
Abstract. The quasi-isotropic approximation (QIA) of geome-
trical optics is outlined. The main idea of the method is that
electromagnetic waves in weakly anisotropic media preserve
their transverse structure as they do in isotropic media. Ad-
vantages of the QIA are illustrated by considering electro-
magnetic wave propagation in plasma, a number of optical
problems (liquid crystals, hiral media, single mode optical fi-
bres), acoustical problems of weakly anisotropic elastic media,

and quantum mechanical polarisation effects of the Stern±Ger-
lach type. New modifications of the QIA are presented, namely
the method of split rays and the synthetic approach, the latter
being applicable even for strongly anisotropic media.

1. Introduction

1.1 Transformation of polarisation of a vector field
in weakly anisotropic media
Problems of propagation of electromagnetic, elastic or other
waves in anisotropic media occupy a significant place in wave
physics. Among them, exploring waves in weakly inhomoge-
neous media is one of the most important. One faces with this
problem in many fields of physics. The propagation of
electromagnetic waves of different bands in a weakly
magnetised plasma (laboratory, ionospheric, near-solar,
interstellar), passing of electromagnetic waves through a
condensed matter, pieso- and ferromagnetics, light waves in
hiral media, liquid crystals, polarisation phenomena in
deformed light guides, propagation of acoustic waves in
weakly anisotropic and/or weakly deformed elastic media,
splitting of beams of particles with spin in magnetic fields Ð
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that is the list, by no means complete, of questions connected
with the theory of wave processes in weakly anisotropic
media.

The main feature of inhomogeneous weakly anisotropic
media is their capability of changing substantially the
polarisation of a vector field of a specific physical nature.
Polarisation changes in weakly anisotropic regions of inho-
mogeneous medium owe their existence to a strong inter-
conversion of normal modes under conditions of slowly
arising or disappearing polarisation degeneracy. In an iso-
tropic medium, the electromagnetic field is represented by a
superposition of two normal waves, each characterised by a
definite, intrinsic polarisation, while in the isotropic medium
transversal electromagnetic waves are polarisation-degener-
ate, and the state of their polarisation is not fully defined.

Prior to entering a strongly anisotropic medium, the wave
with a degenerate polarisation undergoes a metamorphosis in
a weakly anisotropic layer that matches the isotropic and
anisotropic media (see Fig. 1). Within the anisotropic media,
such a wave converts into a superposition of independent
normal waves.

Linear coupling of waves in an inhomogeneous isotropic
medium which is associated with lifting of polarisation
degeneracy is a physical problem of general character,
important both theoretically and practically. This review is
dedicated to the analysis of this problem.

1.2 Basic methods of description of wave field in weakly
anisotropic media
Let us assume that an electromagnetic wave of given
polarisation (say, of a linear one) propagates from an
isotropic medium into an anisotropic one. In a weakly

anisotropic medium, normal waves obey coupled equations
thus allowing one to characterise them as linearly interacting
normal waves. The finite state of the polarisation (`the
limiting polarisation') of a vector wave field depends on the
nature of inhomogeneity encountered in a weakly anisotropic
medium. Describing the process of wave transformation in
such a medium presents a rather complex mathematical
problem not fully solved up to now.

A satisfactory theory of linear interaction of normal
modes was elaborated by Budden [1, 2] for a plane-layered
plasma (the Budden method). In a layered medium, Max-
well's equations transform to the system of four coupled
ordinary differential equations, and by applying the Budden
method one may reduce substantially the order of that system
(it becomes a second-order). The Buddenmethod is presented
in many text-books [3 ± 5], and is widely used in applied
investigations.

Initially, the Budden method dealt with electromagnetic
waves in plasma, however, later, Budden's results were
extended to arbitrary dielectric layered media described by a
tensor eik�z� [6, 7]. A comprehensive analysis of results that
follow from the Budden method has been carried out by
Zheleznyakov, V Kocharovsky, and Vl Kocharovsky [8].

Another approach to the description of waves in inhomo-
geneous media has been suggested by Kravtsov [9]. That
approach Ð the quasi-isotropic approximation (QIA) of
geometrical optics Ð is not limited to plane-layered media,
and applies to arbitrary 3D inhomogeneous media. Similar to
the Budden method, in the framework of the QIA, a medium
is assumed to be smoothly inhomogeneous, i. e. the geo-
metric-optical parameter is supposed to be small:

m � 1

k0l
5 1 ; �1:1�

where l is the characteristic parameter of medium inhomo-
geneity, k0 � o=c.

The QIA is based on the idea that to zero approximation
an electromagnetic field has the same transversal structure as
it would have in an isotropic medium. In contrast to the case
of an isotropic medium, where the polarisation of the field
vector in a plane perpendicular to a ray is arbitrary, in the
anisotropic medium it is uniquely defined by the anisotropy
tensor,

nik � eik ÿ e0dik : �1:2�

Here eik is the tensor of dielectric permittivity, e0 is its main
isotropic part, for example, e0 � �1=3�Sp ê. The smallness of
anisotropy is characterised by the parameter

m1 � max
i; k
jnikj5 1 ; �1:3�

which, in the framework of QIA, serves as a parameter of
asymptotic expansion of the wave field, as does the small
geometric-optical parameter m.

The ratio

d � m1
m

�1:4�

serves as the measure of anisotropy strength. For d4 1, the
QIA equations reduce to those for independent normal
waves, i.e. to the Courant ±Lax equations [10 ± 12], whereas

Isotropic
medium, m1 � 0

Transversal
waves

Weakly anisotropic
medium, m15 1

Interacting
waves

Strongly anisotropic
medium, m1 <� 1
Independent
normal waves

d � m1
m

<� 1 d � m1
m

>� 1 d4 1

The character of interaction between normal waves:

Quasi-isotropic approximation (QIA)

The QIA in the modiécation of the synthetical approach

Strong Weak

Courant ë Lax methodRytov method

Very weak

Figure 1. Transformation of a transversal wave with a degenerate

polarisation into a superposition of normal waves occurs in the region of

strong interaction of normal waves d < 1, in a weakly anisotropic layer

separating isotropic and anisotropic media. QIA provides matching

between polarisation degenerate transversal waves in isotropic media

(the Rytov method) and independent normal waves in anisotropic media

(the Courant ±Lax method).
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for d! 0 they reduce to the equations of geometrical optics
for an isotropic medium (the Rytov method [13]). Thus, the
QIA allows one to trace a continuous transition from
transversal waves in isotropic media (d! 0) to independent
normal waves in strongly anisotropic media (d4 1), see Fig.
1. Quite recently this was thought of as being difficult to attain
[12].

In time that followed the QIA equations were subjected to
analysis and generalisations. To solve the QIA equations,
Na|̄da applied the methods of the perturbation theory [14 ±
17], suggested the method of split rays and formulated QIA
equations for the electric induction vector [18, 19], derived
QIA equations for electromagnetic waves in moving media
[20] and for acoustic waves in weakly anisotropic elastic
media [21, 22]. Together with Prudkovski|̄, he formulated
QIA equations for the quantum mechanical problem con-
cerned with splitting of beams of particles with different spin
states in a magnetic field [23].

As it turns out the QIA equations are simpler in form than
the Budden equations and are frequently more convenient in
specific calculations, although, by their universality with
respect to the degree of anisotropy m1, they compare
unfavourably with the Budden equations: while the QIA
requires the smallness of two parameters, m5 1 and m15 1,
the Budden method applies if small is only the geometric-
optical parameter m whereas the parameter of anisotropy, m1,
can be on the order of unity. Later, however, investigators
succeeded in modifying the QIA to incorporate the wave
transformation in strongly anisotropic media with m1 � 1 (see
Section 3.4).

The QIA makes it possible to calculate effects of quasi-
transversal (in respect to an external magnetic field) electro-
magnetic field propagation in 3D inhomogeneous plasma [19,
24, 25], to analyse a number of ionospheric propagation
problems [26], to clarify polarisation peculiarities of scatter-
ing of radio-waves in the polar ionosphere [25, 27, 28], to
calculate the depolarisation of electromagnetic waves in a
randomly inhomogeneous plasma [29, 30], to analyse system-
atically the effects of linear transformation of waves which
enter 3D inhomogeneous plasma [8].

This has to be supplemented by a number of relatively new
phenomena which can be described with the help of the QIA:
the linear wave interaction in the region of neutral magne-
toactive field in plasma [5], effect of `tangent conical refrac-
tion' [31], interaction of helical waves in liquid crystals [32],
transformation of light polarisation in single-mode optical
light guides (see Section 5.3), and others.

This review is aimed at a systematic description of
different modifications of the QIA as applied to various
polarisation effects in inhomogeneous weakly anisotropic
media.

Modifications and generalisations of the QIA are outlined
in Section 3. Section 3.3 deals with a conceptually new
approach (the method of split rays), which accounts for ray
splitting that accompanies the decomposition of the total field
into independent normal waves. The method of split rays
admits an effective generalisation even on strongly aniso-
tropic inhomogeneous media. Similarly to the Budden
method, such a generalisation is not restricted to small m1,
however unlike that method, applicable only to plane-layered
inhomogeneous media, it enables description of wave trans-
formation in arbitrary 3D inhomogeneous media.

Selected sections are devoted to electromagnetic waves in
magnetoactive plasma (Section 4), light waves in deformed

media and fibres (Section 5), and to acoustic waves in
deformed elastic media (Section 6).

The idea itself of considering the anisotropy as a small
perturbation has already been formulated by Pauli [33] in
respect to the Dirac equation, and was concerned with the
experiment of the Stern ±Gerlach type. The anisotropy in this
case occurs due to a weak magnetic field. In time that
followed Pauli's results were improved first by Galanin [34],
and then by Rubinow and Keller [35], although without
account for splitting of beams of polarised particles in a
magnetic field. Most clearly the spin motion along the split
trajectories is presented in a book by Akhiezer and Bere-
stetski|̄ [36]. We decided that for methodological reasons it
would be instructive to elucidate the behaviour of particle
spinor wave functions in a magnetic field, treating the
problem from the QIA positions. This is done in Section 7.

2. Quasi-isotropic approximation of geometrical
optics of 3D anisotropic media

2.1 General scheme of the geometrical optics method
The eikonal substitution and the eikonal equation. The basic
ideas of the geometrical optics method will be recalled by the
example of Maxwell's equations [37]. For simplicity, we shall
confine ourselves to the case of a monochromatic wave (with
dependence on time as exp�ÿiot�� in an inhomogeneous
gyrotropic stationary medium. We disregard absorption and
set the magnetic permittivity at zero. Under these conditions,
the electric field vector ~E obeys the equation

k20ê~E ÿ rot rot~E � 0

�
k0 � o

c
; e�mn � emn

�
: �2:1�

If electromagnetic waves propagate in smoothly inhomo-
geneous media, it is natural to solve Maxwell's equations
using the geometric optics method. Assume, for definiteness,
that an electromagnetic wave with a `wide' phase front is
specified upon entering an inhomogeneous medium. The task
is to find the field at all points of the inhomogeneous medium,
based on the assumption that the medium varies smoothly at
the wavelength scale.

The main geometric-optical technique is the eikonal
substitution,

~E�r� � E�r� exp�ij�r�� ; �2:2�

which enables one to separate fast oscillations of the wave
field and relatively slow (by a factor of k0l slower) variations
in parameters of medium and in wave parameters associated
with them.

Eikonal substitution (2.2) reduces vector equation (2.1) to
the form

k20êE�
�
k�kE��ÿ i

ÿ�k; rotE� � rot �kE��ÿ rot rotE � 0 ;

�2:3�

where k � Hj is the local wave vector.
To zero approximation, we retain only terms quadratic in

k0 and k in Eqn (2.3). That yields a vector equation for E�0�:

k20êE
�0� � �k�kE�0��� � 0 ; �2:4�

which is equivalent to the system of three equations for
componentsE

�0�
x ; E

�0�
y ; E �0�z . As is well-known, the solvability
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condition for that system leads to the eikonal equation:

det
ÿ
k20emn � kmkn ÿ dmnk2

� � 0

�
km � qj

qxm

�
: �2:5�

The ratio n�r; k=jkj� � jkj=k0 is the refraction index
which, in turn, satisfies the algebraic equation

det
ÿ
nÿ2emn � tmtn ÿ dmn

� � 0 ; �2:6�

where t � k=jkj is a unity vector in the direction k. For
tx � ty � 0, tz � 1 we may obtain the following well-known
formula:

nÿ21;2 �
1

2
�wxx � wyy� �

�
1

4
�wxx ÿ wyy�2 � jwxyj2

�1=2
; �2:7�

where wxx; . . . stand for the components of the inverse tensor
of dielectric permittivity ŵ � êÿ1 [38].

Hamiltonian equations for rays. Viewed as an algebraic
equation in respect to the frequency o � k0c, local dispersion
relation (2.5), as a rule, has among its roots two positive ones:

o � O1;2�r; k� : �2:8�

In an anisotropic medium, O1 6� O2 except for special
directions. We shall assume that O1 > O2, and that O1

corresponds to the extraordinary mode while O2 refers to
the ordinary one. In isotropic media O1�r; k� � O2�r; k� �
eÿ1=2jkj.

For both isotropic and anisotropic media, rays corre-
sponding to zero approximation in the form of Eqns (2.4) and
(2.5) obey the Hamiltonian equations

dr

dt
� qOa

qk
;

dk

dt
� ÿ qOa

qr
; �2:9�

where t is the time and qOa=qk is the group velocity. Here a is
the wave polarisation index: a � 1 for extraordinary and
a � 2 for ordinary waves.

In an isotropic media, Eqns (2.9) related to different
values of a do coincide. They admit a simplification in
accordance with Eqns (2.9):

dr

ds
� k

jkj ;
dk

ds
� k0Hn ; ds � dt

dO
dk

: �2:10�

Eikonals j1 and j2 of normal waves are given by
formulae

ja �
�

ka dra �
�

ka
qOa

qk

����
k�ka

dt ; a � 1; 2 : �2:11�

Eqn (2.11) simplifies in the case of isotropic medium:

j � k0

�
e1=2 ds � k0

�
n ds : �2:12�

All formulae for rays, eikonals, and refraction indices
related to ordinary and extraordinary rays in an anisotropic
media join continuously their respective `isotropic' counter-
parts at a continuous transition �nab ! 0� from the aniso-
tropic to isotropic media. Such a continuity is not exhibited
by the equations for wave amplitudes taken from common
theories of geometrical optics, i.e., on the one hand, by the
Courant equations for anisotropic media, and on the other by
the Rytov equations.

Independent normal waves. In the case of anisotropic
medium, to zero approximation, Eqn (2.4) defines uniquely
the polarisation of each of the solutions e�0�1 and e�0�2 of Eqn
(2.1) (or each of the solutions E

�0�
1 and E

�0�
2 of Eqn (2.3)) that

correspond, respectively, to extraordinary and ordinary
waves:

E�0�a � Caea ; ~E �0�a � Caea exp�ija� �a � 1; 2� : �2:13�

Polarisation vectors e1 and e2 satisfy vector equation (2.4).
According to the rules defined by Eqn (2.4), the polarisation
of each from normal waves follows the turns of the medium
anisotropy axes given by the tensor ê�r�.

