
Abstract. The state of the art of the Monte Carlo studies on
randomly modulated optical waves in regular and randomly
inhomogeneous nonlinear media is reviewed. A wide range of
phenomena dealt with in nonlinear statistical optics are dis-
cussed, including self-phase noise pulse modulation, the self-
action of partially coherent beams, the formation and instability
of solitons, stimulated Raman scattering, intensive light beams
in a turbulent atmosphere, and adaptive radiation focusing.
Special attention is given to the justification of the phase screen
model for a randomly inhomogeneous nonlinear continuum, and
the numerical simulation of random light fields is discussed in
detail.

1. Introduction

Nonlinear statistical optics encompasses a wide range of
phenomena related to the nonlinear conversion, propagation,
and generation of light waves. Among its problems are
analysis of the effect of radiation fluctuations and irregularity
of a medium on the efficiency of nonlinear processes and a
study of the statistics of the light field in the case of nonlinear
interaction with a medium. Partial coherence of the pump
wave confines the efficiency of processes of harmonic genera-
tion, parametric frequency conversion of light, and stimu-
lated Raman scattering [1]. Nonlinear effects in solid-state
lasers result in the formation of ultrashort light pulses [2] and
splitting of the light beam into filaments because of the small-
scale self-focusing [3]. The simultaneous manifestation of
nonlinearity and inhomogeneity of the active medium in

flowing gas CO2 lasers causes an increase in the divergence
of radiation and pulsations of the output power [4]. As the
laser beam propagates through a medium, fluctuations of the
optical parameters of the medium result in perturbations of
the light field whose development is governed by nonlinear
effects. In the atmosphere, these are the effects of thermal self-
action, breakdown, and nonlinear absorption in aerosols,
which severely restrict the ultimate parameters of devices for
laser probing and location [5].

Analysis of the nonlinear interaction between random
waves is of interest both for modern optics and acoustics,
radiophysics, and plasma theory. Stochastic wave processes
in nonlinear media reflect the general regularities of transfor-
mation of spatial, temporal, and spectral parameters of the
dynamic fields. These processes include, for example, the
appearance of the turbulence in a plasma [6] and in shock
sound waves [7 ± 9] as well as the development of fluctuations
in the intense light field in the atmosphere [10].

1.1 `Radiation ± medium' system
In the case of stochastic nonlinear waves, it is important that
their fluctuations and fluctuations of the parameters of a
medium affect each other. In other words, the radiation field
and the medium form a nonlinear distributed system with a
closed feedback loop. When incoherent waves hit the regular
medium, the nonlinear system is excited by fluctuations of the
radiation. These fluctuations induce in the nonlinear medium
the random field of perturbations, from which both the
regular and fluctuative components of the waves are scat-
tered. When the coherent wave is incident on the random
(randomly inhomogeneous) medium, the parametric excita-
tion of the `radiation ± medium' system takes place. In this
case, scattering of the wave by inhomogeneities of the
medium gives rise to its fluctuations, which in turn induce
random perturbations in the medium.

Parametric scattering of the regular component of the
wave by random perturbations induced in the medium results
in energy transfer from this component to the fluctuation
component. For this reason, fluctuations of the field and
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medium can increase with time and space upon propagation
of the wave in a nonlinear medium, i.e. the `radiation ±
medium' system becomes unstable. Scattering of the fluctua-
tion component of the wave by perturbations of the medium
induced by this wave is equivalent to the closure of the
feedback loop applied to fluctuations in the `radiation ±
medium' system. This results in the transformation of the
space ± time statistics of radiation fluctuations in the non-
linear medium.

The study on statistics of the randomly modulated optical
radiation in nonlinear media is one of the most complex
problems of modern optics and laser physics. Theoretical
treatment of statistical problems of nonlinear optics is
performed by means of various analytic methods [1, 5, 11,
12]. However, the potentialities of analytic methods for
studying the problems of nonlinear statistical optics are not
great. This is explained by the fact that mean parameters of a
random light field, i.e. the field moments, in the nonlinear
medium are connected by an infinite chain of the differential
equations, which can be completed only in the case of rather
strong restrictions imposed on the field statistics, the level of
field fluctuations, and the mutual correlation between per-
turbations in a radiation field andmedium. Such assumptions
correspond in fact to the breaking of feedback between
fluctuations of the light field and medium in the nonlinear
`radiation ±medium' system. Thus, in the perturbation meth-
ods the linearization is used which assumes that the fluctua-
tion component xE0 of the field is small as compared to the
regular component E0 (x5 1) [11 ± 14]. For this reason, first,
the contribution of the fluctuation intensity jxE0j2 to the
formation of medium random perturbations enl is not taken
into account and, second, scattering of field fluctuations xE0

by induced perturbations enl is also neglected.
In studies based on the equations for the field moments,

the assumption is used either that the normal distribution of
fluctuations of the light wave is retained [1, 15, 16] or that
fluctuations of the radiation and medium are statistically
independent [11]. These assumptions allow one to uncouple
joint moments for fluctuations of the field and medium and
thus to obtain a closed system of equations for the moments
of a light field. This system is commonly solved by using the
nonaberrational approximation, which assumes that the field
under study is statistically stationary, homogeneous, and
isotropic. The assumption about conservation of the initial
statistics of the light field is physically acceptable in the case of
a weak nonlinearity. In this event, linear wave processes of
diffraction and dispersion dominate over the nonlinear
conversion of the wave. The assumption about statistical
independence of the field fluctuations from those of the
medium is valid under the conditions when inertial and
nonlocal properties of a nonlinear medium response are
manifested. Thus, upon thermal self-action of the light beam
whose radius is much greater than the scale of random
inhomogeneities of the field and medium, the fluctuations
induced in the medium are rapidly smoothed because of the
thermal conductivity, and the nonlinear refraction is mainly
determined by an average temperature field [11, 17].

The initial statistical problem in the method of path
integration is reduced to the continual integral equation,
which can be solved by using the iteration procedure [18,
19]. In practice, only zero iteration can be performed, which
corresponds to the approximation of the specified channel or
specified intensity. The specified channel approximation, as
the assumption of the statistical independence pertaining to

fluctuations of the light field andmedium, breaks virtually the
feedback in fluctuations in the closed nonlinear `radiation ±
medium' system.

Analysis of the averaged parameters of radiation based on
the equations for the intensity moments is quite efficient [20,
21]. This approach, which is commonly referred to as the
method of moments, provides the adequate accuracy if the
light field is close to the statistically stationary and homo-
geneous field, which is valid in the case of a weak nonlinearity.

1.2 Numerical experiment in nonlinear statistical optics
With the advance of computing methods in studies on the
interaction of coherent waves [22 ± 24] it became possible to
apply these methods to statistical problems of nonlinear
optics. The performance of statistical testing with random
light fields in nonlinear media with regular and randomly
inhomogeneous parameters opens up fundamentally new
opportunities in nonlinear statistical optics.

The method of statistical tests, which is also called the
Monte Carlo method (MCM), is commonly defined as the
procedure of constructing a random variable whose mathe-
matical expectation is sought for [25]. TheMCM in nonlinear
statistical optics consists in the numerical computer simula-
tion of stochastic light fields whose moments and distribution
functions are the required statistical parameters of radiation
in a nonlinear medium. The statistical analysis of an ensemble
of random light fields allows one to perform, based on a
unified approach, the combined study of radiation para-
meters in a nonlinear medium [10, 26, 27]. Numerical
computer experiments with random light fields permit one
to study the mechanism of the development of their instabil-
ity, to investigate statistical and integrated parameters of
radiation, to find the laws that govern the fluctuation
distribution, to obtain critical values of the propagation
parameters, and, finally, to determine the domain of applic-
ability of various assumptions that are used in analytic
estimates. The MCM also permits the calculation of the
optimum parameters of particular lasers operating under
actual experimental conditions.

2. Monte Carlo method in nonlinear
optics of random media

2.1 Monte Carlo procedure
2.1.1 Corpuscular approach. In nonlinear optics, the MCM
has been apparently first applied to studies on generation of
the ultrashort light pulses. The analysis was based on the
fluctuation model proposed in Refs [28, 29] and developed in
Ref. [30]. This model considers the evolution of statistically
independent fluctuations of the spontaneous emission from a
laser under the conditions of their amplification by an active
medium and selection by a nonlinear absorber. `Computer
oscillograms' of the laser burst were used for studying the
dynamics of formation of the ultrashort pulses in a solid-state
laser with a bleaching filter and also in a Raman fiber laser
[31, 32].

The algorithms of MCM have been best developed in
neutron physics. The direct application of these algorithms to
the optical problems results in the corpuscular model, in
which the propagation of light is treated as the Markov chain
of random collisions of photons withmolecules of a substance
(Fig. 1a) [33]. The angular distribution and polarization of the
scattered radiation [34], random broadening and walk of the
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light beams [35], the visibility of a scattering object [36], and
the nonspherical aerosol modulation transfer functions [37]
are investigated over an ensemble consisting of several
thousands of random trajectories of a photon.

Close to the corpuscular model is the approach based on
geometrical optics. The latter has been used for calculating
the random propagation of light beams in the atmosphere
represented by randomly located spherical vortices of various
scales with different profiles of the refractive index [38], and
also the propagation of the sound waves in a submarine
acoustic channel with a random field of internal waves [39].

2.1.2 Phase screen model. In nonlinear optics, the MCM
started from the wave concept is more promising. In this
method, in contrast to simulation of elementary events of the
light interaction with the matter, the wave process of the
stochastic radiation propagation through a randomnonlinear
medium is considered. The wave model is based on the
parabolic theory of diffraction and dispersion, and represents
the generalization of theMarkov approximation in the optics
of random media to the nonlinear case. Such an approach is
acceptable for stochastic radiation, provided the scales of the
field and medium inhomogeneities greatly exceed the wave-
length l. The radiation possesses a narrow spatial spectrum,
the directivity diagram of light scattered by inhomogeneities
of the medium being strongly extended along the propagation
direction. This allows one to neglect the backscattering, which
corresponds to the description of the radiation propagation in
a random medium by the Markov process. In the Markov
approximation, the light wave passes successively through the
layers of a randommedium [40].

The phase screen model (PSM) represents the develop-
ment of these concepts. In this model, a random continuum is
replaced by a chain of scattering screens (Fig. 1b). In the case
of a nonlinear randommedium, the PSMcomprises a chain of
alternating screens, some of which simulate `intrinsic' inho-
mogeneities of the medium and the others simulate inhomo-
geneities induced by a random light field. Between the screens,
diffraction and dispersion of the radiation scattered forward
takes place.

The PSM refers to a quite general approach to the study of
the waves in random media. The description of a continuum
with large-scale inhomogeneities by means of the sequence of
layers has been used in the local method of small perturba-
tions [41, 42]. The PSM is widely applied for studying
fluctuations of the acoustic signal in the sound ocean channel,
seismic waves in the Earth's crust, electromagnetic waves in
an ionospheric and cosmic plasma, and light waves in the
turbulent atmosphere [43].

The simplest model containing a single phase screen
reflects the main properties of the wave field in a random
continuum and allows one to perform analytic calculations of
many statistical parameters of this field. The possibility of
analysis of the wave diffraction in a thick slab of a random

medium by means of the single-phase screen model has been
apparently first considered in [44]. The theory of the wave
diffraction behind a thin screen with a random phase and the
amplitude modulation was presented at length within the
spectral representation in a fundamental review article [45].

A single phase screen describes most adequately the
scattering of waves in a thin layer of a medium when
fluctuations of the light field develop behind the layer. This
situation corresponds to the propagation of electromagnetic
waves through the ionosphere [45]. The conditions of applic-
ability of the thin phase screenmodel to ionospheric problems
were considered in [46]. Later, it was shown [47] that this
model when applied to the ionosphere shows a good fit to
calculated results obtained by the method of smooth pertur-
bations. The one-dimensional phase screen was used for
studying the spectrum of the intensity distribution density
under conditions of large fluctuations of the radio waves
scattered in the ionosphere and for interpreting the flicker
effect observed for broadband signals from satellites [48].

The simple single-phase screen model is used for theore-
tical analysis of various statistical problems in the wave
theory. In [49, 50], strong fluctuations of the intensity of the
plane wave scattered by a single-scale screen were considered,
and in [51], those scattered by a screen with a broad spectrum
of spatial phase fluctuations. The approximation of nonlinear
geometrical acoustics was employed in analytic studies of the
mean values and distributions functions and probabilities of
fluctuations of the amplitude of shock fronts for the wave of
an arbitrary profile scattered by a one-dimensional phase
screen [52]. In [53], the estimate was made of the time of pulse
propagation from a radiator to a receiver, with a phase screen
located between them. It was found that the intensity-
weightedmean time of the signal arrival to the receiver turned
out to be longer than themean time calculated without taking
into account the intensity weight.

An error in the representation of a continuous layer of the
inhomogeneous medium by a single phase screen was
analyzed in [54] started from the numerical solution to the
equation for the fourth moment of a signal. It was found that
for a layer whose thickness is smaller than the external scale
L0 of the inhomogeneity, the variances of intensity fluctua-
tions are the same for a continuum and an infinitely thin
screen. For the layer thickness exceeding L0, the phase screen
substantially increases the intensity fluctuations in the
absence of saturation. The error in the model considerably
decreases when the screen is located in themiddle of the route.

The chain PSM reproduces the properties of a random
continuum much more accurately. The problem of the
adequacy of PSM to a continuum is of fundamental
importance [43]. In [55], it was shown in particular that the
variance of the field phase in the case of weak fluctuations
tends to the analytic estimate within the approximation of the
method of smooth perturbations. The identity of the expres-
sions for the fourth field moment represented by the convolu-
tion for a continuum and that obtained for a chain of phase
screens has been demonstrated in [56].

The PSM for a nonlinear random medium is based on the
following assumptions:

(1) Perturbations of optical properties of amedium caused
by its irregularity and nonlinearity, are additive. This means
that the dielectric constant �eS of the medium, which is
generally complex, can be represented in the form

�eS � �e� �enl � �~e ; �2:1�

~

~y

Â

Dz
z

~S�x; y� ~E�x; y�

b

Figure 1. Models of radiation propagation in a random medium: (a)

corpuscular model, (b) phase screen model.
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where�e is the unperturbed dielectric constant,�enl and�~e are the
contributions to the dielectric constant resulted from non-
linearity and irregularity of the medium, respectively. This
assumption is acceptable for dielectrics, optical fibres, atmo-
spheric and oceanic optics.

