хуже, чем на Si, все же можно и на стекле формировать решетки с периодом до 1 мкм. Это означает, что разрешающая способность такой регистрирующей среды достигает 1000 штр/мм, этого вполне достаточно для использования ее в качестве матрицы при тиражировании лазерных дисков памяти.

4. Выводы

Контролируя с помощью СТМ качество очистки и пассивации поверхности химически активных сред, можно и при измерениях на воздухе получать достоверные данные о микротопографии и электронных характеристиках поверхности.

Современные методы компьютерной обработки данных позволяют существенно снизить искажения в изображениях поверхности, вызванные конечными размерами и формой игл СТМ и АСМ.

Благодаря своему высокому пространственному разрешению СТМ и АСМ позволяют изучать тонкие детали взаимодействия света с поверхностью, в частности исследовать влияние размеров центров оптического поглощения на формирование субмикронного периоди-

Рис. 4. АСМ-изображение одномерных периодических структур на поверхности имплантированного Si (а) и стекла (б), сформированных импульсным интерференционным лазерным испарением

ческого микрорельефа поверхности при ее локальном лазерном испарении.

Использование СТС-измерений дало возможность визуализировать одно- и двумерные периодические изменения проводимости поверхностного слоя Si, сформированные импульсным интерференционным лазерным отжигом.

Работа выполнена при частичной поддержке Министерства науки и технической политики Российской Федерации (проект 143/57/4) и Академии наук Татарстана (проект 04-12/95).

Список литературы

- 1. Бухараев A A и др. *Поверхность* (12) 69 (1994)
- 2. Bukharaev A A et al. J. Vac. Sci. Technol. B 13 1274 (1995)
- 3. Бухараев А А и др. *ФТТ* **33** 1018 (1991)
- 4. А.с. 1231818 СССР Патентный бюлл. Изобретения (18) 256 (1995)
- 5. Бухараев А А и др. *Письма в ЖТФ* **16** 8 (1990)
- Бухараев А А Заводская лаборатория (10) 15 (1994)
 А.с. 4916118 СССР Патентный бюлл. Изобретения (44) 171 (1992)
- Bukharaev A A et al. *Phys. Stat. Sol. A* 131 79 (1992)
- викнатасу А Астал. 11193. знаг. зон. А 151 79 (1992)
 Бухараев А А и др. Поверхность (4) 104 (1993)
- Бухараев А А и др. Оптик. и спектр. 79 417 (1995)
- Бухарась А А и др. Отлик. и спектр. 79 417 (1
 Ахманов С А и др. УФН 147 675 (1985)
- 1. Ахманов С А и др. *5* ФП 147 075 (1985)

PACS numbers: 76.30.-v, 76.30.Lh

ЭПР-исследование поведения плотности состояний и эффективной константы связи в La₂CuO₄, допированном Sr или Ba

В.Е. Катаев, Ю.С. Грезнев, Б.З. Рамеев, Е.Ф. Куковицкий, Г.Б. Тейтельбаум, М. Бройер, Н. Кнауф

Очевидно, что для верификации уже существующих и построения новых теорий высокотемпературной сверхпроводимости (ВТСП) чрезвычайно важно определить экспериментальные соотношения, которые связывали бы параметры, характеризующие электронные свойства нормального состояния ВТСП-соединений с характеристиками их сверхпроводящего (СП) состояния. В частности, несомненный интерес представляет изучение взаимосвязи плотности состояний носителей тока на уровне Ферми $N(E_{\rm F})$ и температуры перехода в СП-состояние $T_{\rm c}$ при различных уровнях концентраций носителей тока *n* в системе. Этой задаче посвящено проведенное в настоящей работе исследование методом ЭПР на примесных ионах Gd^{3+} электронных свойств соединения La₂CuO₄ при различных уровнях его допирования стронцием или барием, в результате которого на основе полученных зависимостей $N(E_{\rm F})$ и $T_{\rm c}$ от *n* удалось проанализировать поведение эффективной константы связи λ носителей тока при различном характере и степени допирования лантанного металлооксида [1, 2].