Expressions for e1 and e2 are the simplest in a right
orthogonal system with real orths q1, q2, and t. As is known
[38], in this case

d1 � �e11q1 � e12q2�n21 ; d2 � �e21q1 � e22q2�n22 ; d3 � 0;

e1 � ŵd1 � e11q1 � e12q2 � e13t ;

e2 � ŵd2 � e21q1 � e22q2 � e23t ; �2:14�

where refraction indices n1;2 are given by formulae (2.7). eij
stands here for the values

e11 � e22 � �1� K 2
1 �ÿ1=2; e12 � e21 � ÿiK1�1� K 2

1 �ÿ1=2;
e13 � n21�w31e11 � w32e12� ; e23 � n22�w31e21 � w32e22�;

�2:15�
that correspond to the transversal (in respect to t) component
of ea? normed to unity: jea?j2 � 1. Additionally, in (2.15) the
following notations are introduced:

K1 � JKJ ; J � ÿsgn Im w12 ; K � Qÿ �1�Q 2�1=2;

Q � i�w22 ÿ w11�
w12

: �2:16�

Courant and Lax [10 ± 12] derived an ordinary differential
equation for each of amplitudes Ca in formulae (2.13). Given
these amplitudes, expressions (2.13) approximate reasonably
the exact solutions, although only for a strong anisotropy,
when the parameter d � m1=m is large, d4 1. They do not
hold for a weak anisotropy. There are cases for which in the
framework of the normal wave method the wave transforma-
tion can be calculated only by the perturbation theory [3, 38a].

The polarisation structure of a field in an isotropic medium.
In the case of isotropic medium, Eqn (2.4) no longer defines
uniquely the orientation of the vector amplitude E�0�. This
corresponds to the polarisation degeneration. FromEqn (2.4)
in this case it only follows that

E�0� � C1q1 � C2q2 ;

~E �0� � �C1q1 � C2q2� exp
�
ik0

�
n ds

�
; �2:17�

where q1 and q2 are arbitrary linearly independent vectors,
perpendicular to the tangent t. In particular, onemay take the
normal n and binormal b to the ray, respectively, as q1 and q2

[13, 37], so

E�0� � Enn� Ebb ; ~E �0� � �Enn� Ebb� exp
�
ik0

�
n ds

�
:

�2:18�
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Thus, in the case of isotropic medium the general
expression for zero approximation (2.18) differs drastically
from the respective form (2.13) for independent normal
waves. Accordingly, for amplitudes C1 and C2 one obtains
not a single equation, but the system of two ordinary
differential equations. A formal difference between Eqns
(2.13) and (2.18) greatly complicates a smooth conjunction
of polarisation-degenerate transversal waves in an isotropic
medium with independent normal waves in an anisotropic
medium that long it was not even clear how to tackle that
problem.

However, smooth matching of waves propagating from
an isotropic medium into an anisotropic one could be
obtained in the framework of the quasi-isotropic approxima-
tion (QIA) which, on the one hand, preserves the transversal
structure of the field in the isotropic medium, and, on the
other, admits a transition to normal waves in essentially
anisotropic medium.

Universal geometric-optical procedure. In order to corre-
late different, at first glance even incompatible, variants of the
ray theory, it is convenient to write Maxwell's equations in a
form from which all known variants of the ray method would
be readily apparent. Daring to overestimate to some extent
the significance of the suggested approach and yet not willing
to refuse a relevant term, we term the procedure to be stated
below a universal one, the more so as the procedure also leads
to some new results, for instance, to ray splitting.

In a 3D inhomogeneous medium the construction of ray
solutions simplifies since the vector of electric induction
D � ê~E is almost transversal (it is strictly transversal to zero
approximation) with respect to the wave vector k. That
transversality takes place both in isotropic and anisotropic
media. Therefore it is natural to use the right triple of orthsq1,
q2, and t, such that �q�m; qn� � dmn �m; n � 1; 2�, in Eqn (2.3).

We make the substitution

E � E1q1 � E3q2 � E3t �2:19�

into Eqn (2.3) and introduce the designation

D � êE � D1q1 �D2q2 �D3t : �2:20�

On inserting (2.19) intoMaxwell's equations (2.3) wemultiply
them scalarly by some as yet arbitrary vectorsQ1 andQ2 (not
necessarily perpendicular to the ray, but not aligned with it),
and also by orth t. Then we find

Q1

ÿ
Dÿ n2

�
t�tE���ÿ ikÿ10 Q1

ÿ
n�t; rotE� � rot�nt; E��

� kÿ20 Q1 rot rotE � 0 ;

Q2

ÿ
Dÿ n2

�
t�tE���ÿ ikÿ10 Q2

ÿ
n�t; rotE� � rot�nt; E��

� kÿ20 Q2 rot rotE � 0 ; �2:21�
D3 ÿ ikÿ10 t

ÿ
n�t; rotE� � rot�nt; E��� kÿ20 t rot rotE � 0 :

�2:22�
The choice of q1 and q2, as well as Q1 and Q2 vectors is
dictated by reasons of convenience.

The advantages of the equations in the form (2.21) and
(2.22) as confronted with (2.3) are that Eqn (2.22) makes
explicit the smallness of the transversal component D3. As a
result we have every reasons to exclude completely the
transversal component D

�0�
3 from the zero approximation

and set D
�0�
3 � 0.

Universal relationships (2.21) and (2.22) enable the
derivation of ordinary differential equations for amplitude
coefficients under all modifications of the geometrical optics
method: the Rytov method (Section 2.2), the method of
independent normal waves (the Courant ±Lax method, Sec-
tion 2.3), and the quasi-isotropic approximation (Section
2.4). These relationships apply as well to the method of split
rays (Sections 3.3 and 3.4).

2.2 Geometrical optics of isotropic media
(the Rytov method)
In an isotropic medium the polarisation degeneracy occurs
and the zero-order field admits form (2.18), i. e. in this case
q1 � n and q2 � b. In universal relationships (2.21) one may
conveniently choose Q1 � n and Q2 � b.

Then from (2.21) the system of two equations for the
amplitudes of zero approximation, En and Eb, follows [13,
37]:

dEn

ds
ÿ Tÿ1Eb � En

�
d ln

e1=4

ds
� 1

2
div t

�
� 0 ;

dEb

ds
� Tÿ1En � Eb

�
d ln

e1=4

ds
� 1

2
div t

�
� 0 ; �2:23�

where T � bdn=ds is the radius of the ray twisting. The last
terms in each of the equations of system (2.23) can be easily
eliminated by introducing the normed amplitudes Gn and Gb:

~E � F0eÿ1=4�Gnn� Gbb� exp
�
ik0

�
n ds

�
; �2:24�

where F0 is a real-valued function that satisfies the law of
energy conservation along the ray tube div�F2

0t� � 0. The
intensity of normed amplitudes equals unity:
jGnj2 � jGbj2 � 1.

In conjunction with Eqn (2.24), Eqns (2.23) can be
rewritten as

dGn

ds
ÿ Tÿ1Gb � 0 ;

dGb

ds
� Tÿ1Gn � 0 : �2:25�

From Eqns (2.25), the well-known Rytov equation [13]
follows:

d#

ds
� ÿTÿ1 �2:26�

for the angle

# � arctan
Eb

En
� arctan

Gb

Gn

between the vector E and the orth n. These equations define
fully the zero-order field in an isotropic medium. The Rytov
law of polarisation rotation (2.26) forms a particular case of a
more general law which is referred to as the Berry effects [80,
80a].

2.3 Noninteracting normal waves in an anisotropic
medium (the Courant ±Lax method)
In the theory by Courant and Lax an ordinary differential
equation (the transfer equation), localised along rays (2.9), is
derived for each of scalar amplitudesC1 andC2 in Eqn (2.13).
As related, for instance, to the extraordinary ray (i. e. in
respect to C1) that equation is
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dC1

dt
� P 1C1 � 0 ; �2:27�

where P 1 � �1=2�c�h�1 rot e1 ÿ e�1 roth1�.
In the first order of the perturbation theory, the amplitude

C
�1�
2 is given by the expression

C
�1�
2 � ikÿ2�n21 ÿ n22�ÿ1e�2

n�
k1; rot�C1e1�

�� rot
�
k1; C1e1

�o
:

�2:28�
It is readily seen that correction (2.28) diverges as one
approaches an isotropic medium where n1 � n2. That implies
that the Courant ± Lax method no longer applies (it diverges)
as d5 1 and is not capable of solving the problem of limiting
polarisation.

2.4 Waves in weakly anisotropic medium.
The quasi-isotropic approximation (QIA)
Basic equations of the QIA. The quasi-isotropic approxima-
tion is founded on the choice of the zero-approximation
solution E �0� in the form (2.18) as if there were no anisotropy
[9, 37], i.e. if the anisotropy tensor nmn � emn ÿ e0dmn were
equal to zero. In the framework of that approach the zero
approximation looks like a transversal wave (2.24) where the
replacement e! e0 is made.

Hence, we apply the isotropic eikonal formula (2.24) to
describe the waves in a weakly anisotropic medium. The orths
t, n, and b are the tangent, normal, and binormal to the
`isotropic' ray. The ray obeys the Hamiltonian equations
(2.10) in which a substitution of n � n0 � e1=20 has to be made.
Fig. 1 shows the `isotropic' ray by a dashed line. In what
follows we consider amodified variant of themethod inwhich
an `isotropic' ray is replaced by `split' rays that correspond to
normal waves (method of split rays, Sections 3.3 and 3.4).

Solvability conditions (2.21) of the first approximation
equations attain (if orth n and b are used) the form

dGn

ds
ÿ 1

2
ik0n

ÿ1
0 �nnnGn � nnbGb� ÿ Tÿ1Gb � 0 ;

dGb

ds
ÿ 1

2
ik0n

ÿ1
0 �nbnGn � nbbGb� � Tÿ1Gn � 0 : �2:29�

Here indices n and b refer, respectively, to the normal n and
binormal b to the ray.

By introducing the parameter of polarisation,
# � arctanEb=En (which, generally speaking, is complex),
we may rewrite Eqns (2.29) as a variant of the Riccati
equation [9, 37]:

d#

ds
�
�
Tÿ1 � 1

2
ik0n

ÿ1
0 �nnb ÿ nbn�

�
� 1

4
ik0n

ÿ1
0

��nnn ÿ nbb� sin 2#ÿ �nnb � nbn� cos 2#� � 0 :

�2:30�
The complex angle # characterises all parameters of the
polarisation ellipse. Its real part # 0 � Re# gives the inclina-
tion of the larger ellipse axis with respect to the normal n to
the ray. Hyperbolic tangent of the imaginary part # 00 � Im#
equals to the ratio of small axis b to the large one, a:
jtanh# 00j � b=a, while the sign of # 00 characterises the sense
of rotation of field vectors: if # 00 > 0 the vector rotates
clockwise, and if # 00 < 0 it rotates counterclockwise viewed
along the ray.

For an isotropic medium (n̂ � 0), Eqns (2.29) reduce to
Rytov equations (2.25) while Eqn (2.30) of the Riccati type
becomes the Rytov law (2.26) of polarisation plane rotation.

The QIA equations in moving axis. In many particular
cases, eikonal formula (2.24) and Eqns (2.29) can be
conveniently written in moving axes q1�s� and q2�s�
satisfying the condition of orthogonality q1 ? q2 ? t. The
eigenaxes of two-dimensional tensor with components
Re�enn; enb; ebn; ebb� can be used for q1 and q2 axes.

Setting q1�n cosc�b sinc and q2 �ÿn sinc� b cosc,
where c is the variable angle measured from the normal n to
the orth q1, c � arccotan�bq1=nq1�, and making use of the
substitution

~E � E exp

�
ik0

�
n0 ds

�
; E � F0e

ÿ1=4
0 �G1q1 � G2q2� ;

�2:31�

we derive the system of equation for G1;2:

dG1
ds
ÿ 1

2
ik0e

ÿ1=2
0 �n11G1 � n12G2� ÿ Tÿ1ef G2 � 0 ;

dG2
ds
ÿ 1

2
ik0e

ÿ1=2
0 �n21G1 � n22G2� � Tÿ1ef G1 � 0 : �2:32�

Indices 1, 2 here correspond to orths q1; q2: nab � �qa; n̂qb�
while the value

Tÿ1ef � Tÿ1 � dc
ds

�2:33�
represents the effective ray twisting in moving axes q1, q2. It
can be shown that the quasi-isotropic approximation is
invariant to the first order in m1 with respect to the mentioned
variations of function e0�r�.

Passing from the QIA to `simplified' normal waves. In a
homogeneous medium, for which Tÿ1 � 0, F0 � const, and
eab � const, equations (2.29) lead to expressions that resem-
ble independent normal waves:

~E1;2 � C1;2~e1;2 exp�ik0~n1;2s� : �2:34�

Their difference from exact normal waves is that instead
of exact polarisation vectors e1;2 and refraction indices n1;2
they involve simplified expressions ~e1;2 and ~n1;2which differ
from the exact values (2.7) and (2.15) only in the second-
order terms in respect to anisotropy m21 � jnabj2. Therefore the
expressions (2.34) could be termed as `simplified' normal
waves.

Methods of solution of QIA equations. QIA equations
(2.29) form the system of two linked ordinary differential
equations with variable coefficients. Such equations are
encountered in many fields of physics being applied to the
description of a number of similar phenomena: adiabatic
perturbations in nonstationary problems of quantum
mechanics and the phenomenon of change of spin state in
beams of polarised particles [39], linear interaction of normal
oscillations in nonstationary systems [40], wave transforma-
tion in nonstationary waveguides [41]. For solution of linked
equations, special methods are developed. They are
described, for example, in Ref. [42].

The methods employed to solve mentioned problems
could be useful in solving the QIA equations. In particular,
of use might be various variants of perturbation theory and
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asymptotic methods, the method of coefficient linearisation,
and a few other approaches. We shall present some examples
below.

3. Modifications and generalisations of QIA
equations

3.1 QIA equations for the vector of electric induction
The assumption that the field ~E is transversal adopted in the
primary version of the QIA holds true only in the framework
of zero approximation. In reality, the transversal field
component E3 differs from zero and, in principle, could be
found in the first approximation by parameter m1. Never-
theless, if one formulates QIA equations for the induction
vector ~D, which always has the property of being perpendi-
cular to the wave vector for plane waves in a homogeneous
medium, then the transversal component E3 can be found in
zero approximation. The modification of the QIA for the
vector ~D was implemented by Na|̄da [18, 19, 31].

In the framework of the standard QIA the relation
between vectors D and E in zero approximation looks like

D1 � e11E1 � e12E2 ; D2 � e21E1 � e22E2 ; �3:1�

whereas in reality they are tied by the relationships

D1 � e11E1 � e12E2 � e23E3 � det�̂e� w22E1 ÿ w12E2

e33
;

D2 � e21E1 � e22E2 � e23E3 � det�̂e� ÿw21E1 � w11E2

e33
;

�3:2�

which follow from the condition of transversality of the
vector D in respect to the wave vector k, i.e. from the
condition D3 � 0.

Without running the risk of impinging upon the accuracy
of the QIA, i. e. with accuracy up to second-order terms in
respect to m1, we replace the multiplier det�̂e�=e33 in (3.1) by e20
and take this into account when passing from Eqn (2.21) to
the QIA equations for the vector ~D. As a result, the form of
formula (2.31) and Eqn (2.32) remain unchanged, but
components of tensor nik entering them have to be substituted
by values n 0ik given by formulae

n 011 � e20�eÿ10 ÿ w11� ; n 012 � ÿe20w12 ;
n 021 � ÿe20w21 ; n 022 � e20�eÿ10 ÿ w22� : �3:3�

The components of the anisotropy tensor n 0ik �
e20�eÿ10 dik ÿ wik� used here depart from the original tensor
nik � eik ÿ e0dik only in the second order in small parameter
m1, since

wik � �̂eÿ1�ik � eÿ10 dik ÿ eÿ20 �eik ÿ e0dik� �O�m21� :

After the substitution of nik for n 0ik, all QIA equations
written above (see Section 2.4) for components of E vector
become valid for analogous components of vector D.

