
Abstract. We consider autowave regimes in two-dimensional
excitable media in the presence of an external electric field,
using Galilean transformations in the reaction ± diffusion equa-
tions. It is shown that the transformation properties of these
equations lead to some general relations for the autowave front
and vortex drift velocities, independently of the concrete form of
nonlinear terms in the equations. The general field dependence
of the critical autowave characteristics is determined. Simple
kinematic method discussed in this work is applicable for study-
ing autowave evolution in three-dimensional and multicompo-
nent excitable media.

1. Introduction

Nowadays considerable study is being devoted in Russia and
abroad to the phenomena of self-organisation in various
nonequilibrium systems, involving the creation and evolution
of structures ordered in space and time. These cutting-edge
interdisciplinary investigations have received the name syner-
getics [1 ± 3]. An interesting example of systems of this kind is
excitable media capable of forming pulses (autowaves) as a
response to an external perturbation [4, 5]. There are many
examples of excitable media of various nature: physical,
chemical, and biological. Among these are, for instance,
nervous and muscular tissues [6], colonies of microorganisms
[7], a number of chemical solutions and gels [8, 9], magnetic

superconductors with current [10], some solid-state systems
[11].

Excitable media are a rather new and unorthodox object
of investigation. However, their study is important in the
creation of new perspective devices for data processing, in the
development of methods which increase the effectiveness of
technology processes in the chemical industry and even in the
search for methods of hazardous disease control.

Autowave structures in a two-dimensional medium, as a
rule, have a form of moving excitation fronts. If such front
breaks, then special regimes, that is, rotating spiral waves, can
occur (see, for example, articles cited in Ref. [12]).

Excitable media are traditionally described by a set of
nonlinear parabolic equations of the reaction ± diffusion type

dU

dt
� F�U� � bDDU ; �1�

where U is the state vector of an elementary volume of an
excitable medium. For example, in a chemically excited
medium the components of vector U present the concentra-
tions of reagents, matrix bD determines diffusion coefficients,
while a nonlinear function F�U� sets the rates of chemical
reactions in the elementary volume. In media of other nature
the components of vector U can have the meaning of
temperature, potential and so on, while the elements ofmatrixbD can be given by the coefficients of thermal or electrical
conductivities.

Although the real excitable media should be described, as
a rule, by a multicomponent vector, numerous studies show
that the main features of evolution of autowave structures are
well presented by the two-component set [13, 14]:

qu
qt
� F�u; g� �Du Du ;

qg
qt
� G�u; g� �Dg Dg : �2�
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The variable u is often referred to as `activator', while g as
`inhibitor'. For excitable media, the zero-isocline F�u; g� � 0
has a typicalª-like shape, while the zero-isocline G�u; g� � 0
can be monotonic or even linear.

General mathematical methods for solving Eqns (1) and
(2) have not been developed as yet. Therefore we have to
study these equations by numerical or approximated
analytical methods. Among them we note the so-called
kinematic approach [12, 15, 16], by which many of auto-
wave regimes were studied in two- and three-dimensional
nonhomogeneous, nonstationary and anisotropic excitable
media.

One of the important problems of the physics of excitable
media is to develop methods for effective control over the
characteristics of autowave structures, i.e. the shape and
velocity of the front motion, rotation frequency of spiral
waves, their location on a plane, and so on. These methods
include, for example, initiation of resonance drift of spiral
waves in nonstationary excitable media [17, 18], and the
creation of inhomogeneities in the media. Other methods for
autowave control are concerned with the action of an external
field, i.e. an electric field, on the excitable medium [19 ± 21].

As a result of the consideration of the effect of a
homogeneous electric field on the wave propagation in the
right side of the set (1) the terms arise, which are proportional
to the gradients of the components of the state vector U (see
Section 2). It is interesting that similar modified equations
take place also in the consideration of the motion of curved
fronts [13].

