
Abstract. Various aspects and mechanisms of QCD colour
confinement are surveyed. Following the introduction of
gauge-invariant order parameters, a field-correlator definition
of the phenomenon is given, and a class of correlators respon-
sible for confinement is explicitly separated. It is shown that, in
terms of effective Lagrangians, confinement is a dual Meissner
effect, and for its quantitative description the popular Abelian
projection method is used, which is explained in detail. To
determine the field configurations responsible for confinement,
classical solutions are analysed using a newly-developed criter-
ion. Finally, all aspects of confinement are illustrated by a
simple example of string formation for a quarkmoving in a field
of heavy antiquark.

1. Introduction

Ten years ago the author delivered lectures on confinement at
the XXII LINP Winter School [1]. Different models of
confinement were considered, and the idea was stressed that
behind the phenomenon of confinement is a disorder or
stochasticity of vacuum at large distances.

This phenomenon becomes especially fascinating when
one discovers that the disorder is due to topologically
nontrivial configurations [2], and the latter could be quan-
tum or classical. In the last case one should look for
appropriate classical solutions: instantons, multiinstantons,
dyons, etc.

The tedious work of many explores during the last ten
years has given an additional support to the stochastic
mechanism and has discarded some models popular in the
past, e.g. the dielectric vacuum model and the Z2-flux model.

Those are reported in Ref. [1] (see also articles cited in Ref.
[1]). At the same time a new and deeper understanding of
confinement has resulted.

It was found that on the phenomenological level the
stochastic mechanism reveals itself as a dual Meissner effect,
which was suggested as a confinement mechanism 20 years
ago [3]. In recent years there has appeared a lot of lattice data
in favour of the dualMeissner effect and the so-calledAbelian
projection (AP) method was suggested [4], which helps to
quantify the analogy between the QCD string and the
Abrikosov ±Nielsen ±Olesen (ANO) string.

At the same time the explicit form of the confining
configuration (whether it is a classical solution or quantum
fluctuations) is still unclear, some theories are being con-
sidered and an active work is going on.

The present review is based on numerous data obtained
from lattice calculations, phenomenology of strong interac-
tion and theoretical studies.

The structure of the review is the following. After
formulation of criteria for confining mechanisms in the next
section, we describe in Section 3 the general method of
vacuum correlators (MVC) [5] to characterise confinement
as a property of field correlators. A detailed comparison of
superconductivity and confinement in theMVC language and
in the effective Lagrangian formalism of Ginzburg ±Landau
type is given in Section 4.

The APmethod is introduced in Section 5 and lattice data
are used to establish the similarity of the QCD vacuum and
the dual superconductor medium. At the same time the AP
method reveals the topological properties of confining con-
figurations. In Section 6 the most probable candidates for
such configurations are sought among classical solutions. A
new principle is introduced to select solutions which are able
to confine when a dilute gas is formed of them.

An interconnection of topology and stochastic properties
of the QCD vacuum is discussed in Section 7.

In conclusion, the search for confining configurations is
recapitulated and besides a simple picture of the confining
vacuum and string formation is given as seen from different
points of view. A possible temperature deconfinement sce-
nario is briefly discussed.
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2. Definition of confinement and order
parameters

Confinement is understood as the phenomenon of absence in
physical spectrum of those particles (fields) which are present
in the fundamental Lagrangian. In the case of QCD it means
that quarks and gluons and in general all coloured objects
cannot exist as separate asymptotic objects.

To be more exact let us note that sometimes the massless
particles entering with zero bare masses in the Lagrangian,
e.g. photons or gluons, can effectively acquire mass. This is
the phenomenon of screening in plasma or in QCD vacuum
above deconfinement temperature. Due to the definition of
confinement given above, the screened asymptotic colour
states cannot exist in the confining phase.

On the other hand in the deconfined phase quarks and
gluons can evolve in Euclidean (or Minkowskian) time
separately, unconnected by strings. From this fact it follows
that the free energy at high temperature t is proportional to t 4

as usual for the Stephan ±Boltzmann gas and it is natural to
call this phase as the quark ± gluon plasma (QGP). It turns
out, however, that the QGP dynamics is very far from the
dynamics of the ideal gas of quarks and gluons; a new
characteristic interaction appears there, called the magnetic
confinement. It will be discussed in detail in Conclusions, but
now we come back to the confinement phase.

It is very important to discuss confinement in gauge-
invariant terms. Then the physical contents of the confine-
ment phenomenon can be best understood comparing a
gauge-invariant system of an electron and positron ��e;ÿe�
in QED and a system of quark and antiquark �q�q� in QCD,
when no other charges are present. When the distance
between �e and ÿe is large the electromagnetic interaction
becomes negligible and the wave function (w.f.) of ��e;ÿe�
factorises into a product of individual w.f. [the same is true for
the gauge-invariant Green's function of ��e;ÿe�]. Therefore,
the notion of isolated electromagnetic charge and its indivi-
dual dynamics makes sense. In contrast to this, in the modern
picture of confinement in agreement with the experiment and
lattice data (see below), quark and antiquark attract each
other with the force of approximately 14 ton. Therefore, q and
�q cannot separate and individual dynamics, individual w.f.
and Green's function of a quark (antiquark) has in principle
no sense: quark (or antiquark) is confined by its partner. This
statement can be generalised to include all nonzero colour
changes, e.g. two gluons are confined and never escape each
other (later we shall discuss what happens when additional
colour charges come into play).

It is also clear now that the phenomenon of confinement is
connected to the formation of the string between colour
charges, i.e. the string gives a constant force at large distances
and the dynamics of colour charges without the string is
inadequate there.

This picture is nicely illustrated by many lattice measure-
ments of potential between static quarks (Fig. 1). One can
clearly see in Fig. 1 the linear growth of potentialV�r� � sr at
large distances, r5 0:25 fm.

We shall formulate this as the first property of confine-
ment.

I. The linear interaction between coloured objects.
To give an exact meaning to this statement, making

possible to check it by lattice calculations, it is convenient to
introduce the so-called Wilson loop [6] and to define through
it the potential between colour changes. This is done as

follows. Take a heavy quark Q and a heavy antiquark �Q and
consider a process, where the pair Q�Q is created at some point
x, then the pair separates at distance r and after a period of
time T the pair annihilates at the point y. It is clear that
trajectories of Q and �Q form a loop C (starting at the point x
and passing through the point y and finishing at the point x).
The amplitude (Green's function) of such a process according
to quantum mechanics, is proportional to the phase (Schwin-
ger) factor W / exp�ig � Am jm d4x�, where Am is the total
colour vector potential of quarks and vacuum fields, and jm
is the current of the Q�Q pair, depicting its motion along the
loop C. Taking into account that Am is a matrix in colour
space (Am � Aa

mT
a, a � 1; . . . ;N 2

c ÿ 1, and Ta � sa=2 for
SU(2) and Ta � la=2 for SU(3), where Nc is number of
colours, sa and la are the Pauli and the Gell-Mann matrices
respectively) one should insert an ordering operator P, which
orders thesematrices along the loop, and the trace operator in
colour indices, since quarks were created and annihilated in
the white state of the object Q�Q. Hence one obtains the
Wilson operator for a given field distribution


W�C�� � tr

�
P exp

�
ig

�
C

Am dxm

��
;

where we have used the point-like structure of quarks,
jm�x� / d �3�

ÿ
xÿ x�t��dxm=dt.

Now one must take into account, that the vacuum fields
Am�x� form a stochastic ensemble, and one should average
over it. This is a necessary consequence of the vector character
of Am�x� and of the Lorentz-invariance of vacuum, otherwise
for any fixed functionAm�x� this invariance would be violated
contrary to the experiments.

Finally, in the field theory in general and for the vacuum
description in particular it is convenient to use the Euclidean
space ± time for the path integral representation of partition
functions, and also for the Monte-Carlo calculations on the
lattice. There are at least two reasons for this. The first one is a
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Figure 1. Potential between static quarks in the triplet representation of

SU(3), computed inRef. [10] on the lattice 324. The solid line is the fit of the

form C=r� sr� const. The potential V and distance r are measured in

lattice units a, equal to 0.055 fm for b � 6:9. Dynamical quarks are absent.
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technical reason; the Euclidean path integrals have a real (and
positive definite) measure exp�ÿSE�, where SE is the Eucli-
dean action, and the convergence of the path integrals is
better founded (but not strictly proven in the continuum).

Another, and possibly deeper reason: until recently all
nontrivial classical solutions in QCD (instantons, dyons,
etc.) have been of a Euclidean nature, i.e. in the usual
Minkowskian space±time they describe some tunnelling
processes. As for the covalent bonds between atoms due to
the electron tunnelling from one atom to another, the
Euclidean configurations in gluodynamics and QCD yield
attraction, i.e. the lowering of the vacuum energy, and
therefore they are advantageous for the nonperturbative
vacuum reconstruction (see discussion in Conclusions).
Therefore, everywhere in the review we shall use the Eucli-
dean space ± time, i.e. we shift from x0; A0 to the real
Euclidean components x4 � ix0, A4 � ÿiA0.

Now we shall return to the Wilson loop and connect it to
the potential. To this end we recall thatW is an amplitude, or
Green's function of the Q�Q system, and therefore it can be
expressed through the Hamiltonian H, namely,
W � exp�ÿHT�, where T is the Euclidean time. For heavy
quarks the kinetic part of H vanishes and only the Q�Q
potentialV�r� is left, so that we finally obtain for the averaged
(over all vacuum field configurations denoted by angular
brackets) Wilson loop


W�C�� � �tr �P exp�ig �
C

Am dxm

���
� exp

�ÿV�r�T�;
�1�

where the loop C can be conveniently chosen as a rectangular
r� T, and confinement corresponds to the linear dependence
of the potentialV�r� � sr, where s is called the string tension.

Having said this, one should add a few necessary elabora-
tions. First, what happens when other charges are present,
e.g. q�q pairs are created from vacuum. In both cases screening
occurs, but whereas for e�e system nothing crucial happens at
large distances, the q�q system can be spitted by an additional
q1�q1 pair into two neutral systems of q�q1 and q1�q which can
now separate: the string breaks into two pieces.

The same is always true for a pair of gluons which can be
screened by gluon pairs from vacuum.

In practice (i.e. in lattice computations) the pair creation
from the vacuum is suppressed even for gluons [7]; one of
suppression factors is 1=Nc [8], another one is numerical and
not yet understood; for Nc � 3 the overall factor is around
0.1, as can be seen, e.g., from the ratio of hadron resonance
widths over their masses.

This circumstance allows one to see on the lattice the
almost constant force between static q and �q up to the
distance of around 1 fm or larger. This property can be seen
in lattice calculations made with the account of dynamical
fermions (i.e. additional quark pairs), e.g., in Fig. 2 one can
see the persistence of linear confinement in all measured
region with accuracy of 10%. Therefore, we formulate the
second property of confinement in QCD, which should be
obeyed by all realistic theoretical models.

II.Linear confinement between static quarks persists also in
the presence of q�q pairs in the physical region (0.3 fm4 r4
1.5 fm).

Another important comment concerns quark (or gluon)
dynamics at small distances. Perturbative interaction dom-
inates there because it is singular; this can be seen in one-

gluon-exchange force of 4as=3r2. Comparing it with the
confinement force mentioned above (s � 0:2 GeV2 �
14 ton), one can see that perturbative dynamics dominates
for r < 0:25 fm.

At these distances quarks and colour charges in general
can be considered independently, with essentially perturba-
tive dynamics, which is supported by many successes of
perturbative QCD.

Till now only colour charges in fundamental representa-
tion of SU�Nc� (quarks) have been discussed.

Very surprising results have been obtained for interaction
of static charges in other representations. For example,
adjoint charges, which can easily be screened by gluons from
the vacuum, in lattice calculations are linearly confined in the
physical region r4 1:5 fm) (Fig. 3).

One can partly understand this property from the point of
view of large Nc: the screening part of potential
Vs / rÿ1 exp�ÿmr� is suppressed by the factor 1=N 2

c as
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Figure 2. The same potential as in Fig. 1, but with dynamical quarks taken

into account in two versions: (a) staggered fermions, a � 0:11 fm; (b) the
Wilson fermions, a � 0:16 fm; calculations of Heller et al. (second entry of
Ref. [10]).
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compared with linear part, but prevails at large distances [7]:

Wadj�C�

� � C1 exp�ÿsadj rT� � C2

N 2
c

exp
�ÿVs�r�T

�
: �2�

The same property holds for other charge representations
[10], and moreover the string tension s�j� for given represen-
tation j satisfies approximate relation [7]

s� j�
s�fund� �

C2� j�
C2�fund� ; �3�

where C2� j� � C2� j;Nc� is the quadratic Casimir operator,

C2�adj;Nc� � Nc; C2�fund;Nc� � N 2
c ÿ 1

2Nc
:

Correspondingly we formulate the third property of
confinement.

III.Adjoint and other charges are effectively confined in the
physical region (r4 1:5 fm) with string tension satisfying
Eqn (3).

We shall conclude this section with two remarks: one
concerning the interrelation of confinement and gauge
invariance, another about many erroneous attempts to define
confinement through some specific form of nonperturbative
gluon and quark propagator.

Firstly, gauge invariance is absolutely necessary to study
properly the mechanism of confinement. It requires that any
gauge-noninvariant quantity, like quark or gluon propaga-
tor, 3-gluon vertex, etc., vanish when averaged over all gauge
copies. One can fix the gauge only for the gauge-invariant
amplitude, otherwise one lacks important part of dynamics,
that of confinement.