Although, formally, the distinctions due to the replace-
ment of nik by n 0ik are at first glance insignificant, `new' QIA
equations offer a few advantages over the previous ones.
First, the distinctions in quadratic terms in m1 may become
significant if one approaches the applicability boundaries. In

that respect equations for vector D are more favourable than
those for E. Second, the transversality of D facilitates
substantially the description of splitting of `isotropic' rays
into ordinary and extraordinary rays within the domain of
their interaction. This aspect of the problem we shall consider
in Sections 3.3 and 3.4.

3.2 QIA equations in the form of equations for interacting
modes
Deformed normal waves. The QIA equations can be given a
form describing the interaction of normal waves. Let us take
real eigenorths e1 and e2 of two-dimensional tensor wnn, wnb,
wbn; wbb which play the role of vectors of polarisation, for real
orths q1 and q2. These orths are orthogonal to the ray.

Passing to the normal waves can be accomplished in two
different, yet analogous ways, depending on which of waves,
ordinary or extraordinary, we want to approach.

The field complied with the extraordinary wave is written
as

~Ee � F0n
3=2
0 �nÿ21 C1e1 � nÿ22 C2e2�

� exp

�
ik0

��
3

2
n0 ÿ 1

2
n30n

ÿ2
1

�
ds

�
: �3:4�

Projecting Eqn (2.21) on vectors Q1 � e�1 and Q2 � e�2 we
obtain equations for determination of amplitude coefficients
C1 and C2 [18]:

dC1

ds
� p11C1 � p12C2 � 0 ;

dC2

ds
� ik0�n1 ÿ n2�C2 � p21C1 � p22C2 � 0 : �3:5�

Here we denoted

p11 � p�22 �
2iJK

1� K 2
Tÿ1ef � ÿ

iJ

�1�Q 2�1=2
Tÿ1ef ;

p12 � ÿp�21 � iC� K 2 ÿ 1

1� K 2
Tÿ1ef � iCÿ Q

�1�Q 2�1=2
Tÿ1ef :

�3:6�

Values J, K, and q are given by formulae (2.16); the
role of vector t in these formulae is played by the
tangent orth to the `isotropic' ray. Additionally, here
C � �ÿ1=2� d arctanQ=ds.

Linked equations (3.5) for amplitudes C1 and C2 describe
the interaction of normal modes 1 and 2. In a homogeneous
medium where all pab � 0, Eqn (3.5) admits the solution
C1 � const 6� 0, C2 � 0 that conforms to the extraordinary
wave ~E1 described by formula (2.34).

Analogously, when approaching the ordinary wave, we
assume

~Eo � F0n
3=2
0 �nÿ21 C 01e1 � nÿ22 C 02e2�

� exp

�
ik0

��
3

2
n0 ÿ 1

2
n30n

ÿ2
2

�
ds

�
; �3:7�

where amplitude coefficients C 01 and C
0
2 meet the equations

dC 01
ds
� ik0�n2 ÿ n1�C 01 � p11C

0
1 � p12C

0
2 � 0 ;

dC 02
ds
� p21C

0
1 � p22C

0
2 � 0 ; �3:8�
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with coefficients pik being given by formula (3.6) as pre-
viously.

With the accuracy up to terms of m21 order, arguments of
exponents in Eqns (3.4) and (3.7) are equal, respectively, to
ik0
�
n1 ds and ik0

�
n2 ds. Note that these relationships

become exact at choosing n � n1 in Eqn (3.4) and at n � n2
in Eqn (3.7).

Deformed normal waves. In the region of relatively strong
birefringence d4 1, where normal waves interact weakly with
each other, solutions to (3.5) and (3.8) can be constructed in a
form of deformed normal waves corresponding very closely to
the normal waves (2.13). For that purpose we invoke the
iterative approach proposed by Na|̄da [18]. In zero approx-
imation we assume that there exists a single normal wave in
nondeformed form (2.13). That wave we shall take as a `seed'
for the iterative procedure. The extraordinary wave (with
index 1) will serve as a seed for Eqn (3.5) at C

�0�
1 6� 0 and

C
�0�
2 � 0, whereas the ordinary wave will serve as a seed for

Eqn (3.8) at C
�0�
1 � 0 and C

�0�
2 6� 0. In the region of interest

where the wave interaction is small, the coefficient k0�n1 ÿ n2�
is large compared to 1=l. Hence, a formal asymptotic
expansion in inverse powers of the large parameter
d � k0�n1 ÿ n2�l4 1 can be constructed for C1 and C2.

In the case of the `extraordinary' seed this implies that
initial terms in the expansion ofCa � C

�0�
a � C

�1�
a � C

�2�
a � . . .

�a � 1; 2� in series by inverse powers of large parameter d4 1
should be subjected to the condition

C
�0�
1 �sin� 6� 0 ; C

�0�
2 � 0 : �3:9�

Since the coefficient C
�0�
2 is equal to zero, the system of

equations (3.5) simplifies and defines only the dynamics of
behaviour of the coefficient C

�0�
1 :

dC
�0�
1

ds
� p11C

�0�
1 � 0 :

Subsequent terms of asymptotic expansion in powers of 1=d
are determined from the recurrent formulae

C
�m�
2 � ikÿ10 �n1 ÿ n2�ÿ1

�
dC
�mÿ1�
2

ds
� p21C

�mÿ1�
1 � p22C

�mÿ1�
2

�
;

dC
�m�
1

ds
� p11C

�m�
1 � p12C

�m�
2 � 0 ; C

�m�
1 �sin� � 0 �m5 1�:

�3:10�
Similar procedure can be applied to Eqn (3.8) with the
`ordinary' seed C

�0�
2 6� 0 and C

0�
1 � 0.

The coefficients that one may find for the `extra-
ordinary' seed (3.9) in the region of weak interaction
d � k0ljn1 ÿ n2j4 1 satisfy the estimate

jC2j5 jC1j ; �3:11�

which corresponds to a weak deformation of normal waves.
Under these conditions, the replacements of nÿ22 by nÿ21 in the
term with small amplitude C2 in (3.4), and n0 by n1 in the
argument of exponent in that formula, would not involve
large errors. As a result, QIA formula (3.4) for a deformed
extraordinary component simplifies and takes the form

~Ee � F0n
ÿ1=2
1 �C1e1 � C2e2� exp

�
ik0

�
n1 ds

�
: �3:12�

Similar operations with the ordinary seed C
�0�
1 � 0, C

�0�
2 6� 0

lead to a deformed ordinary wave

~Eo � F0n
ÿ1=2
2 �C 01e1 � C 02e2� exp

�
ik0

�
n2 ds

�
: �3:13�

Of importance is that both solutions, (3.12) and (3.13) do
not contain oscillating terms for d � m1=m4 1. Oscillations in
amplitudes of waves (3.12) and (3.13) also do not occur in the
region of relatively weak birefringence, d � m1=m91, where
the iterations cease to converge, but now for another reason,
namely, due to the smallness of parameter d91. Hence wave
solutions (3.12) and (3.13), by their phase structure, are close
to normal waves (2.13) either for d4 1 or d91, however they
posses a deformed polarisation structure with respect to that
of (2.13). The deformation of polarisation is relatively small
for d4 1, but it grows (up to 100%) for d91. We term the
solutions (3.12) and (3.13) by deformed normal waves. With
their help, a connection between the QIA and the Budden
equations can be readily established, as well as the process of
splitting of ordinary and extraordinary rays can be described.

Equations for interacting modes. Their relation to the
Budden equations. If small corrections on the order of m are
ignored, formula (3.4) for the extraordinary seed and a
respective formula for the ordinary seed can be presented in
a unified way

~E � F0�nÿ1=21 F1e1 � n
ÿ1=2
2 F2e2� :

Here amplitudes

F1 � C1 exp ij1 � C 01 exp ij2 ;

F2 � C2 exp ij1 � C 02 exp ij2

satisfy the QIA equations in a form of interacting normal
waves

dF1
ds
ÿ ik0n1F1 � p11F1 ÿ p12F2 � 0 ;

dF2
ds
ÿ ik0n2F2 � p21F1 � p22F2 � 0 ; �3:14�

with the same coefficients as in Eqns (3.5) and (3.8). In a
plane-layered medium these equations reduce to the Budden
equations for interacting waves [1 ± 5].

Thus, the QIA matches quite naturally the classical
Budden and Courant ±Lax methods. The virtues of the QIA
are that it applies not only to plane-layered media, as the
Budden method does, but also to 3D inhomogeneous media.
The drawback is that the QIA equations are limited by the
condition of weak anisotropy, m15 1, while the Budden and
Courant ±Lax methods are free of these limitations. In
Section 3.4 we show how the QIA equations are to be
modified in order to fit also the case of strong anisotropy
(m1 � 1).

3.3 The method of split rays in the case of weak
anisotropy
QIA equations based on split rays. With all superficial
similarity between simplified normal waves (3.12) and
(3.13), derived from the QIA, and independent normal
waves of the Courant ± Lax method, a marked distinction
preserves: the basic form of the QIA ignores splitting of the
rays into ordinary and extraordinary ones, whereas normal
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waves do propagate along different rays. Accordingly, the
phases of the simplified waves depart from those given by
exact expressions (2.11). However both these shortages can be
eliminated relatively easily. The modification of the QIA,
suggested by Na|̄da [18, 19, 31] serves for that. We term it the
method of split rays.

The basic idea of that approach is in abandoning the
isotropic rays and replacing them by the split rays of
simplified normal waves (Fig. 1). On the basis of these rays
deformed normal waves should be constructed further with
the help of equations of (3.5) and (3.8) type. The rays
corresponding to the simplified normal waves will satisfy
Eqn (2.10) in which standard simplifications of the QIA are to
be made, that is, the terms on the m21 order are to be omitted.

In order to use conveniently the smallness of anisotropy,
nab � m15 1, it is expedient to express orths q1 and q2,
perpendicular to the ray, through orths ~n1 and ~b1 that would
be close, respectively, to the normal n and binormal b of the
`isotropic' ray. For example, a vector that is simultaneously
perpendicular to the tangent t1 to the ray and to the normal n
to the isotropic ray can be taken as ~b. Then

q1 � ~n cosc� ~b sinc ; q2 � ÿ~n sinc� ~b cosc :

By analogy with Section 3.1 we shall seek the solutions of
Eqn (2.1) along extraordinary rays (with index 1) in the form

~Ee � F1n
3=2
1 ŵ� ~G1q1 � ~G2q2�

� exp

�
ij1 �

1

4
ik0

�
n31�nÿ21 ÿ nÿ22 � ds1

�
: �3:15�

Here ds1 is the element of length of the extraordinary ray, j1
is the corresponding eikonal calculated by formula (2.11).
Values of refraction indices n1 and n2 in formula (3.15) are
those on the extraordinary ray. They are functions of two
vector arguments r and t � k1=jk1j. The amplitude factor F1

satisfies the conservation law div�F2
1t� � 0.

Now substitute (3.15) in (2.1) and project the resultant
equation on ~n and ~b, i. e., in fact, pass to equations (2.21).
After that, neglecting the contributions of m21 order, we shall
find the system of QIA equations for coefficients ~G1 and ~G2
[18, 19]

d ~G1
ds1
� i

2
k0n

3
1�Dw ~G1 � w12 ~G2� ÿ T ÿ1ef

~G2 � 0 ;

d ~G2
ds1
� i

2
k0n

3
1�w21 ~G1 ÿ Dw ~G2� � T ÿ1ef

~G1 � 0 ; �3:16�

where Dw � �w11 ÿ w22�=2. The respective equations for the
ordinary ray follow from (3.16) after the replacement of
indices coming with ds and n.

Therefore, the QIA equations are split here in two
branches that are related to two normal waves (ordinary
and extraordinary) and are based on respective rays. In the
region of relatively strong birefringence d4 1, the method of
split rays provides an asymptotic transition, with a correct
phase, to noninteracting normal waves (2.13).

Accuracy estimations. That the QIA equations conform to
the Budden equations for a plane layer provides a possibility
of firm estimation of the method accuracy, without the
analysis of all residual terms omitted in equations (3.16).
Taking into account that the error of the Budden method
scales as m � kÿ10 lÿ1, we conclude that for the region of
relatively strong birefringence d � m1=m4 1 the estimate

holds���� dEE
����9max�m; m1� ; m1; m15 1 : �3:17�

It can be rewritten in a uniform way

max
�s�

���� dEE
����9max

h
kÿ10 lÿ1b ;max

�s�
n�s�

i
; �3:18�

where the symbol lb implies that the value of scale l is taken at
the boundary of the region of interaction where d � 1.

The region of localisation of split rays. Effective mutual
transformation of extraordinary and ordinary waves and
splitting of a ray into extraordinary and ordinary rays are
localised in the region d91.

Why the linear wave transformation occurs precisely in
the region d91 could be explained in the following way.
Within the region of weak birefringence, d5 1, the spatial
scale of beating between polarisation components
L � kÿ1jn1 ÿ n2jÿ1 exceeds substantially the scale l of med-
ium inhomogeneities, so slow beating of scale L is simply not
seen against the background of variable medium parameters.
A noticeable ray splitting does not occurs under these
conditions. On the other hand, in the region of relatively
strong double refraction (d4 1) waves ~E1 and ~E2 are almost
independent and thus do not suffer mutual transformation.
Hence, the mutual transformation of waves vanishes either
for d5 1 or for d4 1 and is localised in the region d91.
These consideration have already been well known since the
works by Budden [1 ± 5, 8].

Matching of the QIA solution with normal waves. The
matching could be appropriately done at a point within the
region of strong birefringence d4 1 which is still close to the
interaction region d � 1 [9]. The details of that procedure
were ascertained by Na|̄da [16, 17].

The matching procedure simplifies considerably if one
uses the equations for the electric induction vector in a form
written for split rays. In that case, matching is carried out only
in the regions of localisation d � 1. Every time three waves
with the same value of wave vector k participate in matching:
a wave arriving to the matching point and two normal waves
emerging from it.

Linear transformation occurs at all local extreme points of
parameter d. If d4 1 in the region of the extremum, the linear
transformation is rather weak there, � exp�ÿd�. Therefore
local extreme points of d in the region d4 1 should be
ignored.

On the contrary, the wave interaction in the vicinities of
extreme points located within the region of weak birefrin-
gence must be accounted for.

The procedure of matching the QIA solution with normal
waves is elucidated by typical examples given below.

E x a m p l e 1. Incidence of a wave on a doubly refractive
layer with a single maximum of parameter d inside the layer
(Fig. 2). Let us assume that an initial point A (see Fig. 2) is
characterised by the same direction tA of wave vectors of
ordinary and extraordinary waves. Construction of the field
in the vicinity of that point consists of the following steps of
matching the QIA solutions with normal waves.

(a) Through point A we draw extraordinary (1) and
ordinary (2) rays that correspond to the initial direction tA

of wave vectors. Then we find phases j1 and j2 along these
rays, construct the polarisation orths, e1 and e2, and e 01 and
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e 02;, respectively, together with amplitude functionsF1 andF2

which satisfy the conservation law.
(b) At each of rays we shall find the points B1 and B2

where parameter d � kljn1 ÿ n2j reaches maximum.
(c) In the region of strong birefringence d4 1, we

construct iterative procedures for each ray in both directions
from respective points B1 and B2, using extraordinary or
ordinary seeds, for instance,

C
�0�
1 �s1in� � 1 ; C

�0�
2 �s1in� � 0 :

(d) We employ the amplitudes C1�s1�, C2�s1�, C 01�s2�, and
C 02�s2� obtained by the iterative procedure as an initial
condition for the system of equations (3.16) and for an
analogous system for the ordinary wave. With allowance for
those initial conditions `deformed' extraordinary and ordin-
ary waves are constructed on both sides of points B1 and B2:
(1) the solutions ~G1�s1� and ~G2�s1� of system (3.16) and an
expression for the normed field ~E norm

e �s1� are determined
from Eqn (3.15); (2) the solutions ~G1�s2� and ~G2�s2� of system
(3.16) (rewritten for ordinary waves) and the expression for
~E norm
o �s2� are determined from (3.15) rewritten for an

ordinary wave.
(e) We determine decomposition coefficients K1;2 of the

initial field into rays 1 and 2:

~E A � K1
~E norm

e �A� � K2
~E norm

o �A� : �3:19�

Superposition (3.19) of two deformed normal waves,

~Ee�s1� � K1
~E norm

e �s1� and ~Eo�s2� � K2
~E norm

o �s2� ;

each being localised on the respective ray, present the desired
solution of geometric-optical problem.