We shall show that significant data on flat and curved
fronts, propagating in external electric fields and in the
absence of the field, can be obtained without the detailed
solution of the modified Eqn (1), by using Galilean transfor-
mations and some qualitative peculiarities of the autowave
motion, revealed in an approximated analytical investigation
or by numerical calculations. The simplicity and availability
of this method has prompted us to present it as methodolo-
gical notes. We point out that a number of results were first
obtained in this study.

2. Basic equations

2.1 Excitable medium in an electric field
Let us consider a two-component two-dimensional medium,
which is described by Eqns (2) modified to include the electric
field effect. The results can easily be generalised to the case of
three or more components.

The modified set (2) is easily derived in the following way.
In the general case the autowave structures in the two-
dimensional medium must be described by the set of equa-
tions:

qu
qt
� F�u; g� ÿ HH � Ju ;

qg
qt
� G�u; g� ÿ HH � Jg ; �3�

where Ju and Jg are the fluxes of activator and inhibitor
respectively. In the absence of external fields these fluxes have
the diffusion nature, and we get the `classic' set (2). The
account of the effect of an external electric field E leads to
additional terms in the expressions for the fluxes:

Ju � ÿDuHHu� muE u;

Jg � ÿDgHHg� mgE g ; �4�

where mu and mg are the mobilities of activator and inhibitor.
We shall consider the excitable medium to be homogeneous
and, hence, diffusion coefficients and mobilities are constant.
Substituting Eqn (4) into Eqn (3), we obtain a set of equations
describing a two-component excitable medium in an external
homogeneous electric field:

qu
qt
� F�u; g� �DuDuÿ muE � HHu ;

qg
qt
� G�u; g� �DgDgÿ mgE � HHg : �5�

In the one-dimensional case when an autowave with the flat
front propagates along the axis x, the set of equations (5) has
the form

qu
qt
� F�u; g� �Du

q2u
qx2
ÿ muE cos a

qu
qx

;

qg
qt
� G�u; g� �Dg

q2g
qx2
ÿ mgE cos a

qg
qx

; �6�

where a is the angle between the direction of the electric field
and the axis x.

2.2 Curved wavefront in the absence of the electric field
Let us consider the propagation of a circular front with the
centre in the coordinate origin. Turning to the polar
coordinate system �r;j�, whose pole is in the centre of the
circular front, and taking into account that the dependence on
the angle j vanishes due to polar symmetry, we can write the
set of equations (2) as

qu
qt
� F�u; g� �Du

q2u
qr2
�Du

r

qu
qr
;

qg
qt
� G�u; g� �Dg

q2g
qr2
�Dg

r

qg
qr
: �7�

In almost all the cases when a stable curved autowave can
propagate, the curvature radius R of the front far exceeds the
front thickness (i.e. dimension of the region where the
excitation is localised). This means that 1=r in Eqns (7) can
be replaced by 1=R � K, whereK is the curvature of the front.
As a result, we get the set of equations

qu
qt
� F�u; g� �Du

q2u
qr2
�DuK

qu
qr
;

qg
qt
� G�u; g� �Dg

q2g
qr2
�DgK

qg
qr
; �8�

which coincides with Eqns (6), if we replace r! x,
DuK! ÿmuE cos a, and DgK! ÿmgE cos a.

Thus, the propagation of flat fronts in an electric field and
weakly curved fronts in the absence of the electric field are
described by the same set of equations. Note that this set of
equations also describes the autowave propagation in a
weakly inhomogeneous medium.
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All the above examples are particular cases of the
following system

qu
qt
� F�u; g� �DuDuÿA � HHu ;

qg
qt
� G�u; g� �DgDgÿB � HHg ; �9�

where A and B are the constant vectors. Below we consider
some general properties of the solutions to set (9), and then
use them to study the problems of the motion of curved fronts
and propagation of autowaves in an electric field.