As a popular example one may consider the `nonpertur-
bative' quark propagator, which is suggested in a form
without poles at real masses. As stated previously, this
propagator is meaningless, since on formal level it is gauge-
noninvariant and vanishes upon averaging, and on physical
grounds, the propagator of coloured object cannot be
considered separately from other coloured partner(s), since
it is connected by a string to it, and this string (confinement)
dynamics dominates at large distances. The same can be said
of the `nonperturbative' gluon propagator behaving like 1=q4

at small q, which in addition imposes wrong singular
nonanalytic behaviour of the two-gluon ± glueball Green
function.

Likewise, the well-known Dyson ± Schwinger (DSE)
equations for one-particle Green functions cannot be used
for QCD in the confined phase, because again they are gauge-
noninvariant and they should be a string connected to any of
propagators of DSE, omitted there.

More subtle formal, but basically the same is the case of a
Bethe ± Salpeter equation (BSE) on the fundamental level, i.e,
when the kernel of BSE contains coloured gluon or quark
exchanges: any finite approximation (i.e. ladder type) of the
kernel violates gauge invariance and loses confinement.When
averaging in the amplitude over all vacuum fields is made, the
resulting effective interaction can be treated approximately in
the framework of BSE. Its value if any might lie in phenom-
enological applications and not in a fundamental under-
standing of the confinement, which is the primary purpose
of the present study.

Let us turn now to the order parameters which define the
confining phase. To distinguish between confined and decon-
fined phases several order parameters are used in absence of
dynamical (sea) quarks. One of them is the Wilson loop
introduced above [see Eqn (1)]. Confinement is defined as
the phase where the area law (linear potential) is valid for
large contours, whereas in the deconfining phase the peri-
meter law appears.

Another and sometimes practically more convenient for
nonzero temperature T, is the order parameter called as the
Polyakov line:



O�x�� � 1

n

�
tr

�
P exp

�
ig

�b
0

A4 dx4

���
; b � 1

T
: �4�

Va
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Figure 3.The same potential as in Fig. 1, but for quarks in the sextet (a) and

octet (b) representation. Broken line is the triplet potential of Fig. 1

multiplied by the ratio of the Casimir operators, equal to 2.25 for the octet

and 2.5 for the sextet.
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Since hOi is connected to the free energy F of isolated colour
charge, hOi � exp�ÿF=T�, vanishing of hOi at T < Tc

means that F is infinite in the confined phase. On the
other hand, vanishing of hOi is connected to the Z�Nc�
symmetry, which is respected in the confining vacuum and
broken in the deconfined phase. As the Wilson loops, the
Polyakov lines can be defined both for fundamental and
adjoint charges; the first vanish rigorously in the confined
phase in absence of dynamical quarks, while adjoint lines
are very small there. Strictly speaking, both the Wilson loop
and the Polyakov line are not the order parameters when
dynamical quarks are admitted in the vacuum; there is no
area law for the large enough Wilson loops and hOi does
not vanish in the confined phase. However, for large Nc,
and practically even for Nc � 2; 3 these quantities can be
considered as approximate and useful order parameters
even in presence of dynamical quarks, as will be seen in
the following sections.

From the dynamical point of view the (approximate)
validity of area law (linear potential) for any colour charges
even in the presence of dynamical quarks at distances
r4 1:5 fm means that strings are formed at these distances
and string dynamics defines the behaviour of colour charges
in the most physically interesting region.

3. Field correlators and confinement

As can be seen from the area law (1) the phenomenon of
confinement necessarily implies the appearance of a newmass
parameter in the theory, because the string tension s has the
dimension of [mass]2.

Since perturbative QCD depends on mass scale only due
to renormalisation through LQCD, using the asymptotic
freedom (and renormalisation group properties) one can
express the coupling constant g�L� at L scale through LQCD

as

g2�L� � 4p

b0 ln�L2=L2
QCD�

; b0 �
11

3
Nc ÿ 2

3
nf :

And one can write

s � constL2
QCD / L2 exp

�
ÿ 16p2

b0 g2�L�
�
; �5�

whereL is the cut-off momentum. It is clear fromEqn (5) that
s cannot be obtained from the perturbation series; hence, the
source of s and of the whole confinement phenomenon is
purely nonperturbative. Correspondingly one should admit
in the QCDvacuum the nonperturbative component and split
the total gluonic vector potential

Am � Bm � am ; �6�

where Bm is nonperturbative and am is perturbative part. As
for Bm, it can be

(a) quasiclassical, i.e. consisting of superposition of
classical solutions like instantons, multiinstantons, dyons,
etc; this possibility will be discussed below in Section 6;

(b) purely quantum (but nonperturbative); the picture of
the Gaussian stochastic vacuum gives an example, which is
discussed below.

It is important to stress at this point, that the formalism of
field correlators, given below in this section, is of general

character and allows to discuss both situations (a) and (b),
quasiclassical and stochastic. In the first case, however, some
modifications are necessary and they will be introduced at the
end of the section. As mentioned above, confinement implies
the string formation between the colour charges. To under-
stand how the string is related to field correlators, consider a
simple example of a nonrelativistic quark moving at a
distance r from a heavy antiquark fixed at the origin. As is
known fromquantummechanics, the quarkGreen function is
proportional to the phase integral along its trajectory C:

G�r; t� /
�
exp

�
ig

�
C

Am
ÿ
r�t 0�; t 0�dxm�� ;

where the averaging is over all vacuum configurations. It is
convenient to express Am though the field strength Fmn, since
the latter would be the basic stochastic quantities, and this can
be done, e.g., by using the Fock ± Schwinger gauge

Am�x� �
�x
0

Fnm�u�a�u� dun ; a�u� � u

x
:

Hence, in the lowest order one obtains

G��r; t� / 1ÿ g2

2

�
dsnm�u� dsn 0m 0 �u 0�



Fnm�u�Fn 0m 0 �u 0�

�� . . . ;

where dsnm � a�u� dxm dun.
On the other hand one can introduce the potential V�r�

acting on the quark

G / exp

�
ÿ
�
V�r; t 0� dt 0

�
/ 1ÿ

�
V�r; t 0� dt 0 :

The string formation implies that V�r; t� is proportional to r
and this depends, as we see, on the field correlators hFFi.

For the exact Lorentz-invariant treatment let us introduce
gauge-invariant field correlators and express the Wilson loop
average through the field correlators. This is done using the
non-Abelian Stokes theorem [11]


W�C�� � � 1

Nc
P tr

�
exp

�
ig

�
C

Am dxm

���

� 1

Nc

�
P tr

�
exp

�
ig

�
S

dsmnFmn�u; z0�
���

; �7�

where we have defined

Fmn�u; z0� � F�z0; u�Fmn�u�F�u; z0�;

F�x; y� � P exp

�
ig

�x
y

Am dzm

�
�8�

and integration in Eqn (7) is over the surface S inside the
contour C, while z0 is an arbitrary point, which



W�C�� does

not evidently depend on. In the Abelian case the parallel
transporters F�z0; u� and F�u; z0� are cancelled and one
obtains the usual Stokes theorem.

Note that the non-Abelian Stokes theorem (7) is gauge-
invariant even before averaging over all vacuum configura-
tions; the latter is implied by the angular brackets in Eqn (7).

One can now use the cluster expansion theorem [12] to
express the right hand side of Eqn (7) in terms of field
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correlators [5], namely



W�C�� � 1

Nc
tr

(
exp

"X1
n�1

�ig�n
n!

�
ds�1� ds�2� . . . ds�n�

� 

F�1� . . .F�n���#) ; �9�

where lower indices of dsmn and Fmn are suppressed and
F�k� � Fmknk�u�k�; z0�.

Note an important simplification: the averages


F�1� . . .F�n��� in the colour symmetric vacuum are propor-

tional to the unit matrix in colour space, and the ordering
operator P is not needed any more.

Eqn (9) expresses the Wilson loop in the terms of gauge-
invariant field correlators (also called cumulants [12]) defined
in the terms of field correlators as follows



F�1�F�2��� � 
F�1�F�2��ÿ 
F�1��
F�2�� ;


F�1�F�2�F�3��� � 
F�1�F�2�F�3��
ÿ 

F�1�F�2���
F�3��ÿ 
F�1��

F�2�F�3���
ÿ 
F�2��

F�1�F�3���ÿ 
F�1��
F�2��
F�3�� : �10�

Let us have a look at the lowest cumulant

F�x�F�x; z0�F�z0; y�F�y�F�y; z0�F�z0; x�

�
: �11�

It depends not only on x; y but also on an arbitrary point z0.
In the case where a classical solution (dyon or instanton) is
present, it is convenient to place z0 at its centre, and then z0
acquires a clear physical meaning. We shall investigate this
case in detail in Section 6, but for now we shall consider the
limit of stochastic vacuum, when the expansion (9) is
particularly useful. To this end let us consider parameters on
which a generic cumulant




F�1� . . .F�n��� depends.When all

coordinates uk coincide with z0, one obtains condensate

ÿ
Fmnnn�0�

�n��
;{ we assign to it an order of magnitude F n.

The coordinate dependence can be characterised by the gluon
correlation length Tg, which is assumed to be of the same
order of magnitude for all cumulants. Then the series in Eqn
(9) have the following estimate



W�C�� � 1

Nc
tr

(
exp

"X1
n�1

�ig�n
n!

F nT 2�nÿ1�
g S

#)
; �12�

where S is the area of the surface inside contour C. To obtain
the result (12) we have taken into account that in each
cumulant



F�x�1�; z0�F�x�2�; z0� . . .F�x�n�; z0�
��
; �13�

whenever x and y are close to each other,

jxÿ yj5 jxÿ z0j ; jyÿ z0j ;

the dependence on z0 drops out; therefore in Eqn (13) in a
generic situation when all distances jx�i� ÿ x�j�j / Tg5
jx�i� ÿ z0j, jx�j� ÿ z0j one can omit the dependence on z0.

The expansion inEqn (12) is in powers of �FT 2
g � and, when

this parameter is small,

FT 2
g 5 1 ; �14�

one gets the limit of the Gaussian stochastic ensemble, where
the lowest (quadratic in Fmn) cumulant is dominant.

In the same approximation (e.g., Tg ! 0 while hF 2
mni is

kept fixed) one can disregard in this cumulant the dependence
in z0, using the equivalent (effective) form of Eqn (11):

Dmnls � 1

Nc
tr


Fmn�x�F�x; y�Fls�y�F�y; x�

�
: �15�

The form (15) has a general decomposition in terms of two
Lorentz scalar functions D�xÿ y� and D1�xÿ y� [5]
g2Dmnls � �dmldns ÿ dmsdnl�D�xÿ y�

� 1

2
qm
n��hldns ÿ hsdnl� � . . .

�
D1�xÿ y�

o
: �16�

Here the ellipsis implies terms obtained by the permutation of
indices. It is important that the second term on the right hand
side of Eqn (16) is a full derivative by construction.

Insertion of Eqn (16) into Eqn (9) allows us to obtain the
area law of the Wilson loop with the string tension s


W�C�� � exp�ÿsSmin� ;

s � 1

2

�
D�x� d2xÿ1�O�FT 2

g �
�
; �17�

where O�FT 2
g � stands for the contribution of higher cumu-

lants, and Smin is the minimal area for contour C.
Note that D1 does not enter in s, but gives rise to the

perimeter term and to the higher order curvature terms. On
the other hand the lowest order of perturbative QCD
contributes to D1 and not to D; namely, the one-gluon-
exchange contribution is

D pert
1 �x� � 16as

3px4
: �18�

Nonperturbative parts of D�x� and D1�x� have been
computed on the lattice using the cooling method, which
suppresses perturbative fluctuations [13], and are shown in
Fig. 4. As one can see in Fig. 4, both functions are well
described by an exponent in the measured region, and
D1�x� � D�x�=3 � exp�ÿx=Tg�, where Tg � 0:2 fm. The
smallness of Tg as compared to hadron size confirms the
approximations made before, in particular the stochasticity
condition (14). One should also take into account that F in
Eqn (14) is an effective field in cumulants which vanish when
vacuum insertion is made and therefore can be small as
compared with F in the gluonic condensate.

The representation (16) is valid both for Abelian and non-
Abelian theories, and it is interesting to understand whether
the area law and nonzero string tension obtained in Eqn (17)
could be valid also forQED (orU(1) in the lattice version). To
check it we shall apply the operator �1=2�emnab q=qxa to both
sides of Eqns (15), (16) [5].

In the Abelian case, when F is cancelled in Eqn (15), one
obtains (the term with D1 drops out)

qa



~Fab�x�Fls�y�
� � elsgb qgD�xÿ y� ; �19�

where ~Fab � eabmnFmn=2.
{ In theQCD sum rules all the terms of this kind for n > 2 usually cancel as

they give zero after the so-called vacuum insertion.
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If magnetic monopoles are present in the Abelian theory
(e.g., the Dirac monopoles) with the current ~jm, one has

qa ~Fab�x� � ~jb�x� : �20�

In the absence of magnetic monopoles (for pure QED) the
Abelian Bianchi identity (the second pair of the Maxwell
equations) requires that

qa ~Fab � 0 : �21�

Thus, for QED (without magnetic monopoles) the function
D�x� vanishes due to Eqn (19) and hence confinement is
absent, as observed in nature.

In the lattice version of U(1) magnetic monopoles are
present (as lattice artefacts) and the lattice formulation of our
method would predict the confinement regime with nonzero
string tension, as it is observed in Monte-Carlo calculations
[14].

The latter can be connected through D�x� to the
correlator of magnetic monopole currents. Indeed, multi-
plying both sides of Eqn (19) with �1=2�elsgd q=qyg one
obtains


~jb�x�~jd�y�
� � � q

qxa

q
qya

dbd ÿ q
qxd

q
qyb

�
D�xÿ y� : �22�

The form of Eqn (22) identically satisfies the monopole
current conservation, i.e. applying q=qxb or q=qyd on both
sides of Eqn (22) gives zero.

