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Abstract. The current status of research on coherent phenomena
in multiple light scattering from disordered systems is reviewed.
The coherent light backscattering, temporal and spatial correla-
tions of intensity of light propagating through a randomly in-
homogeneous medium, and coherent effects due to the multiple
scattering from very rough surfaces are considered. The present-
day theories as well as methods and results of experimental
studies are outlined. Almost all theoretical predictions are found
to be illustrated well by respective experimental data.

1. Introduction

Recently the propagation and scattering of light in highly
turbid media have raised considerable interest. On passing
through a highly heterogeneous medium, coherent light is
generally to become incoherent due to multiple scattering.
However despite the multiple scattering which randomises the
wave phase distribution, a whole series of phenomena
appears to exist wherein the coherence and interference
properties of radiation manifest themselves strongly. Most
remarkable among these are the coherent backscattering,
spatial and temporal correlations of light intensity, and
enhancement of backscattering from rough surfaces. The
search [1, 2] for these effects has been significantly facilitated
since they turned to be classical analogues of respective
quantum phenomena discovered previously in the physics of
disordered metals (see Refs [3 — 6]).
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The coherent backscattering phenomenon manifests itself
as a sharp enhancement of light intensity scattered within a
narrow angular range around the direction opposite to
direction of incidence. The physical picture of coherent
backscattering is quite simple. Let a coherent plane wave fall
upon a system. The direction and phase of the wave change
during the elastic scattering events. The light beam scattered
from random inhomogeneities becomes totally incoherent.
However, for every sequence of scattering events there are
two waves which can be coherent passing the scatterers in
opposite directions. Even for such a pair of waves the effect of
interference disappears due to the randomised distribution of
scatterers except for scattering backward when the paths and
phase-shifts for both waves are exactly the same. Such an
effect has a general wave nature and occurs in any wave
process. It was first studied in detail in disordered metals and
is known as electron weak localisation, which is caused by the
quantum interference of conduction electrons during the
multiple scattering from impurities at low temperature,
when the mean elastic scattering free path is essentially less
than the inelastic one. The theoretically anticipated effect of
weak localisation was discovered at the beginning of the
Eighties in numerous experiments on measuring electrocon-
ductivity and magnetoresistance of restricted size metallic
patterns which can be considered as 1D-, 2D- or 3D- systems
[3-6]

The coherent light backscattering was observed for the
first time as an analogue of the electron weak localisation
simultaneously by van Albada and Lagendijk [1] and Wolf
and Maret [2] in concentrated latex mixtures, and later on
by Etemad et al. [7], and Kaveh et al. [§]. The main
peculiarities of the coherent backscattering have been
detected [1, 2]: the nearly two-fold increase of scattering
intensity in the backward direction, the triangle form of
angular scattering indicatrix, and significant dependence on
the light polarisation and scatterer size. A moderate back-
scattering enhancement of the order of 15% had been
reported earlier by Kuga and Ishimaru [9, 10] who inter-
preted it as a result of interference within the framework of
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the double-scattering [11] and multiple scattering [12]
approaches.

The theory of coherent backscattering in a medium
occupying half-space, was developed by Golubentsev [13]
and Akkermans et al. [14] for a scalar field. The triangular
form of backscattering peak was explained [14] in the frame-
work of the diffusion approximation. Stephen and Cwilich
[15] took into account rigorously the light polarisation for
point-like scatterers. Akkermans et al. [16] and Barabanen-
kov and Ozrin [17] have shown within the diffusion approx-
imation for the radiation transfer equation that with account
for finite size of scatterers the extinction length should be
replaced by a transport length.

The temporal auto-correlation function in coherent back-
scattering was first measured by Maret and Wolf [18], and
Pine et al. [19] and calculated theoretically by Stephen [20].

When studying the multiple light scattering large corre-
lated fluctuations of the scattered light intensity are observed.
Works on the conductance fluctuations in disordered metals
appeared to be theoretical as well as experimental impulses
for discovery of light intensity correlations. The correlation
properties of intensity fluctuations turn out to be similar to
the universal conductance fluctuations found previously [21 —
25]. Namely, the value of mean square deviation of the
conductance for a cube pattern in ¢?//i units was found to be
of unity order and universally independent of cube size due to
fluctuations of different modes being correlated. The similar
correlations were recently found and intensively investigated
in optics of highly heterogeneous systems.

The theory of intensity fluctuations was developed by
Shapiro [26] who described the short-range correlations of
dispersed intensities. Stephen and Cwilich [27] and Feng et al.
[28] found the long-range asymptotics of the spatial, fre-
quency, and angular correlation functions of scattered light
using the Hikami diagram method [29]. The intensity correla-
tion function of light transmitted through a finite thickness
slab was presented in Ref. [28] as sum of three terms of
different order. The first, short-range term corresponds to
Shapiro’s factorisation approximation [26], the weaker
second one exhibits a long-range behaviour, and the third
term does not depend on the mutual remoteness of modes
and corresponds to the universal conductance fluctuations of
the disordered metal electron conductivity theory. A novel
effect, labelled as the memory effect, was shown to exist [28].
In short, the effect may be described as follows: two out-
going beams, transmitted through a thick turbid slab, appear
to be strongly correlated despite the multiple scattering if
their wave vector difference is equal to that of incident
beams.

The intensity correlation functions have been studied in
detail experimentally. The temporal correlation functions
have been measured by Pine et al. [19] and Rimberg and
Westervelt [30]. Freund et al. [31] have studied the angular
correlation functions and, in particular, the memory effect.
Genack and Drake [32] have investigated the frequency
correlation function. The main short-range part of correla-
tion function is investigated in these works. Garcia and
Genack [33] and van Albada et al. [34] have measured the
long-range part of correlation function, while Van Albada et
al. [35] have studied the velocity of the radiation energy
transfer in a highly heterogeneous medium. They found that
a parameter with dimension of velocity which enters the
classical definition of the light diffusion coefficient, can be
one order of magnitude less than the light velocity.

Along with studies on coherent effects in multiple scatter-
ing from the bulk systems, in recent years an enhancement of
backscattering from very rough surfaces caused by the similar
mechanism has been discovered and studied intensively. This
effect was first measured by Mendez and O’Donnell [36, 37].
Practically all measurements were performed using metallic
surfaces to exclude the bulk scattering. The coherence effect
manifests itself as a distinctive peak in the backward direction
in the angular distribution of reflected light.

Describing this effect Ishimaru and Chen [38, 39] used the
modified Kirchhoff approximation. Separating the single-
and double- scattering contributions they showed that the
cyclic diagram of double-scattering is responsible for the
enhancement of backscattering from a rough surface. Mar-
adudin et al. [40] developed the successive theory of multiple
scattering from surface fluctuations.

As in the case of bulk scattering, besides backscattering
enhancement, intensity correlations are also observed. The
angular correlation functions of light scattered from rough
surfaces were measured for the first time by Knotts et al. [41]
and Nieto-Vesperinas and Sanchez-Gil [42].

The problems of propagation and scattering of light in
highly inhomogeneous media in the multiple scattering
regime, coherent backscattering included, were studied theo-
retically for many years by Barabanenkov, Kravtsov et al. In
particular, describing the effects of coherence, they used
diffusion approximation for the first time. Their results are
outlined systematically in Ref. [43].

The contents of the present review is as follows. Coherent
backscattering is considered in Section 2. Fundamentals of
the multiple scattering theory are presented and the physical
mechanism of the phenomenon is discussed. The theory of
the effect is outlined in detail within the point-like scatterer
approximation. Numerous experimental results are pre-
sented. We set forth the results obtained within the frame-
work of the diffusion approximation for the radiation
transfer equation permitting one to describe the effect in
the case of finite size scatterers. The findings of investigation
of the temporal correlation function are also discussed in
detail.

In Section 3 the general approach is expounded for
calculation of the intensity correlation functions. The deriva-
tion of the angular as well as frequency correlation functions
is given for the light transmitted through a finite thickness
slab. The experimental results on the correlation function
measurements are discussed. The problem of determining the
radiation energy transfer velocity in highly inhomogeneous
medium is considered.

Section 4 is devoted to the theoretical and experimental
studies of the multiple light scattering from very rough
surfaces.

2. Coherent light backscattering

2.1 Multiple light scattering

Light is scattered propagating through a medium with
strongly developed inhomogeneities of permittivity. If the
photon free path, or extinction length, is significantly less
than a linear size of the system the light propagation occurs in
the multiple scattering regime. Developing the theory of
multiple scattering, one starts from the wave equation for
the electromagnetic field in a random medium. To avoid
cumbersome description one uses as a rule the Helmholtz
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wave equation for a scalar field. Being immediately appro-
priate for acoustic problems the Helmholtz equation applies
also to optical problems since it allows one to treat the main
effects due to the multiple character of scattering.

We restrict ourselves to a static case when one can neglect
displacements of particles during the wave propagation. We
present the wave equation describing the monochromatic
electromagnetic wave in a nonmagnetic dielectric with the
random permittivity ¢(r) in the form

(rotrot — k%) Eq(r) = k*Ac(r) Eq(r), (2.1)

where Eg(r) is the electric field in the fluctuating random
medium, k = wn/c is the wavenumber, w is the circular
frequency, n is the average refractive index, and c is the light
velocity in vacuum. We omit factor exp(iw?) describing the
temporal dependence of the field due to the static character of
the ¢(r). The difference Ae(r) = ¢(r) — ¢ describes the permit-
tivity fluctuations with respect to the mean value ¢ = {(¢(r)).

The wave equation (2.1) can be presented in the integral
form

Ae(rl)
4n

Eq(r) = E(r) + [ dr; T(r — 1)) Eq(r)), (2.2)
where E(r) is the mean field in a homogeneous medium with
permittivity ¢, T(r) is the electromagnetic field propagator,

(K24 vy SRk

T(r) - er

(2.3)
coinciding up to the factor 4n with Green’s function of Eqn
(2.1), and I is the unit tensor.

For the problems of electromagnetic radiation transfer
considered in the present review one can use the far zone
approximation which is valid for spatial scales far exceeding
the light wavelength 4. In this approximation

T(r) = K (1 - %) exp(ikr) . (2.4)

e€r

The integral light scattering intensity is defined as the
quadratic form of the electric field

I=(E;-E;)—E-E". (2.5)

The subtracted term in Eqn (2.5) removes from the scattering
intensity the contribution of the mean field. Definition (2.5)
differs from the physical definition of intensity as a specific
energy flow by a constant factor.

Eqn (2.2) is solved by iterations. Substituting the iterative
series into Eqn (2.5) one finds the expansion in orders of Ae¢
fluctuations. The resultant series describes the multiple
scattering. In particular, one presents the single-scattering
intensity as

= (4m) [ dry ] Tptrn = 1) T, (r0 = )

X (Ac (r1) Ae (r))) Ep(r1) E;(ry) (2.6)
the double-scattering as
12 = ( ) l dI‘l dI‘2 dI‘l dI‘2 ﬁ(I‘() — I‘])
X Ty (v = 12) Tyg)5(ro — 1) T3, (r) —13)
[(Aé(rl)Aé(rz)AE( 1) Ae(r)))
— (Ae(r1) Ae(r2)) (Ae(r)) Ae(xh)) ] E, (x2) E, (ry)  (2.7)

and so on, where ry is the observation point. One assumes the
summation to be done over the repeating indices except for
index o, which determines the polarisation of the scattered
light. Since, as usual, the distance from the system to the
observation point exceeds significantly the linear size of the
illuminated volume, one extracts the factor describing the
plane wave vector k, = (ro/ro) k directed to the observation
point

k2 kguo)ksp
Tx(o)ﬁ(ro — I‘) = — <6tx(0)ﬂ — %) GXp(lkr() — lk )

€rg
. . 2.8
= Tyo)pexp(ikrg —ikg - r). (2:8)
In the general case the 2n-point average (Ae(ry)...
Ae(ryy,)) determines the n-fold scattering. This average can
be presented within the Gaussian approximation as all
possible combinations of pair correlators

G (r1 — r2) = (Ae(r) Ae(ra)) (2.9)
The separate terms of iterative series for intensity are
illustrated by diagrams. The diagrams describing single-,
double-, and triple-scattering are shown in Fig. 1. The
expression corresponding to each diagram turns out to be
the fourth rank tensor. To obtain the scattering intensity one
has to contract this tensor with the product of amplitudes of
incident field in the right side and with the complex-
conjugated pair of propagators (2.8) in the left side.

XD

Figure 1. Diagrams, representing the single-scattering (a), double-scatte-
ring (b) and (c¢), and triple-scattering (d)—(i); (a), (b) and (d) are the ladder
diagrams and (c), (g) are the cyclic ones. The arrows presents either the
incident plane wave exp(ik; - r) with the wave vector k; or the scattering,
outgoing wave exp(—ik; - r) with the wave vector k;. The straight line
segments presents propagator T(r, r;). The quantities presented in the
lower lines are assumed to be complex conjugated 1mp1ymg that the
direction of arrows is Chdnged to opposite and propagator T to T*. The
correlation function (4m)~ (Ae(r ) Ac(r})) is presented by the wavy line
connecting vertexes r; and r The integration over the illuminated volume
and summation over polarlsatlons are assumed to be done in every vertex.
The subtraction in Eqn (2.5) guarantees that the intensity series does not
contain unconnected diagrams wherein wavy lines connect either upper
vertexes or lower ones only.

2.2 Ladder and cyclic diagrams

The range of convergence of spatial integrals in diagrams is
determined generally by the wavelength. However for the so-
called ladder diagrams (diagrams b and d in Fig. 1) the
oscillating factors in the complex-conjugated pairs
T(r; — r;) T*(r, — r}) cancel each other out, and the conver-
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gence is determined by the extinction length

exp(ik|r; — r;| — ik*|r} — r|) = exp(—olri — 1)  (2.10)

for |r; —rj| > [r; — 1}, |r; —1j|, where o =2mk is the
extinction coefficient, a:l;(II, ko =2mn/A, and n, is the
imaginary part of the refractive index. That is why the
sum of the ladder diagrams determines as a rule the multiple
scattering series.

However, as is seen from Fig. 1, diagrams ¢ and g coincide
exactly with ladder diagrams b and d, respectively, for
k; = —k; i.e. for scattering strictly backward. The same is
true for all such diagrams known as the cyclic ones.
Graphically the cyclic diagrams are the maximally crossed
ones. One illustrates schematically the identity of the ladder
and cyclic diagrams by means of following graphic rearrange-
ments [16]. Rotating the lower lines to 180° and changing
additionally the direction of the wave vectors of the lower
lines to opposite direction one transforms cyclic diagrams ¢
and g to the ladder ones. The arising diagrams coincide with
the respective ladder diagrams at k; = —k;.

The equality of ladder and cyclic diagrams at k, = —k;
was first found in 1966 [44]. Namely this equality underlies the
effect of the coherent backscattering.

To clarify it we consider physical scattering processes
corresponding to the respective diagrams [45] (Fig. 2). As is
seen the ladder diagrams describe the scattering processes
wherein two waves propagating parallel one to another
remain coherent passing the same paths. The cyclic dia-
grams describe the same processes in which the second wave
passes the same inhomogeneities in reverse order. Being
averaged over the scatterer positions these two beams
become incoherent except for the case of backward scatter-
ing. Another example is the triple-scattering diagram with
intermediate number of intersections of the wavy lines. As
seen from the physical scheme, the process corresponding to
this diagram can never be coherent since the paths of two
waves are always different.

