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Ordered quantum-dot arrays
in semiconducting matrices

N N Ledentsov, VM Ustinov, SV Ivanov,
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D Bimberg, Zh I Alferov

1. Introduction

The use of semiconducting materials revolutionised micro-
and optoelectronics. The high density of atoms in the crystal
enables achievement of high electron and hole concentrations
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by doping the semiconductor, allows intensive electric cur-
rents with low dissipation of energy, and leads to high
fundamental-absorption coefficients and, hence, elevated
amplification levels on population inversion. These proper-
ties are important, for example, in photodetector or injection
laser applications. The invention [1 — 3] and realisation [4 — 6]
of ‘ideal’ defect-free heterostructures have extended qualita-
tively the range of possibilities in the control of electron
currents and light fluxes in a crystal.

The high density of atoms has certain obvious conse-
quences, however, which are often adverse to device function-
ing. In a crystal, the discrete atomic levels peculiar to gas
phase are split into wide bands giving rise to allowed
transitions, the ultimate reason being that the high atomic
density causes an interaction between the electron shells. This
tends to charge-carrier ‘energy spread’ with increasing
temperature and accordingly degrades the characteristics of
most micro- and optoelectronic devices. In a heterolaser, for
example, such energy spread reduces the gain at a fixed
concentration of injected carriers and thus necessitates a
higher injection current density for maintaining the genera-
tion regime.

A certain improvement in the characteristics of semicon-
ducting devices has been achieved by providing the active
region of a device with ultrathin layers exhibiting dimensional
quantisation effects. In this case the initially continuous
charge-carrier energy spectrum splits into a number of
discrete subbands in the direction of the dimensional quanti-
sation axis. For a single infinite-wall quantum well, the energy
spectrum takes the form
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E= 2m* <LZ> +
where m* is the effective mass of the carrier, L. is the thickness
of the dimensionally-quantized layer, and k, , is the charge-
carrier wave vector parallel to the layer plane. The first term
characterises the discrete electronic spectrum in the direction
of the quantisation axis, the second one describes the
continuous energy spectrum of the infinite motion the carrier
performs in the layer plane.

Dimensional quantisation modifies markedly the electro-
nic spectrum in a crystal. The density of states near the
bottom of a dimensionally-quantized subband, rather than
being parabolically increased with energy, now goes in steps.
If the energy difference between two different subbands of
dimensional quantisation exceeds the thermal energy (kT),
the deterioration of device characteristics with temperature is
somewhat less than in the bulk material. For example, in the
best-quality quantum-dimensional lasers the characteristic
temperature 7, which describes the exponential growth of

the threshold current with increasing temperature, is about
two to three times that of a thick-layer laser and may be as
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high as 240 K. The use of quantum wells has also improved
the mode stability and dynamical characteristics, and reduced
the threshold current density down to ~ 50 A cm™~2 at 300 K
[7]. Still, the problem of the carrier scattering in a wide energy
‘window’ is not yet cardinally resolved.

2. General requirements on quantum-dot structures

The future of semiconducting devices is associated with the
use of structures of less than two dimensions, i.e. quantum
wires and, in particular, quantum dots. The quantum dot
makes up a crystallite which can also be thought of as a large
‘semiconducting atom’ containing from thousands to hun-
dreds of thousands of ordinary atoms. The energy spectrum
of'a charge carrier for such a system must be described by a set
of completely discrete energy levels

E=06(n), where n=0,1,2, 3, ... (2)

Accordingly, the absorption and emission spectra of the
quantum dot would constitute a collection of narrow lines
whose width is determined by the carrier lifetime in the dot,
for example, by the exciton radiative annihilation time.
Thermal broadening is completely absent here.

Both the observation of quantum-mechanical effects and
the realisation of corresponding device structures depend on
whether ‘ideal’ quantum dots can be prepared. For most
applications quantum dots must be placed in a semiconduct-
ing matrix, this latter allowing carriers to be current-injected
into a dot (the glass-matrix semiconducting quantum dots of
the pioneering studies [8] are of limited practical use and the
glass-semiconductor interface cannot in principle be consi-
dered as defect-free). It is desirable that the dimensional
quantisation levels of the carriers be separated by more than
2-3 kT at room temperature, in order to prevent temperature-
activated population of the higher levels. For most semicon-
ducting compounds this places the effective dot ‘radius’
within 50 A. On the other hand, the lowest carrier level in
the dot must incorporate as large localisation energy as
possible with respect to the continuum (i.e., to the edge of
the corresponding matrix-material band). Otherwise, an
increase in temperature will cause a thermally activated
escape of carriers from the dots. Moreover, the dots must
possess defectless heteroboundaries and be free of nonradia-
tive recombination centres — requirements which cannot in
general be achieved unless by direct methods of fabrication.
To provide high maximum gain magnitudes requires produc-
tion of dense arrays of heterogeneous quantum dots in the
substrate plane (for injection heterolasers) and/or perpendi-
cular to it (which is of particular importance for surface and
cascade lasing behaviour and for all types of photodetectors).

3. Quantum-dot structure preparation

3.1. Methods

Various quantum-dot preparation techniques, such as selec-
tive etching of quantum-well structures or shaped-surface
growth, have been employed. It turned out, however, that the
most promising methods are direct ones using spontaneous
nanostructure formation effects such as growth on micro-
scopically-ordered faceted surfaces [9], formation of ordered
monolayer-domain structures under submonolayer deposi-
tions [10], and in particular formation of ordered quantum-
wire (dot) arrays via spontaneous morphological transforma-
tion of an elastic-stressed layer [11]. In the last case, three-
dimensional islands coherent with the substrate, form (Fig. 1).

Figure 1. (a) Image in the cross section along [010] axis for an array of
quantum dots tunnel-coupled in the z-direction ([100]), which was
obtained by high-resolution transmission electron spectroscopy (TES).
Dots were produced on three-stage deposition of InAs layers 5 A thick in
average, which were separated by GaAs deposited layers 15 A in average
thickness; (b) TES micrograph of the same structure (top view). InAs dots
are arranged in the substrate plane into a primitive lattice with principal
axes along the [010] and [100] directions.

Surprisingly, the islands produced at the substrate surface
(which, in the case of the Stransky—Krastanov growth
mechanism, is ‘wetted’ by a thin layer of elastic-stressed
material) have been found to be highly uniform in shape and
size as well as being ordered in terms of their relative positions
[11, 12]. This fact undoubtedly opens up fundamentally new
possibilities both in basic and applied studies of zero-
dimensional structures.

3.2. The nature of forming the ordered quantum-dot structures
Spontaneous formation of surface nanostructures has long
attracted the attention of physicists. The spontaneous forma-
tion of ordered arrays of facets at crystal surfaces was first
predicted in the works of Andreev and Marchenko [13, 14],
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who showed that if the faceting of a surface is energetically
favourable, then, taking into account the edge-end relaxation
of the intrinsic stresses of the surface, the faceting must always
be periodic. Later on Marchenko [15] also showed that for a
plane surface carrying two coexistent phases with different
magnitudes of the surface friction tensor, the elastic domain-
boundary relaxation of surface stresses energetically favours
the occurrence of periodic (‘parquet’) surface structures. In
both the faceting and parqueting situations, the total surface
area of the island (facet) system does not change as the
characteristic period is varied. In this sense, the formation of
three-dimensional islands differs qualitatively from the first
two cases. Its driving force is the elastic relaxation in the
volume of the stressed island, which is possible if a three-
dimensional island forms. For a fixed amount of deposited
material, the elastic relaxation of the stresses arising from the
mismatch of the island and substrate lattice parameters is a
function of the shape rather than the size of the island. At the
same time, the total surface area of the system of islands
increases as the characteristic island size is decreased. The
energetically favourable process in this case is the continuous
(in time) growth of the characteristic island size due to the
evaporation of the smaller islands. Until recently, this
approach has appeared to be quite justified, and the experi-
mentally founded small island size dispersion has been linked
to kinetic restrictions.

On the other hand, the surface energy of an elastic-
stressed layer may differ significantly from that of the relaxed
material, the difference being expressible in simplified form as

E = —18+ S&%, (3)

where ¢ is the strain, t is the surface friction coefficient,
which may be either positive (the surface is initially
‘extended’ at ¢ = 0) or negative (the surface is ‘compressed’),
and S is a numerical factor. Estimates show that, for typical
values of 7 and S in crystals and for strains on the order of or
more than 10%, the second term, which is generally positive,
becomes dominant [16]. As first shown by Shchukin et al.
[12], the dramatic increase of the surface energy in the
elastic-stressed layer plays a leading part in the formation
of arrays of shape- and size-ordered islands. An increase in
the total area of the surface of the system is accompanied in
this case by the elastic relaxation of the island material
deformation ¢ and, as a consequence, by a decrease in the
surface energy per unit area of the lateral surfaces of the
islands as opposed to the surface of the elastic-stressed
wetting layer. Thus, for quite realistic parameters, the total
energy of the system of islands may decrease as the toral
surface area of this system increases due to the reduction in
the characteristic size of individual islands (until the short-
range potentials formed by the edge ends of the islands—
crystallites begin to contribute). At small island sizes, the
edge-end relaxation of surface stresses may be another size-
ordering factor [12, 13]. In view of the repulsive interactions
between the islands via the elastic-anisotropic substrate, to the
energy minimum there corresponds, in this case, a laterally
ordered array of three-dimensional islands all identical in
size and shape [12]. At the (001) surface of a cubic crystal, the
energetically favourable process is the ordering of the islands
into a primitive two-dimensional lattice with principal axes
along the least-stiffness directions [100] and [010]. The elastic
anisotropy of the substrate is also responsible for the shape
of an individual island, which has a square base with sides

along [100] and [010] axes. The lateral sides are determined
by {011} or {023} facets. The preservation of a compact
shape is energetically favourable, since it enables a large
energy gain at the expense of elastic stress relaxation (for
{011} facets, the relaxation is 60% of the total elastic energy
of the stressed layer [12]) without too large an increase in
surface area.

Figure 1a presents a high-resolution transmission electron
spectroscopy (TES) image of the cross section (along the [010]
direction) of an array of quantum dots tunnel-coupled in the
z-direction ([100]), whose substrate plane arrangement is that
of a primitive two-dimensional lattice (Fig. 1b, TES micro-
graph, top view) with [010] and [100] principal axes [13]. The
formation of tunnel-coupled islands (for example, InAs
islands in a GaAs matrix) proceeds as follows: a partial
overgrowing (closure) of an island (to about 1/4 — 1/2 of its
full height) increases elastic stresses in the volume of the island
and introduces into the picture the thermodynamic tendency
of the stressed material to ‘surface’ from the overgrown to the
non-overgrown part, with a corresponding replacement of the
former by the atoms of an intermediate GaAs layer. Repeated
InAs and GaAs depositions lead to a multiple splitting of the
stressed island thus forming a structure of a number of tunnel-
coupled parts as shown in Fig. 1la [17]. At the same amount of
InAs per deposition cycle, the upper islands are of somewhat
larger size due to InAs being in part mass-transferred from the
lower parts.

4. Optical properties of structures

with three-dimensional ordered quantum-dot arrays

4.1. Luminescence of three-dimensional quantum-dot arrays
Figure 2a shows the photoluminescence (PL) spectra of
lamellar structures which are grown with one (QDI), two
(QD2), three (QD3), and four (QD4) InAs deposition cycles
and which have an average layer thickness of 1.7 ML and are
divided by GaAs interlayers of 25 A average thickness. For an
intermediate GaAs layer of such a thickness, the splitting of a
pyramidal island leads to the formation of a set of islands
closely-spaced in the vertical direction. The electron and hole
states of neighbouring islands are coupled, and this, owing to
the resulting decrease in the dimensional quantisation energy
for the electron and hole ground states, exactly produces a
long-wave shift of the quantum-dot PL line in the case of
several InAs layers being deposited. A similar effect is
observed for the corresponding peak in the calorimetric
absorption spectrum [17]. Simultaneously, there is a sharp
decrease in the exciton radiative recombination lifetime in a
quantum dot [17].