It is interesting to note that confinement [nonzero s and
D, see Eqn (17)] inU(1) theorywithmonopole currents occurs
not due to average monopole density



~j4�x�

�
, but rather due

to more subtle feature such as correlator of monopole
currents (22), which can be nonzero for the configuration
where



~j4�x�

� � 0. The latter is fulfilled for the systemwith an
equal number of monopoles and antimonopoles.

Note that our analysis here is strictly speaking applicable
when stochasticity condition (14) is fulfilled. Therefore, the
case of monopoles with the Dirac quantization condition is

out of the region of Eqn (14) and needs some elaboration to be
discussed later in this section.

Let us now turn to the non-Abelian case, again assuming
the stochasticity condition (14), so that one can keep only the
lowest cumulant [Eqns (15), (16)].

Applying as in the Abelian case the operator
�1=2�emnab q=qxa to the right hand side of Eqns (15), (16) one
obtains [15]


Da ~Fab�x�F�x; y�Fls�y�F�y; x�
�� Dbls�x; y�

� eabls q
qxa

D�xÿ y� : �23�

The term with D1 in Eqn (23) drops out as in the Abelian
case; the first term on the left hand side of Eqn (23) now
contains the non-Abelian Bianchi identity term, which should
vanish even in the presence of dyons (magnetic monopoles),
i.e. classical solutions of the Yang ±Mills theory, so that

Da ~Fab�x� � 0 : �24�

It is another question, whether or not in lattice formula-
tion one can violate Eqn (24) in the definition of lattice
artefact monopoles, similarly to the Abelian case. We shall
discuss this topic when studying lattice results on the Abelian-
projected monopoles in Section 5. To conclude the discussion
of Eqn (23), one should defineDbds; it appears only in the non-
Abelian case due to the shift of the straight-line contour �x; y�
of the correlator (15) into the position �x� dx; y�, which is
implied by differentiation q=qxa. This `contour differentia-
tion' is well known [16] and leads to the answer:

Dbls�x; y� � ig

�x
y

dzr a�z�

� 
tr� ~Fab�x�F�x; z�Far�z�F�z; y�Fls�y�F�y; x�
ÿ ~Fab�x�F�x; y�Fls�y�F�y; z�Far�z�F�z; x�

��
: �25�

An especially simple form of Eqn (23) occurs when using Eqn
(24) we tend x to y; one obtains [15]

dD�z�
dz2

����
z�0
� g

8
f abc



Fa
ab�0�Fb

bg�0�Fc
ga�0�

�
: �26�

Thus, confinement (nonzero s because of nonzero D) occurs
in the non-Abelian case due to the purely non-Abelian
correlator



tr �FabFbgFga�

� � 3


tr �EiEjBk�

�
eijk. To see the

physical meaning of this correlator, one can visualise mag-
netic and electric field strength lines (FSL) in the space. Each
magnetic monopole is a source of FSL, whether it is a real
object (classical solution or external object like the Dirac
monopole) or a lattice artefact.

In the non-Abelian theory these lines may form branches,
e.g., electric FSL may emit a magnetic FSL at some point,
playing the role of magnetic monopole at this point. This is
what exactly the nonzero triple correlator



tr �FFF�� implies.

Note that this could be a purely quantum effect, and no real
magnetic monopoles are necessary for this mechanism of
confinement.

So far we have discussed confinement in terms of the
lowest cumulant D�x�, which is justified when stochasticity
condition (14) is fulfilled and D�x� gives a dominant con-
tribution. Let us now turn to other terms in the cluster
expansion (9). It is clear that the general structure of higher

0.4 0.6 0.8 1

108

107

106

D

x, fm

Figure 4. Correlators Dk�x� � D�D1 � x2 qD1=qx2 (lower set of points)
and D?�x� � D�D1 (upper set of points) as functions of distance x; �
correspond to b � 5:8;^Ðto b � 5:9 and&Ðto b � 6:0. Solid lines are
the best fits in the form of independent exponents for D�x� and D1�x�.
Computations from Ref. [13].
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cumulants is much more complicated than Eqn (16), but a
Kronecker-type term D�x1; x2; . . . ; xn�

Q
dml mk similar to

D�xÿ y� in Eqn (16) and other terms containing derivatives
and coordinate differences like D1 are always present. The
term D�x1; x2; . . . ; xn� contributes to string tension, and
application of the same operator �1=2�emnab q=qxa again
reveals the non-Abelian Bianchi identity term (24) and an
analogue of Dbls in Eqn (23). This means that the string
tension in general case is a sum:

s �
X1
n�2

s�n� ;

s�n� � gn
�



F�1�F�2� . . .F�n��� ds�2� . . . ds�n� : �27�

When the stochasticity condition (14) holds, the lowest
term, s�2�, dominates in the sum; in general case all terms in
sum (27) are significant. The most important example of such
a situation is the case of a quasiclassical vacuum, which we
shall now discuss, while postponing a detailed consideration
to Section 6.

For a dilute gas of classical solutions the role of vacuum
correlation length Tg is played by the size of the solution r.
For the correlator



F�x1� . . .F�xn�

�
the essential nonzero

result occurs when all x1; . . . ; xn are inside the radius r of
the solution (e.g., dyon or instanton).

On the other side the typical F for the solution, e.g.,
F � Fmn�0�, is connected to r by the value of topological
charge Q; for instanton

Q � g2

32p2

�
d4xF 2

mn : �28�

Since Q is an integer, one immediately obtains that

�gFr2�2 � n ; n � 1; 2; . . . �29�

The same estimate holds for the dyon, whose solution is
discussed in Section 6.

Hence, the series (12) and (27) have an expansion
parameter gFT 2

g of the order of unity and may not converge.
A more detailed analysis of the gas of instantons and
magnetic monopoles shows that the string tension series (27)
for instantons [for simplicity centres of instantons and
monopoles were taken on the plane (12) of the Wilson loop]
look like [17]

s � r0
ÿ
1ÿ hcos bi� ;

b � g

�
F12�z� d2z � 2p ; s � 0 ; �30�

while for magnetic monopoles

b � p ; s � 2r0 �31�

where r0 is the surface density of instantons (monopoles).
Note that s�2� � r0hb2i=2 in both cases is positive, and for

instantons the total sum for s vanishes, while formonopoles s
is nonzero. As we shall see below this is in agreement with the
statement in Section 6: all topological charges (29) yield flux
through the Wilson loop which is equal to 2pQ, and for
(multi)instantons with Q � n � 1; 2; . . . the Wilson loop is
W � exp�i2pQ� � 1, and no confinement results for the
dilute gas of such solutions. For magnetic monopoles

(dyons) topology is different and elementary flux is equal to
p, bringing confinement for the dilute gas of monopoles in
agreement with Eqn (31).

Thus, the lowest cumulant


F�x�FF�y�F� might give a

misleading result in the case of quasiclassical vacuum, and
one should sum up all the series to get the correct answer as in
Eqns (30), (31). Therefore, to treat the vacuum containing
topological charges one should separate them and write their
contribution explicitly, while the rest, quantum fluctuations
withFT 2

g 5 1, can be considered via the lowest cumulants. An
example of such vacuum with instanton gas and confining
configurations was studied in Ref. [18] to obtain the breaking
of chiral symmetry; this work demonstrates the usefulness of
such an approach.

We shall conclude this section with a discussion of
confinement for charges in higher representations. As stated
in the previous section, our definition of confinement, based
on lattice data, requires the linear potential between static
charges in any representation, with string tension propor-
tional to the quadratic Casimir operator.

So, let us consider the Wilson loop (1) for the charge in
some representation; the latter was not specified above in all
equations leading to Eqn (27). One can write in general

Am�x� � Aa
mT

a ; tr�TaTb� � 1

2
dab : �32�

Similarly to Eqn (9) one has for the representation
j � �m1;m2; . . .� of the SU�N� group with N�j� dimension


W�C�� � 1

N� j�

� trj

(
exp

"X1
n�1

�ig�n
n!

�
ds�1� . . . ds�n�

F�1� . . .F�n���#)

�33�
and by the usual arguments one has Eqn (27) .

Due to the colour neutrality of the vacuum each cumulant
is proportional to the unit matrix in the colour space, e.g., for
the lowest cumulant one has


F�1�F�2��
ab
� 
Fc�1�Fd�2��Tc

anT
d
nb

� 
Fe�1�Fe�2�� 1

N 2
c ÿ 1

Tc
anT

c
nb � L�2�C2� j�1̂ab ; �34�

where the definition

TcTc � C2� j�1̂ ; �35�
is used and a constant not depending on representation is
introduced:

L�2� � 1

N 2
c ÿ 1



Fe�1�Fe�2�� ; �36�

and also the colour neutrality of vacuum

hFc�1�Fd�2�� � dcd 
Fe�1�Fe�2��
N 2
c ÿ 1

�37�

is used. For the next quartic cumulant one has


F�1�F�2�F�3�F�4���ae
� 

F a1�1�F a2�2�F a3�3�F a4�4���Ta1

abT
a2
bgT

a3
gdT

a4
de

� L�4�1
ÿ
C2�j�

�2
dae � L�4�2 �Ta1Ta2Ta1Ta2�ae : �38�
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Thus, one can see in quartic cumulant the higher orders of
the quadratic Casimir operator and the higher Casimir
operators.

The string tension for the representation j is the coefficient
of the diagonal element in Eqns (34) and (38):

s� j� � C2� j�
�
g2L�2�

2
d2x�O

ÿ
C 2
2 � j�

�
; �39�

where the termO
ÿ
C 2
2 � j�

�
contains the higher degrees ofC2� j�

and the higher Casimir operators.
Comparing our result (39) with the lattice data [10] (see

Fig. 3) one can see that the first quadratic cumulant should be
dominant as it ensures proportionality of s�j� to the quadratic
Casimir operator.

Another interesting and important check of the dom-
inance of bilocal correlator (of the Gaussian stochasticity) is
the calculation of the QCD string profile, done in Ref. [19].
The string profile means the distribution rk of the long-
itudinal component of the colourelectric field as a function
of distance x? to the string axis. This distribution can be
expressed through an integral of functions D�x�, D1�x� [18],
and with the measured values ofD,D1 from Ref. [13] one can
compute rk�x?� and compare it with independent measure-
ments. This comparison was done in Ref. [19] and is shown in
Fig. 5. One can see a good agreement of the computed rk�x?�
with `experimental' values. Thus, MVC gives a good descrip-
tion of data in the simplest (bilocal) approximation, even for
such delicate characteristics as field correlators inside the
string.

4. The dual Meissner mechanism, confinement
and superconductivity

The physical essence of the confinement phenomenon is the
formation of the string between the probing charges intro-
duced into vacuum, which in turn means that the electric field
distribution drastically changes from the usual dipole picture

(for the empty vacuum) and it focused instead into a string
picture in the confining vacuum. From the point of view of
macroscopic electrodynamics of media this effect can be
described by introducing dielectric function e�x� and electric
induction D�x� together with electric field E�x�:
D�x� � e�x�E�x�.

One can then adjust e�x� or better e�D�, or e�E� to obtain
the string formation. Another possibility is to choose the
effective action as a function of F 2

mn in such a way as to
reproduce string-type distribution. This direction was
reviewed in Ref. [1], and the main conclusion reached long
ago [20] was that the physical vacuumofQCD considered as a
medium could be called a pure dielectric, i.e. e � 0 far from
probing charges [21].

As also shown it is possible to choose e�E� in such a way as
to obtain a string of constant radius [21] or with radius slowly
dependent on length.We shall not follow neither these results,
nor results of the so-called dielectric model [1, 21], referring
the reader to the mentioned literature.

Instead we shall focus in this and the following sections on
another approach, which has proved useful in recent years:
confinement as the dual Meissner effect [3] and the AP
method ideologically connected to it [4].

The physical idea used by 't Hooft and Mandelstam [3] is
the analogy between theAbrikosov string formation in type II
superconductor between magnetic poles and the proposed
string formation between colour electric charges in QCD.

We shall study this analogy from different points of view:
(1) energetics of vacuum, i.e. minimal free energy of

vacuum;
(2) classical equations of motion (Maxwell and London

equations);
(3) condensate formation and symmetry breaking;
(4) vacuum correlation functions of fields and currents.
We shall consider in this section the 4d generalisation of

the Ginzburg ±Landau model of superconductivity, which is
called the AbelianHiggs model with the Lagrangian [22]:

L � ÿ 1
4
F 2
mn ÿ jDmjj2 ÿ l

4

ÿjjj2 ÿ j20�2 ;
Dm � qm ÿ ieAm : �40�

This model is known to possess classical solutions,
namely, the Nilsen ±Olesen strings, which are 4d general-
isation of the Abrikosov strings, occurring in the type II
superconductor. The latter can be described by the Ginz-
burg ±Landau Lagrangian, when coupling constants are
chosen correspondingly [23].

The Lagrangian (40) combines two fields: the electro-
magnetic field �Am; Fmn� which will be an analogue of the
gluonic QCD field, and the complex Higgs field j�x�, which
describes the amplitude of the Cooper-paired electrons in a
superconductor. When l!1 the wave functional
CfAm;j�x�g has a strong maximum around j�x� � j0,
which means formation of the condensate of the Cooper
pairs of amplitude j0.

Let us look more closely at the model (40) discussing
points (1) ± (4) successively.