(2) The medium is weakly nonlinear and weakly inhomo-
geneous:

�enl; �~e5�e : �2:2�
(3) The spatial and time spectra of the radiation are

narrow:

k?
kz

;
Do
o0
5 1 ; �2:3�

where k? is the projection of the wave vector in the plane
perpendicular to the direction of propagation along the Oz-
axis, Do is the width of the frequency spectrum. Inequalities
(2.3) mean that scales of the spatial (rc) and time coherence tc
of the field considerably exceed the wavelength l and periodT
of the wave:

rc
l
;
tc
T
4 1 : �2:4�

(4) Perturbations of the randommedium are large-scale in
the space and are slowly varying in time:

l~e
l
;
t~e
T
4 1 ; �2:5�

where l~e and t~e are the spatial and time scales of `intrinsic'
inhomogeneities of the medium.

In a weakly nonlinear medium whose perturbations meet
conditions (2.5), the space ± time spectrum of the light field
E�r; z; t� is slowly enriched, the wave remains to be weakly
divergent and quasi-monochromatic and satisfies inequalities
(2.4). As a result, inhomogeneities induced by the field in the
medium can be considered as large-scale and slowly varying:

lnl
l
;
tnl
T
4 1 : �2:6�

This allows one to use the parabolic approximation of the
theory of diffraction and dispersion for a stochastic light field
in a nonlinear random medium [40, 57]. The complex
amplitude eE�r; z; t� of the field obeys the equation

2ik0
q eE
qz
� D? eEÿ k0

q2k
qo2

q2 eE
qZ2
� k20

enl � ~e
e

eEÿ ik0aS eE ;
�2:7�

where Z � tÿ z=ugr is the time in the accompanying coordi-
nate system, k0 � o �����������

ee0m0
p

is the wave number for the
unperturbedmedium, and e0 and m0 are the dielectric constant
and magnetic permeability, respectively, e � Re�e,
enl � Re�enl, and ~e � Re~e.

The attenuation coefficient aS is described by the expres-
sions

aS � a� anl � ~a ; a � ÿk0 Im�e ;

anl � ÿk0 Im�enl ; ~a � ÿk0 Ime�e : �2:8�

The perturbations �enl induced in the medium are deter-
mined from constitutive equations whose specific form can be
obtained from analysis of the radiation interaction with the
medium. Such an analysis has been performed for problems
of nonlinear atmospheric optics in Ref. [58].

In the case of nonlinearity caused by the electronic
polarizability, i.e. by the orientation Kerr effect, the consti-
tutive equation for enl takes the form [57, 59]

tnl
qenl
qt
� enl � e2EE� ; �2:9�

where e2 is the coefficient attached to the cubic term in the
expansion of the nonlinear polarizability in the field, and tnl is
the time of establishment of the nonlinear response. In the
case of the isobaric thermal self-action [5]:�

rCp

�
q
qt
� vHH

�
ÿ KD

�
enl � qe

qT
aabsI ; �2:10�

where eI � �cn0ee0=2� eE eE� is the radiation intensity.
Under conditions of the nonlinear light absorption, the

system of constitutive equations also describes a change in
the coefficient anl. For example, upon bleaching of an
aqueous aerosol, anl is determined from a chain of kinetic
equations for the moments of the size distribution function
of particles [60].

Equation (2.7) is considered, simultaneously with consti-
tutive equations, for a given field eE�r; 0; t� in the plane z � 0
of the transmission aperture:

eE�r; 0; t� � eE0�r; t� : �2:11�

The field eE0�r; t� is a regular field for a coherent source and a
stochastic field with the specified spectrum FE�~K;o� for a
partially coherent source. The random field �~e�r; z; t� of
`intrinsic' fluctuations of the dielectric constant of a medium
is determined by its space ± time spectrum Fe�~K;o�, which is
assumed to be known.

According to [40], one canmore strictly define the range of
applicability of parabolic equation (2.7) for analysis of the
self-action of stochastic light fields in the random nonlinear
media. Along with inequalities (2.4) ± (2.6) characterizing the
large scale of inhomogeneities of the medium, the following
conditions should be also satisfied:

l 4~e ; l 4nl; r4c4 l3z; t3e ; t3nl; t3c4
q3k
qo3

z ; �2:12�

which determine the validity of parabolic approximations in
the diffraction and dispersion theories:

aSl5 1; p2k20z
�k
k
��
2
p F�K�K dK5 1 ; �2:13�

which corresponds, in turn, to a small absorbed and back-
scattered energy.

Conditions (2.5) and (2.6) allow one to extend theMarkov
approximation to the nonlinear case and to use the PSM for
studying waves in random nonlinear media. The complex
amplitude of an electric field in the observation plane is
determined from a numerical experiment based on the PSM.
This is equivalent to measurements of the amplitude and
phase of the light field in a nonlinear medium with a known
statistics of the incident radiation and inhomogeneities of the
medium.

2.1.3 Scheme of the Monte Carlo method. The system
consisting of Eqn (2.7) and the constitutive equation of a
medium determines a random realization of the light field
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eE �i ��r; z; t� for some distributions of the dielectric constant
~e�i��r; z; t� in the medium and of the light wave eE �i �0 �r; t� in the
radiation plane. The sample

� eE �i ��r; z; t�; i � 1; . . . ; N
	
of

light fields is arrived at by solving this system repeatedly for
an ensemble of random functions

�
~e�i ��r; z; t�; i � 1; . . . ; N

	
,

which are characterized by the spectrum Fe�~K;o�, and for an
ensemble of the initial conditions

� eE �i �0 �r; t�; i � 1; . . . ; N
	

with the spectrum FE�~K;o�. The sample
� eE �i ��r; z; t�,

i � 1; . . . ; N
	
is used for statistical analysis of a random

light field in a number of planes z � const. According to the
theory of statistical modelling [61], the error in random
estimates of statistical parameters h iN decreases as

����
N
p

.
Thus, the MCM in statistical wave optics involves the

following procedures:
Formation of random fields eE �i �0 �r; t� of a source and

scattering screens, which simulate fluctuations of the dielec-
tric constant in a random medium with ~e�i��r; z; t� and
~a�i��r; z; t�;

obtaining realizations of the light field eE �i��r; z; t�,
i � 1; . . . ; N by means of repeated computer solutions to the
problem of propagation of the optical radiation in a nonlinear
inhomogeneous medium;

and statistical processing of the ensemble
� eE �i��r; z; t�,

i � 1; . . . ; N
	
of light fields obtained.

The MCM based on the PSM is widely used in studies of
linear wave problems in the optics of random media.
Statistical tests with the waves scattered from a phase screen
have been first performed in [62], where methodical problems
of the numerical simulation of the stochastic waves diffrac-
tion have been considered by the example of a thin layer of the
anisotropic ionosphere. The distribution function for the
intensity fluctuations of a plane wave behind a thin turbulent
layer has been studied in [63] using the model of a single phase
screen.

The chain PSM has been employed when studying the
effect of random inhomogeneities and height gradient of the
electron concentration in the ionosphere on the statistics of
signals of different frequencies [64] and the frequency-
selective fading of a broadband signal in the ionospheric
channel [65]. The application of the PSM to studies of the
wave propagation in the ionosphere has been discussed in
Refs [65, 66].

The PSM is used in acoustics for investigating the effect of
the internal waves on fluctuations of the acoustic signal in a
submarine sound channel [67]. Fluctuations of the sound
velocity are simulated by means of a random field of the
internal waves produced in the form of superposition of the
eigenmodes of the channel with arbitrary phases.

TheMCMbased on the PSMwasmost commonly used in
the optics of turbulent atmosphere. Because fluctuations of
the light wave are formed in a random field of the refractive
index in the atmospheric path, the model involving many
phase screens was used. In [68], the PSM was used for
studying the strong intensity fluctuations of a plane wave
for different parameters of the atmospheric turbulence. The
model contained from twelve to twenty screens along the light
propagation path, which simulated fluctuations of the
refractive index with a power spatial spectrum. To determine
the spectrum of the intensity fluctuations, an ensemble of ten
realizations was used which was processed by applying an
additional averaging in the observation plane, the latter
procedure being admissible for statistically isotropic fields.
In Ref. [68], themodel of random continuum represented by a
chain of twenty phase screens was compared with the model

of a single phase screen located, according to [54], at one-half
the propagation length. It was shown that a single phase
screen having the same variance as the total variance of a
chain of screens underestimates the variance s2I of intensity
fluctuations of a plane wave approximately by 25% in a
broad range of variations of the internal scale l0 (Fig. 2).

A number of studies on the statistics of the light wave
intensity in a turbulent atmosphere has been carried out using
the procedure developed in [68]. In these papers, the variance
of intensity fluctuations of the light beamwas investigated [69]
and the results of the numerical experiment were directly
compared with natural measurements [70]. Analysis of the
first five statistical intensity moments in the regions of a weak
turbulence, strong focusing, and saturation of the field
fluctuations showed that known asymptotic theories are
valid only in the region of an extremely strong saturation of
fluctuations [71]. Statistical studies of the distribution func-
tion of intensity fluctuations for the plane and spherical waves
in the turbulent atmosphere have been performed in [72].

The geometrical optics approach in the PSM was put to
use in [73] for studying the mean number of beams and the
density of caustics upon the multibeam propagation of the
waves in a random medium.

Advantages of theMCM in the wave problems of random
media were discussed at length in [73], where good agreement
between numerical calculations of the fourth field moment
and known analytic solutions was shown.

The possibilities of the PSM employment in nonlinear
problems of the laser beam propagation in the turbulent
atmosphere were demonstrated in [22], where individual
realizations of the light field were obtained in the case of the
self-action in a random field of the refractive index. Many
papers were devoted to statistical tests in the nonlinear optics
of the turbulent atmosphere (see, for instance, reviews [10, 23,
75]).

86420 10 12 14

4

5

6

3

2

1

0

b � 15

5:0

1:5

b20

s2I

Figure 2. Comparison of dependences for the variance s2I of intensity

fluctuations in a plane wave on b20 obtained for the PSM consisting of 20

screens (solid lines with symbols) and of a single screen (separate symbols

for b20 � 2; 4; 6). Fluctuations of the medium are described by the

Kolmogorov spectrum with the internal scale l0 at l0=RF � 0:6b, where
RF �

����������
z=k0

p
is the Fresnel radius, the parameter b is shown near the

curves, and b20 is the variance of the plane wave fluctuations within the

approximation of smooth perturbations [68].
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The MCM was used for studying the spatial statistics of
light beams in the atmosphere in the case of nonstationary
thermal self-action [76] and under conditions of the wind
refraction [77], as well as for determining the average
statistical parameters of intense laser beams upon pulsations
of the wind velocity along the atmospheric route [78, 79].
Statistical tests started from the PSM were performed for
analysis of the adaptive optics systems in the atmosphere [80 ±
82].

2.1.4 Phase screen model and split-step method. A chain of a
finite number of scattering screens adequately reflects proper-
ties of a nonlinear continuum with randomly inhomogeneous
parameters, provided the distance Dz between the screens is
small compared to lengths of the characteristic change in the
field along the evolution coordinate Ð the lengths of
nonlinearity Lnl, dispersion Ldp, diffraction Ldf, and extinc-
tion aÿ1:

Dz5 min
�
Lnl; Ldp; Ldf; aÿ1

	
: �2:14�

Scales Ldf and Ldp of the fields for a randomly inhomoge-
neous wave are determined by the expressions

Ldf � k0r
2
c ; Ldp � t2c

jq2k=qo2j : �2:15�

Under condition (2.14), the effects of nonlinearity, dispersion,
diffraction, and absorption only slightly influence a change in
the light field within the slab Dz. This allows one to represent
the slab Dz of a random medium as a system of two screens,
one of which simulates `intrinsic' fluctuations of the dielectric
constant of the medium and another simulates fluctuations
induced by the field due to nonlinearity of the medium
response. Behind the screens, diffraction and dispersion of
the wave take place upon its propagation by the distanceDz in
a linear homogeneous medium.

A continuum as a whole is represented as a chain of
screens arranged in pairs. The field fluctuations caused by the
screens of `intrinsic' and induced perturbations of themedium
are transformed between the screens of adjacent slabs upon
diffraction and dispersion. In the absence of absorption,
when the medium causes only phase perturbations of the
wave, these perturbations undergo the phase-amplitude
conversion between the screens and the amplitude-phase
conversion on the nonlinear screens. In this case, the mutual
conversion of the amplitude and phase perturbations of the
wave develops under conditions of the phase stochastization
by `intrinsic' fluctuations of the randomly inhomogeneous
medium.

The phase screen model of a nonlinear random medium
represents in fact a physical interpretation of the split-step
method (SSM), which is widely used in calculus mathematics
[83]. In this method, the differential equation with a compo-
site operator, which can be represented as a sum of simpler
component operators, is replaced in each slabDz by a chain of
equations containing component operators. This permits one
to use the most efficient methods for numerical solution to
each of the equations in the chain. This approach applied to
physics is referred to as the method of splitting by physical
factors.