Increasing the width of the GaAs layer leads to a short-
wave shift of the PL line (Fig. 2b). This is due to the reduced
interaction between carriers localised on neighbouring dots.
As the width of the GaAs layer varies from ~ 10 A to ~25 A,
the line shift is not very significant, but rising to ~ 45 A causes
a marked (~ 40 MeV) shift to higher energies. Notice that the
line peak does not reach a position characteristic of a single
InAs deposition cycle, implying that tunnelling effects are
important in this case as well.

4.2. Injection heterolasers based on three-dimensional
tunnel-coupled dot arrays

As an illustration of a possible use of three-dimensional
arrays of tunnel-coupled quantum dots, let us consider the
operating characteristics of injection heterolasers. Lasers with
single-plane active region and (In, Ga)As/GaAs quantum



396 Conferences and symposia

Physics— Uspekhi 39 (4)

a
d=25A

N

1 1 1 ]
1.1 1.2 1.3 1.4
Photon energy, eV

PL intensity

PL intensity
(s8]
W
>

1.1 1.2 1.3 1.4
Photon energy, eV

Figure 2. The photoluminescence (PL) of the tunnel-coupled quantum-dot
structures studied at 7= 77 K: (a) PL spectra of structures under one
(n = 1), two, three, and four InAs deposition cycles producing layers of
5 A average thickness, which were separated by GaAs deposition layers of
25 A average thickness; (b) position of the PL line against the width of the
GaAs layer for the n = 3 structure. Average InAs thickness is 5 A.

dots have shown a high characteristic temperature 7, (as
theoretically predicted in [18]) and the low threshold current
density Jy, (T = 425 K, Jin ~ 80 A cm~2 in the temperature
range 50 — 120 K) [17, 19]. This behaviour is consistent with
the cathodoluminescence data, highly resolved in both energy
and space, which suggest that the luminescence of an
individual quantum dot gives rise to a supernarrow (less
than 0.15 meV) line remaining unchanged under wide
temperature variations and thus provides evidence for the
formation of an electronic quantum dot [20]. At room
temperature, however, the thermal escape of carriers from
quantum dots brought about the deterioration of laser
performance as well as shifting of the generation energy to
shorter wavelengths (i.e. closer to the optical transition
energy for the two-dimensional wetting layer). In order to
increase the maximum gain and thus to improve the char-
acteristics of quantum-dot lasers, arrays of InAs vertical-
coupled quantum dots (VCQDs) in a GaAs matrix were used.
In our case, such arrays yield a higher optical restriction
coefficient and reduce the carriers’ trapping, relaxation, and
radiative recombination lifetimes, as well as increasing the
gain and lowering the threshold current density.

The VCQD arrays were formed by a few successive
deposition cycles, each producing an 1.7-monolayer-thick
InAs layer and a 40 A GaAs layer. The schematic diagram

of a VCQD is shown in Fig. 3a. Each dot consists of three
vertical-coupled InAs parts separated by GaAs interlayers of
2 — 4 monolayer thickness. The upper and lower parts have
lateral dimensions of order 170 A and 110 A, respectively. The
electron and hole states in neighbouring islands are tunnel-
coupled. The dots have square bases with [001]- and [010]-
oriented sides and form a primitive square lattice in the plane
of the substrate. At room temperature, the PL spectrum of
such a structure exhibits an intensive line due to transitions
between the electron and hole ground states in the tunnel-
coupled dots [17].

Figure 3b is a schematic representation of the structure for
laser studies. For the study of photoluminescence, the upper
contact layer was chemically etched off. Figure 4 presents the
electroluminescence spectrum of a VCQD laser system. Up to
room temperature, the laser energy at low and moderate
excitation densities corresponds to the peak of the PL
spectrum. Thus, lasing occurs via the ground state of the
VCQD. The temperature dependences of the threshold
current density and lasing wavelength are given in Fig. Sa.
In the temperature range 80— 150 K, the threshold current
density is essentially unchanged and equals 40 A/cm?. The
temperature dependence of the lasing wavelength follows that
of the GaAs forbidden-gap energy. At observation tempera-
tures above 180 K, a distinct rise in the threshold current
density appears. This effect was observed previously in single-
plane InAs quantum-dot lasers [17] at 80 K and is due to the
thermal escape of carriers from the quantum dots. There is,
however, no short-wave shift in laser energy and hence, up to
room temperature, the lasing occurs via the dot-exciton
ground state. In the case of a VCQD laser, the threshold
current density at both 80 K and 300 K is much lower than for
the laser with a single InAs quantum-dots layer. Moreover,
the onset of the thermal escape of carriers into the wetting
layer, and hence a sharp increase in T, shift upwards to

B
:] GaAs
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Figure 3. (a) Schematic diagram of vertical-coupled quantum dots
(VCQDs). (b) Schematics of a VCQD laser structure. Region size, in pm:
1,2,6 —0.2;5—1.5; 4 — 0.4; 7 — 0.6. Impurity concentration (in 10'®
cm~3) and type: 1, 2 — 4(Si); 3 — 2(Si); 5 — 0.7 (Be); 6, 7 — 20(Be). In
region 4: A — 20 periods of the AlGaAs (20 A)/GaAs (10 A) superlattice;
B— VCQDs inserted into a 800 A GaAs layer.
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Figure 4. Electroluminescence spectra of a VCQD laser structure at 80 K
and 290 K, and the photoluminescence spectrum at 80 K (dashed line) for
the same structure with the upper emitter and contact layer chemically
etched off.

180 K. Thus, the VCQD concept offers a significant improve-
ment in laser performance and extends to higher temperatures
the operation regime with the low threshold density and
highly-temperature-stable threshold current. It is to be
pointed out that the threshold current density for a laser
structure with a single submonolayer-grown Ing 13Gagg7As
quantum well [10] has a temperature dependence describable
by a characteristic temperature 7o = 130 K over the entire
range of 80 — 300 K (see Fig. 5b). Thus, the temperature
behaviour of the threshold current density is radically
different in the quantum-well and quantum-dots lasers,
reflecting the difference in the form of the density of states
for these two cases.

It is evident, then, that the use of vertical-coupled
quantum dots enables lasing via the quantum-dots ground
state up to room temperature and significantly extends the
temperature stability range for the threshold current.

5. Conclusions

Bulk- and surface-stress effects may lead to the formation of
ordered arrays of elastical-stressed three-dimensional islands
in semiconducting matrices. The islands feature low disper-
sion in size and shape and are ordered, with respect to all three
coordinates, into an artificial three-dimensional semicon-
ducting crystal. The unique optical properties of such entities
allow a qualitative improvement of the major parameters of
semiconducting devices.
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Figure 5. Variation of the threshold current density Jy, and of the lasing
wavelength 4 with temperature for a laser with a VCQD (a) and
singlequantumwell (b) active region.
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Percolation metal-dielectric transitions
in two-dimensional electron systems

V T Dolgopolov

The energy spectrum of an ideal two-dimensional electron
system in a static magnetic field consists of a set of J-like
peaks whose location on the energy scale corresponds to the
cyclotron and spin splittings. A set of one-particle wave
functions may be chosen to have each one of them describing
a delocalised electronic state. In real systems a chaotic
potential leads to the spreading of density-of-states peaks
and produces localised electronic states on each of the
quantum levels [1]. As long as the Fermi level is within the
band of localised states, the dissipative conductivity is zero
and its Hall counterpart is quantized: o, = n (¢’/h), where n
is the number of bands of delocalised states below the Fermi

level. The quantisation of oy, follows from the gauge
invariance [2, 3] and must be exact in an infinite electron
system at zero temperature.

Two points have received insufficient attention and thus
deserve special mention. First, in an infinite two-dimensional
electron system charge transfer, usually described by the o,
component, takes place under the Fermi level. Second, in a
conventional integral-valued quantum Hall experiment [4],
nondissipative charge transfer involves Fermi electrons in so-
called edge channels [5 — 7]. Because of this latter circum-
stance, no information on the accuracy of ¢, quantisation in
real samples at finite temperatures can be derived from Hall
bridge experiments.

Although a direct method of o, measurement has long
been known [2], its experimental realisation has only recently
been performed [§ — 10]. Figure 1 reproduces one of the results
of Ref. [9]. At minima of dissipative conductivity in Corbino
sample geometries, a difference in potential between the outer
and inside contacts is set up, due to the radial electron transfer
caused by a change in the magnetic flux through the sample. A
quantized value of o, implies that an integer number of
electrons is transferred through the sample under the flux
change of one quantum. Hence, the sign of the measured
voltage must depend on the magnetic field sweep direction,
while its magnitude will be proportional to the magnetic field
change with a coefficient dependent on the value of g,,.. Since,
in the experiments cited, the change in the number of electrons
at the contacts exceeds their number in the sample, the reality
of nondissipative transport under the Fermi level is unques-
tionable. Under the same conditions, the dissipative compo-
nent of conductivity at sufficiently low temperatures is
determined by the variable-step jumping of electrons with
energies close to the Fermi energy.

V, mV T T
3 2
1.0
0
ol /
|

e

H, T

Figure 1. Experimental realisation of McLaughlin’s mental experiment [9]. Ordinate represents the voltage drop across the plates of the capacitor short-
circuiting the ring-shaped sample: heterostructure GaAs/AlGaAs at a temperature of 25 mK. Arrows display the magnetic field sweeping direction,

straight lines show expected slopes for the quantized conductivity oy,
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In such a picture, electron transfer along the electric field
will be of dielectric character independent of the number of
delocalised bands below the Fermi level. As the magnetic field
or the electron concentration is changed, the system will
undergo the metal-dielectric transition twice at each of the
quantum levels. The studies summarised below were aimed at
determining the type of the corresponding transition and
comparing the properties of dielectric phases which offered
different numbers of delocalised states under the Fermi level.

The discussion above has shown that, from an investiga-
tion point of view, the most suitable samples are those of
Corbino geometry, in which dissipative and nondissipative
transport are completely decoupled. The measurements in
[11] were made on samples fabricated from single GaAs/
AlGaAs heterojunctions. As a means to control the concen-
tration of two-dimensional electrons, part of the samples was
provided with a ring gate separated from the outer and inner
contacts by guarding rings of constant electron density. The
volt-ampere characteristics of dielectric phases at minimum
electron densities (no delocalised states under the Fermi level)
and under integral-valued and fractional quantum Hall
conditions v = 2/3, 1, 2 were examined. Direct current mea-
surements using a Keithley 617 electrometer as a voltmeter
were performed. The temperature ranged from 25 mK to 0.5
K, and magnetic fields varied up to 16.5 T. At the lowest
temperature, the volt-ampere characteristics in all dielectric
phases were nonlinear (see Fig. 2). The procedure shown in
Fig. 2 was used to determine the threshold voltage. As seen
from the figure, U, «x (B — BC)2 to a good accuracy. Similar /-
V characteristics were seen in all dielectric phases studied. In
the metal regions, the volt-ampere characteristics were linear.
As the temperature rose, the nonlinearities were smoothed
out. At the lowest temperature, the resistivity in the linear
portion of the volt-ampere characteristic exhibits variable-
step jumping conductivity, whereas at higher temperatures
dissipative conductivity is activated. The temperature depen-

E,, mK Ui/z, mv!/2
1200 < 1.2
800 < 0.8
400 - 04
0 0.0
9.2

Figure 2. The magnetic field dependence of the activation energy E, and of
the critical voltage U, in the o, = 2/3 dielectric phase [11]. Insert shows
volt-ampere characteristics in a magnetic field of 8.76 T at 25, 60, 74, and
114 mK. Also shown in the insert is the procedure of determining the value
of U.. All other investigated phases exhibit a stronger nonlinearity.