(1) The energy density corresponding to Eqn (40) is

e � E2 �B2

2
� jDjj2 � jD0jj2 � l

4

ÿjjj2 ÿ j20�2 : �41�
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Figure 5.Distribution of the parallel colourelectric field component rk as a
function of distance x? to the string axis. Measurements (from Ref. [19])

are made at different distances xk from the string end:*Ð xk � 3a;^Ð

xk � 5a and5Ð xk � 7a (a is the lattice unit). Solid line is the Gaussian

fit, dashed line is calculated in Ref. [19] with the help of D�x� taken from
Ref. [13].
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From Eqn (41) it is clear that in the absence of external
sources and for large l the lowest (vacuum) state corresponds
to j � j0 � const, and E � B � 0. For future comparison
with QCD it is worthwhile to stress that formation of the
condensate hF 2

mni is not advantageous for large l, since the
mixed term jAmjj2 will yield a very large positive contribu-
tion. Condensate of electric charges j repels and suppresses
electromagnetic field Fmn everywhere. The same situation
occurs in the non-Abelian Higgs, i.e. the Georgi ±Glashow,
model. There appear two phases depending on values of l; g
and for large l the deconfined phase with j � j0 persists.
Here the word deconfined means that external (colour)
electric charges are not confined, while magnetic monopoles
can be confined. For smaller values of l one can reach a
region where it is advantageous to form the condensate hF 2

mni
and then possibly nonzeroD�x�. As we discussed in Section 3,
the confinement of colourelectric charges is possible in this
phase. But let us return to the Abelian Higgs model and to the
limit of large l, which is of primary interest to us.

In this case it is advantageous to form the condensate of
electric charges �j�x� � j0�; the condensate of electromag-
netic field is suppressed and one obtains the ANO strings
connecting magnetic poles. This is the confinement of
magnetic monopoles and mass generation of (colour) electro-
magnetic field, leading to the deconfinement of electric
charges.

In the dual picture one would assume that the condensate
of magnetic charges (monopoles) would help to create strings
of electric field, connecting (colour)electric charges, yielding
confinement of the latter. Our tentative guess is that the
condensate of magnetic monopoles (dyons) in gluodynamics
is associated with the gluonic condensate hF 2

mni.
(2) We shall now discuss the structure of the ANO strings

from the point of view of classical equations of motion. The
Maxwell equations give

rotB � j ; �42�

where j is the microscopic current of electric charges,
including the condensate of the Cooper pairs.

To obtain a closed equation for B one needs the specific
feature of a superconductor in the form of the London
equation

rot j � dÿ2B : �43�

The latter can be derived from the Ginzburg ±Landau-
type Lagrangian (40). Indeed, writing the current for the
Lagrangian (40) in usual way, we have

jm � ie�f� qmfÿ qmf�f� ÿ 2e2Amjfj2 : �44�

Assume that there exists a domainwheref is already constant
and Am is still nonzero (we shall define this region later in a
better way). Applying the rot operation to both sides of Eqn
(44) one obtains the London equations (43) and d is defined
by

dÿ2 � 2e2f20 : �45�

Insertion of Eqn (43) into Eqn (42) yields equation for B:

DBÿ dÿ2B � 0 : �46�

Solving Eqn (46) one obtains the exponential fall-off of B
away from the centre of the ANO string:

B�r� � constK0

�
r

d

�
; B�r� / exp

�
ÿ r

d

�
; r4 d : �47�

It is clear fromEqn (47) that dÿ1 is the photonmass generated
by theHiggsmechanism. On the other hand, the fieldf has its
own correlation length x, connected to the mass of quanta of
the field f (the `Higgs mass'):

x � 1

mf
; m2

f � 2lf20 : �48�

As is known [23], the London limit for the type II super-
conductor corresponds to the relations

d4 x ; or e5 l : �49�

One can also calculate the string energy for the unit length
(the string tension) for the string of the minimal magnetic flux
of 2p. Using Eqns (41), (47), (48) one obtains [23]

sANO � p

d2
ln
d
x
;

d
x
4 1 : �50�

Note that themain contribution to sANO comes from the term
jDfj2 in Eqn (41).

Thus, the physical picture of the ANO string in the
London limit implies mass generation of the magnetic quanta
(m � 1=d), which are much less than the Higgs mass
mf � 1=x.

It is instructive to see how the screening of the magnetic
field (mass generation) occurs.

At first, magnetic field creates around its flux (field-
strength line) the circle of the current j from the super-
conducting medium, as described by the London equation
(43). Then the Maxwell equation (42) tells that around the
induced current j there appears a circulating magnetic field,
directed opposite to the original magnetic field B and
proportional to it. As a result, the magnetic field is partly
screened in the middle and completely screened far from the
centre of the magnetic flux (which is the centre of the ANO
string).

The profile of the string, i.e. Bk�r�, as a function of the
distance from the string axis is shown in Fig. 6, as obtained
from Eqns (47).

It is interesting to compare this ANO string profile with
the corresponding profile obtained in the gluodynamics. As
we discussed in the previous section, the distribution of the
parallel component of the colourelectric field wasmeasured in
Ref. [24] and it also exponentially decrease far from the axis,
as can be seen in Fig. 6. Both profiles of theANO string and of
the QCD string in Fig. 6 are very similar, thus supporting the
idea of the dual Meissner mechanism.

To examine more closely the similarity of classical Eqns
(42), (43) with the corresponding equations, obtained in the
lattice Monte-Carlo simulations, one needs firstly an instru-
ment to recognise the similarity of the effective Lagrangians
in model (40) and in QCD. This is discussed in the next
section.

We shall conclude point (2) of this section by discussing
parameters dQCD and xQCD, which are dual-analogical to d
and x [see Eqns (44), (45)]. This is done via the AP method in
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Ref. [25] with the result (see Fig. 7)

dQCD � xQCD � 0:2 fm : �51�

Thus in QCD the situation is somewhat in the middle
between the type I and type II dual superconductors. The
calculation of the effective potential V�f� in SU(2) gluody-
namics, made recently inRef. [26], shows a two-well structure,
but with a rather shallow well, hence the effective lQCD in the
Lagrangian (40) is not large, again in agreement with Eqn
(51). A stimulating discussion of properties of dual mono-
poles and their measurement on the lattice is contained in
Ref. [27].

(3) Condensate formation and symmetry breaking.
The phenomenon of superconductivity is usually asso-

ciated with the formation of the condensate of the Cooper
pairs (although it is not necessary).

The notion of condensate is most clearly understood for
the noninteracting Bose ±Einstein gas at almost zero tem-
perature, where the phenomenon of the Bose ±Einstein
condensation takes place. Ideally in quantum-mechanical
systems the condensate can be considered as a coherent state.

When interaction is taken into account, the meaning of
the condensate is less clear [28].

In quantum field theory one associates condensate with
the properties of the wave functional and/or the Fock
columns. Again, in the case of noninteraction one can
construct the coherent state in the second-quantised formal-
ism (see, e.g., the definition of wave operators in the super-
fluidity case in Ref. [29]).

One of the properties of such a state is the fixed phase of
the wave functional, which means that the U(1) symmetry is
violated.

The simplest example is given by the Ginzburg ±Landau
theory (40), where in the approximation when l!1, the
wave functional Cfjg can be approximated by the classical
solution j � j0,Cfjg ! Cfj0g.

The solution j � j0, where j0 has a fixed phase, violates
U(1) symmetry of the Lagrangian (40), and one has the
phenomenon of spontaneous symmetry breaking (SSB) [30].
The easiest way to exemplify SSB is the double-well Higgs
potential as in Eqn (40). Therefore, looking for the dual
Meissner mechanism in QCD (gluodynamics) one may
identify the magnetic monopole condensate ~j, dual to the
Cooper pair condensate j � j0, and find the effective
potential V�~j�, demonstrating that it has a typical double-
well shape. Such an analysis was performed in Ref. [26] using
the AP method and will be discussed in the next section.

(4) Finally, in this section we shall examine the dual
Meissner mechanism from the point of view of field and
current correlators [31]. This will enable us to formulate the
mechanism in the most general form, valid both in (quasi)
classical and quantum vacuum.
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Figure 6. The same distribution rk as in Fig. 5 for SU(2) gluodynamics

measured in Ref. [24] on the lattice 244 for b � 2:7, xk � 5a (*) as

compared to the Bk distribution in the Abrikosov string (solid line). The
length of the string is 10a. The growth of the solid line at small xt is

nonphysical and is due to violation of approximations made in Eqn (47).
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Figure 7.Latticemeasurements [25] of the penetration length d � l and the
coherence length x as functions of b � 2Nc=g

2 for AP configurations: (a)

and (b) in SU(2) gluodynamics; (c) in SU(3) theory. The values of d and x
are defined by comparison of the field distribution and the AP monopole

currents with the solution of the Ginzburg ±Landau equations.
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One can use the correlator (16) to study confinement of
both magnetic and electric charges (this was discussed in
Section 3, see Eqn (19) and subsequent). Let us rewrite
Eqn (16) for correlators of electric and magnetic fields
separately:



Ei�x�Ej�y�

� � dij�DE �DE
1 � h24

qDE
1

qh2

�
� hihj

qDE
1

qh2
; �52�



Hi�x�Hj�y�

� � dij�DH �DH
1 � h2

qDH
1

qh2

�
ÿ hihj

qDH
1

qh2
; �53�

where hm � xm ÿ ym, h
2 � hmhm.

In Eqns (52), (53) we have specified correlators D; D1 for
electric and magnetic fields separately, since in Lorentz-
invariant vacuum DE � DH, DE

1 � DH
1 ; otherwise, e.g. in the

Ginzburg ±Landau model, electric and magnetic correlators
may differ, as also in any theory for nonzero temperature.

Now let us compare the Wilson loop averages for electric
and magnetic charges. In case of electric charges the result is
the area law (17) with the function D! DE responsible for
confinement.

Now we consider a magnetic charge in the contour C in
the plane (14); the corresponding Wilson loop is


~W�C�� � �exp�ig � ~F14 ds14

��
� exp�ÿs�Smin� : �54�

Here ~Fmn is the dual field, ~Fmn � �1=2�emnabFab, and ~F14 � H1.
From Eqn (17) one obtains

s� � g2

2

�
d2xDH

1 �x�
�
1�O�T 2

gH�
�
: �55�

Eqn (55) is something of a surprise. For electric charges DE

yields confinement and is nonperturbative, supported by
magnetic monopoles [see Eqn (22)], while DE

1 contributes
perimeter correction to the area law and contains also
perturbative contributions like a Coulomb term.

The same electric charges in the plane (23) bring about the
area law (17) again with D! DH. Also DH is coupled to
magnetic monopoles in the vacuum; indeed, taking diver-
gence from both sides of Eqn (53) one gets


divH�x�; divH�y�� � ÿq2DH�xÿ y� : �56�

Instead, the confinement of external magnetic charges
[Eqn (55)] is coupled to the function DH

1 [or DE
1 if one takes


~W�C�� for the loop in the plane (23)].
Thus duality of electric-magnetic external charges

requires interchange DH, DE $ DE
1 , D

H
1 .

At this point one should be careful and separate out the
perturbative interaction, which is contained in D1, namely,
one should replace in Eqn (55) DH

1 by ~DH
1 , where

~DH
1 � DH

1 ÿ
4e2

x4
: �57�

It is important to stress again that it is the nonperturbative
contents of correlators, which may create a new mass
parameter like s�; the latter should enter therefore in
correlators (the perturbative term contributes the usual
Coulomb-like interaction, which is technically easier to
consider not as a part of DH

1 , but to separate at earlier stage;
see, e.g., Ref. [32]).

This mass creation can be visualised in the Ginzburg ±
Landau model, where D1 can be computed explicitly from
Eqn (40):

DLG
1 �xÿ y� � ÿe2jfj2 ÿ q2�ÿ1

xy
� exp

ÿÿmjxÿ yj� ; �58�

where in the asymptotic region jfj � jf0j and m � ejf0j �
1=d.

From the point of view of dualityDH
1 �x�, Eqn (58) should

be compared with the behaviour of DE�x�, which was
discussed above in Section 3 and measured in Ref. [13]:

D�x� � DE�x� � exp
ÿÿmjxj� ; m � 1 GeV : �59�

Eqns (58), (59) demonstrate the validity of the dual Meissner
mechanism on the level of field correlators.

5. The Abelian Projection method

In the previous section it was shown how the string is formed
between magnetic sources in the vacuum described by the
Abelian Higgs model.

In the dual Meissner mechanism of confinement [53] it is
assumed that the condensate of magnetic monopoles occurs
in QCD; it creates strings between colour electric charges.
There are two possible ways to proceed from this point. In the
first, one may assume the form of Abelian or non-Abelian
Higgsmodel for dual gluonic field and scalar field ofmagnetic
monopoles. This type of approach was pursued in Ref. [33]
and phenomenologically is quite successful. The linear con-
finement appears naturally and even spin-dependent forces
are predicted in reasonable agreement with experiment [34].
We shall not go into details of this very interesting approach,
referring the reader to the papers cited, since the most
fundamental part of the problem, i.e. the derivation of this
dual Meissner model from the first principles, namely the
QCD Lagrangian, is missing in it.

Instead we turn to another direction, which has been
pursued very intensively over the last 8 ± 10 years, namely, the
AP method dating from the seminal paper by 't Hooft [4].

Themain problem is how to recognise configurations with
properties of magnetic monopoles, which are responsible for
confinement. 't Hooft's suggestion [4] is to choose a specific
gauge, where monopole degrees of freedom hidden in a given
configuration become evident. The corresponding procedure
was elaborated both in continuum and on lattice [35]. The
most subsequent efforts have been devoted to the practical
separation (the Abelian projection) of lattice configurations
and study of the separated degrees of freedom and construc-
tion of the effective Lagrangian for them. We start with the
formal procedure in continuum for SU�Nc� gluodynamics
following Refs [4, 35].