The physical picture of coherent backscattering is easily
described in terms of wave vectors [2, 4]. We consider the
plane wave with the wave vector k;, experiencing some
sequence of elastic scattering events. These scatterings are

a

Figure 2. Triple-scattering diagrams and corresponding schemes of
physical scattering processes.

determined by the wave vectors k;, ki, ko, .. ., k, where k; is
the wave vector emerging after the j-th scattering event and
k, = ky. For the every such scattering sequence there is the
inverse one determined by the set of wave vectors k;, —k,,_1,
—k, 2, ..., —ky, k;. In case of the backward scattering,
(ks = —k;), two waves arising from these two scattering
sequences appear to be in phase leaving the system and
enhance one another by interference. For scattering angle
not equal strictly to 180°, the phase difference of these two
waves is of the order of (k; + ky) - (r; — r,) where r; and r,
are the coordinates of the first and the last scattering events.
Thus, the width 6 of the interference maximum can be
evaluated from the relationship

|kl\v+k,’|<|r171‘2|>N|ks+ki|lexl<1. (211)

Since for small scattering angle one has |k, + k; | ~ k0, the
coherent backscattering peak is to be a cone with the axis
directed backward and the angular width of order of A//ex:.

Thus neglecting the single-scattering the cyclic diagram
contribution doubles the scattering intensity in the backward
direction. Previously the effect of the same physical nature
was discovered in disordered metals and became known as the
electron weak localisation [3 — 6]. It is caused by the quantum
interference of the conduction electrons which appears as a
result of multiple scattering from defects in metals. This
interference occurs at sufficiently low temperature, when the
inelastic lifetime 7; is several orders greater than the elastic
lifetime 7. As a result, electron experiences multiple scatter-
ing from defects without loss of energy.

An electron in an initial eigenstate of wave vector k;
transits to a final state of wave vector k; = —k; experiencing
the multiple scattering through two sequences of states
determined either by the wave vector transfers Ak, Ak;, ...,
Ak, or by the same wave vector transfers Ak, Ak,_1, ..., Ak,
in reverse order. Since the absolute value of the wave vector is
preserved during elastic scattering both waves amplify one
another by interference. They are assumed to be coherent
during the time not exceeding the inelastic lifetime 7.
Physically this effect is observed as an anomalous conduc-
tance dependence on temperature in the low temperature
region [46, 47].

A short electric field pulse generates a short current pulse,
decaying exponentially with the characteristic time 7, due to
the elastic scatterings. The interference effect manifests itself
as the current pulse in opposite direction decaying with time ¢
powerlike, in particular as 1/¢ in two-dimensional case for a
film. Integrating the mean pulse over time one obtains the DC
conductance L.. The normal contribution is proportional to
70, and the counter-current, known as the electron echo, gives
rise to the logarithmic term of the form In(z;/7¢). As a result
the conductance L. was obtained in the form [46, 47]

n*e*ty e’ T;
L. = — In{— ).

m 2n2h - \1 (2.12)

Another remarkable peculiarity is that the conductance
depends anomalously strongly on the magnetic field [48].
Such dependence appears because the magnetic field acts
differently on electrons moving in opposite directions. It leads
to the phase shift of two interfering waves, i.e. to the loss of
coherence. As a result electric resistance decreases in the
magnetic field. Thus, abnormal electric conductance and
coherent backscattering arise due to the interference of
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waves described either by the Schrédinger equation, or by the
Maxwell equation. In both cases this interference effect is
caused by the contribution of cyclic diagrams.

2.3 The point-like scatterer model
The model of medium with point-like scatterers permits one
to solve analytically the problem of coherent backscattering,
including polarisation effects [15].

The point-like scatterer approximation means r. > A,
where r. is the correlation length. It can be presented in the
form [15]

(Ac(r:) Ac(r))) = (4m)’g0d (ri — 17), (2.13)
where
2 = (4n)*2j dr (Ac(0) Ac(r)). (2.14)

The diagram vertexes connected by the wavy lines can be
superposed within the point-like scatterer approximation.
Then the diagrams describing the multiple scattering are
presented in the form of loops. Summing the multiple
scattering intensities presented by the ladder as well as
cyclic diagrams one must calculate the sum of the series of
loops

D =<>+tTTXXOo+OIXDH+ - (2.15)

where sum S, called the ladder propagator of radiation
transfer, is presented as the hatched oval. Along with
propagator S there is often introduced [20, 49] propagator L
which includes additionally the contribution of the single-
scattering and is defined in the form

La([)’.,uv(rlv I‘2) = (47—5)2 [g0k35a;45/1v5 (rl - rZ)

+ Gk Sp w(r1, )] (2.16)

The ladder diagram contribution into the scattering
intensity, the single-scattering excluded, can be presented
using propagator as follows

é%(i) (ro) = Tu)x Tao)p géJ dry drs Sy, (11, 12)

x explir) (k; — ki) —ira(k, — k)] EL E}, (2.17)

and that of the cyclic diagrams as
Ii((jo)) (I‘()) = Toc(O):x Ttx(O)ﬂ g(% J dr; dry Smgy/)’(rl ) 1‘2)

x explir; - (k; + ki) —ir> - (k] + k)| E, E;. (2.18)

As is seen from Eqn (2.17), the ladder diagram con-
tribution does not depend practically on scattering angle as
opposed to the cyclic one. Indeed, the real parts of wave
vectors k; and k; cancel each other out in argument of
exponent in Eqn (2.17), and thus the integral is determined
by their imaginary parts, i.e. by the extinction length. On
the contrary the angular dependence of the cyclic diagrams
is quite prominent, since the value of integral (2.18) for any
scattering direction except of k; = —k; is determined by the
oscillating factor with the characteristic length of the
wavelength order.

The loops in right-hand side (2.15) are formed by the pair
of the complex-conjugated propagators

ki exp(—ar Ful'y
Tou(r) T;iv(r) = 07() <60fﬂ - !>

72 72

rgry
x (5,;‘,— fz ) =k Aupw(r).  (2.19)

For simplicity summing series (2.15) one usually restricts
oneself to the scalar field. Since polarisation effects appear
to be essential in experiments, we describe here the solution of
the problem for electromagnetic field first obtained by
Stephen and Cwilich [15]. The sum of ladder diagrams can
be presented in the form

S=A+EAA +EAAA + ..., (2.20)
where quantity ¢ = k§ gy coincides up to a numerical factor
with the reciprocal extinction length in the Born approxima-
tion [50]. Summing formally series (2.20), one obtains the
closed equation for the radiation transfer propagator

S(r1, 1) =A(r; — 1) + fJA(rl —1r3)S(r3, 1y) drs.
(2.21)

The quantity & [ A(r)dr is a dimensionless expansion para-
meter of this equation. Using an estimate
A(r) ~ r2exp(—r/lx) and definition of ¢, one concludes
that this parameter is of the order of unity.

For an infinite homogeneous medium the solution is
found by means of the Fourier transformation and gives an
asymptotic decay law of the form |r; — r; |_1 for distances
|r; —ry| > lx. Note that this result is not trivial since the
nonintegral term decreases much faster. This solution, how-
ever, can be used only deep inside the scattering medium at
distances / > l.y from the boundary, where the incident field
vanishes completely. Thus, for any of the problems consid-
ered, the boundary conditions appear to be essential and the
propagator S has to be found inside the boundary layer of
depth comparable with /.

Beginning with the classic works of Milne and Schwarz-
child [51] one considers usually the problem of scattering
from the half-space. One can not succeed in solving accurately
the tensor equation (2.21) even for such a simple geometry.
Using the resemblance between the asymptotics of the 7!
form and electrostatics the solution for half-space z > 0 was
obtained by the mirror image method in the form [15]

S(r1, 12) = So(r1 —12) — So(r; — 1Y), (2.22)
where So(r) is the solution of Eqn (2.21) for a homogeneous
medium, and r(zs> = (X2, y2, —z2) is the mirror point with
respect to rj.

Using classic results for scalar field [S1] the similar
approach was applied in Ref. [14, 16]. Propagator S(ry, r;)
was written in the form

S(r1, r2) = So(ry — 13) — So(r; — i), (2.23)

where rgA) = (X2, ¥2, —z2 — 2z¢). The value of zy was chosen
in correspondence with the Milne solution as zy = (2/3) /ex-
Taking into account the boundary conditions in the form
proposed by Stephen and Cwilich [15] one obtains that
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propagator é(rh ry) = 0, if at least one of two points ry, r is

placed at the boundary z =0. Approximation [14, 16]

corresponds to the similar requirement, but in the plane
—(2/3) lext-

The image method determined either by Eqn (2.22) or by
Eqn (2.23) can be verified for the propagator of the 1/r form,
i.e. of the ¢g~2 form for its Fourier-transform. One uses
however such an approximation for propagator of more
general form (g% + ,LL2)71 which has no pole at the origin.

Thus the problem is reduced to the homogeneous medium
propagator Sy(r). In this case performing the Fourier
transformation of integral equation (2.21) one obtains a set
of algebraic equations for components of tensor S(q)

Supyo (@) = Aupyo (@) + EAup o (@) Spyo (@), (2.24)
where
S(q) = Jéo(r) exp(iq-r) dr (2.25)

is the Fourier-transform of the radiation transfer propagator,
and A(q) is the Fourier-transform of the priming propagator
A(r), given by Eqn (2.19)

e dr Faly rgr .
Aupys (q) = JTZ <6w 0 > <6/m b 5) exp(—iqr — or).

(2.26)

Using the axial symmetry of this expression with respect to
vector q the components of tensor (2.26) are easily calculated
in the coordinate frame with the z axis directed along vector q
(see, for example, Refs [52, 53]).

Assuming the initial beam to fall normally upon the
boundary and backscattered beam to be observed in the
(x, z) plane at small angle 6 > 0, counted from the backward
direction, we present the cyclic diagram contributions into the
scattering intensities for different initial and final polarisation
states as

&C)V =4 J dQZ/(q:) Sxx,,\‘x (q) ) (227)
LM _ fov AJ dg-/14:) [Suy.y (a) cos” ¢
+ szﬁ - (@) sin® ] , (2.28)
where
4= ogos | E ‘
21'510 '

Sis the illuminated area from which the scattered radiation is
observed, q = (ko0, 0, ¢.) and ¢ = arctan (ko0/q.). Function
f(g:) results from integration over z and z;. Its specific form
depends on the kind of accounting for the boundary condi-
tions

fla) =
2¢° .
ﬁ for approximation (2.22),
q-+o
) (@® = )1 — cos (242))] 229)
- (4> +02)? :
2¢° — in(2
! ( ZG szgzqzo) for approximation (2.23).
q-+o

The H and V indices denote polarisations parallel and
perpendicular to the scattering plane, respectively, the upper
index relates to the incident light, and the lower relates to the
scattered one.

The respective expressions for the ladder diagram con-
tributions can be obtained from Eqns (2.27) — (2.29) sub-
stituting # = 0 in arguments of propagator and changing
component S‘U yx tO Sxx, Yy ~

For small value of argument go~—' component Sx, xxs
which defines according to Eqn (2.27) the cyclic diagram
contribution into the polarised term of the scattering inten-
sity, has the pole of the ¢~ form. This pole corresponds
physically to the long-range behaviour of the r—! form in real
space, causing cyclic diagram divergence at 0 =0 for an
infinite medium. The ladder diagrams are always divergent
for an infinite medium. Keeping in the propagator S only the
asymptotic term of the form of =2, we can easily calculate the
integral over ¢.. Taking into account the boundary conditions
in form (2.22), one gets [15]

 8n24 1
3 (0 +kob)?

(2.30)

This formula explains the triangle-like dependence of the
polarised component intensity on the scattering angle, of the
form 1 — 2k¢0/0, discovered experimentally [1, 2].

With the boundary conditions taken in the form (2.23),
the ¢~2 asymptotics produces the angular dependence of the
scattering intensity in the form [14, 16]

v 1 { o }
I 0) ~— <1 +— |1 —exp(—2ko0 .
v ( ) (a+k00)2 ko0 [ xp( 0 Zo)]

(2.31)

The components of tensor S which determine the cyclic
diagram contribution into the depolarised scattering have no
singularity at ¢ = 0 and thus produce the Lorentzian contour
at the small value of 0 [15]. The I<HC>H component contains the

=2 pole in the integrand similarly to I<V V and also has the
‘triangle’ form.

Asymptotics ¢~> corresponds to distance r > Ly in real
space where the diffusion approximation can be used [54, 55]
for the radiation transfer equation. In the case of scattering
from finite size particles the diffusion approximation involves
a change of the extinction length /. = ¢! entering Eqns
(2.30) or (2.31) to the transport length /;;, which can far exceed

lext-

2.4 Measurements of coherent backscattering

Coherent backscattering is measured mostly for aqueous
latex suspensions and solid systems like ceramics. A typical
setup for study of the coherent backscattering is shown in Fig.
3 [56, 57]. A laser is used as the source of radiation with a
beam divergence of the 0.6-mrad order. Transmitting through
a polariser Py, the beam is incident on a beam splitter BS
whereby a part of the laser radiation hits the investigated
system. Since the scattering angle is close to 180° the scattered
radiation detected by a photomultiplier passes once more
through the beam splitter. The essential feature required of
this element is that it should not deviate the incident beam and
increase its divergence. In particular, a plate of a 2-cm
thickness was used in Ref. [57] with divergence less than 30”.
A thicker slab is convenient in adjusting and makes it possible
to determine with high accuracy the position of the focal
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A

BS

[ ~—f—

=
Ph—I—

Figure 3. Schematic diagram of experimental setup for the coherent
backscattering study: A, laser; C, cell; BS, beam splitter; L, lens; Py, P,
polarisers, Ph, pinhole; PM, photomultiplier; and A, A,, light absorbing
cells.

plane of a long-focused objective L. The beam reflected by the
beam splitter is used for a precise adjustment of the setup as a
whole. The scattered radiation passes through a polariser P,
and a 0.2-mm-diam pinhole Ph and is detected by the
photomultiplier. A reasonable backscattering experiment
requires a noise caused by a diffusive reflection and scattering
from elements of the setup to be analyzed and suppressed.

Van Albada and Lagendijk [1] observed backscattering
enhancement in a concentrated latex suspension for various
polarisations. A 5-mW He-Ne laser was used as the source of
radiation. The backscattered light was measured by a detector
that could be moved in the focal plane of a lens placed
immediately behind the beam splitter. The angle was mea-
sured with an accuracy of 0.37 mrad. In the experiments in
which no polarisers were used, background levels were well
below 1% of the signal level. With the use of polarisers, the
highest recorded background did not exceed 10% of the
lowest recorded signal.

A 10% by weight suspension of polystyrene spheres in
water was used as the scattering system. Less dense samples
were prepared by dilution with water, a more concentrated
sample was prepared by means of allowing the particles to
settle and then decanting part of the water.

In Fig. 4 the experimental results at various latex
concentrations are presented. By increasing the concentration
the cone broadens and the ratio of the maximum intensity of
the cone and the multiple-scattering intensity outside the cone
seems to saturate at 1.4.

Outside the cone the backscattered light was completely
depolarised, whereas inside the cone some polarisation
remained, i.e. the depolarised component was much less
than the polarised component.

Some single-scattering properties were measured and the
extinction length, which is caused by a loss of light during the
scattering since the polystyrene spheres do not absorb the
light, was calculated. The extinction length of the 14.1x
10"m—3 latex suspension for light with a wavelength of
633 nm appeared to be ly = 2.6 um. The average (cos O;)
was equal to 0.93. Using the transport mean free path
Iy = lext /(1 — (cos ©)) the half angle of the backscattering
cone was calculated. The theoretical value of 3.3 mrad is in

1,
rel. units
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Figure 4. Backscattering intensity as the function of an angle for an
aqueous 1.09-um-diam latex sphere suspension at various densities p (in
10'm=3), 1 = 633 nm [1].

satisfactory agreement with the experimental value of
1.6 mrad.

Wolf and Maret [2] also studied the multiple light
scattering in aqueous latex suspensions. A 0.515-um argon
laser was used as a source of radiation. Beads of diameters
d=0.109, 0.35, 0. 46, and 0.8 um were used, covering the
crossover from pure Rayleigh scattering to strongly angle-
dependent Rayleigh—Gans scattering. The initial 10% volume
fraction of beads was stepwise lowered by successive dilution.

