Af}$$

Для безмассовых фермионов киральность есть сохраняющееся квантовое число (аномалии в используемых нами приближениях еще не проявляются) и совпадает с точностью до знака с его спиральностью.

Таким образом, пары $e_L^-e_L^+$ и $e_R^-e_R^+$ вообще не переходят в Z-бозон, а пары $e_L^-e_R^+$ и $e_R^-e_L^+$ рождают Z-бозон с поляризацией ±1 соответственно (вдоль позитронного пучка). Амплитуды рассеяния поэтому имеют вид

$$T(\mathbf{e}_{\mathbf{L},\mathbf{R}}^{-}\mathbf{e}^{+} \to \mathbf{f}_{\mathbf{L},\mathbf{R}}\bar{\mathbf{f}}) = g_{\mathbf{L},\mathbf{R}}^{\mathbf{e}} g_{\mathbf{L},\mathbf{R}}^{f} T_{0} \left(1 + \cos\theta\right),$$
$$T(\mathbf{e}_{\mathbf{L},\mathbf{R}}^{-}\mathbf{e}^{+} \to \mathbf{f}_{\mathbf{R},\mathbf{L}}\bar{\mathbf{f}}) = g_{\mathbf{L},\mathbf{R}}^{\mathbf{e}} g_{\mathbf{R},\mathbf{L}}^{f} T_{0} \left(1 - \cos\theta\right), \qquad (\text{VII.2})$$

где T_0 — несущественный сейчас коэффициент, который восстанавливается из (VII.1), θ — угол между импульсами е⁻ и f. Знак перед соз θ выбирается так, чтобы спиральность сохранялась при рассеянии вперед-назад.

Из вида амплитуд (VII.2) немедленно находятся все асимметрии.

а) Лево-правая асимметрия A_{LR} определяется как отношение

$$A_{\rm LR} = \frac{\sigma_{\rm L} - \sigma_{\rm R}}{\sigma_{\rm L} + \sigma_{\rm R}} \,,$$

где
$$\sigma_{\mathrm{L,R}} = \sigma(\mathrm{e}_{\mathrm{L,R}}\mathrm{e}^+ o \mathrm{ff})$$
. Поэтому

$$A_{\rm LR} = \frac{(g_{\rm L}^{\rm e})^2 - (g_{\rm R}^{\rm e})^2}{(g_{\rm L}^{\rm e})^2 + (g_{\rm R}^{\rm e})^2} \equiv A_{\rm e} \,. \tag{VII.3}$$

б) Продольная поляризация $P_{\tau}(\cos \theta)$ определяется как отношение разности к сумме дифференциальных сечений $(d\sigma/d\theta)_{R,L} = (d\sigma/d\theta)(e\bar{e} \rightarrow \tau_{R,L}\bar{\tau})$:

$$P_{\tau}(\cos\theta) = \frac{(d\sigma/d\theta)_{\rm R} - (d\sigma/d\theta)_{\rm L}}{(d\sigma/d\theta)_{\rm R} + (d\sigma/d\theta)_{\rm L}}, \qquad (\text{VII.4})$$

где

$$\begin{pmatrix} \frac{d\sigma}{d\theta} \end{pmatrix}_{\rm R} = \frac{1}{2m_Z^2} |T_0|^2 (g_{\rm R}^{\tau})^2 [(g_{\rm R}^{\rm e})^2 (1 + \cos\theta)^2 + + (g_{\rm L}^{\rm e})^2 (1 - \cos\theta)^2], \begin{pmatrix} \frac{d\sigma}{d\theta} \end{pmatrix}_{\rm L} = \frac{1}{2m_Z^2} |T_0|^2 (g_{\rm L}^{\tau})^2 [(g_{\rm L}^{\rm e})^2 (1 + \cos\theta)^2 + + (g_{\rm R}^{\rm e})^2 (1 - \cos\theta)^2].$$
(VII.5)

Подставляя (VII.5) в определение (VII.4), получаем

$$P_{\tau}(\cos\theta) = -\frac{A_{\tau}(1+\cos^2\theta)+2A_{\rm e}\cos\theta}{1+\cos^2\theta+2A_{\rm e}A_{\tau}\cos\theta},\qquad(\text{VII.6})$$

где A_e и A_{τ} определены согласно (VII.3). Усредненная по углам вылета τ -лептона продольная поляризация P_{τ} определяется как соответствующее отношение полных сечений

$$\sigma_{\mathrm{L,R}} = \int_{-1}^{1} \mathrm{d}\cos\theta \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\theta}\right)_{\mathrm{L,R}}$$

и имеет вид

$$P_{\tau} = \frac{\sigma_{\mathrm{R}}^{\tau} - \sigma_{\mathrm{L}}^{\tau}}{\sigma_{\mathrm{R}}^{\tau} + \sigma_{\mathrm{L}}^{\tau}} =$$
$$= -\frac{\int_{-1}^{1} \mathrm{d}\cos\theta \left[A_{\tau}(1 + \cos^{2}\theta) + 2A_{\mathrm{e}}\cos\theta\right]}{\int_{-1}^{1} \mathrm{d}\cos\theta \left[1 + \cos^{2}\theta + 2A_{\mathrm{e}}A_{\tau}\cos\theta\right]} = -A_{\tau}.$$
(VII.7)

в) Асимметрию вперед-назад A_{FB}^{f} проще вычислять в терминах $g_{A,V}$. Квадрат матричного элемента процесса е $\bar{e} \rightarrow f\bar{f}$ определяется соотношением

$$|M|^{2} \propto \left\{ (g_{Ae}^{2} + g_{Ve}^{2}) \left[(g_{Af}^{2} + g_{Vf}^{2})(1 + v^{2}\cos^{2}\theta) + (g_{Af}^{2} - g_{Af}^{2})(1 - v^{2}) \right] + \frac{1}{2} (g_{Ve} g_{Ae} g_{Vf} g_{Af}) v \cos \theta \right\},$$
(VII.8)

где θ — угол рассеяния, $v = 1 - 4m_f^2/m_Z^2$ — скорость фермиона f. Отсюда сразу же следует, что

$$A_{\rm FB}^{\rm f} = \frac{3}{4} A_{\rm e} \left[\frac{2g_{\rm Af} g_{\rm Vf} v}{g_{\rm Af}^2 v^2 + g_{\rm Vf}^2 (3 - v^2)/2} \right].$$
 (VII.9)

Массой $m_{\rm f}$ можно пренебречь для всех каналов за исключением f = b, где ненулевая масса приводит к

эффектам порядка 2×10^{-3} . Учет глюонных поправок в конечном состоянии (см. приложение II) сводится к тому, что полюсная масса $m_b \simeq 4,7$ ГэВ в уравнениях (VII.8), (VII.9) заменяется на значение бегущей массы на масштабе m_Z : $m_b \rightarrow \hat{m}_b(m_Z)$.

Следует отметить, что, начиная с глюонных поправок порядка $(\alpha_s/\pi)^2$, невозможно однозначно отделить один кварковый канал от другого, поскольку в этом порядке рождаются дополнительные пары "чужих" кварков. Мы не будем рассматривать поправки $(\hat{\alpha}_s/\pi)^2$ в асимметриях. В нашем приближении отношение g_{Vf}/g_{Af} вообще не перенормируется взаимодействием глюонов в конечном состоянии. Таким образом, ожидаемая точность формулы (VII.9) есть $(\alpha_s/\pi)^2 \sim 2 \times 10^{-3}$, что на порядок лучше достигнутой точности эксперимента.

Приложение VIII Поправки, пропорциональные $m_{\rm f}^2$

В этом приложении приведен простой мнемонический рецепт для вывода поправок, пропорциональных m_t^2 . Строгий вывод требует аккуратной регуляризации фейн-мановских интегралов.

Члены, пропорциональные m_t^2 , вносят вклад в радиационные поправки к затравочным квадратам масс W- и Z-бозонов, но не в поправки к затравочным константам связи. Это следует из соображений размерности. Действительно, размерность Σ , где Σ — собственно-энергетическая вставка для бозона, равна m^2 ; поэтому члены $\propto m_t^2$ остаются в $\Sigma(q^2)$ в пределе $q^2 \rightarrow 0$. С другой стороны, поправки к константам связи пропорциональны $d\Sigma/dq^2$ и не содержат членов $\sim m_t^2$. Поэтому в приближении $\sim \alpha m_t^2$ (приближении Вельтмана [29]), пренебрегая членами $\sim \alpha$, легко оценить вклад t-кварка в параметр $\rho = (\alpha_Z/\alpha_W)(m_W^2/m_Z^2)$:

$$\rho \simeq \frac{\alpha_{Z0}}{\alpha_{W0}} \frac{m_{W0}^2 - \Sigma_W(m_W^2)}{m_{Z0}^2 - \Sigma_Z(m_Z^2)} \simeq 1 + \frac{\Sigma_Z(0)}{m_Z^2} - \frac{\Sigma_W(0)}{m_W^2} \equiv \equiv 1 + \Pi_Z(0) - \Pi_W(0) \,. \tag{VIII.1}$$

Разность $\Pi_{Z}(0) - \Pi_{W}(0)$ оценивается элементарно:

$$\begin{split} \Pi_{\rm W}(0) &= \frac{\Sigma_{\rm W}(0)}{m_{\rm W}^2} = \frac{3\alpha_{\rm W}}{8\pi m_{\rm W}^2} \int_0^\infty \frac{p^2 \, {\rm d} p^2}{p^2 + m_{\rm t}^2} = \\ &= \frac{3\alpha_{\rm W}}{8\pi m_{\rm W}^2} \int_0^\infty \, {\rm d} p^2 - m_{\rm t}^2 \int_0^\infty \frac{{\rm d} p^2}{p^2 + m_{\rm t}^2} \,. \end{split} \tag{VIII.2}$$

(Мы пренебрегли массой b-кварка. При этом пропагатор b-кварка компенсирует множитель p^2 в числителе.)

$$\begin{split} \Pi_{Z}(0) &= \frac{\Sigma_{Z}(0)}{m_{Z}^{2}} = \frac{3\alpha_{Z}}{8\pi m_{Z}^{2}} \left(\frac{1}{2} \int_{0}^{\infty} dp^{2} + \frac{1}{2} \int_{0}^{\infty} \frac{p^{4} dp^{2}}{\left(p^{2} + m_{t}^{2}\right)^{2}}\right) = \\ &= \frac{3\alpha_{Z}}{8\pi m_{Z}^{2}} \left(\frac{1}{2} \int_{0}^{\infty} dp^{2} + \frac{1}{2} \int_{0}^{\infty} dp^{2} - m_{t}^{2} \int_{0}^{\infty} \frac{dp^{2}}{p^{2} + m_{t}^{2}} + \frac{1}{2} m_{t}^{2}\right) \end{split}$$

$$(VIII.3)$$

Учитывая, что в поправке можно положить

$$\frac{\alpha_{\rm W}}{m_W^2} = \frac{\alpha_Z}{m_Z^2} , \qquad (\rm VIII.4)$$

мы видим, что квадратичные и логарифмические расходимости сокращаются, и окончательно

$$\rho \simeq 1 + \Delta \rho_{\rm t} = 1 + \frac{3\alpha_Z}{16\pi} \frac{m_{\rm t}^2}{m_Z^2} = 1 + \frac{3\alpha_Z}{16\pi} t,$$
(VIII.5)

$$\Delta \rho_{\rm t} = \frac{3\bar{\alpha}}{16\pi s^2 c^2} t \,, \tag{VIII.6}$$

где $t = m_t^2/m_Z^2$ и предполагается $t \ge 1$.