Ns, 10" cm™2

Figure 3. Phase diagram for metal-dielectric transitions in the (Ng, B)
plane, from GaAs/AlGaAs heterostructure measurements [11]. Numbers
indicate the Hall conductivity in units of e? /4 for various dielectric phases.

dence of the resistivity in this temperature range enabled the
activation energy E, to be determined as a function of the
magnetic field induction or the electron density. As seen in
Fig. 2, the activation energy is a linear function of magnetic
field and vanishes at the same point where U, does. It is this
point which we will treat as the metal-dielectric transition
point. The validity of the assertion about the simultaneous
vanishing of E, and U, was checked at the points marked in
Fig. 3. Thus, experiment implies that the critical electric field
F, corresponding to the sharp increase of current in the
dielectric phase is

F. = BE2. (1)

The measured value of the coefficient § turned out to be the
same within experimental accuracy for different dielectric
phases.

For dielectric phases in the integral-valued quantum Hall
regime, the relationship (1) is interpreted easily in terms of a
percolation phase transition [12 — 14]. In fact, the linear
variation of the activation energy with the filling factor
implies a constant density of states near the transition energy.
The dielectric phase contains clusters of electrons with over-
lapping wave functions. Conductance between the clusters
proceeds via variable-step jumps. Near the percolation
threshold, the characteristic cluster size L (E) diverges with a
critical exponent s like

L(E)=pi'|E~ E| ™, (2)
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where 3| characterises the random potential. In weak electric
fields, clusters are equipotential, thus reducing the energy
interval, which ranges up to mobility threshold, by eFL (EF).
In the critical electric field

E,

FC: — o1 Es+l 3
EL(EF) e ﬁl a ()

we reach the mobility threshold and, in accordance with
experiment, the current increases sharply. It is readily seen
that Eqs (1) and (3) are identical for f/; = ef and a critical
exponent s = 1, which is close to the theoretical value s = 1.3
expected from the classical percolation. Hence, the experi-
mental results can be interpreted as due to the electric-field-
induced electron delocalisation of classical percolation type.
Based on the experimental data involved, a phase diagram in
the (B, Ns) plane can be constructed (see Fig. 3).

Similar experimental findings were obtained on high-
mobility silicon MOS structures [13, 14]. Since these measure-
ments were made on Hall bridges [15], U, was taken to be the
Hall voltage at which longitudinal resistivity starts to grow.
The volt-ampere recalculation procedure is described in detail
in Ref. [14]. As an illustration, Fig. 4 presents the dependence
of the critical voltage on the electron density in a fixed
ma/%netic field. Here, too, a direct proportionality between
UY? and the electron concentration is observed near each
transition point. The corresponding straight lines extrapolate
to the same electron concentrations at the transition points,
when they are compared with results obtained from extra-
polating the activation energy to zero. A (B, Ng)-plane phase
diagram for a two-dimensional electron gas in a silicon MIS
structure is shown in Fig. 5.

It should be noted that entirely analogous relations have
been obtained for a two-dimensional hole gas in Ge/SiGe
heterostructures [17], which indicates the universality of the
percolation nature of the transition.

The results cited above have been confirmed, directly or
otherwise, in a number of experimental studies. Time-
resolved optical studies may show what fraction of the area
is occupied by the metal or dielectric phase in the transition to

02 - gy

Ng, 10" ¢cm 2

Figure 4. Critical voltage against electron concentration near the phase
boundaries corresponding to o,//e* = 0, 1, 2 in a magnetic field of 12 T:
silicon MOS structure at 25 mK [14].

10.0 Ng, 10! cm™2

BT

Figure S. Phase diagram in the (N, B) plane for a silicon MOS structure:
from a fixed value of ¢! (solid lines), and from activation energy
vanishing points (symbols) [14].

the dielectric state with o, = 0 [18, 19]. In all such measure-
ments, the transition to the dielectric state is found to occur at
exactly the filling factor for which one of the phases occupies
50% of the area — the way the percolation transition in a two-
dimensional system is expected to proceed [20].

Phase diagrams in the (Ng, B) plane have been repro-
duced in [21, 22] by using a procedure which is somewhat
different from that outlined above. Furthermore, in Ref. [22]
an experimental version of the global phase diagram is
constructed which describes all the experimental results that
are currently available.

The present work is supported by the ‘Solid State
Nanostructure Physics’ Programme, by RFBR through
Grant No. 93-02-02304, and by the Volkswagen Foundation
(Grant No. 1/68553).
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Nonlinear optical properties
of semiconducting quantum wires and dots

V S Dneprovskii

1. Introduction
In recent years much attention has been devoted to the
unusual properties of semiconducting nanostructures with
carrier motion restricted in two or three directions (quasi-one-
dimensional quantum wires and quasi-zero-dimensional
quantum dots). Effects of energy dimensional quantisation
in these nanostructures are more important than in their
quasi-two-dimensional counterparts. The energy gaps
between electronic states increase, and the density of states,
which is step-like for two dimensions, becomes discrete
(forms a set of separate peaks) in an ideal quasi-one-
dimensional and zero-dimensional structures. The effect of
quantum restrictions in two or three directions must lead to
narrower light amplification spectrum; to greater differential
gain [1]; to increased exciton binding energy and magnified
exciton lasing [2]; and, finally, to enhanced optical nonlinea-
rities [3]. Quasi-zero-dimensional and one-dimensional struc-
tures hold promise as low-threshold laser active media for
high-temperature performance; and also as efficient, fast
optical switches with low expenditure of energy. Quasi-one-
dimensional structures with high-movable carriers in quan-
tum wires may pave the way to next-generation transistors.
This paper presents the results of a study on the nonlinear
optical propertiest of semiconducting quantum wires and
dots by ps-resolution laser saturation spectroscopy techni-
ques. Samples with CdSe quantum dots [6] and GaAs [7],
CdSe, or CdS quantum wires, as well as porous silicon [§]
exhibit clarified bands in nonlinear transmission spectra
obtained at different times after excitation by an ultrashort

TThe subject of the study is the so-called strong (resonance) dynamic
nonlinearities, i.e. the nonlinear change of the optical properties of
nanostructures absorbing(!) laser radiation [4]. Unlike inertialess ‘classi-
cal’ nonlinearities in transparent media, which are caused by the nonlinear
polarisability of electrons in an intense light field, the relaxation time of a
strong dynamic nonlinearity relates to recombination of nonequilibrium
electrons or other quasiparticles. A strong optical nonlinearity due to the
saturation of an optical transition was first discovered by S I Vavilov in
1926 in an experiment on the nonlinear absorption of uranium glass under
resonance excitation [5].

laser pulse. It is shown that the physical process leading to
strong optical nonlinearities in semiconducting quantum
wires and dots constitutes the saturation of optical transitions
between the dimensional quantisation levels during excitation
of high-density nonequilibrium carriers. It is also shown that
nonlinear absorption spectra are discrete even if a sample
containing variously shaped and widely different in size
semiconducting nanostructures, exhibits no features in linear
absorption spectra to indicate the discrete nature of the
optical transitions. This is presumably due to the nonuniform
line broadening being partially suppressed during the reso-
nance laser excitation of the ensemble of nanostructures of a
given size (with identical optical transition spectra).
Amplification and lasing for the optical transitions
between the lowest dimensional quantisation levels in semi-
conducting quantum dots (glass-matrix CdSe nanocrystal
structure) have been detected [9]. The magnitudes and
relaxation times of nonlinear susceptibilities of samples with
semiconducting wires and dots were measured as well.

2. Nonlinear absorption

of GaAs and CdSe quantum wires

There are several ways of fabricating semiconducting quan-
tum wires by combining molecular-beam and liquid epitaxy
techniques with surface etching, previous fixed-angle cleaving
of the substrate surface, etc. [10]. These methods, however, do
not yield sample sizes necessary for measuring linear and
nonlinear absorption spectra. Recently, a new procedure for
obtaining semiconducting quantum wires in a transparent
dielectric matrix has been introduced [11], in which a melted
semiconducting material (GaAs, CdSe, etc.) is injected into
hollow cylindrical chrysotile-asbestos channels about 6 nm in
diameter. A sample is a regular close-packed structure of
parallel chrysotile-asbestos 30-nm-diameter nanotubes filled
with ultrathin crystalline wires of GaAs or CdSe. The size of
the samples and the concentration of nanostructures enable
the spectra of both linear and nonlinear absorption to be
measured. In measuring nonlinear absorption spectra, the
probe method of Ref. [6] was employed: the sample excited by
an ultrashort laser pulse is probed by an ultrashort wide-
spectrum (‘white’ light) pulse. Using an optical delay line has
made it possible to detect the transmission spectra of the
samples at various times after the excitation.

In Fig. 1, the linear absorption spectrum and that of
differential ~ transmission ~ DT(1) (DT (4) = [T (A)—
To(4)]/To(4), where T (1), To(4) are the spectra of an excited
and an unexcited sample) are presented. The latter exhibits
two clearly distinct clarified bands having maxima at 1.8 and
2.2 eV and coinciding with the linear absorption bands. The
induced clarification disappears after 50 ps.

In bulk semiconductors various competing nonlinear
processes coexist depending on the conditions, such as the
Burstein—Moss dynamical saturation, forbidden-gap energy
renormalisation (narrowing) at high concentrations of none-
quilibrium carriers, clarification and broadening of the
exciton absorption line for collectively interacting or free-
carrier-screened excitons, etc. [13]. In semiconducting quan-
tum dots and wires, only one nonlinear absorption process,
the saturation of the optical transition by non-equilibrium
carriers, manifests itself in the spectral region of the lowest
quantum transition [3].

The appearance of clarified bands (Fig. 1) can be
attributable to the saturation of discrete optical transitions
resulting from dimensional quantisation in quantum wires. In
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Figure 1. Linear absorption and differential transmission spectra of GaAs
quantum wires in chrysotile-asbestos nanotubes, at various delays be-
tween the exciting and probe pulses: /— (—15) ps (probe pulse ahead of
pumping); 2— 0 ps; 3— 20 ps; 4 — 50 ps.

the effective mass approximation, and assuming an infinite
cylindrical potential well along with no Coulomb interaction
between the carriers, the transition energies between the
dimensional quantisation levels of the conduction band
electrons and the holes of the corresponding valence bands
take the form [13]

X
E = E! 01
I e 2up*’

where Egi is the forbidden-gap energy (index i denoting the
valence band); Xo; =~ 2.4; u is the reduced effective mass, p
is the wire radius. From this expression, it can be shown
that for a 6-nm-diameter quantum wire the 1.8-eV band
corresponds to the transition between the first heavy-hole
and the lowest electron dimensional quantisation levels,
whereas the 2.2-eV band, to that for the holes of the spin-
orbit-split valence band and the lowest electron level.
Knowing the magnitude and relaxation time of the detected
spectral clarification allows one to estimate the third-order
nonlinear susceptibility of the sample: Im 3 = —4 x 1073
CGS. The CdSe containing chrysotile-asbestos samples
display a clarified band corresponding to the lowest transi-
tion due to the dimensional quantisation in 6-nm-diameter
quantum wires.