E x a m p l e 2. Observation of a point source through a
doubly refractive layer with a single maximum in parameter
d � k0ljn1 ÿ n2j (Fig. 3). Assume that a point source is located
at the point A. This implies that on some small sphere SA,
surrounding point A, directions tA of wave vectors and initial
values ~E A of fields are specified. We are to find the field ~E at a
given point B.

In this case, in addition to five steps listed above in
example 1, the solution also includes one preliminary step:
we should find two raysA B̂ of 1 and 2 types which would join
the source A with the observation point B. For each of rays
the points of intersection with initial sphere SA are to be

determined. Then the problems breaks into two parts
corresponding to the rays A1̂B and A2̂B. For each of them
the problem statement is essentially that of example 1. Indeed,
for the ray A1̂B, initial direction of wave vectors, tA1, and
initial field, ~E Ae , are given at point A1. Now, in accordance
with step (a) of example 1, a ray with the same direction of the
wave vector, but corresponding to type 2 of normal wave,
should be drawn through the point A1. In the same manner,
an additional ray is to be drawn through the point A2, now
corresponding to a normal wave of type 1. Clearly, these
additional rays do not reach point B, however they are
necessary to determine components of initial fields ~E Ae and
~E Ao that correspond to rays A1̂B and A2̂B, in accordance with
step e).

What follows is clear fromFig. 3. At the pointBwe obtain
the sum of two waves arriving by different rays A1̂B and A2̂B.
From point B two sources will be seen, one in polarisation 1,
and the other in polarisation 2. Equations of (3.16) type for
ordinary and extraordinary waves are to be solved at all four
rays that appear in the problem treatment. For two basic rays
A1̂B and A2̂B, seed iterations are constructed on both sides of
the point with maximum d, whereas for two additional rays
they are constructed only in the direction to the source A.

E x a m p l e 3. The incidence of a wave on a doubly
refractive layer with two maxima and one minimum of
parameter d � k0ljn1 ÿ n2j (Fig. 4). We imply that in the
region of minimum (points C in Fig. 4) the parameter d is
less than unity: dmin91, otherwise the coefficients of trans-
formation will be exponentially small.

A

B1

B2

tA

1

2

Figure 2. Explanations to the iterative procedure used in the method of

split rays in presence of a local maximum of value jn1 ÿ n2j. The solid line
shows the extraordinary ray, A is the initial point where both rays

correspond to the same direction of the wave vector, B1 and B2 are the

points where the value jn1 ÿ n2j reaches extremum; in their vicinity the

iterative procedure is constructed. The arrows on each ray show the

direction of integration of Eqns (2.15) (for extraordinary seed), or their

analogue for an ordinary wave; the arrows near the rays denote the

directions of wave propagation.

A

SA

A1

B1

B 01

B2

B 02 2

1

1 0

2 0

2

d

Figure 3. Radiation due to a point source A (it is surrounded by a small

sphereSA) in a doubly refractive layer with a local maximumof jn1 ÿ n2j; 1
and 2 are the main rays reaching the point of observation d, 1 0 and 2 0 are
auxiliary rays, B1;2 and B 01;2 are the points where jn1 ÿ n2j reaches
maximum. The arrows on the rays show the directions of iterations; the

arrows near the rays denote the directions of wave propagation.
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B1

B2

B3
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B4

1

1 0

2 0

2

Figure 4. The iterative procedure in the presence of local minima in

jn1 ÿ n2j;C1 andC2 are the points ofminima locations in which splitting of

rays and matching of solutions take place; B1; . . . ;B6 are the points of

local maxima. The remaining designations are the same as in Fig. 2 and

Fig. 3.
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The sequence of operations in this case is clear fromFig. 4.
Finally, an original ray splits into four rays, two of type 1 and
two of type 2.

Criteria of distinguishability of split rays.As is known, the
rays have a dual nature. On the one hand, a ray is though of as
a mathematical object, i. e. an infinitely thin line in the space,
on which in the approximation of geometrical optics the wave
field is strung (dressed, sewed). On the other hand, it is a
physical object whose parameters, say, the thickness, could be
measured. Physical aspects of the concept of a ray have been
discussed by Kravtsov and Orlov in article [43] and book [37],
and also by Kravtsov in review [44]. In line with that concept,
a physical ray is associated with the Fresnel volume surround-
ing the ray whereas physical distinguishability of rays implies
the possibility of separating the Fresnel volumes. (Fresnel
volume is the union of all first Fresnel zones strung on the
ray).

Similar distinguishability criteria should be found in an
anisotropic medium: as soon as Fresnel volumes of rays cease
to intersect, the rays can be accepted as existing on their own,
i.e. as admitting a distinguishability by means of physical
devices. These include orifices, slits, lenses, reflectors, anten-
nae, phased grids, etc.

In an anisotropic medium, the list of devices can be
complemented by polarisers performing the polarisation
selection, and by travelling wave antennae discriminating
between ordinary and extraordinary waves by their phase
velocity.

Needless to say, in the interaction region, d91, the rays
can not be distinguished by any physical device. It seems to us
that the question of distinguishability of rays leaving the
interaction region in a weakly anisotropic medium calls for
further detailed investigation.

3.4 Generalisation of the method of split rays
(synthetic approach)
The above-described method of split ray requires anisotropy
to be weak, m15 1. Meanwhile one may abandon even that
rather restrictive requirement by using original, not simpli-
fied, normal waves without resorting to the expansions of
refractive indices and polarisation vectors in small anisotropy
parameter m1.

Such a modification of the method of split ray was first
proposed by Na|̄da [18]. It was substantiated mathematically
by Na|̄da and Prudkovski|̄ [23] and came to be known as the
`synthetic approach'. This approach combines the advantages
of the QIA in the form of split rays, which is capable of
describing the interaction of waves in 3D inhomogeneous
media but fails in the case of strongly anisotropic media with
m1 � 1, with advantages of the Budden method which allows
for strong anisotropy, but applies only to layered, i.e. 1D
inhomogeneous, media. Thereby the synthetic approach
provides a synthesis of the QIA with the Courant ±Lax
method, which, although it applies to 3D inhomogeneous
media and allows for a strong anisotropy, lacks the third
component intrinsic to the QIA and the Budden method: the
Courant ±Lax method fails to describe the transformation of
normal waves.

With this synthesis of the QIA, the Budden and Courant ±
Lax methods, it becomes possible to describe the interaction
of normal waves even in a strongly anisotropic medium,
precisely in the vicinities of peculiar, `degenerate' directions
of wave vector k. In such directions the refractive indices of
two normal waves coincide: n1�r;k� � n2�r;k�. This favours

a strong interaction between waves with near-parallel phase
fronts. The first, relatively straightforward attempt [45] to
construct the theory of interaction in the vicinities of
degenerate directions (`quasi-degenerate' approximation of
geometrical optics) has not been fully successful. Here we
present more rigorous approach which allows for splitting
rays within the interaction region.

Equations for interacting waves in a strongly anisotropic
medium could be written by analogy with Section 3.3, with
the replacement of simplified normal waves by their original
counterparts. We confine ourselves only to the statement of
this analogy leaving aside important details related to the
substantiation of the method. The synthetic method was first
suggested by Na|̄da [8] as a natural modification of the
Courant ±Lax method. The wave splitting method within
the QIAwas formulated in Ref. [18] as a subasymptotic of the
synthetic method under weak anisotropy.

The transition from simplified waves (those that are
concerned only with linear in m1 terms) to original normal
waves is possible only under conditions of localised interac-
tion, with the interaction occurring in a finite interval l, where
d91. In this interval, simplified normal waves differ but
slightly from their full versions, whereas out of the interval l
the interaction weakens abruptly Ð which allows one to
abandon the simplified normal waves in favour of their full
versions. The advantage is that there is no need to match the
solutions of the synthetic modification of the QIA with
independent normal waves out of the interaction region
since the synthetic solutions transform asymptotically into
independent normal waves there [18, 23].

4. Electromagnetic waves in an inhomogeneous
plasma in a weak magnetic field

4.1 Quasi-longitudinal and quasi-transversal propagation
QIA equations for magnetoactive plasma. We write the QIA
equations for normed vector of electromagnetic induction
~E � eÿ10 D, where e0 � 1ÿ v is the dielectric permittivity of
plasma in absence of magnetic field, v � 4pe2Ne=mo2, e and
m are, respectively, the electron charge and mass, Ne is the
electron concentration. By making use of known expressions
for components of the tensor of magnetoactive electron
plasma [3 ± 5] one may readily obtain the expressions for the
components of anisotropy tensor n 0ik � ŵÿ ŵ0, ŵ � êÿ1 which
enter the QIA equations for components of vector ~D:

n 011 � ÿn 022 � ÿ
1

2
�1ÿ v�ÿ1uv sin2 a ;

n 012 � ÿn 021 � ivu1=2 cos a : �4:1�

Here u � eH 0=�mco�2, H 0 is the magnetic field strength, a
stands for the angle between the orth t tangent to the ray and
the vector H0.

Take orths q1 and q2 in such a manner that they form a
right coordinate triple with the tangent orth t, and that orth
q2 lies in the plane t;H0(Fig. 5).

Substituting (4.1) in Eqn (2.32) we find

~E � F0e
ÿ1=4
0 �G1q1 � G2q2�

� exp

(
ik0

��
�1ÿ v�1=2 ÿ uv�1� cos2 a�

4�1ÿ v�3=2
�
ds

)
; �4:2�
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where G1 and G2 obey the equations

dG1
ds
� ÿ 1

2
iG�1ÿ v�ÿ1u1=2 sin2 aG1 ÿ �G cos aÿ Tÿ1ef �G2 ;

dG2
ds
� �G cos aÿ Tÿ1ef �G1 �

1

2
iG�1ÿ v�ÿ1u1=2 sin2 aG2 :

�4:3�
Here

G � 1

2
k0�1ÿ v�ÿ1=2vu1=2 ; �4:4�

c is the angle between the binormal to the ray, b, and the
plane t;H0 (see Fig. 5); Tÿ1ef � Tÿ1 � dc=ds is the effective
twisting of the ray with account for the rotation of magnetic
field strength lines around the ray.

Qualitative picture of the interaction of circular polarised
waves in an inhomogeneous magnetoactive plasma. The propa-
gation of an electromagnetic wave through a homogeneous
magnetoactive plasma is described in the simplest way in two
limiting cases: (a) of the longitudinal propagation (the wave
vector k is parallel to the external magnetic field H0, and
a � 0); (b) of transversal propagation (wave vector k is
perpendicular to H0, and a � p=2).

For longitudinal propagation, eigenwaves are polarised
circularly which corresponds to the Faraday effect. The
transversal propagation is characterised by a linear polarisa-
tion of eigenwaves, thus leading to the Cotton ±Mouton
effect. In intermediate cases the waves are elliptically
polarised. Eventually, on both sides of the orthogonality
point Q at which H0 ? k, a transformation of polarisation
of normal wave occurs: a wave initially polarised by right
circle (far from the point Q), changes to that polarised
elliptically, then (at the pointQ) it becomes linearly polarised,
then again it changes to an elliptically polarised wave (with
left direction of rotation), and, ultimately, to that polarised by
left circle. The evolution of the wave initially polarised by left
circle occurs in the reverse order.

Denote by l? the characteristic length of the interval
at which the transformation of polarisation occurs. From
Eqn (2.7) it follows that the difference of refraction
indices, jn1 ÿ n2j, reaches a local minimum at a point of
transversal propagation where cos a � 0. The parameter

d � lÿ1? kÿ10 jn1 ÿ n2j also has a local minimum there. Just in
the region pointed out the most effective mutual transforma-
tion of ordinary and extraordinary waves occurs.

One can easily find a parameter that defines the intensity
of mutual transformation of right- and left-polarised waves in
the interval of polarisation transformation. Its role plays the
phase difference p � k0l?jn1 ÿ n2j over the interval of length
l?. If the phase difference p is large,

p � k0l?jn1 ÿ n2j
���
Q
� kl?uv�1ÿ v�ÿ3=2

���
Q
4 1 ;

everywhere in the interval of polarisation transformation the
condition of normal wave independence is fulfilled. Hence, at
the orthogonality point Q normal waves almost do not
transform: the ordinary (for instance, right-polarised) wave
remains ordinary (left-polarised) while the extraordinary one
(left-polarised) remains extraordinary (right-polarised);
accordingly, the coefficient Z of mutual transformation of
right- and left-polarised waves is close to unity.

If the phase difference between polarisation components
at the interval l? considered is close to zero, waves polarised
circularly preserve their polarisation almost unchanged, but
change their `name'. The coefficient of mutual transforma-
tion between ordinary and extraordinary waves is, accord-
ingly, close to unity.

The picture of interaction between polarisation modes
simplifies markedly in the case of weak external magnetic
field. This case is commonly encountered in the solar atmo-
sphere and the Earth's ionosphere. In a weak magnetic field
the polarisation of eigenwaves is close to a circular one over a
wide range of angles a between the wave vector k and the
external field H0. The distinction of the polarisation from a
circular one becomes noticeable only within the cone:

2j cos aj9u1=2�1ÿ v�ÿ1 sin2 a : �4:5�

The interval where condition (4.5) is implemented is called
the region of quasi-transversal wave propagation. In a weak
magnetic field the dimension l? of this region is considerably
less then curvature radii of the ray or magnetic strength lines.

Indeed, in Eqns (4.3), terms GG1;2 cos a correspond to the
Faraday effect, while terms �1=2�G�1ÿ v�ÿ1u1=2G1;2 sin2 a are
related to the Cotton ±Mouton effect. `Faraday' terms
prevail over their `Cotton ±Mouton' counterparts for so-
termed quasi-longitudinal propagation, when 2j cos aj4
�1ÿ v�ÿ1u1=2 sin2 a. In this case cross-terms in Eqns (4.3) are
small and the equations describe an independent propagation
of two waves polarised circularly. In the range of quasi-
transversal propagation, where inverse inequality (4.5) holds
true, Cotton ±Mouton cross-terms, responsible for the wave
transformation, are important in (4.3). On the other hand, by
virtue of assumption that the parameter u1=2�1ÿ v�ÿ1 is
small, from inequality (4.5) it follows that value of cos a is
also small everywhere in the quasi-transversal region. Based
on this we may write

cos a � s

r
�O

�
s3

r3

�
; sin2 a � 1ÿO

�
s2

r2

�
; �4:6�

where s is the ray length measured from the orthogonality
point cos a � 0, and r � �d cos a=ds�ÿ1 is the characteristic
scale at which angle a varies along the ray. It depends both on
the ray curvature and magnetic field configuration. In
particular, if the ray is completely in the plane of magnetic

H0

q2
n

q1

b

t
a

c
c

Figure 5. Relative positions of the external magnetic field vector H0, the

tangent to a ray t, the normaln, binormalb, and auxiliary orthsq1 andq2.
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meridian, jrÿ1j � jrÿ1r � rÿ1H j, where rr is the ray curvature
radius, and rH is the distance from the orthogonality point to
a virtual centre of the magnetic field lines where tangents to
lines of H0 intersect.

