
Abstract. The aim of this paper is to study in detail the geo-
metric phase (Berry phase) and to discuss peculiarities of its
measurements in the most typical physical case, i.e. the problem
of neutron spin evolution in a precessing magnetic field.

1. Introduction

In the classical paper [1] on the passage of neutrons through
ferromagnetics, Halpern and Holstein suggested an iteration
schemewhich enabled one to find the final polarisation vector
from the initial one for any considered configuration of a
magnetic field in ferromagnetics. Even today this iteration
scheme remains basic to processing the data on the passage of
neutrons through magnetic fields of various noncollinear
configurations.

Can the Halpern and Holstein approach be generalised?
Are there any regularities in the behaviour of the polarisation
vector unlikely to be revealed in the context of the Halpern-
Holstein approach? The search for answers to these questions
necessitates a detailed analysis of another no less famous
work.

In 1984 Berry published in the ``Proceedings of the Royal
Society'' a paper [2] under the title ``Quantal phase factors
accompanying adiabatic changes''. It is in this paper that
Berry fully realised from the standpoint of quantum
mechanics that the behaviour of a so-called nonholonomic
system with time- (or coordinate-) dependent parameters
differs qualitatively from the behaviour of systems with
these parameters fixed. Berry showed that in the limit when

the parameters of a system are adiabatically changed, the total
change in thewave function phase candiffer from the dynamic
one as the quantum-mechanical system reverts to its initial
state. The arising phase difference is related by a simple
expression to a solid angle traced by the vector-parameter
R � R�t� of the system (in the case of neutrons, by the vector
of themagnetic field intensityH�t�) during its cyclic evolution.
This phase difference can be responsible for experimentally
seen effects and in the limiting case its value is independent of
the evolution time. The ten years that have passed since this
remarkable paper came out have been marked by numerous
experimental and theoretical studies devoted to various
manifestations of the geometric or topological phase.

Having applied a similar approach to classical systems,
Hannay [3] found that in mechanical systems with time-
variant parameters there is an additional angle displacement,
or the so-called Hannay angle. In terms of classical mechanics
it is due to the fact that an adiabatic invariant of the action
exists in parallel with a nonvariant variable, namely, the
angle. Subsequently Berry analyzed [4] how the additional
phase of the wave function relates to the Hannay angle in the
quasiclassical approximation.

Aharonov and Anandan proved that the geometric phase
arises in the case of nonadiabatic evolution as well.Moreover,
this reasoning can be generalised to the cases of noncyclic,
nonunitary, and non-Abelian evolutions [6].

Having a chance to refer to numerous reviews (see, for
example, [7 ± 10]) and pursuing the goal to analyze precisely
the neutron-optical aspect of the geometric phase manifesta-
tions, we only outline in Section 2 a broad spectrum of
nonholonomic problems. Moreover, we will not be too
general in what follows and use the term `neutron in a
magnetic field' for `a particle with spin 1/2 in an external
field', since it is just the same in essence. In Section 3 we carry
out a simple consideration which will require us to introduce
the concept of the geometric phase. In Sections 4 and 5 we
derive and study the Berry and Aharonov±Anandan phases,
respectively, for wave functions of a neutron in a precessing
magnetic field. The Berry phases for wave functions with
positive and negative spin projections on the quantization
axis are adiabatic limits of the more general (nonadiabatic)
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Aharonov±Anandan geometric phases. The latter are
obtained and studied by the Aharonov±Anandan method
determining the geometric phase indirectly as the difference
between the total and the dynamic phases. In Section 6 we
briefly run through neutron-optical experiments on measur-
ing the geometric phases. In the Appendix we extend the
Berry approach to the direct calculation of the nonadiabatic
geometric phases. Considering a precessing field, we show
that the extended Berry approach and the Aharonov±
Anandan method yield identical values of the nonadiabatic
geometric phases.

2. Nonholonomic problems

The history of the phenomenon discussed in Berry's paper
dates back to the Foucault pendulum and Sagnac's experi-
ments with a rotating interferometer. Rytov, Vladimirski��
and Pancharatnam in their studies [11] on the optics of light
guides with anisotropic refraction index analyzed how the
light guide geometry influences the results of polarisation
experiments. Subsequently experiments by Tomita andChiao
[12] provided support for the idea that a polarisation plane
rotates in a spiral-shaped fiber light guide (see Fig. 1).