The SSM applied to Eqn (2.7) leads to the next chain of
equations in the slab �zj zj�1�, j � 1; . . . ; Jÿ 1, where J is the
number of slabs. The first equation describes a random
perturbation of the complex phase of the field by `intrinsic'

inhomogeneities of a medium:

2ik0
q eEe
qz
� k20

~e
e
eEe ÿ ik0~a eEe ; z 2 �zjzj�1� : �2:16�

The initial condition for this problem at z � zj is the complex
amplitude at the left boundary of the slab, which is known:

eEe�r; zj; t� � eE�r; zj; t� :
The second equation describes the field distortion due to the
amplitude-phase conversion during which the inhomogene-
ities in the intensity distribution cause nonlinear phase
perturbations:

2ik0
q eEnl

qz
� k20

enl
e
eEnl ÿ ik0�anl � a� eEnl ; z 2 �zj zj�1� :

�2:17�

This equation is considered simultaneously with the constitu-
tive equation for amedium. The initial condition for eEnl in the
zj-plane is the solution of the previous problem:

Enl�r; zj; t� � eEe�r; zj�1; t� :
The third equation describes the wave propagation in a linear
regular medium of thickness Dz, during which the induced
phase perturbations are transformed to amplitude perturba-
tions:

2ik0
q eEw

qz
� D? eEw ÿ k0

q2k
qo2
� q

2 eEw

qZ2
; z 2 �zj zj�1� ; �2:18�

with the initial condition

eEw�r; zj; t� � eEnl�r; zj�1; t� :

The solution of the latter problem is taken as the required
field at the right boundary zj�1 of the slab:eE�r; zj�1; t� � eEw�r; zj�1; t� : �2:19�

In the next slab �zj�1 zj�2�, the problems of scattering,
nonlinear distortion, and wave propagation are again solved
successively. In this case, the initial condition for the first of
the problems is the one obtained previously in the zj�1-plane.

The order of consideration of processes in the slab Dz is
ambiguous. The above procedure results in an asymmetric
scheme. Upon symmetrization, the wave propagation over a
distance of Dz=2 is first considered, then inhomogeneous and
nonlinear distortions of the field and then again the wave
problem for a thickness of Dz=2. It is easy to see that the
passage to the symmetric scheme of the problem as a whole
results in changes in the first and last slabs only. At the same
time, when the number of slabs is small �J4 10�, the
symmetric scheme provides a higher accuracy [75].

The idea of using the SSM in problems of wave propaga-
tion in nonlinear random media has been first suggested in a
short communication [84]. The modern concept of this
method and procedures for the construction of split operators
for analysis of the waves in linear random media is discussed
in a review article [85].

In nonlinear wave optics, the SSM has been first applied
to analysis of nonstationary self-modulation of ultrashort
light pulses in a nonlinear dispersive medium [86]. This
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method has received wide acceptance after issuing [22] and
has been further developed for the solution of many problems
in nonlinear atmospheric optics [23]. At present, the split-step
method constitutes a most effective procedure tailored for
nonlinear wave optics and laser physics [24]. The method is
used for analysis of propagation of light pulses in optical
fibres [87] and beams in atmosphere [10, 75], formation of
radiation in CO2 lasers [88, 89] and high-power solid-state
amplifiers [90], for studies of stimulated Raman scattering
[91, 92], wave-front reversal [93], problems of adaptive optics
[80 ± 82], and many other problems.

2.1.5 Method of numerical experiments. The solution to the
problem of field scattering by `intrinsic' inhomogeneities of a
medium (2.16) has the formeEe�r; zj�1; t� � eEe�r; zj; t� exp�ÿieSj�r; t�	 ;

eSj�r; t� � 1

2

�zj�1
zj

�
k0

~e�r; z0; t�
e

ÿ i~a�r; z0; t�
�
dz0 : �2:20�

Here, eSj is a random phase, which is complex in the general
case. Its real part is equal to thewave-phase accumulation and
the imaginary part is equal to half the optical thickness ~yj=2 of
the jth slab in an irregular medium. The perturbation of the
wave phase coincides with the first-order correction in the
geometrical optics approximation [40].

If the slab thickness Dz exceeds the internal, l0, and
external, L0, perturbation scales in the medium

Dz > L0 > l0 ; �2:21�
then themodel of the dielectric constant of themedium, which
is d-correlated along the evolution coordinate z, can be
applied [40]. For a statistically stationary and isotropic field
~e�r; z; t�, the spectrum FS�~K;o� of a random phase eS�r; t� on a
screen takes the form [10]

FS�~K;o� � pk
2
0

2
DzFe�~K?; 0;o� ; �2:22�

where Fe�~K?; 0;o� is the spectral density of the three-
dimensional nonstationary field ~e�r; z; t�.

For the Gaussian field ~e�r; z; t�, the condition of d-
correlation means the statistical independence of the phase
fluctuation eS on different screens:

heSj�r; t� eS�j 0 �r; t�i � s2Sdjj 0 ; �2:23�

where s2S is the variance of phase fluctuations on a screen.
In problems of atmospheric optics, the model of `frozen'

turbulence is used. In this case, the field eS�r; t� on the screen
satisfies the condition

eSj�r; t� � eSj�rÿ v?t; 0� : �2:24�

This corresponds to the representation of the moving random
medium as a sequence of screens eSj that are displacing with
velocity v? in the direction perpendicular to the radiation
propagation.

The solution of problem (2.17) formulated on nonlinear
distortions of the field has the form [23]

Enl�r; zj�1; t� � Enl�r; zj; t�

� exp

�
ÿ yj
2

�
exp

�
ÿijnl j ÿ

ynl j
2

�
; �2:25�

where

jnl j �
k0
2e

�zj�1
zj

enl�I� dz ; ynl j �
�zj�1
zj

anl�I� dz :

Expression (2.25) describes a change in the field upon
scattering from a screen with perturbations of the phase jnl j
and optical thickness ynl j induced by the field in the slab Dz.
To determine them, one should use the iteration procedure.
However, in the case of a weak nonlinearity, the linearization
can be performed on a screen, which corresponds to the
specified field approximation in the slab Dz{:

jnl j�r; t� '
k0Dz
2e

enl
ÿjEnl�r; zj; t�j2

�
;

ynl j�r; t� ' Dz
2
anl
ÿjEnl�r; zj; t�j2

�
: �2:26�

In this approximation, the nonlinear length Lnl can be
estimated, which was introduced into inequality (2.14) as a
distance over which the phase accumulation jnl does not
exceed, for example, p=2 and the optical thickness
ynl4 10ÿ2ÿ10ÿ3:

Lnl � min

�
pe
k0enl

;
2� �10ÿ2ÿ10ÿ3�

anl

�
: �2:27�

The linear wave problem (2.18) can be solved by various
numerical methods. However, the most efficient is the
analysis in the spectral space of field harmonics for which
the phase accumulation can be calculated exactly, whereas the
difference schemes inevitably introduce the dispersion error
caused by the approximation of the wave operator [94].

In the numerical analysis, the field is represented by
functions of the discrete argument in the zj-planes. For
example, the complex amplitude of the light wave is given in
the form

E�r; z; t� ! Epqm�z� � E�xp; yq; z; tm� : �2:28�
For a square grid with the spacing h:

xp � ph ; yq � qh ; p; q � 1; . . . ; P; L � Ph :

For the sampling step ht, we obtain

tm � mht ; m � 1; . . . ; M ; Lt �Mh :

The parameterL can be defined as a size of the `computer'
aperture (grid size) which is used for observation of the wave
propagation, and the parameter Lt, as the `computer' time of
the pulse observation in the accompanying coordinate
system.

To obtain the solutionEpqm�zj� of the wave problem in the
spectral space, the direct, F, and inverse, Fÿ1, Fourier
transforms are used for the function of discrete argument,
which are performed by means of the fast Fourier transform
(FFT) algorithm. This substantially reduces computational
time. The field Epqm�zj�1� is written in the form
Epqm�zj�1�

� Fÿ1
�
exp

�
i

2k0
�K2p 0 � K2q 0 � K2q 0o2

m 0 �Dz
�
F
�
Epqm�zj�

��
;�2:29�

{The specified field approximation in the slab Dz imposes a substantially
weaker limitation than this approximation but applied to the total

propagation length zJ.
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where

om 0 �
�
k0
q2k
qo2

�1=2
2p
Lt m

0; Kp 0 � 2p
L p0; Kq 0 � 2p

L q 0

are the frequencies of the space ± time spectrum and
p 0, q 0 � 1; . . . ; P; m 0 � 1; . . . ; M are the serial numbers of
harmonics.

Studies of the wave field in a linear random medium by
various numerical methods showed [74] that the splitting
procedure, i.e. the use of the PSM, reduces computational
time approximately by 30% as compared to the direct
solution of stochastic parabolic equation (2.7) at anl, enl � 0.
The use of the FFT algorithm therewith increases the
efficiency of the SSM especially in the case of intense
fluctuations.

Detailed analysis of the efficiency of different numerical
methods by the example of the problem of a soliton in a
regular medium with cubic nonlinearity has been performed
in [24]. It has been found that the SSM in conjunction with the
FFT algorithm requires a substantially smaller number of
sampling intervals Dz and h in comparison with difference
schemes for the same accuracy of conserving the integrals of
motion. For this reason, the computational time in the SSM is
reduced by a factor of ten and more as compared to that in
finite difference methods.

In Ref. [95], an algorithm of the wide-angle SSM has been
developed for the modified parabolic equation that is valid in
the case of a considerable change in the direction of the wave
vector in media with intense large-scale fluctuations of
parameters. This algorithm is intended for studies of sub-
marine acoustic channels.

2.1.6 Adequacy of numerical analysis. The representation of
fields on a discrete grid in a numerical analysis is equivalent to
the long-wavelength approximation of the fields in the plane
z � const [94]. The grid spacing h bounds the minimum scale
of the field below, the latter being reproduced in the numerical
experiment:

minfrc; leg � 2h ; tc � 2ht : �2:30�

The close condition was formulated for the spacing h of the
grid applied to the phase screen of the atmospheric turbulence
[65]:

h <
l0
3
;

where l0 is the internal scale of the turbulence.
It follows from (2.30) that the highest frequency of the

spatial spectrum of the field with a discrete argument, which is
called the Nyquist frequency KN of the grid, equals

KN � p
h
: �2:31�

The lowest frequency K1 of the spatial spectrum for the field
on the grid is inversely proportional to the size of its
`computer' aperture:

K1 � 2p
L : �2:32�

According to (2.28), the relative width of the spectral range
for spatial frequencies on the grid is

KN
K1
� P ;

and that of the time range is equal to

oM

o1
�M : �2:33�

This range should contain the time-space spectrum of all the
fields reproduced in the numerical experiment. Otherwise, the
errors appear in the spectral space. When using the discrete
Fourier transform, these errors are related to the frequency
aliasing, which results in the appearance of spurious harmo-
nics in the field spectrum [96, 97].

When optical waves are propagating through a random
medium under conditions of intense fluctuations, spatial
harmonics of the light field E can appear with the frequency
KE that is higher than the upper bound Ke of the spectrum Fe
of `intrinsic' inhomogeneities of the medium. Upon nonlinear
optical interaction, the spatial spectra of fields E and enl are
enriched and the maximum frequencymax KE in the spectrum
of the fieldFE increases. For this reason, the condition [22, 97]

maxfKE�z � 0� ; Keg < KN : �2:34�

is imposed on the upper bound of the spectrum FE�z � 0� of
the incident wave and the spectrum Fe of `intrinsic' inhomo-
geneities of the medium. As a result, a `buffer' zone is formed
in the spectral space, which is intended for filling by the high-
frequency harmonics of fields E and enl; the latter can appear
in the case of intense fluctuations and nonlinear optical
interactions. The spectra of fields E and enl are usually
unbounded, and in practice it is sufficient to control that the
energy of the highest harmonics of the light field
E�KP; KP;oM� on the grid would be small for any z. For
example,��E�KP; KP;oM�

��24 10ÿ�2ÿ 4� max
p 0; q 0;m 0

n��E�Kp 0 ; Kq 0 ;om 0 �
��2o :
�2:35�

A specific analysis of the effect of variance of the screen
phase fluctuations on the parameters of the calculating grid
was performed in [65, 68]. For a screen with a Gaussian phase
spectrum, the following estimate of the grid spacing h is
obtained from condition (2.31) [65]:

h <
plS���
2
p

sS
; �2:36�

where s2S and lS are the variance and the coherence scale of
phase fluctuations on a screen. In [68], based on asymptotic
estimates of the spectrum of strong fluctuations of the plane-
wave intensity in the turbulent atmosphere, the expression

P � 2�s2I �2=g101=g�2
�

1� g=2
2gG�1� g=2� cos�pg=4�

�2=g
�2:37�

was obtained for a necessary number P of the grid points,
where s2I is the variance of intensity fluctuations and g is the
exponent in the power spectrum of fluctuations of the
dielectric constant in a medium. Under condition (2.37), the
amplitudes of harmonics at the lower and upper bounds of the
intensity range on the grid do not exceed 1% of the amplitude
of fundamental spectral components. According to (2.37),
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for example, for the Kolmogorov spectrum of the atmo-
spheric turbulence �g � 5=3� [40], one can achieve the
variance of intensity fluctuations s2I ' 15 on the grid phase
screen containing 512� 512 points and s2I ' 25 on the screen
containing 1024� 1024 points.

The `computer' apertures L and Lt are, as a rule, far
shorter than the real region, where the light beam propagates,
and than the duration of pulse observation, respectively.
However, the effect of the `computer' aperture is small
provided the field at its boundaries is close to zero for any z:��E�L;L;Lt; z���24 10ÿ�2ÿ 4�max

p; q;m

n��Ep; q;m�z�
��2o : �2:38�

Because the beam and the pulse are spreading out during
their propagation due to diffraction, dispersion, and non-
linear effects, the field amplitude at the aperture boundary
increases. To eliminate possible errors, which can arise in this
case, the size of the `computer' aperture is chosen by taking
into account the ensuing increase in the beam radius a�z� and
in the pulse duration tp�z�. For example, one obtains [97]

L5ba0 ; Lt5b
tp
2
: �2:39�

The value of the numerical coefficient b determines the size of
the `buffer' zone in the space of variables x; y; t, which is
necessary for delocalization of radiation during its propaga-
tion. Usually, b ' 6ÿ10.