Выразим через $\Delta \rho_t$ лидирующие по t поправки к основным величинам: m_W/m_Z , g_{Al} и g_{Vl} .

Определим

$$c_{\alpha}^2 = \frac{\alpha_{\rm W}}{\alpha_{\rm Z}}, \qquad s_{\alpha}^2 = 1 - c_{\alpha}^2.$$
 (VIII.7)

Тогда

$$G_{\mu} = \frac{\pi \alpha_{\rm W}}{\sqrt{2}m_{\rm W}^2} = \frac{\pi}{\sqrt{2}\rho} \frac{\bar{\alpha}}{c_{\alpha}^2 s_{\alpha}^2 m_Z^2} \tag{VIII.8}$$

и, следовательно,

$$s_{\alpha}^2 c_{\alpha}^2 \simeq \frac{s^2 c^2}{1 + \Delta \rho_t}$$
 (VIII.9)

Решая последнее уравнение, получим

$$c_{\alpha}^2 \simeq c^2 \left(1 + \frac{s^2}{c^2 - s^2} \Delta \rho_{\rm t} \right), \qquad (\text{VIII.10})$$

$$s_{\alpha}^2 \simeq s^2 \left(1 - \frac{c^2}{c^2 - s^2} \Delta \rho_{\rm t} \right), \qquad (\text{VIII.11})$$

следовательно,

$$\frac{m_{\rm W}^2}{m_{\rm Z}^2} \simeq c_{\alpha}^2 (1 + \Delta \rho_{\rm t}) \simeq c^2 \left(1 + \frac{c^2}{c^2 - s^2} \Delta \rho_{\rm t}\right) \qquad (\text{VIII.12})$$

И

$$\frac{m_{\rm W}}{m_Z} \simeq c + \frac{3\bar{\alpha}}{32\pi} \frac{c}{(c^2 - s^2)s^2} t.$$
 (VIII.13)

Аналогично

$$g_{\nu}^{2} \simeq g_{\mathrm{Al}}^{2} \simeq \frac{1}{4} \frac{\bar{\alpha}}{c_{\alpha}^{2} s_{\alpha}^{2}} \left(\frac{\bar{\alpha}}{c^{2} s^{2}}\right)^{-1} \simeq \frac{1}{4} \left(1 + \Delta \rho_{t}\right) \simeq$$
$$\simeq \frac{1}{4} \left(1 + \frac{3\bar{\alpha}}{16\pi s^{2} c^{2}} t\right), \qquad (\text{VIII.14})$$

$$\frac{g_{\rm VI}}{g_{\rm AI}} \simeq 1 - 4s_{\alpha}^2 \simeq 1 - 4s^2 + \frac{4c^2s^2}{c^2 - s^2} \ \Delta \rho_{\rm t} = = 1 - 4s^2 + \frac{3\bar{\alpha}}{4\pi(c^2 - s^2)} \ t \,.$$
(VIII.15)

Существование поправок, пропорциональных m_t^2 , было впервые отмечено Вельтманом [29], который подчеркнул появление таких поправок при большой разности $m_t - m_b$, нарушающей изотопическую симметрию. В данном обзоре коэффициенты перед множителями t в уравнениях (VIII.13) – (VIII.15) используются в качестве нормировочных коэффициентов при радиационных поправках V_i .

Приложение IX Явный вид функций $T_i(t)$ и $H_i(h)$

Уравнения для $T_i(t)$ и $H_i(h)$ имеют следующий вид [42, 63]: a) i = m:

$$T_m(t) = \left(\frac{2}{3} - \frac{8}{9}s^2\right)\ln t - \frac{4}{3} + \frac{32}{9}s^2 + \frac{2}{3}(c^2 - s^2) \times \\ \times \left(\frac{t^3}{c^6} - \frac{3t}{c^2} + 2\right)\ln\left|1 - \frac{c^2}{t}\right| + \frac{2}{3}\frac{c^2 - s^2}{c^4}t^2 + \\ + \frac{1}{3}\frac{c^2 - s^2}{c^2}t + \left(\frac{2}{3} - \frac{16}{9}s^2 - \frac{2}{3}t - \frac{32}{9}s^2t\right)F_t(t),$$

$$H_m(h) = -\frac{h}{h-1}\ln h + \frac{c^2h}{h-c^2}\ln\frac{h}{c^2} - \frac{s^2}{18c^2}h - \frac{8}{3}s^2 + \\ + \left(\frac{h^2}{9} - \frac{4h}{9} + \frac{4}{3}\right)F_{\rm h}(h) - (c^2 - s^2) \times \\ \times \left(\frac{h^2}{9c^4} - \frac{4}{9}\frac{h}{c^2} + \frac{4}{3}\right)F_{\rm h}\left(\frac{h}{c^2}\right) + \\ + 1,1203 - 2,59\delta s^2, \qquad (IX.1)$$

где $\delta s^2 = 0,23110 - s^2$ (обратите внимание на знак!); б) i = A:

$$T_{A}(t) = \frac{2}{3} - \frac{8}{9}s^{2} + \frac{16}{27}s^{4} - \frac{1 - 2tF_{t}(t)}{4t - 1} + \left(\frac{32}{9}s^{4} - \frac{8}{3}s^{2} - \frac{1}{2}\right) \times \\ \times \left[\frac{4}{3}tF_{t}(t) - \frac{2}{3}(1 + 2t)\frac{1 - 2tF_{t}(t)}{4t - 1}\right],$$
$$H_{A}(h) = \frac{c^{2}}{1 - c^{2}/h}\ln\frac{h}{c^{2}} - \frac{8h}{9(h - 1)}\ln h + \\ + \left(\frac{4}{3} - \frac{2}{3}h + \frac{2}{9}h^{2}\right)F_{h}(h) - \left(\frac{4}{3} - \frac{4}{9}h + \frac{1}{9}h^{2}\right)F'_{h}(h) - \\ - \frac{1}{18}h + 0,7752 + 1,07\delta s^{2}; \qquad (IX.2)$$

B)
$$i = R$$
:
 $T_R(t) = \frac{2}{9} \ln t + \frac{4}{9} - \frac{2}{9} (1 + 11t) F_t(t)$,
 $H_R(h) = -\frac{4}{3} - \frac{h}{18} + \frac{c^2}{1 - c^2/h} \ln \frac{h}{c^2} + \frac{4}{3} - \frac{4}{9}h + \frac{1}{9}h^2 F_h(h) + \frac{h}{1 - h} \ln h + \frac{1}{3} + \frac{1}{3} + \frac{1}{9}h^2 F_h(h) + \frac{h}{1 - h} \ln h + \frac{1}{3} + \frac{1}{3} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9}h^2 F_h(h) + \frac{h}{1 - h} \ln h + \frac{1}{9} + \frac$

$$T_{\rm v}(t) = T_{\rm A}(t) ,$$

$$H_{\rm v}(h) = H_{\rm A}(h) . \qquad ({\rm IX.4})$$

Функции F_t и F_h являются предельными случаями функции $F(s, m_1, m_2)$, описанной в приложении II. Явные формулы для $F_t(t)$ и $F_h(h)$ приведены в приложениях X, XII (уравнения (X.3) и (XII.11) соответственно).

Приложение Х

Вклад тяжелых фермионов в собственную энергию векторных бозонов

Приведем вклад кварков третьего поколения (t, b) в поляризационные операторы (собственную энергию) векторных бозонов. Используем следующие обозначения: $t = m_t^2/m_Z^2$, $b = m_b^2/m_Z^2$ ($b \ll 1$), $h = m_H^2/m_Z^2$, $\Pi_\gamma(q^2) = \sum_{\gamma\gamma}(q^2)/m_Z^2$, $\Pi_{\gamma Z}(q^2) = \sum_{\gamma Z}(q^2)/m_Z^2$, $\Pi_W(q^2) = \sum_W (q^2)/m_W^2$.

Размерная регуляризация приводит к членам

$$\Delta_i = \frac{2}{4 - D} - \gamma + \ln 4\pi - \ln \frac{m_i^2}{\mu^2} , \qquad (X.1)$$

где i = t, b, W, Z, ..., D — переменная размерность пространства-времени $(4 - D = 2\varepsilon, \varepsilon \to 0), \gamma = -\Gamma'(1) =$ = 0,577... (мы следуем [80], с. 53).

Начнем со вспомогательной функции $F_t(t)$, получающейся предельным переходом из функции $F(s, m_1, m_2)$ ([80], с. 54; [81], с. 88, см. также (II.6)–(II.10)):

$$F_{\rm t}(t) \equiv F(s = m_Z^2, m_{\rm t}, m_{\rm t}) = F(1, t, t), \qquad (X.2)$$

и, используя [80], получим

$$F_{t}(t) = \begin{cases} 2 \left[1 - \sqrt{4t - 1} \arcsin \frac{1}{\sqrt{4t}} \right], & 4t > 1, \\ 2 \left[1 - \sqrt{1 - 4t} \ln \frac{1 + \sqrt{1 - 4t}}{\sqrt{4t}}, & 4t < 1. \end{cases}$$
(X.3)

Приведем асимптотики *F*_t:

$$\begin{split} F_t &\simeq \ln t + 2 \,, \qquad t \to 0 \,, \\ F_t &\simeq \frac{1}{6t} + \frac{1}{60t^2} \,, \qquad t \to \infty \,. \end{split} \tag{X.4}$$

Дифференцируя, получим

$$F'_{t} \equiv m_{Z}^{2} \frac{\mathrm{d}F}{\mathrm{d}m_{Z}^{2}} = -t \frac{\mathrm{d}}{\mathrm{d}t} F_{t} = \frac{1 - 2tF_{t}}{4t - 1}.$$
 (X.5)

В этом приложении под Π_i имеем в виду вклад дублета (t, b) в соответствующий поляризационный оператор:

$$\Pi_{\gamma}(0) = 0, \qquad (X.6)$$

$$\Pi_{\gamma}(m_{Z}^{2}) = \frac{\bar{\alpha}}{\pi} \left\{ Q_{t}^{2} \left[\varDelta_{t} + (1+2t)F_{t}(t) - \frac{1}{3} \right] + Q_{b}^{2} \left(\varDelta_{b} + \frac{5}{3} + \ln b \right) \right\},$$
(X.7)

$$\Pi_{\gamma Z}(0) = 0, \qquad (X.8)$$

$$\Pi_{\gamma Z}(m_Z^2) = \frac{\bar{\alpha}}{cs\pi} \left\{ \left(\frac{Q_t}{4} - s^2 Q_t^2\right) \left[\Delta_t + (1+2t) F_t(t) - \frac{1}{3} \right] - \left(\frac{Q_b}{4} + s^2 Q_b^2\right) \left(\Delta_b + \frac{5}{3} + \ln b \right) \right\}, \quad (X.9)$$

$$\Pi_{\rm W}(0) = -\frac{\bar{\alpha}}{4\pi s^2 c^2} \left(\frac{3}{2} t \varDelta_{\rm t} + \frac{3}{4} t\right), \qquad ({\rm X}.10)$$

$$\Pi_{Z}(m_{Z}^{2}) = \frac{\bar{\alpha}s^{2}}{\pi c^{2}} \left\{ Q_{t}^{2} \left[\Delta_{t} + (1+2t)F_{t}(t) - \frac{1}{3} \right] + Q_{b}^{2} \left(\Delta_{b} + \frac{5}{3} + \ln b \right) \right\} - \frac{\bar{\alpha}}{2\pi c^{2}} \times \left\{ Q_{t} \left[\Delta_{t} + (1+2t)F_{t}(t) - \frac{1}{3} \right] - Q_{b} \left(\Delta_{b} + \frac{5}{3} + \ln b \right) \right\} + \frac{\bar{\alpha}}{8\pi s^{2}c^{2}} \times \left[(2-3t)\Delta_{t} + (1-t)F_{t}(t) + \frac{4}{3} + \ln t \right], \quad (X.12)$$