In this experiment the laser beam passes a 2-m focal
distance lens, used in order to reduce the beam divergence to
somewhat less than 1 mrad. A fraction of the beam is reflected
onto the sample by a thin glass slide of a 0.1-mm-thickness.
The sample is contained in a 10 x 10 mm? rectangular quartz
cell. For all samples used, the beam diameter, about 2 mm,
was much larger than the extinction length, i.e. the sample
could be considered semi-infinite. The point of incidence of
the beam on the sample is located at the centre of a
goniometer table. Two 0.8-mm-diam pinholes mounted on
the goniometer arm at distances of 0.25 and 1 m, respectively,
from the cell, define the direction of detection within an
angular resolution of about 3 mrad. The scattered light then
passes through a linear-polarising analyzer and an interfer-
ence filter, and the intensity is measured by a photomultiplier
tube.

Fig. 5 shows the evolution of the backscattering peak as
the volume concentration of latex beads is varied. The peak
width increases linearly with latex concentration. Figure 6
shows the angular dependence of the backscattering peak for
polarised and depolarised components.
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1, rel. units

0, grad

Figure 5. Angular dependence of backscattering peak of polarised compo-
nent in a 0.46-pm-diam latex suspension for various volume concentra-
tions Cy: curve I, Cp =0.11; curve 2, CL =0.06; curve 3, Cp. =0.026; curve
4, CL=0.004. For each curve the intensity is normalised to the intensity
outside the peak. Curve 5 is the instrumental width.

1, rel. units

0, grad

Figure 6. Polarisation dependence of the coherent backscattering for
aqueous 0.46-pm-diam bead suspension at a 10% volume fraction.
Polarised (VV) and depolarised (VH) components are plotted at the same
scale [2].

Etemad et al. [7] carried out an experimental study on the
coherent backscattering in a ‘fluff” of glass SiO; beads in air,
stabilised by a special technique. The thickness of samples
varied from a few microns to a few millimetres. The size of the
particles was determined with a scanning electron microscope
as confined between 0.1 and 0.2 pm in diameter. The
experimental setup is similar to those used in Refs [1, 2, 56].

The angular dependence exhibits very strong intensity
fluctuations. They were eliminated by an ensemble aver-
aging. This averaging was implemented either by a lateral
translation of the sample, i.e. measuring in different spots, or
by a very slight rotation about the point of entrance of the
beam, i.e. by the measurements in different directions. This
procedure uncovers a sharp peak in the backscattering
direction.

Kaveh et al. [8] investigated the coherent backscattering
using the Kodak White Reflectance Standard as the sample,
composed of randomly oriented 1-pm-diam BaSOy particles.
The 515-nm line of an argon—ion laser was used as the source
of radiation. The detector—sample distance was ~15 m. The
backscattered radiation was scanned along a line which was
perpendicular to and passed just above the laser beam.
Similar to Ref. [7], the scattered intensity appeared to be a
rapidly fluctuating angle function with a characteristic period
of the 2/L order where L is the sample size. The data on the
angular dependence of the backscattered intensity shown in
Fig. 7a were obtained when the sample was rapidly rotated
about its surface normal, equivalent to performing an
ensemble average. Curves / and 2 correspond to the polarised
and depolarised components respectively. The depolarised
component does not exhibit the backscattering peak. The
typical angular intensity distributions are shown in Fig. 7b for
the wings (6 ~ 50 mrad) and in Fig. 7c for the maximum
(60 =~ 0) of the peak.

The statistical properties of the scattering process are also
investigated in Ref. [8]. The intensity probability P(I) as
function of 7/(I) at the peak and in the wings was examined
by processing some 3000 measurements of intensity. Within
the level of experimental error the probability function
appears to be the same for both the peak and the wings and

2.0
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Figure 7. Backscattering peak for a reflective filter composed of randomly-
oriented BaSO4 microparticles: (a) data for rotating sample with analyzing
polariser oriented either parallel (||) or perpendicular (L) to the incident
laser radiation polarisation; (b) and (c) angular distributions for station-
ary sample, respectively, for the wings (6 ~ 50 mrad) and the maximum of
the peak [8].
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does not obey exponential statistics. The exponential dis-
tribution corresponds to the speckle pattern [58] which
consists of well-separated bright and dark areas which
exhibit a wide variation in intensity. The speckle cells
observed in Ref. [8] appeared, however, as diffuse islands
of light which tended both to merge and to be of similar
intensity. Data were analyzed in terms of the gamma density
distribution introduced into optical statistics by Mandel [59].
It takes the form

P(I) = (L) Y exp(—p /(1))

% I 232
and reverts to the exponential for ¢ = 1. The results are well
described by the gamma density distribution with u = 2.5.

Wolf et al. [60] studied the dependence of the coherent
backscattering in absorbing system on the absorption coeftfi-
cient. In order to study this effect, a dye which is a nearly
saturated solution of Rhodamine 6G (R6G) in methanol was
progressively added to a 10% solid fraction suspension of
0.46-pum-diam polystyrene spheres. The absorption mean free
path L, of a given sample was determined by measuring the
transmission of an aqueous solution with identical dye
concentration in the absence of particles. The largest dye
concentrations were about 10%, corresponding to
L, = 100 pm.

The peak was found to flatten progressively as the dye
concentration was increased. This is because the longer paths,
which contribute only to smaller angles of the peak are
eliminated. This result is consistent with the study of light
scattering in slabs [61].

The statistics of photocounts was also studied in Ref. [60]
for suspensions of 0.46-um-diam polystyrene beads at the
measurement time 7o less than 5 ps. For such a short time
interval a sample can be considered practically static. In
particular, the correlation function satisfies the estimate
(I(0) I(19))/{I)* > 0.9. The probability density of photo-
counts was taken in the form of convolution of the Poisson
distribution describing photomultiplier statistics, and gamma
distribution for the scattering system (the Mandel equation

(59D

(m)" @t I(n+p)
({n) + )™ nl ()

P(n) = (2.33)

Experimental results were fitted by Eqn (2.33) with p=1.3.
For the BaSO, suspension the authors of Ref. [60] obtained
n=14.

Almamuri et al. [57] analyzed the photocount statistics
inside and outside the backscattering cone for various
accumulation times. The experimental setup is shown in
Fig. 3. Argon and He-Ne lasers with beam divergence
0.6 mrad were used as the source of radiation. The scattered
radiation passed through a 0.2-mm-diam pinhole and was
measured by a photomultiplier. The statistics of photocounts
were analyzed using the multi-channel analyzer with succes-
sive data processing.

For the small accumulation time, when the investigated
system obeys the Gaussian statistics, function P(n) is assumed
to be a convolution of the Gaussian intensity distribution and
the Poisson statistics of the photomultiplier, i.e. it takes the
form of the Bose—Einstein distribution [62 — 64]

(2.34)

For larger times, when the average is taken over various
realisation of the Gaussian system, P(n) produces the
instrumental function, i.e. it takes the form of the Poisson
distribution
()"
P(n) = ——exp (—(n)) .

. (2.35)

Fig. 8 illustrates the validity of these conclusions for a
1.2-um-diam latex at the accumulation times 5 x 10~> s and
5 x 1072 s, respectively.

I I L
20 40 60 n

Figure 8. Probability density P(n) of photocounts for the coherent back-
scattering from the 1.2-um-diam latex suspension at the accumulation
time (a) 5 x 10~° s, (b) 5 x 1072 s. Solid lines: (a) Bose—Einstein distribu-
tion, (b) Poisson distribution [57].

Lorusso et al. [65] studied the influence of multiple light
scattering on the distribution function of photocounts P(n, 1),
where 7 is the accumulation time. The scattering system was
an aqueous suspension of polystyrene spheres with variable
concentration. The scattering angle was equal to 30°, so that
the scattered intensity was determined by the sum of ladder
diagrams. The scattered light was recorded by a cooled
photomultiplier with a dark current of 10 counts per second.
The suspension was confined in a flat 1.5-mm-thick cell. A
single-mode He-Ne laser was used as the source of radiation.
The laser beam was focused on the sample by a 150-mm focal
distance lens, producing the illuminated spot with a diameter
about 100 pm. The function P(n), measured by a correlator,
was assumed to be a superposition of coherent and stochastic
signals and was presented in the form [66]

(1 +N;>"+l b [‘N<NS+ IJ e""(‘W)’
(2.36)

P(n) =

where distribution parameters S and N were understood as
photon numbers of the coherent and stochastic signals, and
L,(x) is the Laguerre polynomial. In the case of a purely
stochastic signal this function transforms into the Bose—
Einstein distribution (2.34) and for a coherent signal it
transforms into the Poisson distribution (2.35). Parameters
S and N are connected with the average photon number (n)
and the mean square fluctuation ((8n)*) by the relationships

{n) =S+N,

((5n)*) =S+ N(N+1) +2SN. (2.37)
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The function P(n) was obtained for various volume
concentration Cp of latex, with the Cp =0.74 value corre-
sponding to the hexagonal hard-sphere packing concentra-
tion. Eqn (2.36) describes function P(n) rather well. With the
latex concentration increasing the multiple scattering input
increases, and P(n) approaches the Poisson distribution since
the scattered intensity becomes in this case weaker dependent
on time, as noted by the authors.

Besides the model systems, coherent backscattering was
also observed in ordinary liquids, namely in disordered liquid
crystals. Disordered liquid crystals appear to be highly
opalescent systems with extinction coefficient of about
10*cm~!. They are thought to consist of small domains with
a random local ordering without sharp boundaries between
them.

The coherent backscattering was studied in the BMOAB
liquid crystal and the MBBA + EBBA mixture [56]. The
backscattering peaks were observed in the polarised compo-
nent for both systems. Moving away from the phase transi-
tion point of nematic-isotropic phase the peak height
increases (Fig. 9). This increase agrees with the growth of
optical anisotropy n, — 1., where n, and n. are the refractive
indices of ordinary and extraordinary beams. The large height
of peak in BMOAB mixture is likely explained by the same
origin.

1, rel. units
12 b

4 2 0 2 4 2 0 2
0, mrad 0, mrad

Figure 9. Angular dependence of scattering intensity near 6 ~ 180° for
disordered liquid crystals: (a) BMOAB (7. = 72°C), solid and dashed
lines correspond, respectively, to 7 =41°C and 7T =58°C; (b)
MBBA + EBBA mixture (7, = 57.7°C), solid and dashed lines corre-
spond, respectively, to T=43.5°Cand T = 56.5°C [56].

2.5 Diffusion approximation

Experiments were performed mostly for systems where the
size of inhomogeneity is comparable with the light wave-
length. In this case the single-scattering indicatrix strongly
exhibits angular dependence and the multiple scattering series
can not be summed generally. Using the diffusion approxima-
tion for the radiation transfer equation an approach was
outlined [16, 17] which goes beyond the framework of the
point-like scatterer model.

The coherent backscattering enhancement due to the
multiple scattering was anticipated for special case of a
turbulent medium [67]. This effect was interpreted physically
in Refs[68 — 71] as a result of a two-fold pass through the same
inhomogeneities. In Ref. [72] the method of transition to the
diffusion approximation was outlined permitting one to

apply it to the description of the coherent backscattering
which is not contained formally in the radiation transfer
theory.

For simplicity, the scalar field is considered in Ref. [16,
17]. Within the weak scattering approximation, 4 < l, the
scattering intensity is presented by the ladder diagram series

12 132 1 2

I = + + .+ i S (2.38)

a4

12 132 2

The single-scattering diagram is omitted here.
We separate diagram elements between the first and last
scattering events

:+I+K+...

Series (2.39) is summed and results in the Bethe—Salpeter
equation

(2.39)

[(ry, 1), vy, 15) = T(r) —13) T (¥ — 1) + (4n) >

X JT(I‘] —13) T (r] — 1) G (r; — 1)

x I'(r3, 1§, vz, r5) dr; dr} . (2.40)
Function I'(ry, r}, ry, r) is called the coherence function
and denotes the average of the product of two fields generated
by two point sources.

Introducing the centre-of-mass coordinates

1
R, = E (I‘j + r})v

and the relative ones r} = r; — r}, the product of the complex-
conjugated propagator pair of the scalar field can be written

within the wave zone approximation as follows

T(rj—x) T"(rj — 1))

= koR;> exp(—oRy) exp|iky(r] —rf)], (2.41)

_ kR

Ry’

R;=R;,-Ry,

and k; means the wave vector describing the propagation of
wave between the j-th and /-th scattering events. Then Eqn
(2.40) can be written in the form

I'(Ry, Ro,t}, 15) = kgR7 exp[—a Ry + ikpp - (1] — 15)]
+ Jkg exp[—aRis +ikis - (r] —1r3)]
(4n)2R%3

x G (I‘g) F(R3, ]R,z7 I‘g, I',Z,) dR} dI‘/3, . (242)

We transform the coherence function into the Fourier
integral with respect to the relative coordinates

dp; dp;
(2n)°
P1 P2
x F (R], Rz, —_—, —) ) (171 — k) ) ([)2 — k)(243)
Pop2

I'(Ry, Ryt 1) = ka“J exp(ip; - ¥ + ip; 1)
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Taking into account that the field product average is formed
due to elastic scatterings, in which the absolute value of the
wave vector preserves, one introduces explicitly o-functions
into the Fourier-transform (2.43) [17]. When solving Eqn
(2.42) by iterations, these d-functions arise automatically.
Factor ky* is introduced for the sake of convenience.

The contributions from the ladder as well as cyclic
diagrams to the scattering intensity can be expressed through
function F (R, Ra, si, s2) where s; = p;/k. Indeed, accord-
ing to Eqns (2.38), (2.39), and (2.43), in the case of normal
incidence upon the half-space /) can be presented in the
form

I<L) ~ Skgj dz,dz, exp [—O’(Zl + Zg)]
0

X J dXz deJ d51 d52 (4TE)72G (pl + k,)

x G (p, —k,) F(Ri, Ry, 51, 32), (2.44)

where R = (X, Y, Z), and G(q) = [ dr G (r)exp(—iq - r) is
the Fourier-transform of the correlation function
G (r) = (8¢(0) d¢(r)).

Since cyclic diagrams can be obtained from the ladder
ones by rotating the lower line through 180°, their contribu-
tion to the scattering intensity takes the form [17]

10 ~ Skgj dZ,dz, exp[fa(Zl + Zz)]
0

X J dX2 dY2 CXp(ik()QXz) J dS] dSz

x (4m) 2G(p; + ki) G(p, — k) F(Ry, Ra, 1, 5:)(2.45)

Eqn (2.45) describes the backscattering for arbitrary
scatterers. Thus the problem is reduced to the solution of the
Bethe—Salpeter equation. In the case of point-like scatterers
we come back to the results of Section 2.3. To take into
account the finiteness of scatterers one transits from the
Bethe—Salpeter equation to the radiation transfer equation.

Substituting Eqn (2.43) into Eqn (2.42) and accounting
for R3 ~ lxt < Ry; one obtains the radiation transfer equa-
tion for the coherence function in the form [17]

(s1Vr, + I4) F(Ry, Ro, 81, 52)
= (4m) 778 (R) — R2) 8 (s — %)

+ (47‘[)72](3‘[ ds; G(k(S3 — S])) F(R], R, s3, Sz) .

(2.46)

The radiation transfer equation is solved within the diffusion
approximation. It assumes [54, 55] that the angular distribu-
tion of the diffusive intensity is nearly isotropic due to the
multiple scattering. Mathematically it means that expanding
the scattering intensity in Legendre polynomials one can
restrict oneself to the first two terms. As a result function
F (R, Ry, s1, s2) can be presented as follows [73]

F(Ry,Ra, 51, %) = (4n) °F(Ry, Ra)

— (4m) *ly(s\ VR, —s2VR,) F(R1, Ry).  (2.47)

Substituting the diffusion approximation (2.47) into the
radiation transfer equation (2.46) one obtains

Ve, F(R{, Ry) = 3Ry — Ry). (2.48)

3
4n ltl‘

Here the transport length /; = Ly /(1 — cos0y) is defined
using the mean cosine of the scattering angle. The average

Jo (1 = cos0) G (2ksin0/2)sin0dO
Ji G (2k'sin 0/2) sin 0 d0

(1 —cosby) =

describes the extension of the scattering indicatrix.