The numerical solution of the wave problem in the
spectral space (2.29) imposes the periodicity of the fields
with a period equal to the size of the `computer' aperture.
Under condition (2.39), such a periodicity does not introduce
a noticeable error into analysis of limited beams and
moments. In the case of plane waves, the periodicity results
in additional continuity conditions for the amplitude and
phase of the light field at the aperture boundaries, thereby
eliminating the appearance of purely computational diffrac-
tion on these boundaries [68]. However, a random field in the
vicinity of the opposite boundaries of the `computer' aperture
shows a false correlation, and these regions should be
excluded during statistical processing. The relative sizes of
these regions are small provided the aperture diameter L
exceeds the transverse shift of the spectral components
appearing in the chain of phase screens. For a one-scale
screen, this condition yields the following estimate [65]:

L >
���
2
p

sSz
k0lS

: �2:40�

Along with control over the filling of buffer zones, the
important factor characterizing the reliability of results of the
numerical experiment is the conservation of integrals of
motion inherent in the problem [24]. In a medium without
losses, the radiation energyW does not change with z:

dW

dz
� 0 ; W � cn0e0

2

�
L
EE� d2r dZ : �2:41�

In isotropic media, the `transverse momentum' p of the
wave is also the integral of motion:

p � in0e0
k0

�
L
�EH?ZE� ÿ E�H?ZE� d2r dZ : �2:42�

The value of p determines the beam `trend' in a plane
perpendicular to the coordinate z, the pulse `drift' in the
moving coordinate system. The trend of a partially coherent

beam results from the presence of a random component of the
inclination of the beam wave vector in the plane z � 0, while
the pulse drift is caused by a random frequency deviation
upon phase modulation.

For large values of p, the region of the radiation
localization is displaced over the `computer' aperture in the
initial plane z � 0, which can result in an increase in the field
at the aperture boundary. Since this violates condition (2.39),
the realizations of the random field eE0�r; t� with the `momen-
tum' p exceeding some threshold value are discarded.

In the absence of absorption in media with Kerr non-
linearity, the HamiltonianH of the system is also conserved:

H �
�
L

ÿ
H?ZEH?ZE� ÿ j�jEj2�

�
d2r dZ ; �2:43�

where

j�jEj2� � k20
e

�� jEj2
0

enl�x� dx� ~ejEj2
�

is the function of jEj2.

2.2 Formation of random fields
2.2.1 Field models. Realizations of the partially coherent
radiation eE �i�0 �r; t� or random phase eS �i��r; t� on a screen are
usually obtained by means of the statistical model of the field
being formed. In the case of optical radiation, the model of
`noise burst' in the form of a narrowband Gaussian noise is
most often used [1]. In this model, the complex amplitude of a
pulse is represented in the form

eE0�t� � A0�t�~g�t� ; ~g�t� � ~c�t� � i~d�t� : �2:44�

The quadrature components ~c�t� and ~d�t� are statistically
independent, they have the normal distribution w�c� and a
Gaussian autocorrelation function G�t�:
h~c�t�i � h~d�t�i � 0 ; h~c�t� ~d�t�i � 0 ;

w�~c� � ���
p
p

expfÿ~c2g ; �2:45�
G�t� � h~c�t� ~c�tÿ t�i � 1

2
exp

�
ÿ t

2

t2c0

�
;

where tc0 is the coherence time for a random substructure of
the input pulse.

For a noise burst, whose phase modulation is on average
zero and the shape is Gaussian, the envelope A0�t� is

A0�t� � A0 exp

�
ÿ t2

2t2p

�
; �2:46�

where tp is the pulse duration. In this case, tp > tc04 2p=o0.
The correlation function of radiation G�t; t� �

h eE0�tÿ t=2�E�0�t� t=2�i can be represented in the form

G�t; t� � A2
0 exp

�
ÿ t2

t2p

�
exp

�
ÿ t

2

y2c0

�
;

yÿ2c0 � �2tp�ÿ2 � tÿ2c0 �2:47�

or

G�t; t� � A2
0 exp

�
ÿ t2 �Nt2

t2p

�
;
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where N � 1=4� tp=t2c0 is the parameter characterizing the
number of inhomogeneities of the complex amplitude of the
field per pulse duration tp.

The Gaussian pulse with an additive noise is determined
by the expression

eA0�t� � A0

�1�m2�1=2
exp

�
ÿ t2

2t2p

�ÿ
1�m~g�t�� : �2:48�

In the case of a random phase modulation, it follows that

eA0�t� � A0 exp

�
ÿ t2

2t2p

�
exp
�
i~j�t�	 ; �2:49�

where ~j�t� is uniformly distributed over the interval [0; 2p].
In the case of a partially coherent light beam, which has on

average a plane wave front and a Gaussian profile, the field
can be represented in the form

eE0�r� � A0 exp

�
ÿ r2

2a20

�ÿ
~c�r� � i~d�r�� : �2:50�

This corresponds to a statistically quasi-isotropic field whose
spatial correlation function equals

G�r; r� � A2
0 exp

�
ÿ r2

a20

�
exp

�
ÿ r

2

r2c0

�
; �2:51�

where rc0 is the coherence radius.
The field of a Gaussian beam scattered from a phase

screen has the form

eE0�r� � E0 exp

�
ÿ r2

2a20

�
exp
�
ieS�r�	 ; �2:52�

where eS�r� is the random phase with a known spatial
spectrum FS�K� or correlation function GS�r�.

There are different models of the atmospheric turbulence,
which are based on the Kolmogorov ±Obukhov law of two-
thirds [98]. One of the most popular models is the KaÂ rmaÂ n
model, in which the spectrum of spatial fluctuations of the
dielectric constant is described by theKolmogorov power law
within the inertial interval l0 < r < L0 and it is saturated at
lower frequencies K < K0 � 2p=L0 [40, 99]:

Fe�K?; Kz� � 0:033C2
e �K20 � K2? � K2z�ÿ11=6 ; �2:53�

whereC2
e is the structural constant, andL0 is the external scale

of the turbulence. According to (2.22), the two-dimensional
phase spectrum in the slab Dz has the form

FS�K?� � 5s2S
6p

K5=30 �K20 � K2?�ÿ11=6 : �2:54�

The correlation phase function [100]

GS�r� � 21=6

G�5=6� s
2
S�K0r�5=6K5=6�K0r� �2:55�

is expressed in terms of the Macdonald function K5=6�K0r�
and gamma function G�5=6�. The variance s2S of phase
fluctuations equals [99]

s2S � 0:195C2
ek

2
0K
ÿ5=3
0 Dz : �2:56�

2.2.2 Formation methods. Realizations of random fields eE �i�
and eS �i� are formed as functions of a discrete argument of the
type (2.28). The fields eE and eS with the specified correlation
function or spectrum are obtained by means of the transfor-
mation of the d-correlated random field ~Zpqm, which is
generated at the grid nodes:

h~Zpqm~Zp 0q 0m 0 i � dpp 0dqq 0dmm 0 : �2:57�

In the linear transformation method [61, 101], eEpqm is
calculated from ~Zpqm with the help of a matrix that determines
the correlation dependence of the required field. In the case of
high-dimensionality problems (PQM > 105), this method
requires very long computation time.

In the spectral method [101, 102], the complex field is
represented as a sum of the Fourier harmonics with random
amplitudes and phases. Thus, the field ~gm for (2.44) is written
in the form

~gm �
1�����
M
p

XMÿ1
k�0

ak�~xk � i~Zk� exp
�
i
2p
M

mk

�
;

m � 0; 1; . . . ;Mÿ 1; �2:58�
h~xk~Zk 0 i � 0 ; h~xk~xk 0 i � h~Zk~Zk 0 i �

1

2
dkk 0 :

The weight factors ak of harmonics are determined by the
correlation function Gl of quadrature components ~cm and ~dm
of the field required:

a2k �
XMÿ1
l�0

Gl cos

�
2p
M

lk

�
: �2:59�

The canonical expansion method [61], where some coor-
dinate functions are summarized with random coefficients, is
algorithmically close to the spectral method. These functions
can be the eigenfunctions of the integral equation whose
kernel is the correlation function Gl of the required field.

The spectral method with the use of a fast Fourier
transform algorithm is characterized by a high computa-
tional efficiency. However, because of features of the Fourier
transform on a discrete grid [103], the correlation function Gl

is periodic [62]: Gl � GMÿl. As a result, strictly speaking, one
can use the fields gm containing M=2 values on a one-
dimensional grid containing M nodes, and on a two-
dimensional grid containing PQ nodes Ð the field in one
fourth of the grid: p � 0; . . . ;P=2ÿ 1; q � 0; . . . ; Q=2ÿ 1.
This should be taken into account when forming the buffer
zones (2.39) at the `computer' aperture boundaries. If the
coherence scale of the field is far smaller than the aperture
size (b4 1), a false phase correlation is insignificant [62]. To
reduce the systematic error in the method due to the discrete
representation of the fields, it was suggested [104] to
introduce the weight factor for correcting the variance of
phase fluctuations on a screen.

Within the spectral approach, a random field is
formed simultaneously at all the nodes of a grid. For
this reason, nonstationary problems of the atmospheric
optics, in which models of the `frozen' turbulence are
used, require a large memory capacity for a storage of
phase screens eSpqm travelling with the wind flow. These
difficulties can be overcome by the moving summation
method [61, 100, 101], in which the required phase eSpqm is
calculated by the weighted summation of the d-correlated
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field ~Zpqm displaced over the grid. Thus, the stationary
screen eSpq on a rectangular grid is determined by the
expression

eSpq � Xpk
l�ÿpk

Xqk
j�ÿqk

Cl j~Zp�l q�j ;

p � pk � 1; . . . ;Pÿ pk ; q � qk � 1; . . . ;Qÿ qk : �2:60�

Theweight coefficientsClj are calculated from the spectral
density FS�Kx; Ky� of the modulated field eS�x; y�:

Cl j � 1

ph

�KN
0

F
1=2
S �Kx; Ky� cos�lhKx� cos�jhKy� dKx dKy ;

l � ÿpk; . . . ; pk ; j � ÿqk; . . . ; qk : �2:61�

The systematic error of the method decreases with
increasing the number N of terms in (2.60) for a field with
the specified scale rc on a grid with the spacing h. In the
general case, one finds

N � a rc
h
; N � maxf2pk � 1; 2qk � 1g : �2:62�

The error parameter a is equal to the ratio of the maximum
displacement Nh of the elements of the d-correlated field ~Zpq
to the scale rc. For the fields with Gaussian or KaÂ rmaÂ n
spectrum (2.53), the satisfactory accuracy is achieved for
a5 3 [100].

2.2.3 Atmospheric turbulence. The size of inhomogeneities in
the surface boundary layer of the turbulent atmosphere varies
from an internal scale l0 of 0.5 ± 10 mm to an external scale L0

of the order of the path height [105]. Therefore, the range of
the spatial scale of fluctuations is L0=l0 � 104ÿ105. Despite
the fact that the spectral density of (2.53) decreases propor-
tionally to Kÿ11=3, both the low-frequency and high-frequency
harmonics of the spatial spectrum affect fluctuations of the
light field in the atmosphere. Phase screens of the atmospheric
turbulence are usually constructed with the spectral method
[22, 62, 65, 68] and less commonly, by the moving summation
method [100]. The possibility of applying the other methods
are briefly discussed in [104].

In a random field formed on a grid, theminimum scale l0 is
determined by the Nyquist frequency KN of the grid and,
according to estimates [106], is l0 � �1:5ÿ2�h. The maximum
scale of inhomogeneities in the fields obtained by the spectral
method or moving summation method is close to the size of
the `computer' aperture L. Thus, according to (2.30) and
(2.39), the external, L0, and internal, l0, scales of turbulence,
the beam radius a0, and parameters L and h of the grid in the
numerical experiment satisfy a chain of inequalities

L > L04 a04 l0 > h : �2:63�

Formation of the two-dimensional field eS with a random
phase, in which the relative change in the inhomogeneity size
achieves several orders of magnitude, requires excessively
long computing time. In numerical experiments, the external
scale L0 of the order of (8 ± 10)a0 is usually chosen. This leads
to underestimation of the contribution from large-scale
fluctuations that cause lowest-order optical aberrations,
which are manifested in a random walk and focusing of the
light beam in the atmosphere. Such a systematic error arises
because the Fourier harmonics, which form the basis set in the

spectral method, strongly differ from optical aberration
fluctuations in the atmosphere,

In [107], it was suggested to use the Zernike polynomials
Zi�r; y�, which are commonly applied in describing aberra-
tions in optical systems, as a basis set for forming phase
fluctuations in the turbulent atmosphere. In a modal repre-
sentation, the screen phase eS on a circular aperture with
radius R has the form

eS�r; y� �X1
i�2

~ai Zi�r; y� ; r � r

R
: �2:64�

Expansion coefficients ~ai are the random numbers possessing
the normal distribution with h~aii � 0.

For the Kolmogorov turbulence model of the atmosphere
described by (2.54) at K0 � 0, the variance of these coefficients
is [108]:

h~a2i i � a2i
�
2R

r0

�5=3

; �2:65�

where r0 � 1:68�C 2
n k0Dz�ÿ3=5 is the coherence radius of Fried

[109] and C 2
n � 4C 2

e . Weight factors a2i rapidly decrease with
increasing serial number of the expansion term. For the first-
order aberrations describing the tilt of the wave front,
a22 � a23 � 4:49� 10ÿ1. For the second-order aberrations
corresponding to defocusing and astigmatism,
a24 � a25 � a26 � 2:32� 10ÿ2, and for coma, a27 � . . . � a210 �
6:19� 10ÿ3 [108]. For theKaÂ rmaÂ n model (2.53) at K0 6� 0, the
decrease in factors ai slows down, the effect being stronger
with decreasing ratio of the external scale L0 to the aperture
radius R. In this case, always L0=R > 1.

The choice of the aperture radius R in modal representa-
tion (2.64) is ambiguous. Some approaches to the solution of
this problem are discussed in [110, 111].

There is a correlation between weight factors ~ai in the
expansion of atmospheric phase fluctuations over Zernike
polynomials (2.64). Thus, the correlation coefficients for tilt
and coma are h~a2~a8i � h~a3~a7i � 1:42� 10ÿ2 [108].