Neutron optics is best suited to observe the geometric
phase effects. Experiments by Bitter, Dubbers [13], Richard-

son et al. [14], Weinfurter and Badurek [15] confirmed a
conceptual possibility to measure geometric phases in neu-
tron optics. The motion of neutrons in a magnetic field
accompanied by the spin evolution is of theoretical interest
as well, since the corresponding SchroÈ dinger equation has an
exact solution in an important particular case of a precessing
magnetic field [16]. It should be stressed once again that in the
context of the geometric phase by evolution we mean the
behaviour of a neutron spin given an implicit (via parameters)
time dependence of the Hamiltonian concerned. This depen-
dence can be realised, for example, in the time-of-flight
experiments with the availability of noncollinear (helicoidal)
magnetic fields. A simple picture of traditionally considered
precession with positive and negative projections of the spin
in a uniform and stationary magnetic field converts to a
qualitatively distinct in complexity nonholonomic behaviour
in the case of spin evolution. We mention in this connection
some of the recent papers [17 ± 19] analyzing various aspects
of nonholonomicity in a two-level system with the SU�2�-
symmetric Hamiltonian.

In the present paper we consider the effects connected
with the evolution in macrofields, when the neutron spin
moves in a magnetic field of an external macroscopic source
or in an averaged field of the condensedmatter. The evolution
of a physical system in microfields, or quantum evolution,
suffice it to say, merits special consideration. We only note
here that the geometric phase is bound to arise in the analysis
of such quantum phenomena as the Jahn±Teller effect (or the
Aharonov±Bohm molecular effect) [20], the Hall quantum
effect [21] and the nuclear quadrupole resonance in a rotating
crystal with the magnetic anisotropy axis shifted relative to
the rotation axis, where a specific `spreading' of resonance
peaks occurs [22].

3. Berry phase. General case

In the context of the perturbation theory, the Hamiltonian of
a quantum system can be written as the sum of a nonper-
turbed Hamiltonian Ĥ0 and perturbation V̂:

Ĥ � Ĥ0 � V̂ :

An explicit time dependence of the Hamiltonian is usually
associated with the time±dependent perturbation

V̂ � V̂ �t� :

In neutron-optical time-of-flight experiments we deal with
the motion of a neutron through a magnetic field, whose
intensity can vary from one point of the trajectory to another
both in the magnitude and the direction. This fact has no
effect on the character of local interaction (between the
neutron spin and the magnetic field) but leads to the implicit
time dependence of the Hamiltonian via the components of
the magnetic field intensity (i.e. vector-parameterR �t�), such
that

Ĥ
ÿ
R �t�� � Ĥ0

ÿ
R �t�� :

In the case of adiabatic evolution, the magnetic field H
(the quantization axis) is assumed to change its direction so
slowly that the polarisation vector (precessing around H)
conserves its component parallel to the field P � hri.
However, the direction of the cyclically±evolved component,
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Figure 1. Light guide optics: (a) straight or folded into a plane spiral

cylindric light guide do not change the direction of polarization e of the

light beam; (b) light guide with natural or artificial (as a result of torsion

deformation) gyrotropicity changes the direction of polarization of the

beam passing through a light guide's section (Pancharatnam phase);

(c) change in the direction of polarization of light propagating in twisted

nonplanar light guides (Rytov±Vladimirski�� phase) [10]. In particular, in a
helical-shaped light guide with a constant pitch d and the diameter D, the

arising Rytov±Vladimirski�� phase is equal to the twisting angle

f � 2 arcsin �d=2D� n [11], where n is the rotation speed of the helix.

Obviously that as d! 2D we have f � pn . Further rise in d (up to the

maximum value pD) can be performed without changes in the twisting

angle.
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perpendicular to the quantization axis, differs generally from
the initial one due to the motion of the quantization axis. It is
vital to note that this fact can take place even when the time of
the vector-parameter evolution is a multiple of the precession
period (see Fig. 2).

How should we describe the behaviour of a neutron in this
case? What is generally known about systems with implicit
time dependence?

According to the Ehrenfest adiabatic hypothesis [24],
such a quantum system after a cyclic vector±parameter
evolution should not differ from that in the initial state
providing the evolution is adiabatic. What is the value of
Berry's paper? He has pointed out that the wave function
of the system under cyclically varied parameters generally
acquires an additional nontrivial phase multiplier. Actu-
ally, for any quantum system, in particular, for that with
time-dependent parameters, there formally raises an
eigen-value problem, i.e. the system is described, at least
locally in time, by the `stationary' SchroÈ dinger equation

Ĥ
ÿ
R �t��cn

ÿ
q; R �t�� � En

ÿ
R �t��cn

ÿ
q; R �t�� :

As this takes place, the total wave function

Cn

ÿ
q; R �t�; t� � cn�q;R �t�

�
exp

�
ÿ i

�h

�t
0

En�t� dt
�

must satisfy the time-dependent SchroÈ dinger equation

i �hCn
_ � ĤCn :