$$\begin{aligned} \Pi_{Z}(0) &= -\frac{\bar{\alpha}}{4\pi s^{2}c^{2}} \left(\frac{3}{2}tA_{t}\right), \end{aligned} (X.13) \\ \Sigma'(m_{Z}^{2}) &= \frac{\bar{\alpha}s^{2}}{\pi c^{2}} \left\{ Q_{t}^{2} \left[A_{t} + F_{t} - \frac{1}{3} + (1+2t)F_{t}' \right] + \\ &+ Q_{b}^{2} \left(A_{b} + \frac{5}{3} + \ln b \right) \right\} - \frac{\bar{\alpha}}{2\pi c^{2}} \times \\ &\times \left\{ Q_{t} \left[A_{t} + F_{t} - \frac{1}{3} + (1+2t)F_{t}' \right] - \\ &- Q_{b} \left(A_{b} + \frac{5}{3} + \ln b \right) \right\} + \frac{\bar{\alpha}}{8\pi s^{2}c^{2}} \times \\ &\times \left[2A_{t} + F_{t} + \frac{4}{3} + \ln t + (1-t)F_{t}' - 1 \right] = \\ &= \frac{\bar{\alpha}s^{2}}{\pi s^{2}} \left[Q_{t}^{2} \left(A_{t} + \frac{4+2t}{3(4t-1)} + \frac{1-2t+4t^{2}}{1-4t}F_{t} \right) + \\ &+ Q_{b}^{2} \left(A_{b} + \frac{5}{3} + \ln b \right) \right] - \frac{\bar{\alpha}}{2\pi c^{2}} \left[Q_{t} \left(A_{t} + \frac{4+2t}{3(4t-1)} + \\ &+ \frac{1-2t+4t^{2}}{1-4t}F_{t} \right) - Q_{b} \left(A_{b} + \frac{5}{3} + \ln b \right) \right] + \\ &+ \frac{\bar{\alpha}}{8\pi s^{2}c^{2}} \left[2A_{t} + \ln t + \frac{2+t}{3(4t-1)} + \frac{2t^{2}+2t-1}{4t-1}F_{t} \right]. \end{aligned} (X.14) \end{aligned}$$

$$\Pi_{Z}(m_{Z}^{2}) - \Sigma_{Z}'(m_{Z}^{2}) = \left[2tF_{t}(t) - (1+2t)F_{t}'(t)\right] \times \\ \times \left(\frac{\bar{\alpha}s^{2}}{\pi c^{2}}Q_{t}^{2} - \frac{\bar{\alpha}}{2\pi c^{2}}Q_{t} - \frac{\bar{\alpha}}{16\pi s^{2}c^{2}}\right) + \frac{3\bar{\alpha}}{8\pi s^{2}c^{2}}t\varDelta_{t} + \\ + \frac{\bar{\alpha}}{16\pi s^{2}c^{2}}\left[2 - 3F_{t}'(t)\right] + \frac{\bar{\alpha}}{2\pi c^{2}}Q_{b} + \frac{\bar{\alpha}s^{2}}{\pi c^{2}}Q_{b}^{2}.$$
(X.15)

Подставляя выражения для поляризационных операторов в формулы для физических наблюдаемых, мы проверим сокращение членов $\sim \Delta_i$, а также членов, пропорциональных ln *b*, так как предел $m_b \rightarrow 0$ не ведет к расходимостям. Удобно избавиться от членов $\sim \Delta_b$ и $\sim \ln b$ уже в выражениях для поляризационных операторов с помощью уравнения

$$\Delta_{\rm b} + \ln b = \Delta_{\rm t} + \ln t \tag{X.16}$$

и затем убедиться в сокращении членов $\sim \varDelta_t$.

Наше определение волновой функции Z-бозона отличается знаком от принятого в [80]; поэтому величина Π_Z у нас также отличается знаком от приведенного в [80] выражения. При нашем определении взаимодействие Z-бозона с вейлевскими фермионами f равно

$$-\mathrm{i}f\bar{f}\gamma_{\mu}f(T_3-Qs^2)Z_{\mu},$$

а фотона —

t

$$-\mathrm{i}eQ\,\bar{f}\gamma_{\mu}fA_{\mu}$$
.

Последняя вершина совпадает с приводимой в уравнениях (8), (9) работы [80], первая же отличается знаком.

Перейдем к формулам для физических наблюдаемых. Величина $T_m(t)$ (IX.1) определяется следующей комбинацией поляризационных операторов:

$$+ T_m(t) = \frac{16\pi s^4}{3\bar{\alpha}} \left\{ \frac{c^2}{s^2} \left[\Pi_Z(m_Z^2) - \Pi_W(m_W^2) \right] + \Pi_W(m_W^2) - \Pi_W(0) - \Pi_\gamma(m_Z^2) \right\}, \qquad (X.17)$$

так как $\Pi_{\gamma Z}(0) = 0$ для фермионных петель.

С помощью уравнений (X.7), (X.10) – (X.12) получим

$$t + T_m(t) = t + \left(\frac{2}{3} - \frac{8}{9}s^2\right)\ln t - \frac{4}{3} + \frac{32}{9}s^2 + \frac{c^2 - s^2}{3c^2}t + \frac{2}{3}(c^2 - s^2)\left(\frac{t^3}{c^6} - \frac{3t}{c^2} + 2\right)\ln\left|1 - \frac{c^2}{t}\right| + \frac{2(c^2 - s^2)}{3c^4}t^2 + \left(\frac{2}{3} - \frac{16}{9}s^2 - \frac{2}{3}t - \frac{32}{9}s^2t\right)F_t(t), \qquad (X.18)$$

где было учтено, что $\Pi_{\gamma}(m_Z^2)$ сокращается с суммой членов, пропорциональных Q_t^2 и Q_b^2 в $\Pi_Z(m_Z^2)$. Члены, пропорциональные t, возникают от $\Pi_W(0)$ и $\Pi_W(m_Z^2)$; пропорциональные t^2 члены возникают от $\Pi_W(m_W^2)$; члены, пропорциональные $\ln t$, и константы происходят от $\Pi_W(m_W^2)$ и $\Pi_Z(m_Z^2)$; $\ln |1 - c^2/t|$ отвечает порогу (tb) в $\Pi_W(m_W^2)$, и, наконец, единственный источник членов, пропорциональных $F_t(t)$, — это $\Pi_Z(m_Z^2)$.

Бесконечности во вкладе дублета (t, b) в наблюдаемые обязаны сокращаться между собой, так как введение дополнительного семейства фермионов в электрослабую теорию не разрушает ее перенормируемость.

Подставляя пропорциональные Δ_t члены в (Х.17) и учитывая (Х.16), мы получим нуль:

$$\mathcal{A}_{t} \left\{ \frac{c^{2}}{s^{2}} \left[\frac{\bar{\alpha}}{8\pi s^{2}c^{2}} (2-3t) - \frac{\bar{\alpha}}{2\pi c^{2}} - \frac{\bar{\alpha}}{4\pi s^{2}} \left(1 - \frac{3t}{2c^{2}} \right) \right] + \frac{\bar{\alpha}}{4\pi s^{2}} \left(1 - \frac{3t}{2c^{2}} \right) + \frac{\bar{\alpha}}{4\pi s^{2}c^{2}} \frac{3}{2}t \right\} = 0. \quad (X.19)$$

Выражение для $T_{\rm A}(t)$ имеет следующий вид:

$$t + T_{\rm A}(t) = \frac{16\pi s^2 c^2}{3\bar{\alpha}} \left[\Pi_Z(m_Z^2) - \Sigma'_Z(m_Z^2) - \Pi_{\rm W}(0) \right]. \quad ({\rm X}.20)$$

Используя (Х.10), (Х.12) и (Х.14), получим

$$t + T_{\rm A}(t) = t + \frac{2}{3} - \frac{8}{9}s^2 + \frac{16}{27}s^4 - F'_{\rm t} + \left(\frac{32}{9}s^4 - \frac{8}{3}s^2 - \frac{1}{2}\right)\left(\frac{4}{3}tF_{\rm t} - \frac{2(1+2t)}{3}F'_{\rm t}\right).$$
 (X.21)

Сокращение членов, пропорциональных Δ_t , очевидно. $\Pi_W(0)$ дает вклад, пропорциональный t, в то время как все остальные члены возникают из разности $\Pi_Z(m_Z^2) - \Sigma'_Z(m_Z^2)$.

Наконец, перейдем к $T_R(t)$:

$$t + T_R(t) = -\frac{16\pi c^2 s^2}{3\bar{\alpha}} \left[\frac{(c^2 - s^2)}{cs} \Pi_{Z\gamma}(m_Z^2) + \Pi_{\gamma}(m_Z^2) - \Pi_Z(m_Z^2) + \Pi_W(0) \right].$$
(X.22)

Члены, пропорциональные Q_t^2 и Q_b^2 , сокращаются, поэтому остаются только $\Pi_W(0)$ и члены, не содержащие $Q_{t,b}^2$ из $\Pi_{Z\gamma}$ и Π_Z . Подставляя (X.10), (X.9) и (X.12), получим

$$t + T_R(t) = t + \frac{4}{9} + \frac{2}{9} \ln t - \frac{2}{9} (1 + 11t) F(t).$$
 (X.23)

Здесь *t* происходит из $\Pi_{W}(0)$, член, пропорциональный $F_{t}(t)$, — из Π_{Z} , а 4/9 + (2/9) ln *t* — из Π_{Z} и $\Pi_{Z\gamma}$.

Сокращение бесконечностей в (Х.22) следует из соотношения

$$\Delta_{t}\left\{ (c^{2} - s^{2}) \frac{\alpha}{4\pi cs} + cs \left[\frac{\alpha}{2\pi c^{2}} - \frac{(2 - 3t)\alpha}{8\pi c^{2}s^{2}} - \frac{3t\alpha}{8\pi s^{2}c^{2}} \right] \right\} = 0$$
(X.24)

Приложение XI Вклад легких фермионов в собственную энергию векторных бозонов

Вклад дублета легких фермионов в поляризационные операторы легко получается из формул предыдущего приложения.