The presence of correlation between ~ai substantially
complicates the procedure of generating a random phase
field in the basis of Zernike polynomials. The orthonorma-
lized basis for the atmospheric turbulence is formed by the
Karhunen ±Loeve ±Obukhov (KLO) functions, which are
the eigenfunctions of the like integral equation. The KLO
functions were numerically calculated from this equation and
were shown to form the optimum basis for the phase
expansion in the turbulent atmosphere [108]. The mean-
square phase deviation in this expansion shows a minimum
as compared to other expansions containing the same number
of terms. In [112], the methodwas developed that entered into
the numerical generation of a random phase field in the
atmosphere by means of the matrix transforming the Zernike
basis to the KLO basis. In [113, 114], analytic expressions
were obtained forKLO functions in the form of expansions in
terms of the Bessel functions and the error of this representa-
tion was estimated for a finite number of terms.

The modal approach permits the adequate reproduction
of large-scale phase fluctuations, whereas the spectral one
reproduces small-scale fluctuations. This is confirmed by the
results of statistical tests of phase screen fields obtained by the
modal method for a finite number of expansion terms
(max i � J) and by the spectral method on a grid containing
P�Q nodes (Fig. 3) [115]. To analyze a random field eS�r�
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with a broad range of spatial scales, the structural function
DS�r� was used [40]:

DS�r� �

ÿeS�r� ÿ eS�0��2� : �2:66�

The function DS�r� obtained by the spectral method for the
Kolmogorov turbulence model of the atmosphere is qualita-
tively different from the analytic dependence. In the case of
the modal method, DS is close to the analytic dependence
when the number of expansion terms is comparatively small.

For theKaÂ rmaÂ n model with the external scaleL04L, the
spectral and modal methods yield functions DS�r� that are
close to the analytic dependence. However, for small r, the
error in DS�r� within the modal approximation is substan-
tially greater than that in the spectral method.

To obtain the screens simulating both the large- and
small-scale phase fluctuations, the algorithm of embedded
grids was suggested [116]. A screen formed by the spectral
method (2.58) is covered by a low-frequency (large-mesh) grid
with a spacing equal to the `computer' aperture L of the
screen. The resulting phase at the aperture L is a sum of

phases of the initial and low-frequency grids. In [117], large-
scale inhomogeneities are produced on a screen by introdu-
cing a number of subharmonics whose spatial frequencies are
obtained by dividing the interval (0; K1) repeatedly, where
K1 � 2p=L is the lowest frequency of the initial grid screen
(2.32). These approaches were modified later in [118].

2.2.4 Imitative simulation of a multimode laser beam. Models
based on a specified correlation function of the type (2.47),
(2.51) permit the construction of statistically isotropic and
stationary random fields. However, as experiments have
shown [1], the spatial statistics of laser beams upon generation
of several transverse modes proves to be far more compli-
cated. Realizations of a multimode laser beam can be
obtained by the technique of imitative simulation in which a
random field is formed as a superposition of the resonator
modes.

By assuming the transverse modes to be statistically
independent and degenerate in frequency, a field of the
optical resonator can be represented in the form [119]

eE0�r; y� �
X
l;p

alp eFlp�r; y� cos ~jlp ; �2:67�

where l and p are the azimuthal and radial indices of a mode;eFlp�r; y� is the amplitude of a random field distribution in the
mode; alp are the weight coefficients depending on diffractive
losses of the resonator, and ~jlp is a random phase of the
generation initiation.

For a resonator with circular mirrors, one obtains

eFlp�r; y� � E0 flp�r� cos�ly� eclp� ; �2:68�

where ~clp is the phase of a random orientation of a mode over
azimuth y. Phases ~jlp and

~clp are uniformly distributed from
ÿp to p.

In the case of statistically independent modes, one has

h~jlp~jl 0p 0 i � h~clp
~cl 0p 0 i �

p2

3
dll 0dpp 0 : �2:69�

Functions flp�r� and coefficients alp are the solutions of the
eigenvalue problem for an empty optical resonator. The
analytic solution to this problem was obtained in the case of
spherical mirrors for the Fresnel number NF !1, where
NF � a2m=lb, here am is the mirror radius, and b is the
distance between mirrors [120]. For NF > 1, these solutions
are close to the exact ones and can be used to obtain field
realizations.

As the azimuthal and radial indices l and p increase, so do
the diffraction losses of the modes, especially for small values
of NF. This allows one to estimate the number of significant
terms M in (2.67). Thus, taking into account all the modes
whose losses do not exceed 5%, the number M � 24 for
NF � 2 andM � 116 for NF � 6.

To obtain the individual realization of multimode radia-
tion eE �i�0 �r; y�, a set of randomphases ~j�i�lp and ~c�i�lp is generated
for the serial numbers of all modes forming a beam with a
specified number NF inside the resonator. Then, the complex
amplitude of the field eE �i�0 �r; y� is calculated at the beam cross
section from (2.67) and (2.68). The intensity distribution in
the realization thus obtained represents speckles, which are
characteristic for radiation from a multimode laser (Fig. 4a).
Here, the neck radius w of the fundamental mode with p � 0
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Figure 3. Structural function DS�r� of phase fluctuations on a screen

calculated by the MCM for a random field eS�r� obtained by the modal

method for J � 14 (rare points) and by the spectral method for

P�Q � 128� 128 (dense points) at the aperture L � R � 6:4 m. The

number of realizations N � 102: the Kolmogorov turbulence model with

L0 � 1, the confidence interval (long dashes), D5 expected on a grid

(solid curve), analytical dependence (dashed curve).
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and l � 0 was chosen as a scale for the transverse coordinate
r. For a confocal resonator, w � �lb=p�1=2.

The light field at the beam cross section is statistically
inhomogeneous. The coherence scale rc, found from the
spatial coherence function of the field GE�q 0 ÿ q=2,
q 0 � q=2�, substantially depends on the distance r0 to `the
centre of gravity' of the separated points and on the mutual
orientation of vectors q 0 and q .

The field coherence improves at the beam periphery, most
notably for the longitudinal scale rcjj determined for collinear
vectors q 0 and q .

The results of statistical processing of an ensemble
containing from 200 to 400 realizations of eE �i�0 �r; y� showed
[119] that as the Fresnel number NF increases, the region of
spatial localization of radiation expands, while the coherence
radius rc of a beam diminishes. Therefore, the coherence
coefficient of the beam c � rc=haeffi decreases (here haeffi is
the mean value of the effective radius whose square is defined
as the second moment of the intensity divided by the beam
power). However, the production rc�0�haeffi, which deter-
mines the diffraction divergence of a partially coherent beam,
is independent of NF. The results of statistical studies on the
imitative model of a multimode beam are in good agreement
with experimental data and do not contradict to analytic
estimates [1].

2.3 Convergence of the method
2.3.1 Errors in the phase screen method. A study of the
convergence involves analysis of the effect of sampling
interval choice in the PSM and of a finite sampling size on
the error in determining the statistical parameters of optical
radiation in a random medium.

In a linear stationary randommediumwithout absorption
(enl � 0, a � 0), the transverse correlation function of the field
GE�r; q ; z� in the PSM has the same structure as in the case of
a continuum [106]. The systematic error in the PSM, as
estimated from GE, is small provided the following condition
is satisfied for the slab thickness in the model:

Dz4 2k0h
2 : �2:70�

This inequality specifies condition (2.14) written in the
formulation of the PSM.

The quantitative estimate of the systematic error caused
by the medium sampling over the coordinate z was obtained
from analysis of the distribution of the average beam

intensity. The relative error in the intensity calculation
depends on the number J of screens in the PSM as follows:

eI ' 1:5

J
� 0:5

J2
: �2:71�

A similar estimate for the turbulent broadening D2tJ of a
beam scattered from a sequence of phase screens was
obtained in [121]:

D2tJ � �1� eI�D2t ; �2:72�

where D2t is the turbulent broadening of a beam in a
continuum.

A posteriori condition for the sampling interval Dz was
formulated in [68]. According to this condition, the relative
variance b2I �Dz� of the intensity fluctuations in a slab should
not exceed 0.1. In the case of weak fluctuations, when the
variance b2I �zJ� < 1 over the entire propagation length, it is
assumed that b2I �Dz�4 0:1b2I �zJ�.

2.3.2 Estimate of the sampling size. Practical estimates of the
convergence of statistical parameters of optical radiation
were made in [122] for the example of the test problem of
propagation of a slit Gaussian beam through amediumwith a
KaÂ rmaÂ n spectrum of the dielectric constant fluctuations
(2.53). In the case of weak fluctuations with the phase
variance on a screen s2S � 7� 10ÿ3 (2.56), the mean intensity
hI�0�iN on the beam axis rapidly converges with increasing
sampling size N (Fig. 5). As the variance s2S increases, the
convergence of hI�0�iN slows down.

The variance of intensity fluctuations s2I �r�, as a high-
order moment, is a statistical parameter which is more
sensitive to the sampling size N. The establishment of the
symmetric profile of s2I �r� in the isotropic field ~e�r� can be
considered as a criterion for the convergence of theMCM. As
was shown in [122], the sampling size of about 100 realizations
provides a satisfactory accuracy of measuring the mean
intensity hIi and variance s2I of a beam propagating along
the atmospheric path in the case of a weak turbulence.

Notice that an increase in the number of screens J in the
PSM results in additional averaging. When the condition
s2S J � const is satisfied, the increase in J results in the
decrease in phase fluctuations on the screens and in the
decrease of confidence intervals for estimating the statistic
parameters of radiation over an ensemble containing a finite
number N of realizations. Experience suggests that the PSM
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Figure 4. Isophotes in a beam cross section for a random realization of the field of a multimode laser with a symmetric spherical resonator for the Fresnel

number NF � 2 [119, 161]: (a) at the output aperture; (b) upon propagation in a linear medium at the distance z � 0:25k0w
2; (c) and (d) upon

nonstationary thermal self-action at the points in time t � �1=3�tp and t � tp, respectively. The isophotes correspond to intensities (1) I � 0:3Ieq, (2)
1:3Ieq, and (3) 2:3Ieq, where Ieq is the peak intensity of the equivalent Gaussian beamwhose power and radius coincide with corresponding average values

for multimode laser radiation. The broken lines show regions restricted by radius haeffiN.
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with J5 20 provides the accuracy that is adequate for
studying the problems of atmospheric optics [10, 68].

3. Partially coherent radiation
in a regular medium

3.1 Self-modulation of a noise pulse
The self-modulation of a noise pulse in a medium with Kerr
nonlinearity possesses a classical problem of nonlinear
statistical optics. In the analytic study of this problem, the
assumption of the statistically stationary light field and the
nonaberrational approximation for a pulse with the mean
envelope of a Gaussian shape are involved [1, 15]. The MCM
allows one to abandon these assumptions.

3.1.1 Similarity parameters. In a regular medium with Kerr
nonlinearity in the absence of absorption, Eqn (2.7) for the
complex amplitude of a plane light wave takes the form

2ik0
q eE�z; t�
qz

� ÿk0 q
2k

qo2

q2E�z; t�
qt2

� k20
e0j eE 2j
e

eE�z; t� : �3:1�
Propagation of the input pulse eE0�t� in the form of a

narrowband Gaussian noise (2.44) ± (2.47) is determined by
two similarity parameters: the propagation length z= eLdp

expressed in units of the dispersion length eLdp of the noise
pulse and by the parameter eR that characterizes the averaged
nonlinear phase accumulation. According to [59, 124], the
dispersion length eLdp is equal to

eLdp � Ldp

2
����
N
p ; N � 1

4
�
�
tp
tc0

�2

; �3:2�

where Ldp � t2p=jq2k=qo2j is the dispersion length of the
regular pulse of duration tp.

The nonlinearity parameter eR of a statistical problem is
determined from analysis of the approximate solution for the
field coherence function G�t; t; z� by assuming that the
normal distribution of intensity fluctuations is conserved
upon the self-action [124]:

eR � R

N
; �3:3�

where R � Ldpk0e2A2
0=e is the nonlinearity parameter in the

determinate problem [125]. One can see from (3.2) and (3.3)
that as the correlation time tc0 decreases, so does the
parameter eR which determines the averaged nonlinear phase
accumulation.

It follows from the solution to the equation for the
function G�t; t; z� obtained in the nonaberrational approx-
imation [124] that for eR < 1, the average pulse duration tp�z�
and the correlation time tc�z� increase monotonically with a
distance because of dispersion and nonlinear self-modulation.
For eR > 1, the values of tp�z� and tc�z� change periodically
with the distance z. For 1 < eR < 2, the pulse compression is
small, and tp�z� and tc�z� remain greater than their initial
values tp and tc0. For eR > 2, the pulse is periodically
compressed upon its propagation. The critical value of the
parameter eRcr � 2 corresponds to the propagation regime in
which the pulse compression caused by its self-modulation is
on average compensated by the dispersive spreading.

The method of moments was used [21] to obtain the
critical nonlinearity parameter eRcr at which the mean-square
duration of noise pulse (2.46) does not change upon its
propagation:

eRcr �
���
2
p �1� s2 � 4s2t2p=t

2
c0�

1� 4s2 � 2s4
: �3:4�

In this case, s2 � 1 for a Gaussian noise (2.44). The value ofeRcr estimated from (3.4) is 15 ± 20% lower than the value
obtained in the nonaberrational approximation in a broad
range of ratios tc0=tp.

3.1.2 Field coherence. The degree of coherence gN�t; t; z� is
determined in the MCM by averaging over an ensemble of
realizations

� eE �i��t; z�; i � 1; . . . ;N
	
according to the equa-

tion

gN�t; t; z� �

 eE�tÿ t=2; z� eE��t� t=2; z��

Nÿ
IN�tÿ t=2; z� IN�t� t=2; z�

�1=2 : �3:5�

In a linearmedium ( eR � 0), themodulus jgN�0; t; z�j of the
degree of coherence in the pulse centre broadens monotoni-
cally with the distance z and retains its initial Gaussian shape
(Fig. 6), which corresponds to analytic estimates [1]. The
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Figure 5. Convergence of the average intensity hI�0�iN on the beam axis

with increasing sampling size N in the MCM for the number of phase

screens J � 32. The grid spacing h � 5� 10ÿ2a0: (o) s2S � 7� 10ÿ3

(C2
e � 3� 10ÿ15 cmÿ2=3), (+) s2S � 2� 10ÿ1 (C2

e � 10ÿ13 cmÿ2=3).
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Figure 6.Modulus of the degree of coherence jgN�0; t; z�j at the center of a
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modulation in a supercritical regime with eR � 3 [124].
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values of the coherence time tc calculated by the MCM at the
pulse centre t � 0 and at its fronts t � �tp coincide. There-
fore, the light field of the pulse remains quasi-stationary in a
linear medium, the coefficient of coherence being constant:
tc�z�=tp�z� � const.