Thus, considering matrix elements we finally arrive at the
condition of parallel transport�

cn

ÿ
q;R�t��; q

qt
cn

ÿ
q;R�t��� � 0 :

This condition can be met exclusively if one draws on the fact
that the wave function phase is yet arbitrary. With the
replacement cn ! ~cn exp �i gn� we have

i �h

��
q
qt

~cn

ÿ
q;R�t��� exp �ign� � i

�
q
qt
gn

�
~cn exp �i gn�

�
� 0 ;

or

q
qt
gn � i

�
~cn

ÿ
q;R�t��; q

qt
~cn

ÿ
q;R�t��� : �1�

Thus determined gn is just the geometric phase or the
Berry phase.

Assume that the system adiabatically evolves along a
closed contour C in the space of parameters, i.e.
R�TC� � R�0�, where TC !1 is the evolution time. Then
the change in the phase gn during the time TC is given by the
expression

Dgn ! gn � i

�TC

0

�
~cn�q;R�t�

�
;
q
qt

~cn

ÿ
q;R�t��� dt

� i

�
C

Ann dR ; �2�

where

Ann � i
ÿ
~cn; ~HR

~cn

�
: �3�

If the contour has no singularities, then, according to the
Stokes theorem, we can write the phase in the form

gn �
�
SC

rotAnn ds ; �4�

where ds is the element of an oriented surfaceSC stretched on
the C contour. A characteristic feature of the adiabatic
evolution is that the change in the phase during the cyclic
evolution is independent of the evolution time and depends
solely upon the geometry of the parametric space within the
closed C contour. In this case

gn / O ;
where O is the solid angle traced by the vector-parameter R.
For the neutron wave function, the phases of two spin states
(along the field denoted as + and in the opposite direction
as ÿ) are expressed via the solid angle traced by the magnetic
field vector H as follows [2]:

g� � �
1

2
O : �5�

Therefore, a consistent analysis of the adiabatic limit
yields rather a different picture of the cyclic evolution. The
system turns back to the state which differs from the initial
one by the corresponding geometric phase determined by the
trajectory in the parametric space.

However, the assumption that the changes are adiabatic in
the system running through a set of the above-mentioned
`stationary' states Cn

ÿ
q;R�t�; t�, keeping the quantum num-

H � const H�t�

oL � gH oL � gH

a b

t � 0;P0
P; t � T

t � 0;P0 P; t � T

O

Dg � O

T � 2p=o

oL

o
>> 1

x

Figure 2. The formation of the revealed geometric Berry phase Dg for
neutron spin in the precessing magnetic field H�t�. The vector P of the

neutron polarization is shown at moments t � 0 and t � T, where T is the

evolution period of the fieldH. For simplicity we consider the case whenT

is a multiple of the Larmore precession period TL: (a) regular Larmore

precession of the vector P around the vector H � const when the initial

position of the vector P coincides with the final one (provided periods T

and TL are the multiples); (b) typical behaviour of the vector P when the

vectorH precesses at the frequency�o. The initial position of the vectorP
does not coincide with the final one due to arising geometric phases on the

wave functions level. In this case we imply that the precession cone of the

vector P follows adiabatically the vector H, i.e. the adiabatic condition

oL=o � T=TL4 1 takes place. Angle Dg � �gÿ ÿ g�� is the difference

between the Berry phases for the spin basis wave functions of the neutron.

The main conclusion of the Berry theory for the neutron spin is that

Dg � O, where the solid angleO is traced by the field strength vector on the

Poincare sphere.
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ber n constant during the evolution time,may not be generally
valid for any time dependence of the parameters. Therefore,
the actual description of such systems involves some addi-
tional assumptions of the parameter evolution which enable
one, for example, to describe nonadiabatic behaviour by the
methods of the nonstationary perturbation theory.

Thus, on the whole, the wave function of a system with an
implicitly time-dependent Hamiltonian is not only time-
variant, but also changes over the space of parameters. In
principle, if the space has geometric singularities (curvature,
torsion, poles, or the space is multiply connected) they can
influence the behaviour of the system. In this case the system
is said to possess a (nontrivial) holonomy. In particular, if we
assume that the system evolves only in the direction-variant
fields, then the consideration of possible system evolutions is
reduced to the analysis of holonomy of corresponding
trajectories, traced by the vector-parameter R�t� on a unit
sphere of possible directions of the vector, i.e. the Poincare
sphere.