From expressions (4.6) and estimate (4.5) it follows that in
the interval of quasi-transversal propagation 2js=rj9
u1=2�1ÿ v�ÿ1. Therefore the length of the interval of interac-
tion satisfies the estimate

l? � 2jsj � jrju1=2�1ÿ v�ÿ15 jrj ; �4:7�

i.e. l? is small compared to the curvature radius jrj.
We shall also assume that the inequality

l?5 l �4:8�

is fulfilled, where l is the scale of medium inhomogeneities. If
inequality (4.8) holds true one may speak about spatial
localisation of the effect.

From estimate (4.7), the estimate follows for the para-
meter p that defines the intensity of transformation

p � kl?jn1 ÿ n2j
���
Q
� kru3=2v�1ÿ v�ÿ5=2 : �4:9�

For the case of v5 1 this estimate was first found by Cohen
[46]. For a general case it was found byMelrose [47] based on
the Budden equations and in Ref. [48] based on the method of
phase integrals. A detailed analysis of the problem is
performed in Ref. [8].

4.2 Coefficients of transformation at the interval
of quasi-transversal propagation
The QIA equations for waves with a circular polarisation. The
effect of interaction of circularly polarised waves in magne-
toactive plasma in the region of quasi-transversal magnetic
field (for brevity the effect will be referred to as `quasi-
transversal' interaction) was invoked for the explanation of
peculiarities of solar radiation in radio band [5, 46 ± 48] and
some anomalies of the Faraday effect in the Earth's iono-
sphere [49, 50]. All calculations of this effect were conducted
in the framework of a simplified problem statement which
involved plane waves in a homogeneous plasma placed in an
inhomogeneous magnetic field. The only significant analyti-
cal result for transformation coefficients was found by
Zheleznyakov and Zlotnik [48] who used the phase integrals
method.

More radical solution of the problem was suggested by
Kravtsov and Na|̄da [24] and also by Na|̄da [19]. Being
interested in the transformation of circularly polarised
waves, in Eqn (4.2) we change to variables

g1;2 � 2ÿ1=2�G2 � iG1� ; �4:10�

that obey the equations

dg1
ds
� i�G cos aÿ Tÿ1ef �g1 �

1

2
iGu1=2�1ÿ v�ÿ1g2 sin2 a ;

dg2
ds
� 1

2
iGu1=2�1ÿ v�ÿ1g1 sin2 aÿ i�G cos aÿ Tÿ1ef �g2

�4:11�

and the norming condition jg1j2 � jg2j2 � 1. If awave incident
from the side of negative s is polarised by a right circle, the
system of equations (4.10) should be supplemented by the

initial conditions��g1�ÿ1��� � ��gr1�ÿ1��� � 1 ; g2�ÿ1� � gr2�ÿ1� � 0 ;

�4:12�

while for polarisation by a left circle it should be supplemen-
ted by the initial conditions

g1�ÿ1� � gl1�ÿ1� � 0 ;
��g2�ÿ1��� � ��gl2�ÿ1��� � 1 :

�4:13�

Analytical solution of the QIA equations for localised
interaction. If the region of interaction is localised, i.e. the
length of the interaction region, l?, is small compared not
only to r, but also to a characteristic scale of plasma
inhomogeneity, l, system (4.11) admits an approximate
solution, possessing, nevertheless, a reasonable universality.
In fact, for l?5 l the plasma parameters u and v, as well as
effective twisting Tÿ1ef within the region of interaction can be
replaced by their local values at the point of orthogonality.
Then, in conjunction with (4.6), we find the system of
equations

dg1
ds
� i�Grÿ1sÿ Tÿ1ef �g1 �

1

2
iG�1ÿ v�ÿ1u1=2g2 ;

dg2
ds
� 1

2
iG�1ÿ v�ÿ1u1=2g1 ÿ i�Grÿ1sÿ Tÿ1ef �g2 : �4:14�

If a dimensionless variable

x �
�
G

jrj
�1=2

�sÿ rGÿ1Tÿ1ef � �4:15�

is introduced, Eqns (4.14) take the form

dg1
dx
� ÿixg1 sgn r�

1

2
ip1=2g2 ;

dg2
dx
� 1

2
ip1=2g1 � ixg2 sgn r : �4:16�

Eqns (4.16) contain a single parameter,

p � Gujrj � 1

2
kvu3=2jrj�1ÿ v�ÿ5=2 ; �4:17�

with which we have encountered earlier analyzing the
problem qualitatively: it is the phase difference over the
interaction interval l? (see (4.9)).

One may verify that the component g2 satisfies the
Weber ±Hermite equation and that solution of the system of
equations (4.16) could be expressed in terms of functions of
parabolic cylinder Dn�z�. With initial condition (4.12) (initial
right circle), the intensities of circularly polarised waves for
x! �1 are equal to��gr1��1���2 � exp

�
ÿ pp

4

�
;

��gl2��1���2 � 1ÿ exp

�
ÿ pp

4

�
: �4:18�

Hence, the value

Z � 1ÿ exp

�
ÿ pp

4

�
�4:19�
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represent the coefficient of mutual transformation of right-
polarised and left-polarised waves.

It is self-evident that formula (4.19) coincides with an
expression for the coefficient of transformation obtained in
the framework of 1D problem statement by the method of
phase integrals [48, 51], and yet the results of the QIA are in
many respectsmore comprehensive. First, theQIA applies for
3D curved rays. Second, the QIA gives not only the value of
the transformation coefficient Z, but also the field magnitude
at all points of the ray. That makes it possible to calculate Z
even in the cases of a source located inside the interaction
region. This is important for ionospheric investigations.
Third, it turns out that twisting of the ray and the rotation
of the magnetic field strength lines do not influence the value
of Z, since effective twisting, Tÿ1ef , has at all dropped out from
Eqn (4.16). Finally, fourth, from basic equations (4.11) we
may derive that the wave transformation is small in an
extended region of quasi-longitudinal propagation and find
corrections to transformation coefficient (4.19) due to `partial
localisation' of the interaction effect. We return to this
question further.

Possibilities of `Cotton ±Mouton' plasma diagnostics.
Unlike the Faraday effect which provides information about
integrated parameters of the plasma, the quasi-transversal
interaction due to the Cotton ±Mouton effect may serve as a
source of information about local characteristics of plasma at
the orthogonality point. In particular, one may speak about
determination of local electron concentration Ne with the
other parameters being known.

If the effect of quasi-transversal interaction is spatially
localised (condition (4.8)), the coefficient of transformation is
given by (4.19), and by measured values of Z one may
determine the parameter p which characterises local plasma
properties at the point of orthogonality:

p � Gouojrj � 4

p
ln

1

1ÿ Z : �4:20�

The capability of that kind, substantiated by the results of
Cohen [46], and Zheleznyakov and Zlotnik [48], is widely and
successfully used to treat the data on the polarisation of solar
irradiance, in particular, to estimate the magnetic field H0 of
the solar corona based on preliminary estimates of other
plasma parameters. However, as applied to ionospheric and
laboratory plasma, the possibilities of Cotton ±Mouton
diagnostics were not discussed in detail, in particular, due to
lack of an effective theory of transformation of the normal
waves in the case of curved rays.

Under the conditions of the Earth's ionosphere the
characteristic scale r is 3000 ± 6000 km (given a dipole model
of the magnetic field), whereas the vertical scale for plasma
inhomogeneities lvert � 100 km. By strength of (4.7) the effect
of quasi-transversal interaction will be localised for
u1=25 l?=jrj � 1=30ÿ1=60, i.e. for l5 4 ± 7 m. Thus, in the
ultrahigh frequency range, one can rely on measurements of
local electron concentration of ionospheric plasma at the
points of orthogonality. For an oblique propagation of radio-
waves the effective scale l of inhomogeneities increases several
folds (since lhoriz � 1000 km), and the threshold wavelength
also increases in the same manner (up to 20 ± 30 m).

For laboratory plasma, values Ne, H0, and r may vary
within extremely wide limits, hence, it seems quite reasonable
that by appropriate choice of frequency and propagation
direction for microwave radiation, large volumes of plasma

can be sounded with a view to determine the local electron
concentration. That could be favoured by intentionally
controlling the magnitude and configuration of the magnetic
field provided it is admissible under the conditions of
experiment.

On solving plasma diagnosis problems, in addition to the
localisation of the effect (condition (4.8)) one should also
strive for its better `visibility' which could be, for instance,
characterised by the degree of linear polarisation
blin � 2

�
Z�1ÿ Z��1=2. This value reaches a maximum at

Z � 1=2 which is attained for p1;2 � 4pÿ1 ln 2 � 0:88 and for
frequency of radiation

o1

o0
� �0:57oÿ20 o3

b:v:jrjcÿ1�1=4 :

Generally speaking, at this frequency of `best visibility' of the
effect inequalities (4.4) or (4.8) can be violated. In order to
avoid such a violation it is necessary, as follows from simple
calculations, for the plasma frequency o0 to be confined in
limits

o3=2
b:v:

�jrj
c

�1=2

4o04o1=2
b:v:

�jrj
c

�ÿ1=2
;

which, in turn, is possible if ob:v:jrj=c4 1. These inequalities
specify the ranges of values ofob:v: ando0, for which both the
spatial localisation and good visibility of the effect are
possible.

Account for partial localisation of the Cotton ±Mouton
effect. Estimates of errors due to thr replacement of the exact
QIA equations (4.11) by Eqns (4.14) with linearised coeffi-
cients can be carried out in various ways.

The simplest way is to solve Eqns (4.11) in the region of
quasi-transversal propagation by the perturbation method in
the parameter q � u1=2 sin2 a=�2 cos a�, which is small pre-
cisely in that region. To account for a partial localisation in
the region of interaction, jsj9l? � u1=2jrj, wemay construct a
perturbation theory series based on Eqns (4.14), by consider-
ing there terms quadratic in s in expansions of cos a and sin2 a,
which were ignored in Eqn (4.6), and linear in s terms in
expansions of plasma parameters u, v, and Tÿ1ef . Matching
both perturbation series at the boundary of the region of
interaction �jsj � l? � jrju1=2� so as to provide the least
influence of the matching position, one may find the correc-
tion to computed transformation coefficient (4.19).

Ionospheric manifestations of the Cotton ±Mouton effect:
weak depolarisation of radio-waves. Already first works
devoted to the QIA were aimed at the description of radio-
wave polarisation in the ionosphere. A simple way to describe
a weak depolarisation caused by a distributed, nonlocalised
Cotton ±Mouton effect was suggested in Ref. [9].

Let us write the Riccati equation (2.30) for plasma placed
in a weakmagnetic field. In compliance with (4.1), we find the
equation for #:

d#

ds
� Tÿ1 � 1

2
k0v�1ÿ v�ÿ1u1=2 cos a

� i

4
k0vu sin

2 a sin 2�#� j� : �4:21�

The first term in that equation describes the Rytov twisting,
the second one describes the Faraday rotation of the
polarisation plane, whereas the third imaginary term corre-
sponds to the Cotton ±Mouton effect.
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For the most part of the rays the third term is small
compared to the second.Hence Eqn (4.21) can be solved by an
iterative procedure. For that purpose we write Eqn (4.21) in
the form

d#

ds
� Tÿ1 � 1

2
k0v�1ÿ v�ÿ1u1=2 cos a� iM�s; #� ; �4:22�

where M�s; #� � ÿ�1=2�k0vu sin2 a sin 2�#� j�. Setting
M � 0, we obtain the zero approximation

#0�s� � #�0� �
�s
0

ds

T
� #F�s� ; �4:23�

where #F is the Faraday rotation angle,

#F�s� � 1

2
k0

�s
0

v�1ÿ v�ÿ1u1=2 cos a ds : �4:24�

The first iteration results in a small imaginary correction to
#0�s�:

#1�s� � #0�s� � i

�s
0

M�s; #0� ds

� #0�s� ÿ i

4
k0

�s
0

vu sin a sin 2�#0 � j� ds : �4:25�

The imaginary correction #1�s� � i# 001 is responsible for the
transformation of a linearly polarised wave into that
polarised elliptically, with the small axis

tan# 001 � Im#1 � 1

4
k0

�s
0

vu sin2 a sin 2�#0 � j� ds : �4:26�

Thus, for the ionospheric propagation of radio-waves the
state of polarisation is characterised by the angle (4.23) at
which the large axis of polarisation ellipse turns and by the
small axis (4.26) that defines the depolarisation of the wave.

Fuki [25] has constructed another variant of the iterative
procedure which possesses an improved convergence. We
rewrite Eqn (4.22) in the form of two coupled equations for
# 0 � Re# and # 00 � Im#:

d# 0

ds
� Tÿ1 � d#F

ds
� 1

4
k0vu sin

2 a cos 2�# 0 � j� sinh 2# 00 ;

d# 00

ds
� ÿ 1

4
vu sin2 a sin 2�# 0 � j� cosh# 00 ; �4:27�

where #F is the Faraday rotation angle (4.24). From the
second equation of Eqns (4.27) it follows that

sinh 2# 00 � tan
�
arctan sinh 2# 00�0� ÿ L�s; # 0�� ; �4:28�

where

L�s; # 0� � 1

2
k0

�s
0

vu sin2 a sin 2�# 0 � j� ds ;

and # 00�0� is the initial value of # 00.
On substituting (4.28) in the first equation of Eqns (4.27)

we find a closed equation for # 0 which could be rewritten in
the integral form:

# 0�s� � # 0�0� �
�s
0

ds

T
� #F�s� � R�s; # 0� ; �4:29�

where

R�s; # 0� � ÿ 1
4
k0

�s
0

vu sin2 a cos 2�# 0 � j�

� tan
�
arctan sinh 2# 00�0� ÿ L�s; # 0�� ds :

Since R is small, it is natural to solve Eqn (4.29) by an
iterative method. If we assume in zero approximation

# 00�s� � # 0�0� �
�s
0

ds

T
� #F�s� ;

then, in the m-th approximation

# 0m�s� � # 00�s� � R�s; # 0mÿ1� ;

sinh 2# 00m�s� � tan
�
arctan sinh 2# 00�0� ÿ L�s; # 0m�

�
: �4:30�

In the simplest case, when an incident wave is linearly
polarised and # 00�0� � 0, expression (4.26) follows for the
small correction # 001 in the first approximation.

Formost problems of the ionospheric propagation of high
frequency and ultrahigh frequency radio-waves the approx-
imation (4.26) is sufficient to evaluate the depolarisation.
Otherwise the iterative scheme (4.30) should be used.

In Ref. [26] detailed calculations of radio-wave polarisa-
tion have been carried out for givenmodels of the ionosphere.
The QIA equations were solved numerically by the Runge ±
Kutta method. According to that reference, the Rytov
rotation of the polarisation plane can be disregarded in most
cases compared to the Faraday rotation, since the radius of
ray twisting, T, is commonly extremely large even under the
conditions of transition from the diurnal region of the
ionosphere to the nocturnal region. It is there the contribu-
tion from twisting is maximum, for the structure of diurnal
and nocturnal stratosphere is plane-layered, and thus twisting
is practically absent.

Polarisation effects at scattering of radio-waves in the polar
and equatorial ionosphere. The depolarisation of radio-waves
is to be accounted for if there is scattering on irregularities of
the polar and equatorial ionosphere. Depolarisation owes its
existence to two reasons. They are: (1) the transformation of
waves as they propagate from the source to a point of
scattering and return back, and (2) the anisotropy of
irregularities directly at the point of scattering. As shown in
Ref. [27], the local depolarisation at the point of scattering is
usually extremely small and the resulting depolarisation is due
to summing of polarisation changes along the entire ray.