3. Strong optical nonlinearities in porous silicon

Porous silicon has received particular attention owing to its
possible application in optoelectronics as a material effec-
tively luminescing in the visible spectrum [14]. One of the
proposed mechanisms for this luminescence involves the
rearrangement of appropriate energy spectrum as a result of
the dimensional quantisation in the quantum wires and dots
that form in the material. However, the discrete spectrum of
optical transitions has so far evaded detection, presumably

because of the wide spread in size and the variation in shape
of the nanostructures. The method of nonlinear laser satura-
tion spectroscopy has permitted measurement of nonlinear
absorption in porous silicon layers cleft off from the silicon
substrate. It was also possible to detect discrete clarified
bands relevant to the saturation of optical transitions
between the dimensional quantisation levels in quantum
wires and dots, and to determine the energy spectrum of the
material [8].

Figure 2 shows the linear absorption and differential
transmission spectra of one of the porous silicon samples.
Whereas the former is featureless (smooth), in the latter
discrete clarified bands are clearly seen. Their energy position
suggests the presence of two types of nanostructure (quantum
wires and dots) [8], and leads to an estimate of their average
size (diameter) as of about 3 nm and 4 nm, respectively.
Measurements with electron and scanning-tunnelling
microscopy have independently confirmed the existence of
quantum wires and dots of proper size in porous silicon
samples. The measured value of the linear susceptibility
amounted to Im ¥ ~ —0.2 x 10~% CGS.

j.p /13
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Figure 2. Linear absorption and differential transmission spectra of
porous silicon (300 K). The differential transmission spectra are obtained
at various times after the excitation: (a) at the instant of excitation; (b) 20 ps
after the excitation; (c) 27 ps after the excitation.
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4. Amplification and lasing in samples with CdSe quantum
dots

The measurement of the differential transmission spectra in
CdSe quantum-dot nanostructures in a glass matrix
enabled amplification (absorption coefficient o < 0) at the
lowest optical transition frequencies to be detected [9]. To
achieve lasing, a Fabry—Perot resonator about 1 mm long
was manufactured, with dielectric mirrors transparent to
the pumping wavelength (532 nm) and with reflection
coefficients of 100% and 95% at the 650 nm wavelength
corresponding to the lowest optical transition in CdSe
quantum dots with an average radius of 5 — 6 nm. With
an increase in the pumping energy (for excitation by an
ultrashort, second-harmonic, mode-locking Nd:YAG laser
pulse), a transition from spontaneous to stimulated emis-
sion was detected [9].

5. Optical and nonlinear optical properties

of CdS nanostructures

A new method, suggested by V A Karavanskii, enables the
manufacture of semiconducting nanostructures of various (!)
size on crystallising the semiconductor by layer-to-layer
chemisorption in the hollow channels of molecular filters
(mica bombarded by accelerator ions). The channel diameter,
and hence the size of the nanostructure, can be changed by
varying the kind and energy of the ions. The resulting
samples, containing quantum wires with average diameter of
about 7 nm, display features (‘hills’) in the linear absorption
spectra, and clarified bands in differential transmission
spectra, both the features and the bands corresponding to
the optical transitions between the dimensional quantisation
levels of the A and C valence band holes and the lowest
dimensional quantisation level of the conduction band
electrons. The relaxation time of the induced clarification
comes to about 100 ps.

6. Conclusions
A strong and fast optical nonlinearity is detected in samples
with GaAs, CdSe, and CdS quantum wires, in those with
CdSe quantum dots, and in porous silicon. The saturation of
optical transitions between the dimensional quantisation
levels in quantum wires and dots constitutes the main physical
process responsible for the nonlinearity.

The work is supported by the International Science
Foundation (Grants M5D000 and M5D300) and the ‘Solid
State Nanostructure Physics’ Programme (project 1-034).
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Quasi-one-dimensional conductors
with a charge density wave

S N Artemenko, A F Volkov, S V Zaitsev-Zotov

1. Introduction
As the temperature is lowered, a Peierls transition occurs in
quasi-one-dimensional conductors, giving rise to a super-
lattice, i.e. either a charge density (CDW) or spin density
(SDW) wave whose period is half the Fermi electron
wavelength in the metal. The properties of CDW- and
SDW-containing materials are very similar and reviewed in
a recent book [1]. This paper is limited to CDW conductors,
and we shall start by discussing their basic properties briefly.
The Peierls transition temperature is typically 7p ~ 100 —
200 K. For example, in TaS; this is 220 K, in blue bronze
Ko3Mo0Os3, 180 K, and in (NbSe4)10/3I, 280 K. In fact, the
CDW makes an electron crystal analogous to the Wigner one.
The formation of a CDW produces an energy gap 2A at the
Fermi surface, bringing the conductor either into a semimetal
state (as NbSe;) or into a semiconducting state (as other
quasi-one-dimensional CDW conductors). In the Peierls
state, one-electron excitations (electrons and holes) coexist
with the deformable mobile electron crystal, the CDW. That
the CDW can move follows from the translational invariance
of the CDW position in a perfect crystal. The translational
invariance, however, is violated either by the presence of
impurities or by the commensurability of the crystal and
CDW periods (CDW pinning). As a result, the CDW must
overcome the energy barrier in order to be able to move.
Therefore, the CDW begins to slide if the crystal is subject to
an electric field E exceeding the threshold value E7, the latter
depending on the impurity concentration and the tempera-
ture. For E > E7, the CDW can move and contribute to the
current, with the result that the crystal conductivity rises by
several orders of magnitude as the electric field is increased.
For E < E7, the CDW cannot move as a whole and the
conductivity of the quasi-one-dimensional conductor is
determined by one-clectron excitations. This makes the
material similar to an ordinary semiconductor except that
the deformation of the CDW (in an electric field, for example)
changes the electron and hole concentrations. As a result, the
CDW perturbations affect the conductivity in the fields
weaker the threshold field as well. The contribution of the
CDW to the conductivity is not limited to its motion as a
whole, but may also be caused by the motion of nonlinear
CDW excitations, i.e. the electron crystal defects like solitons
and dislocations.
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To date, the properties of CDW conductors are by and
large well understood for relatively high temperatures
T > Tp/3 (see reviews in Ref. [2]), at which the effects cited
above are quite reproducible and fairly well described in terms
of the CDW viewed as an elastic medium whose interaction
with impurities is described by the weak (collective) pinning
theory [3]. The major features of high-temperature CDW-
involving transport phenomena are understood not only at
the phenomenological level but also within the framework of
microscopically derived kinetic equations [4].

The properties of the CDW at lower temperatures are
understood much less than at high temperatures. The wide
spread in sample parameters in this region indicates the
importance of defects. As the temperature is lowered, the
activation energy for the linear in-chain conductivity
decreases, whereas that for the transverse conductivity
remains unchanged [5], and there is also a sharp drop in
thermo-emf, which even changes sign in some substances,
such as TaS; [6] and (NbSe4),, /31 [7]. Moreover, there
appears a sharp growth of the threshold field, and the
nonlinear conductivity activation energy starts to be electric
field dependent. At extremely low temperatures (for example,
below 20 K for TaS;), effects attributable to the glass
properties of the CDW occur. These are, in particular, a
peak in the low-frequency dielectric permittivity [§ — 10] and a
decelerated relaxation of the electric-field response. Whether
the transformation to the glass state provides a phase
transition is as yet not altogether clear. Along with evidence
in favour of this, alternative explanations exist, which invoke
the temperature dependence of the screening length of
inhomogeneous CDW perturbations in the field for pinning
impurities [11], or the transition from weak to strong pinning
with lowering temperature [12].

Below we shall take a closer look at some recent results
concerning the low-temperature region.

2. Screening and local CDW defects (solitons)

Since a CDW phase gradient implies a perturbation of the
CDW charge density, nonhomogeneous phase perturbations
dominate the kinetic properties of quasi-one-dimensional
conductors. This is true of both perturbations due to pinning
centres (contacts, and other inhomogeneities) and nonlinear
CDW perturbations, which may act as quasiparticles. It has
been suggested [5, 13, 14] that current carriers in CDW
conductors may be represented by phase solitons, i.e. phase
perturbations in which the phase of one of the chains changes
by 2n. Such solitons may be considered as vacancies or as
extra sites in the electron crystal. The energy of a phase soliton
is determined by the coupling between conducting chains,
which is much less than the Peierls gap A, so that as the
temperature is lowered, the electrons and holes are expected
to be frozen out and solitons may become dominant current
carriers in a state wherein the CDW as a whole is at rest.

We have shown earlier [15, 16] that the results pertaining
to local CDW perturbations need to be revised, since
nonlinear screening effects, usually left out of account,
make screening by one-electron excitations effective down
to the lowest temperatures involved. In particular, the
defects of the electron crystal (solitons) and those of the
crystal (impurities, pinning centres) lead to a strong bend of
the energy bands, so that the Fermi level may even fall into
the energy range of allowed one-electron states. The elec-
trons in the metal islands thus formed around the defects
must affect the kinetic and thermodynamic properties of

CDWs at low temperatures: a reason, in particular, for a
strong rise in the soliton energy.

The problem of spatial CDW perturbations is treated by
using the Green’s function equations [4], which are first
extended to large interchain CDW phase differences via the
lattice-site chain-number Wannier representation and then
integrated over the momentum component along the con-
ducting chains. For simplicity we have used the electron-chain
tight-binding approximation, in which the spectrum perpen-
dicular to the chainsise, = 2¢, (cosap, +cosap:),t, < A.In
the equilibrium case it suffices to find the retarded, g%, and the
advanced, g, Green’s functions, which are two-index
matrices with one index labelling the +pr and —pg sheets of
the Fermi surface in the quasi-one-dimensional conductor
under study, and the other being n, the number of the chain.
The solutions have two characteristic length scales along the
chains: a small one, on the order of the correlation length
& = hivg /A, and a macroscopic one, which is determined by
the large decay lengths pertaining to phase perturbations and
the electric potential @. The smooth solutions relevant to the
latter scale can be found quasiclassically and, provided the
momentum scattering time (t < A/#2) is sufficiently small,
these equations even hold when the departure of the local
chemical potential u from its equilibrium centre-of-the-
forbidden-band position is large enough to reach the edge of
the energy gap. Application of the quasiclassical approxima-
tion led to equations coupling phase gradients with the electric
field strength and the chemical potential shift (the latter equal
to the shift of the electric potential in equilibrium); and made it
possible to calculate the charge density which is substituted in
the Poisson’s equation. As a result, a system of equations
relating phases and potentials at different chains was
obtained. In the limit |u| < A, these equations reduce to the
conventional ones [14] describing local phase perturbation to
linear order in potential. We have solved the resulting
equations both numerically [16] and analytically [15] (for a
simplified model interaction). Although the results depended
quantitatively on the concrete chain arrangement, their
qualitative form turned out to be the same for different
models.

The main calculated results may be outlined as follows. At
zero temperature, the in-chain phase-perturbation decay
length equals #vg/(¢,1/7), and the off-centre shift of the
chemical potential u (due to the phase being perturbed up to
the order of m at one of the conducting chains) is of order
t1 /¢ where{ = 1/(;<a')2 = Jivp/8e? describes the ratio of the
Fermi energy to the Coulomb energy. Here «x is the inverse
Thomas—Fermi screening radius in the metal state, and d is
the conducting chain separation. For typical values of
vp =2 x 107ecm™!, {~ 1072, The small value of the para-
meter { leads to large shifts 4 ~ A and to the large phase-
soliton energy. Thus, at 7=0 and provided (A?/73 <b
(where b = O (1) depends on the chain arrangement and the
interchain interaction energy range), the chemical potential
near the strong pinning centres (the phase on which being
specified by the impurity itself) and at the phase-soliton
centres reaches the Peierls gap edge and thus gives rise to a
metal island. According to estimates, this condition is
expected to be fulfilled in typical CDW conductors.