3. Galilean transformations of coordinates

Let us turn to cartesian coordinate system �x 0; y 0� moving
with the velocitywwith respect to the initial system �x; y�. The
corresponding transformation of the spatial coordinates is the
Galilean transformation r � r 0 �wt. It is easily checked that
in the new coordinate system, Eqns (9) take the form

qu
qt
� F�u; g� �DuD

0u� �wÿA� � HH 0u ;

qg
qt
� G�u; g� �DgD

0g� �wÿB� � HH 0g ; �10�

where D0 and HH 0 are the Laplace operator and gradient
expressed in the variables �x 0; y 0�. Assume that the set of
equations (9) has a solution describing a stationary autowave
whose flat front moves with the velocity V. Since the velocity
depends parametrically on the vectors A and B, we denote it
as V�A;B�. Apparently, the corresponding solution of Eqns
(10) describes a plane wave propagating with the velocity
V�Aÿw;Bÿw�. Note that in both cases we are dealing
with the same wave, but consider it in two coordinate systems
related to each other by the Galilean transformation. Conse-
quently, the following equality must be fulfilled

V�Aÿw;Bÿw� � V�A;B� ÿw ; �11�

which enables us to make some simple, but important
conclusions about the dependence of the velocity V on the
vectorsA andB. For this purpose, it is convenient to consider
Galilean transformations for the infinitesimal velocity w.
Calculating variation in both sides of Eqn (11) over the
projections of the vector w and setting w � 0, we get the
following differential relations for the projections of front
velocities as functions of A and B:

qVx

qAx
� qVx

qBx
� 1 ;

qVx

qAy
� qVx

qBy
� 0 ;

qVy

qAy
� qVy

qBy
� 1 ;

qVy

qAx
� qVy

qBx
� 0 : �12�

In the general case the functions Vx and Vy satisfying
relations (12) are

Vx � V0x � 1

2
�Ax � Bx� � fx�Ax ÿ Bx; Ay ÿ By� ;

Vy � V0y � 1

2
�Ay � By� � fy�Ax ÿ Bx; Ay ÿ By� ; �13�

whereV0x andV0y are projections of the velocity vectorV0 of
a propagating autowave front atA � B � 0. As for functions
fx�Z1; Z2� and fy�Z1; Z2�, we can only assert them to be
projections of a vector (i.e. they are transformed as vectors
when the coordinate system is changed), and, in addition, to
be equal to zero at Z1 � Z2 � 0.

Relations (13) are valid for any cartesian coordinate
system. However, it is convenient to choose the coordinate
system so that the x axis should be directed along the vector of
the front velocity V. In this case Vx � V and Vy � 0, there-
fore we can consider only the function f�Z1; Z2� � fx�Z1; Z2�.
This function is easily seen to be independent of the second
argument. Actually, to find the velocity and the shape of a
stationary autowavemoving along the axis x, we shouldmake
the replacement x � Vt� x in the set of equations (9), and
then put qu=qt � qg=qt � 0 and qu=qy � qg=qy � 0. This
yields

Du
d2u

dx2
� F�u; g� � �Vÿ Ax� du

dx
� 0 ;

Dg
d2g

dx2
� G�u; g� � �Vÿ Bx� dg

dx
� 0 : �14�

It is clear that the autowave velocityV calculated as a solution
to this set of equations with the corresponding boundary
conditions depends parametrically on Ax and Bx, and is
independent of Ay and By. Thus, the general expression for
the velocity of the stationary autowave front can be written as

V � V0 � 1

2
�Ax � Bx� � f�Ax ÿ Bx� ; �15�

where f�Z� is some function. Recall that this relation is valid in
any coordinate system where the axis x (or, what is the same,
the axis x) is directed along the vector V. It should be
mentioned that V0 and f can depend on the diffusion
coefficients Du and Dg and the parameters determining the
form of the functions F and G in Eqns (14).

4. Evolution of curved fronts in the absence
of the electric field

Weuse the above relations to study the propagation of curved
fronts at E � 0. In this case, the transformation of variables
r � Vt� x reduces the initial system of Eqns (8) to Eqns (14),
where

Ax � ÿDuK ; Bx � ÿDgK : �16�

Thus, the general formula (15) for the velocity of the front
propagation yields

V � V0 ÿ 1

2
�Du �Dg�K� f

ÿ�Dg ÿDu�K
�
: �17�

Recall, that the explicit form of the function f�Z� can be found
by solving the initial reaction ± diffusion equations.