The diffusion equation (2.48) has to be solved for the half-
space. One requires from physical considerations the diffusive
intensity entering into the medium from outside to be zero on
the boundary [54, 55]. In accordance with this requirement
the boundary condition is written in the form [17]

2 oF
Grrsr)l-o

Parameter y is introduced to describe different kinds of
accounting for boundary conditions. Choosing y = lext/ /i
one gets

2 oF
(5 o 3 )L_O—O'

This equation is matched to the boundary condition in the
classic formulation of the Milne problem (2.23) and was used
by Akkermans et al. [16]. Choosing y = 0, one satisfies the
boundary condition in the form (2.22).

Eqn (2.48) was solved in Refs [16, 17] with boundary
condition (2.49). Substituting solution into Eqn (2.45) one
obtains in the small angle range

(2.49)

19~ 1 ,; ol (2.50)
for y = lex/lir- As is seen, one obtains once more the linear
dependence of intensity on the angle, i.e. the triangle form of
the backscattering peak similarly to the point-like scatterer
case. However, the intensity extinction due to scattering is
described now by the transport length /; instead of [y As
noted previously this result agrees with experiment.

The point-like scatterer approximation implies the iso-
tropy of the form-factor. Form-factor anisotropy arises when
one accounts for the finiteness of particles or the correlation
length. The condition a > A, where a is the particle size, is
fulfilled in practically all experiments. Light is scattered from
such particles mostly forward. The mean square of the
scattering angle is defined by the relationship [49]

() ~ (ka)>.

In particular, in the Rayleigh—Gans approximation, one has
07y = 2(ka)™*. Since this value is small the scattered light
maintains a definite direction even when it experiences several
scattering events. For total angular randomisation the
number of scattering events must satisfy the relationship [49]

ne~ 1/(0%) ~ (1 —cosf,)"".

Thus the radiation occurs to be randomised over directions at
distance 7, lext = lext (1 — cos 0,\~>7] of the order of /.

There are three characteristic length parameters in the
problem of light scattering from large-scale inhomogeneities:
the wavelength /, the mean free path, or extinction length /e,
and transport length, or the radiation transfer length,
I > lx¢. These parameters are well defined in the range
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Figure 10. (a) Measured polarised (||) and depolarised (L) coherent backscattering components for aqueous suspension of latex spheres with 45-um mean
diameter and standard deviation 9.9 pm, at wavelength 0.475 um in water [79]; (b) polarised (upper curve) and depolarised (lower curve) components
calculated within the double scattering approximation using the same experimental parameters [78].

A/lext < 1. For distances less than /ey light propagation is
described by the wave equation. At the intermediate distances
between /. and /;; the radiation transfer is described by the
kinetic Boltzmann-like equation. And finally for distances far
exceeding /i, scattered radiation becomes isotropic and the
diffusion approximation is valid [16].

The finite particle size is accounted for in the framework
of the perturbation theory for a/A < 1 [53]. The point-like
scatterer model is used there as the zeroth order approxima-
tion. Analyzing the diagram series it was shown also that the
form of the backscattering peak is described by the transport
length /;;, which in this case however differs insignificantly
from /oy.

Using Feynman’s path integration method a new
theoretical approach is proposed [74] for the description of
radiation transfer in multiply scattering media. It confirms
the results obtained earlier [75, 76] within the diffusion
approximation.

The enhancement of backscattering from a system of
finite size particles was calculated numerically in Refs [77,
78]. The case of plane wave incident upon a slab of
thickness L, consisting of spherical particles was considered.
The concentration of particles, was assumed to be rather
dilute so that one can neglect their spatial correlations. The
particles of simulated system were normally distributed over
their sizes. The mean diameter of a particle was 45 pm, so
that ka = 298. The thickness of slab was L =2 cm. The
scattering indicatrix was calculated by means of the Mie
theory. The double-scattering intensities I<2L) and I<2C>

corresponding to the ladder and cyclic diagrams were
obtained. The numerical calculation was performed for the
particle system which had been studied experimentally [79].
The volume particle concentration was 0.00149. The mea-
sured intensities of coherent backscattering for polarised
and depolarised components are shown in Fig. 10a. Fig. 10b
illustrates the results of numerical calculations for the same
parameter values. As is seen, the depolarised component
vanishes more rapidly than that in the experiment. The
polarised component exhibits the same intermediate peaks
as in experiment though their magnitudes are somewhat
larger. One may conclude that the results agree rather well
with the experimental ones bearing in mind that they
contain the contribution of scattering of all orders.

2.6 The temporal correlation function
In previous sections we considered scattering from an
idealised static system of scatterers. Since particles undergo
the Brownian motion the multiply scattered fields lose their
coherence with increasing time. There is a simple physical
picture proposed by Maret and Wolf [18] which permits one
to describe clearly the temporal damping of coherence. The
temporal intensity correlation function is considered
Cp(1) = (BI(1)81(0) = (1(1)1(0)) = (1(0))*.  (2.51)
It presents the fourth order correlator with respect to the
scattered electric field. This correlator is factorised [26, 27, 62]

in main order of parameter A/;! so that the auto-correlation
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function can be presented in the form

(31(1)8I(0)) = |(3E (1) SE*(0))[*. (2.52)
For simplicity the scalar field case is considered. Let field
SE(t) arise as a result of a sequence of scattering events
occurring at moment ¢ at points ry(z), ra(¢), ..., r,(¢) with
wave vectors ki, ky, ..., k,. Its phase is determined by the
relationship

1) ~expy ik 1)
7

(2.53)

This field interferes with the field scattered from the same
sequence of inhomogeneities at moment 7 = 0 at points r; (0),
r2(0), ..., r,(0). The time needed for the light to travel the
entire path is assumed to be significantly less than the
characteristic intervals of temporal change of spatial posi-
tions of scatterers. Therefore one can neglect the displace-
ments of scatterers for the time it takes light to propagate
through inhomogeneities placed at points ry, rp, ..., r,, and
thus the temporal behaviour of the correlation function is
determined as follows

<exp{ Zk [r;(1) — 1;(0 )]}>

(2.54)

(3E (1) SE*(0)

Assuming the phase shift distribution to be Gaussian one
presents Eqn (2.54) in the form

~ Y rtn mew(~ A7), @59

where # is the number of scattering events, f(n) is a weight
function dependent on the optical path, and <r2)1/2 is the
mean shift of scatterer during time . In the Brownian particle
model one has (r?) = 6Dt where Dy is the self-diffusion
coefficient. Quantity {g?) 12 means the standard deviation of
the wave vector transfer during a single scattering event. In
the general case of anisotropic scattering, i.e. scattering from
finite size particles, taking into account the definition of
transport length one can write

(SE (1) SE*(0

(¢%) = 4k>(sin(0,/2)) = 2k*(1 — (cos 0,))

= 2% Lo/ Lyr - (2.56)
In the isotropic scattering case one has [, =y and
(¢*) = 2k%. One can transit in Eqn (2.55) from summing
over the discrete number of scattering events to the integra-
tion over the multiple scattering path s. The magnitude of s is
obviously related to the number of scattering events through
the relationship s = nle. The light propagator is assumed to
obey to the diffusion equation [80]. In this case the weight
function P(s) is defined as the probability that light travels
along path s from r to r’

0= (s2g) o]

where D = vl /3 is the classic diffusion coefficient of light [54,
55]and v is the radiation transfer velocity in the medium. The
diffusion approximation (2.57) is valid for distances
|r — 1’| > ki [14]. Accounting for Eqn (2.55) one obtains the

v|r—r’2}
R E

2.
4sD (2.57)

radiation transfer propagator Sy(r, r’, ¢) in the form [18, 49]

o 2t
So(r, r', 1) ~ J ds P(s) exp (— q)
0 TOIlr
00 3/2 v
v vir — 7| 2ts
=| ds _prorl 2.58
L ’ (4nsD> exp[ 4sD ‘Eoltr] (2:58)

where 15 = (Dskz)fl is the characteristic time it takes a
scatterer to shift at the distance of the light wavelength
order. Calculating the integral by the saddle-point method
one obtains

3 exp(—+/6t/t0 v — 1|/ 1) .

4n |r —r/|

So(r, ¥, 1) ~ (2.59)

This formula describes the spatial-temporal radiation trans-
fer propagator within the diffusion approximation in a
homogeneous medium, which is denoted by subscript zero.

A successive implementation of this physical picture is
given by Stephen [81] starting from the scalar wave equation.
The correlation function (3E (r, 7) 8E*(r, 0)) is described by
the diagram series similar to that of the static case, with the
replacement of the equilibrium correlation functions by the
spatial-temporal ones

Gr—r)—>G(r—r,1)=@(r,1)dc(r, 0)). (2.60)

Note that all the vertexes of the diagram upper lines are
related to moment ¢, and those of the lower ones are related to
moment = 0. Considering the point-like scatterers the
Fourier-transform of the correlation function can be pre-

sented in the form
G(q,1) = Dy(q*)1).

(2.61)

(4m)*go exp(—Dsg*t) ~ (4m)’go exp(—

Thus the solution of the problem for the radiation transfer
propagator coincides practically with that for static case
considered in Section 2.3 if we take into account that
parameter ¢ has to be redefined as

& — éexp(7D5<q2>t).

Since the approach described is valid for time ¢ < 79, the
exponents in Eqns (2.61) and (2.62) can be expanded and as a
result, for propagator L(q,?), related to S(q,7) by the
relationship of form (2.16), one obtains

(2.62)

4nv
12

Hol ) = T+ S )]

(2.63)

Transition to the r-space yields an expression similar to Eqn
(2.59), which verifies the consistency of the diagram approach
based on the wave equation and the probabilistic approach
involving the photon random walks in a homogeneous
medium. The auto-correlation function can be expressed
through the radiation transfer propagator by means of
formulae for the light scattering intensities (2.17) and (2.18).
Thus the contribution of the cyclic diagrams takes the form

<5E(l) SE*(O» ~ J dr;dr, L (I‘l, r, l)
xexpli(k; + ki) v —i(ki +ky) -] [Eo*, (2.64)
where

k,-:((), O,k—'—l.O')7 kS:(k067 07 _k_lo—)
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Propagator L(ry, r;, t) describes the radiation transfer in
the half-space. Solving the boundary problem one uses as
usually the mirror image method

S(rla I, t) = SO(I‘] - r27t) - SO(I'] - r§b>7t)a

where r(zb) is the mirror image of point r, with respect to plane

z = —z and r§b> = (x2,y2, —2z2 — 2zp). Choosing z, = 0 and
zp = 2o = 2/3lexe One satisfies the boundary conditions in
form (2.22) and in form (2.23), respectively. Accounting for
the axial symmetry with respect to axis z and using Fourier-
presentation (2.63), by means of the residue theorem, one
obtains

-2

g+lgxlk%92 )
]

—1
X {1 - <@+1§xtk302)
To
X [1 —exp(_zzb JE e ﬂ } (2.65)
lext 70

Eqn (2.65) describes the temporal correlation function for
various scattering angles. It exhibits a nonanalytic depen-
dence of correlation function on time of the #'/2 form at 0 = 0
and triangle form of the peak at r = 0. It is worth noting the
symmetry of Eqn (2.65) with respect to substitution [49]

1/2
(g> E=3 k()lextg .

(3E (1) 3E*(0)) ~ (1 +

70

The correlation function calculated from (2.65) at 6 =0 is
plotted against time in Fig.11. The measured correlation
function [19] is fitted to the exponential dependence of the
form

(BE (1) SE"(0)) ~ exp <—V \/f:: ) ;

(E(1)E(0))/(1)

0.5

0.1 -
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0.01 | | | |
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Figure 11. Normalised temporal correlation function for a 2-mm-thick
slab filled with an aqueous 0.497-um-diam latex suspension [19]. Smooth
line shows the results of calculations [49].

where y =~ 2. As is seen from Eqn (2.65) one can write for
small time at 0 = 0

<8E(t) SE*(O» ~1- Vtheor \/f::

Choosing boundary conditions with zy =0 one gets
Yiheor = 2, and for boundary condition with z, = (2/3) lext
the result is Yo &~ 2.4. In the small time range Eqn (2.65)
compares with the experiment, and for a larger time it predicts
a slower decrease of the correlation function as compared
with the experimental one. However, the described theoretical
consideration is valid for ¢ < 1.

MacKintosh and John [49, 82] considered the auto-
correlation function of electromagnetic field. They obtained
formulae similar to Eqn (2.65) for the polarised and depo-
larised components of auto-correlation function. Their initial
slopes with respect to /2 turn out to be different [49]. The
polarised component decays with slope 7| ~ 1.6, and the
depolarised component decays with slope y, ~ 2.7. These
values agree rather well with experimental values of 1.6 £+ 0.1
and 2.8 £ 0.2, respectively, for scattering of A = 488 nm light
from a 0.091-um-diam latex suspension.

Besides the plane-polarised waves, calculations of the
temporal correlation function were also performed for the
circular polarised waves. For coinciding directions of circular
polarisation of incident and scattered light the calculated
slope Veor = 2.4, and for the opposite circular polarisations
Vtheor & L.7.

These results are valid for particles of small size and for
short time intervals. Since scattering becomes anisotropic for
large-size particles, the auto-correlation function depends to
a lesser extent on polarisation due to the light depolarisation
in each scattering event. Such an effect was observed
experimentally [83]. Namely, increasing the size of particles
one gets slope y; increasing and y, decreasing, resulting
practically in the coincidence of these two slopes in the case
of sharp anisotropic scattering. For example, at /i, /lexy = 10
slopes y) and 7 differ less than by 5%.

Considering the auto-correlation function in scalar case,
we pointed out the symmetry between the angular and
temporal dependences. Note that with the polarisation
taken into account, this symmetry is only valid for the case
when polarisations, linear and circular, of the incident and
final waves, are the same. In the case of depolarised
component, the angular dependence becomes smoother and
this symmetry is violated.

Besides the temporal correlation function, also the
frequency correlation function related to the former by the
Fourier-transformation is studied. The low frequency part of
the spectral correlation function was measured for the first
time in Ref. [30]. The point source of radiation placed inside
the scattering system was used. Such experimental geometry
has been considered before by Stephen [20] and Shapiro [26].
The intensity—intensity correlation function Cj:(R,?) was
obtained for the model of point-like scatterers

30\’ 2R [6]t
C[Z(R,t)’\‘ <4T[th) exp[—T ‘L'|_0|:|

This expression is in fact the square of Eqn (2.59), which is
readily understood, since the radiation transfer propagator
means just the point source radiation intensity inside the
scattering medium. Performing the Fourier-transformation

(2.66)
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of Eqn (2.66), one obtains the respective frequency spectrum

cinor=gis () {[-<(2)] (2
S}

where C(x) and S(x) are the integral cosine and sine,
respectively, and o, = 3(R/l;;)*/(n1o) is the characteristic
frequency. The meaning of the w,. can be easily clarified by
considering C;2 (R, ) in two limit cases [30]. For o < o, one
has

o [5G o ()] ew

and for w > w,

3 \ 32 \ 12 ‘
Cr(R, ) ~ - <“’—) {1 _ (8“’) 10 (‘”—H .
W, \ o Tw w

(2.69)

Thus . appears to be a boundary frequency, which divides
two frequency ranges. In the lower one, function C;> becomes
a constant, and in the upper range it decreases as w3/
instead of w2 as it could be expected in the case of single-
scattering with the Lorentzian shape of spectrum. The
intermediate range appears to be quite wide, extending
about two decades. Note that w, is, as a rule, approximately
(R/I;;)* times larger than the characteristic frequency of the
single-scattering and increases with distance as @, ~ R

The He-Ne laser was used as the light source coupled to a
single-mode fiber with a core diameter of 4 pm [30]. The free
end of the fiber which served as a point-like source of radiation
was inserted into a cylindrical sample cell of radius
a=0.57 cm and width W =0.15 cm. The cell had been
previously filled with a water suspension of 0.48-um-diam
polystyrene spheres at a volume fraction of 12%. The
calculated value of the self-diffusion coefficient
Dy =1x10"%cm?s™! at 22°C agrees rather well with the
experimental check Ds = 1.3x 1073 cm?s~!, measured from
the single-scattering spectrum of a dilute sample. A micro-
scope objective was used at the output of the cell. The multiply
scattered light was collected by the objective and focused on a
photodiode coupled to an amplifier and frequency analyzer.
The distance R between the end of the fiber and the cell
window was varied from R = 50 um to R = 400 um. In Fig. 12
spectra Cj2(v) (v = w/2mn) are plotted for different distances
from R = 200 um to R = 400 pm. Solid lines present theore-
tical curves calculated by means of Eqn (2.67). The overall
amplitude and frequency w. were used as adjustable para-
meters. As is seen from the figure Cp(v) varies quite slightly
with frequency at v < v. and decreases as C2(v) ~ 2mv~" at
v ~ v.. It was not possible to perform measurements in the
range v > v. where the theory predicts the ~ v=3/2 behaviour.
However the dependence of the form Cj2(v) ~ v'201 was
found for R =200 um. Frequency v, varies as square of
distance R in agreement with the theoretical prediction. The
. ~ R* dependence was also found in Ref. [19] for similar
light path values, whereas the o, ~ R relationship is obtained
for paths approximately 30 times larger [84]. The data
obtained in Ref. [30] correspond to value llr’f(l)/ 2~ 4.4x

o0
® — R=1200pum
o0 — R=250 pm
107! & — R=300um
: + — R=350pm
®e o ® — R=400pum
1072 E
103
1074 |

Figure 12. Comparison of experimental data (points) and theoretical fits
(smooth curves) for the frequency correlation function Cj:(v),
v =w/(2r), for values of source-aperture separation R indicated. The
fitting frequencies v, = w./(2n) are indicated as arrows. Slopes 1/v and
1/v? are shown for comparison [30].