Известно [3], что спиновая релаксация локализованных магнитных моментов в металлах определяется, в основном, обменным взаимодействием с электронами проводимости (так называемый корринговский механизм [5]). Это проявляется в характерной линейной зависимости ширины линии ЭПР ΔH от температуры, наклон которой пропорционален квадрату плотности состояний носителей тока N(E_F). Ранее при изучении образцов La_{2-x}Sr_xCuO₄ с оптимальным для сверхпроводимости уровнем допирования стронцием было обнаружено, что ширина линии ЭПР примесных ионов Gd³⁺ демонстрирует линейное корринговское поведение в широком температурном интервале [4]. Это послужило серьезным аргументом в пользу того, что, даже будучи несколько в стороне от ключевых для проводимости и сверхпроводимости элементов кристаллической ячейки – CuO₂-плоскостей, — внедренные в редкоземельные позиции спиновые зонды тестируют плотность состояний в проводящих слоях структуры. Данное наблюдение дало основание полагать, что исследование поведения корринговского вклада в ширину линии ЭПР спиновых меток Gd³⁺ при изменении степени замещения трехвалентного лантана в La₂CuO₄ двухвалентным стронцием или барием (т.е. при изменении концентрации носителей тока) позволит проследить изменение плотности состояний N(E_F) в широкой области фазовой диаграммы этого металлооксида и связать его с наблюдаемым изменением критической температуры T_c.

Первая часть исследования посвящена ЭПР-экспериментам на поликристаллических образцах соединения $La_{1,99-x}$ Sr_x Gd_{0.01} CuO₄ (0,08 $\leq x \leq 0,35$). Зависимость температуры Т_с перехода в СП-состояние этих образцов от содержания стронция имела типичный для этого соединения колоколообразный вид [6]. По мере увеличения концентрации стронция (т.е. носителей тока) Т_с возрастала и достигала максимального значения ~ 34 К при оптимальном для сверхпроводимости значении x = 0, 15. При дальнейшем увеличении $x T_c$ в передопированной области фазовой диаграммы быстро уменьшалась, и образцы с x = 0, 30; 0, 35 вообще не переходили в СП-состояние. Температурная зависимость сопротивления R(T) для образцов с $x \le 0, 15$ была линейной при высоких температурах, что типично для ВТСП-материалов. При низких температурах наблюдался дополнительный логарифмический вклад в R(T), который обрывался занулением сопротивления при переходе в СП-состояние. В передопированной области $(x \ge 0, 20)$ сопротивление следовало степенному закону $\rho(T) \propto T^{1,5}$. Сигнал ЭПР, наблюдавшийся во всех исследованных образцах, представлял собой спектр тонкой структуры иона Gd³⁺. Полный размах спектра составлял около 7 кЭ, а наиболее разрешенные компоненты были сцентрированы в диапазоне полей 1-3 кЭ. Ширина каждой компоненты спектра зависела как от температуры, так и от содержания стронция. Вследствие частичного перекрывания компонент исследовать поведение ширины линии во всем температурном диапазоне удалось только для одной — центральной компоненты спектра. Анализ спектра осуществлялся с помощью специальной компьютерной программы, воспроизводящей его основные особенности на базе простого феноменологического гамильтониана аксиальной симметрии с параметром тонкого расщепления порядка зеемановской энергии. Для всех исследованных образцов существовал достаточно широкий температурный интервал, в котором ширина линии $\Delta H(T)$ изменялась линейным образом: $\Delta H(T) = a + bT$. При низких температурах для образцов с x < 0,15 в ширине линии появлялся дополнительный логарифмический вклад, коррелировавший с таким же поведением

сопротивления. Эти особенности будут обсуждены во второй части работы.

Линейная зависимость ширины линии ЭПР от температуры $\Delta H(T) = a + bT$ дает основание полагать, что между локальными моментами Gd, хотя они и расположены в стороне от CuO₂-плоскостей, и носителями тока в плоскости существует небольшая обменная связь, что дает возможность спиновым зондам релаксировать посредством механизма Корринги. При этом коэффициент *b* (корринговский наклон) для каждой компоненты может быть в пренебрежении электрон-электронными взаимодействиями записан следующим образом [3]:

$$b = 4\pi M^2 [N(E_{\rm F}) J_{s,f}]^2$$
, где $M^2 = S(S+1) - S_z(S_z+1)$. (1)