At temperatures T > Ty, = O (t‘i/S/Am), the screening
by electrons thermally excited around the gap becomes rather
effective, and the shift in u does not reach A. As the
temperature is further increased, the screening of the charge
produced by the CDW phase perturbation becomes increas-
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ingly effective and the shift in g, still less. As this takes place,
the soliton energy decreases with a rise in temperature and
depends on the sign of the soliton charge, being less when the
sign is opposite to that of the principal one-electron charge
carriers. This means that when the one-electron conduction
gives way to the soliton picture (or, if the CDW creep
conduction sets in, to a mechanism involving soliton motion
between pinning centres [17]), a change in the sign of principal
charge carriers should occur, a fact which may account for the
change in the sign of thermo-emf observed as the temperature
is lowered.

3. CDW quantum creep
Thin TaS; layers with a cross section of order 10~! pm
exhibit an unusual temperature dependence of the nonlinear
conductivity indicating the appearance of quantum effects in
the CDW motion [18]. At temperatures 7 > 10 K, the
properties of such samples differ little from those of ordinary
size. Thus, as the temperature is lowered below 100 K, the
threshold field E7 for the onset of CDW sliding becomes
rapidly higher and is much above 100 V/cm at T < 50 K (see
Fig. 1). In so doing the volt-ampere characteristics exhibit an
additional nonlinearity at £ < E7. At T > 20 K, the tempera-
ture-dependent nonlinear current (Fig. 2) are of an activated
form, In/o«1/7, with an activation energy
W = dInI/d(1/T) dependent on the electric field strength.
In the low-temperature region, however, the nonlinear
conductivity of thin samples behaves differently from that for

2

ordinary sizes. Below 10 K, the temperature dependence of
the CDW nonlinear current virtually disappears (Fig. 2), and
the volt-ampere characteristic itself rapidly approaches the
limiting curve of the form

I exp [_@)] 1)

(see insert in Fig 1), where Ey ~ 10° V em~!. It turns out that
as T — 0, the nonlinear current tends to a constant nonzero
quantity (see insert in Fig. 2). This signals the appearance of
an additional channel for overcoming the energy barrier
inhibiting the CDW motion. Since the probability for over-
coming the barrier (whose measure is the CDW current)
proves finite at 7= 0, it is natural to assume that barriers
are overcome by tunnelling.

Thin samples offer a characteristically high noise level in
the region of nonlinear conductivity at low temperatures. A
detailed noise study [18] showed that, for example, in a sample
with a cross section of 10~2 um?, the current is carried by
small groups of electrons (about 10° in number) coming
irregularly in time, the current being close to zero between
the arrival of individual portions. This implies that we are
dealing with a collective effect and that the current is carried
via a certain random process. Most likely, this is a creep
(spatially nonuniform CDW motion in the pinning force
field) which is thermally activated at 7> 10 K and is of
quantum nature at lower temperatures. A further important

Er (80K)

cosooee
00::."..” v

10

100 E,Vcem™!

Figure 1. Temperature evolution of volt-ampere characteristics of a thin TaS; sample (cross-sectional area of 1072 um?). The vertical arrow indicates the
threshold field for the onset of CDW sliding at 80 K. Insert shows the variation of the nonlinear current with 1/E? at T = 2 K. Data are from Ref. [18].
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Figure 2. The nonlinear current versus the inverse temperature for the same TaS; sample as in Fig. 1. The numbers alongside the curves indicate the
strength of the electric field. Insert shows the same data as a function of the temperature. Data are from Ref. [18].

point is that such motion involves the entire cross section of
the sample, which can also be interpreted as the motion of
domain walls blocking the sample cross section.

This behaviour of nonlinear conductivity in thin
samples described above is different from that for TaS;
samples of ordinary size. The decrease in the slope of
dInZ/d(1/T) as the temperature is lowered below 20 K
is well known for ordinary size samples. At the same
time, the low-temperature conductivity of such samples
displays different character. In particular, Ref. [20] reports
an activated dependence of the nonlinear conductivity at
T <20 K, which suggests that 7(7) — 0 as T — 0. At
present there exists a model which leads to volt-ampere
characteristics of Eqn (1); this is the phase slip process
associated with the tunnel-assisted creation of a critical-
radius dislocation loop [21]. A similar result was obtained
by Maki [22]. Both models were proposed to explain the
experimental data of Ref. [18].

4. Field effect

Recently, structures analogous to the transistor MIS structure
have been manufactured with the conducting channel made of
a quasi-one-dimensional conductor [23]. As in the conven-
tional field transistor, application of a voltage to the gate of
such a structure produces an electric field between the channel
(thin crystal of a quasi-one-dimensional conductor) and the
gate. The field penetrates the quasi-one-dimensional conduc-

tor and is screened over about 10 A. In the metal state (i.e. ata
temperature above the Peierls transition temperature) the gate
voltage response of such structures is relatively small (of order
1% for a sample with a cross section of 1073 um?). It is
associated with a change in the current carrier concentration
due to the transverse electric field, and is close to the expected
value [23]. Below the transition temperature, the screening of
the transverse field also involves a charge density wave, which
makes the behaviour of the system richer and much more
complex as compared to regular field transistors. Figure 3
gives an idea of the variation of the nonlinear conductivity
with the gate voltage, as well as of the size of the effect. The
most intriguing result is that the gate voltage response of the
CDW by far exceeds that of the quasiparticles. In particular,
changing the gate voltage allows CDW motion to be switched
on/off (see Fig. 3), whereas the linear conductivity remains
essentially unchanged. A similar nonlinear conductivity
behaviour is also disclosed in TaS; [23].

There is at present no comprehensive explanation of the
observed effect. Theoretically, the effect of a field in quasi-
one-dimensional conductors was treated by Matveenko and
Brazovskii [24] before the experimental work of [23]. They
showed that the CDW participates in the screening of the
transverse electric field because of the appearance of CDW
dislocations. The fact of this participation is confirmed by
measurements of the temperature-dependent linear response
[23], which changes little when the CDW forms. At the same
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Figure 3. Volt-ampere characteristics of a NbSe; sample with cross section
of 1.1 x 1073 pum? at 30 K for the gate voltage variation in the range from
—251t0 25V by 2.5-V steps. Data are from Ref. [23].

time, a possible influence of the dislocations on CDW kinetics
is not a critical factor, since the observed effect is odd in the
gate field strength, whereas the dislocation concentration
must be an even function of the gate voltage. The main
contribution to the observed effect is presumably due to the
modulation of the CDW order parameter with the change of
an electron concentration in the screening region [23],
although quantitative calculations are at present difficult
because of the uncertainty in some of the parameters involved.

5. Conclusions

Thus, in addition to exhibiting ordinary one-electron con-
duction, CDW materials possess a conduction mechanism
associated with collective degrees of freedom for the motion
and deformation of the electron crystal, i.e. CDWs. These
may be controlled by means of external fields: by influencing
the one-particle conductivity mechanism, both the CDW-
related conductivity and the electron and hole concentrations
can be varied. While the properties of CDW conductors have
been fairly well studied, many fundamental questions, nota-
bly the CDW behaviour at low temperatures, and the proper-
ties of solid-state structures with quasi-one-dimensional
CDW conductors, remain to be answered.
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Giant magnetoresistance,
spin-reorientation transitions,

and macroscopic quantum phenomena
in magnetic nanostructures

V V Dobrovitskii, A K Zvezdin, A F Popkov

1. Introduction

Traditionally, the elaboration of magnetism in general and
the study of new magnetic materials in particular have
stimulated considerably the invention and development of
new magnetic memory devices.

Recent technological advances have made it possible to
fabricate ultrathin films with a practically perfect crystal
structure and to design, on their base, fundamentally new
magnetic materials: multilayered magnetic structures and
superlattices. The discovery of the giant magnetoresistance
effect in such systems has, first and foremost, spurred the
development of superdense magnetic memory (planned as 10
Gbit/in.? to 2010) [44]. New technologies based on electron-
beam lithography [42] make it possible to produce magnetic
35 — 75-nm-diameter and 50 — 100-nm-period piles in a
nonmagnetic matrix, securing a vertical record density of up
to 65 Gbit/in.2. However, the recent progress in the develop-
ment of low-dimensional magnetic structures also permits
their use in other applications, some of them being much
closer to traditional semiconductor electronics applications.
This is because semiconductor electronics is now approaching
its limits, particularly in terms of dissipated power. In some
cases, magnetic nanostructures (say, a spin transistor known
for its lower dissipative power) enable many problems to be
solved [45].

An alternative direction allowing to minimise dissipative
power is the reversible quantum computer idea.

According to R Feynman, in such a computer, to each
element of the Boolean algebra one can put in correspondence
a Hamiltonian defined in the space of the states of a bistable
system, the states compatible with appropriate information
bits. Calculations are carried out using the quantum-mechan-
ical evolution law as given by the Schrédinger equation

¥ (1) = exp(~iH1) y(0),
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which is time reversible and information-conserving. The
bistable states of elementary spins suit this idea best. In this
case, the problem of the coupling of elementary states with the
macroworld, i.e. the information input-output problem, is
easier to handle.

A simple example of a realised Boolean operation in
Feynman’s approach is a particle of an easy-plane ferro-
magnet which starts to precess with a frequency w, = yH as a
magnetic field is turned on. One half-period of this precession
realises the Boolean negation operation ‘NOT”, since the state
of the particle changes to the opposite. If the precession field
is created by stray fields from two neighbouring particles
distant equally in opposite directions, then the fields on a
particle either add or subtract depending on the particles’s
states, and during the half-period of precession in the
resulting field, the controlled ‘NOT’ operation is realised.
One can take a chain of spins to construct a logical automaton
with a prescribed Boolean logic function. This requires a
parallel time control of data input-output, for which purpose
a chain-propagating magnetic-moment-flip wave, alias a
magnetic soliton, can be used.

The bistable two-level system in a Feynman computer
may be represented by a mesoscopic spin of a magneto-
anisotropic particle with energy-degenerate equilibrium
states. The ground state of such a particle is split owing to
the macroscopic quantum coherence of the spins. Instead of
the eigenfunctions of the ground and excited states, however,
it is more convenient to deal with the coherent states of the
magnetisation polarisation along two equivalent directions.
The strong exponential dependence of the tunnelling fre-
quency on the potential barrier height, I' =exp x
[f U(H)/th} , suggests the use of Boolean elements employ-
ing the parametric decrease of the barrier height in the
effective magnetisation field (dipole or exchange) exerted by
the neighbouring particles. Owing to the exponential depen-
dence of the tunnelling rate, the data output error probability
in multi-input elements like the twice controllable ‘NOT’ is
reduced as compared to the resonance elements discussed
above.

Although our discussion so far has been primarily
concerned with the potential applications of magnetic nanos-
tructures, one further aspect of the subject is of no less
interest: being as they are of mesoscopic size, such systems
span the bridge between the macro- and micro-world and thus
enable a study of problems related to the transition from the
quantum mechanical to macroscopical description [43]. Such
problems, being extremely attractive due to their fundamen-
tal significance, emphasise the importance of magnetic
nanostructure studies.

2. Giant magnetoresistance and the spin-valve effect

in multilayered structures

The giant magnetoresistance (GMR) effect [2, 3] is observed
in many multilayered structures with magnetic layers
separated by nonmagnetic metal layers about 10 — 20 A
thick (Fe/Cr/Fe, Co/Cu/Co, Fe/Cu/Fe, NiFe/Cu/NiFe,
etc.). The resistance is larger in antiferromagnetic config-
urations, i.e. when the magnetisation of neighbouring layers
is antiferromagnetic, and is reduced by the action of a
magnetic field which induces a transition to a ferromagnetic
configuration. The size of the effect is defined as
AR/R = (R” — RTT)/RTT’ where R“ and RTT are the
resistances in the antiferromagnetic and ferromagnetic
configurations, respectively. In Co/Cu superlattices, AR/R

reaches a value of 65% at room temperature in a magnetic
field of order 10* Oe [4].