For the case when the diffusion coefficients are equal
Du � Dg � D, we immediately find the well known result [12]

V � V0 ÿDK : �18�

Additional data on the function f�Z� can be obtained using the
results of Ref. [22] (see also [13]). In Ref. [22] the dependence
of the front velocity on the curvature has been studied in the

March, 1996 Galilean transformations and the evolution of autowave fronts in external fields 307



case where there is no diffusion of inhibitor, i.e. Dg � 0, and
the dependence V�K� was shown to be linear for small
curvatures

V � V0 ÿDuK : �19�

As the curvature rises, the linear dependence (19) changes into
a nonlinear dependence. It was found that there is a critical
curvature Kcr above which a curved front cannot propagate.
Note that as the curvature approaches this critical value the
front velocity Vcr is, generally, not equal to zero.

In the case Dg � 0 the general solution of Eqn (17)
expresses the front velocity as

V � V0 ÿ 1

2
DuK� f �ÿDuK� : �20�

Comparison of Eqn (19) and Eqn (20) shows that at small Z
the function f�Z� is

f�Z� � 1

2
Z� f1�Z� ; �21�

where f1�Z� is the function, whose expansion in Taylor series
in powers of Z does not include linear terms. Therefore, from
Eqn (20) it follows that

V � V0 ÿDuK� f1�ÿDuK� : �22�

If we neglect in Eqn (17) a possible dependence of f onDg,
which is an independent parameter, then Eqn (22) is easily
generalised to the case where Dg 6� 0. Actually, expansion
(21) remains valid in this approximation. Using it and taking
into account Eqn (17) we find that

V � V0 ÿDuK� f1
ÿ�Dg ÿDu�K

�
: �23�

Since there are no linear terms in the expansion of f1 in K, the
diffusion coefficient of inhibitor is shown to have no effect on
the linear dependence V�K� in the case of small front
curvatures. Needless to say that the velocity V0 of a flat
front changes as Dg varies, but the velocity ± curvature
relationship (i.e. the angle between the tangent to the curve
V�K� and the axis K) depends only on value Du at small K.
This general result obtained without solving the reaction±
diffusion equations is very important for the study of
autowave front kinematics. However, since Eqn (23) has
been derived under an additional assumption, it requires
detailed experimental and numerical testing.{ We can
advance an argument in favour of rather weak dependence
of f onDg. It is known that the derivative d

2g=dx2 is much less
than d2u=dx2 in the region of the autowave front (the
inhibitor is even referred to as a `slow variable'). This means
that the inhibitor diffusion has no sufficient effect on the
formation of the autowave front, and, hence, the function f
in Eqn (17) depends weakly on the parameterDg. It should be
stressed that f depends on Dg via the argument �Dg ÿDu�K,
since it results from `drift' terms in Eqns (9) rather than from
diffusion terms.

5. Flat wavefront in a homogeneous electric field

The study of the evolution of curved fronts made in the
previous section can easily be extended to the case of flat
fronts moving in an external homogeneous electric field E.
Let us consider a flat autowave front propagating along the
axis x. In this case the stationary motion of the front is
described by Eqn (14), where x � xÿ Vt and

Ax � muEx � muE cos a ;

Bx � mgEx � mgE cos a : �24�

Further consideration is similar to that in the previous
section, and may differ only in notations. Therefore, we
write immediately some relations for the front velocity as a
function of the external field, which follow from the general
formula (15). If the activator and inhibitor have the same
mobilities (mu � mg � m), then the dependence of the front
velocity on the electric field is linear in a wide range of E :

V � V0 � mEx : �25�

Whether the autowavemoves faster or slower, depends on the
sign of the projection Ex and sign of the mobility m. For
instance, in the Belousov ±Zhabotinsky reaction the electric
field decelerates the wave propagation along the field [20].