Здесь J_{s,f} — обменный интеграл между локализованными магнитными моментами и электронами проводимости, М — матричный элемент, связывающий состояние $|S_z\rangle$ иона Gd³⁺ с состояниями $|S_z - 1\rangle$ и $|S_z + 1\rangle$. Квадрат этого матричного элемента определяет также вероятность соответствующего перехода и, следовательно, интенсивность резонансной линии. Проведенная ранее оценка величины $J_{s,f}$ дала значение ~ 2,5 мэВ [4]. Как показали измерения ЭПР, с изменением содержания стронция х в образцах (т.е. с изменением числа носителей тока в CuO₂-плоскостях) изменялся наклон b зависимости $\Delta H(T)$. Поскольку согласно (1) $N(E_{\rm F})$ пропорциональна корню из корринговского наклона b, можно построить зависимость изменения плотности состояний в La_{2-x}Sr_xCuO₄ от концентрации стронция x. Она представлена на рис. 1, где квадраты соответствуют образцам La₂CuO₄, допированным стронцием. Эти точки могут быть достаточно хорошо аппроксимированы соотношением $b^{1/2} = 2,89 (x - 0,06)^{0,49}$ во всем диапазоне изменения концентрации стронция.

Таким образом, от концентрации стронция оказались зависящими как критическая температура T_c , так и плотность состояний $N(E_F)$. Интересно исследовать, как эти величины соотносятся между собой в различных областях фазовой диаграммы соединения

Рис. 1. Зависимость корня из корринговского наклона *b* от концентрации допирующего элемента M для образцов $La_{1,99-x}Gd_{0,01}M_xCuO_4$: $\blacksquare - M = Sr, \triangle - M = Ba$

La_{2-x}Sr_xCuO₄. Исключением из экспериментальных зависимостей $T_c(x)$ и b(x) независимой переменной x можно построить зависимость критической температуры как функции обратного корня из корринговского наклона b для соединения La_{2-x}Sr_xCuO₄. На рис. 2 ей соответствуют квадраты. Как видно из этого рисунка, все точки, за исключением двух, соответствующих СПобразцам с содержанием стронция x = 0,25 и 0,28, формируют в этой системе координат зависимость, близкую к линейной, которая, таким образом, устанавливает взаимосвязь между критической температурой и плотностью состояний (с учетом, что b и $N(E_{\rm F})$ связаны соотношением (1)) вида

$$\frac{\mathrm{d}[\ln T_{\mathrm{c}}]}{\mathrm{d}[1/N(E_{\mathrm{F}})]} = \mathrm{const}\,.$$
(2)

Отсюда

$$T_{\rm c} = \alpha \exp\left(-\frac{1}{\beta} b^{-1/2}\right),\tag{3}$$

где α и β — подгоночные параметры. Полученное экспериментальное соотношение между $T_{\rm c}$ и $N(E_{\rm F})$ напоминает хорошо известное выражение для критической температуры типа БКШ $T_{c} = \omega \exp(-1/\lambda)$, в котором $\lambda = VN(E_{\rm F})$ — эффективная константа связи, V – потенциал спаривания, ω — некоторая характерная частота. Базируясь на этом выражении, можно из экспериментальных данных, приведенных на рис. 2 (квадраты), определить константу связи λ для каждого сверхпроводящего образца и оценить, как она изменяется в зависимости от плотности состояний $N(E_{\rm F})$ в соединении La_{2-x}Sr_xCuO₄. Проведенный анализ показал, что с ростом b (т.е. плотности состояний) λ растет, достигая максимального значения ~ 2 для образца с оптимальной для сверхпроводимости концентрацией стронция x = 0, 15, и затем быстро уменьшается при x > 0, 2.

Рост λ с увеличением $N(E_{\rm F}) \propto \sqrt{b}$ указывает на неизменность потенциала спаривания V при уровнях допирования стронцием, не превышающих оптимальный. В то же время быстрое уменьшение константы связи в передопированной области, несмотря на продолжающийся рост плотности состояний (см. рис. 1), свидетельствует, по-видимому, о резком уменьшении потенциала спаривания при высоких уровнях допирования.

Вторая часть исследования, в ходе которого проведены ЭПР-эксперименты на поликристаллических образцах La_{1,99-x}Ba_xGd_{0,01}CuO₄, посвящена, главным образом, анализу причин известного аномального подавления сверхпроводимости соединения La_{2-x}Ba_xCuO₄, имеющего место в узкой области концентраций бария $x = 0, 12 \div 0, 15$ [7]. Этот эффект связывается с происходящим в образцах указанного состава при T < 70 К структурным переходом из орторомбической (LTO) фазы в низкотемпературную тетрагональную (LTT), в процессе которого изменяются направления разворота медь-кислородных октаэдров в сверхпроводящих плоскостях [8]. Причина этой взаимосвязи, однако, не очевидна и, возможно, специфична именно для ВТСП.