10~* cm s'/2. It should be recalled that the theory developed
is valid for the case of isotropic scatterers whereas systems
consisting of sufficiently large-sized scatterers are studied
experimentally, for which differences between /.y and /; are
large. The [, value was determined from the measured
extinction length ly in highly diluted suspensions with
concentration ¢~ 1075-107% at A =0.633 um. Assuming
that [y varies linearly with concentration one obtains
lext =4.4 um for ¢=0.15 in good agreement with the
theoretical value lxy = 3.9 um. With account taken for the
known value of (cos ), this yields /, = 23 pum. Using the
theoretical value of Ds one obtains /i, r(l)/z ~2x 1074 cms!/?
which is smaller than the experimental value above by a factor
~ 2. This indicates that the scattering indicatrix anisotropy is
to be included in the theoretical description.

The auto-correlation function C;2(¢) was studied in Ref.
[65] for the usual setting of an experiment with a plane wave as
the source of radiation incident in a solution of 1.2-um-diam
latex particles. To consider only the ladder diagram contribu-
tion a scattering angle of 30° was used. The rate of decay of
the intensity—intensity correlation function was found to
increase with a rise in concentration and become nonexpo-
nential, i.e. the quantity In C;:(¢) is no more a linear function
of time as it should be for dilute suspensions. The quantity
ln[— In C,z(t)} depends now linearly on time, namely,
In Cp2(t) ~ —1*/% with index d,, = 2 for the single-scattering
and d,, exceeding 2 at higher concentrations. It is noteworthy
that the dependence of d,, on concentration C is quite similar
to that of S/ N (see Eqn (2.37)) ascribed by the authors of Ref.
[65] to the increased contribution of multiple scattering.
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The effect of short-range interparticle correlations on
equilibrium and dynamic properties of multiple scattering in
colloid systems has been discussed in Ref. [85]. As was noted
previously, the angular dependence for noninteracting scat-
terers is described by the expression of the form
I©)(0) ~ 1 — pk0l, in the vicinity of the backscattering
peak, 6 =0, and the temporal correlation function is pre-
sented in the form Cg2 ~ 1 — y(6t/ro)1/2. It was shown [18,
49, 85, 86] that taking into account the interparticle correla-
tions, one has to change /;; to /{, and 7y to 7;, in the formula for
119(0), where /{, and 1) account for the pair correlations of
particles.

3. Intensity correlation functions

While studying coherent backscattering in highly inhomoge-
neous systems the intensity of multiply scattered light was
found to exhibit strong fluctuations. They appear as temporal
fluctuations in the case of colloid mixtures [57, 60] and as
spatial intensity variations in that of inhomogeneous solids.
Recently much interest has been paid to the study of intensity
fluctuations and their correlations. These studies appear to be
rather purposeful because they are the well-known quantum
counterparts of these phenomena, namely the universal
conductance fluctuations in disordered metals [21 — 25, 87].
The temporal correlation function considered in Section 2.6 is
a particular case of such correlation functions. Along with it,
spatial [26, 27, 88], angular [27, 28, 31, 89], frequency [32 — 34,
88, 90 — 92], and polarisation correlation functions are
studied.

When studying intensity correlations one usually deals
with the problem of light transmission through a slab of finite
thickness. Considering the slab with thickness far exceeding
the extinction length guarantees the light to propagate in the
multiple scattering regime. This condition also guarantees the
validity of the diffusion approximation. Interest in this
particular problem owes its existence to the fact that despite
multiple scattering the correlation effects are essentially
manifested in the transmitted light due to the coherence of
incident radiation. These correlation effects are also present
in the reflection light but for this problem the diffusion
approximation is, strictly speaking, insufficient.

3.1 Angular and frequency correlations. Memory effect

We begin our considerations with the angular correlation
functions. Let two plane waves with wave vectors k; and k;:
fall upon the system. We separate two plane waves with wave
vectors k and ky in the outgoing radiation. We denote scalar
fields resultant from scattering of the plane waves k; and k;: as
E(k; — k,) and E(k; — ky), and their intensities as
I(k;, k) and I (k;:, ky), respectively. For waves transmitting
through a disordered medium in the multiple scattering
regime these intensities appear to be correlated under certain
conditions. We define the correlation functions as follows

Clz(ki’ k,‘r, k57 ks’) = <81is 81i’s’> - <[(ki’ ks)l(ki’, ks’))
G.1)

They can be factorised in the main order of parameter
Mlexy < 1

- <1(ki7 k‘v)><1(ki/7 ky)) :

Cr(ki, kir, ks, ky) = Cpa(i, i', 5, §)

= [(E(k — k) E* (ki — ky))|* (3.2)

Expression (3.2) is presented graphically as the product of two
disconnected diagrams

ks ki ky ke

(3.3)

A| Lk k| L |1<,-

where L denotes the sum of all ladder diagrams. Studying the
transmission correlation function one can neglect the con-
tribution of cyclic diagrams. We consider a scalar wave
propagating through the inhomogeneous medium slab with
thickness L and square S = W? where W is the width of the
sample.

The first diagram corresponds to the field—field correla-
tion function in the form

Cp(ki, kir, ky, ky) = J drydradr| dry L (ry, ), ra, 15)
x exp(ik; -1 — ik - v — ik, -l + ik ) (3.4)

where superscript (L) denotes that the z component of the
respective vector is measured from the z = L plane. This is
related to the fact that in the far zone a distance in
propagators T(r, —r) and T*(r}, —r), which describe the
field propagation to the observation point, has to be
measured from point r (0,0, L). For simplicity the magnitude
of the incident field is taken to be unity.

The integrations over r} and r} are carried out within the
point-like scatterer approximation due to the d-functions
contained in the ladder operator L(ry,r|, r;, r}) —
d(r; —r})d(ry — rh) L(ry, ra).

In the case of wide sample W > L the radiation transfer
propagator is translationally invariant in plane x,y:
L(ry, r;) = L(r y —ry, z1, z2) where r; = (x,y). In this
case the wave vector transversal component has to obey the
‘conservation law’

(kf_ki/)J_ = (ks_k.y’)J; (35)

On extracting the imaginary parts of wave vectors, which
are related to the extinction, Eqn (3.4) can be presented in the
form

CEZ(ki? ki’a k,ra ks’)

L L
:a(Ak,LAk\-L)SJ\dzrlJ\ d21J dZQL(I‘L, 21722)
0 0

L_
xexp{—a( a 22>+irL-Ak,¢},(3.6)

cos0; cosby

where

Ak; = (ki— ki), Aky =(k—ky),. (3.7)
Correlations are usually considered between waves with close
values of wave vectors. Therefore we assume cos 0; =~ cos 0;
and cos 6, =~ cos Oy where 0; and 6;, are the angles of incidence
and 0 and 0y are the angles of observation of two correlated
fields, respectively. The real parts of exponent describe the
extinction of incident as well as outgoing beams. By complex
conjugation of Eqn (3.4) one obtains the correlation function
Cr(k;r, ki, ky, ky) presented by the second diagram.

In the problem considered it is necessary to satisfy the
boundary conditions in planes z = 0 and z = L. This usually
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requires the radiation transfer propagator to be equal to zero
at these boundaries. Solving this boundary problem one uses
the image method for a finite thickness slab [27, 28, 93 — 95]

o0

L(ry, z1, 22) = Z [LO(I‘J_, z1 — 22+ 2nl)

Nn=-—00

—L()(I‘l, 1 +22+2I1L)}. (38)
Points r; and r;, are located, respectively, near planes z = 0
and z = L due to the exponentially decreasing factors in Eqn
(3.6). Therefore distance |r; — r;| > /x and hence one can
use the diffusion approximation Ly(r) = 3(l;(tr)7l for the
homogeneous medium propagator.

Integral (3.6) can be calculated accurately. However one
usually restricts oneself to an approximate estimate valid up
to a numerical factor. Taking into account that regions
z1 ~ lexy and zp ~ L — I contribute mainly to the integrand
due to exponential factors exp(—oz) one can write
L(ry, z1, z2) ® L(ry, lext, L — lext) for transmission and
L(ry, z1, z2) = L(ry, let, lext) for reflection.

Performing the Fourier transformation we integrate easily
over transversal variables. Integrating also by means of the
residue theorem over k, and summing the resultant geometric
progression, we obtain

CEz(kia ki’7 kSa kx’)

_s 6nS  cosh (2l Ak ) — 1
T e Ake) 3 Ak | sinh (Aki L)

L L o
X . d21 JO d22 eXp [(-m + lAk,Z) ]

o

_ iAo V(L —
+ ( cos 0 +i k5>( 22)}
~ S(Ale,Aku) S 1272[6){1 COS 9,‘ COS ey Fl (AkiLL), (39)

where
X
Fi(x) = e (3.10)

This formula for the field correlation function was obtained
for the first time by Feng et al. [28]. Passing to the second
equality in Eqn (3.9) we neglected quantities Ak;. and Ak as
compared with ¢, since function Fj(x) is negligibly small
when |Ak| > L7

First we note that correlation function Cg» is nonzero
within factorisation approximation only for Ak;; = Akq,.
This property was called the memory effect [28] since it means
that the fields undergoing the multiple scattering remember
the initial difference of the transversal wave vectors.

This memory effect can be explained physically as follows.
Two waves propagating through a turbid medium and
scattering from the same inhomogeneities maintain the initial
phase difference originated by the different incidence direc-
tions. Then after statistical averaging only waves outgoing
with the same transversal wave vector difference appear to be
correlated.

We note also that correlation function Cg» decays
exponentially with the transversal wave vector difference
increasing i.e. with increasing of the scattering angle.

Eqn (3.9) is derived for a transversally infinite slab. In this
case the transversal wave vector difference can vary con-
tinuously. Feng et al. [28] considered the waveguide geome-

try, i.e. the slab of finite width W with a set of discrete
transversal modes defined as Ak; = mnW~! where n is integer.
Considering function (3.10) one concludes that the memory
effect is more prominent when L < Wi.e. in the case of a wide
waveguide since the minimum value of argument x is tL/W.
The case of a narrow waveguide W < L was considered by
Eliyahu et al. [96]. They demonstrated that the memory effect
disappears for such a system.

The results of Ref. [28] on the angular dependence of
correlation function were tested experimentally [31] and
confirmed the existence of memory effect.

The diameter of a polarised 5 mW He-Ne laser beam with
the 0.633-um wavelength was expanded to 15 mm. The
central part of the beam with a nearly flat wave front was
used to study the speckle pattern. Placing a 6-mm diam mask
on the sample surface ensured that the laser beam did not
move across the sample during rotation. The speckle patterns
were recorded with a video camera, and digitised by a
computer. The sample was a thin sheet (370-pm thickness)
of opal glass supported on a transparent glass substrate.

The transmission correlation function Cj: is shown in
Fig. 13. It represents the analysis of some 250 separate
patterns each containing several hundreds speckle spots. As
can be seen the data are well approximated by an exponent in
agreement with the calculation results for large values of
argument. Curve a in Fig. 13 shows the results obtained for
light transmission through a coarsely ground glass surface
corresponding to a sample with a near zero value for L. In this
case Cj: is nearly independent of angle 66. One actually has
F\(LAk; ) — 1 when L — 0. As is seen from the plot C»
decreases weakly with an increase in 80 due to the finite
surface roughness, which was estimated by a microscopic
measurement to be about 15 um.

Curves b and c¢ in Fig. 13 show the results obtained for
light transmission through 370-pm- and 810-pm-thick opal
glass multiple scattering samples. When fitting the experi-

C X X &k & 44— —A—AA—4 A 4 4 4, 4, .,
12 h—h—ah-
c
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Figure 13. Angular correlation function of transmission for various
samples: curve a, 370-pm-thick opal glass; curve b, 810-pm-thick opal
glass; ¢, a coarsely ground glass surface, corresponding to a sample with a
near zero value of L ~ 0 [31].
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mental data the geometric thickness of the sample was
substituted by L — /; since the coherent light passes at least
the path of order of /;; before it becomes diffusive. Measuring
the light transmission one found /, = 100 um. The experi-
mental data were fitted by the relationship

Cp(i, i', s, s') ~exp[—bAki (L —1y)],

where Ak;, ~ k&0. It was established that b = 1.07 for both
the 380-um and the 810-pm samples. Taking into account that
the experimental error could reach 10%, one can assume this
parameter to be of the order of unity.

Within the factorisation approximation Cj: = |Cp: |2,
Eqn (3.10) gives

Ak L 77
- ’ i
Cr(i, 7, ) Linh (Ak,-LL)]

Although the experiment is performed in the open system one
can use the waveguide geometry with the beam diameter
taken as the wave guide width W, since the diameter exceeds
significantly the sample thickness. Basically, the experiment
confirms the theoretical predictions, in particular the depen-
dence of correlation function on scale parameter Ak;; L and
the exponential decay at large Ak;, L.

Nevertheless, there is a significant discrepancy. The
theory predicts that Cj2(Ak;; L) always starts flat then rolls
over, and finally decays exponentially. In the experiment the
peak does not exhibit the flat region but shows an immediate
exponential falloff. This discrepancy can be attributed to the
theoretical description within the framework of the wave-
guide geometry, whereas the experimental system is transver-
sally unconstrained, or to the existence of some additional
mechanism for memory loss which needs to be accounted for
theoretically.

Using similar consideration the intensity correlation
functions were obtained for light reflected from the finite
thickness slab [31, 97 — 101]. The normalised correlation
function within the factorisation approximation takes the
form [97]

CRi, 1,5, 5') = (R)(Rir o) Saks,. ak,.) Fa(Bkin), (3.11)

where (R;;) is the diffusive light reflection coefficient related
to the transmission coefficient (T}) by the relationship
(Ris) + (Ti) = 1. Function Fg describing the decrease of the
correlation of reflected fields is presented in the form

L sinh (Akle) sinh [Ak(L - Zex[)}
L — [y Aklex sinh (AKL)

Fr(Ak) = (3.12)

With the slab thickness L increasing, L — oo, the
transmission coefficient decreases as L~! and reflection
coefficient (R;;) — 1. It corresponds to the well-known fact
that the light incident upon a nonabsorbing heterogeneous
medium comes back totally as a diffusive radiation. Eqn
(3.11) also predicts the memory effect for the reflected light.
However, in this case the memory effect is nonuniversal
unlike in the light transmission case. Thus, the correlation
depends not only on the geometry of the sample, but also on
the degree of disorder which enters Eqn (3.12) through the
extinction length.