4. Berry phase for a neutron in a precessing
magnetic field

It is well known that the solution to the problem of a neutron
spin in a uniform magnetic field admits of two eigen states
with the spin projection on the chosen axis:

Co
��y;f� � exp

�
ÿ ioLt

2

� cos

�
y
2

�
exp�ÿif�

sin

�
y
2

�
0BBB@

1CCCA; �6�

Co
ÿ�y;f� � exp

�
ioLt

2

� ÿ sin

�
y
2

�
exp�ÿif�

cos

�
y
2

�
0BBB@

1CCCA; �7�

where y and f are, respectively, the polar and the azimuth
angles of the quantization axis (H) in the chosen coordinate
system; oL � 2mH=�h is the frequency of the Larmore preces-
sion; m is the absolute value of the neutron magnetic
momentum, H � jHj.

The neutron spin behaves in such a way that, considering
the solutions in the case of a precessing magnetic field instead
of a constant field, we exactly solve the corresponding time
SchroÈ dinger equation (Pauli equation) [16]. Calculating the
wave functions in the problem of precessing field, we can
study in detail the formation of the adiabatic geometric Berry
phase for the neutron wave function by the above method. In
addition, the data on the exact solution enable us to study
thoroughly the nonadiabatic case by theAharonov±Anandan
method as well (see Section 5).

Let us consider in terms of the geometric phase the
behaviour of the spin of a neutron in a magnetic field, which,
being constant in magnitude, rotates evenly around the axis z
at the angle velocity o, making the angle y with this axis:

Hx � H sin y cos�ot� f�;
Hy � H sin y sin�ot� f�;
Hz � H cos y:

The Pauli equation takes the form

i �hC_ � 2mHŝC: �8�

Without going into details of the solution, we finally arrive at
the following form of the wave function

C�t� � C�C��t� � CÿCÿ�t�; jC�j2 � jCÿj2 � 1; �9�

C��t� � exp

�ÿi�L� o�t
2

� cos

�
Y
2

�
exp�ÿiF�

sin

�
Y
2

�
0BBB@

1CCCA;�10�

Cÿ�t� � exp

�
i �Lÿ o�t

2

� ÿ sin

�
Y
2

�
exp�ÿiF�

cos

�
Y
2

�
0BBB@

1CCCA;�11�

where F � ot� f,

cos
Y
2
�

������������������������������������
L� oL cos y� o

2L

r
; �12�

L �
�������������������������������������������������������
�o� oL cos y�2 � o2

L sin
2 y

q
: �13�

Comparing (10), (11) with (6), (7) we conclude the quantiza-
tion axis to be determined at present by an effective fieldHeff,
directed at the angle Y (12) to the z axis (Fig. 4a).

Note that theC� states are orthogonal:

�C�;Cÿ� � 0

and correspond to the states with the projection of the spin on
the axis z:

�C�; szC�� � � 1
2
cosY :

What is the geometric Berry phase equal to in this
problem? Let us use the above calculation method. The
components of the vectors A�� (3) in spherical coordinates
are

A�� � i �c�; ~Hc�� �
�
0; 0;

1

2H sin y
cos2

Y
2

�
; �14�

Aÿÿ � i �cÿ; ~Hcÿ� �
�
0; 0;

1

2H sin y
sin2

Y
2

�
: �15�

Then, by (4)

g�� �
�
SC

rot �A��� ds : �16�

Having calculated the rotors

rotA�� �
�
� 1

2H2

�
sinY
sin y

�
dY
dy

; 0; 0

�
; �17�

we express g�� as �oL > o�

g�� � �
1

2
O�Y� ; �18�

here O�Y� � 2p �1ÿ cosY� is the solid angle formed by the
cone of angle 2Y:

Y � arccos

�
oL cos y� o

L

�
: �19�
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If the adiabatic condition is fulfilled, i.e. oL=o4 1, g�
coincides with expression (5):

g� � �
1

2
O�y� :

We note that expression (18) is valid in the case of the
locally stationary ShroÈ dinger equation, i.e. at oL=o4 1.
However, this expression can be formally generalised to the
case when oL=o4 1, i.e. when the adiabatic condition is not
met. Therefore, it is g�� that should be called in our case the
partial nonadiabatic Berry phase in the range oL=o4 1. In
the Appendix we present a method to calculate the total
nonadiabatic geometric phase for arbitraryoL=o on the basis
of the Berry approach. However, in citations the term
nonadiabatic Berry phase is often used for the total non-
adiabatic geometric phase (the Aharonov±Anandan phase)
considered below. Let us derive formulas for the total
nonadiabatic geometric phases, using the Aharonov±Ana-
ndan approach to the problem of a precessing field.