The physical basis for the effects we consider is the
phenomenon of spin-dependent electron scattering. It is
essential that the spin-flip mean free path of an electron in a
multilayered structure much exceeds the thickness of each of
the layers.

There are several theoretical approaches to the magneto-
resistive effect. The essential details, however, can be
accounted for by a simple phenomenological model which
(1) assumes that, for antiferromagnetically oriented magneti-
sations in neighbouring layers, a fixed-spin electron has a
different chemical potential in different magnetic layers,
depending on whether the spin is parallel or antiparallel to
the layer magnetisation vector, and (ii) includes the roughness
of the magnetic barriers that emerge in the antiferromagnetic
configuration. The magnetoresistance can be represented by

5
-1
n ) m

AR 449 U |
R~ 3D Er (
where Ay is the electron mean free path in the ferromagnetic
phase, D is the period of the structure, and U/ EF is the ratio of
the exchange energy to the Fermi energy. By substituting the
typical values of A¢g/D =5 and U/Er =~ 0.1 into (1), we
estimate AR/R ~ 0.3.

Current GMR studies involve two geometries: long-
itudinal (CIP, current in the plane) and transverse (CPP,
current perpendicular to the plane). Although the transverse
effect is much larger, most of present studies are carried out in
longitudinal geometry since CPP experiments are compli-
cated by the fact that the total transverse resistance of the
structure is very high [5]. This necessitates a search for other,
contactless, methods for studying the transverse GMR. A
possible answer [6] is that the kinetics of conduction electrons
manifests itself not only in the low-frequency transport
phenomena, but also in the optical properties of the struc-
tures, notably in the light reflection coefficient r. Thus, the
conductivity difference between the ferromagnetic and anti-
ferromagnetic orientations can be detected by the corre-
sponding change Ar in the light reflection coefficient. A plot
of Ar/r against the incident frequency is given in Fig. 1. It
should be noted here that although the magnitude of the effect
is just a few percent, it is amenable to an experimental study.
For comparison, the magnitude of the magnetooptical Kerr
effect in multilayers is also a few percent.

3. Spin-reorientation transitions in multilayers

Phase diagrams determining the transformation of magnetic
structures in a magnetic field are major characteristics of any
magnetic system. Moreover, as mentioned above, the mutual
orientation of magnetisation in different layers determines
the magnitude of magnetoresistance. Thus, the study of
orientation transitions and of the corresponding phase
diagrams is one further important direction in the physics of
multilayer structures.

We can take as our prototype the diagram of a three-layer
structure. This structure is of great interest per se and used in
many experiments as well as in practical applications (spin-
valve effect [7], spin transistor [8], etc.). In particular, in the
three-layer Gd/Pt/Co structure, an unusual phenomenon of
‘negative coercivity’ was detected [9], in which a system in a
positive external magnetic field undergoes a transition to a
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Figure 1. Fractional change of the reflection coefficient, Ar/rp, versus light
frequency: Ar = rp — r4p, where rp (r4r) is the reflection coefficient for
ferromagnetically (antiferromagnetically) oriented magnetisations of
neighbouring layers.

negative magnetisation. Here, unusual feature is that the
system does not transit to the equilibrium minimum-energy
state, but rather to a metastable one with a total magnetisa-
tion vector opposite to the external field strength. The same
Ref. [9] suggests a qualitative understanding of this behaviour
of a highly anisotropic three-layer structure. A more detailed
theoretical study of the structure has revealed a number of
new and important features crucial for the understanding of
magnetisation processes in three-layer structures. The model
employed was the structure of the type used in Ref. [9], i.e. an
isotropic (magnetically soft) higher magnetised Gd layer is
separated by a nonmagnetic (Pt) interlayer from a highly
anisotropic (magnetically hard) and less magnetised Co layer
(see Fig. 2). Thus, the free energy of the system divided by the
structure thickness D can be put in the form

d d d
F= —51 mgH cos 0 — 31 Kycos? 0 — 52 M H gy

d»

d
~27s(M)+

Here H is the external magnetic field strength; m, and d; are
the magnetisation and thickness of the d-layer; M, and d, are
the same for the f-layer; S (M) is the entropy of the f-
subsystem; aM%, the exchange energy; K;, the magnetic
anisotropy constant of the d-subsystem, including the bulk

d &=

dy —_—>

Figure 2. Three-layer structure. Top: anisotropic layer of thickness d
(Co); bottom: isotropic layer of thickness d, (Gd). In the middle:
nonmagnetic layer (Pt). The overall structure thickness is D.

and interface contributions; 6, the angle between the external
field and the d-layer magnetisation; Hy, the effective
magnetic field which acts on the f-ions and is given by

Her = (H* + /12mf, — 2/myH cos 9)1/2 , (3)

here 1 is the effective exchange constant determining the
exchange field Hex = Amy exerted on the f-ions by the d-layer.
Equation (2) takes care of the fact that M|| Hyr and the
external field is directed along the easy magnetisation axis.

The phase diagrams for the strongly anisotropic
(H, > Amy) and weakly anisotropic (H, < Amy) cases are
given in Fig. 3. An interesting feature of the phase diagram
for the latter case (Fig. 3a) is the line HG corresponding to the
first-order phase transition from the magnetic to the angular
structure. At such a transition, the magnetisation curve
(corresponding to the motion along the KK’ line of the
diagram) must exhibit hystereses in the field range where the
transition to the angular phase occurs. This is precisely the
hystereses found in Ref. [9] (see insert in Fig. 3a) on Co(30 A)/
Pt(5.2 A)/Gd(30 A) samples at 4.2 K in an external field of
H ~ 4-7 Oe.

Conspicuous in the strongly anisotropic diagram (Fig. 3b)
are the trajectory KK’ and the corresponding hysteresis line.
An interesting feature of this phase diagram is the presence of
an angular phase in the region bounded by the HCG curves.
This angular phase continues into the region above the EHGF

Myd,
myd,

A
N\

H, / ;J’Hd

Figure 3. Phase diagrams of a three-layer magnetic structure: (a)
H, < Jmy, (b) H, > Amy, H, = 2K;/mq. In Fig. 3a, HC, CB, and GF are
the curves of the second-order phase transition; EGH, of the first-order
transition; AH, GM, and GL are the stability loss curves for the
corresponding phases. In Fig. 3b, EH, HG, and GF are the curves of the
first-order phase transition; HC and CG, of the second-order transition;
AH and GB, the stability loss curves for the metastable angular phase.
Curves KK’ in both diagrams correspond to the typical hysteretic curves
shown in the inserts (experimental curves in the inserts are taken from
Ref. [9]).
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curve, but is metastable there. On passing through this phase,
the magnetisation of the strongly anisotropic Co subsystem
deviates slightly from the easy magnetisation axis, and the
isotropic (Gd) subsystem undergoes a 180° reorientation. The
same process takes place above the EHGF curve, thus
securing a continuous uniform magnetisation reversal of the
three-layer structure. The hysteretic curve shown in the insert
in Fig. 3b is of particular interest since it demonstrates the
negative coercivity effect mentioned above. The mechanism
of uniform magnetisation reversal thus found in the three-
layer structure seems to be of special importance for spin-
valve elements. The uniformity of the process holds a promise
of high switching rates being achieved in such elements. There
is a definite and deep analogy between this magnetisation
reversal mechanism and Jahn—Teller’s cooperative magnetic
effect [10].

The basic peculiarities of the phase diagrams in Fig. 3 also
occur in the case of anisotropic magnetic superlattices with an
antiferromagnetic exchange interaction between neighbour-
ing layers [11, 12]. A characteristic feature of the phase
diagrams of magnetic superlattices (Figs 4, 5) is the specific
surface phases (for example, the regions bounded by the
EPLG and PLA curves in Fig. 4).

4. Quantum fluctuations

In this section we shall discuss other interesting effects,
occurring not only in quasi-two-dimensional ultrathin mag-
netic films but also in quasi-one-dimensional ultrathin wires
and ‘zero-dimensional’ small magnetic particles. These are
macroscopic quantum tunnelling (MQT) and macroscopic
quantum coherence (MQC). The term ‘macroscopic quantum
tunnelling’ usually implies the decay of a metastable level into

Figure 4. Phase diagrams for anisotropic superlattices with an antiferro-
magnetic exchange interaction between neighbouring layers. The external
field is along the easy axis. To the right of the curve AB lies the
ferromagnetic phase F. The C; and C, phases are antiferromagnetic. In
the former, the magnetisation of f~layers is along the external field, and
that of d-layers, against; in the latter, on the contrary, f-layers are
magnetised against the field, and d-layers, along. PLA curves bound the
surface-reoriented phase SR, with a ferromagnetic structure on the surface
and an antiferromagnetic one in the bulk. EPLG curves bound another
surface phase, with an angular configuration localised near the surface.

hB1

SR —

Figure. 5. Phase diagrams for anisotropic superlattices with an antifer-
romagnetic exchange between neighbouring layers. The external field is
normal to the easy axis. Regions of existence of each phase are calculated
for two dimensionless anisotropy energies K: K = 0.1 and K = 0.2.

a continuum via a coherent quantum tunnelling of a macro-
scopic, or at least mesoscopic number of strongly coupled
quantum entities (in our case, spins). A closely related
phenomenon is MQC in a two-well potential. In this case
each degenerate level in either well splits in two ones due to
the interwell tunnelling of a macro- or mesoscopic number of
quantum entities (Fig. 6).

The possibility of detecting MQT magnetisation experi-
mentally was first suggested in Ref. [13]. To date, many
experiments have been performed, whose results are consid-
ered as experimental evidence for MQC and (mostly) MQT
effects [14]. Among the materials studied are small ferromag-
netic and antiferromagnetic particles, the ultrathin films and
multilayers including structures like domain wall (DW)
junctions [15], and even bulk samples of ordered [16] and
disordered [17] magnetic materials.

Current MQT (as well as MQC) studies employ the
method of trajectory integration in imaginary time (i.e. with
the replacement ¢ — it), which allows a rapid and elegant
change from the classical to the quantum description. Such an
approach to the problem of the metastable state decay was
developed in Refs [18, 19]. The decay rate is written in the
form

r=ep(-8), B="m )
14 a %4 b
MQC
MQT

Xo1 xoz\ X - - - = X

Figure 6. Characteristic shapes of MQT and MQC potentials. (a) A system
initially localised within a local minimum (near x;) tunnels to the right,
beyond xg;. (b) Levels degenerate in the absence of tunnelling are shown
by dashes. Tunnelling lifts the degeneracy, and each level splits in two
levels (shown by solid lines).
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where Sips 18 the classical action as calculated on the so-called
instanton trajectory which starts at point xq; (Fig. 6) for
T — —00, passes point xp at t = 0, and terminates at xq; as
T — +oo. For problems of the type we consider, this
approach is the simplest and sometimes the only one possible.