Для этого вместо $\Delta_{\rm q} + \ln(m_{\rm q}/m_{\rm Z,W})^2$ в формулы приложения X следует подставить $\Delta_{\rm Z,W}$. Физической причиной отсутствия членов, пропорциональных логарифму массы легких кварков и лептонов, является инфракрасная стабильность величин, анализируемых в этом приложении. В формулах (XI.4) и (XI.7) использовано равенство $Q_{\rm u} - Q_{\rm d} = 1$. Индексы и и d обозначают верхние и нижние компоненты дублета.

$$\Pi_{\gamma}(0) = 0, \qquad (XI.1)$$

$$\Pi_{\gamma}(m_Z^2) = \frac{N_c \bar{\alpha}}{3\pi} (\mathcal{Q}_u^2 + \mathcal{Q}_d^2) \left(\Delta_Z + \frac{5}{3} \right), \qquad (XI.2)$$

$$\Pi_{\gamma Z}(0) = 0, \qquad (XI.3)$$

$$\Pi_{\gamma Z}(m_Z^2) = \frac{N_c \bar{\alpha}}{3cs\pi} \left(\Delta_Z + \frac{5}{3} \right) \left[\frac{1}{4} - (Q_u^2 + Q_d^2) s^2 \right], \quad (XI.4)$$

$$\Pi_{\mathbf{W}}(0) = 0, \qquad (\mathbf{XI.5})$$

$$\Pi_{\rm W}(m_{\rm W}^2) = \frac{N_{\rm c}\bar{\alpha}}{12\pi s^2} \left(\Delta_{\rm W} + \frac{5}{3} \right), \qquad ({\rm XI.6})$$

$$\Pi_{Z}(m_{Z}^{2}) = \frac{N_{c}\bar{\alpha}}{3\pi s^{2}c^{2}} \left(\varDelta_{Z} + \frac{5}{3} \right) \left[\frac{1}{4} - \frac{s^{2}}{2} + s^{4}(Q_{u}^{2} + Q_{d}^{2}) \right],$$
(XI.7)

$$\Pi_Z(0) = 0, \qquad (XI.8)$$

$$\Sigma_{Z}'(m_{Z}^{2}) = \frac{N_{c}\bar{\alpha}}{3\pi s^{2}c^{2}} \left(\varDelta_{Z} + \frac{2}{3} \right) \left[\frac{1}{4} - \frac{s^{2}}{2} + s^{4}(Q_{u}^{2} + Q_{d}^{2}) \right].$$
(XI.9)

Формулы (XI.1) – (XI.9) должны использоваться для трех лептонных дублетов (v_e , e), (v_{μ} , μ) и (v_{τ} , τ) с $N_c = 1$ и двух дублетов кварков (u, d) и (c, s) с $N_c = 3$.

Подставляя уравнения (XI.1) – (XI.9) в выражения для физических наблюдаемых через поляризационные операторы (XII.16), (XII.20) и (XII.24), мы получим вклады в константы C_i за счет собственных энергий.

Приложение XII Вклад векторных и скалярных бозонов в собственную энергию векторных бозонов

В этом приложении приведены формулы для бозонных вкладов в поляризационные операторы, которые мы взяли из работы [80] (с. 53, 54). В работе [80] имеется опечатка: в выражении для $\Pi_W(q^2)$ член, пропорциональный Δ_W , должен быть умножен на 1/3.

В [80] поляризационные операторы зависят от c_W и s_W через константы связи и динамически от отношения m_W/m_Z , возникающего из интегралов Фейнмана. Мы всюду заменяем c_W и m_W/m_Z на c и s_W на s. В рамках однопетлевого приближения такая подстановка оправдана. После описанной подстановки мы находим выражения для физических наблюдаемых; в этих выражениях сокращаются ультрафиолетовые расходимости, присутствующие в поляризационных операторах.

Итак, в нижеследующих формулах под Π_i подразумеваются бозонные вклады (все вычисления проводились в калибровке 'т Хофта–Фейнмана):

$$\begin{aligned} \Pi_{\gamma}(m_Z^2) &= -\frac{\bar{\alpha}}{4\pi} \left[3\varDelta_{\mathrm{W}} + 2(3+4c^2) \times \right. \\ & \left. \times \left(1 - \sqrt{4c^2 - 1} \arcsin\frac{1}{2c} \right) \right] = \\ &= -\frac{\bar{\alpha}}{4\pi} (3\varDelta_{\mathrm{W}} + 1, 53) \,, \end{aligned} \tag{XII.1}$$

 $\Pi_{\gamma}(0)=0\,,$

$$\Pi_{\gamma Z}(0) = -\frac{\bar{\alpha}}{4\pi cs} (2c^2 \Delta_{\rm W}) = -\frac{c\bar{\alpha}}{2\pi s} \Delta_{\rm W} , \qquad ({\rm XII.3})$$

$$\Pi_{\gamma Z}(m_Z^2) = -\frac{\bar{\alpha}}{4\pi cs} \left[\left(5c^2 + \frac{1}{6} \right) \varDelta_W + 2 \left(\frac{1}{6} + \frac{13}{3} c^2 + 4c^4 \right) \times \left(1 - \sqrt{4c^2 - 1} \arcsin \frac{1}{2c} \right) + \frac{1}{9} \right] = \\ = -\frac{\bar{\alpha}}{4\pi} \left(\frac{30c^2 + 1}{6cs} \varDelta_W + 3, 76 \right), \qquad (XII.4)$$

$$\begin{split} \Pi_{\rm W}(0) &= \frac{\bar{\alpha}}{4\pi s^2} \left[\left(\frac{s^2}{c^2} - 1 \right) \varDelta_{\rm W} + \frac{3}{4} \left(1 - \frac{c^2}{h} \right)^{-1} \ln \frac{c^2}{h} - \frac{h}{8c^2} + \right. \\ &+ s^2 + \frac{s^4}{c^2} - \frac{1}{8c^2} - \frac{39}{12} + \left(\frac{s^2}{c^2} + 3 - \frac{17}{4s^2} \right) \ln c^2 \right] = \frac{\bar{\alpha}}{4\pi s^2} \times \\ &\times \left[\left(\frac{s^2}{c^2} - 1 \right) \varDelta_{\rm W} + \frac{3}{4} \left(1 - \frac{c^2}{h} \right)^{-1} \ln \frac{c^2}{h} - \frac{h}{8c^2} + 0,85 \right], \end{split}$$
(XII.5)

$$\begin{aligned} \Pi_{\rm W}(m_{\rm W}^2) &= \frac{\bar{\alpha}}{4\pi s^2} \left\{ -\left(\frac{25}{6} - \frac{s^2}{c^2}\right) \Delta_{\rm W} + \right. \\ &+ \left[\frac{s^4}{c^2} - \frac{c^2}{3} \left(\frac{7}{c^2} + 17 - 2\frac{s^4}{c^4}\right) - \frac{1}{6} \left(\frac{1}{2} + \frac{1}{c^2} - \frac{s^4}{2c^4}\right)\right] \times \right. \\ &\times F_{\rm h}\left(\frac{1}{c^2}\right) + \left[\frac{c^2}{3} \left(\frac{3}{c^2} + 21\right) - \frac{s^4}{c^2} + \frac{1}{4}\right] \frac{1}{s^2} \ln \frac{1}{c^2} - 3s^2 - \\ &- \frac{1}{6c^2} + \frac{s^4}{c^2} - \frac{113}{18} + \left(1 - \frac{h}{3c^2} + \frac{h^2}{12c^4}\right) F_{\rm h}\left(\frac{h}{c^2}\right) - 1 - \\ &- \frac{h}{6c^2} + \frac{3h}{4(c^2 - h)} \ln \frac{h}{c^2}\right\} = \frac{\bar{\alpha}}{4\pi s^2} \left[\left(\frac{s^2}{c^2} - \frac{25}{6}\right) \Delta_{\rm W} - \\ &- 1,76 + \left(1 - \frac{h}{3c^2} + \frac{h^2}{12c^4}\right) F_{\rm h}\left(\frac{h}{c^2}\right) - \frac{h}{6c^2} + \\ &+ \frac{3h}{4(c^2 - h)} \ln \frac{h}{c^2} \right], \end{aligned}$$
(XII.6)

$$\begin{split} \Pi_{Z}(m_{Z}^{2}) &= \frac{\bar{\alpha}}{4\pi s^{2}} \left\{ \left(7s^{2} - \frac{25}{6} + \frac{7}{6}\frac{s^{2}}{c^{2}} \right) \varDelta_{W} + \frac{73}{36c^{2}} - \frac{2}{9} + \right. \\ &+ \frac{13}{12c^{2}} \ln c^{2} + \left[2 + \frac{1 + 8c^{2}}{6c^{2}} (c^{2} - s^{2})^{2} - \frac{20}{3}c^{2}(1 + 2c^{2}) \right] \times \\ &\times \left(1 - \sqrt{4c^{2} - 1} \arcsin \frac{1}{2c} \right) - \frac{1}{c^{2}} - \frac{h}{6c^{2}} + \frac{3h}{4c^{2}(1 - h)} \ln h + \\ &+ \left(\frac{1}{c^{2}} - \frac{h}{3c^{2}} + \frac{h^{2}}{12c^{2}} \right) F_{h}(h) \right\} = \frac{\bar{\alpha}}{4\pi s^{2}} \left[\left(7s^{2} - \frac{25}{6} + \frac{7}{6}\frac{s^{2}}{c^{2}} \right) \times \\ &\times \varDelta_{W} - 0,58 - \frac{h}{6c^{2}} + \frac{3h}{4c^{2}(1 - h)} \ln h + \\ &+ \left(\frac{1}{c^{2}} - \frac{h}{3c^{2}} + \frac{h^{2}}{12c^{2}} \right) F_{h}(h) \right], \end{split}$$
(XII.7)

$$\begin{split} \Sigma'_{Z}(m_{Z}^{2}) &= \frac{d\Sigma_{Z}(s)}{ds} \bigg|_{s=m_{Z}^{2}} = \frac{\bar{\alpha}}{4\pi} \left(3 - \frac{19}{6s^{2}} + \frac{1}{6c^{2}} \right) d_{W} + \\ &+ \frac{\bar{\alpha}}{48\pi s^{2}c^{2}} \left\{ \left[-40c^{4} + (c^{2} - s^{2})^{2} \right] \times \right. \\ &\times \left(2 - 2\sqrt{4c^{2} - 1} \arcsin\frac{1}{2c} \right) + \\ &+ \left[12c^{2} + (8c^{2} + 1)(c^{2} - s^{2})^{2} - 40c^{4}(1 + 2c^{2}) \right] \times \\ &\times \left(-1 + \frac{4c^{2}}{\sqrt{4c^{2} - 1}} \arcsin\frac{1}{2c} \right) + \left[1 - (h - 1)^{2} \right] \times \\ &\times F_{h}(h) + \left[11 - 2h + (1 - h)^{2} \right] F'_{h}(h) + \\ &+ \left[1 - \frac{1 + h}{2(h - 1)} \ln h - \frac{1}{2} \ln \frac{h}{c^{4}} \right] + \\ &+ \frac{2}{3} \left[1 + (c^{2} - s^{2})^{2} - 4c^{4} \right] \Big\} = \end{split}$$

$$= \frac{\bar{\alpha}}{4\pi} \left(3 - \frac{19}{6s^2} + \frac{1}{6c^2} \right) \Delta_{\rm W} + \frac{\bar{\alpha}}{4\pi s^2 c^2} \times \left[\left(1 - \frac{h}{3} + \frac{h^2}{12} \right) F'_{\rm h}(h) + \left(\frac{h}{6} - \frac{h^2}{12} \right) F_{\rm h}(h) + \frac{h}{12(1-h)} \ln h - 1, 67 \right].$$
(XII.8)

Функции $F_{\rm h}(h)$
и $F'_{\rm h}(h)$ определены следующим образом:

$$F_{\rm h}(h) \equiv F(s, m_{\rm Z}, m_{\rm H}) \Big|_{s=m_{\rm Z}^2} \equiv F(1, 1, h) ,$$
 (XII.9)

$$F'_{\rm h}(h) \equiv s \frac{\mathrm{d}F(s, m_{\rm Z}, m_{\rm H})}{\mathrm{d}s} \bigg|_{s=m_{\rm Z}^2}.$$
 (XII.10)

Используя [81] (с. 88), получим

$$F_{\rm h}(h) = 1 + \left(\frac{h}{h-1} - \frac{h}{2}\right) \ln h + + h\sqrt{1 - \frac{4}{h}} \ln\left(\sqrt{\frac{h}{4} - 1} + \sqrt{\frac{h}{4}}\right), \quad h > 4,$$

$$F_{\rm h}(h) = 1 + \left(\frac{h}{h-1} - \frac{h}{2}\right) \ln h - - h\sqrt{\frac{4}{h} - 1} \arctan\sqrt{\frac{4}{h} - 1}, \quad h < 4.$$
(XII.11)