5. Aharonov±Anandan phase for a neutron
in a precessing magnetic field

As Aharonov and Anandan showed [5] there exists a method
for indirect calculation of the nonadiabatic geometric phase.
Let us turn back to the introductory reasoning in Section 3.
Instead of the assumption about the neutron passage through
a set of `stationary' states we will consider a quantum system
described by the cyclic Hamiltonian:

Ĥ�T� � Ĥ�0�:
Then at the moment T the wave function, correct to a phase,
coincides with the initial wave function:

C�T� � exp �ia�C�0�:
We can write the wave function in the form

C�t� � exp
�
ia�t�� ~C�t�; ~C�T� � ~C�0� � C�0�:

Substituting this wave function into the Pauli equation (8)
and multiplying scalarly both sides of the equation by C� we
get

ÿ qa
qt
� ÿi

�
~C;

q
qt

~C
�
� 1

�h
�C; ĤC�:

After integration from 0 to T we have

a�T� � ÿ 1
�h

�T
0

�C; ĤC� dt� i

�T
0

�
~C;

q
qt

~C
�
dt ; �20�

where

ÿ 1
�h

�T
0

�C; ĤC� dt � b �21�

is the dynamic phase, while

i

�T
0

�
~C;

q
qt

~C
�
dt � g �22�

is theAharonov±Anandan geometric phase. Thus, atmoment
T the geometric phase is easily seen to be

g � aÿ b: �23�

The Aharonov±Anandan approach enables one to calcu-
late the geometric phase in the general case of a precession
with arbitrary oL=o.

The wave functions (10), (11) are cyclic in our problem.
Actually, it is readily seen that

C��T� � exp

�
ip
�
1� L

o

��
C��0� ; �24�

where T � 2p=o is the evolution period. Therefore, the total
change in the phase of these functions by the moment T is

a� � p
�
1� L

o

�
: �25�

Substituting the Pauli Hamiltonian Ĥ � �hxLr in (21), where
r are the Pauli matrices, integrating this expression with the
wave functions (10), (11), we get the dynamic phases

b� � �
poL

Lo
�o cos y� oL� � � po �Lÿ o cosY� : �26�

It should be mentioned here the essential feature of the
nonadiabatic problem: the dynamic phase b does not coincide
already with the Larmore angle of rotation in the field H
during the timeT. According to (23), the geometric phases are
equal to

g� � a� ÿ b� � p �1� cosY� � 2pÿ 1

2
O�Y�; �27�

gÿ � aÿ ÿ bÿ � p �1ÿ cosY� � 1

2
O�Y�: �28�

The difference gÿ ÿ g�, contributing to the observed phases,
is equal to

Dg � gÿ ÿ g� � ÿ2p cos�Y� � O�Y� ÿ 2p: �29�

Within the adiabatic Berry approach the sign of the geometric
phase is determined by the direction of tracing around the
path in the parametric space. Thus, to put the formulae
calculated in the adiabatic limit in correspondence with the
Berry consideration, we suppose that

Dg � O�Y� at o > 0; Dg � ÿO�Y� at o < 0: �30�

It does not change principally the formulae calculated, since
the newDg differs from (29) by 2p. Fig. 3 plots the dependence
of Dg on the parameter o=oL.

How does the geometric phase influence the polarisation
vector of neutrons passing through a helicoidal cyclic field,
which is reduced to the precessing magnetic field in the
coordinate system of the moving neutron?

Using the wave functions (10), (11), let us calculate the
observable quantum-mechanical averages of operators
ŝx; ŝy; ŝz, which are the components of the final polarisation
vector, i.e. the polarisation at the moment T � 2p=o. For the
sake of simplicity, we set the combination coefficients of the
wave functions in (9) equal to �C�;Cÿ� � �1=

���
2
p

; i=
���
2
p � and

f � 0.
Then we have

Px � ÿ cosY sin�Db� Dg�; �31�
Py � cos�Db� Dg�; �32�
Pz � sinY sin�Db� Dg�: �33�
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AtoL=o4 1, the final polarisation vector behaves as follows:

Px ! ÿ cos y sin
ÿ
ToL � O�y�

�
; �34�

Py ! cos
ÿ
ToL � O�y�

�
; �35�

Pz ! sin y sin
ÿ
ToL � O�y�

�
: �36�

The observable phase is seen to be the difference in the
geometric phases Dg � gÿ ÿ g� � O (see (27), (28)) naturally
arising in arguments of the components of the vector P as an
additive constant.

In conclusion to Sections 4 and 5, noteworthy is an
important generalisation of the precessing field problem in
context of the geometric phases. The form of the wave
functions (10) and (11) enables one to introduce an effective
magnetic field Heff so that the precessing field problem
formally becomes adiabatic (Fig. 4). Therefore, the adiabatic
Berry approach can be used in a space where the intensity of
the effective field is a parameter (the construction of the
effective field vector is shown in Fig. 4a). Fig. 4b plots the
precession of Heff over cones of various angles 2Y depending
on the parameter o=oL.