In Ref. [97] the effect of absorption on the reflection
correlation was also taken into account. The absorption is

shown to result in changing Ak to (Ak3 + L;z)l/z, where L,

is the absorption length. The correlation function decays in
this case more slowly and the memory effect becomes more
noticeable.

Ref. [99] shows that cyclic diagrams are to be taken into
account in the reflection correlation functions. The correla-
tion function can be presented as the sum of four diagram
terms

Eqn (3.11) describes the contribution of the first term only.
Taking into account all four terms one finds
C({Q)(L l'l7 S, S/) = const 6(Ak,l,Aku)

]h
o [Fr(Ak;1) + Fr(AkiL + ki1 + k1) ?
[1+ Fr(kis +ko0)][1 4 Fr(kis + ke — 24k, )]

.(3.13)

A new distinctive feature of Eqn (3.13) is that the
correlation function exhibits two maxima as the function of
angle. The first maximum occurs when two correlating beams
are almost coincident i.e. when Ak;; = 0. With account for
the memory effect this corresponds to k;; =k;;; and
ki, =ky,. The second maximum occurs around
Ak;, = —k;; —k, corresponding to k;; = kg, kg, =
—k;; . The first maximum occurs due to the ladder diagram
contribution and the second one appears due to the cyclic one.
Along with the transmission correlation function Freund et
al. [31] also studied the reflection angular intensity correla-
tions. Avoiding the specular reflections they used an asym-
metric geometry in which the speckle pattern was measured at
the reflection angle 0, =0 (i.e. along the surface normal)
while the laser beam incidence angle was 0; = 30°. Fitting an
expression of the form

CN (Akii by) ~ exp(—abki ly)

to the experimental data, one again obtains /;, = 100 um and
a = 3 similar to the transmission case. Comparison of this
fitting formula with theoretical equation (3.12) shows the
same differences between theory and experiment that were
found for transmission.

Besides the angular correlation the correlations of wave
with different frequencies were also studied experimentally.
Derivation of the frequency correlation function coincides in
basically with that of the angular correlation function,
however, one has to account explicitly for the frequency
dependence of corresponding quantities.

The intensity—intensity correlation function with fre-
quency o and ' is defined as

Cp(w, o) = (8l (w, )8 (o), 1)), (3.14)

where 6/ (w, r) = I (w, r) — (I (w, r)) is the intensity fluctua-
tion of light with frequency w. Correlation function (3.14)
approximated similarly to Eqn (3.2) is presented in the form

(81 (w, v) 8 (', v)) = |(8E (w, v) SE* (o', x)))?,  (3.15)

where OE (w, r) is the scattered field at point r with frequency
o.
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Performing calculations similar to Eqns (3.6) — (3.9) one
obtains the correlation function of the transmitted diffusive
radiation in the form [32, 83]

(E (0, r) E' (0, 1)) =

4 cosh(V2y lext) — cos(V2 Lext)

= const | E
£l cosh(v/2y L) — cos(v/2y L)

. (3.16)

where y = (AwD*I)'/Z.

As is seen from Eqns (3.9) and (3.16) the angular and
frequency intensity correlation functions decay exponentially
when the separation between the modes, correlated in
frequencies or wave vectors, increases. These equations are
derived under the factorisation approximation and describe
the most highly fluctuating contributions to the intensity.
Indeed the intensity fluctuations appear to be of the order of
the intensity itself [28]

(3.17)

in the case of coincident frequencies or wave vectors. This
manifests itself as speckle patterns observed in the multiple
light scattering in a heterogeneous medium.

3.2 Long-range intensity correlations

The considered intensity correlations are the fourth order
averages of fields. Choosing for definiteness the frequency
correlation function one can write

(I(w,r)I (o', 1)) = J dr;...dry T(w, T —15)

x T*(w, r —r6) T(0, r — r7) T*(0', r — 13)

x K(w, o';ry,..., r5) Ep(w, 1)

X Ej(w, r2) Eo(o, 13) Eg(0, 14), (3.18)
where function K(w, o’; ry,..., rg) is the sum of all eight-
vertex diagrams. The pairwise products of the ladder diagram
sums produce the main contribution to this function:

K(w,o;r,..., r5) ® L (0, 0; r1, 12, 15, I'6)

AN /.
X L(CU, W r3, ryq, Iy, r8) +L(C(), W Iy, I'g, Is, rS)

x L(o', w; 13, 13, T, T7), (3.19)

where function L(w, w; ry,. .., r4) is the sum of usual ladder
diagrams and function L(w, @'; r1, ..., r4) is the sum of the
same diagrams in which the upper and lower lines describe the
propagation of the field with frequencies w and ', respec-
tively. The first term in Eqn (3.19) leads to the product of
mean intensities (I (w))(/ (')} and the second gives the main
contribution to the correlation function described in the
previous section. Note once more that both terms are equal
at coincident frequencies in correspondence with Eqn (3.17).

Besides the diagrams accounted for by Eqn (3.19) one can
consider connected diagrams consisting of a greater number
of ladder propagators. This means physically that the
interaction of different diffusion modes is taken into account
in the scattering medium. Such an account produces long-
range terms in correlation function [27, 28]. Earlier these
diagrams were considered in the electron conduction theory
of disordered metals [23, 29, 102, 103].Graphically the higher

order diagrams can be obtained by connecting the ladder
propagators. Such connection is performed by means of the
Hikami vertex function [29]. The diagrams containing the
increased number of Hikami vertex functions appear to
correspond to the long-range correlations of weaker magni-
tude. Calculations were performed for the spatial [27] and
angular [28] correlations. The contributions of the zeroth,
first and second orders in the number of Hikami vertexes into
the normalised angular correlation function of intensity
Cii' s, = Clz(i> i/a S, S/)/<]0>2’

) (2) ()
itsy T Ciinsy TC sy (3.20)

Cii's,s = C
were found [28].

The number of modes for wave propagation in the
waveguide with length L and transversal cross-section
S=W?is N=(2n/2)’S. Feng et al. [28] show that the
expansion parameter in Eqn (3.20) is

-1 _ Nlexl -
g I .

Such a waveguide randomises these modes during the multi-
ple scattering so that the transmission coefficient
Tis = I;s/(ly) describes the share of intensity /;; of incoming
mode { which transforms into outgoing mode s. In the case of
an infinite slab with modes i and s determined, respectively, by
the angles of incidence and scattering one has

(3.21)

Ti) = le—m cos 0;cos ;. 3.22
L

This formula can be obtained practically from Eqn (3.9)
taking Ak;; = 0. Separate terms contributing to the correla-
tion function ¢; ;7 5 ¢y = (8T} 6T ¢) are obtained in the form

o = DUTNTog) Siane., aie ) F: (Bkii L), (3.23)
2 oy = Dag T\ (Toy) [FBr(AkiL L) + F>(Ak, L)), (3.24)
cm = D3g H(Ti)(Tiry), (3.35)
where D; are constants of the order of unity and
F(x) = 2x~! (cothx - %) . (3.26)
sinh” x

In the case of a wide waveguide Eqn (3.23) is derived from
Eqn (3.9), which has to be squared and normalised. Function
F(x) is given by Eqn (3.10).

The first order term in g/, cii, . y» describes the slowly
decaying contribution to the "correlation  function,
¢@ ~ (Ak;.)™" where /=i or s. The term of such a form
was found for the first time by Stephen and Cwilich [27] for
the spatial correlations. Despite the smallness of parameter
g~ ! this contribution turns out to be dominant if
Ak;, # Akg . One can explain intuitively the existence of
this term as follows. Falling onto the heterogeneous system
under close angles, two beams travel quite close multiple-
scattering paths inside the system so that outgoing from the
system under different angles they become correlated in
intensities, and conversely. This is manifested mathematically
as two terms presented in Eqn (3.24).

The third term, ) describes the uniform positive

ii', s, s

contribution to the correlations between arbitrary modes
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independently of wave vector transfer in the incident or
scattered radiation. This term, with an infinite correlation
length, corresponds to the universal conductance fluctuations
in physics of disordered metals. The magnitude of this term is
rather small and its detection turns out to be a rather
complicated task. However the following is noteworthy.
Summing over all input and output modes (integrating over
angles of incidence 0; and scattering 0;) one finds term ¢ to
be dominant. Indeed, since summation over the mode number
produces > ~ N, and the transmission coefficient can be
evaluated as (Tjs) ~ lxt/L, one can write the estimates

2
sy~ (%),

Ak Ak

PICEFSI IR

Ak Ak,

Z Z ® ~ gsz2 (1%“)2 ~ 1.

Ak Ak,

(3.27)

The latter relationship means the independence of the sample
size, 1.e. universality of fluctuations.

Thus terms ¢! and ¢® become smaller than ¢ by
factors (fext /L)2 and /lex¢/L respectively. As is readily seen,
summing either the input or output modes, one finds the ¢(>
term to dominate. Such estimates are valid for angular as well
as frequency correlations.

Genack and Drake [32] studied the light transmission
intensity for a 40 percent volume dispersion of rutile TiO,
particles with dimensions (0.25 £+ 0.15) pm in polystyrene.
The sample was polished to form a wedge so that the thickness
L can be varied. The pulse lasers with wave lengths of 514 nm
and 581 nm and pulse duration of 90 ps and 6 ps, respectively,
were used as the light source.

In Fig.14 the incident pulse and the pulse transmitted
through the slab of depth L = 543 pm at A = 581 nm are
shown. The solid line for the transmitted pulse was obtained
by convolution of the incident pulse with the transmission
function T(z,L). It can be presented within the diffusion
approximation in the form [32, 92]

T(1,1) = SR 3 {exp [_ (2n—1)L - 2z)°

VanDr 4Dt
—exp {— %} } . (3.28)

Function 7(z, L) can be obtained from a series similar to (3.8),
by transforming it to the (r, 7) presentation [92]. Parameter 7,
is introduced to describe the light absorption in the medium
due to inelastic processes and is related to absorption length
L, with relationship t, = L2/D. Here D is the light diffusion
coefficient. In the weak scattering limit one has D = vl /3. In
the study considered parameters t, and D were determined
from the fit. Terms up to n =3 are sufficient to fit the
measurement data. The fit gives D= (4.5+£0.5)x
105cm?s™! and 1, = (243 4+40) ps for A= 581 nm, and
D= (3+0.4) x 10°cm?s~! and 7, = (120 % 20) ps for pulse
with wave length 2 = 514 nm. The pulse tail is described by a
single exponential law with a characteristic time

(3.29)

I, rel. units.
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Figure 14. Distribution of time delay for: («) incident pulse and (b) pulse
transmitted through a 543-um-thick slab of a 40 volume percent dispersion
of (0.25 £ 0.15)-um-diam TiO, particles; points are the measured distribu-
tion, smooth line is the convolution of the incident pulse and transmission
function using values of D and z, as fitting parameters [32].

Analyzing plot 7 against L with Eqn (3.29) one obtains
D= (47+03)x10°cm?s™! and 7, = (293 £40) ps, in
good agreement with a fit to function 7(¢, L). The transmis-
sion describing the energy transfer through the slab with
thickness L is obtained integrating Eqn (3.28) over time to
give
sinh (azp)
(L) = sinh («L) ’

where o = L = (Dt,)""? is the absorption coefficient. In
the case of normal incidence for o = 0 this equation turns into
Eqn (3.22). For 2 =581 nm one gets L, =105 pm, in
agreement with L, = 112 pm obtained from the 7(L)
measurements for L =589 nm [90]. Using formula
D = vl,; /3 one can get the estimate /,, = 1.5 pm in agreement
with the T(L) measurements.

These results demonstrate that the temporal distribution
and mean energy transfer are well described by diffusion
approximation.

Genack and Drake [32] also measured the frequency
intensity correlation function. This correlation function was
presented in the form

. 2
Cr2(Aw, L) = (81 () 8 (0 + Aw)) ~ [%] . (3.30)

where ¢ = (L, + Aw/D)"*. The measured half-width of
correlation function turns out to be given as

1.46 D

(Aw)* ?, for L < La N
= 265D

2n 0.265 for L> L,.

VLL3
The measurements were performed at 4 = 589 nm using a
single-frequency dye laser for a sample with width 452 pm.
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The correlation function, obtained by averaging over eight
different speckle spots, is in excellent agreement with the
theory.

The frequency intensity—intensity correlation function for
transmitted light (87(w) 8Ty (w + Aw)) presented similarly
to the case of angular correlations as the sum of three terms
(3.20) was studied by van Albada et al. [34]. Term C(V) (Aw, L)
of zeroth order in expansion parameter g~' normalised to the
mean intensity of the transmitted diffusive light was written in
the form [32, 34]

X2

~ cosh (2x) — cos (2x)”’

cY(Aw, L) (3.31)

where x = (Aw/D)"*L. 1t describes the short-range correla-
tion. Eqn (3.31) can be obtained from Eqn (3.16) in the limit
(Aw/D)l/zlex[ <1 by changing in argument 2 to /2. We
retain however notations of Refs [32] and [34] since the
measurement data were processed with Eqns (3.30) and
(3.31). The long-range correlations are described by function
C?(Aw, L) [83]

| _ sinh(2x) — sin (2x)
CY(Aw, L) = tg Ix7! S
(Ao, L) = constg™x cosh (2x) — cos (2x)

. (332)

Function C'V(Aw, L) was measured by Freund et al.[31]
and appeared to be in an excellent agreement with the theory.
The same authors also confirmed the memory effect predicted
in Ref. [28] .

The long-range contribution C®(Aw, L) into the fre-
quency correlation function was studied in Refs [33, 104]. It
was measured in a microwave frequency range. The scattering
system presented a set of 1.27-cm-diam polystyrene spheres
confined in a copper tube 7.3 cm in diameter and 150 cm in
length. The spheres were packed rather densely with 58
volume percent filling fraction. When the tube was rotated
new sample configurations were produced. The source
frequency varied from 18 to 24 GHz when studying the
dependence on the geometry of the system, and was swept
from 20.6 to 21.7 GHz in 1000 steps for frequency measure-
ments. The experimental setup scheme is shown in Fig. 15.
The radiation receivers were mounted inside the sample and
on the face of it provided the separation R between them,
which may be.

The frequency correlation function of normalised inten-
sities 7} and I, was measured generally in various points of the

Iy ——

Figure 15. Schematic diagram of experimental setup for the frequency and
spatial correlation function C;: (Aw, R) measurements: Iy, incident radia-
tion; T, plastic tube; C, copper cylinders; D, diode detectors; and A,
absorber [33, 104].

sample. This function is presented as products of the
frequency and spatial correlation functions

Cr(Aw,R) =" A;¢g"" F;(Aw) H; (R).
=12

(3.33)

The normalised frequency functions F; were obtained by
generalising Eqns (3.10) and (3.26) to the case of the
frequency correlations. They are presented in the form [33]

_ (sinh (gz;) sinh (L) ?
Fi(Aw) = (sinh (azp) sinh (qL)) ’ (3-34)
F2 (A(}J) = B]F] (Aw) + Bze (A(,U) s (335)
where
P (Aw) = (a/a) [coth (qL) — gL /sinh?*(qL)] 7 (3.36)

coth (aL) — aL/sinh* (L)

g* = o> + AwD~', and coefficients A; are parameters of the
order of unity. Functions F; and H; are normalised to satisfy
requirements F; = H; = 1 at Aw = 0 and R = 0. The spatial
correlation function H;(R) was found in Refs [26, 27]:

H\(R) = (Sink(];R)> ’ exp (— %) .