При $h \to \infty$

$$F_{\rm h}(h) \approx \frac{1}{2h} - \frac{1}{h^2} \left(1 + \frac{4}{h^2} \right) \ln h + \frac{5}{3h^2} + \frac{59}{12h^3} \,.$$
 (XII.12)

При $h \to 0$

$$F_{\rm h}(h) \approx 1 - \pi \sqrt{h} + \left(1 - \frac{3}{2} \ln h\right) h. \qquad ({\rm XII.13})$$

Наконец, для $F'_{\rm h}(h)$ имеем

$$\begin{split} F_{\rm h}'(h) &= -1 + \frac{h-1}{2} \ln h + (3-h) \times \\ &\times \sqrt{\frac{h}{h-4}} \ln \left(\sqrt{\frac{h-4}{4}} + \sqrt{\frac{h}{4}} \right), \quad h > 4 \,, \end{split}$$

$$F'_{h}(h) = -1 + \frac{h-1}{2} \ln h + (3-h) \times \sqrt{\frac{h}{4-h}} \arctan \sqrt{\frac{4-h}{h}}, \quad h < 4.$$
 (XII.14)

При $h \to \infty$

$$F'_{\rm h}(h) \approx \frac{1}{2h} - \frac{1}{h^2} \ln h$$
. (XII.15)

Все бесконечности в формулах (XII.1) – (XII.8) собраны в факторы \varDelta_W путем замены факторов \varDelta_Z и \varDelta_H при помощи уравнения

$$\Delta_i = \Delta_j + \ln \frac{m_j^2}{m_i^2} \,.$$

Функция $H_m(h)$ равна

$$\begin{split} H_m(h) &= \frac{16\pi s^4}{3\bar{\alpha}} \left\{ \frac{c^2}{s^2} \left[\Pi_Z(m_Z^2) - \Pi_W(m_W^2) \right] + \Pi_W(m_W^2) - \right. \\ &- \Pi_W(0) - \Pi_\gamma(m_Z^2) - 2 \frac{s}{c} \,\Pi_{\gamma Z}(0) \right\} - \operatorname{div} H_m \,, \\ (XII.16) \end{split}$$

где div H_m обозначает сумму пропорциональных Δ_W членов в поляризационных операторах в (XII.16). Подставляя конечные части формул для поляризационных операторов из этого приложения, получим

$$H_m(h) = -\frac{h}{h-1}\ln h + \frac{c^2h}{h-c^2}\ln\frac{h}{c^2} - \frac{s^2}{18c^2}h + \\ + \left(\frac{h^2}{9} - \frac{4h}{9} + \frac{4}{3}\right)F_{\rm h}(h) - (c^2 - s^2) \times \\ \times \left(\frac{h^2}{9c^4} - \frac{4h}{9c^2} + \frac{4}{3}\right)F_{\rm h}\left(\frac{h}{c^2}\right) + 0,50\,, \qquad (\text{XII.17})$$

где пропорциональный $F_h(h)$ член возникает из Π_Z , а член, пропорциональный $F_h(h/c^2)$, происходит из $\Pi_W(m_W^2)$. Член, пропорциональный $\ln h$ приходит из Π_Z , в то время как $\ln(h/c^2)$ происходит как от $\Pi_W(m_W^2)$, так и от $\Pi_W(0)$. Пропорциональный h член содержится в $\Pi_Z, \Pi_W(m_W^2), \Pi_W(0)$, и, наконец, все четыре поляризационных оператора вносят вклад в константу.

Подставляя пропорциональные $\Delta_{\rm W}$ члены в поляризационные операторы в (XII.16), получим

$$\operatorname{div} H_{m} = \frac{16\pi s^{4}}{3\bar{\alpha}} \varDelta_{W} \left[\frac{\bar{\alpha}}{4\pi s^{2}} \frac{c^{2}}{s^{2}} \left(7s^{2} - \frac{25}{6} + \frac{7}{6} \frac{s^{2}}{c^{2}} + \frac{25}{6} - \frac{s^{2}}{c^{2}} \right) + \frac{\bar{\alpha}}{4\pi s^{2}} \left(-\frac{19}{6} \right) + \frac{3\bar{\alpha}}{4\pi} + 2\frac{s}{c} \frac{c}{s} \frac{\bar{\alpha}}{2\pi} \right] = \frac{16\pi s^{4}}{3\bar{\alpha}} \varDelta_{W} \frac{\bar{\alpha}}{\pi s^{2}} .$$
(XII.18)

Наконец, заметим, что расходящийся член в *D* (см. (V.8) и (XIII.26)) в точности компенсирует расходимость в (XII.18), что делает последовательным (самосогласованным) вычитание бесконечности в (XII.16).

Функция $H_A(h)$ выражается через поляризационные операторы следующим образом:

$$H_{\rm A}(h) = \frac{16\pi s^2 c^2}{3\bar{\alpha}} \left[\Pi_{\rm Z}(m_{\rm Z}^2) - \Sigma_{\rm Z}'(m_{\rm Z}^2) - \Pi_{\rm W}(0) \right] - \operatorname{div} H_{\rm A}.$$
(XII.19)

Подставляя конечные части поляризационных операторов, получим

$$H_{\rm A}(h) = \frac{hc^2}{h-c^2} \ln \frac{h}{c^2} - \frac{8h}{9(h-1)} \ln h + \left(\frac{4}{3} - \frac{2}{3}h + \frac{2}{9}h^2\right) \times F_{\rm h}(h) - \left(\frac{4}{3} - \frac{4h}{9} + \frac{h^2}{9}\right) F_{\rm h}'(h) - \frac{h}{18} + 0,78,$$
(XII.20)

где $\ln(h/c^2)$ происходит от Π_W , $\ln h -$ от Π_Z ; $F_h(h)$ происходит как от Π_Z , так и от Σ'_Z , тогда как единственным источником $F'_h(h)$ является Σ'_Z . Линейный по h член содержится в Π_Z и Π_W , в то время как все три поляризационных оператора дают вклад в константу.

Складывая расходящиеся члены, получим

div
$$H_{\rm A} = \frac{16}{3} c^2 s^2 \varDelta_{\rm W} = \frac{16\pi s^2 c^2}{3\bar{\alpha}} \varDelta_{\rm W} \frac{\bar{\alpha}}{\pi}$$
. (XII.21)

Учтем теперь (см. (XIII.18) и (XIII.14)) расходящуюся часть D_A :

div
$$D_{\rm A} = -\frac{16c^2}{3} \Delta_{\rm W} = -\frac{16\pi s^2 c^2}{3\bar{\alpha}} \Delta_{\rm W} \frac{\bar{\alpha}}{\pi s^2}$$
. (XII.22)

В вершинных частях также имеются ультрафиолетовые расходимости. В приложении XIII будет получено (см. (XIII.11) и (XIII.15)), что

div
$$\tilde{F}_{A} = -\left(\frac{16}{3}c^{2}s^{2} - \frac{16}{3}c^{2}\right)\Delta_{W} = \frac{16\pi s^{2}c^{2}}{3\bar{\alpha}}\Delta_{W}\frac{c^{2}}{s^{2}}\frac{\bar{\alpha}}{\pi}.$$
(XII.23)

Сумма членов (XII.21) – (XII.23) равна нулю. Наконец, приведем выражение для $H_R(h)$:

$$H_{R}(h) = -\frac{16\pi}{3\bar{\alpha}}c^{2}s^{2}\left[\frac{(c^{2}-s^{2})}{cs}\Pi_{Z\gamma}(m_{Z}^{2}) + \Pi_{\gamma}(m_{Z}^{2}) - \Pi_{Z}(m_{Z}^{2}) + \Pi_{W}(0) + 2\frac{s}{c}\Pi_{\gamma Z}(0)\right] - \operatorname{div} H_{R}(h) \,.$$
(XII.24)

Собирая конечные части поляризационных операторов, получим

$$H_{R}(h) = -\frac{h}{18} + \frac{c^{2}h}{h-c^{2}} \ln \frac{h}{c^{2}} + \left(\frac{4}{3} - \frac{4}{9}h + \frac{1}{9}h^{2}\right)F_{h}(h) + \frac{h}{1-h}\ln h + 0.03.$$
(XII.25)

Член, пропорциональный $F_h(h)$, приходит из Π_Z , так же как и ln h. Π_W порождает член $\sim \ln(h/c^2)$. Линейный по h член содержится как в Π_Z , так и в Π_W , и все поляризационные операторы, кроме $\Pi_{\gamma Z}(0)$, вносят вклад в константу.

Суммируя расходящиеся части поляризационных операторов, входящих в (XII.24), получим

div
$$H_R(h) = \Delta_W \left[\frac{2}{9} (c^2 - s^2)(1 + 30c^2) + 4c^2 s^2 + \frac{4}{3} c^2 \times \left(7s^2 - \frac{25}{6} + \frac{7}{6} \frac{s^2}{c^2} \right) + \frac{4}{3} c^2 - \frac{4}{3} s^2 + \frac{16}{3} c^2 s^2 \right] =$$

= $\Delta_W (8c^2 - \frac{16}{3} c^4)$. (XII.26)

Принимая во внимание расходящийся член в *D* (см. (V.8), (XIII.14) и (XIII.18)), приводящий к

$$\operatorname{div} D_R = -\frac{16}{3} c^2 \Delta_{\mathrm{W}}, \qquad (\mathrm{XII.27})$$

и в \tilde{F}_R (см. приложение XIII, уравнения (XIII.11) и (XIII.22)), приводящий к

div
$$\tilde{F}_R = \left(\frac{16}{3}c^4 - \frac{8}{3}c^2\right)\Delta_W$$
, (XII.28)

мы убеждаемся в компенсации расходимостей в выражении для *R*.

Приложение XIII Вершинные части F_{Af} и F_{Vf} и константы C_i

В этом приложении собраны вершинные функции, являющиеся частью однопетлевых электрослабых поправок к распадам $Z \rightarrow v\bar{v}, Z \rightarrow l^+l^-, Z \rightarrow u\bar{u}, c\bar{c}, d\bar{d},$ ss̄. В случае распада $Z \rightarrow b\bar{b}$ в петле может распространяться t-кварк, поэтому вершинные поправки не сводятся к числам, а являются функциями от m_t (см. приложение XIV).

Конечные части вершинных функций приведены в [80] на с. 29, 30. Соответствующие выражения зависят от $c_W(s_W)$ и m_W/m_Z . Работая в рамках однопетлевого приближения, мы заменяем c_W и m_W/m_Z на *c*, а s_W на *s*. Поэтому, тогда как вершинные функции в [80] зависят от m_t , m_H и новой физики, наши являются числами (см. также приложение XII).

В этом приложении приведены также отсутствующие в [80] бесконечные части, необходимые для проверки сокращения бесконечностей в физических наблюдаемых.