Therefore, the effective field traces various solid angles on
the Poincare sphere, depending on the sign and magnitude of
o. Varying o betweenÿ1 and�1, we can determine all the
solid anglesO�o=oL�, i.e. all the values of observed geometric
phases Dg � O�o=oL�. The adiabatic Berry approach as well
as the nonadiabatic Aharonov±Anandan method are natu-
rally combined in the Heff space. The adiabatic Berry limit
strictly corresponds to the limiting trajectory on the Poincare
sphere ato=oL ! 0. Thus, the proposed line of attack on the
precessing field problem does notmake difference in the Berry
and Aharonov±Anandan approaches and enables one to
calculate the total set of the geometric phases Dg�o=oL�.
Using this consideration, we can easily explain now the
behaviour of the geometric phase Dg (see Fig. 3), implying
the function Dg �o=oL� to be simply the solid angle O�o=oL�
on the Poincare sphere presented in Fig. 4c.

6. Measurements of the geometric phase
by polarised neutrons

Let us examine the problem of geometric phase from the
viewpoint of its observing in neutron-optical experiments.
First of all, we concentrate our attention on the fact that any
wave function phase manifests itself in the values observed as
an argument of a certain experimentally obtained function,
which can depend on some other parameters besides the
phase (for example, on the parameters characterising the
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Figure 3. The observable difference geometric phase of the wave function

Dg calculated for the precessing field by (30) against the parameter o=oL

(y � 60�; jHj � 1 Oe). As o=oL ! 0 (Berry limit), Dg! �O, where O is

the solid angle traced by the vectorH of the magnetic field. The sign of Dg
is determined by the sign of o.

H

Heff� xeff=g

xL � gH

x

z

x
y

y

Y

xeff � xL ÿ x

a

o=oL4 1

o=oL4 1

o=oL � 1

o=oL ! 0 Heff

jHeffj

o=oL ! 0

o=oL � 1

o=oL4 1

o>0

o<0

z
c

Heff
joj
joLj 5 1

� �

Heff
joj
joLj � 1

� �

Heff
joj
joLj 4 1

� �

o>0

o<0

b

Figure 4. Schematic representation of the geometric phase for the neutron spin evolving in a precessing magnetic field: (a) effective fieldHeff arising in the

problem of a spin in a precessing magnetic fieldH. The vectorsH andHeff are antiparallel to the vectorsoL andoeff, respectively, due to negative sign of

the gyromagnetic neutron factor g; (b) precession of the effective field over the cones of various angles 2Y depending on the parameter o=oL;

(c) illustration for the dependence of the observable geometric phase Dg � O on the parametero=oL on the Poincare sphere for the vectorHeff. The bold

line corresponds to the limiting contour traced by the vectorHeff=jHeffj ato=oL ! 0 which coincides with the contour of the real field. As absolute value

of the parameter o=oL rises, the vector Heff=jHeffj begins to approache the sphere poles, depending on the sign of o.

174 V I Bodnarchuk, L S Davtyan, D A Korneev Physics ±Uspekhi 39 (2)



initial state of the beam polarisation). Therefore, here we can
measure the geometric phase only indirectly in so far as it
contributes, along with the dynamic phase, to the experimen-
tally derived values. In the experiments with polarised
neutrons such type values are components of the final
polarisation vector. These experiments are performed by the
`spin-rotation' technique. According to this technique at the
initial point of the neutron trajectory, the polarisation vector
is directed perpendicular to the magnetic field and at the final
point one measures its projection on one of the axes in the
plane normal to the field direction and thus determines the
total wave function phase.

The division of the total phase into the dynamic and the
geometric components is based on some additional reasoning.
In particular, in the case of strictly adiabatic evolution of the
neutron spin phase during the time, while the neutron transits
the distance L in a noncollinear field making (for definiteness
sake) a turn, the dynamic phase is defined by

Db � bÿ ÿ b� � oLt ;

where oL is the Larmore frequency of the magnetic neutron
moment in the field H, t is the time-of-flight of distance L in
the field induced. In this experiment, the time t � L=v is
naturally equal to the field cycle T for any neutron velocity.
Since the neutron velocity and wavelength l are connected by
the simple relation v � const=l, the dynamic phase is directly
proportional to the neutron wavelength:

Db � const� oLl � Al :

In so doing the measured components of the polarisation
vector as well as (31)±(33) are the sines or cosines of the sum
Da of the dynamic and geometric phases. Based on polarisa-
tion analysis in the framework of time-of-flight technique
with the help of a polychromatic beam, we can estimate the
geometric phase contribution to the total phase