Function H, decays due to field randomisation at the
scale of the wavelength order. The higher order functions
decay slower and therefore contribute mainly to correlation
function Cp» (Aw, R) at R > 1 and are especially large when
the parameter g is small. Function F>(Aw) decays asympto-
tically as Aw~1/2.

The auto-correlation function for the 140-cm-length
sample is plotted in Fig.16. The solid line is a plot of Eqn
(3.34) with measured values D = —3.1 x 10'°cm?s~! and
L, =25 cm. The high frequency part is seen to decay as
Aw~12,

Cr
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Figure 16. Frequency correlation function (points) for a 140-cm-thick
sample, the solid line is a plot of Eqn (2.34) describing the short-range term
of correlation function [33].
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For more successive extraction of this high-frequency
contribution the correlation function was measured for
R =4 cm and R =20 cm when the term with F; can be
neglected since the distance R =4 cm exceeds by far the
radiation wavelength. In the case of R > 4 cm the results were
averaged over 1500 spectra and in the case of R = 20 cm the
averaging was over 2800 spectra. In Fig.17 the results are
plotted averaged over 11000 spectra for R = 4,6, 8, 10 and 20
cm. It is seen that Cp2(Aw, R) does not depend on R for
4cm < R < 20cm. The results calculated by means of Eqn
(3.35) with coefficients B; = 0.46 and B, = 0.54 are shown by
dots.

The auto-correlation function Cj:(Aw,R=0) for
L = 150 cm averaged over 3 x 10* spectra is described rather
well by Eqn (3.33) with parameters A4; = 0.90,
D=(0304+0.2) x 10°cm?s™" and A,g7!' =0.13. The
transport length is /, = 3D/v = (4+0,2) cm. The depen-
dence of the spatial correlation function C;2(Aw = 0, R) on R
is also studied there. In the case of large values of R function
C2(R) = CY(R) can be presented in the form

cm = (7).

where function f(R/L) means the path share of photons
which achieve the output plane at distance L from the source
if they have passed the plane at distance L — R. In the given
geometry f(R/L) depends linearly on R

Jes
(L)
Function C;:(R) actually appears in the experiment to be a
straight line. Parameter y was found from the slope to be
y = 1.93. For parameter g one obtains g = 21 & 2. This value
corresponds rather well to the results obtained from measur-
ing the frequency correlation function. The frequency inten-
sity correlations were studied experimentally [34, 92] for

R
=1 -yl L' — (1 =291, L") T

coherent light transmitted through a disordered system. A
wide frequency mode dye laser was used as the light source.
The radiation frequency was varied by rotating a birefracting
filter automatically connected with a computer. The total
transmission intensity fluctuations for different wavelengths
were measured in a sphere for summation over all output
angles. Statistical data were accumulated by means of the
spatial translation of the sample. The TiO, pigment sus-
pended in chloroform was used as the scattering system.
Such suspension was evaporated upon the transparent
substrate. The sample thickness was measured after vaporisa-
tion of chloroform by a microscope. The TiO; volume
fraction in the samples was 36%. The single scan intensity
fluctuations were in the range from 0.6% to 28% of the total
intensity.

Measuring the short-range part of correlation function
Cglz)(Aw) for samples of different thickness the diffusion
coefficient D was determined. The frequency behaviour of
the long-range part of correlation function C(lz>(Aw) was
found to be universal independently of the sample thickness.

A system of noninteracting spherical scatterers with a self-
diffusion coefficient Dy was considered by Pine et al. [19]. In
the case of light transmitted through a wide slab of thickness
L the temporal correlation function was obtained quite
similarly to the spatial and frequency ones in the form

_ L sinh [“/(61/‘50)1/2]
Cp(t) = Vhe sinh [(L/k)(61/70) "]

~ (L/ltr)(6t/f0)l/2
sinh [(L/1)(61/79)'?]

(3.37)

where the second holds for ¢ < 79. Quantity zg = yl; was
defined in Ref. [19] as the depth where the light propagation
turns to be diffusive unlike in Ref. [27], where y = 1.
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Figure 17. Frequency correlation functions of intensities between points separated by distance R: A— R = 4cm; o— R = 20 cm; e, average for < R <

cm [104].
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Auto-correlation intensity function C;:(¢) was measured
for a system of 0.497-pm-diam polystyrene latex spheres at a
volume fraction C = 1072 for light transmitted through the
2-mm-thick slab. Light from a 488-nm laser was focused on a
spot of =50-um diam, and the scattered light was collected
from a 50-um-diam circle. The measurement data were
processed using Eqn (3.37) with 7y = 3.73 ms obtained from
the single-scattering spectrum analysis at concentration
C = 107>, Using experimental data the transport length was
found to be /; = 144 pm. A discrepancy is admitted in Ref.
[19] between the /;; values obtained by means of the diffusing-
wave spectroscopy method and by measuring the half-width
of the coherent backscattering. In the latter case /;;, = 200 pm
for the same concentration of particles of somewhat smaller
size.

The auto-correlation function for diffusive light reflected
by a slab in the backward direction was also studied there.
The temporal correlation function for this case is as follows
[19]

1 sinh [(L/h)(61/70) (1 =yl /L)
T U Ved/T sinh [(L/he)(61/70) ]
1/2] )

B ()

~ exp[—7 (6¢/79) (3.38)
This equation is valid for L > [, i.e essentially for half-space.
The intensity auto-correlation functions were also studied
[19] for slabs of various thickness. To select the multiple
scattered light the depolarised component was measured. The
measurement data coincide practically with results calculated
using Eqn (3.38) with y = 2 and /; = 143 um found from the
transmission correlation function measurements.

The results of the frequency correlation function measure-
ments were reported to contradict the diffusion approxima-
tion [84]. Later on these results were not confirmed [94, 105,
106], however.

The interesting results were obtained recently studying
quasiperiodic structures [107, 108]. Earlier, when considering
a similar problem in semiconductors the electron localisation
was shown to take place not only in disordered systems but
also in partially ordered quasiperiodic ones [109 — 111]. In
particular, the one-dimensional Schrodinger equation was
studied [109, 110] for the structure with incommensurate
periods. The periods were given using the Fibonacci numbers.
In this case the exponentially decaying strong localisation
changes to localisation with a somewhat slower law of decay.
The transmittance was measured [107, 108] for quasiperiodic
multilayered dielectric consisting of thin layers of SiO, and
TiO,. The number of layers of specific kind were ordered by
Fibonacci numbers. An elementary layer depth is chosen so
that the layers become quarterwave plates for the support
wave. The transmission for such layered structure was
measured as a function of the wavelength for the Fibonacci
sequence from Sy to Sg. The wavelength intervals opaque for
the transmitted light were found. The location of these
intervals correlates with the Fibonacci numbers and agrees
fairly well with the theory predictions [112].

The problem of localisation of an object placed in a
heterogeneous medium was considered in Ref. [113]. The
intensities of the transmitted and scattered light were
measured shifting a receiver along the surface of a slab
which contains 220-nm-diam TiO, particles suspended in
glycerine. The transport length was determined from the
measured extinction length using the Mie formulas. The

object was a metal wire with diameter 350 um parallel to the
layer surface and perpendicular to the direction of the
receiver shift. The measurement data agree fairly well with
calculation results obtained within the framework of the
diffusion approximation.

3.3 Frequency correlations and radiation transfer velocity
While conducting experiments on the frequency and temporal
correlation functions, van Albada et al. [35] obtained for the
quantity v = vy, entering the definition of the light diffusion
coefficient D = l;v,/3 and having sense of the radiation
transfer velocity, the result vy = 0.1n%c, which is one order
of magnitude less than light velocity ¢. Garcia, Genack and
Lisyansky [114] found vy, = 1.86 x 10! cm s~! which is 25%
less than the phase velocity. The problem of determining vy,
by means of independent measurements of /; and light
diffusion coefficient D was studied in Ref. [35].

The measurements were performed in a sample consisting
of a fine TiO; powder in air with mean particle size of 220 nm.
The transport length was determined by two different static
techniques. The first one, which involved measuring of the
cone of coherent backscattering, gave two values of /I,
calculated from the half-width of the peak and from para-
meters of its triangle form, yielding 0.66 +0.03 um and
0.58 £ 0.04 um, respectively, at light wavelength of 633 nm.
The second one invoked measurement of the energy transfer
through a heterogeneous slab. For slabs of thickness L with
ly <« L < L,, where L, is the absorption length, the total
transmission is given by (Tj) = 7l,/(L + yl,). Estimate
y = 2.1 was obtained by means of numerical simulation,
differing somewhat from the value for scalar isotropic
scattering. The total transmission (7j) was measured as a
function of the slab thickness at light wavelength of 633 nm.
Value /; = 0.57 £+ 0.05 pm was found from the slope of the
plot in agreement with the coherent backscattering data.
Since the absorption length of about 80 um is much larger
than /., it does not need to be taken into account.

The diffusion coefficient D and time 7 of radiation transfer
through a distance of the /, order, t=/2/(3D), was
determined measuring the frequency correlation function
[35]. Using a dye laser as the source, the intensity correlation
function Cj2(Aw) was studied over the wavelength range
between 585 and 630 nm. In the backscattering geometry for
L > [, the decay of the correlation function C(/;)(Aw)
depends solely on time 7. In transmission geometry, the
decay of Cp:(Aw,L) depends on values of D,L and /.
Function C},” was written as follows [35]

C(/;)(Aw) = (B_IB_V/z)Z

y cosh [(B—1—17/2)y] —cos[(B—1—7/2)y]
cosh (By) — cos (By)

. (3.39)

and C;2(Aw, L) defined by Eqn (3.16) was presented at small
values of argument y in the form
BZy2

cosh (By) — cos (By) ’
where B =y + L/l and y = (6Aw1)"/%.

As is seen from Eqn (3.40) the backscattering intensity
correlation function decays at large Aw values as
exp [—(1 +y/2)(6Awr)l/2}. From a series of measurements

using samples with L values ranging from 8 to 200 um, one
founds t = (12.3+£2.1) fs.

Cp(Aw, L) = (3.40)
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Using the experimental plot of half-width of the correla-
tion function against L the diffusion coefficient is found to be
D = (11.7£ 1.0) m?s~!. Combining t and D one determines
the transport length [, = (3Dr)1 2 to be within interval
0.57 pm < Iy < 0.74 um, in good agreement with the value
of I = 0.6 um obtained from the static experiment. With
these values the radiation transfer velocity turns out to be
equal to vy = fy/7 = (54 1) x 107 ms~!, with the ratio vy /c
being about 0.16 + 0.03. Thus v, coincides neither with the
group, nor phase velocity.

A similar result was obtained by Kawato et al. in Ref.
[115] where the radiation transfer velocity was studied in four
porous glass samples with the pore radius within interval
from 0.15pum to 0.5 um and the volume concentration of
pores about 50%. The value of v, was determined from the
relationship D = v/, /3. The transport length was found
measuring the angular dependence of coherent backscatter-
ing. The diffusion coefficient was obtained studying the
transformation of the light pulse transmitting through a
porous glass slab. As is seen from the measurements the
transport length and diffusion coefficient grow approxi-
mately linearly with increase of the pore size while their
ratio remains constant. The radiation transfer velocity turns
out to be about 60% of the phase light velocity in glass for all
four samples.

The problem of significant difference between vy, and ¢/n
is discussed in Refs [35, 116 — 120]. The authors of Refs [35,
116] start with the scalar wave equation

2

(A —¢(r) clz %) E(r,7)=0. (3.41)

The formal solution for Green’s function of this equation in
the (Q, k) representation can be written in the form
-1

T(2,k) = [ch—z -3 (@ k)} , (3.42)
where Y (2, k) is the kernel, or polarisation operator, of the
respective Dyson equation.

One can write the Bethe—Salpeter equation [14, 121] for
the coherence function (E (ry,t,) E*(r, #2)). Performing the
Fourier transformation over spatial variables and Laplace
transformation over temporal variables, one obtains the

equation for spectrum @y (q, ® |Q) of the coherence function
in the form

[—Zch_z +2q-k+> (@ kY-S (@, k’)}
X By(q, 0 |Q) = AT (q, 0 |2,K)
< [14 Uwela,012) dy(a,0(2)], (3.43)
-

where Uy (q,)|Q) is the kernel of the Bethe—Salpeter
equation, AT =T (Q*, k%) — T(Q ,k7) is the difference
between the advanced and retarded Green functions,
QF = Q+ w/2 +inwithy — 0,and k™ = k + q/2. On deriv-
ing the macroscopic parameters Eqn (3.43) is to be considered
as usually in limit q, ® — 0. Defining the densities of energy
and energy flux and relating them by the continuity equation,
one introduces the energy transfer velocity. The energy
density is defined as

1
) (q7 CU) = E J d‘qujk (qvw |Q) ’

where | dQy means integration over all directions of vector k.
The energy flux density is defined as

dQy k

J(q,0) = Ulr‘[ﬂ % Di(q,w|Q),

where parameter vy, takes the meaning of the energy transfer
velocity.

Integrating Eqn (3.43) over directions of vector k and
requiring the energy density @ and energy flux density J to
satisfy the continuity equation

(}J@(q, 0‘)) —-q- ‘](q7 (D) = COHSt,

one obtains for velocity v in the lowest order of scatterer
density pg,

2 d , do d¢]™"
U = 1= py 4 Re fi +»0st dQy oy @} ;

(3.44)

where do/dQy = | fiw |*/(4n)? is the differential cross-sec-
tion of scattering in the k direction and ¢ is the phase of the
scattering amplitude ¢y = |fuw |exp(i¢). Estimates
obtained by means of Eqn (3.44) give [35, 116] v;/c = 0.18,
in agreement with experimental value v, /¢ = 0.16 & 0.03.

When calculating v, within the small density approxima-
tion a similar approach was developed [118, 122] based also
on the Bethe—Salpeter equation and supplemented addition-
ally with the Ward-Takahaki identity [123]. The authors of
Refs [118, 122] claimed that the radiation transfer velocity is
renormalised similarly to the phase velocity. Thus, the
problem of the true radiation transfer velocity remains open
especially in the case of finite density of scatterers.

4. Scattering from rough surfaces

Along with the backscattering from a bulk system much
attention has recently been paid to theoretical and experi-
mental studies [38 —42] of enhanced backscattering from very
rough surfaces [36 — 42, 94, 124 — 132], whose standard
deviation of surface height is of the order of the wavelength
of the incident radiation or larger, and the rms surface slope is
of the order of unity. Mendez and O’Donnell [36, 37]
observed for the first time the backscattering enhancement
from the high-sloped Gaussian rough surfaces with the rms
surface height exceeding several times the wavelength. To
exclude the contribution of the bulk scattering they used
metallic surfaces with two-dimensional roughness distribu-
tion. One- and two- dimensional rough surfaces were studied
by Kim et al. [126] and surfaces with fractured dimensionality
were considered by Jordan and Moreno [132]. An exact
solution of Maxwell’s equations for such a surface is quite
complicated [133-138]. However, significant progress has
been made [38, 39, 41, 125, 139 — 142] using numerical
methods. The angular dependence of the polarised light
scattering from a metallic surface with a non-Gaussian
roughness distribution was calculated numerically [126]. The
scattering of the s- or p- polarised light incident normally
upon a rough metal surface was numerically simulated [142],
using various forms of a power law of the roughness height
spectrum. As has been shown, a variation of the form of
spectrum can significantly change the angular dependence of
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scattering but cannot cancel the effect of the backscattering
enhancement itself caused by multiple surface scattering.

4.1 Surface backscattering enhancement
As a rule one uses the Kirchhoff approximation [50, 143] for
an analytical description of scattering from a rough surface.
Under this approximation the field at some point on a surface
is substituted by the field in the tangential plane passing
through this point [144 — 148]. This approximation was used
by Ishimaru and Chen [39] to separate the single- and double-
scatterings and later was developed in Ref. [41]. Shadow
function models were developed in Refs [39, 144, 146] which
make it possible to successfully apply the theory to the case of
high roughness.