Исследовались образцы La_{1.99-x}Ba_xGd_{0.01}CuO₄ с $x = 0,08 \div 0,25$. Зависимость их критической температуры T_c от содержания бария имела характерный "провал" в области концентраций бария $0, 12 \le x \le 0, 15$, где T_c существенно понижено и даже отсутствует для образца с x = 0,135 (рис. 3). При высоких температурах сопротивление образцов линейно зависело от Т. При температуре ниже 100-150 К сопротивление сначала выходило на насыщение, а затем начинало возрастать до тех пор, пока не наступал переход в сверхпроводящее состояние. Для образцов, соответствующих краям "провала" зависимости T_c(x) (см. рис. 3), этот подъем сопротивления $\Delta \rho$ вел себя как $\Delta \rho(T) \propto -\ln T$, подобно наблюдаемому в системе La2-xSrxCuO4 при малых уровнях допирования стронцием. В то же время для образцов, соответствующих дну

Рис. 2. Зависимость критической температуры T_c от корринговского наклона *b* для образцов La_{1,99-x}Gd_{0,01}M_xCuO₄: ■ — M = Sr, △ — M = Ba. Сплошная линия — результат аппроксимации экспериментальных точек (M = Sr или Ba), подчиняющихся соотношению d [ln T_c]/d[1/ $N(E_F)$] = const

Рис. 3. Зависимость критической температуры T_c от содержания бария в образцах La_{1,99-x}Ba_xGd_{0,01}CuO₄, полученная по измерениям сопротивления (\blacksquare) и микроволнового поглощения в малых магнитных полях (\triangle). Пунктирная линия проведена только для удобства рассмотрения

"провала", поведение $\Delta \rho(T)$ было ближе к экспоненциальному: $\Delta \rho(T) \propto \exp(1/T^{1/4})$.

Сигнал ЭПР, наблюдаемый от образцов La_{1.99-x}Ba_xGd_{0.01}CuO₄, в большинстве своих деталей совпадал со спектром тонкой структуры Gd^{3+} в соединении La_{1.99-x}Sr_xGd_{0.01}CuO₄. Однако отличительной особенностью спектра образцов La_{1,99-x}Ba_xGd_{0,01}CuO₄ с 0,12 ≤ x ≤ 0,15 являлось возникновение дополнительных линий в спектре при температурах ниже 20-45 К, не описываемых спиновым гамильтонианом тонкой структуры. Как И при исследовании соединения $La_{1.99-x}$ Sr_xGd_{0.01}CuO₄, температурные зависимости ширины линий $\Delta H(T)$ всех образцов отслеживались для центральной компоненты спектра. Поведение ее ширины описывалось линейной зависимостью $\Delta H = a + bT$ при $T > 60 \div 100$ К, причем температурный наклон b монотонно возрастал с увеличением концентрации бария x, за исключением образца с x = 0, 135, для которого b = 0.При $T < 60 \div 80$ К в ширине линии появлялся дополнительный логарифмический вклад $\Delta H_{\log} = -C \ln T$. При этом величина С была максимальна для образцов с концентрацией бария, близкой к x = 0, 135.

Если нанести на построенный ранее для соединения $La_{2-x}Sr_xCuO_4$ график зависимости $\sqrt{b} \propto N(E_F)$ от xточки, относящиеся к образцам La_{199-x}Ba_xGd_{0.01}CuO₄, то оказывается, что две зависимости достаточно хорошо совпадают друг с другом (треугольники на рис. 1). Близость полученных зависимостей служит указанием на то, что плотность состояний носителей тока в сверхпроводящих CuO2-плоскостях не зависит от типа допирующего элемента. Можно также дополнить построенную ранее для соединения $La_{2-x}Sr_xCuO_4$ зависимость T_c от $1/\sqrt{b} \propto 1/N(E_{\rm F})$ точками, полученными при исследовании La₂CuO₄, допированного барием (треугольники на рис. 2). Из рисунка видно, что точки, соответствующие критическим для сверхпроводимости концентрациям бария $0, 12 \le x \le 0, 15$, существенным образом отклоняются от соотношения (2), полученного для системы $La_{2-x}Sr_{x}CuO_{4}$, в то время как точки, принадлежащие образцам с концентрациями бария вне этого интервала, достаточно хорошо ложатся на общую с лантан-стронциевыми образцами прямую (2). Следовательно, наблюдаемый "провал" зависимости $\ln T_c$ от $1/\sqrt{b}$, возможно, свидетельствует об уменьшении константы связи λ в этом диапазоне концентрации бария либо из-за уменьшения плотности состояний при низких температурах по сравнению с извлекаемой из высокотемпературных участков зависимости $\Delta H(T)$, либо из-за ослабления самого потенциала спаривания V. Сравнение данных ЭПР и сопротивления приводит к выводу, что вероятной причиной такого поведения λ может быть локализация носителей тока, при которой, например, из-за развития псевдощели в спектре энергетических состояний на уровне Ферми или из-за роста кулоновского отталкивания вследствие ослабления экранировки уменьшается эффективная константа связи. При этом возможен логарифмический или экспоненциальный рост сопротивления при низких температурах и уширение линии ЭПР либо из-за увеличения времени корреляции носителей тока со спиновыми моментами Gd³⁺, либо из-за усиления спиновых флуктуаций и образования локальных моментов в СиО2-плоскостях в процессе локализации. При этом наблюдаемое для образцов с $0, 12 \le x \le 0, 15$ появление в спектре ЭПР дополнительных линий при $T = 30 \div 45$ К