Начнем с распада $Z \rightarrow \nu \bar{\nu}$:

$$F_{\rm v} \equiv F_{\rm Vv} = F_{\rm Av} = \frac{\bar{\alpha}}{4\pi} \frac{1}{4cs} \left[\frac{1}{4c^2 s^2} \Lambda_2(m_Z^2, m_Z) + \frac{2s^2 - 1}{2s^2} \Lambda_2(m_Z^2, m_W) + \frac{3c^2}{s^2} \Lambda_3(m_Z^2, m_W) \right]. \quad (\text{XIII.1})$$

Для распада на пару заряженных лептонов или кварков имеем

$$F_{\rm Vf} = \frac{\alpha}{4\pi} \left[v_{\rm f} (v_{\rm f}^2 + 3a_{\rm f}^2) \Lambda_2(m_{\rm Z}^2, m_{\rm Z}) + F_{\rm L}^{\rm f} \right], \qquad (\rm XIII.2)$$

$$F_{\rm Af} = \frac{\alpha}{4\pi} \left[a_{\rm f} (3v_{\rm f}^2 + a_{\rm f}^2) \Lambda_2(m_{\rm Z}^2, m_{\rm Z}) + F_{\rm L}^{\rm f} \right], \qquad (\rm XIII.3)$$

где $a_{l} = a_{d} = -1/4sc$, $a_{u} = 1/4sc$, $v_{f} = (T_{3}^{f} - 2Q^{f}s^{2})/2sc$ $(T_{3}^{l} = T_{3}^{d} = -1/2, \quad T_{3}^{u} = 1/2, \quad Q^{l} = -1, \quad Q^{d} = -1/3,$ $Q^{u} = 2/3$). Функции F_{L}^{f} равны

$$F_{\rm L}^{\rm I} = \frac{1}{8s^3c} \Lambda_2(m_{\rm Z}^2, m_{\rm W}) - \frac{3c}{4s^3} \Lambda_3(m_{\rm Z}^2, m_{\rm W}) , \qquad ({\rm XIII.4})$$

$$F_{\rm L}^{\rm u} = -\frac{1-2s^2/3}{8s^3c}\Lambda_2(m_{\rm Z}^2,m_{\rm W}) + \frac{3c}{4s^3}\Lambda_3(m_{\rm Z}^2,m_{\rm W}), \quad (\text{XIII.5})$$

$$F_{\rm L}^{\rm d} = \frac{1 - 4s^2/3}{8s^3c} \Lambda_2(m_{\rm Z}^2, m_{\rm W}) + \frac{3c}{4s^3} \Lambda_3(m_{\rm Z}^2, m_{\rm W}) \,. \quad ({\rm XIII.6})$$

Для вычисления F_{Vf} и F_{Af} надо определить значения трех констант: $\Lambda_2(m_Z^2, m_W)$, $\Lambda_2(m_Z^2, m_Z)$ и $\Lambda_3(m_Z^2, m_W)$:

$$\Lambda_2(m_Z^2, m_W) = -\frac{7}{2} - 2c^2 - (2c^2 + 3)\ln c^2 + 2(1+c^2)^2 \left[\ln c^2 \ln \left(\frac{1+c^2}{c^2}\right) - Sp\left(-\frac{1}{c^2}\right)\right], \text{ (XIII.7)}$$

где было использовано обозначение $m_W/m_Z = c; Sp(x)$ — функция Спенса:

$$Sp(x) = -\int_0^1 \frac{dt}{t} \ln(1 - xt), \quad Sp(-1) = -\frac{\pi^2}{12}.$$
 (XIII.8)

Используя (XIII.7) и (XIII.8), получим

$$A_2(m_Z^2, m_Z) = -\frac{7}{2} - 2 - 8Sp(-1).$$
 (XIII.9)

Наконец,

$$A_{3}(m_{Z}^{2}, m_{W}) = \frac{5}{6} - \frac{2}{3}c^{2} + \frac{2}{3}(2c^{2} + 1) \times \\ \times \sqrt{4c^{2} - 1} \arctan \frac{1}{\sqrt{4c^{2} - 1}} - \\ - \frac{8}{3}c^{2}(c^{2} + 2) \left(\arctan \frac{1}{\sqrt{4c^{2} - 1}}\right)^{2}.$$
(XIII.10)

Приведем выражения для расходящихся частей вершинных функций, описывающих связь Z-бозона с лептонами:

div
$$F_{\rm v} = \frac{\bar{\alpha}}{8\pi} \frac{c}{s^3} \Delta_{\rm W}$$
, div $F_{\rm Vl} = {\rm div} F_{\rm Al} = -{\rm div} F_{\rm v}$. (XIII.11)

Перейдем к вычислению констант *C_i*. Начнем с определений. Согласно [42],

$$V_{\nu}(t, h) = t + T_{\nu}(t) + H_{\nu}(h) + L_{\nu} + D_{\nu} + \tilde{F}_{\nu}.$$
 (XIII.12)

Величина L_v описывает вклад лептонов и легких кварков в поляризационные операторы векторных бозонов и легко может быть получена из формул приложения XI для поляризационных операторов:

$$L_{\rm v} = 4 - 8s^2 + \frac{304}{27} s^4 \,. \tag{XIII.13}$$

Слагаемое D_v возникает из боксовых и вершинных электрослабых поправок к μ -распаду [23]. Выражение для D см. в приложении V (уравнение (V.8)). Для D_v имеем

$$D_{\nu} = -\frac{16\pi s^2 c^2}{3\bar{\alpha}} \left(D - \frac{\bar{\alpha}}{\pi s^2} \Delta_{\rm W} \right). \tag{XIII.14}$$

Наконец,

$$\tilde{F}_{\rm v} = \frac{128\pi s^3 c^3}{3\bar{\alpha}} F_{\rm v} \,. \tag{XIII.15}$$

Сравнивая (XIII.12) и (58), приходим к выражению для $C_{\rm v}$, все составляющие которого теперь определены:

$$C_{\nu} = L_{\nu} + D_{\nu} + \tilde{F}_{\nu}. \qquad (\text{XIII.16})$$

Перейдем к V_A:

$$V_{\rm A}(t,h) = t + T_{\rm A}(t) + H_{\rm A}(h) + L_{\rm A} + D_{\rm A} + \tilde{F}_{\rm A}$$
. (XIII.17)

Выражения для L_A и D_A уже приведены:

$$L_{\rm A} = L_{\rm v}, \qquad D_{\rm A} = D_{\rm v}; \qquad (\rm XIII.18)$$

приведем формулу для вершинной функции:

$$\tilde{F}_{\rm A} = -\frac{128\pi s^3 c^3}{3\bar{\alpha}} F_{\rm Al} \,. \tag{XIII.19}$$

Наконец,

$$C_{\rm A} = L_{\rm A} + D_{\rm A} + \tilde{F}_{\rm A} \,. \tag{XIII.20}$$

Переходим к V_R:

$$V_R(t,h) = t + T_R(t) + H_R(h) + L_R + D_R + \tilde{F}_R,$$
(XIII.21)

где $D_R = D_v$, а $L_R = 0$, так как $\Pi_W(m_W^2)$ отсутствует в отношении g_V/g_A . Для \tilde{F}_R имеем

$$\tilde{F}_R = \frac{16\pi(c^2 - s^2)cs}{3\bar{\alpha}} \left[-F_{\rm Vl} + (1 - 4s^2) F_{\rm Al} \right], \quad (\text{XIII.22})$$

И

$$C_R = L_R + D_R + F_R \,. \tag{XIII.23}$$

Это приложение заканчиваем формулами для C_m :

$$C_m = L_m + D_m \,, \tag{XIII.24}$$

$$L_m = 4(c^2 - s^2) \ln c^2, \qquad (XIII.25)$$

$$D_m = -\frac{16\pi s^{\prime}}{3\bar{\alpha}} \left(D - \frac{\alpha}{\pi s^2} \Delta_{\rm W} \right). \tag{XIII.26}$$

Приложение XIV Функции $\phi(t)$ и $\delta\phi(t)$ в распаде Z \rightarrow bb

Для функции $\phi(t)$ мы используем разложение из работы [57]:

$$\begin{split} \phi(t) &= \frac{3-2s^2}{2s^2c^2} \left\{ t + c^2 \left[2,88 \ln \frac{t}{c^2} - 6,716 + \right. \\ &+ \frac{1}{t} \left(8,368c^2 \ln \frac{t}{c^2} - 3,408c^2 \right) + \frac{1}{t^2} \left(9,126c^4 \ln \frac{t}{c^2} + \\ &+ 2,26c^4 \right) + \frac{1}{t^3} \left(4,043c^6 \ln \frac{t}{c^2} + 7,41c^6 \right) + \ldots \right] \right\}, \end{split}$$
(XIV.1)

а для $\delta \phi(t)$ используем лидирующее приближение, вычисленное в [58] и [53]:

$$\delta\phi(t,h) = \frac{3-2s^2}{2s^2c^2} \left\{ -\frac{\pi^2}{3} \frac{\hat{\alpha}_s(m_t)}{\pi} t + \frac{1}{16s^2c^2} \frac{\bar{\alpha}}{\pi} t^2 \tau_b^{(2)}\left(\frac{h}{t}\right) \right\},$$
(XIV.2)

функция $\tau_{\rm b}^{(2)}$ протабулирована для $m_{\rm H}/m_{\rm t} < 4$ (см. табл. 4). Для $m_{\rm H}/m_{\rm t} > 4$ мы пользуемся разложением [53]:

$$\begin{aligned} \tau_{\rm b}^{(2)} \left(\frac{h}{t}\right) &= \frac{1}{144} \left[311 + 24\pi^2 + 282\ln r + 90\ln^2 r - \right. \\ &- 4r(40 + 6\pi^2 + 15\ln r + 18\ln^2 r) + \frac{3}{100}r^2 \times \\ &\times \left(24209 - 6000\pi^2 - 45420\ln r - 18000\ln^2 r \right) \right], \end{aligned}$$
(XIV.3)

где r = t/h. Для $m_{\rm t} = 175$ ГэВ и $m_{\rm H} = 300$ ГэВ имеем $\tau_{\rm b}^{(2)} = 1,245$.

Приложение XV Поправки $\delta_2 V_i$

Поправки $\delta_2 V_i \sim \bar{\alpha} \hat{\alpha}_s$ возникают за счет глюонных обменов в кварковых электрослабых петлях [54] (см. также [82]). Для двух поколений легких кварков (q = u, d, s, c)

имеем

$$\delta_2^{q} V_m(t,h) = 2 \left[\frac{4}{3} \frac{\hat{\alpha}_s(m_Z)}{\pi} (c^2 - s^2) \ln c^2 \right] =$$

= $\frac{\hat{\alpha}_s(m_Z)}{\pi} \times (-0,377),$ (XV.1)

$$\delta_2^q V_{\rm A}(t,h) = \delta_2^q V_{\rm v}(t,h) = 2 \left[\frac{4}{3} \frac{\hat{\alpha}_{\rm s}(m_Z)}{\pi} \left(c^2 - s^2 + \frac{20}{9} s^4 \right) \right] = \hat{\alpha}_{\rm s}(m_Z)$$

$$=\frac{\alpha_{s}(m_Z)}{\pi} \times (1,750),$$
 (XV.2)

$$\delta_2^{\mathbf{q}} V_R(t,h) = 0. \qquad (\mathbf{XV.3})$$

Результат вычислений для третьего поколения дается достаточно сложными функциями массы t-кварка:

$$\begin{split} \delta_2^t V_m(t,h) &= \frac{4}{3} \frac{\hat{\alpha}_s(m_t)}{\pi} \left[tA_1\left(\frac{1}{4t}\right) + \left(1 - \frac{16}{3}s^2\right) tV_1\left(\frac{1}{4t}\right) + \right. \\ &+ \left(\frac{1}{2} - \frac{2}{3}s^2\right) \ln t - 4 \left(1 - \frac{s^2}{c^2}\right) tF_1\left(\frac{c^2}{t}\right) - \\ &- 4 \frac{s^2}{c^2} tF_1(0) \right], \end{split}$$
(XV.4)

$$\begin{split} \delta_{2}^{t} V_{A}(t,h) &= \delta_{2}^{t} V_{v}(t,h) = \frac{4}{3} \frac{\hat{\alpha}_{s}(m_{t})}{\pi} \left\{ t A_{1}\left(\frac{1}{4t}\right) - \frac{1}{4} A_{1}'\left(\frac{1}{4t}\right) + \left(1 - \frac{8}{3}s^{2}\right)^{2} \left[t V_{1}\left(\frac{1}{4t}\right) - \frac{1}{4} V_{1}'\left(\frac{1}{4t}\right) \right] + \left(\frac{1}{2} - \frac{2}{3}s^{2} + \frac{4}{9}s^{4}\right) - 4t F_{1}(0) \right\}, \end{split}$$
(XV.5)

$$\delta_2^t V_R(t,h) = \frac{4}{3} \frac{\hat{\alpha}_s(m_t)}{\pi} \left[tA_1\left(\frac{1}{4t}\right) - \frac{5}{3} tV_1\left(\frac{1}{4t}\right) - \frac{1}{6} tF_1(0) + \frac{1}{6} \ln t \right], \qquad (XV.6)$$