Fuki [25, 28] subsequently ascertained these results and
constructed the correlation matrix of the scattered field with
account for the Faraday and Cotton ±Mouton effects. This
made possible the explanation of the experimental results
presented in Ref. [52], which involved measurements of
polarisation of radio-waves scattered in the polar ionosphere
on irregularities elongated in the direction of the Earth's
magnetic field. The results discussed can be used to analyse
radio echoes from strongly elongated irregularities of the
equatorial ionosphere, as well as incoherent (Thomson)
scattering on thermal fluctuations of electron concentration
in the ionosphere.

In many cases scattered signals present a hindrance to
radio engineering systems of different type (used in wireless
communication, radio-location, radio navigation, etc.). In
Ref. [53], methods of polarisation damping of influence of
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auroral and equatorial radio echoes have been suggested.
Given a radar with the main lobe angular width of approxi-
mately 1�, the degree of auroral echo suppression due to the
polarisation selection may reach 25 ± 30 dB.

4.3 Other polarisation effects in plasma
The transformation of normal waves in the region of zero
magnetic field in the solar corona. Above, we have confined
ourselves to considering only one, though important, ques-
tion about changes in polarisation in the region of quasi-
transversal propagation of electromagnetic waves in magne-
toactive plasma. When analyzing the effects that could
influence the polarisation of electromagnetic waves radiated
by the solar corona, Zheleznyakov [54] has discovered that a
marked transformation of normal waves occurs also in
regions of neutral magnetic field. In magnetic fields of
complex structure, the presence of points where the field H0

equals zero is the rule rather than the exception.
In the vicinity of the neutral field point everything looks as

if we have encountered the problem of limit polarisation
twice: first the normal waves propagating in the magnetoac-
tive plasma become transversal asH0 ! 0, then a transversal
wave splits into the superposition of two normal waves past
the neutral point. The results of rigorous analysis of this
problem are presented in a review article [8].

Transformation of waves in an inhomogeneous plasma in
the presence of a shear of magnetic field strength lines. This
problem was studied in Ref. [55]. The main result is in
establishing the fact that even a small shear of strength lines
can lead to a noticeable field transformation. This effect can
be used for plasma diagnosis in new ranges of parameters.

Polarisation effects in a moving plasma. Inhomogeneous
motion either of laboratory or any other plasma results in a
weak anisotropy. In essence, this anisotropy is similar to the
optic Maxwell effect (appearance of anisotropy in a shear
flow of fluid). Mechanisms which give rise to anisotropy in a
plasma, discussed in Refs [56 ± 58], are due to spatial
dispersion induced by an inhomogeneous flow of plasma.
Clearly, polarisation effects in an inhomogeneously moving
plasma can be described in the framework of the QIA.

Weak anisotropy due to the inhomogeneity of medium. The
inhomogeneity of a medium which possesses spatial disper-
sion must inevitably lead to anisotropy, since there exists a
distinguished direction He0, where e0 is the permittivity of the
isotropic medium in the absence of inhomogeneities. Calcula-
tion of the plasma inhomogeneity tensor carried out in Ref.
[59] has confirmed this expectation. The anisotropy induced
by inhomogeneity turned out to be negligible, however at
large distances such anisotropy could be discovered by
polarisation methods. In essence, even the Rytov rotation of
the polarisation planemight be interpreted as being caused by
the appearance of a weak anisotropy due to medium
inhomogeneities.

Polarisation effects in a plasma with random inhomogene-
ities. In a work by Apresyan [29] (see also Ref. [30]) the
problem of the influence of weak fluctuations in an aniso-
tropic medium on the polarisation of a wave passing through
a thick randomly inhomogeneous layer has been considered.
This problem is encountered, in particular, in describing the
polarisation of high-frequency waves in magnetoactive cos-
mic plasma. In the work mentioned the QIA equations with a
fluctuating tensor of dielectric permittivity were used. On
their basis, equations for the mean value of the Stokes vector,
which describes the wave polarisation, were derived. As it

turns out, within the layer the mean Stokes vector tends
asymptotically to a specific direction, related to the mean
value of the tensor of dielectric permittivity of the medium.
Thus the measurement of the mean polarisation provides
additional information about mean properties of the medium
and in that manner facilitates the solution of inverse
problems.

5. Optical effects in weakly-anisotropic media

5.1 `Tangent' conical refraction
General picture of the effect. As is known, the conical
refraction (the internal one) takes place on incidence of a
plane wave on a homogeneous crystal, if refraction indices for
two types of normal waves with the same direction of k
coincide [51]:

n1�k; ê� � n2�k; ê� : �5:1�

In an anisotropic smoothly inhomogeneous medium
condition (5.1) will not be met everywhere in the volume
occupied by a wave, as it is in the classical conical refraction
effect, but only along a special line (Fig. 6) where the wave
vector k�r� is oriented in a proper way with respect to the
main axes of tensor ê�r�. That line appears because condition
(5.1) corresponds to the intersection of two surfaces in the
coordinate space. As a result, instead of the pattern of ray
scattering in cone (5.1), associated with the classical effect of
the conical refraction, in a smoothly inhomogeneous medium
a specific wave transformation is observed, which can be
reasonably treated as tangent conical refraction (Na|̄da [31]).

`Tangent' conical refraction can occur in an inhomogen-
eously deformed crystal, in an inhomogeneously deformed
glass, whose optical anisotropy is caused by the elastic-optical
effect, and, finally, the effect can be observed in a moving
fluid with inhomogeneous velocity field, where the anisotropy
is due to the Maxwell effect, and in neodimum glasses
subjected to inhomogeneous heat loads in intense lasers [60,
60a].

lint

r?
Q

Ray

Critical line
n1�k; r� � n2�k; r�

Figure 6. The phenomenon of tangent conical refraction is observed in the

vicinity of the point Q where the ray intersect a `critical' line given by

condition (5.1). At this line the refractive indices of two normal waves in a

weakly anisotropicmedia coincide. The region of strong transformation of

the normal waves is dotted (lint and r? are respectively the transversal and
longitudinal scales of the interaction region).
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Let us place between crossed polarisers a doubly refractive
medium in which the wave transformation occurs in the
vicinity of a point that satisfies (5.1). Because of the wave
transformation the interference pattern on the screen will be
modified. Fig. 7 shows the character of the interference
pattern which we shall discuss below.

At critical points (5.1) the relationships

w11 � w22 ; Re w12 � 0 :

hold.
The simplest scheme of observation of the effect. Fig. 7

shows the simplest experimental setup allowing the observa-
tion of the effect. It consists of a rectangular glass parallele-
piped with length 2L and the side a of its square base (L4 a),
two crossed polarisers P1 and P2, the source of monochro-
matic light, and a screen. The pairs of opposite side faces
(AB; CD and B 0C 0; A 0D 0) can be subjected to distributed
loads (of compression) which uniformly increase from the
central cross section to the end-walls. We shall denote the
current value of the external pressure by P�z�; P > 0 on
compression in the direction of orientation of the output
polaroid (axis x) and P < 0 on compression in the perpendi-
cular direction; the maximum value of

��P�z��� near the end-
walls we denote by Pm.

Along the axis of the parallelepiped a cylindrical channel
is drilled. Its radius R is considerably smaller than the width
of end-wall face a. A fluid at the pressure P1 is pumped into
the channel. In the vicinity of that channel the glass might be
subjected to axisymmetric deformations.

Clearly, if there are no external and internal stresses, the
screen will be dark. The samewill be observed if there are only
external stresses, i. e. P1 � 0. Lightening due to marginal
effects can only be seen in the regions adjacent to the external
and internal surfaces.

In absence of external stresses there are no `critical' points
(5.1) at the rays, so the linear wave transformation does not
occur. If external loads �Pm 6� 0� are applied simultaneously
with internal pressureP1, `critical' lines form in the midplanes
x � 0 and y � 0, and close to them mutual transformation of
normal waves occurs. At a given distance r from the centre the
`critical' points arise when Pm5

��s0rr�r� ÿ s0jj�r���, where s0rr
and s0jj are the radial and azimuthal eigenvalues of the stress

tensor ŝ0 corresponding to the internal (radial) stresses. For a
given r, the `critical' point is created at one of the end-walls for
Pm �

��s0rr�r� ÿ s0jj�r���, and as Pm increases it displaces to the
central cross-section of the parallelepiped. Correspondingly,
there is a rise in the modifications introduced by the mutual
transformation of waves into the interference pattern on the
screen.

Under the conditions formulated above, i.e. for��s0rr�r� ÿ s0jj�r���5Pm `critical' points form on the ray. As a
result, on the screen a dark cross will appear against a
uniformly lighted background (see Fig. 7), a cross which is
wider, the less the ratio

��s0rr�r� ÿ s0jj�r���=Pm. The QIA
formulae from Section 2 enable one to calculate the particular
parameters of that cross.

Coefficients of transformation of normal waves for a
localised conical refraction. A detailed procedure involving
calculations of the coefficients and fields in the framework of
QIA is presented in Ref. [31]. Practically, it does not differ
from the procedure of calculation described in Section 4, as
applied to quasi-transversal propagation of waves in a
plasma. In the case of longitudinal localisation of the
interaction (the length of interaction lint is less than the scale
l of medium inhomogeneities) the coefficients in the QIA
equations can be linearised by the distance from the critical
point.

In the case of longitudinal localisation, the coefficient Z of
transformation (by intensity) of incident normal linearly
polarised wave into a normal wave of the same type with
perpendicular polarisation direction is expressed as [31]:

Z � 1ÿ exp

�
ÿ pp

4

�
; �5:2�

where

p � 2n70kv
ÿ1��w12�Q���2 : �5:3�

Here k � o=c, n0 is the refraction index at the `critical' point
Q and

v � 1

2
n40

����q�w11 ÿ w22�qs

����
Q

: �5:4�

In particular, for a wave passing through the `critical' pointQ,
the transformation coefficient Z is equal to zero for a real-
valued tensor ê since in that case p � 0.

For the longitudinal size h of the transformation region
Na|̄da [31] found the estimate

lint � n
1=2
0 kÿ1=2vÿ1=2 : �5:5�

The smallness of this value compared to l defines the
applicability condition for formula (5.3).

If, additionally, the transversal size r? of the transforma-
tion region is small, formula (5.3) can be rewritten as

p � 2n70kv
ÿ1
"��Im w12��2 � X 2

����qRe w12qX

����2
#�����

Q

: �5:6�

The value of the impact parameter jXj at which in absence of
gyration a half-level of brightness is achieved (Z � 1=2), can
be conveniently taken as the parameter r?:

r? � �2pÿ1 ln 2�1=2nÿ1=40 kÿ1=2v1=2
����qRe w12�Q�qX

����ÿ1 : �5:7�

Ray
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x

P1

P2

a

L

S
a

C

B

A A 0
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C0

D

D 0

Figure 7. The scheme of observation of the tangent conical refraction; P1

andP2 are the crossed polaroids,S is the screen. A transparent rectangular

parallelepiped of length Lmax with a narrow cylindrical channel aligned

longitudinally is subjected to external mechanical loads applied to the

corners of the parallelepiped (they are shown by arrows). Radial stresses

due to a compressed fluid in the channel are not displayed. A cross-like

interference pattern of interacting polarisation modes is observed on the

screen [31].
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That this value is small compared with l serves as the
condition of applicability of formula (5.6), based on line-
arised coefficients.

5.2 Light propagation in hiral media and inhomogeneous
liquid crystals
The photoelastic effect usually leads to weak optical aniso-
tropy in elastic bodies. Liquid crystals are also characterised
by a relatively weak anisotropy. Correspondingly, it seems
reasonable to use the quasi-isotropic approximation of
geometrical optics to describe light waves in liquid crystals
and dielectrics subjected to inhomogeneous stresses.

One of the interesting objects for analysis is the light
propagation in a hiral medium whose optical axis rotates
relatively a ray with a definite spatial period. This object is
interesting in two respects.

First, historically it was the first example which demon-
strated the inapplicability of the geometrical optics in the
form of independent normal waves in a limit of weak
anisotropy (Ginzburg, [61]). Second, a dielectric with a
uniformly rotating axis admits exact solution either of
Maxwell's equations [61 ± 63] or any approximate equations
that could be imagined, including the QIA equations. So on
this example, the applicability conditions of approximate
methods could be verified.

The problems of helical wave propagation in inhomoge-
neous media are of practical importance for the optics of
liquid crystals. As shown in Ref. [64], in inhomogeneous (i. e.,
with inhomogeneous rotation of optical axes) liquid crystals
of cholesteric type a linear interaction of helical waves is
possible. That reference also contains the analysis of many
other aspects of the question as well as an extensive biblio-
graphy.

5.3 Light polarisation in deformed single-mode light
guides{
Factors influencing the polarisation state in light guides.
Electromagnetic waves in axisymmetric light guides are
characterised by a two-fold polarisation degeneration, similar
to transversal waves in an isotropic medium. In real light
guides, the polarisation degeneracy is lifted because of many
factors, such as technological defects in axial symmetry,
anisotropy of the fibre material, artificial defects caused by
mechanical stresses (photoelasticity), and also bending and
twisting of the light guide.

We shall denote by h1 and h2 the propagation constants of
two polarisation modes appearing after the lifting of the
degeneration. If h1 and h2 differ from each other quite
strongly (Dh � jh1 ÿ h2j4 1=l, where l is the characteristic
scale of the longitudinal inhomogeneity of the waveguide),
the normal waves can be regarded as independent. In this
case, exciting a wave of a definite type, one may safely suggest
that the field polarisation in the light guide will be preserved,
which is important for practical applications. In the opposite
case (Dh91=l), an intense transformation of normal waves
occurs. Such a transformation is accompanied by an unstable
state of the field in the light guide, which is undesirable in
communication systems.

To describe the normal wave transformation in light
guides it seems natural to resort to equations of the QIA
type which would provide a smooth transition both to the

polarisation degeneration (Dh! 0) and to independent
normal waves (Dh4 1=l). The role of the anisotropy para-
meter m1 here plays the relative difference in the constants of
propagation of two polarisation modes, m1 � jDhj=h. Taking
into account that the parameter m � �k0l�ÿ1 � �hl�ÿ1 pre-
serves its common geometrical sense one can easily verify that
the product Dhl now plays the role of parameter d � m1=m.

The quasi-isotropic approximation takes into account
almost all factors responsible for the polarisation state in
light guides: bending and twisting of a fibre, weak anisotropy
of the material, small deviation from the axial symmetry.
Thus, the QIA pretends to a unified consideration of all
conceivable polarisation effects in light guides, except for,
say, an extremely weak scattering on small inhomogeneities.

Local curvilinear coordinates. Small parameters of the
problem. On describing electromagnetic waves in a light
guide it is expedient to introduce curvilinear coordinates,
with the axis zmeasured along the axis of the light guide (the
axis is introduced as loci of centroids of the permittivity
distribution e0 � �1=3� Sp eik in cross-sections), and variables
x and Z measured in the transversal plane, with the axis x
aligned with the normal and Z with the binormal to the axial
line r � r�z�. As a result, the radius vector for an arbitrary
point r can be represented as the sum

r�x; Z; z� � n�z�x� b�z�Z� r�z� : �5:8�

In each cross-section of the waveguide we select the
axisymmetric part, eax�r; z�, dependent on the distance to
the axis of the waveguide. The difference

g � e�x; Z; z� ÿ eax�r; z� ; r � �x2 � Z2�1=2 ; �5:9�

will then characterise the departure from axial symmetry. We
associate with it the small parameter m2 � max

ÿjgj=e0�5 1,
preserving the designation m1 for the small anisotropy
nik � eik ÿ e0dik.