может служить свидетельством образования внутреннего поля из-за упорядочения магнитных моментов в CuO₂-плоскостях, скорее всего, спин-стекольного характера. Следует отметить, что наличие магнитного порядка при $T \sim 30$ K в образцах La_{2-x}Ba_xCuO₄ состава, близкого к x = 0, 125, было зарегистрировано также в экспериментах по ЯМР и μ СР [9].

Наблюдение локализационных эффектов при тех же самых концентрациях бария, критических для сверхпроводимости, при которых в соединении La_{2-x}Ba_xCuO₄ был обнаружен структурный переход при T < 70 К из LTO- в LTT-фазу, позволяет предположить, что локализация носителей провоцируется структурной неустойчивостью. Этому должна способствовать известная затянутость структурного перехода по температуре и его незавершенность по объему [8], возможно, приводящая к неоднородностям реальной структуры (фазовому расслоению), скорее всего, на микроскопических пространственных масштабах. Предположение о фазовом расслоении, кроме того, могло бы объяснить наблюдаемое появление магнитокоррелированных областей в образцах, которые еще демонстрируют сверхпроводимость.

Таким образом, анализ проведенных экспериментов по ЭПР примесных ионов Gd^{3+} , внедренных в ВТСПсоединение $La_{1,99-x}Gd_{0,01}M_xCuO_4$ с различным типом и степенью замещения лантана двухвалентными ионами (M = Ba, La), позволил сформулировать следующие выводы:

— в высокотемпературном сверхпроводнике La_2CuO_4 , допированном стронцием или барием, критическая температура и плотность состояний на уровне Ферми связаны зависимостью типа БКШ. При этом поведение эффективной константы связи λ , растущей с увеличением числа носителей вплоть до концентрации, оптимальной для сверхпроводимости, и далее резко уменьшающейся, свидетельствует о существенном ослаблении притяжения между носителями в передопированной области фазовой диаграммы;

— аномальное подавление сверхпроводимости в соединении $La_{2-x}Ba_xCuO_4$ в области концентраций бария $x = 0, 12 \div 0, 15$, вероятно, связано с ослаблением эффективной константы связи из-за локализации носителей тока, спровоцированной низкотемпературной структурной нестабильностью. При этом, возможно, имеет место расслоение образцов с этой стехиометрией на сверхпроводящие и магнитокоррелированные области.

Работа выполнена в рамках и при финансовой поддержке Государственной программы по исследованию ВТСП (грант 94045). Работа В.Е.К. и Г.Б.Т. поддержана также Международным научным фондом (грант NNX000). Часть исследования, выполненная в Кельнском университете, профинансирована в рамках специального проекта SFB341 Немецкого исследовательского общества.

Список литературы

- Kataev V et al. Phys. Rev. B 48 13042 (1993)
- 2. Rameev B et al. Phys. C 246 309 (1995)
- 3. Barnes S E Adv. Phys. 30 801 (1981)
- 4. Катаев В Е и др. *Письма в ЖЭТФ* **48** 433 (1988)
- 5. Korringa J *Physica* **16** 601 (1951)
- 6. Torrance J B et al. Phys. Rev. Lett. 61 1127 (1988)
- 7. Moodenbaugh A R et al. Phys. Rev. B 38 4596 (1988)
- 8. Axe J D et al. *Phys. Rev. Lett.* **62** 2751 (1989)
- Tou H, Matsumura M, Yamagata H J. Phys. Soc. Jap. 62 1474 (1993); Kumagai K et al. J. Supercond. 7 69 (1994)