Dg � const

by the phase shift in oscillating dependence Pi�l�:
Pi / cos�Db� Dg� � cos�Al� Dg�:

If the polarisation is examined on a monochromatic neutron
beam (�l � const�), we can separate the adiabatic Berry phase
by calculating the dependence of the total phase onoL, i.e. on
the value of the magnetic field strength averaged over the
contour, keeping the contour geometry constant. It was this
technique that Bitter and Dubbers used in 1987 in the first
experiment on measuring the Berry phase with monochro-
matic polarised neutrons, performed at the reactor of the
Laue-Langevin Institute [13]. Fig. 5 shows the installation
scheme constructed by Bitter and Dubbers as well as the
dependence of the polarisation and the total phase on the
current I passing through a helicoidal coil. They used two
solenoids: a helicoidal one to rotate the magnetic field vector
along the neutron trajectory, and a coaxial to it one intended
for the field component along the neutron trajectory. It is
particularly remarkable that this method enables one to
observe phases divisible by 2p, when measuring the total
phase in the nonadiabatic region (see Fig. 5b).

Richardson's experiments [14] provided support, in parti-
cular, for the additivity of the arising geometric phase.
Rotations of the magnetic field intensity vector through 4p,
6p were accompanied by the arising two-fold, three-fold
geometric phase, respectively. Weinfurter and Badurek
observed in their experiments [15] some specific effects caused

by the geometric phase appearance, such as the suppression of
modulations in measuring the polarisation vector compo-
nents and a linear shift of the measured spectra along the
parameter characterising the evolution noncyclicity.

The details of these experiments are left beyond the scope
of this paper and can be found in the original publications. On
the whole, within the measurement accuracy they demon-
strated that the Berry phase is equal to a solid angle traced by
the vector of a helicoidal magnetic field. At the same time, our
measurements [23] (Fig. 6) of the geometric phase performed
on a more complex field than a constant evenly precessing
magnetic field, demonstrated that the range of parameter
oL=o can hardly be divided into the adiabatic and non-
adiabatic parts. The reason is that on some local segment of
the contour the adiabaticity can fail even for very slow
neutrons. Processing the results of this time-of-flight experi-
ment on a polychromatic neutron beam by the precessing
fieldmodel made it clear that themodel is inadequate to study
complex contours and there is need in a more sophisticated
algorithm (see the Appendix) to calculate the geometric phase
without dividing it into the adiabatic and nonadiabatic
components.

7. Conclusions

Thus, the Berry phase is not a purely theoretical concept. The
dependence of the wave function phase on the geometry of the
space of parameters determining the Hamiltonian of the
quantum system is an experimentally seen phenomenon. In
the context of the neutron optics, the Berry prediction for the
adiabatic evolution of the neutron spin (1=2) in simple
helicoidal fields is supported by experiments revealing an
additional rotation of the polarisation vector component
perpendicular to the field by an angle approximately equal
to the solid angle traced by themagnetic field strength vector :
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Figure 5. The experiment by Bitter and Dubbers [13] on measuring the

geometric phase in a precessing field: (a) the helicoidal coil for a

dextrorotating magnetic field. In the reference frame pertaining to a

neutron, the magnetic field rotates in the plane perpendicular to the

neutron velocity. The neutron beam is directed along the z axis; (b) the

dependence of the polarization vector component perpendicular to the

magnetic field (as it leaves the helicoidal coil) on the adiabaticity

parameter proportional to the current I across the helicoidal coil;

(c) observed and calculated phase shifts Ft.
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O � 2p�1ÿ cos y� n;

where y is the angle, and n is the helicoid revolution number.
It is clear now that the neglect of the geometric phase can lead
in some cases to a systematical error in interpreting the results
of experiments with polarised neutrons based on the spin
precession method (the spin echo method, the three-dimen-
sional polarisation analysis). So far the accuracy of the
measurements does not enable us to conclude that the
measured angles of the vector rotation P are exactly equal to
the solid angle traced by the magnetic field strength vector.
These first experiments only estimate the phase behaviour.
But the neutron experiments raise also new questions to the
measurement of geometric phases in the case of magnetic
fields with complicated geometry relative to the nonadiabatic
effects.

The authors are grateful to S I Vinitski��, V K Ignatovich
and V M Ter-Antonyan for their useful discussions and
remarks. The work was partly supported by the Russian
Foundation for Basic Research (project code No 96-02-
19769).

8. Appendix

We extend the Berry approach to the case of nonadiabatic
evolution for arbitrary contours.