The process of MQT magnetisation has been studied
theoretically in Ref. [20], however, the corresponding relaxa-
tion rate and the temperature of the crossover (from the
thermally activated jumps over the barrier to quantum
tunnelling through it) turned out underestimated. The next
major step was taken in Ref. [21], which examined tunnelling
through the anisotropy-induced barrier in a small antiferro-
magnetic particle. In this case, the crossover temperature
turned out to be fairly high, on the order of a few kelvins. At
present, however, it is magnetic solitons, i.e. domain walls,
vortices, vertical Bloch lines, etc., which are considered most
suitable for experimental MQT studies. The reason is that,
owing to their solitonic nature, these objects are to a large
extent decoupled from their dissipative environment, i.e. from
the elementary excitations of the magnetic medium —
magnons (the interaction with them comes only in a second-
order perturbation analysis, see Ref. [14]). In addition to
practical and experimental applications (fundamental limita-
tions on the data record density on magnetic storage devices,
a detailed study of MQT and related research directed at the
development of quantum computers), theoretical investiga-
tions in this area are of interest in itself as elucidating the
quantum behaviour of magnetic solitons. The early work on
MQT domain walls (DW) in various materials was done by
Egami [22] and later by Chudnovski et al. [23]. These studies,
however, were limited to the linear regime of DW dynamics.
The nonlinear regime, namely the relation between MQT
characteristics and the nonlinear dynamical properties of a
DW itself, was examined in Ref. [24].

The physical model employed involves DW tunnelling
through an external pinning potential in a weakly ferromag-
netic (WFM) (e.g., orthoferrite) material. Use is also made of
a well-known phenomenological model, in which the move-
ment of a DW through the pinning potential proceeds by
succession of fluctuative movements of small individual
portions of the wall, thermally activated at high temperatures
and quantum at low temperatures [17]. Such an approach
thus naturally focuses on the small portion of the DW directly
involved in tunnelling. Clearly, this particular portion lags
behind the motion of all the other portions, not fixed by the
defect, so the wall turns out to be bent in the defect region.
However, if the radius of the curvature much exceeds the DW
thickness, the corresponding energy is merely a correction,
and to describe the dynamics of the system it suffices to
consider the DW as plane (the details of this approach have
been discussed in the review [14]).

Thus, the domain wall is considered one-dimensional, and
its position can be characterised by a single coordinate xy, the
position of its centre. For a two-sublattice model of YFeOs-
type WFM material, the Lagrange function, or more precisely
the Lagrangian density per DW unit area, may be obtained
(for real time ) using the perturbation theory for solitons [25,
26] to give

L= —mc* 1f’—37U 5
= —mc 2 (XO)a ()

where xq is the position of the DW centre; vy = X is its
velocity; mc? =2 A(Ku + 1 H?); K4 is the anisotropy

constant for the crystallographic plane ac, in which the
antiferromagnetic vector 1 rotates; 4 is the nonuniform
exchange constant; y, is the transverse susceptibility of the
WFM material; and, finally, U (x)) = — [2M%H (x¢) dxy is
the potential, where H (x) is the total external magnetic field
acting on the wall, which includes both the external drive field
and the effective field created by the defect.

To proceed further, however, the standard use of imagin-
ary-time path integrals is strictly invalid, since the standard
form of a path integral is only good for Lagrangians
quadratic in the velocity [27]. Our starting point should
therefore be the Hamiltonian formulation of the functional
integral for the transition amplitude:

o= [ o[ 2 e f{ defipd - 1 (p.a)
p(x,y :J DqJ —eXp{—J t|ipg — H(p,q }
(g=x)  J(—o0) 2H o
(6)

where the variables p and ¢ are canonically conjugate, and
H (p,q) is the Hamiltonian density per unit area. However, it
can be shown [24] that in this case a WK B-approximated path
integral can also be bring to the standard Wiener-normalised
form. As before,

_ B _ Sinsl
I' =exp(—B), 4, n (7)
but the pre-exponential factor is now different (cf. [19]):
, S ) ~1/2
my | det [—61{(1/u )ar} + (Uinst) /m]
oo fm : @)
2nth det [-m0; + »?]
where
1 82U (x) U (x)
2_ 2 SR TR i 4
@ m ax2 ,\‘5\‘017 (UmS[) axz X=Xinst (9)

The quadrature for xj,s (7) with an arbitrary potential U takes
the form

(10)

Jxlnsl dx
~ = T7
w  tey/(me2)U) — 1

the choice of the sign depending on the direction of the
motion. Similarly, the expression for Siyg is

X01 X 2
Sinst = 2J \/2mU(x) - % dx.

X02

(11)

It should be noted here that the results (10) and (11) are
meaningful only if

max U(x) < mc?,

X € [x02, X01]
otherwise an instanton solution does not exist and the WKB
tunnelling rate vanishes. In reality, of course, the DW will be
able to tunnel in this case also, but at a rate of the next order in
/i, meaning that the tunnelling will be to a large extent
suppressed.

DW tunnelling experiments on terbium orthoferrite
TbFeO3 were carried out by the Tejada group [16]. Compar-
ison with experiment (which we omit for the lack of space, see
the original work [24]) yields reasonable and well consistent
values for various tunnelling characteristics.
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Mention should also be made of a successful effort now
underway to study domain wall MQT in a controllable way
using nanostructures expressly designed and grown for the
purpose, namely DW junctions [15] and quasi-one-dimen-
sional wires [28] mentioned above.

The study we have outlined was mainly concerned with
the dynamical properties of the soliton as an essentially
nonlinear entity. The soliton also has nontrivial topological
characteristics, however, one of these being the topological
charge. The problem of topological charge changes is a long-
recognised one; in particular, at the microlevel such phenom-
ena play an important role in determining the existence of a
gap in the elementary excitation spectrum of a two-dimen-
sional antiferromagnetic [29]. At the macroscopic level, Ref.
[30] presents a study of the tunnelling-induced change of the
topological charge of a vortex structure in a two-dimensional
antiferromagnetic.

An analogous effect in an ultrathin ferromagnetic film
was studied in Ref. [31]. Within domain walls in uniaxial,
perpendicular anisotropy ferromagnets, another vortex struc-
tures — the vertical Bloch lines (VBL) — exist. In a certain
approximation, such a structure may be described by
Slonczewski’s equations in terms of two variables: the
position of the DW centre ¢ , and the azimuthal angle within
the wall, . The topological charge of a VBL is specified by
the boundary conditions; we shall assume that initially (for
t — —o0) Y(x — —o0) =0, Y(x — +o0) = —n. This config-
uration has the same energy as that with an opposite charge:
Y(x — —00) =0, Y(x — +00) = 7, so that this degeneracy
can be lifted by tunnelling. The transition matrix element, in
the WKB approximation, is readily calculated by the func-
tional integration method. The instanton in this case will be
the field configuration (x, 7) shown in Fig. 7, with a singular
point x = 0, z = 0. The action for the instanton configuration
is of the form

16A4d

Simt%\/ﬁiyﬁ{. (12)
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Figure 7. Instanton field configuration (x,) corresponding to the
tunnelling-induced change of the VBL topological charge. To the left:
distribution of magnetisation at various instants of imaginary time; to the
right: the corresponding y(x, ) plots. The instants  — oo correspond to
static VBLs with topological charge of opposite sign. At point x =0,
t =0, the function ¥(x,¢) displays a discontinuity, with the energy
(potential barrier height) diverging as 1/+/7.

An interesting and extraordinary feature of the problem is
that in the continuum limit (¢/A — 0, a is the lattice constant,
Ais the DW width) the height of the potential barrier diverges
at the singular point (x =0, ¢ = 0), although the instanton
action (and hence the tunnelling probability) remains finite;
thus, the concept of the crossover temperature becomes
meaningless.

The relationship between tunnelling and topology, how-
ever, is not limited to the tunnelling-assisted change of the
topological charge. For spin systems, the topology of spin
space is of great importance, determining the instanton
interference effect if there exist alternative subbarrier tunnel-
ling trajectories. This effect renders the magnetic particle
ground state dependent on the parity of the number of
elementary spins comprising the total spin [32, 33]. In an
antiferromagnet, which always has an even number of
elementary spins, the effect of Kramers freezing of the MQT
in zero magnetic field is absent. However, when a magnetic
field is turned on, the field dependence of the topological term
in the action (known as the Berry phase) may give rise to a
phase incursion in the tunnelling amplitudes, its value
depending on the sign of the topological charge. This will
then lead to a periodic freezing of macroscopic quantum
phenomena and to field oscillations in the spin tunnelling rate
[34, 35], i.e. a magnetic analogue of the Aharonov—Bohm
effect. In the collinear antiferromagnetic phase, when the
magnetic field is parallel to the equilibrium direction of the
Néel vector and does not exceed the spin-flop value H_qqp,
no quantum interference occurs because the field contribu-
tion to the action topological term is zero. As the magnetic
field is increased, the tunnelling probability rises exponen-
tially because the energy barrier lowers as the critical spin-
flop field is approached. Very close to the transition to the
angular phase, however, the tunnelling rate drops sharply,
turning to zero together with the resonance frequency at the
very transition point. The dependence of the Néel vector
tunnelling rate on magnetic parameters in a biaxial particle
then has a usual form (4) with

)72 1/2 S\ 2
inst = 2 ! K; 1 - ) = =
Sinst Vy [ M( 72 )] C 8hw<2nh> ,

s—flop

where V'is the particle volume; y, the gyromagnetic ratio; y |,
the magnetic susceptibility; K is the anisotropy constant, and
o =yH, qop(1 — Hz/Hf,fﬂOp)l/z, the resonance frequency.

In the angular phase, because of the quantum interference
of the instantons, the tunnelling rate oscillates in the magnetic
field as follows:

Sins
F:Cexp(f 251)‘005

The envelope of the oscillations increases exponentially until
the spin-flop field is reached, where it drops sharply to zero.
Among antiferromagnets with a narrow magnetic reso-
nance line, the yttrium orthoferrite (a weak ferromagnet of
orthorhombic symmetry) is of special interest. The presence
of spontaneous magnetisation and low dissipation make it
promising for resonance MQC experiments. Figure 8 shows
the predicted [36] particle-size dependence of the antiferro-
magnetism-vector tunnelling rate in this material. The field-
related features of macroscopic quantum phenomena in this
material are closely related to the orientation dependence of

2nH

s—flop

: (13)
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the equilibrium states of its magnetic system in the external
magnetic field. Thus, when the field is applied along the »
crystallographic axis, yttrium orthoferrite behaves like pure
antiferromagnet with the angular phase. In this case, the
interference of instanton amplitudes occurs, leading to
oscillations in tunnelling rate as the magnetic field strength
increases. The period of the oscillations is given by the
exchange field divided by the number of elementary spins.
The magnetic field dependence of the envelope of the MQT
oscillations is illustrated in Fig. 9. If the magnetic field is
parallel to the a axis of the atomic lattice, then there is no
field-related topological addition to the tunnelling amplitude
phase, and the tunnelling rate increases monotonically up to
the magnetisation U-turn, and then drops sharply as shown in
Fig. 10.