In addition to small parameters m, m1, and m2, in this
problem a new parameter, m3 � a=l5 1, arises that charac-
terises the smallness of the radius a of the light guide core as
compared to the scale l of inhomogeneities. As the scale l, one
may take the curvature radius of the axial lineR � 1=K1 or its
twisting radius T � 1=K2, so, in fact, m 03 � aK1 or m 003 � aK2.
The smallness of the parameter m3 insures the absence of
abrupt bending and twisting of the light guide. We shall
assume that all parameters m; m1; m2, and m3 are of the same
order of smallness and departing from this we expand the
fields in the light guide.

Maxwell's equations in curvilinear coordinates. In a
symmetrical single-mode light guide the electric field is a
superposition of two polarised states

E � �F1e1 � F2e2� exp�ih0z� ; �5:10�

where h0 is the constant of propagation whereas vector
functions e1 and e2 are described, for example, in Refs [65,
66]. These functions have both latitudinal and transversal
components with the latter orthogonal to each other:
e1?e2? � 0.

In a weakly inhomogeneous and weakly anisotropic light
guide a field in zero approximation preserves the unperturbed
structure (5.10) but to the first order in small parameter m
scalar amplitudes F1 and F2 become variable, F1;2 � F1;2�z�,
and interdependent. The link between them could be found by

{The material of this section is prepared by Yu A Kravtsov in a

collaboration with A N Pilipetski��.
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writing Maxwell's equations in the curvilinear coordinates
z; Z, and x. To zero order in respect to mMaxwell's equations
are satisfied by strength of (5.10), and the condition of
solvability of the first-order equations yields linked equations
for F1 and F2, analogous to the QIA equations. To simplify
the analysis we consider separately the contributions coming
from bending, twisting, the anisotropy and asymmetry,
although in reality they act simultaneously.

The influence of bending and twisting. With account only
for bending and twisting we obtain the equations

qF1

qx
� ÿih0K 2

1 a
2
efF1 � K2F2 ;

qF2

qx
� ÿK2F1 � ih0K

2
1 a

2
efF2 ; �5:11�

where the value aef characterises an effective radius of the
light guide.

Terms with the twisting K2 in Eqns (5.11) describe Rytov
rotations of field vectors in respect to the trihedronn,b, and t
tied to the axis of the light guide. The terms with K1 describe
birefringence in a bend waveguide. For K1 � const and
K2 � 0 (light guide circle) from (5.11) the results follow that
were derived in Ref. [67] on the basis of another approach.
Corrections to the unperturbed propagation constant h0 turn
out to be different for two polarisations. They are second-
order in parameter m3 � K1a. We have artificially attributed
them to the first-order terms inMaxwell's equations, but thus
we obtained the birefringence due to the light guide bending.
Results that follow from Eqns (5.11) compare reasonably
with the results of other works [68 ± 70] in which the role of
bending and twisting was analysed but on anothermethodical
basis.

Noteworthy is that the Rytov rotation of the polarisation
plane, though studied more than 50 years ago [13], was
experimentally verified quite recently with the help of light
guides [71 ± 73].

The influence of ellipticity (asymmetry) of the core.Expand
the asymmetrical part g of the permittivity (5.9) in a Fourier
series in an angular variable defined in the plane of the light
guide cross section and insert in the solvability conditions of
Maxwell's equations. As a result, the differential equations
for F1 and F2 take the form

qF1

qz
� ik0

2
�dcF1 � dsF2� ; qF2

qz
� ik0

2
�dsF1 ÿ dcF2� ;

�5:12�

where values dc and ds characterise the interaction between
two polarisation modes due to axial asymmetry of the light
guide. From Eqns (5.12) corrections to the propagation
constants of polarisation modes are computed, Dh1;2 �
��d2c � d2s �1=2. They compare with results of calculations
which could be found in Refs [74 ± 76]. Of note is that simple
formulae for dc and ds enable calculating easily the correc-
tions to propagation constants for an arbitrary asymmetry,
say for a fibre with an elliptical core, or with two cores. It
seems to us that such an approach is simpler and clearer than
the existing ones.

The influence of anisotropy. One distinguishes between
two kinds of anisotropy in fibres: `frozen' anisotropy formed
in the process of fibre production, and `deformational'
anisotropy which occurs due to the action of mechanical
stresses, in particular, at bending [77 ± 79].

Accounting for the anisotropy of a light guide material
results in equations of (5.12) type. The coefficients entering
the equations are given by linear combinations of compo-
nents of the tensor nik averaged with squared transversal or
longitudinal wave functions, or with the product of these
functions.

For the sake of brevity, suffice it to say that the
transformation of polarised modes is determined not only
by the transversal components of the anisotropy tensor, but
also by the longitudinal component, which is capable of
coupling the polarisation modes. According to these equa-
tions, the propagation constants become changed by
Dh � k0jnikj.

At simultaneous action of many factors the superposition
of all factors mentioned above enters the differential equa-
tions for F1 and F2, since the calculations were carried out to
the first order in respect to mi with the only exception for
coefficients characterising the contribution from bending that
are proportional to m23 � �ka�2.

The advantage of the approach presented is that we
consider all possible factors together, and thus achieve a
unified description of the various effects that lift polarisation
degeneracy. One more advantage is the ability to compare the
action of different factors that lift the degeneracy and to find
the conditions of stable polarisation in the light guide. In
essence we return to the condition d � Dh l4 1 discussed at
the beginning of the section. This condition ensures the
weakness of interaction between polarisation modes. When
an opposite condition, d91, is implemented, mutual trans-
formation of modes renders instable the state of polarisation
in the light guide. The reader can find additional practical
details on the problem in Refs [81 ± 84].

5.4 The optical Magnus effect
Noteworthy is one more interesting effect linked with weak
optical anisotropy, namely the optical analogue of the
Magnus effect. The essence of the optical Magnus effect is
that in an inhomogeneous medium a ray is displaced
depending on its polarisation [85]. The rays with a right and
left circular polarisation displace in different directions.

The optical Magnus effect provides more grounds to note
a close connection between the anisotropy and inhomogene-
ity of a medium. In particular, we have already pointed out in
Section 4.3 that an isotropic medium, possessing a spatial
dispersion, attains a weak anisotropy if there is an inhomo-
geneity. In the case of the optical Magnus effect the
anisotropy does not occur, but a weaker effect, the polarisa-
tion-dependent displacement of rays, is observed.

According to Ref. [85], the opticalMagnus effect modifies
the ray equation: instead of the first equation in Eqns (2.10)
one should write

dr

ds
� tÿ s

k0n
�t ln n0� ;

where t is the tangent to a ray, and the value

s � Im

�
2E �1E2

jE1j2 � jE2j2
�

characterises the degree of circularity of the field (values E1

and E2 are the projections of the field on two perpendicular
orths): for the right circular polarisation s � �1, whereas for
the left one s � ÿ1. In the intermediate cases ÿ1 < s < �1.
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The ray displacement mentioned could be interpreted as
an interaction of the photon spin (its polarisation) with a
medium inhomogeneity, i.e. as a sort of a spin ± orbital
photon interaction in an inhomogeneous medium. In a
certain sense the effect is opposite to the Rytov rotation of
the polarisation plane, in which twisting of a ray influences
the field polarisation: under the optical Magnus effect the
polarisation itself influences the ray trajectory.

The opticalMagnus effect was observed experimentally in
light guides as the speckle-picture displacement (turning)
upon replacing the right polarisation by the left one [86].

5.5 Polarisation effects in nonlinear optics
Intense electromagnetic waves in nonlinear isotropic media
induce various polarisation effects: the self-rotation of polar-
isation ellipse of an intense light wave [87], the appearance of
nonlinear anisotropy [88, 89], the self-induced rotation of the
polarisation plane in cubic crystals due to the anisotropy of
nonlinear absorption [90].

A wide spectrum of nonlinear polarisation phenomena
was discussed in the monograph [91] devoted to optical
bistability. They include polarisation multistability, polar-
isation instability and chaos, depolarisation instability at
two-photon absorption, polarisation instability in double
refractive media, etc. In this journal, reviews of nonlinear
polarisation phenomena have been given by Arakelyan [92],
and Zheludev [93]. We can also mention recent Refs [94, 95,
120].

In mentioning these works we would like to draw
attention to the fact that precisely the QIA ideas are applied
in analyzing the nonlinear polarisation effects. The point is
that nonlinear corrections to the tensor of electric permit-
tivity are always considered to be small and are accounted
in equations for field amplitudes as perturbations. If non-
linear corrections are of tensor character, the polarisation
degeneracy is lifted at intensity increasing. As a result,
equations for polarisation modes `hook' each other and
one arrives at a system of nonlinear equations of the QIA. It
is this dependence of the anisotropy on amplitudes that
leads to the nonlinear polarisation effects mentioned
above.

6. Acoustics of weakly anisotropic media

6.1 Quasi-isotropic approximation of geometrical
acoustics
In this section we apply the QIAmethod to acoustic problems
(Na|̄da [21, 22]). The QIA equations enable matching of the
geometrical acoustics of 3D inhomogeneous isotropic media
(Refs [96, 97]) with the Courant ±Lax method of independent
normal waves (the latter was applied to acoustics of 3D
inhomogeneous anisotropic media in Refs [98 ± 107]). The
need for such amatching is at present dictated by tasks arising
in seismology and ultrasonic nondestructive control.

Deformation waves in an inhomogeneous anisotropic
medium are described by the equation [102]

r
q2ua
qt 2
� qsab
qxb

; �6:1�

where r is the medium density, u � �u1; u2; u3� is the displace-
ment vector, aabgn is the tensor of elastic moduli
�aabgn � agnab�, sab is the tensor of stresses, connected with

the displacements xn by the formula

sab � aabgn
qug
qxn

: �6:2�

The summation from 1 to 3 over recurrent indices is implied
everywhere in this section. In a limiting case of isotropic
medium, the tensor aabgn is

a0abgn � l0dabdgn � m 0�dagdbn � dandbg� : �6:3�

We shall term amedium as a weakly anisotropic one if the
difference in phase velocities of transversal modes, Dv?=v?, is
small as compared to unity: m1 � Dv?=v?5 1. For m1 � 0 the
geometrical acoustics of isotropic media [96, 97] holds true,
whereas for d4 m1=m4 1 the geometrical optics in the form
of independent normal waves should be invoked [98 ± 102].

The quasi-isotropic approach describes elastic waves in
the intermediate case and in this manner provides a contin-
uous transition from an anisotropic medium to an isotropic
one. In a weakly anisotropic medium the LameÂ coefficients l0

and m 0 could be taken so that the isotropic tensor a0abgn formed
by them differs but slightly from the original tensor aabgn, i. e.
that the condition of small anisotropy is met:

m1 � �m 0 � l0�Daabgn � �m 0 � l0�ÿ1 max
a; b; g; n

��aabgn ÿ a0abgn
��5 1 :

�6:4�
We make use of the eikonal substitution

u � U exp�ÿiot� j� �6:5�

in Eqn (6.2). Having obtained the equation��o2rÿ m 0p2�Ua ÿ �l0 � m 0��pU�pa
�

� Daabgn pbpnUg ÿ iXa � . . . �6:6�
for amplitude U, where

X � �l0 � m 0�ÿH�pU� � p divU
�� m 0ÿU divp� 2�pH�U�

� �pU�Hl0 � �Hm 0;p�U� �Hm 0;U�p ;

we recall that the eikonal of transversal waves obeys the
equation o2rÿ m 0�Dj�2 � 0 and multiply Eqn (6.6) succes-
sively by the vectors of the normal and binormal to the ray. As
a result, we find two equations for components of the vector
amplitude U.

The substitution

U � U0�rm�ÿ1=4�Qnn�Qbb� ;

where U0 obeys the law of energy conservation in a ray tube
yields for Qn and Qb the system of QIA equations [21]

dQn

ds
� 1

2
ior1=2mÿ3=2�DantntQn � DantbtQb� ÿ Tÿ1Qb � 0 ;

dQb

ds
� 1

2
ior1=2mÿ3=2�DabtntQn � DabtbtQb� � Tÿ1Qn � 0 :

�6:7�

Thus Eqns (6.7) posses the same structure as the QIA
equations for electromagnetic waves. This enables one almost
without modification to extend on acoustics not only various

148 Yu A Kravtsov, O N Na|̄da, A A Fuki Physics ±Uspekhi 39 (2)



methods of calculations involving polarisation effects but
also certain methods of diagnosis of weakly anisotropic
media, known in electrodynamics. Moreover, certain effects
can be generalised on acoustics. For instance, the method of
polarisation diagnosis of plasma discussed in Section 4 can be
applied almost without changes to the acoustic polarisation
diagnosis of the pre-stressed media. For the same reason one
may anticipate the existence of an acoustic analogue of
tangent conical refraction (Section 5.1).

6.2 Geometrical acoustics of an isotropic homogeneously
stressed medium
Consider an acoustic wave propagating in an anisotropic,
pre-deformed medium which, as is known, is similar to an
anisotropic medium with the tensor

aabgn � q2W
q�qwa=qxb� q�qwg=qxn�

����
w�u 0

;

where W is the deformation energy per unit of unperturbed
volume, and u0�r� is the displacement vector describing the
preliminary deformation. Provided the initial disturbances
are small,

aabgn � a0abgn � Daabgn ;
where

Daabgn �Wabgney
qu0e
qxy

;

Wabgney � q3W
q�qwa=qxb� q�qwg=qxn� q�qwe=qxy�

����
qwm=qxy�0

:

�6:8�

In a coordinate system where the x1 axis is parallel to the
wave vector k one needs to know only aa1g1 and Wa1g1ey. As
turns out, there are only six different componentsWa1g1ney:

W111111 � C1 � 6m 0 � 3l0 � 2A� 6B� 2C

� 6m 0 � 3l0 � 4m� 2l ;

W111122 �W111133 � C2 � l0 � 2B� 2C � l0 � 2l ;

W212111 �W212122 �W112121 �W211121 �W313111

�W313133 �W113131 �W311131 �W3

� 2m 0 � l0 � 1

2
A� B � 2m 0 � l0 �m ;

W212133 �W313122 �W4 � l0 � B � l0 �mÿ 1

2
n ;

W112112 �W211112 �W113113 �W311113 �W5

� m 0 � 1

2
A� B � m 0 �m ;

W213123 �W213132 �W312132 �W312123 �W6

� m 0 � 1

4
A � m 0 � 1

4
n ;

where l, m, and n are the Murnaghan moduli [104]:

n � A ; m � 1

2
A� B ; l � B� C :

Calculating components Daa1g1 by formulae (6.8) and
substituting them in Eqns (6.7) we obtain the QIA equation
for a pre-stressed isotropic medium:

u � U0�Qnn�Qbb��rm 0�ÿ1=4 exp
�
ÿiot� ij

ÿ 1

2
o
�
r1=2�m 0�ÿ3=2

�
C3wtt� 1

2
�C3 � C4��wnn � wbb�

�
ds

�
;

dQn

ds0
� ÿiGQn � �Tÿ1 ÿ iH�Qb ;

dQb

ds0
� �ÿTÿ1 � iH�Qn � iGQb ; �6:9�

where

G � or
1=2

2m3=2
C6�wnn ÿ wbb� ; H � or

1=2

2m3=2
C6�wnb � wbn� ;

wnn � nanb
qu0a
qxb

; wnb � nabb
qu0a
qxb

;

wbb � babb
qu0a
qxb

; wtt � tatb
qu0a
qxb

:

Special calculations of the elastic wave transformation
can be carried out for a homogeneous medium, for an
axisymmetric torsion of a homogeneous cylinder, and for
several other systems [21, 22]. The theory presented can also
be applied in seismic sounding tasks (weak anisotropy of the
Earth's crust was discovered quite recently [105, 106]), and in
problems of acoustics of liquid crystals [107].