Under conditions of nonlinear decompression ( eR < 0),
the function jgN�0; t; z�j broadens stronger. In a supercritical
regime ( eR > 2), the profile of jgN�t�j sharply narrows at short
distances z � 0:5 eLdp and again broadens during further
propagation. The shape of the function jgN�t�j is distorted
and for z ' 2 eLdp a slowly decaying `tail' appears at t5 0:3tp.

Despite the fact that the function jgN�t�j substantially
differs from a Gaussian one, we can estimate the coherence
time tc at the eÿ1 level:��gNÿt; tc�t; z�; z��� � eÿ1

��gN�t; 0; z��� : �3:6�

In a supercritical regime ( eR > 2), the field coherence
decreases sharply at short distances z < 0:5 eLdp and then
slowly increases (Fig. 7). The decrease in tc in the initial
stage of propagation is caused by the decay instability of the
noise field and a formation of subpulses. The subsequent
increase in the coherence results from formation of solitons
and simultaneous dispersive spreading of the noise nonsoli-
ton component into a pedestal. As the nonlinearity parameter
increases ( eR � 15), the coherence time tc decreases more
rapidly.

Notice that the nonlinear phase modulation is the most
substantial at the pulse centre. This results in a violation of the
statistical stability of the field, which is especially significant
in a supercritical regime.

The nonmonotone change in tc with the distance z is also
observed upon the self-modulation of picosecond noise pulses
in an optical fiber, when the nonstationary response of a
nonlinearmedium [126] or the third-order dispersion [127] are
substantial. In a subcritical regime ( eR < 2), the field coher-
ence increases monotonically with the distance z, more than
usual strongly in the case of nonlinear decompression of the
pulse, when eR < 0.

In [128], it has been found for the problem of self-focusing
of a two-dimensional (slit) beam that the field correlation
scale rc decreases with the distance z for any eR > 1 (Fig. 7a).
In this case, rc decreases monotonically in a supercritical
regime and tends to the stationary value, which the authors
[128] explain by the small-scale self-focusing. However, upon
fragmentation of the two-dimensional beam or formation of
solitons, their parameters oscillate in the pulse with the
distance z [125, 129]. It seems likely that the discrepancy
between the results obtained in [128] and [124] are explained
by errors in the numerical experiment [128] due to the
frequency aliasing upon the nonlinear enrichment of the
light spectrum in the absence of buffer zones.

Statistical studies of the pulse compression by means of a
diffraction grating compressor showed [127] that the degree
of compression of a partially coherent pulse decreases
approximately by 30%as compared to that of a regular pulse.

3.1.3 On applicability of analytic methods. The analytic
solution for the coherence function Ga�t; t; z� may be
obtained by using three independent approximations [1, 15].
The first approximation assumes that the Gaussian statistics
is preserved upon the self-action of the light field, which
allows one to obtain a closed equation in the coherence
function Ga�t; t; z�. The second approximation consists in
the parametric definition of the required functionGa�t; t; z� as
a self-modelling solution at which the field is assumed to be
statistically stationary. Finally, the third approximation
represents a parabolic approximation of the pulse shape in
the vicinity of a point t � 0, which is necessary for determin-
ing the parameters of this solution. The latter assumption
corresponds to the well-known near-axis approximation in
the problem on the self-action of a light beam [125].

Analysis of the numerical solution to the closed equation
for the coherence function G�t; t; z� shows that the basic
assumption of retention of the Gaussian statistics for the
light field in a nonlinear medium is valid for a weak
nonlinearity, when the parameter eR does not exceed unity
[124]:

j eRj < 1 : �3:7�

In this case, the wave process of gaussisation of field
fluctuations upon dispersion and diffraction dominates over
nonlinear self-modulation of the phase. This condition is
sufficient for the nonaberrational approximation to be
applied, because nonlinear distortions of the mean intensity
profile are small.

In [130], the equation in the coherence function of the
axially-symmetric and purely-coherent light beam was
numerically investigated in a cubic medium under condition
(3.7). It was shown that the statistical isotropy of the light
field was violated for R � 10 and the inhomogeneity para-
meter N � 16. At the beam axis, where the nonlinearity is
substantial, the coherence radius decreases, whereas it
increases at a periphery because of the diffractive divergence.
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Figure 7. Change in the correlation scale of a partially coherent pulse upon

self-modulation in a medium with cubic nonlinearity: solid and dashed
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(b) the correlation time tI�z� of intensity fluctuations.
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3.1.4 Distribution laws. TheMCManalysis of the distribution
function characterizing the light-field fluctuations was per-
formed in [27, 124, 128, 131]. In a linear medium, the
Gaussian statistics of the field is preserved. In a subcritical
regime ( eR < 2), the distribution of the quadrature compo-
nents only slightly differs from the normal distribution.

In a supercritical regime ( eR ' 3), the statistics of Re eE and
Im eE changes qualitatively [124]. Analysis according to the
goodness-of-fit test w2 [132] shows that the significance level a,
for which the hypothesis of the normal distribution of the
field quadrature components can be accepted, decreases with
increasing z and the nonlinearity parameter eR. While foreR � 0:8, the significance level a � 0:3ÿ 0:5 for
z � �1:0ÿ1:5� eLdp, then for eR � 3, the significance level
a < 0:01 for the same distance z.

When analyzing transformations of distribution functions
for parameters of the light field, it is convenient to use the
probability scale, in which these functions coincide with a
bisectrix of the first coordinate angle. For example, the
Rayleigh distribution scale makes this scale for the field
modulus jEj [1]:

F�y� �
�y
0

Z exp
�
ÿ Z

2

2

�
dZ ; Z �

���
p
2

r jEj
hjEji : �3:8�

In the case of nonlinear pulse decompression ( eR < 0), the
probability density increases at y � 1ÿ2, i.e. for the field
amplitude jEj that is close to the mean value hjEji (Fig. 8).
This change is caused by smoothing of a random substructure
of the noise pulse envelope [133]. For eR > 0, the probability
of small values of the field amplitude jEj < hjEji increases,
this increase being small in a subcritical regime ( eR < 2). ForeR > 2, when the nonsoliton component forms a pedestal, the
probability density for small amplitudes substantially
increases and that for the values of jEj close to hjEji decreases
at a time. It follows from the normalization of the distribution
function F�jEj� that the change in F�jEj� at eR > 2 is
accompanied also by an increase in the probability density
for large amplitude outbursts with jEj > hjEji, which corre-
sponds to the formation of solitons.

Thus, during nonlinear processes of self-compression and
spreading of the noise pulse (j eRj > 1), the distributions of
light-field fluctuations substantially change. The initial field
statistics in a nonlinear medium is not preserved, and the
model of narrowband Gaussian noise proves to be invalid
under conditions of the self-action.

3.1.5 Intensity statistics. The intensity hI�t�iN obtained from
the sampling of random realizations of the light field
determines the mean shape of the noise-pulse envelope. In a
nonlinear medium, the mean pulse duration tp�z� increases
with z independently of the nonlinearity sign [133]. For eR < 0,
this is caused by self-demodulation, which, as dispersion,
leads to the pulse spreading. For eR > 2, tp�z� increases due to
spreading of the nonsoliton component of the noise pulse and
also due to a random drift of the pulse in `running' time.

Delay in the nonlinear response results in some slowing
down of the increase in a mean pulse duration tp�z� [126]. In
this case, the group delay of the pulse top appears, resulting in
a substantially asymmetric pulse shape. As the coherence time
tc0 becomes shorter, the relative contribution of the nonsta-
tionary self-action decreases because of the increased role of
the dispersive spreading. The effect of the third-order disper-
sion is manifested in the asymmetric mean pulse shape and in
the delay of the energy centre of the pulse [127]. As the
duration of the input pulse decreases, the role of the higher-
order dispersion increases and the relative value of the mean-
square pulse duration increases faster with the distance z. In
this case, a decrease in the coherence time tc0 accelerates
spreading of the pulse in a nonlinear dispersing medium.

The correlation function of the intensity fluctuations is
determined by the expression [123]

bI�t; t�

�
Dÿ
I�t� t=2�ÿhI�t� t=2�i�ÿI�tÿ t=2�ÿhI�tÿ t=2�i�Eh
�I�t�t=2�ÿhI�t�t=2�i�2�
�I�tÿt=2�ÿhI�tÿt=2�i�2�i1=2 :

�3:9�
The profile of the function bI�t�; t� has a region of

negative correlation, which is characteristic for randomly
modulated waves and is located on the t-axis near the
coherence time tc. As the field coherence is improved, the
region of negative correlation shifts toward higher values of t
for eR4 0. In a supercritical regime ( eR > 2), the region of
negative correlation first shifts toward lower values of t
because of the decay instability and the formation of
subpulses, and then it shifts to greater t in the process of
soliton appearance and occurrence of a pedestal from the
nonsoliton noise component. These regularities reflect the
dependence of the correlation time tI�z� for the intensity
fluctuations on the distance z. This time is usually measured
at the eÿ1-level of the function bI�0; t�) (Fig. 7b) [133]. The
asymptotic value of tI�z!1� at eR > 0 is determined by the
mean lifetime of a soliton and decreases with increasing
nonlinearity.

The change in the probability density w�I� of the intensity
was obtained in [128] using the sampling of 1400 realizations
for the problem on self-focusing of a two-dimensional beam.
The formation of filaments in the two-dimensional beam ateR � 10 results in an increase in the probability density for
large intensity deviations I > hIi. A concurrent spreading of a
`pedestal' leads to an increase in the probability of small
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Figure 8. Transformation of the distribution function FjEj�y� for the field
modulus upon self-modulation of a partially coherent pulse in a medium

with cubic nonlinearity [133]. The probability scale of the Rayleigh

distribution is used along the ordinate axis.
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fluctuations with I < hIi. For eR < 0, the probability of
moderate fluctuations I ' hIi grows due to nonlinear
smoothing of random outbursts of the radiation intensity.

A comprehensive study of self-modulation of the noise
pulse in a cubic medium with Kerr nonlinearity shows a close
relation of changes in the coherence, the distribution func-
tions for quadrature components, and the amplitude and
intensity of the light field with the process of forming the
waveguide regime during which solitons of the envelope are
separated from the pulse and a `pedestal' is formed.

In [134], the frequency spectrum of high-power subpico-
second laser pulses upon self-action in gases under conditions
of Kerr and plasma nonlinearities was studied by the MCM.
It was shown that in the case of Kerr nonlinearity the
spectrum of a partially coherent pulse is on average smoothed
and its shape is close to a Lorentzian one. As the intensity at
the focus increases up to 1015 W/cm2, when nonlinearity in a
self-induced plasma dominates, an extended short-wave-
length wing is formed in the pulse spectrum. A strong
nonlinear dependence of the ionization rate on the intensity
results in the appearance of two time scales of the coherence
g�0; t�.

3.2 Statistics of solitons
Problems of the formation and stability of solitons upon
random perturbations are of great importance in the relay of
information along optical fibres. The case of aweak nonlinear
optical interaction of the noise field can be treated analyti-
cally. Under the assumption of the Gaussian statistics of
optical radiation, the initial stage of the stationary pulse
separation from a noise was investigated by the method of
path integration [18, 135]. It was found with the method of
inverse scattering problem that small fluctuations of the
initial pulse amplitude affect only variations of the amplitude
of the soliton formed, whereas phase fluctuations affect
v ns of its velocity [136, 137]. In the case of large
f ions, the process of separation of a solitary pulse
a
b

3
s
(
b
r
n

F
r

w
d
t

c
t

with the amplitude A0, for which R � 2, forms a soliton at
Ns � 1 and q0 � 1. For the same value R � 2, the multiple
increase in the field amplitude (Ns � 2; 3) results in the
formation of the bound state of Ns solitons.

Numerical experiments with solitons [139] showed their
stability relative to stationary deviations of the amplitude. If
the amplitude perturbations j~aj < 0:5, then a soliton is
formed from the pulse at R � 2 and Ns � 1 after several
oscillations. For ~a < 0, the establishment of the amplitude
begins with its decrease. For ~a > 0, the pulse amplitude first
increases and then achieves the stationary value after several
oscillations. The soliton amplitude established after the
transient process is determined by the form factor, which is
equal q � 1� 2~a for j~aj < 0:5 . The multisoliton pulse
(Ns � 2; 3) is also stable to small perturbations jNsaj < 0:5
[139].

Random intensity outbursts in noise pulses with the
coherence time tc0 comparable with the pulse duration tp are
`picked up', in the case of a supercritical nonlinearity ( eR > 2),
by the nonlinear response of a medium. The wave decom-
poses, at the distance z ' 0:1 eLdp, into individual subpulses
[124]. Then, at z > 2 eLdp, after several oscillations of their
amplitude and duration, solitons are formed from the
subpulses with energies exceeding the critical energy. The
subpulses with energies lower than the critical energy spread
and form a `pedestal'. As a result, solitons are `purified' of the
noise. In [140], numerical studies were performed on the
dynamics of a multisoliton pulse (Ns � 16) with an additive
Gaussian noise (3.11) in a broad range of the coherence time
(tc0=tp � 0:03ÿ0:48) and noise variance (h~a2i1=2 �
0:05ÿ0:17). It was found that at the initial path z < Ldp,
either the initial pulse disintegrates into a sequence of
individual pulses because of the amplitude-modulation
instability or a solitary narrow pulse with the distorted
shape is formed.

Analysis of the noise pulses propagation in a nonlinear
medium at the distance z, which considerably exceeds the
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.2.1 Formation of solitons. The process of forming the
tationary pulse from a noise radiation is governed by Eqn
3.1). The input pulses with aGaussian envelope are described
y Eqns (2.47) ± (2.50). The complex amplitude eE0�t� of a
andom field for input pulses of the soliton shape with a phase
oise is written at z � 0 in the form [137, 138]
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or solitons with an additive Gaussian noise, Eqn (2.48) is
ewritten in the form
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�ÿ
1� ~a�t�� ;

~a�t� � ~c�t� � i~d�t� ; �3:11�

here R is the nonlinearity parameter, q0 is the form factor
etermining the amplitude and duration of a soliton, andNs is
he multiplicity of the soliton pulse.