For any composite field X transforming as an adjoint
representation like Fmn, e.g.,

X! X 0 � VXVÿ1 ; �60�
let us find the specific unitary matrixV (the gauge), whereX is
diagonal:

X 0 � VXVÿ1 � diag�l1; l2; . . . ; lN� : �61�

For X from the Lie algebra of SU�Nc�, one can choose
l14l24l34 . . . lN. It is clear thatV is determined up to left
multiplication by a diagonal SU�Nc�matrix.
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This matrix belongs to the Cartan or the largest Abelian
subgroup of SU�Nc�, U�1�Ncÿ1 � SU�Nc�.

Now we transform Am to the gauge (61):

~Am � V

�
Am � i

g
qm

�
Vÿ1 �62�

and consider how components of ~Am transform under
U�1�Nÿ1. The diagonal ones

a i
m � � ~Am�ii �63�

transform as `photons':

a i
m ! a i

m � a i
m �

1

g
qmai ; �64�

while nondiagonal, cijm � � ~Am�ij, transform as charged fields:

c 0ijm � exp
�
i�ai ÿ aj�

�
c ijm : �65�

Here i; j are colour indices, 14 i; j4Nc.
But as 't Hooft remarks (see Ref. [4]), this is not the whole

story. There appear singularities (due to possible coincidence
of two or more eigenvalues li) with the properties of magnetic
monopoles. To make it explicit we consider the `photon' field
strength as in Ref. [35]:

f imn � qma i
n ÿ qna i

m

� VFmnV
ÿ1 � ig

�
V

�
Am � i

g
qm

�
Vÿ1; V

�
An � i

g
qn

�
Vÿ1

�
;

�66�
and define the monopole current:

Ki
m �

1

8p
emnsr qn f irs ; qmKi

m � 0 : �67�

Since Fmn is regular, the only singularity giving rise toK
i
m is

the commutator term in Eqn (66), otherwise the smooth part
of a i

m does not contribute to Ki
m because of antisymmetric

tensor.
Hence, one can define the magnetic chargemi�O� in the 3d

region O:

mi�O� �
�
O
d3sm Ki

m �
1

8p

�
qO

d2smn emnrs f irs : �68�

Consider now the situation when two eigenvalues of Eqn
(61) coincide, e.g. l1 � l2. This may happen at one 3d point in
O, x�1�, i.e. on the line in 4d, which one can visualise as the
magnetic monopole world line. The contribution to mi�O�
comes only from the infinitesimal neighbourhood Be of x

�1�:

mi
ÿ
Be�x�1��

� � i

4p

�
S�e�

d2smn emnrs
�
V qrVÿ1;V qsVÿ1�ii

� ÿ i

4p

�
d2smn emnrsqr

�
V qsVÿ1

�
ii
: �69�

The termV qsVÿ1 is singular and should be treated with care.
To make it explicit, one can write

V �W
cos

1

2
y� iref sin

y
2

0

0 1

24 35 ; �70�

whereW is a smooth SU�N� function near x�1�. Inserting it in
Eqn (69) one obtains

mi
ÿ
Be�x�1��

� � 1

8p

�
S�e�

d2smn emnrsqr�1ÿ cos y�qsf�s3�ii ;

�71�

where f and y are azimuthal and polar anges, respectively.
The integrand in Eqn (71) is a Jacobian displaying a

mapping from S 2
e �x�1�� to �y;f� / SU�2�=U�1�.

Since

P2

�
SU�2�
U�1�

�
� Z ; �72�

the magnetic charge is mi � �1=2.
From the derivation above it is clear that the point

x � x�1�, where l1�x�1�� � l2�x�1��, is a singular point of the
gauge-transformed ~Am and a i

m, and the latter behaves near
x � x�1� as O

ÿjxÿ x�1�jÿ1�, while the Abelian projected field
strength f imn is O

ÿjxÿ x�1�jÿ2�, like the field of a point-like
magnetic monopole.

However several points should be stressed now:
(1) the original vector potentialAm andFmn are smooth and

do not show any singular behaviour;
(2) at large distances f imn is not, generally speaking,

monopole-like, i.e. does not decrease as jxÿ x�1�jÿ2, so that
similarity to the magnetic monopole can be seen only in
topological properties in the vicinity of the singular point x�1�;

(3) the fields Am and a
i
m have in general nothing to do with

classical solutions and may be quantum fluctuations; actually
almost any field distribution in the vacuum may be the
Abelian projected into a i

m; f
i
mn and magnetic monopoles can

be detected then.
Examples of this statement will be given below, but before

doing that we must say a few words about the choice of the
field X in Eqn (60) and more generally about the explicit
gauge choice.

By now the most popular choice for the adjoint operator
X [see Eqn (60)] is the fundamental Polyakov line for nonzero
temperature:

Lij�x� �
�
P exp

�
ig

�b
0

dx4 A4�x4;x�
��

ij

; �73�

where b � 1=T, and T is the temperature, Am�x4;x� is
required to be periodic in x4, and i; j are fundamental colour
indices.

Another widely used gauge is the so-called maximal
Abelian gauge (MAG) [35], which in lattice notations can be
expressed as a gauge where the following quantity is max-
imised:

R �
X
s; m

tr
ÿ
s3 ~Um�s�s3 ~U�m �s�

�
: �74�

Here the link matrix Um / exp�igA�s�m Dzm�, and ~Um is gauge-
transformed (with the help of V�matrix:

~Um�s� � V�s�Um�s�Vÿ1�s� m� : �75�

In the continuum MAG is characterised by the condition,
which in SU(2) case looks most simple:

�qm � igA3
m�A�m � 0 ; A�m � A1

m � iA2
m : �76�
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As will be seen, the choice of gauge in the AP method is
crucial, e.g., for the minimal Abelian gauge corresponding to
the minimum of R [see Eqn (74)] the Abelian projected
monopoles have no influence on confinement [36].

Since the total number of papers on the AP is now
enormous, let us discuss shortly the main ideas and results.
Most results are obtained by performing the AP on the
lattice. (A short introduction and discussion of lattice
technique is given in Ref. [27]). The separation of mono-
pole degrees of freedom was done as follows. For an
Abelian projected link (75) one can define the U(1) angle
ym:

~Um � exp�iyms3� ; ÿp4ym4 p : �77�

Then for the plaquette ~Umn / ~Um ~Un /
P

exp�iymns3� one can
write ÿ4p4ymn 4 4p and define the `Coulomb part' of
ymn; �ymn � mod2pfymng, so that

�ymn � ymn � 2pnmn �78�

where nmn counts the number of Dirac strings across the
plaquette mn.

Now one can calculate different observables in AP and
find the contribution to them separately from the `Coulomb
part' �ymn and the monopole part mmn � 2pnmn. This has been
done in a number of papers (see review in Ref. [37]) and the
monopole dominance was demonstrated

(1) for the string tension [38];
(2) for fermion propagators and hadron masses [39];
(3) for topological susceptibility [40].
In Fig. 8 a comparison is made of the total AP

contribution to the string tension and of the monopole
part, which is seen to be dominant as compared to the
Coulomb part.

Another line of activity in AP is the derivation of the
effective Lagrangians for AP degrees of freedom (see, e.g.,
Ref. [41]). The resulting Lagrangian, however, does not
confine AP neutral objects such as `photons' and the latter
should contribute to the spectrum in contradiction to the
experiment. Therefore, the Lagrangian is not very useful both
phenomenologically and fundamentally. We shall not discuss
these Lagrangians but simply refer the reader to the cited
literature. Let us come back to the investigation of the
confinement mechanism with the help of the AP method.

A direct check of the dual Meissner mechanism of
confinement should contain at least two elements: a detection
of the dual London current and a check of magnetic
monopole condensation. The first was done in Ref. [42]. The
dual London equation (43) is

E � d2 rot jm ; d � 1

m
: �79�

For the ideal type II superconducting picture, it is
necessary that d4 x, where x � mÿ1f is the Higgs mass
(corresponding to the magnetic monopole condensation). In
practice (in Ref. [42]) it was found that d � x, and therefore
the condensate is `soft', implying that exact solutions of the
ANO string are required. Such analysis was performed inRef.
[43] for SU(2) and SU(3) and recently in Ref. [44].

The string profile r�x?�was also studied using AP and the
resulting rAP�x?� [45] is similar to obtained in the full lattice
simulation [46]. Thus, the whole picture of currents and
density is compatible with dual superconductivity.

Now we come to the second check, i.e. to search of
monopole condensation. Of special interest is the problem
of definition of monopoles. In early lattice studies [35] the AP
monopoles in the maximally Abelian gauge have been
identified through magnetic currents on the links of the dual
lattice and the perimeter density of the currents was measured
below and above transition temperature Tc, showing a strong
decrease of this density at T > Tc.

Later it was realised [47] that monopole density defined in
this way may not be a good characteristic of dual super-
conductivity and monopole condensate; for the latter one
needs the creation operator of the magnetic monopole. In this
way one can define the dual analogue of theHiggs fieldj, and
settle the question of condensation. The general mathema-
tical construction of the monopole creation operator was
given in Ref. [48]. Several groups used this U(1) construction
for the AP monopoles [49].

Another construction was used for the U(1) theory in Ref.
[50] and, as in Ref. [49], the condensation of monopoles was
also demonstrated. In the SU(2) case, analysis was performed
in Refs [51] and [26].

In Ref. [26] an important step was taken in finding an
effective potentialV�j� for the monopole creation operatorj
(defined similarly to the Froelich ±Marchetti method [48]; the
exact equivalence to Ref. [48] is still not proven in Ref. [26]).

If one is to believe the dual Meissner picture of confine-
ment, then one should expect the two-well structure of V�j�,
symmetric with respect to the change j! ÿj. One can see in
Fig. 9a the right hand side of V�f� (for positive f), which
indeed has a minimum at f � fc shifted to the right from
f � 0 for values of b � 4=g2 in the region of confinement. In
Fig. 9b the same quality V�f� is measured in the deconfine-
ment phase and, as one can see, the minimum j � jc is at
zero, fc � 0. In this way the analysis of Ref. [26] gives the
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Figure 8.The string tensionmeasured inRef. [43] for all AP configurations

(&) and separately for APmonopoles (*) and `photons' (*) as functions

of b � 4=g2 in SU(2) gluodynamics.
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evidence of AP monopole condensation. Note, however, that
strictly speaking, condensation should be proven in the
London limit �l!1�, otherwise quantum fluctuations of
jmight prevail for a shallowwell like that in Fig. 9a (it should
be recalled that the system has a finite number of degrees of
freedom in a finite lattice volume). Until now we have said
nothing about the nature of configurations, which due to AP
disclose a magnetic monopole structure and ensure confine-
ment. They could be classical configurations or quantum
fluctuations (the latter possibility is preferred in most
research).

Recently an interesting AP analysis of classical configura-
tions was done [52 ± 54]. We shall mostly examine the first
paper [52], which created a branch of further activity. The
authors of Ref. [52] make the AP analytically of an isolated
instanton, multiinstanton, and the Prasad ± Sommerfield
monopole and demonstrate in all cases the appearance of a

straight-line monopole current. In the first case the current is
concentrated at the centre of the instanton and its direction
depends on the parametrization chosen. Later (Ref. [53]) the
same type of analysis was made numerically with the
instanton ± antiinstanton gas, and the appearance of mono-
pole-current loops (of the size of an instanton radius and
stable with respect to quantum fluctuations) was demon-
strated.

Hence, everything looks as if there is a hidden magnetic
monopole inside an instanton. This result is extremely
surprising from several points of view. Firstly, the flux of
magnetic monopole through the Wilson loop is equal to p
(this will be shown in the next section), whereas the same flux
of instanton is equal to zero (modulo is 2p). This fact helps to
explain why themonopole gasmay ensure confinement, while
the instanton gas does not. Therefore, the identification of
monopoles and instantons is not possible. Secondly, confine-
ment in the instanton gas was shown to be absent in several
independent calculations [55] and the appearance of rather
large monopole loops in this gas looks suspiciously [53]. To
understand what happens in the AP method and whether it
can generate monopoles where they were originally absent,
we turn again to the case of one instanton [52] and take into
account that AP contains a singular gauge transformation,
which transforms an originally smooth field Fmn into a
singular one, namely [52],

Fmn�x� � VFmn�x�Vÿ1 � F sing
mn ; �80�

where

F sing
m �x� � ÿiV�x��qmqn ÿ qnqm�Vÿ1�x� : �81�

The matrix V�x� is singular and F sing
mn therefore does not

vanish. Hence, the correlator function D�x� [of the fields (15)
and currents (22)] acquires due to this singular gauge
transformation a new term:

D�x� ! D�x� �D sing�x� ; �82�

where

D sing�xÿ y� / 
F sing�x�F sing�y�� : �83�

The same F sing
mn causes the appearance of a magnetic

monopole current which passes through the centre of an
isolated instanton [52] . Therefore the AP method indeed
inserts a singularity of magnetic monopole type into
practically any configuration and, therefore, cannot be a
reliable method for separation of confining configurations.
On the other hand, the use of AP for lattice configurations
reproduces well the confinement observables, e.g., the string
tension [38], which means that confining contributions
readily pass the AP test.

From this point of view it is interesting to consider
another example, i.e. the dyonic (Prasad ± Sommerfield)
solution, also studied in Ref. [52]. It appears that the AP
monopole current passes exactly through the multiinstanton
centres and coincides with the trajectory of the physical dyon,
which can be calculated independently, i.e. the AP magnetic
monopole current coincides with the total magnetic mono-
pole current. This again supports the idea that the genuine
confining configurations are well projected by the AP
method.
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Figure 9.Effective potential of theAPmonopole fieldj, defined according
to Ref. [48], measured in Ref. [26] for two values of b in SU(2)

gluodynamics: (a) corresponding to confinement and (b) deconfinement.
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6. Search for classical solutions.
Monopoles, multiinstantons, and dyons

It was noted in Section 5 that the AP method provides no
answer to the question of the nature of confining configura-
tions. They can be both classical fields and quantum fluctua-
tions. Nothing about it can be inferred from the field
correlators, although lattice measurements of correlators do
yield some information on the possible profile of confining
configurations.