For models with Dg � 0 we should put mg � 0, since,
according to the Einstein relation, the diffusion coefficient is
proportional to mobility. In this case the dependence of the
front velocity on the electric field will be

V � V0 � muEx � f1�muEx� ; �26�

the expansion of the function f1�Z� in the Taylor series does
not include the terms linear with respect to Ex (see Eqn (21)).
Repeating the consideration of section 4, we extend the
expression (26) to the case mg 6� 0. Similarly to (23) we have

V � V0 � muEx � f1
ÿ�mu ÿ mg�Ex

�
: �27�

Thus, in a weak electric field the velocity of a flat front
depends only on the activator mobility, while its dependence
on the inhibitor mobility is manifested only in rather strong
fields as nonlinear terms in the expansion of the function f1 in
powers of the external field. This important and not obvious
conclusion was verified by numerical experiments [24] in the
`Oregonator' model. The results of these experiments con-
firmed completely the theoretical perceptions.

Finally note that the existence of the critical electric field
intensity Ecr follows from the analogy between the equations
describing the flat front moving in an electric field and the
propagation of a curved front in the absence of the field. If the
intensity exceeds Ecr, then the stable propagation of the
autowave is impossible. We shall show that Ecr can be
expressed by the critical curvature Kcr in the absence of the
electric field.

We denote the velocity of a curved autowave front as Vcr

atK � Kcr in the absence of the field, and the velocity of a flat
autowave front as eVcr at Ex � Ecr (note that Ecr can be
positive or negative depending on signs of mobilities mu and
mg). Since in both cases the stationary regime of the autowave
propagation is described by the set of equations (14), where
Ax and Bx take the form (16) or (24), then at critical velocities

{We have received the first independent verification supporting Eqn (23)

from V S Zykov. Discussing some results of the present paper, he reported

that in his numerical experiments on the reaction ± diffusion model he did

not actually observe the influence of the inhibitor diffusion on the

dependence V�K� in a wide range of values of Dg in the case of small

curvatures [23].
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the following equalities must be fulfilled

Vcr �DuKcr � eVcr ÿ muEcr ;

Vcr �DgKcr � eVcr ÿ mgEcr : �28�
Using Eqn (28) we arrive at the relation between the critical
field of the flat front and the critical curvature of the curved
front

Ecr � ÿKcr
Du ÿDg

mu ÿ mg
: �29�

Eqns (28) and (29) yield also the relation between critical front
velocities in the considered cases

eVcr � Vcr � Kcr

muDg ÿ mgDu

mu ÿ mg
: �30�

At mu � mg the values of Ecr and eVcr become infinite. This
result, however, was obvious beforehand, since in the case of
equal mobilities of activator and inhibitor, the external field
can be eliminated in the initial reaction ± diffusion equations
by Galilean transformations, so that the velocity of a flat
front is determined by Eqn (25) for any field intensities.

We emphasise that Kcr and Vcr are independent of mu and
mg. Thus Eqns (29) and (30) determine the universal depen-
dence of the critical field and the critical velocity of the flat
front moving in an electric field on the mobilities of inhibitor
and activator for all the excitablemedia described by the set of
equations (9). It should be mentioned, however, that the
validity of these formulae is limited by the following condi-
tion: the critical curvature radius should far exceed the
thickness of the wave front. Otherwise, it is impossible to
transform Eqn (7) into Eqn (8).

6. Curved front in an external electric field

To study kinematics of spiral waves and other autowave
structures in an external field, we should know the depen-
dence of the front propagation velocity on the local values of
curvature and the field. To solve this problem in the case when
the curvature radius far exceeds the front thickness and the
field intensity does not change rapidly in space, we can use
stationary Eqns (14) where Ax and Bx should be taken in the
form

Ax � muEn ÿDuK ; Bx � mgEn ÿDgK : �31�

The projection En of the electric field which is normal to the
front line and the front curvature K may be considered as
fixed constants.

The obvious analogy of this problem to the above-
considered ones allows us to write down immediately some
interesting relations following from formula (15) for the
velocity of the stationary motion of the autowave front.