где

$$\hat{\alpha}_{\rm s}(m_{\rm t}) = \hat{\alpha}_{\rm s}(m_{\rm Z}) \left[1 + \frac{23}{12\pi} \, \hat{\alpha}_{\rm s}(m_{\rm Z}) \ln t \right]^{-1}.$$
 (XV.7)

Отметим, что $\delta_2 V_i$ не зависят от $m_{\rm H}$. Функции $V_1(r)$, $A_1(r)$ и $F_1(x)$ имеют очень сложную форму и были вычислены в работах [54]. Для достаточно малых значений аргументов приведем их разложение (к разложениям из [54] мы добавили кубичные члены):

$$V_{1}(r) = r \left[4\zeta(3) - \frac{5}{6} \right] + r^{2} \frac{328}{81} + r^{3} \frac{1796}{25 \times 27} + \dots, (XV.8)$$
$$A_{1}(r) = \left[-6\zeta(3) - 3\zeta(2) + \frac{21}{4} \right] + r \left[4\zeta(3) - \frac{49}{18} \right] + r^{2} \frac{689}{405} + r^{3} \frac{3382}{7 \times 25 \times 27} + \dots, (XV.9)$$

$$F_{1}(x) = \left[-\frac{3}{2}\zeta(3) - \frac{1}{2}\zeta(2) + \frac{23}{16} \right] + x \left[\zeta(3) - \frac{1}{9}\zeta(2) - \frac{25}{72} \right] + x^{2} \left[\frac{1}{8}\zeta(2) + \frac{25}{3 \times 64} \right] + x^{3} \left[\frac{1}{30}\zeta(2) + \frac{5}{72} \right] + \dots,$$
(XV.10)

где $\zeta(2) = \pi^2/6, \ \zeta(3) = 1,2020569...$

Суммируя вклады (XV.4) – (XV.6) и используя разложения (XV.8) – (XV.10), получим (вплоть до членов $\sim 1/t^3)$

$$\delta_2^t V_m(t,h) = \frac{\hat{\alpha}_s(m_t)}{\pi} \left[-2,86t+0,46\ln t - 1,540 - \frac{0,68}{t} - \frac{0,21}{t^2} \right] = \frac{\hat{\alpha}_s(m_t)}{\pi} \times (-11,67), \text{ (XV.11)}$$

$$\delta_2^t V_{\rm A}(t,h) = \delta_2^t V_{\rm v}(t,h) = \frac{\hat{\alpha}_{\rm s}(m_t)}{\pi} \left[-2,86t+0,493 - \frac{0,19}{t} - \frac{0,05}{t^2} \right] = \frac{\hat{\alpha}_{\rm s}(m_t)}{\pi} \times (-10,10), \text{ (XV.12)}$$

$$\delta_2^t V_R(t,h) = \frac{\hat{\alpha}_s(m_t)}{\pi} \left[-2,86t+0,22\ln t - 1,513 - \frac{0,42}{t} - \frac{0,08}{t^2} \right] = \frac{\hat{\alpha}_s(m_t)}{\pi} \times (-11,88).$$
(XV.13)

Эти формулы справедливы для $m_t > m_Z$. В области $m_t < m_Z$ мы либо считаем $\delta_2^t V_i = 0$, либо используем безмассовый предел

$$\delta_2^{\mathrm{t}} V_i = \frac{1}{2} \, \delta_2^{\mathrm{q}} V_i \,.$$

В любом случае эта область дает пренебрежимый вклад в общий фит.

Приложение XVI Поправки δ₅V_i

Во втором порядке по слабому взаимодействию появляется квадратичная зависимость от массы бозона Хиггса [83]:

$$\delta_5 V_m = \frac{\bar{\alpha}}{24\pi} \frac{m_{\rm H}^2}{m_Z^2} \times \frac{0,747}{c^2} = 0,0011,$$
 (XVI.1)

$$\delta_5 V_{\rm A} = \delta_5 V_{\rm v} = \frac{\bar{\alpha}}{24\pi} \frac{m_{\rm H}^2}{m_Z^2} \times \frac{1,199}{s^2} = 0,0057,$$
 (XVI.2)

$$\delta_5 V_R = -\frac{\bar{\alpha}}{24\pi} \frac{m_{\rm H}^2}{m_Z^2} \frac{c^2 - s^2}{s^2 c^2} \times 0,973 = -0,0032.$$
 (XVI.3)

Здесь в численных оценках мы использовали $m_{\rm H} = 300 \ \Gamma$ эВ.

Список литературы

- Glashow S L Nucl. Phys. 22 579 (1961); Rev. Mod. Phys. 52 539 (1980); Weinberg S Phys. Rev. Lett. 19 1264 (1967); Rev. Mod. Phys. 52 515 (1980); Salam A, in Elementary Particle Theory (Ed. N Svartholm) (Stockholm: Almquist and Wiksells, 1968) p. 367; Rev. Mod. Phys. 52 525 (1980)
- 2. Glashow S L, Iliopoulos J, Maiani L Phys. Rev. D 2 1285 (1970)
- Воспоминания о ранней истории КХД: Gell-Mann M, in "QCD 20 Years Later" (Eds P M Zerwas, H A Kastrup) (World Scientific, 1993) Vol. 1, р. 3. Общий обзор КХД, содержащий литературные ссылки, см. в других статьях этого двухтомника; Marciano W, Pagels H Phys. Rep. C 36 137 (1978)
- Волошин М Б, Тер-Мартиросян К А Теория калибровочных взаимодействий элементарных частиц (М.: Энергоатомиздат, 1984); Ициксон К, Зюбер Ж-Б Квантовая теория поля Т. 1, 2 (М.: Мир, 1984); Itzykson C, Zuber J-B Quantum Field Theory (New York: McGraw-Hill, 1980); Комминс Ю, Буксбаум Ф Слабые взаимодействия лептонов и кварков (М.: Энергоатомиз-

дат, 1987); Commins E D, Bucksbaum P H Weak interactions of leptons and quarks (Cambridge University Press, 1983); Окунь Л Б Лептоны и кварки (М.: Наука, 1990); Okun L B Leptons and Quarks (Amsterdam: North Holland, 1982); Рамон П Теория поля (М.: Мир, 1984); Ramond P Field Theory (A Modern Primer, London: Benjamin/Cummings Inc., 1981); Славнов А А, Фаддеев Л Д Введение в квантовую теорию калибровачных полей (М.: Наука, 1988); Хелзен Ф, Мартин А Кварки и лептоны (М.: Мир, 1987); Halzen F, Martin A Quarks and Leptons (New York: John Wiley, 1984); Ченг Т П, Ли Л Ф Калибровачные теории элементарных частиц (М.: Мир, 1987); Cheng T-P, Li L-F Gauge Theory of Elementary Particle Physics (Clarendon Press, 1984); Georgi H Weak Interactions and Modern Particle Theory (London: Benjamin/Cummings Inc., 1984); Gottfried K, Weisskopf V Concepts of Particle Physics Vol. I, II (New York: Oxford University press, 1986)

- 5. Cabibbo N Phys. Rev. Lett. 10 531 (1963)
- Hasert H J et al. *Phys. Lett. B* 46 138 (1973); Hasert H J et al. *Nucl. Phys. B* 73 1 (1974)
- Барков Л М, Золоторев М С Письма в ЖЭТФ 26 544 (1978); Barkov L M, Zolotorev M S Phys. Lett. B 85 308 (1979)
- Prescott C Y et al. *Phys. Lett. B* 77 347 (1978); Prescott C Y et al. *Phys. Lett. B* 84 524 (1979)
- Aubert J J et al. *Phys. Rev. Lett.* **33** 1404 (1974); Augustin J E et al. *Phys. Rev. Lett.* **33** 1406 (1974)
- 10. Kobayashi M, Maskawa T Progr. Theor. Phys. 49 652 (1973)
- Perl M L et al. *Phys. Rev. Lett.* **35** 1489 (1975); Perl M L et al. *Phys. Lett. B* **63** 460 (1976)
- 12. Herb S W et al. Phys. Rev. Lett. 39 252 (1977)
- 13. CDF Collaboration: Abe F et al. Phys. Rev. Lett. 74 2626 (1995)
- 14. D0 Collaboration: Abachi S et al. Phys. Rev. Lett. 74 2632 (1995)
- 15. 't Hooft G Nucl. Phys. B 33 173 (1971), 35 167 (1971)
- Politzer H D Phys. Rev. Lett. 30 1346 (1973); Gross D J, Wilczek F Phys. Rev. Lett. 30 1343 (1973); Gross D J, Wilczek F Phys. Rev. D 8 3633 (1973)
- Arnison G et al. *Phys. Lett. B* 122 103 (1983); Banner M et al. *Phys. Lett. B* 122 476 (1983); Arnison G et al. *Phys. Lett. B* 126 398 (1983); Bagnaia P et al. *Phys. Lett. B* 129 310 (1983)
- Reports of the working group on precision calculations for the Z resonance (Eds D Bardin, W Hollik, G Passarino) CERN 95-03 (1995)
- 19. Haber H E, Hempfling R Phys. Rev. Lett. 66 1815 (1991)
- Okada Y, Yamaguchi M, Yanagida T Progr. Theor. Phys. 85 1 (1991); Ellis J, Ridolfi G, Zwirner F Phys. Lett. B 257 83 (1991)
- 21. Physics at LEP (Eds J Ellis, R Peccei) CERN 86-02 (1986)
- Physics at LEP1 (Eds G Altarelli, R Kleiss, C Verzegnassi) CERN 89-08 (1989)
- 23. Sirlin A Phys. Rev. D 22 971 (1980)
- Berman S M, Sirlin A Ann. Phys. (N.Y.) 20 20 (1962); Sirlin A Rev. Mod. Phys. 50 573 (1978)
- Abers E S, Dicus D A, Norton R, Quinn H Phys. Rev. 167 1461 (1968); Sirlin A Nucl. Phys. B 71 29 (1974), Rev. Mod. Phys. 50 573 (1978)
- a) Burkhardt H et al. Z. Phys. C 43 497 (1989); 6) Geshkenbein B V, Morgunov V L Phys. Lett. 340 185 (1994), Preprint ITEP 19-95, (Moscow, 1995); в) Высоцкий М И, Невзоров Р Б, Новиков А В Письма в ЖЭТФ 60 392 (1994), ЯФ 59 № 4 (1996); г) Swartz M L Preprint SLAC-PUB-6710 (1994); д) Martin A D, Zeppenfeld D, Preprint MAD/PH/855 (1994); e) Eidelman S, Jegerlehner F Z. Phys. C 67 585 (1995)
- Bardin D Yu, Dokuchaeva V A *Nucl. Phys. B* 246 221 (1984); Sarantakos S, Sirlin A, Marciano W J *Nucl. Phys. B* 227 84 (1983); Stuart R G Z. *Phys. C* 34 445 (1987)
- Sirlin A, Marciano W J Phys. Rev. D 22 2695 (1980), Nucl. Phys. B 189 442 (1981); Wheater J F, Llewellyn-Smith C H Nucl. Phys. B 208 27 (1982) (errata: ibid 226 547 (1983)); Llewellynn-Smith C H Nucl. Phys. B 228 205 (1983); Bardin D Yu, Dokuchaeva V A Preprint JINR, E2-86-260 (Dubna: 1986) (unpublished)
- Veltman M Nucl. Phys. B 123 89 (1977); Acta Phys. Pol. B 8 475 (1977)
- CDHS Collaboration: Abramowitz H et al. *Phys. Rev. Lett.* 57 298 (1986); Blondel A et al. *Z. Phys. C* 45 361 (1990)
- 31. CHARM Collaboration: Allaby J V et al. *Phys. Lett. B* 177 446 (1986)
- 32. CCFR Collaboration: Arroyo C G et al. Phys. Rev. Lett. 72 3452 (1994)
- 33. UA2 Collaboration: Alitti et al. Phys. Lett. B 276 354 (1992)
- 34. CDF Collaboration: Abe A et al. Phys. Rev. Lett. 65 2243 (1990)