At the same time interesting information can be obtained
from the lattice calculations using the so-called cooling
method [56], where, at each step of cooling, quantum
fluctuations are suppressed more and more, and configura-
tions evolve in the direction in which the action decreases.
Roughly speaking, these results demonstrate that out of tens
of thousands of original configurations (which are mostly
quantum noise) at some step of cooling only a few (sometimes
15 ± 25) are retained, which ensure the same string tension, as
the original (`hot') vacuum. With additional cooling the
number of configurations drops to several units [they are,
mostly, (anti)instantons] and confinement disappears.

Thus, one may assume that confining configurations in
the vacuum differ from usual quantum fluctuations, and their
action is probably larger than instantonic action or they are
less stable.

It is therefore interesting to scrutinise all existing classical
solutions and check whether one can build up the confining
vacuum from these solutions.

In this section we shall study several classical solutions:
instantons, dyons, lattice periodic instantons and give a short
discussion of some other objects, such as torons.

After disposing the individual properties of those we
specifically concentrate on the contribution of each of the
object to theWilson loop (what we call as the elementary flux
of the object) and argue that flux, proportional to p, of dyons
and twisted instantons with Q � 1=2 may yield confinement,
in contrast to the case of instantons with flux equal to 2p.

To prove this one should construct the dilute gas of
objects, what we shall do in the most nontrivial example of
dyons.

6.1 Classical solutions, i.e. solutions of the equation

DmFmn � 0 �84�
can be written in the (anti)selfdual case in the form of the so-
called 't Hooft ansatz [57] or in the most general form of the
Atiya ±Drinfeld ±Hitchin ±Manin ansatz [58].

In the first (simpler) case one has

Aa
m � ÿ

1

g
�Z amn qn lnW ; �85�

where �Z amn is the 't Hooft symbol:

�Z amn �
eamn ; m; n � 1; 2; 3 ;

dan ; m � 4 ;
ÿdam ; n � 4 ;

8<: �86�

andW satisfies equation q2W � 0 with a particular solution:

W � 1�
XN
n�1

r2n
�xÿ x�n��2 : �87�

Here rn, x
�n�
m , n � 1; . . . ;N are real parameters. In the simplest

case, N � 1, one has the instanton solution [59] with size
rn � r and position x�1�m . For rn finite and N arbitrary Eqns
(85), (87) give a multiinstanton solution with topological
charge Q � N. In particular for N!1, x

�n�
4 � nb, x

�n�
i � ri

one gets the Harrington ± Shepard periodic instanton [60], for
whichAa

m periodically depends on (the Euclidean) time x4 � t.
One specific feature of instantons is their finite size; fields

Fmn fall off at large distances from the centre as xÿ4. This is
very different from the case of magnetic monopole, where
fields decay as xÿ2.

Another class of solutions with these properties can be
obtained from Eqns (85) and (87) in the limit rn � r!1.

The case of N � 1, when W � 1=�xÿ x�0��2, yields no
solution, since it is a pure gauge.

The next case, N � 2, is gauge equivalent to the (anti)-
instanton with the position at �x�1� � x�2��=2 and the size of
jx�1� ÿ x�2�j=2.

We shall be interested in the case when N!1,
ri � r!1, x

�n�
4 � nb, x�n� � R, n � 1; 2; . . . and call this

solution a dyon, since, as we demonstrate below, it has both
electric and magnetic long-distance field.

In this caseW can be written as

W �
X1
n�ÿ1

1

�xÿR�2 � �x4 ÿ nb�2 ; �88�

and one can rewrite Eqn (88) using variables

gjxÿRj � r ; x4g � t ; g � 2p
b
; �89�

as

W � 1

2r

sinh r

cosh rÿ cos t
: �90�

From Eqn (85) one obtains the vector-potentials:

Aia � eaiknk

�
1

r
ÿ coth r� sinh r

cosh rÿ cos t

�
ÿ dia sin t
cosh rÿ cos t

;

�91�
A4a � na

�
1

r
ÿ coth r� sinh r

cosh rÿ cos t

�
; �92�

with

n � xÿR

jxÿRj :

Here one notices that the dyonic field in this (singular or
't Hooft) gauge is now long ranged in spatial coordinates

Ama / 1

r
; Fmn / 1

r2
�93�

and periodic in `time' t.
Even more similarity to the magnetic monopole field can

be seen when one makes the (singular) gauge transformation
[61]

~Am � U�
�
Am � i

g
qm

�
U ; U � exp

�
isn

2
y
�
; �94�

with

tan y �W4

�
W

r
�Wr

�ÿ1
; Wm � qmW :
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In this gauge, sometimes called the Rossi gauge, ~Am looks like
the Prasad ± Sommerfield solution [62]:

~Aia � f�r�eibanb ; f�r� � 1

gr

�
1ÿ r

sinh r

�
; �95�

~A4a � j�r�na ; j�r� � 1

gr
�r coth rÿ 1� : �96�

Note that ~Ama does not depend on time, it describes a static
dyonic solution, since it has both a (colour)electric and a
(colour)magnetic field:

Eka � Bka � dak
�
ÿf 0 ÿ f

r

�
� nank

�
f 0 ÿ f

r
� gf 2

�
: �97�

One may additionally gauge rotate Eka; Bka to the quasi-
Abelian gauge, where the only long-range component is
directed along axis 3:

E 0k3 � B 0k3�r!1� / ÿ
1

gr2
nk : �98�

Eqn (98) justifies our use of the name dyon for the solution
and demonstrates its similarity to the magnetic monopole.
Note also that ~A4a [see Eqn (96)] tends to a constant at spacial
infinity like the Higgs field component of the 'tHooft ±
Polyakov monopole [63].

The total action of the dyon is calculated from Eqns (95),
(96) or Eqns (91), (92) to be

S � 1

2

�
d3r

�T
0

dt �B 2
ak � E 2

ak� �
8p2

g2b
T ; �99�

where T is the length of the `dyonic string' in terms of the
numberN of centres in Eqn (87); T � b�Nÿ 1�. For the given
N one also has

S�N� � 8p2

g2
Q�N� ; Q�N� � Nÿ 1 : �100�

6.2 This short section is devoted to another type of classical
solutions, those depending on boundary conditions (b.c.) and
defined in finite volume. Here we consider torons and
instantons on torus [64], which obey the twisted b.c. in the
box 04 xm 4 am. Periodic b.c. are imposed modulo gauge
transformation (twisted b.c.):

Al�xm � am� � Om
�
Al�xm � 0� ÿ i

q
qxl

�
O�m : �101�

To ensure self-consistency ofAl on the lines four functionsOm
�m � 1; . . . ; 4� should satisfy the following conditions

O1�x2 � a2�O2�x1 � 0� � O2�x1 � a1�O1�x2 � 0�Z12 ;

�102�

and analogous conditions for 1; 2! i; j, where Z12 2 Z�N� is
the centre of the group SU�N�:

Zmn � exp

�
2pi

nmn
N

�
; nmn � ÿnnm : �103�

Here nmn are integers not depending on coordinates xm.

The twisted solutions Am (101) contribute to the topologi-
cal charge

g2

16p2

�
jxm j4 am

tr�Fmn ~Fmn� d4x � nÿ w
N
; �104�

where n is an integer and w � nmn~nmn=4 � n12n34 � n13n42�
n14n23.

The action in the box is bounded from below

1

2

�
tr�FmnFmn� d4x5 8p2

g2

����nÿ wN
���� : �105�

Consider, e.g., the case of n34 � ÿn12 � 1, all other
nmn � 0, w � 1. Then one has

Al�x� � ÿo
g

X
m

amlxm
amal

; aml � ÿalm ; �106�

where a12 � 1=2Nk; a34 � 1=2Nl, k� l � N,

o � 2p diag�l; . . . ; l;ÿk; . . . ;ÿk� : �107�

The matrixo has k elements equal to l and l elements equal to
ÿk, and a condition is imposed a1a2�a3a4�ÿ1 � l=k �
�Nÿ k�=k. As a simple example we shall take SU(2) and
cubic box, then k � l � 1, o � 2pt3 and

Al�x� � ÿ t3
a2

p
2g

X
m

�amlxm ; �a12 � �a34 � 1 : �108�

This solution is self-dual and the following relation holds

tr �FmnFmn� � tr �Fmn ~Fmn� � 16p2Q
m amNg

2
: �109�

FromEqn (109) one can see that toron (108) is a particular
case of a self-dual solution with constant field �Fmn:

Am�x� � �Fmnxn
t3
2
; �110�

where the amplitude of constant field �Fmn is quantised. For
constant (anti)selfdual field the analysis of Leutwyler [65]
shows that such solutions are stable with respect to quantum
fluctuations.

The flux through theWilson loop for the solution (108) in
the planes (12) or (34) is

P exp

�
ig

�
C

Am dxm

�
� exp

�
ÿip S

a2
t3

�
; �111�

where S is the area, bounded by the contour C.
As we shall see in the next section, the flux equal to p for

S � a2 is a property very important for confinement. Another
interesting property of torons (not shared by any other
solutions) is noteworthy one: its action is proportional to
1=Ng2 and therefore stays constant for large N, where
g2 � g20=N. We shall return to this property in the Conclu-
sions.

Another type of twisted solutions are twisted instantons
[64]. These are solutions with topological charge Q (104) and
an integer non zero n.

These solutions have been seen on the lattice [66], and the
profile [distribution of trF 2

mn�x�] is very close to that of the
usual instanton.
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Unfortunately, the analytic form of twisted instanton is
still unknown; the top charge was found to be 1/2 [66], and the
extrapolated string tension is probably nonzero. These two
facts are not accidental; in the next section it will be shown
that half-integer topological charge ensures a flux of p, which
in turn may lead to confinement.

6.3 We compute elementary flux inside a Wilson loop for
(multi)instanton, dyon, and twisted instanton and connect
properties of the elementary flux to confinement in the gas of
classical solutions [67].

Consider a circular Wilson loop in the plane (12) and take
Am in the form of the 't Hooft ansatz (85), whereN is fixed and
x
�n�
i � 0, x

�n�
4 � nb. In this way one can study the case of

instanton �N � 1�, periodic Harrington ± Shepard instanton
(N!1, ri � r fixed), multiinstanton (N finite, ri finite),
and dyon (ri � r!1, N!1).

When the radius of the loopR is much larger than the core
of the solution (i.e. R4 r for (multi)instantons or R4 b=2p
for dyon), the Wilson loop is

W�CR� � exp

�
it3p

RWr

W

�
� exp�it3 � flux� ; �112�

where

Wr � qW
qjxj

����
jxj�R

; jxj � r :

Now for (multi)instanton one has for R4 r

RWr

W

����
r�R
� ÿ

P
2r2nR=

�
R2 � �x4 ÿ nb�2�2

1�Pr2n=
�
R2 � �x4 ÿ nb�2� ! 0 : �113�

In a nonsingular gauge one would obtain the flux of 2p for
(multi)instanton [68] and in all gauges one has

W�CR� � 1 ; �multi�instantons : �114�

Consider now the case of dyons corresponding to the limit
rn !1 inWr in Eqn (112).

One can use the form (90) to obtain for dyon

RWr

W
� ÿ1 ; flux � ÿp ; W�CR� � ÿ1 : �115�

It is also amusing to consider the intermediate case of so-
called t-monopoles [69], when rn !1, but N is fixed, so the
length of the chain L � Nb is finite. One can use Eqn (88) to
find two limiting cases:

R4L ;
RWr

W
� ÿ2 ; flux � ÿ2p ; W�CR� � 1 ;

�116�
R5L ;

RWr

W
� ÿ1 ; flux � ÿp ; W�CR� � ÿ1 :

�117�

Thus, only t-monopoles long enough (i.e. almost dyons)
may ensure the nontrivial Wilson loop,W�CR� 6� 1.

To connect flux values (114) ± (117) to confinement one
can take a model consideration of stochastic distribution of
fluxes in the dilute gas, as was done in Refs [68, 69]. More

generally the picture of stochastic fluxes was formulated in
the model of stochastic confinement [70] and checked on the
lattice in Ref. [71].

We shall come back to the model of stochastic confine-
ment in the next section and for now use simple arguments
from Refs [68, 69].

Indeed, consider a thin 3d layer above and below the
Wilson loop (of thickness l5R) and assume that it is filled
with gas of (multi)instantons or dyons. If 3d density of the gas
is n, so that the average number of objects is �n � nSl, then the
Poisson distribution, which gives the probability of having n
objects in the layer around the plane of Wilson loop, is

w�n� � exp�ÿ�n� ��n�
n

n!
: �118�

If the contribution to the Wilson loop of one object is l
(l � �1 and ÿ1 for instantons and dyons respectively) then
the total contribution is


W�CR�
� �X

n

exp�ÿ�n� l
n�nn

n!

� exp
�ÿ�n�1ÿ l�� � exp�ÿsS� ; �119�

where

s � �1ÿ l�nl : �120�

Thus, for instantons �l � 1� one obtains zero string tension in
agreement with other calculations [55], while for dyons
�l � ÿ1� confinement is present according to the model. Let
us now stress which features are important for this conclu-
sion:

(1) the flux is equal to p, so thatW � ÿ1 for one dyon;
(2) stochastic distribution of fluxes enables us to use the

Poisson (or similar) distribution;
(3) existence of finite thickness, i.e. of finite screening

length l, so that objects more distant than l completely screen
each other and do not contribute to the Wilson loop.