For the models with Dg � 0 and mg � 0 we have

V � V0 � muEn ÿDuK� f1�muEn ÿDuK� ; �32�

where f1�Z� is the same nonlinear function as in Eqn (22).
In the case when Dg 6� 0 and mg 6� 0, the velocity of the

stationary motion of the front is

V � V0 � muEn ÿDuK� f1
ÿ�mu ÿ mg�En ÿ �Du ÿDg�K

�
:

�33�

Note that expressions given in Sections 4 and 5 for the velocity
of a flat front in an external field and for the velocity of a
curved front in the absence of the external field can be derived
from Eqns (32) and (33) as particular cases.

Since in the considered case the velocity of the moving
autowave front is affected by both its curvature and the
external field, it is clear that the critical curvature of an
autowave segment depends on the local value of the normal
projection of the field En. This dependence can be found
similarly to the derivation of Eqns (29) and (30) in the
previous section. We denote the critical front curvature and
its velocity as Kcr�En� and Vcr�En�, while the corresponding
values in the zero field as Kcr and Vcr. It follows from Eqns
(16) and (31) for parameters Ax and Bx that the following
relations must be fulfilled in the critical regime of the front
motion in both the cases:

Vcr�En� �DuKcr�En� ÿ muEn � Vcr �DuKcr ;

Vcr�En� �DgKcr�En� ÿ mgEn � Vcr �DgKcr : �34�

Whence we get immediately

Kcr�En� � Kcr � En

mu ÿ mg
Du ÿDg

: �35�

Thus, the critical curvature of the autowave front depends
linearly on the normal component of the external field. In the
case of equal mobilities of activator and inhibitor, it follows
from Eqn (35) that the critical curvature does not depend on
the field. However, this could be expected beforehand bearing
in mind the properties of the Galilean transformation of the
reaction ± diffusion equations. We also note that expression
(29) can be derived from Eqn (35) for the critical field in the
case of the flat front. Actually, assuming En � Ecr and
Kcr�En� � 0 in Eqn (35), we immediately get Eqn (29).

Another important relation, which follows fromEqn (34),
relates the critical front velocities in zero and finite external
fields. Taking into account Eqn (35), we write this relation as

Vcr�En� � Vcr ÿ En

muDg ÿ mgDu

Du ÿDg
: �36�

We call attention to an interesting and surprising conse-
quence of Eqns (35) and (36). As seen from Eqn (36), the
critical front velocity does not depend on the external field in
the systems with Dg � 0 and mg � 0. At the same time,
according to Eqn (35), Kcr�En� 6� Kcr if En 6� 0.

7. Drift of a spiral autowave in an electric field

One of the interesting examples of autowave structures in
excitable media is spiral waves rotating around the fixed
centre with a constant angular velocity. From simple physical
considerations one can expect that a weak electric field leads
to a drift of the centre of a spiral wave, without changing its
front structure. A strong field can so affect the dynamics of
activator and inhibitor that the autowave propagation
becomes impossible. From the obtained relation (35) it
follows that the critical front curvature may be changed
significantly in the external field.

It is possible perform a detailed study of spiral autowaves
in the external field by numerical solution of the initial
reaction ± diffusion equations or by using of an approxima-
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tion method. The kinematic approach in which the evolution
of the wave front is described only in time [12], is rather a
simple and universal method. In the framework of this
approach the dependence of the local velocity of the wave
front on the curvature in linear and nonlinear approximations
can be described by Eqns (32) and (33) (in the latter case some
additional data on function f1 are required).

We discuss only some general relationships of drift of
spiral waves, which can be found byGalilean transformations
in the reaction ± diffusion equations without detailed investi-
gations of solutions to these equations. The application of
Galilean transformations to the problem of drift of spiral
autowaves is considered in greater detail in Ref. [25].