- 35. *Review of Particle Properties, Phys. Rev. D* **50** (1994) No. 3, part 1. Erler J, Langacker P *ibid.* **50** 1304 (1994)
- 36. Hagiwara K *Talk at LP95* (10–15 Aug. 1995, Beijing); Renton P B *Talk at Europhysics Conference* (Brussells, 1995)
- CHARM II Collaboration *Phys. Lett. B* 281 159 (1992), 259 499 (1991)
- 38. Novikov V, Okun L, Vysotsky M Phys. Lett. B 298 453 (1993)
- 39. CHARM II Collaboration Phys. Lett. B 320 203 (1994)
- Хриплович И Б *Несохранение четности в атомных явлениях* (М.: Наука, 1988); Blundell S A, Johnson W R, Sapirstein J *Phys. Rev. Lett.* **65** 1411 (1990); Bouchiat M A, Pottier L *Science* **234** 1203 (1986); Rosner J, Marciano W *Phys. Rev. Lett.* **65** 2963 (1990)
- Lynn B W, Peskin M E Report SLAC-PUB-3724 (1985) (unpublished); Lynn B W, Peskin M E, Stuart R G, in *Physics at LEP* (Report CERN 86-02) (CERN, Geneva, 1986)
- 42. Novikov V, Okun L, Vysotsky M Nucl. Phys. B 397 35 (1993)
- Willenbrock S, Valencia G Phys. Lett. B 259 573 (1991); Leike A, Riemann T, Rose J Phys. Lett. B 273 513 (1991); L3 Collaboration: O Adriani et al. Phys. Lett. B 315 494 (1993); Veltman H Z. Phys. C 62 35 (1994)
- 44. The LEP Collaborations ALEPH, DELPHI, L3, OPAL and the LEP Electroweak Working Group, Preprint CERN-PPR/95-172 (1995)
- Gorishny S G, Kataev A L, Larin S A Phys. Lett. B 259 144 (1991); Surguladze L R, Samuel M A Phys. Rev. Lett. 66 560 (1991)
- Chetyrkin K G, Kühn J H *Phys. Lett.* B248 359 (1990); Chetyrkin K G, Kühn J H, Kwiatkowski A *Phys. Lett.* 282 221 (1992)
- 47. Chetyrkin K G, Kwiatkowski A *Phys. Lett. B* **305** 288 (1993); **319** 307 (1993); Chetyrkin K G *Phys. Lett. B* **307** 169 (1993)
- Larin S A, van Ritberger T, Vermaseren J A M Phys. Lett. B 320 (1994) 159; Chetyrkin K G, Tarasov O V Phys. Lett. B 327 114 (1994)
- 49. Kataev A L Phys. Lett. 287 209 (1992)
- Gray N et al. Z. Phys. C 48 673 (1990); Surguladze L R Univ. of Oregon Report No. OITS543 hep-ph/9405325 (1994)
- Altarelli G Proc. of the Int. Europhysics Conf. on High Energy Physics (Marseille 1993) (Eds J Carr, M Perrotet) (Edition Frontieres, 1994); Okun L ibid.; Schildknecht D ibid.
- 52. Vysotsky M Proceedings of the XXVII Int.Conference on High Energy Physics (Glasgow: Institute of Physics Publishing, 1994) (Eds P J Bussey, I G Knowles)
- Barbieri R et al. *Phys. Lett. B* 288 95 (1992); *Nucl. Phys. B* 409 105 (1993); Fleisher J, Tarasov O V, Jegerlehner F Preprint BI-TP-93/24, PSI-PR-93-14 (1993); *Phys. Lett. B* 319 249 (1993); Halzen F, Kniehl B A, Stong M L Z. *Phys. C* 58 119 (1993); Barbieri R, Ciafaloni P, Strumia A *Phys. Lett. B* 317 381 (1993)
- Djouadi A, Verzegnassi C Phys. Lett. B 195 265 (1987); Kniehl B A Nucl. Phys. B 347 86 (1990); Halzen F, Kniehl B A Nucl. Phys. B 353 517 (1991)
- 55. Novikov V et al. *Phys. Rep. C* **41** 1 (1978)
- Chetyrkin K G, Kühn J H, Steinhauser M Phys. Lett. B 351 331 (1995); Phys. Rev. Lett. 75 3394 (1995); Avdeev L et al. Phys. Lett. B 336 560 (1994); (errata: ibid. 349 597 (1995))
- Akhundov A A, Bardin D Yu, Riemann T *Nucl. Phys. B* 276 1 (1986); Bernabeu J, Pich A, Santamaria A *Phys. Lett. B* 200 569 (1986); Beenaker W, Hollik W Z. *Phys. C* 40 141 (1988)

Electroweak radiative correction in the Z-boson decay

M.I. Vysotsky, V.A. Novikov, L.B. Okun

Institute for Theoretical and Experimental Physics, ul. B. Cheremushkinskaya 25, 117259 Moscow, Russia Tel. (7-095) 123-31 92. Fax (7-095) 123-65 84 E-mail: vysotsky@vxitep.itep.ru; novikov@vxitep.itep.ru; okun@vxitep.itep.ru A.N. Rozanov ITEP and CPPM, IN2P3-CNRS, Marseille, France E-mail: rozanov@cppm.in2p3.fr

We present a detailed review of the electroweak radiative corrections to the Z-boson decay, in the framework of the Minimal Standard Model (MSM). After a short historical introduction we describe the optimal parametrization of the MSM, especially of the Born approximation, and derive expressions for the one-loop electroweak corrections. Finally a global fit of all relevant experimental data is performed, resulting in fitted values of the top-quark mass, m_t , and strong coupling constant α_s . Allowed range for the value of the Higgs mass, m_H , is discussed. Various details of calculations are described in 16 appendices.

PACS numbers: 12.15.Lk, 13.38 Dg. Bibliography — 83 references

- Fleisher J et al. *Phys. Lett. B* 293 437 (1992); Buchalla C, Buras A *Nucl. Phys. B* 398 285 (1990); Degrassi G *Nucl. Phys. B* 407 271 (1993); Chetyrkin K G, Kwiatkowski A, Steinhauser M *Mod. Phys. Lett. A* 8 2785 (1993)
- Bardin D et al. Program ZFITTER 4.9, Nucl. Phys. B 351 1 (1991);
 Z. Phys. C 44 493 (1989); Phys. Lett. B 255 290 (1991); Preprint CERN-TH.6443-92 (1992)
- Ellis J, Fogli G Phys. Lett. B 213 189, 526 (1988), 232 139 (1989); 249 543 (1990)
- Hollik W Fortschr. Phys. 38 3 165 (1990); Consoli M, Hollik W, Jegerlehner F Proc. of the Workshop on Z physics at LEP I (CERN Report 89-08) Vol. I p. 7; Burgers G et al. ibid. p. 55
- 62. Montagna G et al. *Nucl. Phys. B* **401** 3 (1993); Montagna G et al. *Program TOPAZO, Comput. Phys. Commun.* **76** 328 (1993)
- 63. Novikov V et al. Preprint ITEP 19-95, Preprint CPPM-1-95; http:// cppm.in2p3.fr/leptop/intro_leptop.html
- 64. Caner A Conf. "Les Rencontres de Physique de la Vallee d'Aoste" (march, 1996)
- 65. Narain M Conf. "Les Rencontres de Physique de la Vallee d'Aoste" (march, 1996)
- Boulware M, Finnell D Phys. Rev. D 44 2054 (1991); Kane G L, Kolda C, Wells J D Phys. Lett. B 338 219 (1994)
- 67. Shifman M Preprint TPI-MINN-95/32-T (Minnesota, 1995)
- 68. Voloshin M Int. J. Mod. Phys. A 10 2865 (1995)
- Quintas P Z et al. *Phys. Rev. Lett.* **71** 1307 (1993); Berge J P et al. *Z. Phys. C* **49** 187 (1991); Arneodo M et al. *Phys. Lett. B* **309** 222 (1993); Bazizi K, Wimpenny S J Preprint UCR/DIS/91-02; Virchaux M, Milsztajn A *Phys. Lett.* **274** 221 (1992)
- 70. Kobel M Preprint DESY-F31-91-03
- Voloshin M Preprint ITEP-21-1980 (Moscow, 1980); Voloshin M Doctor of Science Thesis (Moscow, ITEP, 1988)
- Peskin M, Takeuchi T Phys. Rev. Lett. 65 964 (1990); Phys. Rev. D 46 381 (1992)
- 73. Altarelli G, Barbieri R, Jadach S Nucl. Phys. B 369 3 (1992)
- Interim Report on the Physics Motivations for an Energy Upgrade of LEP 2 Preprint CERN-TH/95-151, CERN-PPE/95-78 (Geneva, 1995)
- Ландау Л Д, Абрикосов А А, Халатников И М Докл. Акад. наук СССР 95 497, 1177 (1954); Gell-Mann M, Low F Phys. Rev. 95 1300 (1954)
- 76. Novikov V, Okun L, Vysotsky M Phys. Lett. B 324 89 (1994)
- 77. Невзоров Р Б, Новиков А В *ЯФ* **59** 540 (1996)
- Novikov V A, Okun L B and Vysotsky M I Mod. Phys. Lett. A 9 1489 (1994)
- Larin S A, van Ritberger T, Vermaseren J A M *Phys. Lett. B* 320 159 (1994); Chetyrkin K G, Tarasov O V *Phys. Lett. B* 327 114 (1994)
- In *Physics at LEP1* (Eds G Altarelli, R Kleiss, C Verzegnassi) (CERN 89-08, Geneva, 1989) Vol. 1 p. 7. Conveners: Consoli M, Hollik W; Working Group: Jegerlehner F
- In *Physics at LEP1* (Eds G Altarelli, R Kleiss, C Verzegnassi) (CERN 89-08, Geneva, 1989) Vol. 1 p. 57. Conveners: Burgers G, Jegerlehner F; Working Group: Kniehl B, Kühn J
- Высоцкий М И, Некрасов Н А, Новиков В А, Окунь Л Б ЯФ 57 883 (1994)
- Van der Bij J, Veltman M Nucl. Phys. B 231 205 (1984), 248 141 (1984)