Notice that point (3) is necessary for the area law,
otherwise (for large l, e.g., l � R) one obtains s which
increases with R, i.e. superconfinement.

The same reasoning is applicable to torons and twisted
instantons [66]. Indeed from Eqn (111) one can see that their
elementary flux is equal to ÿp. Therefore, if one divides all
volume into a set of twisted cubic cells and ensures stochas-
ticity of fluxes in the cells, one should obtain the same result
(119) with confinement present.

Torons [72] and twisted instantons [66] have been studied
from the point of view of confinement both analytically [72]
and on the lattice [66]. For torons, the requirement of
stochasticity is difficult to implement, since boundary condi-
tions of adjacent cells should ensure continuity of Am�x�, and
this introduces ordering in the fluxes, and confinement may
be lost. In the case of twisted instantons withQ � 1=2 [66] the
field is essentially nonzero around the centre of instanton, and
b.c. are much less essential. The authors of Ref. [66] note a
possibility of nonzero extrapolated value for the string
tension when the box size is increased beyond 1.2 fm. It is
still unclear what would be the result when the twisted b.c. are
imposed only on the internal boundaries.

6.4 We shall consider below the dyons as the most probable
candidates for classical confining configurations. One must
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study the properties of dyon gas and show that interaction in
this gas is weak enough to ensure the validity of the dilute gas
approximation. As usual, one assumes the superposition
ansatz

Am �
XN�
i�1

A��i�m �x� �
XNÿ
i�1

Aÿ�i�m �x� ; �121�

where N�; Nÿ are numbers of dyons and antidyons respec-
tively. To make the QCD vacuum O�4� invariant, one should
take any direction of the dyonic line characterised by the unit
vector o�i�m �o�i�m o�i�m � 1� and the position vector R�i�m so that

A�i�m �x� � O�i �LA�m�r; t�Oi : �122�

Here Oi is the colour orientation matrix and L is the O�4�
(Lorentz) rotation matrix, while r and t are

r � ��xÿ R�i��2 ÿ ��xÿ R�i��mo�i�m
�2	1=2

; �123�
t � �xÿ R�i��mo�i�m : �124�

It is now nontrivial to choose the gauge for the solution Am in
Eqn (122), e.g., onemay take a singular gauge solution (91) or
a time-independent one (95), (96). The sum (121) is not
obtained by gauge transformation from one case to another.
Indeed, it appears that the form (95), (96) is not suitable, since
the action for the sum (121) in this case diverges (see [67] for
details).

The form (91) is adoptable in this sense and we shall
consider it in more detail.

Since solutions fall off fast enough [see Eqn (93)], the
interaction between dyons defined as Sint

S�A� �
XN��Nÿ
i�1

Si�A�i�� � Sint �125�

is Coulomb-like at large distances, e.g. for parallel dyon lines
one has for two dyons

Sint�R�1�;R�2�� � const� T

jR�1� ÿR�2�j ; �126�

where T � Nb is the length of dyon lines. A similar estimate
can be obtained for nonparallel lines.

As discussed in the previous section, the crucial point for
the appearance of the area law of the Wilson loop is the
screening phenomenon. To check this, let us consider the field
of tightly correlated pair d�d. When distance between d and �d
is zero, the resulting vector potential is obtained using the
superposition ansatz (121) and vector potentials (91), (92) for
d and �d [the corresponding one for �d differs from Eqn (91) by
the sign of the last term and the total sign in Eqn (92)]:

Aia�d�d� � 2

g
eaiknk

�
1

r
ÿ coth r� sinh r

cosh rÿ cos t

�
; �127�

A4a�d�d� � 0 : �128�

At long range one has

Aia�d�d� � 2eaik
1

gr
�O

ÿ
exp�ÿr�� : �129�

Calculation of Bka amounts to insertion of f � 2=gr in Eqn
(98), which immediately yields

Bia�d�d� � O
ÿ
exp�ÿr�� ; Eia � O

ÿ
exp�ÿr�� : �130�

Thus fields of d and �d completely screen each other at large
distances. Note that this is purely non-Abelian effect, since
the cancellation is due to the quadratic term in f [Eqn (98)].

Now let us take distance between d and �d equal to
q � R�1� ÿR�2� and distance between observation point x
and centre of d�d equal to r; r � xÿ �R�1� �R�2��=2; assume
that r4 r. Then the field of d�d (averaged over direction of q)
is of the order

Bk;Ek � O

�
r2

r4

�
: �131�

Hence, the contribution of a distant correlated pair of d�d is
unessential and indeed in theWilson loop calculating one can
take into account the distances to the plane of the loop smaller
than the correlation length l, which is actually the screening
length.

From the dimensional arguments (we have the only
parameter in our Coulomb-like system: the average distance
between the nearest neighbours, nÿ1=3) one has

l � cnÿ1=3 ; �132�

where c is some numerical constant, and n is the 3d density of
the dyon gas.

Hence, one expects the string tension in the dyonic gas to
be of the order of

s � cn2=3 : �133�

Numerical calculations of


W�C�� for the dyonic gas have

been done in Ref. [73], but the density used was still much
below that, which is necessary for observation of the screen-
ing; work is now in progress.

Summarising this section let us discuss perspectives of the
classical solutions reported above as candidates for confining
configurations. Only two solutions, dyons and twisted
instantons, yield the suitable flux through the Wilson loop
equal to p, therefore we shall discuss them separately. Dyons
can be represented as a coherent chain of instantons of large
radius with correlated orientation of colour field. When one
goes from the instanton gas to these coherent chains, the
action changes a little, but entropy decreases significantly,
and confinement occurs. To estimate the advantage or
disadvantage of dyonic configurations from the point of
view of the minimum of the vacuum free energy, one must
perform complicated computations, which are planned in the
nearest future.

As for the twisted instantons, they require an internal
lattice structure in the vacuum, whichmay violate the Lorentz
invariance in some field correlators.

The problem is ultimately solved, as in dyonic case, by
calculating the free energy of the vacuum, because in the
nature there should be realised that vacuum structure, which
ensures the minimal free energy. The lattice Monte-Carlo
calculations satisfy this principle of minimal free energy (up
to the finite size effects) and predict the confining vacuum
with special nonperturbative configurations responsible for
confinement.
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While it is possible that these configurations are dyons, it
is also probable that they are not at all classical, and it is not to
be ruled out, that there exist unknown classical solutions,
which account for confinement ultimately.

7. Topology and stochasticity

In the previous sectionwe have used the stochasticity of fluxes
to obtain the area law for dyons (magnetic monopoles). We
shall begin this section by giving more rigorous treatment of
this stochasticity and comparing it to lattice data .

For Abelian theory the magnetic flux through the loop C
is defined unambiguously through the Wilson loop

W�C� � exp

�
ie

�
C

Am dxm

�
� exp

�
ie

�
S

H dr

�
; �134�

and the magnetic flux is

m � e

�
S

H dr : �135�

For SU�Nc� theory the flux can be defined analogously [70]
(we shall omit the word `magnetic', since it depends on the
orientation of the loop).

Consider eigenvalues of the Wilson operator (note the
absence of trace in its definition):

U�C� � P exp

�
ig

�
C

Am dxm

�
� exp

�
iâ�C�� : �136�

The eigenvalues of the unitary operator U�C� are equal to
exp
�
iâ�C��, where â�C� is a diagonal matrix N�N, depend-

ing on Am.
In electrodynamics an�C12� are additive for the contour

C12, consisting of two closed contours C1 and C2:

an�C12� � an�C1� � an�C2� : �137�
In SU�Nc� theory this is generally not the case. Consider now
the spectral density rs�a�, i.e. averaged with the weight
exp
�ÿS0�A�� the probability of the flux a�C�:
rs�a� �

�
DAm exp

�ÿS0�A��Nÿ1PN
m�1 d2p

ÿ
aÿ am�Am;C�

��
DAm exp

�ÿS�A�� ;

�138�
where S0�A� is the standard action of the SU�Nc� theory.

Now any averaged Wilson operator over contour C, and
also those for contour Cn, i.e. contour C, followed n times,
can be calculated with the help of rs�a�:


W�Cn�� � � p

ÿp
da exp�ina�rs�a� : �139�

We shall assume that there is confinement in the system, i.e.
that the area law holds both for contour C and Cn:


W�Cn�� � exp�ÿknS� : �140�

Then the following equality holds [70, 71]:

rCS �a� �
� p

ÿp
da1 . . .

� p

ÿp
dan r

C1

S1
�a1� . . . rCn

Sn
�an�

� d2p�aÿ a1 ÿ . . .ÿ an� ; �141�

where the contour C with area S is made of contours Ci

splitting the area S into pieces Si. The proof [70, 71] works in
both directions: from Eqns (139), (140) to Eqn (141) and
back. Sometimes this statement is formulated as a theorem
[70]. The necessary and sufficient condition of confinement is
the additivity of random fluxes.

The randomness is seen in Eqn (141), which has the form
of convolution as it should be for the product of probabilities
for independent events. Additivity is evident from the
argument of the d-function in Eqn (141).

Density rs�a� was measured in lattice calculations [71],
and it was found that rs�a� indeed satisfies Eqn (141) and
approximately coincides with the rds �a� (the density for d � 2
chromodynamics) if one renormalizes properly the charge.
For d � 2 the case rs�a� is also known explicitly and satisfies
Eqn (141) exactly [71]. In that case confinement exists for
trivial reasons.

Let us now consider the non-Abelian Stokes theorem [11],
which for the operator (136) looks like

U�C� � P exp

�
ig

�
S

dsmn�u�Fmn�u; x0�
�
: �142�

We take into account that [under gauge transformationV�x��
it turns into

U�C� ! V��x0�U�C�V�x0� ;

Fmn�u; x0� ! V��x0�FmnV�x0� : �143�

Since U�C� can be brought to the form U�C� � exp�iâ� by
diagonal unitary transformation â, one can deduce that this is
some gauge transformation V�x0� and, moreover, it is the
same which makes

�
dsmn Fmn�u; x0� diagonal. Thus, one can

define the flux m similarly to Eqn (135):

m̂ � diag

�
igV��x0�

�
S

dsmn�u�Fmn�u; x0�V�x0�
�
: �144�

Note that the dependence on x0 present in U�C�, is cancelled
inW�C� � tr

�
U�C��.

The additivity of fluxes is seen in Eqn (144) explicitly.
Now consider the statistical independence of fluxes,

which obtains when one divides the surface S into pieces
S1; . . . ;Sn. Using the cluster expansion theorem [12] and
discussion in Section 3, one can conclude, that a necessary
and sufficient condition for this is the finite correlation
length Tg, which appears in correlation functions (cumu-
lants)




F�1� . . .F�n���. In the case, when each piece Sk,

k � 1; . . . ; n is much larger in size than Tg, the different pieces
become statistically independent. Thus, our consideration in
the framework of the field correlators in Section 3 is in clear
agreement with the idea of stochastic confinement [70, 71].
The MVC in addition contains the quantitative method to
calculate all observables in terms of given local correlators,
which is absent in the stochastic confinement model [70, 71].

The appearance of new physical quantity Tg and cumu-
lants is a further development of the idea of stochastic
vacuum, which gives an exact quantitative characteristics of
randomness.

When the size of contours is of the order of Tg, the fluxes
are no longer random, and the area law at such distances
disappears. There is no area law at small distances, as
explained in Section 3.
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The lattice measurements in Ref. [71] show that rs�a� is
strongly peaked around a � 0 for small contours, when there
is no area law, which corresponds to the perturbative regime.

Instead, for large contours the measured rs�a� are rather
isotropic.

One can compare this fact with our result for fluxes of
instantons and dyons. From our definition of fluxes (136) a
dyon in the plane of contourC corresponds to [see Eqn (112)]

â � p 0

0 ÿ p

 !
; �145�

and a dyon with its centre off the plane has smaller
eigenvalues am. It is clear that instantons with zero flux
cannot bring about isotropic distribution of fluxes, while
having maximal flux �p are most effective in creating the
isotropic rs�a�, when one integrates over all dyons in the layer
above and below the plane.

It is instructive now to study the question of fluxes for the
adjoint Wilson loop and in general for the Wilson loops of
higher representations.

One can keep the definition (136) also in this case, but Am
and â�C� should be expressed through generators of a given
representation:

Am �
X
a

AmaT
a ; tr �TaTb� � 1

2
dab : �146�

Thus â�C� for theWilson loop in adjoint representation is
a matrix �N 2

c ÿ 1� � �N 2
c ÿ 1�, e.g. for SU(2) �Ta�bc �

�i=2�eabc. To understand how a stochastic vacuum model
works for adjoint representation, let us take as an example the
flux of one dyon and calculate âadj�C�. Repeating our
discussion preceding Eqn (112) for large loops in the plane
(12), one concludes again that only colour index a � 3
contributes and one has

âadj�C� � p diag�T 3� lim
�
RWr

W

�
: �147�

Since the last factor for dyon is lim�RWr=W� � ÿ1, and

diag�T 3� �
1

ÿ 1

0

0BB@
1CCA ;

one finally obtains

âadj�C� �
ÿ p

p

0

0BB@
1CCA : �148�

Thus, our conclusion of the elementary flux equal to p
holds true also in the adjoint representation (and all higher
representations), which gives an argument for confinement of
adjoint charges on the same ground as for fundamental
charges.

One has

Wadj

� � 1

N 2
c ÿ 1

tradj

n
exp
�
iâadj�C�

�o � ÿ1 ; �149�

as well as


Ŵfund

� � ÿ1.