Assume that in the absence of the external field, i.e. for
A � B � 0, the set of equations (9) has the solution u0�r; t�,
g0�r; t� describing a stationary autowave rotating around a
fixed centre with a constant angular velocity o. Then for a
non-zero field we have

A � muE ; B � mgE : �37�

Then the solution u�rÿVt; t�, g�rÿVt; t� of Eqns (9)
describes a spiral wave with the centre moving with the
constant drift velocity V, which parametrically depends on
the vectors A and B. This velocity can be easily found when
the mobilities of inhibitor and activator are equal
(mu � mg � m). Actually, in this case the solution to Eqns (9)
takes the form u0�rÿ mEt; t�, g0�rÿ mEt; t� in the coordinate
system moving with the velocity w � mE. It describes a spiral
wave rotating with the same angular velocity o around the
centre which drifts with the velocity

V � mE : �38�

We consider the case where mu 6� mg. For the sake of
definiteness, we assume that the external homogeneous
electric field is directed along the axis x of the coordinate
system. Then, repeating the considerations of Section 3, we
arrive at the relations

Vx � 1

2
�mu � mg�E� Fx

ÿ�mu ÿ mg�E� ;
Vy � Fy

ÿ�mu ÿ mg�E� ; �39�

which follow from Eqns (13) at V0 � 0. The functions Fx�Z�
and Fy�Z� become zero at Z � 0. Besides, we can state that
they are odd functions, since the drift velocity must change the
sign as the sign of the electric field changes. The explicit form
of these functions for concrete models can be found by
numerical solution to the reaction ± diffusion equations.
Detailed numerical calculations of the drift velocities Vx and
Vy as well as the functions Fx and Fy are given in Ref. [25],
which completely prove the theoretical predictions.

The second relation in Eqns (39) describes the drift of the
spiral wave in an electrical field in the direction perpendicular
to the field. Note that this effect was observed many times in
numerical and real experiments (see, for instance, Ref. [26]).

If we suppose that the electric field is sufficiently small,
then in the expansions

Fx�Z� � a1Z�O�Z3� ; Fy�Z� � a2Z�O�Z3� �40�

we can keep only the linear terms, where a1 and a2 are
constants depending on the model. Then, denoting the angle

between the electric fieldE and the autowave drift velocityV
as w, we find from Eqns (39) that

tan w � a2
mu ÿ mg

�1=2� a1�mu � �1=2ÿ a1�mg
: �41�

We emphasise that this formula describes the universal
dependence of the drift angle of a spiral wave on the
mobilities of inhibitor and activator in a weak electric field.
The constants a1 and a2 depend on the model of excitable
medium.

8. Conclusion

We have presented some results following from Galilean
transformations of nonlinear reaction ± diffusion equations,
which describe the propagation of autowave fronts in an
external electric field. This approach enables us to reveal a
number of regularities in the behaviour of flat and curved
fronts in an external field, by a simple way without solving
particular equations.Many of these regularities are so general
that they are independent of the form of nonlinear functions
in `microscopic' reaction-diffusion equations. At the same
time, they can be verified numerically or experimentally. First
and foremost we mean relations (29) and (30) for critical
electric field and velocity of a flat front, Eqns (35) and (36) for
the critical curvature and velocity depending on the external
field, and relation (15) for the autowave velocity.

It should bementioned that the field of applicability of the
method goes far beyond the phenomena considered in this
paper. First of all, Galilean transformations can be useful in
studying autowave processes described by multicomponent
models (with three or more equations). Evidently, the results
presented above are easily extended to the case when the
`drift' terms appear only in two equations of the set (for
instance, similar equations are used to describe autowave
structures in the Belousov ±Zhabotinsky reaction in the
presence of an electric field). However, when the `drift'
terms appear in three or more equations, some new regula-
rities can occur, which are absent in the two-component
system. We intend to investigate this case in detail in later
studies.

The results obtained may also be of importance in study-
ing the kinematics of autowave structures in an external field,
to investigate their evolution, interaction and methods of
control over them. In particular, some relations obtained are
necessary to close kinematic equations used in the theory of
autowaves [12].

Acknowledgements
The investigations described in the present paper have been
carried out under Grant No. 7M000 of the International
Science Foundation and Grant No. 7M300 of the Interna-
tional Science Foundation and the Russian Government.

The authors are thankful to V S Zykov, and V Perez-
Munuzuri, A P Munuzuri and M Gomez-Gesteira for their
useful discussions and interest in this paper.