The waveguide propagation regime exists under the
ondition R � 2, which yields the value of critical energy of
he soliton formation [59]. The regular pulse (~j � 0, ~a � 0)

dispersion length Ldp, involves serious computational pro-
blems. This is explained by the fact that the region covered by
the noise separated from a soliton extends with the distance z,
and the dimensionality of numerical arrays describing the
process excessively grows. Restriction of the region in which
the pulse is considered is equivalent to the passage to the
problem on a soliton against the noise background, the latter
being formed upon repeated reflection of the noise waves
from the region boundaries. The numerical experiment of this
type reflects, in a some degree, the soliton dynamics in an
optical fiber upon reflection of the stochastic waves from
splitters and other optical elements.

The propagation of soliton pulses at R � 2 and q0 � 1
with random d-correlated amplitude and phase fluctuations
(3.10) and (3.11) under conditions of the noise background
was considered in [138, 141] for distances z � �30ÿ70�Ldp. In
the case of a weak phase noise with the variance s2j 4 0:25, a
one-soliton pulse (Ns � 1) acquires a small random velocity,
its amplitude and duration being changed insignificantly. The
effect of the noise background is heightened with increasing
variance. For 0:24s2j4 1, the pulse becomes randomly
modulated and its maximum amplitude decreases, while its
duration increases. The value of variance s2j � 1 is critical for
the existence of a one-soliton pulse.

As the phase-noise variance increases, a two-soliton pulse
(Ns � 2) disintegrates into two individual solitons, which are
moving apart, the bound two-soliton state being destroyed



(Fig. 9) [138]. When the noise variance exceeds s2j � 0:25, the
two-soliton pulse (Ns � 2) produces a single soliton with
weak fluctuations of the shape.

Soliton pulses are more stable to a random amplitude
modulation (Re ~a 6� 0, Im ~a � 0). The critical parameter of
the one-soliton pulse existence is the value of variance of
amplitude fluctuations s2a � 1:7. For two individual solitons,
s2a � 0:25.

The frequency spectrum eE�o� of one-soliton stochastic
pulses exhibits regions of a random modulation, which
appear because of the interaction of propagating pulses with
the noise waves formed upon soliton `purification' [142].

Notice that in numerical studies [138, 141, 142], the
specific results were obtained, which substantially depend
on the region size Lt determining the noise level and, hence,
the effect of stochastic waves on the formation and `purifica-
tion' of solitons. In addition, the use of a d-correlated noise
can result in significant errors because the numerical scheme
does not reproduce the high-frequency enrichment of the
spectrum whose upper edge coincides with the Nyquist
frequency of a network.

3.2.2 Statistics of soliton parameters. The method of inverse
scattering problem [143] is more efficient for the statistical
estimate of parameters of solitons formed from a noise pulse.
In [144], the algorithm was developed for calculating the
solition spectrum for a single realization of the input pulse
with perturbations of the general type. This permitted the use
of the MCM for determining the mean values and deviations
of the form factor q and the soliton velocity [137, 145].

For the Ns-soliton pulse with additive Gaussian noise
(3.11), an increase in the noise amplitude sa results in the
increase of form factors q, which is explained by an increase in

the mean pulse energy proportionally to 1� s2a. Figure 10
shows sa-dependent mean values and standard deviations of
form factors q obtained from the sampling containing 256
realizations for the three-soliton pulse with the noise coher-
ence time tc0 � 0:5tp [145]. The form factor q increases most
significantly for the lowest component of the soliton spec-
trum, which is explained by a comparatively long noise
correlation time. For sa ' 0:6, the values of q for two lowest
soliton components coincide. This corresponds to the
unstable degenerate state in which two solitons of equal
amplitudes greatly differ in their velocities.

For the low noise level sa 4 0:25ÿ0:50, standard devia-
tions of the form factor and soliton velocity depend linearly
on the noise amplitude sa, which coincides with analytic
perturbation calculations. As experiments with one-soliton
pulses show [137], this linear dependence is violated with
increasing sa, and fluctuations of soliton parameters grow
more significantly. In the case of one-soliton pulses with a
high noise amplitude (sa ' 0:5ÿ1:0), the probability of the
appearance of solitons with lower form factors increases.

3.3 Nonstationary self-action of beams
Upon propagation of the pulse radiation through absorbing
media, the light field induces perturbations of the dielectric
constant enl, which are changing in time because of the heat
and mass transfer. The nonlinear response of the absorbing
medium is not instant and is not localized in space. This fact is
reflected in the appearance of spatial and time dispersion of
the nonlinear contribution of the dielectric constant enl.

In the isobaric approximation (tp > a=cs, where cs is the
sound velocity), the establishment of temperature is char-
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acterized by time scales related to the convection (tva � a=v
and tvr � rc=v) and thermal conductivity (twa � a2=4w and
twr � r2c=4w) within the beam dimensions a and over spatial
inhomogeneities of size rc. For short pulses tc, tp < tw in an
immobile medium (v � 0), themodel of localized nonlinearity
is valid, in which heat transfer caused by convection and
thermal conductivity is negligible during the course of the
pulse. Constitutive equation (2.10) takes the form [146, 147]

enl � qe
qT

T ; rcp
qT
qt
� aabs I : �3:12�

The approximation of localized nonlinearity is used in
analysis of the self-action of femto- and subpicosecond laser
pulses with power densities of 1013ÿ1015 W/cm2 in gases
under conditions of ionization [148, 149]. This approximation
is valid when the effect of electron diffusion, pondermotive
forces, and ion recombination on the electron concentration
distribution Ne�r; z; t� is small during the course of the pulse.
A set of constitutive equations is written in the form

enl � ÿ
o2
p

o2
; o2

p �
e2Ne

e0m
;

Ne �
X
k

kNk;
dNk

dt
� ÿRk�I�Nk � Rkÿ1�I�Nkÿ1 ; �3:13�

where Nk is the concentration of ions of the kth multiplicity,
andRk�I� is the ionization rate which depends on the intensity
I.

In moving media, the thermal conductivity dominates for
tw < tv, and convection for tw > tv [150].

When power of a beam propagating in the vertical
direction in an immobile medium is sufficiently high, the
self-induced convection develops and a perturbation is
mainly caused by the longitudinal heat transfer [151].

Upon nonstationary self-action of the beams under
conditions of thermal and plasma nonlinearities, the disper-
sive spreading of a pulse is negligible. In this case, the subject
for study is the dynamics of spatial fluctuations of radiation
and time variation of the spatial statistics of the light field.

3.3.1 Development of aberrations. Space-time instability. The
dynamics of light-field fluctuations is qualitatively repro-
duced by the time variation of a random irregular profile of
partially coherent beam (2.52) [122, 146, 147]. At the leading
edge of a pulse (t ' 0:1tp), a nonlinear suppression of random
intensity maxima occurs because of their local defocusing at
the induced inhomogeneities of a medium (Fig. 11). Upon
local thermal self-action, a strong correlation exists between
inhomogeneities induced in a medium and perturbations of
the light field. According to notions [152], a `specklon' is
formed at the leading edge of the pulse, and radiation
inhomogeneities are suppressed `resonantly in space' by
corresponding speckle inhomogeneities of the medium. This
results in the efficient defocusing of local intensity maxima,
their width being increased and amplitude being decreased.
Such a weakening of the light field inhomogeneities occurs at
small perturbations [153].

The optical strength of random thermal lenses in a
medium increases with time (t ' 0:3tp) and aberrations
appear caused by the beams caustics. For this reason, along
with continuing spreading of the intensity outbursts, their
fragmentation starts.

This results from the space ± time instability of radiation
in a defocusing medium with dispersion of the nonlinearity.

The time tcr, at which small-scale fluctuations of the field
appear, can be estimated from the condition of equality
between the energy that passed through the cross section of
the speckle inhomogeneity of the field and the critical energy
of thermal self-action.

Upon the nonstationary thermal self-action of a beam, the
longitudinal transfer of the nonlinearity accumulated in time
occurs in a medium moving in the direction of the beam
propagation. This can result in the formation of another
positive feedback applied to perturbations of the temperature
and light field [154].

Under conditions of ionization in gaseous media, a
change in the refractive index is determined by its dependence
on the intensity, which is stronger than those for Kerr or
thermal nonlinearities. For this reason, large space ± time
gradients of the refractive index appear in the field of a high-
power ultrashort laser pulse, and the light-field instability
develops more rapidly. An initial Gaussian beam takes a
circular structure because of a strong aberration defocusing at
the boundary of the near-axis region, where the electron
concentration Ne in a self-induced plasma is maximum. The
nonlinearity is accumulated with time and the beam decom-
poses at the trailing edge of the pulse into a complicated
system of rings [155].

Dynamic distortions in a spatial structure of the ultra-
short laser beam are indissolubly related to the change in the
frequency spectrum of the pulse [156]. In the region of rings
on the beam profile, where a gradient of the refractive index is
maximum, the spectrum is considerably shifted to the blue.

In resonance media, the pulse decomposes into solitary
circular waves, which diverge from the beam axis, resulting in
the induction of conical radiation emission [157]. The
dynamics of spatial, time, and spectral distributions over the
light field of the high-power laser pulse in a resonance
medium was considered at length in [158, 159]. It was shown
that the frequency-angular spectrum instability develops in
the pulse for any sign of detuning the fundamental frequency
off the resonance.

The space ± time light-field instability in media with
dispersion of the nonlinearity can be defined as a `dynamic
instability', which is substantially determined by phase
relations between perturbations of the light field and the
refractive index of themedium. The beam filamentation in the
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Figure 11. Development of aberrations in the intensity profile I�r� upon
nonstationary thermal self-action of a beam scattered by a phase screen.

The characteristic size of speckle inhomogeneities rI � 0:5rc0 and the

critical time tcr � 0:36tp [147].
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case of small-scale self-focusing in the Kerr medium with an
instant nonlinear response [3] represents a `static instability'
or `divergence' of the light field.

Analysis performed by the perturbation method [12]
showed that the dynamic instability in the Kerr medium
develops upon the simultaneous manifestation of diffraction
and dispersion effects, which accomplish the space ± time
relationship in the nonlinear distributed `radiation ±medium'
system.

3.3.2 Spatial coherence. The spatial coherence function
g�ÿr=2; r=2; t� of the field is determined by the MCM from
the expression similar to (3.5).

Upon defocusing of the local intensity maxima at the
pulse leading edge (t ' 0:1tp), the function jg�ÿr=2; r=2; t�j
for a beam scattered from phase screen (2.52) broadens,
which suggests that the spatial field coherence improves
[160]. When small-scale fluctuations appear at t ' tcr, the
coherence deteriorates at small distances r < rc0, where rc0 is
the initial coherence radius. Simultaneously, the nonlinear
divergence, similar to the diffractive one, increases the field
correlation at large distances rc ' 2rc0. Then, the function
jg�ÿr=2; r=2; t�j loses its unimodality. As the spatial instability
of the light field is developing, the decorrelation is spreading
over the entire cross section of the beam, and for t > tcr, the
radiation coherence is substantially impaired.

The correlation radius rc�t�, which is determined from
some level of the function jg�ÿr=2; r=2; t�j, partially reflects a
complicated transformation of the field coherence. This
radius changes nonmonotonically with time (Fig. 12). An
initial increase in rc�t� corresponds to the defocusing of local
maxima and its subsequent decrease corresponds to the
enrichment of the spatial spectrum of the field by higher-
order harmonics under conditions of the space ± time instabil-
ity. The nonmonotone change of the correlation radius of the
field in time obtained by the MCM was confirmed by
laboratory studies of the spatial coherence upon thermal
self-action of the beam scattered from the phase screen.
Simultaneous numerical and laboratory experiments [160]
showed that the temporal change in the spatial coherence
substantially depends on the initial statistics of radiation. As
the variance of amplitude fluctuations of the incident
radiation increases, a relative upgrading in the coherence
occurring at the leading edge of the pulse is diminished. In the
case of well-developed speckles of the incident radiation, the
coherence radius rc�t� of the output beam monotonically
decreases with time upon the nonstationary thermal self-
action.

3.3.3 Intensity statistics.Flattening of field fluctuations due to
the local defocusing at the pulse leading edge and the
subsequent development of aberrations result in the non-
monotone changeof the intensity variances2I in time (Fig. 12).

The coefficient bI�r� of spatial correlation of the intensity
fluctuations is determined from statistical tests in line with the
expression similar to (3.9). At the pulse leading edge
(t ' 0:1tp), the coefficient bI�r� broadens and the region of
negative correlations shifts to greater values of the argument r
[147]. As aberrations appear at t ' tcr, the region of the
positive correlations narrows. Simultaneously, an additional
region of a strong correlation at distances r ' 2rI0 appears
because of the continuing global broadening of initial
intensity outbursts. The function bI�r� becomes an essentially
two-scale function.

The correlation radius rI�t� of the intensity fluctuations
determined from a half-maximum level of the bI�r� profile
increases at the pulse leading edge and then decreases
(Fig. 12).

3.3.4 Spatial spectrum. The development of small-scale
aberrations on the beam profile is manifested in the high-
frequency enrichment of the spatial spectrum of the light
field. At the pulse leading edge, themodulus


jFE�K�j
�
N
of the

spectrum is unimodal, with the characteristic width K0
(Fig.13) [147]. At the pulse trailing edge, the shape of the
modulus is distorted and amplitudes of the Fourier harmo-
nics substantially increase at frequencies by a factor of 2 ± 3
higher than K0. This reflects transfer of the field energy to the
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high-frequency components of the spatial spectrum under
conditions of the space ± time instability.