An interesting quantum interference phenomenon may
arise in a weakly ferromagnetic particle when the magnetic
field is directed against the magnetisation vector and along
the crystal ¢ axis, and the particle is in a metastable state in the
magnetic hysteresis region. The tunnelling then proceeds in
two stages: the subbarrier motion to the turning point, at

r07571
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Figure 8. Tunnelling rate versus particle volume for YFeOs.
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Figure 9. Dependence of the envelope of tunnelling rate on the external
field strength along the b axis, for three values of the YFeO3 volume.
Insert: tunnelling rate oscillations due to the quantum instanton inter-
ference.
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Figure 10. Dependence of the tunnelling rate on the external field applied
along the « axis for three values of the YFeO3 volume.

which the particle comes to the boundary of the tunnelling
region, and the transition to a resonance level within a deeper
potential well. In the absence of dissipation, coherent states at
the turning points may transform in one another due to the
coherent spin rotation at the resonance level. The resulting
phase incursion in the probability amplitude is magnetic field
dependent. Analysis shows that the interference arising
between the tunnelling amplitudes may lead to a complete
freezing of the metastable phase decay within the magnetic
hysteresis region at a finite magnetic field, provided the
sublattice spin is half-integer. However, the subtle interfer-
ence effects we have considered may be easily destroyed by
fluctuations in tunnelling amplitude phases, due to the
interaction of the magnetic order parameter with its environ-
ment (elastic atomic-lattice deformations, spin waves, mag-
netic nuclei, and weakly coupled spins). These questions are
discussed partly in Refs [37 — 39]. But their complete
elucidation requires further investigation. Thus, analysis has
shown that an MQC state persists up to very strong fields in
an antiferromagnetic particle. Furthermore, the energy split-
ting concerned with MQT increases to very large values
comparable to the frequency of a magnetic resonance near
the orientation-phase transition lines. The large splitting at
low temperatures, when the phonon heat capacity is exponen-
tially small, must produce a marked jump-like contribution to
the heat capacity of the particle at a certain temperature
determined by the energy splitting. Estimates show that close
to the orientation transition, the characteristic temperature is
tens of mK. Thus, there is a possibility of an independent
experimental verification of the MQC effect seen in anti-
ferromagnetic hexaferrite particles [40].

In all of the studies cited, the starting point was the
assumption that the modulus of the magnetisation vector
conserves: |M| = const. This condition is fulfilled only for
weakly anisotropic materials, with relativistic effects much
smaller than that of the exchange interaction. However, of the
macroscopic quantum objects that have so far been studied,
many are strongly anisotropic magnetic materials.

The strongly anisotropic limit — the Ising case — was
considered in Ref. [41]: a small particle of a material in which
the ground state of magnetic ions provides two closely lying
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singlets of energy A apart, separated from the other excited
levels by a gap much wider than A. Although there is no
continuous magnetisation trajectory, the tunnelling prob-
ability is nonzero because of the inclusion of the quadrupole
moment of the Ising ion. In this case, the argument B of the
exponential in function (4), known as the Gamov constant, is

B:N(ln 1+60—200>7
1—0’0

(14)

where N is the total number of spins in the particle, and
oo =[1-— (A/4i)2]1/2. It turns out that the corresponding
crossover temperatures may be sufficiently large for the
phenomenon to be experimentally detected: for LiTbFy4 this
is 0.49 K, and for Tb(OH)3, 0.81 K.

In recent years new and interesting objects, magnetic
clusters, have received much attention. An example is Mnj»
(Fig. 11). The cluster contains eight Mn3* ions (of spin 3/2)
antiferromagnetically coupled to four remaining Mn*™* ions
(spin 2). The ground state of the cluster is S = 10. The system
has a strong ‘easy-axis’ anisotropy, the higher order aniso-
tropies being rather small. Nevertheless, such clusters exhibit
a saturation of the magnetic relaxation rate at low tempera-
tures [42] (characteristic of MQT), although it is known that
in purely uniaxial particles tunnelling is completely frozen
(the projection of the angular moment conserves). Although
the situation is far from clear at present, the influence of
dissipative environment may be one of the possible solutions
to the paradox.

Figure 11. Cluster Mn». Eight Mn®™ ions (spin 3/2) are antiferromagne-
tically coupled to four Mn*™ ions (spin 2). The resulting ground state is
one with a spin S = 10.

5. Conclusions

We have considered a wide spectrum of interesting and
unusual phenomena occurring in low-dimensional magnetic
structures such as ultrathin films, multilayer systems and
superlattices, quasi-one-dimensional nanowires, and ‘zero-
dimensional’ small particles. The effects considered appear
to be of much interest both from the fundamental point of
view and for practical applications including components
for the further development of micro- and nanomagneto-
electronics.
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PACS numbers: 72.15.Rn, 73.20.Dx, 78.50.Ge

Controlled modulation
of the binding energy of impurity
states in a quantum-well system

V1 Belyavskii, YuV Kopaev, NV Kornyakov

1. Impurity atoms and point defects in semiconductors
not only act as scattering centres for current carriers, but,
more important for practical applications, they serve as
dopants, thus playing a constructive role as suppliers of free
electrons or holes. The ionisation energy of impurity atoms in
this case is an important parameter determining the concen-
tration of free charge carriers and its temperature depen-
dence. Controlling this parameter enables a very wide carrier
concentration range to be covered due to the fact that the
distribution function depends exponentially on the energy
near the Fermi level.

In bulk semiconductors, the possibility of influencing the
binding energy of an electron in an impurity atom (by an
external electric field, for example) is extremely limited (to be
specific, and unless otherwise stated, we consider impurities
to be donor-type when speaking of electrons in what follows).
This is due, in particular, to the fact that the electric field
perturbs only slightly the continuum states, from which the
localised state is formed. A different situation exists in
semiconducting heterostructures (HS) formed on the base of
composite semiconductors. Since the motion of electrons in
quantum wells is restricted to layer planes, application of a
relatively weak external electric field perpendicular to the
layers may redislocate the electron wave function from one
quantum well to another [1]. This causes an inversion of the
lower dimensional quantisation subbands and, as a conse-
quence, the localised state, which is formed primarily from the
lowest subband, changes its binding energy and the shape of
its wave function [2].

The strength of the external electric field necessary to
redislocate the wave functions and to change the binding
energy of an impurity state, depends essentially on the
heterostructure parameters (barrier height, quantum-well
width, etc). What is of fundamental importance here is the
optimisation of these parameters to have the electron wave
functions in the quantum-well system redislocated as much as
possible at minimum electric field strengths. This can be
achieved by choosing the quantum-well parameters such
that without a field the extrema of the dimensional quantisa-
tion bands be close to one another, thus supplying the system
with a necessary sensitivity to external influences. At the same
time, due to the restricted nature of electron motion across the
layers, the upper bound on electric field for quantum-well
systems is pushed off significantly compared to the corre-
sponding values for bulk materials.

It should be noted that redislocation may occur not only
in an external electric field but may also be caused by a
magnetic field [3], electromagnetic irradiation [4], or heat
treatment [5].

2. The effect of electron wave function redislocation on
the ionisation energy of an impurity atom can be understood
within the effective mass method. The Schrédinger equation
for the envelope @(r, z) of the electron wave function is

Bt o
[f% (@4—@) +U(z) —eFz+ V(r,z2)

X ®(r,z) = F® (r,z), (1)

where e and m are the charge and the effective mass of the
electron, U (z) is the initial HS potential, V' (r,z) is the
potential produced by an impurity atom, and Fis the electric
field strength. The z axis is directed along the HS growth axis,
r=(x,y).

The envelope of the wave function of an impurity-
localised electron can be expressed as the expansion in terms
of the eigenfunctions of Eqn (1) without the impurity
potential. These are written in the form

Qu(r,zF) = 8712y, (2 F) exp(ikr), (2)

where S'is the normalisation area (in the xy plane), y,, (z; F) is
the one-dimensional envelope function, n numbers the dimen-
sional quantisation subbands, and k is the quasi-momentum
of the free motion in the xy plane.

Let us consider the case of a strongly localised impurity
potential which we represent by

V(r,z) = —Voad (r)d (z — z). (3)

Here zj is the coordinate of the impurity atom, and Vj is
the potential well depth, the lattice parameter a being
incorporated into the definition of ¥V (r,z) in order to
preserve the necessary dimension. The potential (3)
describes adequately the characteristic features of deep
levels in semiconductors.

Lifshitz’s equation for the potential (3) determines the
energy of a localised electronic state and may be written in the
form [6]

V0a3 2 dzk

(2n)? Zn:[w” (i ) J En(k)+Eimp] - @

Here Einp is the binding energy of an electron in the impurity
centre. If only the lowest subband is taken into account, the
binding energy may be expressed analytically in the following

way:
~1
2 2
2ma? [exp( 2) B 1} ’ o
wa |y, (zo; F)|

where the dimensionless parameter w = ma’V,/ > may be
considered as the effective power of the impurity potential.
The factor |y, (zo; F)|* depends on both the impurity position
in the HS and the electric field, and leads to a strong field
dependence of the binding energy.

When two or more subbands are considered, a simple
analytical solution of the type (5) for the binding energy is not
possible, and Eqn (4) must be solved numerically. This
requires a knowledge of the parameter w, which can be
found if the volume magnitude of the binding energy Ei(ig)
for the given impurity is known. Eqn (4) then yields
w=1/(1 — Earccot &), where ¢ = (2ma2Ffi[;>/1t2h2)l/2. The
parameter w can also be gauged by an experimentally known
value of the binding energy for an impurity state in a HS with
a single quantum well of appropriate width.

Eimp (F ) =



416 Conferences and symposia

Physics— Uspekhi 39 (4)

3. The electric field also gives rise to the redislocation of
the hole envelopes, leading to a number of new physical
effects related to the binding energy of acceptor states [7]. For
deep acceptors in specially chosen quantum-well systems, a
severe change in the ionisation energy may occur even for
fields which are small compared to those necessary for the
effective redislocation of electron envelopes.

In fact, a one-dimensional potential modulating the top of
the valence band in semiconducting quantum-well systems
not only lifts the degeneracy of the valence band at the centre
of the Brillouin zone, but leads to specific interference effects
in the system of light- and heavy-hole subbands. The mixing
of hole states in asymmetric quantum-well systems may
change significantly the nature of the dispersion law in some
of the subbands to the extent that even the sign of the effective
mass may change. The nonparabolic effects in the dispersion
law may become important even for relatively small values of
the longitudinal (along the heterostructure layers) hole
quasimomentum.

The mixing of the states pertaining, for example, to the
first light-hole (LHI1) and the second heavy-hole (HH2)
subbands is most pronounced when the edges of these
subbands come closest. In antisymmetric quantum-well
systems, unlike single-square-well structures, the ordering
of the LH1 and HH2 subbands depends heavily on the
geometry of the heterostructure. Application of an external
electric field may interchange the two, thus ‘inverting’ the
hole spectrum. What is essential here is that close to the
critical field point the mixing is strongest, and the subband
which happened to be lowest in a given field, possesses an
anomalous dispersion, i.e. a negative effective mass. In the
vicinity of the so-called extremum loop thus formed, the
density of states has a shape characteristic of one-dimen-
sional systems. In AlGaAs/GaAs structures, the lower hole
subband is the first heavy-hole (HH1) one, and therefore a
dramatic change of the dispersion law in the HH2 subband
affects significantly the binding energy of the acceptor
states, which are split off from the heavy-hole band as a
result of their symmetry.

4. Apart from the intrinsic interest in the modulation of
the binding energy of impurity states, this effect is attractive in
that it may serve as a basis for new high-performance
quantum devices. A quantum-well system may be used as a
channel for a field transistor with one of the wells acting as the
electron pool. In contrast to known heterostructure field
transistors, with the electron pool being the bulk of the
semiconductor and the channel formation time determined
by the relatively slow diffusion and drift processes, in the
device proposed the channel formation time is determined by
the electron tunnelling time from one quantum well to
another. By appropriately choosing structure characteristics,
the tunnelling time may be made extremely small.

The work of the device depends crucially on the change
in the impurity ionisation energy caused by the redislocation
of the electron wave function in the quantum-well system in
an external electric field. The applied field transfers the wave
function from a donor-doped quantum well into an undoped
one. As a result, the coupling of the electrons to the
impurities is broken, the impurity ionisation energy
decreases, and the electrons move from the impurity atoms
to the conduction band, thus forming a conducting channel
in the field transistor. This changes considerably the con-
centration of free charge carriers and provides channel

conductivity modulation necessary for the normal function-
ing of the transistor.
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