References

1. Haken H Synergetics (Berlin: Springer, 1978); 2nd edition (Berlin:

Springer, 1983)

2. Winfree A TWhen Time Breaks Down (Princeton: Princeton Univ.

Press, 1987)

310 V A Davydov, V GMorozov Physics ±Uspekhi 39 (3)



3. Mikha��lov A S Foundations of Synergetics I. Distributed Active

Systems (Berlin: Springer, 1994)

4. Vasil'ev V A, Romanovski�� Yu M, Yakhno V G Avtovolnovye

Protsessy (Autowave Processes) (Moscow: Nauka, 1987)

5. Krinski�� V I, Mikha��lov A S Avtovolny (Autowaves) (Moscow:

Znanie, 1984)

6. Ivanitski�� G R, Krinski�� V I, Sel'kov E E Matematicheskaya

Biofizika Kletki (Mathematical Biophysics of Cell) (Moscow: Nau-

ka, 1978)

7. Gerisch GWihelm Roux Archiv Entwicklungsmech. Organismen 156

127 (1965)

8. Belousov B P Sbornik Referatov po Radiatsionnoi Meditsine za 1958

(1958's Annual Collection of Papers on Radiation Medicine (Mos-

cow: Medgiz, 1959) p. 145; Avtovolnovye Protsessy v Sistemakh s

Diffuziei (Autowave Processes in Systems with Diffusion (Gorki|̄:
IPF AN USSR, 1981) p. 176

9. Zhabotinski�� A M Kontsentratsionnye Avtokolebaniya (Concentra-

tion Autovibrations) (Moscow: Nauka, 1974)

10. Buzdin A I, Mikha��lov A S Zh. Teor. Eksp. Fiz. 90 294 (1986) [Sov.

Phys. JETP 63 169 (1986)]

11. Scott AActive and Nonlinear Wave Propagation in Electronics (New

York: Wiley, 1977) [translated into Russian] (Moscow: Sov. Radio,

1977)

12. Davydov V A, Zykov V S, Mikha��lov A SUsp. Fiz. Nauk 161 (8) 45

(1991) [Sov. Phys. Usp. 34 665 (1991)]

13. Zykov V S Simulation of Wave Processes in Excitable Media

(Manchester: Manchester Univ. Press, 1987)

14. Winfree A T The Geometry of Biological Time. Biomathematics

Vol. 8 (New York: Springer, 1990)

15. Brazhnik P K, Davydov V A, Mikha��lov A S Teor. Mat. Fiz. 74 440

(1988)

16. Mikha��lov A S, Davydov V A, Zykov V S Physica D 70 1 (1994)

17. Agladze K I, Davydov V A, Mikha��lov A S Pis'ma Zh. Eksp. Teor.

Fiz. 45 601 (1987) [JETP Lett. 45 767 (1987)]

18. DavydovVA,ZykovVS,Mikha��lovA S Izv. Vyssh. Uchebn. Zaved.

Radiofiz. 31 574 (1988) [Sov. Radiophys. (1988)]

19. Schmidt S, Ortoleva P J. Chem. Phys. 67 3771 (1977)

20. Sevcikova H, Marek M Physica D 9 140 (1983)

21. Agladze K I, de Kepper P J J. Phys. Chem. 96 2400 (1992)

22. Zykov V S Biofiz. 25 888 (1980)

23. Zykov V S, Private communication

24. Munuzuri A P et al. (to be published)

25. Munuzuri A P et al. Chaos, Solitons and Fractals (in press)

26. Steinbock O, Schultze J, Muller S C Phys. Rev. Lett 68 248 (1992)

March, 1996 Galilean transformations and the evolution of autowave fronts in external fields 311


	嘀伀䰀⸀㌀㤀Ⰰ 一漀⸀ ㌀
	1. Introduction
	2. Basic equations
	2.1 Excitable medium in an electric field
	2.2 Curved wavefront in the absence of an electric field

	3. Galilean transformations of coordinates
	4. Evolution of curved fronts in the absence of an electric field
	5. Flat wavefront in homogeneous electric field
	6. Curved front in external electric field
	7. Drift of spiral autowave in an electric field
	8. Conclusions
	References