So far we have discussed the stochasticity of the vacuum
from the point of view of fluxes and have concluded that it
shows up as random distribution of fluxes. In Section 3 the
vacuum stochasticity was formulated in the language of field
correlators. Through the AP method one can connect the
latter with the distribution of AP magnetic monopole
currents (in the U(1) theory an exact connection holds even
without AP). One may wonder why magnetic monopoles or
dyons are needed to maintain the stochastic picture of the
vacuum?

To answer this question we start with the Abelian
theory. Without magnetic monopoles the Bianchi identities
divH � 0 are operating, requiring that all magnetic FSL are
closed.

This introduces strong ordering in the distribution of
magnetic field, and no stochastic picture emerges.

As a result, confinement is not present in the system, as
can be seen from Eqn (22). In the presence of magnetic
monopoles the magnetic lines can start and end at any place,
where a monopole is present, and one can have an actual
stochastic distribution. As discussed in Section 3, the non-
Abelian dynamics can mimick the effect of monopoles due to
triple correlators hEiEjBki thereby ensuring the stochastic
distribution of fields.

Thus, as for magnetic monopoles in the Abelian theory,
dyons in gluodynamics tend to create disorder in the system.

The same situation occurs in other spin and lattice
systems, e.g., in the planar Heisenberg model the Berezins-
ki|̄ ±Costerlitz ± Thouless vortices create disorder and master
the phase transition into the high temperature phase [74] (for
details see also Ref. [1]).

All this is a manifestation of the general principle [2].
Topologically nontrivial field configurations are responsible for
creation of disorder and they drive the phase transition order ±
disorder.

From the QCD point of view the `ordered phase' is the
perturbative vacuum of QCD with long distance correlations
�D1�x� / 1=x4� and flux distribution rs�a� centred at zero,
while the `disordered phase' is the real QCD vacuum with
short correlation length Tg and with random fluxes; there is
no real phase transition in continuum: the phases coexist on
two different scales of distances (or moments). In the lattice
version of U(1) theory there are indeed two phases: weak
coupling phase, corresponding to the usual QED, and strong
coupling phase with magnetic monopoles (lattice artefacts)
driving the phase transition.

The dyon is a continuum example of topologically
nontrivial configuration. In singular ('t Hooft's) gauge a
dyon has a multiinstanton topological number proportional
to its length.

The dyon saturates the triple correlator hEiEjBki and may
be a source of randomness of field distribution.

The ultimate answer, however, to the question about the
nature of confining configurations is still missing. The
analysis of the dyonic vacuum as amodel of the QCD vacuum
is not yet completed, and it is possible that the topologically
nontrivial configurations responsible for confinement are
dyons, or some other unknown solutions, or else purely
quantum fluctuations.

We shall conclude this section with a discussion of the
possible connection between confinement and the Anderson
localisation [75].

At the base of the similarity between these two phenom-
ena lies the field stochasticity in the vacuum (medium), where
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quark (electron) propagates. This is where the similarity
comes to the end, though.

Namely, for an electron one can discuss the individual
Green function, which always (for any density of defects)
decays exponentially with distance. [There exists, however, a
special correlator, e.g., the direct current conductivity sdc,
which vanishes for localised states (for large density of
localised defects [76]) and is nonzero for the delocalised
states].

In the case of a quark in the confining vacuum its Green's
function (more precisely the gauge-invariant Green's func-
tion of the q�q system averaged over vacuum configurations)
corresponds to the linear potential, i.e. it behaves as
G�r� / exp�ÿr3=2�, where r is the distance between q and �q.
Thus the quark Green's function decays faster than any
exponent, in contrast to the Green's function of an electron
in the medium, which always decays exponentially. This
property of vacuum Green's functions was coined by the
author of Ref. [77] as superlocalization. If the average
potentialV, acting on a quark, had been finite, then quark at
some high energy could be freed and get to the detector.

The essence of superlocalization is precisely the fact that
the averaged potentialV grows with distance without limits
and therefore quarks are confined at any energy. This is the
absolute confinement.

It is interesting to follow the mechanism whereby the
unbounded growth ofV occurs. To this end we shall consider,
as at the beginning of Section 3, a nonrelativistic quark,
moving in the �x; t� plane, while the heavy antiquark is fixed
at its origin.

According to quantum mechanics laws [78] the quark
Green function is proportional to the phase integral; thus, by
using the Fock ± Schwinger gauge, one can write

G�X;T� �
�
exp

�
ig

�T
0

A4�x; t� dt
��

� 1ÿ g2

2

�T
0

dt

�T
0

dt 0
�X
0

du

�X
0

du 0


E1�u; t�E1�u 0; t 0�

�
� 1ÿVT : �150�

Stochasticity of vacuum fields implies the finite correlation
length Tg for the correlator



E1�u; t�E1�u 0; t 0�

�
, i.e. according

to Eqn (16) one has

E1�u; t�E1�u 0; t 0�

� � D�uÿ u 0; tÿ t 0� � . . . ; �151�

and for large T and X we obtain

V � constjXj ; jXj ! 1 : �152�

Thus the linear growth of V is a consequence of random
distribution of field strength E�u; t� and of the fact, thatV is a
result of the averaging of vector-potentials Am, which are
connected to Fmn by an additional integral. This extra
integration causes the linear growth of V and from the
physical point of view this means the accumulation of
fluctuations of the field Fmn on the whole distance X from
the quark to the antiquark.

This is the essence of the superlocalization phenomenon,
which as yet has no analogue in the physics of condensed
matter.

8. Conclusions

This study has examined confinement from different angles
and described the mechanism of this phenomenon in the
language of field correlators, drawing heavily on the phenom-
enological language of dual superconductivity, i.e. effective
classical equations of the Ginzburg ±Landau type, on the
language of the stochastic flux distributions. Finally we have
studied classical configurations, which may account for
confinement.

At every step along the way we have stressed that con-
finement is a string formation between colour charges, the
string mostly consisting of a longitudial colourelectric field.

Let us now try to combine different descriptions of
confinement derived above from our analysis and show in a
simple example what the string looks like.

To this end we shall use the simple picture of the
nonrelativistic quark and the heavy antiquark at distance X
from them, discussed at the end of Section 7. From the point
of view of field correlators, confinement (the string forma-
tion) is a consequence of the fact that there exists correlation
length Tg, such that the fields inside this length are coherent
and those outside this length are random. This is shown in
Fig. 10a, where the strip of sizeTg is indicated in the plane (14)
[one could take instead any other plane, i.e. the plane (12) or
(13)]. Inside this strip the field is directed mostly in the same
way (i.e. as on the string axis), while outside the strip
directions are random. The correlation length Tg charac-
terises the string thickness (if the plane (12) or (14) is chosen).
Thus, Tg plays a double role. It gives the coherence length,
where the string is created, and beyond which stochastic
vacuum fields existed also before quark and antiquark, have
been inserted in the vacuum.

Let us look at the same construction from the point of
view of dual superconductivity. One then obtains the picture
shown in Fig. 10b. Here the circle depicts the monopole
current ~jm, which is caused by the colourelectric field Ex of the
string in accordance with the dual London equation
rot ~j � m2E. The effect of this current is the squeezing of the
string field, which prevents the field flux lines from diverging
into the space, and as a result Ex decays exponentially away
from the string axis 0x like exp�ÿm

���������������
y2 � z2

p
�. Thus, m

defines the string thickness and one can conclude that
m � 1=Tg. And indeed Eqn (22) confirms this conclusion.

Let us turn now to the flux distribution and the stochastic
vacuummodel (Fig. 10c). In this case the strip, corresponding
to the string in Fig. 10a, can be divided into pieces S1;S2; . . .
of the size d 2, such that the fluxes inside each piece are
coherent and equal to, e.g., �p for the case of dyons, while

X

S2
S1

c

~jm

X

E1 0 00

X

Tg

a b

E1

x4x4x4

Figure 10. The picture of string formation between a nonrelativistic quark

and a heavy antiquark is illustrated in three different approaches: (a) in the

formalism of field correlators; (b) in the formalism of dual superconduc-

tivity; (c) in the picture of the stochastic flux distribution.
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two neighbouring pieces are noncoherent: their fluxes are
mutually random. The string thickness is now built up due to
the size d of the piece Sn, containing a coherent flux. If the
surface Sn is penetrated by a monopole or a dyon, then d
coincides with the monopole or dyon size.

To clarify this point let us find the minimal size of the loop
R, where the dyon flux is equal to the asymptotic value ofÿp.
To this end we shall use Eqn (115) and insert there Eqn (90),
and obtain the result that forR4 b=2p � gÿ1 the flux is equal
to ÿp with exponential accuracy; hence, the size of the dyon
flux is equal to gÿ1 and this should be the size d of the piece Sn.

From the point of view of field correlators, d should
coincide with Tg, therefore the string thickness is of the order
of the typical dyon (or monopole) size (or another classical
solutions).

Hence, all our pictures represented in Fig. 10 can be
combined under one generalised mechanism of the string
formation, which is based on the existence of coherent field
domains of the size Tg, while beyond that size the fields are
independent and random.

A question arises. Who manages this structure of QCD
vacuum and why in the case of QCD and gluodynamics the
vacuum is made this way, while in the case of QED and the
Weinberg ± Salam theory the nonperturbative configurations
are probably suppressed and the vacuum structure is differ-
ent? To be able to answer this question is also to answer the
question of phase transition mechanism for the temperature
deconfinement, which was observed on the lattice [79]. This
topic merits a separate review, since the amount of available
information is by now very large. We shall confine ourselves
to merely a few remarks on this point.

Firstly, one can connect the density of the (nonperturba-
tive) vacuum energy with the help of the scale anomaly
theorem with the magnitude of the nonperturbative gluonic
condensate [8]:

enonpert � � b�as�
16as



F a
mn�0�F a

mn�0�
�
: �153�

For small as the function b�as� is negative, in contrast to
QED, and if keeps the sign in the whole effective region of as,
then one can deduce that the nonperturbative vacuum shift
(153) is advantageous, since it diminishes vacuum energy (and
also free energy at small temperatures).

This conclusion can be considered as an intuitive idea why
the nonperturbative vacuum in QCD is advantageous and
comes into existence, while in QED it is not advantageous and
not realised.

Secondly, let us briefly discuss the phase transitionwith an
increase of temperature inQCD, referring the reader to lattice
calculations [79] and original papers [81] for details. The main
criterion, which defines the vacuum structure preferred at a
given temperature, is the criterion of the minimum of free
energy (which is a corollary of the second law of thermo-
dynamics). In the confining phase for T > 0 the free energy
consists of the term (153) and of the contribution of hadronic
excitations (glueballs, mesons and baryons), which slowly
grows, up to T � 150MeV. Note that the gluonic condensate
contains both colourelectric and colourmagnetic fields, but
only the first ones have to do with confinement in the true
sense of this term.

The deconfinement phase, realised at T > Tc, usually was
identified as the phase with a perturbative vacuum, where
quarks and gluons in the lowest order in g are free [82].
However, from the point of view of the minimum of free

energy it is advantageous to keep colourmagnetic fields and
the corresponding part of the condensate in the vacuum (153)
since quarks in this case remain essentially free, and there is a
significant gain in energy [around one half of the amount in
Eqn (153)]. This is the `magnetic confinement' phase [81].
Calculations in Ref. [81] yield Tc in good agreement with
lattice data for a number of flavours nf � 0; 2; 4.

The main prediction of `magnetic confinement' is the area
law for T > Tc of the spacial Wilson loops [83] and the
phenomenon of `hadronic screening lengths', i.e. the existence
of the hadronic spectra for T > Tc in Green's functions with
evolution along space directions [81], which agrees well with
the lattice measurements [79].

Hence the picture of the phase transition [81] into the
`magnetic confinement' phase, supported by computations,
seems to be well founded. Colourelectric correlators disap-
pear in this picture at T > Tc [more explicitly, the correlators
of the type of D�x�, which contribute to string tension].{

What happens then to effective or real magnetic mono-
poles and dyons? In the AP method at T > Tc the monopole
density significantly decreases [35], which can be understood
as an active annihilation or a close pairing of monopoles and
antimonopoles. The same can be said about pairs of dyons
and antidyons. Thus, the deconfinement phase of colour
charges can be associated with the confinement phase of
monopoles (or dyons). However, the `magnetic confinement'
phenomenon imposes definite requirements on the vacuum
structure at T > Tc; e.g., there should exist magnetic mono-
pole (dyonic) currents along the 4th (Euclidean time) axis, i.e.
static or periodic monopoles (dyons). Such currents can
confine in spacial planes (what is observed on lattices [83]),
but do not participate in the usual confinement [i.e. in the
temporal planes �i4�, i � 1; 2; 3]. These points will be eluci-
dated in later studies.

Due to space limitations we have not discussed an
important question of the connection between confinement
and spontaneous breaking of chiral symmetry, as well as
UA�1�, where magnetic monopoles (dyons) can play an
important role [84].

We have always maintained that confinement is a prop-
erty not only of QCD (with quarks present in the vacuum),
but also of gluodynamics (without quarks). This conclusion
follows from numerous lattice data (see, e.g., Ref. [10]) and
also from computations supporting the dual Meissner effect
as a basis of confinement, where quarks do not play an
important role.

On the other hand there are no existing calculations or
experimental data which support the key role of quarks in the
confinement mechanism. For this reason we have not
discussed above the model of V N Gribov (interesting by
itself) and the reader is referred to Ref. [85].
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points in this study, and toKATer-Martirosyan for constant
support and discussions. The financial support of RFFR,
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{Recently this picture has obtained an additional support from the lattice

measurements in hep-lat/9603018, whereDE�x�was found to disappear at
T > Tc, while D

H�x� does not change.
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