According to Berry's paper [2] the most general form for a
wave function of an evolving quantum system with due
regard to possible geometric phases is

C
ÿ
q;R�t�; t� �X

n

Cn

ÿ
R�t�; t�cn

ÿ
q;R�t��

�
X
n

exp�ian�Cn

ÿ
R�0�; 0�cn

ÿ
q;R�t��; �A:1�

where cn

ÿ
q;R�t�� are the eigen states of the Hamiltonian

H
ÿ
R�t�� and
an �

�t
0

qan
qt

dt�
�R�t�

R�0�
~HRan dR :

In essence, these quantities, i.e. the phase differences of
expansion coefficients at the initial and arbitrary instances
of time, the so-called total phases, determine the evolution of
the system.

The first integral in the exponent presents the known
dynamic phase of the wave function:

bn �
�t
0

qan
qt

dt � ÿ 1
�h

�t
0

En �t� dt : �A:2�

However, below we discuss the second (curvilinear) integral:

gn �
�R�t�

R�0�
~HRan dR : �A:3�

In fact, it is this quantity that was introduced in [2].
Let us substitute expansion (A.1) into the SchroÈ dinger

equation (the spectrum En�t� is assumed to be nondegene-
rate):

i�h
X
m

Cm exp

�
igm ÿ

i

�h

�t
0

Em�t� dt
�

� � _cm � icm _gm ÿ
i

�h
cmEm

	
� Ĥ

ÿ
R�t��X

m

Cmcm exp

�
igm ÿ

i

�h

�t
0

Em�t� dt
�
;
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Figure 6.The time-of-flight experiment performed in LNP JINR [23]: (a) contour on the Poincare sphere corresponding to the stationary configuration of

the magnetic field realized in the experiment; (b) the solid line corresponds to fitting of the experimental dependencePy�l� in accordance with the method
of least squares and is based on the precessing fieldmodel; (c) the calculated dependence of the geometric phase on the neutron wavelength. The deviation

from the solid angle O, which was independently measured by another method, stands at 10 ± 15%.
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or

i�h
X
m

Cm exp

�
igm ÿ

i

�h

�t
0

Em�t� dt
��

_cm � icm _gm
	 � 0:

Hence, taking advantage of the orthogonality of the states
cm, we express the geometric phases as

_gn �
i

Cn

X
m

Cm exp

�
i �gm ÿ gn�

ÿ i

�h

�t
0

ÿ
Em�t� ÿ En�t�

�
dt
�
�cn;

_cm�; �A:4�

where Cn � Cn

ÿ
R�0�; 0� 6� 0.

Since the time dependence is implicit, this set of equations
can be transformed as follows

~HRgn �
i

Cn

X
m

Cm exp

�
i �gm ÿ gn�

ÿ i

�h

�t
0

ÿ
Em�t� ÿ En�t�

�
dt
�
�cn; ~HRcm�: �A:5�

The vector fields arising on the right-hand side of the equation

Anm � i �cn; ~HRcm�

are conventionally termed `the fields induced bycn

ÿ
q;R�t��'.

In the case studied of evolutions of a neutron spin, the indices
m and n take on two values � and ÿ.

At first sight, it would seem that by presenting the
expansion coefficients in (A.1) in the form

exp�ian�Cn

ÿ
R�0�; 0�;

we add complexity to the standard linear set of equations used
in the Dirac method for the evolution coefficients. However,
in the analysis of a particular problem, both the standard
representation and the representation via the phase compo-
nents can be of use.

The adiabatic evolution corresponds to the condition

�cn;
_cm� � 0; n 6� m: �A:6�

Consequently, in the adiabatic limit equations (A.3)
become much more simple and take the form (1)

_gn � i �cn;
_cn�;

or

~HRgn � i �cn; ~HRcn� � Ann:

To calculate directly the total geometric phase in a
nonadiabatic approximation, one should in addition to (14),
(15) determine the nondiagonal vector fields

A�ÿ � i �c�; ~Hcÿ�
�
�
0; 0;ÿ 1

2H sin y
sin

Y
2
cos

Y
2

�
; �A:7�

Aÿ� � A�ÿ; �A:8�
substitute the matrix elements found into (A.3) and solve the
corresponding set of two differential first-order equations.

This system can be easily solved for a precessing field and we
will not concentrate our attention on the details. As a result,
we obtain expressions (27), (28) for the Aharonov±Anandan
phases. Thus, in the case of the precessing field we strictly
proved the equality between the nonadiabatic phases calcu-
lated by the extended Berry approach and those calculated by
theAharonov±Anandanmethod. It should bementioned that
in contrast to the Aharonov±Anandan approach the
extended Berry consideration is not limited by the cyclicity
of wave functions.
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