One observes the mean scattering intensity (|3E|*) which
can be presented as the sum of the first and second order
contributions

([BEP) = (|Exarl’) + (| Exaal®), (4.1)
where Exa; and Exa» are the fields scattered from the rough
surface in the first and second orders of the Kirchhoff
approximation respectively. As shown in Refs [38, 39] the
cross-over terms (|Exai Exaz|”) are negligible. Quantity
(|EKA2|2> can thus be presented in the form [39]

(|Exrol®) = 5(0:) S(0,) j dklzj dk) ()

x Sy (o) S, (o), (4.2)
where average (JJ*) means the radiation transfer propagator
for the problem considered within the double scattering
approximation. Angles o and o/ determine the intermediate
wave vectors between two scattering events,

/

k / 1z
tano = R tano’ ==,
k
1x

Ix

Quantity (JJ*) can be presented as the sum of the ladder and
cyclic diagrams. The cyclic diagram contribution (JJ*>(C) is
obtained in the form [39]

2

(IO ~ exp {— %
Functions S(0) and S, () and parameter D are introduced to
describe the shadow regions arising in the theory of wave
reflection from the rough surface [143, 144, 149]. The shadow
function S, () is given explicitly by Ishimaru and Chen [40]. It
presents the probability that the beam with the given direction
of the wave vector does not cross the surface. Thus the
difference 1 — S(a) is the probability that the beam will cross
the surface hence causing double scattering to occur. For
o < 0 all reflected beams cross the surface. Parameter D is the
mean distance which is travelled by the wave between
scattering events. In particular from calculations it follows
that D = 11.13/ for a sinusoidal rough surface, where Ay is
the average wavelength of the roughness spectrum.

Eqn (4.3) describes the scattering peak in the backward
direction k; + k; = 0. The angular width of the peak is
determined approximately as follows

V24 A

D 12"

1z

(kix + kox + K, — kh.)z} . (4.3)

AO =2 (4.4)

The ladder diagram contribution (JJ*)™ is not written
since it does not contain the backscattering peak. These
results were compared with calculations performed by the
Monte-Carlo method for electromagnetic wave. A good
agreement between numerical and analytical results was
obtained [129]. Numerical calculations predict for perfectly
conducting surfaces [130] that the backscattering enhance-
ment is to be for the TE as well as TM waves. The form of the
peak depends on the incidence angle and parameters ¢ /4 and
/.r/ /. The same results are valid for a dielectric with a large
imaginary part of permittivity. Comparative calculations
were performed for the Gaussian, W(K), and non-Gaussian,
W, (K), roughness spectra. These distribution functions were
presented in the form

=532 () ()]

For comparison the spectra were normalised as follows

W,(K)dK = ¢° .

-0

ro W(K)dK = J

—00

Numerical calculations predict the backscattering peak to be
more prominent for the non-Gaussian spectrum. Experimen-
tal studies of backscattering were performed on the statisti-
cally one-dimensional very rough conducting surface [129].
The millimetre-wave scattering was investigated. The radia-
tion source was placed at a distance of 50 cm away from the
surface. The illuminated area presented a 9-cm-diam circle.
The TE and TM polarisations were studied. The roughness
spectrum was Gaussian with o/1 &~ Ag/4 ~ 1. Data were
averaged over about 103 scans of the sample surface at three
different incidence angles 0°, 20°, and 40°. The peaks manifest
themselves distinctly in all cases except for the TM wave at an
incidence angle of 40°.

Enhanced backscattering was experimentally studied by
Jordan and Moreno [132] on multiscale surfaces whose
roughness spectrum could not be described by the Gaussian
with one characteristic parameter. Strongly distorted alumi-
nium foil was used as the sample. The surface roughness is
described by the height fluctuation ¢, rms surface slope, and
structure height function

S@ry) = ((h(ry+dr) —h(r))?), (4.5)
where /(r, ) is the surface deviation at point (r,,z =0). In
general, for a fractal, function S(3) is related to the surface
parameters by

S(8) = L*[3|" — BS?, (4.6)
where v is the fractal dimensionality index of the surface
profile and L is the horizontal distance over which the chord
connecting two points on the surface has an rms unity slope.
Coefficient B depends on the fractal dimensionality of the
characteristic length in the roughness spectrum. The second
term in Eqn (4.6) is nonessential while v < 2. Analyzing In S
as function of In § one sees that in the range of length § from
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Figure 18. Angular dependence of the scattered radiation of pp and ps polarisation for the visible light (1= 0.633 pm) at various incidence angles 0;: (a) and
(b), 0; = 5°; (c) and (d), 6; = 83. (e) is the same for a CO, infrared laser radiation (2 = 10.6 pm) at ; = 70° The scattered angle is measured from the angle

of incidence [132].

1 um to 100 pm it is linear with the slope equal to 1.94. This
value differs slightly from the marginal fractal dimensionality
v = 2. Experiments were performed with several samples each
of them being characterised by the structure function index v
invariable at least in the range of two decades.

The intensity of reflected light was measured using a setup
similar to that shown in Fig. 3. The He-Ne laser was used as
the light source. Its beam was widened up to 10 mm and
passed through a half-wave plate to enable the polarisation
plane to be changed. The light emerging from the splitter falls
upon the rough surface. The reflected light passes once more
through the splitter and reaches the detector. For sufficient
angular resolution to be ensured, a 30-cm focal length lens
and a 200 pum pinhole are placed between the splitter and the
detector. The waves of s- and p-polarisations can be registered
by the polariser. The measurements have been performed for
different parts of the sample. The similar setup was used for
infrared measurements with a CO, laser at a wavelength of
10.6 um as the light source. Intensity as a function of angle is
plotted in Figs 18, a—d, in visible region for pp and ps
polarisations (the first and second indices refer to the incident
and scattered waves, respectively) of light scattered from the

surface with ¢ = 50 pm and mean slope A, = 20°. The angles
of incidence were 5° and 83°. The enhancement of back-
scattering is clearly present except for the case of
pp polarisation at 5° angle of incidence. The backscattering
peaks exhibit opposite angular dependence for pp and
ps polarisations. The peak for pp polarisation increases and
peak for ps polarisation decreases with increase of the angle of
incidence. In Fig. 18d the infrared backscattering peak is
plotted for incidence angle of 70°. In this case the peak
appears to be significantly wider. However this width is still
two times less than that predicted by Jakeman [150, 151] who
used a simple relationship between wave lengths.

4.2 Angular correlations of intensities at scattering

from a rough surface

Backscattering enhancement appears to be the most obvious
but not unique consequence of multiple scattering from a
rough surface. There may be equally significant effects on
other fundamental quantities such as the correlation func-
tions of intensities. Knotts et al. [41, 152] measured the
angular intensity correlation functions for light scattered
from a one-dimensionally rough conducting surface. The
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angular field correlation function can be presented in the
form

Cgﬁ)(eih@slﬁa,@sz) = (Ex(00 — 00) E3(02 — 022)),

(4.7)

where 6; and 0; are the incidence angles, 6, and 0, are the
scattering angles, and o and f§ are the field polarisations.
Contrary to bulk multiple scattering, in the case of reflection
the polarisation effects are always to be accounted for. As was
shown in Refs [153, 154] the angular correlation function can
be nonzero only for angles satisfying the relationship

sin0;; — sinf; = sin 0 — sin O (4.8)
for one-dimensionally rough surfaces. This relationship is
analogous to the ‘conservation law’ (3.5) for the bulk
scattering and thus verifies the memory effect for scattering
from rough surfaces. The intensity correlation function,

C%’B)(@ilygsla91‘270,\2) = (81,(011 — 01) 313(0,2 — 052)),

(4.9)

was measured [41] assuming that the factorisation theorem
[26] is valid. The symmetric 0;; = 0 situation was consid-
ered. It implies, correspondingly to Eqn (4.8), that a nonzero
correlation will be found only with other symmetric inten-
sities at 0, = 0. The incident wave was polarised at a 45°
angle to the incidence plane containing thus equal s- and p-
amplitudes. The scattered light could be detected in the 45°
and —45° polarisation states. The intensity of light with the
—45° polarisation is contributed by the single-scattering and
the 45° polarisation of scattered light is produced by the
multiple scattering. It permits one to separate contributions
of the single- and multiple scatterings from the conducting
surface. The corresponding correlation functions are denoted
as follows
C1(2++)(0i17931,9i2, 052) = (81, (01, 0:1) 81, (02, 02) ),

Cl 7 (00,00,00,00) = (81_(01,00) 81_(0n,02)). (4.10)

Mean intensity (/,(0;,0;)) and correlation function
CI<Z++>(9,-1,031,01-2,052) can be easily interpreted in terms of
the phase shifts occurring during the multiple scattering of
beams with different wave vectors from the rough surface as

shown in Fig. 19. The field correlation function is presented in

Figure 19. Double-scattering from rough surfaces: (a) fields with wave
vectors k; and kg; (b) fields with wave vectors k;» and k.

the form [41]
C (00,040, 00,00) = (Ei (00 — 04) E+(02 — 0,0)),
(4.11)

where E(0;; — 05) denotes the scattered field which keeps
the polarisation state unchanged and hence experiences more
than one scattering event. Such fields are shown in Fig. 19 and
appear as a result of double-scattering. Field E, (0;; — 05)
describes the contribution produced by the pair of paths
shown in Fig. 19a and field E, (6, — 0y) contains the
contribution produced by the analogous paths shown in Fig.
19b for some different pairs of the angles of incidence and
scattering.

The scattering processes shown in Fig. 19 produce four
contributions with phase differences Adp, pp, Adp,p 4.
Adpyspas AP 4pp e to the correlation function, where for
instance A¢ 45 4 is the phase difference arising when the
beams travel path 4 — B in Fig. 19a and path B — 4 in
Fig. 19b. Accounting for the complex conjugation in Eqn
(4.11), one obtains

1

Apupap = 3 (Apy — Ady),
1

Ab ppa = 3 (Apy + Ag,),
1

A¢BA,A’B’ = 5 (*A¢1 - A¢2)7

Appipa =12 (=Ad; + Ag,), (4.12)

where A¢, = (ki + ky) Ar, Ad, = (kn + ky) Ar. We omit
the additive term

% (ra+rp)(ki —ka —kp + ko),
in all four phase differences (4.12) which vanishes due to
requirement (4.8).

Quantities A¢, and A¢, are the phase differences for
forward and backward travelling paths in Fig. 19a and 19b,
respectively. Following previous interpretations of back-
scattering enhancement from rough surfaces this implies
that the mean intensity should be enhanced when A¢ =0, a
depleted intensity may be seen at angles where A¢ = =, and
some enhancement may be observed when A¢ = £2m,
although the strength of secondary maxima should be less
due to the fluctuations in Ar occurring on a random rough
surface.

The one-dimensionally rough conducting surface was
fabricated by the method described in detail in Refs [37,
155]. This method leads to a surface with the nearly Gaussian
height /(r;) statistics and correlation function
(h(r11)h(r1n)) of Gaussian form. The surface height was
found [41] to have 1.73-um standard deviation and correla-
tion length r. = 3.43 pm. The wavelength A = 1.152 pum laser
was used as the light source. The light beam was reflected
from a series of mirrors and fell upon the rough surface. The
plane of incidence was kept perpendicular to the surface
groove direction. Both the sample and the detector were
mounted upon rotation stages. Polariser P; produced the
+45° polarised incident beam and detector polariser P, could
be set to £45° polarisation positions. The intensity—intensity
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correlation function was determined by measuring a set of
realisations of the intensity for a particular pair of incident
and scattering angles 0,1, 6, = 0;; moving the sample by an
amount Ax = 125 um in a direction parallel to the surface
roughness. The data were recorded on a computer. The
incident and scattered angles were then changed to new
values, and the measurements were repeated for the same set
of computer-controlled positions of the sample. After per-
forming these measurements the correlation function was
determined through direct computation. Of the most critical
concern in this experiment was adjustment of the spatial
parameters as the sample was repeatedly moved.

In Fig. 20 the mean intensities (I_(6;,0;)) and (I, (0;,0;))
are shown obtained from direct averaging of the data for
different values of the incidence angle 0;. There is a distinct
backscattering peak in (7, (0;,0;)) caused by the multiple
scattering. Such a peak is not exhibited in intensity
(I-(6:,6;)) which is contributed mainly from the single-
scattering. This peak corresponds to the phase difference
A¢ = 0. Considering the positions of minima and secondary
maxima in this figure one finds that phase differences
A¢ = £m correspond to incidence angle 6; = 3.5°, and
A¢ = 2n corresponds to §; = £7°. In Fig. 21 correlation
functions C I(jﬂ and C 1({ 7 are shown for different angles
0;1. There are two correlation peaks instead of one for
sufficiently large 0; values due to reciprocity of the multiple
scattering paths.

I, rel. units

—-40 -30 —-20 -10 0 10 20 30 40
0, grad

Figure 20. Averaged intensities of radiation scattered from a rough
surface, as the function of angle 0; [124]: o — (I_(0;,0;)) (circles) and
O — (£4:(6;,0)) (squares).

The phase difference analysis permits one quite simply to
explain the dependence of correlation function CI;r+ on
incidence angle 6;;. For sufficiently large value 6; = 25°
there are smaller correlation peaks for 6, = £60;; related to
the intensity auto-correlation and reciprocity condition
which follows from the time-reversal symmetry of Maxwell’s
equations. The correlation peaks become significantly higher
at 0, =7° because for 0, = 7° the conditions of the
secondary maximum A¢, = 2n and A¢, = 2n are fulfilled.
At 0;; =3.5° and 0, = £3.5° one has A¢; =n, Ap, = +m
correspondingly to the partial interference suppression of
field. At 0;; = 0.5° one has approximately A¢; = A¢, ~ 0
explaining the appearance of the strong central peak, 0, ~ 0.
Requirements A¢; ~ 0 and A¢, ~ 2r are satisfied for 0;; ~ 0
and 0, ~ £7°, bringing the secondary maxima in C1(2++) into
this figure.
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Figure 21. Angular dependences of correlation functions Cif’) and C(,z")
for various angles 0;1: 25° (a), 7° (b), 3.5° (¢), and 0.5° (d) [41].
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5. Conclusions

The foregoing analysis has shown that a cutting-edge area of
studies has appeared in quite a classical field of physics, related
to the radiation transfer in heterogeneous media, investigating
the interference and coherence phenomena. These phenom-
ena were traditionally assumed to be suppressed because of
randomisation. Such development was stimulated by the
discovery of quantum interference effects in metals at low
temperature. It has been made possible with the modern
experimental technique and above all by the use of lasers and
computerised measurement units. We have outlined the
achievements in the field. One observes in general a rare
occurrence when theory and experiment develop simulta-
neously and in agreement one with another. However there
are still a number of problems which demand solution. There
is need in developing a theory which accounts for finite size of
scatterers. In particular, in the coherent backscattering theory
one has to go beyond the framework of the diffusion
approximation since it is valid only far from the boundaries
in the range / > I or [, while the effect itself occurs just
within the neighbourhood of the surface region of the /;; order.
An example of this is a paper by Gorodnichev and Rogozkin
[71] who have gone beyond the diffusion approximation
scope. Studying the backscattering from solid dielectrics
with rough surfaces, one faces the problem of a correct
separation of contributions from the surface roughness and
bulk inhomogeneities.

When investigating correlation functions a theory would
seems to be desirable which takes into account the vector
nature of the electromagnetic field for a more accurate
description of the experiment. Bearing in mind a wide variety
of practical applications it would be interesting to study a case
of sample shapes different from a slab.

When investigating the coherent effects of reflection from
very rough surfaces, one restricts oneself generally to double-
scattering approximation. It would be worthwhile to go
beyond the scope of this approximation and develop a theory
of multiple scattering using the diffusion-like approximation.

Along with new results in fundamental physics, one can
see in the field considered a number of possibilities for
practical applications and above all for the use of the coherent
effects in nontransparent medium diagnosis. Such applica-
tions range from object detection in dense smog to the study
of tissue structures by means of visible light.
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