7. Quantum mechanical analogues of waves in
weakly anisotropic media

7.1 The Stern ±Gerlach effect as birefringence of spinor
wave functions in a magnetic field
In this section we compare the QIA with a semiclassical
asymptotics of the Pauli equations for spin 1/2 particles in a
magnetic field. The case of 1/2 spin and the Pauli equation (as
opposed, for instance, to theDirac equation) are taken here to
avoid complex manipulations and demonstrate the essence of
novel features brought by the QIA to this well-investigated
problem.

There are two approaches to construct the semiclassical
approximation for particles with spin: the approach by Pauli
and that by de Broglie. The Pauli approach is based on the
assumption that the semiclassical trajectory of a particle is not
linked with its magnetic momentum. That is quite similar to
the early version of the QIA in electrodynamics: in zero order
the QIA gives the trajectory (the ray) that does not depend on
the spin (the polarisation). In his time Pauli did not succeed in
finding a complete (i.e. with account for polarisation)
semiclassical asymptotics. This was first done by Galanin
[34]. Later the result was rederived more rigorously by
Rubinow and Keller [35].

Another approach was outlined by de Broglie [108] who
suggested that trajectories of spin 1/2 particles are associated
with the magnetic moment already in zero order of semi-
classics. De Broglie intended to supplement semiclassical
formulae by Pauli by a term that would depend on the
magnetic momentum and external magnetic field. Corre-
sponding additional terms would appear in eikonal equations

February, 1996 Waves in weakly anisotropic 3D inhomogeneous media: quasi-isotropic approximation of geometrical optics 149



and Hamiltonian equations. The latter would imply that
particle world lines are dependent on particle spin states.
This is exactly what occurs in the Stern ±Gerlach effect.
However de Broglie did not manage to find the expression
for that additional term.

The program outlined by de Broglie was realised ten years
later by Schiller [109, 110], yet in a very cumbersome manner.
Meanwhile the picture of the effect is immediately clarified if
one notes that the Stern ±Gerlach effect represents the
birefringence of spin c-function by an external magnetic
field. Departing from that viewpoint we may find solutions
for the Pauli and Dirac equations that are similar to those
suggested by electrodynamics of anisotropic inhomogeneous
media.

This approach was realised in a paper by Na|̄da and
Prudkovski|̄ [23] which we shall follow further. By analogy
with the procedure of ray splitting in electrodynamics of
anisotropic media we obtain geometric-optical solutions of
the Pauli equation that correspond to the split rays in the
Stern ±Gerlach effect, the goal de Broglie was working
towards. The solutions admit as particular cases both the
Stern ±Gerlach type particle trajectories and the solutions of
the Pauli ±Galanin ±Rubinow ±Keller type.

7.2 QIA equations for a spinor wave function
Let a beam of nonrelativistic polarised spin 1/2 particles (for
example, neutrons) enters an inhomogeneous magnetic field
(Fig. 8). Such a beam, generally speaking, splits into two
beams of different polarisation. The task is to calculate the
polarisations, intensities and phases of these beams.

Noteworthy, neutrons as a subject for illustration are
more convenient than Ag or K atoms in 2S1=2 states used in
the Stern ±Gerlach or Frish ± Segre experiments on the
change of spin state near the neutral point of the magnetic
field, the reason being that in atoms we need to account for
the magnetic momentum of the nucleus, which complicates
the picture considerably (Rabi [117], Motz and Roze [118]).

The solution of the formulated problem reduces to a
construction of the appropriate semiclassical solution of the
Pauli equation

ih
qc
qt
�
�
ÿ h2

2m
H2 ÿ mn�Hr�

�
c ; �7:1�

wherem is the neutronmass, mn is its magnetic momentum,H
stands for the magnetic field, and r is a vector composed from
Pauli matrices.

In order to obtain a semiclassical solution to the Pauli
equation (7.1) we first make the eikonal substitution

c�x� � A�x� exp�ij�x�� �7:2�
for the spinor two-component wave function c and write the
eikonal equation with account for the magnetic moment:

det

�
ÿ�ho� �h2

2m
k2 ÿ mnHr

�
�
�
ÿ�ho� �h2

2m
k2

�2

ÿ m2nH2 � 0 ;

where k � Hj, o � ÿqj=qt. Solving this equation we find

o � �h

2m
k2 � mn

�h2
jHj : �7:3�

The corresponding equation for particle trajectories has the
form

m
d2r

dt 2
� �mn

��H�r��� ; �7:4�

whence follows the expression for the eikonal j:

j � j�xin� �
�x
xin

�ÿo dt� k dr� :

Integration here is carried out along the world line (7.4) and
the vector k is replaced by k � mv=�h. The choice of upper
(lower) indices in Eqns (7.3) and (7.4) and in subsequent
formulae corresponds to spin oriented by (against) the
magnetic field. Hence, there are two different eikonals and
two different families of the world lines for particles, as de
Broglie suggested [108].

Substituting (7.2) in Eqn (7.1) we find a semiclassical
equation for the amplitude A�x��

ÿ�ho� �h2

2m
k2

�
A� i�h

�
qA
qt
� �h

m
kHA� A

�h

2m
divk

�
� mn�Hr�A � �h2

2m
H2A : �7:5�

Omitting the small right-hand-side in this formula, we
represent the amplitude A as A � g�x�a�x�, where a obeys
the semiclassical equation

da

dt
ÿ i

mn
�h

��jHj � �Hr��a � 0 ; �7:6�

and g�x� satisfies the conservation law
qg2

qt
� div �vg2� � 0 : �7:7�

The eikonal substitution (7.2) is quite analogous to the
quasi-isotropic substitution (as applied to a neutral spin 1/2
particle) that was used by Pauli, Galanin, and also by
Rubinow and Keller. The conservation law (7.7) was derived
by Pauli [33]. Eqn (7.6) is equivalent to the precession
equation that was found in the nonrelativistic limit by
Galanin [34] and then by Rubinow and Keller [35].

F

F

N

S

d

D1

D2

D3

D4

Figure 8. Toward the calculation of the interference pattern for the beam

of neutrons at the point d in the Stern ±Gerlach experiment; FF is the

initial surface of constant phase. Solid (dashed) lines correspond to

trajectories of particles with a spin being parallel (antiparallel) to the

magnetic field. B1;2;3;4 are the points of local maximum of the magnetic

field jHj at the trajectories of particles; in their vicinities the iterative

procedure is performed with an ordinary or extraordinary initial condi-

tions. The arrows near the lines show the directions of particle trajectories

while the arrows on the trajectories show the direction of integration

associated with the iterative procedure [23].

150 Yu A Kravtsov, O N Na|̄da, A A Fuki Physics ±Uspekhi 39 (2)



One may check this by introducing a new amplitude

~a � a exp

�
�i
�t
0

mn
jHj
�h

dt

�
�7:8�

for which from Eqn (7.6) follows the Pauli equation in a
reference frame where the particle moving along the world
line is at rest:

i�h
d~a

dt
� ÿmn�Hr�~a : �7:9�

Accordingly, along each of the world lines (7.4) the magnetic
momentum M � mn�a�; ra� � mn�~a�; r ~a� vector obeys the
ordinary precession equation

dM

dt
� 2mn�hÿ1�MH� : �7:10�

Combining formulae (7.2) and (7.8) gives the final eikonal
substitution

c�x� � g�x� ~a�x� exp
�
i

���o� �hÿ1mnjHj� dt� kdr
��

;

�7:11�

which would solve the problem in the de Broglie statement.
As one may readily see, formula (7.11) refers to the spin
direction being parallel or antiparallel to the current vector
H, as it is realised in the Stern ±Gerlach effect.

Thus, theQIA asymptotics presented above involves Eqns
(7.4) for the world lines, the eikonal substitution (7.11) and
Eqns (7.9) for spin, and differs from the Pauli ±Galanin
method in following aspects:

(a) particles belong to different types of trajectories which
correspond to different particle spin orientations with respect
to an external magnetic field;

(b) phases ofc-functions contain corrections linked to the
magnetic momenta.

7.3 Approximation of deformed normal waves
The second derivative of amplitude A entering the right-hand
side of Eqn (7.5) is on the order

��H2A�� � jAj�mnjHj
hv

�2

� . . . �7:12�

and is related to oscillations in a and A with the Larmour
frequency. Corresponding error da associated with solutions
of Eqn (7.6) (in respect to that of Eqn (7.5)) will grow along
the ray:

jdaj
jaj �

h

m

��
mnjHj

�hv

�2

dt : �7:13�

In those cases when error (7.13) becomes inappropriate,
calculations of the beam can be carried out directly by Eqn
(7.6), with arbitrary upper and lower signs in Eqns (7.6), (7.3),
and (7.4), and by applying a given initial condition for the
wave function cin directly to Eqn (7.6). The trajectory
splitting in this case, in fact, does not occur since it is not
discernible against the background of errors evaluated by
Eqn (7.13).

Growing error (7.13) can be eliminated if we formulate the
initial condition for Eqn (7.6) in the region of strongmagnetic

field which requires the equality��Hr� � jHj�a � 0 for jHj � max �7:14�

to be implemented. In this case the amplitude a�x� in the
region of a strong magnetic field will vary smoothly (without
oscillations) and instead of estimate (7.12) we find

jH2Aj � lÿ2jAj :

Then errors accumulated in the region of strong magnetic
field will not exceed m. On the other hand, in the region of
weak magnetic field the right-hand side of Eqn.(7.5) also is
small according to estimate (7.12). Therefore, taking the
initial condition to Eqn (7.6) by formula (7.12) provides
favourable double asymptotes both on the side of strong
magnetic field and weak magnetic field. Naturally, this also
promises a high total accuracy satisfying the estimate

jdaj
jaj � ll

ÿ1
b ; l � �h

mv
: �7:15�

In the given case, lb coincides by an order of value with the
particle run length for a Larmour period l � vh=mnjHj � vTL.

As in the case of electromagnetic waves, to get the highest
accuracy (7.15) we should ascertain the initial condition (7.14)
with the help of iterative procedure

a � ÿC1
�0� � C1

�1� � C1
�2� � . . .

�
a� �

ÿ
C 2
�1� � C 2

�2� � . . .
�
a� ;

�7:16�

where amplitudes of polarisation modes a� and aÿ satisfy the
conditions�

Hr � jHj�a� � 0 ; a��a� � a�ÿaÿ � 1 ; a��aÿ � 0 :

Coefficient C 1
�0� can be found from the equation

dC 1
�0�

dt
� a��

da�
dt

C 1
�0� � 0 ; C 1

0

���
t�tin
� 1 ; �7:17�

and the other coefficients C 1
�n�, C

2
�n� can be found from the

recurrent formulae

C 2
�n� � �

ih

2mnjHj
�
dC 2
�nÿ1�
dt

�
�
a��

da�
dt

�
C 1
�nÿ1�

�
�
a��

da�
dt

�
C 2
�nÿ1�

�
;

dC 1
�n�

dt
� a��

da�
dt

C 1
�n� � ÿa��

da�
dt

C 2
�n� : �7:18�

It is convenient to set initial values C 1
�n��tin� in the last

equation to zero.
Series (7.16) represents an asymptotic expansion of a

solution to (7.6) in a region of strong field. The convergence
condition for series (7.16) is expressed by inequality
l4 vh=mnjHj, so that the value lb � vh=mnjHj is the marginal
one for this inequality. The c-functions constructed in that
manner are analogous to deformed normal waves in electro-
dynamics (see Section 3).

Striving to achieve the upmost accuracy (7.15) we must
apply the procedure of trajectory splitting whose essence is
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illustrated by Fig. 8. Through the points of the initial front we
draw by two rays corresponding to two types of polarisation.
Each of them is constructed by Eqn (7.4) with a respective
sign. At the initial points the trajectories have to be
perpendicular to the constant phase surface. If each of
trajectories possesses a single maximum ofH (as it is assumed
in Fig. 8), then, in the vicinity of each trajectory it is necessary
tomake use of the deformed normal wave approximation and
the iterative procedure with a seed (7.16) ± (7.18) and with the
number of steps

N � lnm

ln
�
v�h�mnjHjl�ÿ1

� ; �7:19�

where m is the required accuracy. After that, with the result of
iterations as an initial condition one should solve Eqns (7.6),
each at its own trajectory and with its own initial condition,
departing from the initial point to both sides. We shall denote
the solutions that ensue by b�. Matching spinors b� on the
initial front with the initial condition one may find the
amplitudes b� and bÿ for each of rays. The polarisation
modes, constructed in that way,

c��x� � b��x�g��x� exp
�
i

�x
xin

�ÿo� dt� � k� dr��
�
�7:20�

form the sought-for approximate solution

c�x� � c��x� � cÿ�x� : �7:21�

Being interested in the interference pattern of the Stern±
Gerlach components of the wave, for each type of polarisa-
tion one has to draw a single trajectory from the initial front
to the point d considered (Fig. 8) and then to implement the
procedure described above of construction of the correspond-
ing solutions c� or cÿ by Eqns (7.16) ± (7.20) at each of the
trajectories. It is this procedure that yields the desired
mathematical model of the Stern ±Gerlach effect.

If there are more than one local maximum of the value jHj
(as is the case in the Frish ± Segre experiment [116]), the
procedure described above of splitting the trajectories and
matching the solutions needs to be carried out not only at the
initial point, but also at each point of local minimum of the
value jHj. Accordingly, a seed iteration should be con-
structed in the vicinity of each local maxima of jHj, and the
summation in Eqn (7.21) should be done not over double, but
overmultiple ( quadruple, octuple, etc.) branching of the rays.
As onemay see, the procedure described is quite similar to the
corresponding procedure in electrodynamics of birefringent
media (Section 3.3).

For ray splitting we should remember that the intensity of
the beams splitting off does not exceed exp

�ÿvh=�mnjHjl��,
and if this factor is small, some splitting could be ignored.

Clearly, the QIA can also be applied to describe polarised
beams of atoms and ions in a magnetic fieldÐ of course, with
account for themagnetic momentum of nucleus. There are no
objections for applying the method to the squared Dirac
equations.

8. Conclusion

When initiating the work on this review the authors did not
realise all the applications of the quasi-isotropic approach. It
applies to vector field of arbitrary physical nature: electro-

magnetic, elastic, spinor, etc. Most widely the method is used
in problems of plasma physics (as applied to a plasma of
interplanetary, interstellar, solar, ionospheric, laboratory, or
other origin) and in optics of liquid crystals. A novel field for
the quasi-isotropic approximation is formed by polarisation
phenomena in light guides.

The phenomena of tangent conical refraction in optics
and in the theory of elastic waves thus far are of theoretical
interest, however a practical interest to arbitrarily deformed
optical and acoustical media is well expressed in recent years.

Although we tried to collect together all material related
to the problem discussed, a number of interesting questions
have still not received our attention.

First, we have confined ourselves tomentioning only a few
mechanisms of wave transformation in a plasma, in particu-
lar, in the solar corona, however we were to put aside the
physics itself of the sources of polarised radiation. Fortu-
nately, we can refer the reader to Ref. [5] and to an excellent
review article by Zheleznyakov, V Kocharovski|̄ and Vl
Kocharovski|̄ [8] where the problem of sources is studied in
detail.

Second, we have restricted ourselves to presenting only
fragmentary information on optics of inhomogeneous liquid
crystals and have not mentioned the transition of microwaves
through weakly anisotropic artificial dielectrics, vegetable
cover [119], and other weakly anisotropic objects. Finally,
the questions of wave transformation in deformed dielectric
and metallic waveguides of square and cylindrical cross-
section characterised by the polarisation degeneration were
left beyond the scope of this review.

We believe that the concept of quasi-isotropic approxima-
tion and particular results obtained with the help of QIA and
presented in the review are of interdisciplinary nature and will
be useful to a wide audience.

The authors are indebted to A N Pilipetski|̄ for kindly
presenting the materials for Section 5.3 and N Yu Komarova
for her inestimable help in preparing the manuscript.
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