3.3.5 Multimode beam. Investigation on the spatial statistics
of a beam from a pulsed multimode laser propagating under
conditions of the nonstationary thermal self-action is based
on the imitative model of radiation (2.67), (2.68). One can see
from the isophotes for individual realizations that the
spreading of speckles at the pulse leading edge and their
subsequent fragmentation occur simultaneously with the
global broadening of the beam (Fig. 4c, d) [161]. The region
of the spatial localization of radiation, which is determined by
the efficient radius haeffiN of the beam, extends both due to
diffraction (Fig. 4b) and thermal defocusing of the beam as a
whole.

The spatial coherence of a multimode beam with well-
developed speckles is diminished monotonically with time, in
contrast to that of a beam scattered from a phase screen.

In a linear medium, a multimode beam with well-devel-
oped speckles can be compared with a regular Gaussian beam
of the same divergence. However, an attempt to replace the
statistical study of the self-action of a partially coherent beam
by an equivalent determinate problem results in the error in
estimates of the beam parameters. This is explained by the
fact that the nonlinear defocusing of the partially coherent
beam develops in a greater degree than that of the regular
beam with averaged parameters because of the correlation
between inhomogeneities induced in themedium and speckles
of the light field.

3.4 Stimulated Raman scattering
Stimulated Raman scattering (SRS) relates to a nonlinear
optical process which permits the conversion of laser radia-
tion. Of great interest is the SRS conversion of laser radiation
intended for narrowing its frequency spectrum and reducing
the angular divergence of the laser beam. Physical aspects of
the mechanism of the wavefront correction during the
forward SRS conversion have been discussed in a review
[162].

Computer experiments play a significant role in studies on
the SRS conversion, in particular, those with random fields in
studies of the SRS amplification in the incoherent pumping
field.

In the approximation of coupled waves [57], the complex
amplitudes of the pumping wave, Ep�r; z; t�, and of the
forward Stokes wave, Es�r; z; t�, are described by the system
of equations
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� i

2kp
D?Ep � gpEsQ ;

qEs

qz
� 1

vs

qEs

qt
� i

2ks
D?Es � gsEpQ

� � ~ms ;

qQ
qt
� Q

T2
� gqEpEs ; �3:14�

where Q�r; z; t� is the complex amplitude of the wave of
molecular vibrational modes, gp; s;q are the coefficients of the
nonlinear interaction of radiation with the Raman-active
medium, ~m�r; z; t� is the amplitude of noise, vp; s are the
group velocities for pumping and Stokes waves, and
T2 � 2p=Do0, where Do0 is the Raman linewidth. System of
equations (3.14) does not take into account the higher Stokes
components and backscattering.

Analysis of the wavefront correction is usually performed
in the stationary approximation (tp > T2), which assumes
that qQ=qt � 0, vp � vs, and complex amplitudes of the fields
only depend on spatial coordinates r and z. Correction of the
frequency spectrum upon the SRS conversion is considered in
the plane wave approximation, whenEp; s depend on time and
the longitudinal coordinate z.

3.4.1 Wavefront correction. The main idea of the wavefront
correction consists in a space averaging of the Stokes
radiation in the process of amplification in the incoherent
pumping field. Such an averaging is achieved due to locality
of the SRS effect, which is reflected in the absence of space
derivatives in the equation for Q in (3.14). In other words, in
the Raman-active medium the wave of molecular vibrational
modes is formed with the width of the spatial spectrum
overlapping the spectrum of incoherent pumping. For this
reason, the pumping energy is efficiently transferred into the
energy of a highly coherent Stokes beam.

In practice, the space averaging of the pumping intensity is
performed by means of the prism or mirror integrator, which
directs different paths of the pumping beam into the interac-
tion region. In this case, the maximum efficiency of the SRS
conversion up to 60% and above is achieved with the help of
an aberrator, which first deteriorates the spatial coherence of
the pumping.

A series of numerical experiments on the SRS amplifica-
tion in a random field of the crossing incoherent pumping
beams was performed in [91, 163] for a two-dimensional
model. The SRS in compressed hydrogen upon pumping by
a XeCl laser at l � 0:308 mm was studied. Figure 14 displays
the realization for a scheme with four crossing pumping
beams whose divergence after an aberrator was higher than
the diffractive divergence by a factor of 120. Each of the
beams was modelled with a super-Gaussian profile of width
1.5 cm. Despite a randomly inhomogeneous distribution of
the pumping intensity over the cross sectional area of the
interaction region, the Stokes beam retained its near-Gaus-
sian profile after amplification. The results of numerical
simulation are in good agreement with experimental data.

3.4.2 Frequency-spectrum correction. The extension of the
concept of averaging to the temporal dependence for
obtaining the narrowband Stokes radiation in the broad-
band pumping field involves fundamental difficulties. The
point is that the response of the Raman-active medium is not
instant in contrast to its spatial localization. The phase of
molecular vibrational modes depends on previous time
instants, which is reflected by the term qQ=qt in (3.14). The
frequency spectrum of these modes, even in media with a
broad Raman line Do0, is substantially narrower than the
spectrum of the broadband pumping Dop. In this case, the
coherence time of pumping tcp is considerably shorter than
the relaxation time T2, and its random phase fluctuations
completely transfer to the Stokes radiation, whereas upon
narrowband pumping, when tcp0T2, the phase of the Stokes
pulse only partially repeats random phase fluctuations of
pumping. This is confirmed by the results of numerical
experiments on the nonstationary forward SRS amplifica-
tion of a start Stokes pulse in a random field of the
nonmonochromatic pumping [92, 164].

Some narrowing of the output Stokes band as compared
to the pumping band is also achieved upon SRS pumping in
media with a significant dispersion of group velocities [162].
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In this case, the space ± time averaging occurs during the shift
of the Stokes pulse relative to the pumping pulse. However,
the dispersion of group velocities is small and the coherence of
the Stokes radiation improves only slightly. According to the
results of statistical tests [92], the coherence time tcs of the
output Stokes pulse is approximately one and a half times
longer than the coherence time tcp of pumping, when the
relativemismatch of group velocities vp and vs is equal to 0.02.

In the case of backward stimulated Raman scattering
(BSRS), an opposing Stokes pulse moves within an inhomo-
geneous broadband pumping pulse, and efficient space ± time
averaging of fluctuations of the Stokes radiation induced
upon amplification occurs. The mathematical problem on the
nonstationary BSRS is described by system (3.14) with
reversed sign on qEs=qz.

Figure 15 shows an example of the random realization of
the numerical experiment on amplification of a start Stokes
pulse in the case of BSRS in the field of noise pumping [165].
During amplification of the Stokes radiation, the pumping
pulse is depleted at its trailing edge. The output Stokes pulse
retains its unimodal shape, its phase being monotonically
changed despite the considerable phase fluctuations of
pumping. According to the results of statistical analysis, the
averaged shape of the amplified Stokes pulse is close to a
Gaussian one. The variance of intensity is maximum at the
leading edge of the pulse because of a random appearance of
the intensity outbursts in the noise pumping. The coherence
function changes negligibly in a time of the Stokes pulse, and
the amplified BSRS radiation is in fact totally coherent. The
degree of coherence of the output Stokes pulse is somewhat

deteriorated under the conditions of a strong depletion of
pumping. The average conversion efficiency grows with
increasing coherence time tcp of pumping.

4. Light beams in the turbulent atmosphere

4.1 Classification of problems
The propagation of intense optical radiation in the atmo-
sphere is accompanied by a simultaneous manifestation of
nonlinear effects and fluctuations of the atmospheric para-
meters. The nonlinear refraction and large-scale turbulence
cause random walk and defocusing of a beam. The thermal
self-action of radiation in the field of small-scale fluctuations
of the medium results in the broadening of the beam and
transformation of its spatial statistics.

Studies on the propagation of light beams along atmo-
spheric paths cover many problems which involve analysis
both of the energy parameters determining the distribution of
the light field power in space and time and of information
parameters related to the radiation coherence and the level of
fluctuations. The unified approach to these problems is based
on the MCM, in which the propagation of the intense laser
radiation along the atmospheric path is simulated with a
computer.

4.1.1 Nonlinear effects. Nonlinear distortions, which appear
upon propagation of intense light beams in the atmosphere,
result from the interaction of radiation bothwith atmospheric
gases and solid and liquid fractions of aerosol particles [5]. A

ÿ5 0 5
0

1

x, mm

b
~I�x�

0.5 m
2 m

2.31 m

H2

S
Z1 Z2

a

ÿ5 0 5
0

1

x, mm

c
~I�x�

ÿ2 0 2
0

1

Angular divergence, mrad

d

Figure 14.The intensity distribution eI�x� in a separate realization of the pump and Stokes beams for a SRS amplifier with four crossing partially coherent
pump beams: (a) layout of the SRS amplification; (b) the pump (solid curve) and Stokes beams (dashed curve) in the entrance plane z1; (c) the pump and

Stokes beams in the exit plane z2; (d) the Stokes beam in the far field: the input beam (dotted curve) and the amplified beam (dashed curve) [163].
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phenomenon of the electrostriction, a change in themolecular
polarizability [166], kinetic effects in the resonance interac-
tion [167 ± 169], perturbations of density and temperature
[170 ± 172] upon absorption of radiation cause the nonlinear
refraction of the beams. The effects of nonlinear absorption in
gases and aerosol [5] and blocking of the light field upon
optical breakdown in air [173] give rise to the nonlinear
attenuation of radiation. The effects of stimulated thermal
scattering (STS), stimulated Brillouin scattering (SBS) [174,
175], and scattering by thermal aureoles near absorbing
particles [173] increase the angular divergence of radiation.
Nonlinear effects are related to different physical processes;
they substantially depend on the radiation regime and
meteorological conditions along the path [5]. Analysis [58]
showed that in most practically interesting radiation regimes
the nonlinear refraction upon thermal self-action exhibits the
lowest energy threshold.

Time scales tnl characteristic of the nonlinear refraction
usually satisfy the system of inequalities

ts < te < twe < twa < Tv ; �4:1�

where ts is the time of establishment of pressure, twa and twe
are the times of the thermal conductivity on scales of the light

beam and inhomogeneity of amedium, andTv is the period of
the wind-velocity pulsations. The convective time tv changes
within a broad range.

Relations between the times of radiation interaction with
amedium, tp or tv, on the one hand, and time scales tnl, on the
other, determine main nonlinear effects observed upon
propagation of the light beam in the atmosphere. Thus, for
pulses of duration tp ' 0:01 s, the inequalities ts < tp <
tv < Tv are valid, which permits the use of the isobaric
model of the nonstationary local defocusing in an immobile
random medium. In the long-pulse regime, when
tv < tp < Tv, the wind refraction dominates, which develops
in a flow of a random medium. In this case, the flow velocity
can be considered constant and inhomogeneities of the
refractive index can be treated as `frozen'. In the case of
quasi-continuous radiation with tp > Tv, random walk and
defocusing of the beam under conditions of the wind-velocity
pulsations are the dominant factors.

In the above regimes, the amplitude of the fieldE�r; z; t� in
the aerosol-free turbulent atmosphere is described by the
system of equations

2ik0
q eE
qz
� D? eE� k20

e
qe
qT

eT eE� k20
~e
e
eEÿ ik0a eE ;

q eT
qt
� vHH? eT � a�rcp�ÿ1eI ; �4:2�

combined with the condition of the `frozen' turbulence [123]

~e�r; z; t� t� � ~e�rÿ vt; z; t� : �4:3�

4.1.2 Similarity parameters. In the numerical experiment, it is
convenient to use the variance s2J of the phase perturbations,
determined on twice the diffraction length 2Ldf, as the
similarity criterion characterizing fluctuations of the dielec-
tric constant of themedium [10]. In themodel of phase screens
whose variance is determined from (2.56), the criterion s2J is
equal to

s2J � 1:8� 10ÿ2C2
ek

3
0L

5=3
0 a20 : �4:4�

The nonlinear refraction of a beam caused by the thermal
self-action is characterized by the nonlinearity parameter R:

R � k20a
2
0

rcpn0

����qeqT
����wa : �4:5�

The characteristic density wa of the absorbed energy is equal
to

wa �
�t
0

aabs I0�t� dt �4:6�

for the pulse duration tp < tv, and

wa � aabs I0a0
v

�4:7�

for tp > tv and quasi-continuous radiation.
A direct comparison of the parameters of turbulence s2J

and nonlinearityR allows one to estimate qualitatively which
factor dominates in distortions of light beam in the atmo-
spheric path.An example of a realization obtained for R < s2J
is presented in Fig. 16, where the intensity distribution over
the cross section of the beam propagating in the atmosphere is
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Figure 15. Intensities and phases of the pump and Stokes pulses in a

random realization of amplification of the start pulse in the noise pumping

upon backward SRS with the increment G � 8. The pump pulse duration

is tp � 200 ps, the coherence time of pumping tcp � 5 ps, the input Stokes

pulse duration and intensity are ts � 0:1tp and Is � 0:01Ip, the relaxation
time T2 � 10 ps, and the scale t0 � 230 ps. The intensity is given in relative

units and the phase, in radians [165].
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shown at a distance of z � 0:5Ldf [176]. The initial beam had a
Gaussian profile and a plane wave front. This realization
corresponds to the instant detection of the intensity at the
beam cross section. One can see that fluctuations of the
refractive index in the path resulted in the formation of
speckles of the irregular shape.

4.2 Beam spatial statistics
4.2.1 Pulsed radiation.An investigation of the spatial statistics
of the light beam in the turbulent atmosphere at nonsta-
tionary thermal self-action by theMCMrepresents a problem
in the five-dimensional space of time t, three spatial coordi-
nates x; y; z, and the Monte Carlo variable i. An individual
realization of the field in the case tp < tv is described by
system of equations (4.2) at v � 0.

Detailed analysis of the change in the spatial coherence
upon emission of the short pulse (ts < tp < tv) was carried
out in [122] for a two-dimensional model of the beam in the
atmosphere with the KaÂ rmaÂ n turbulence spectrum (2.53).
The change of the degree of spatial coherence g�ÿr=2; r=2; t�
in time was determined from the sampling of N � 300
dynamic realizations obtained for an ensemble of stationary,
statistically independent chains of phase screens simulating
small-scale fluctuations of the refractive index in the atmo-
sphere. At the pulse leading edge (R�t� � 0), the nonlinear
refraction is absent and the behaviour of the coherence radius
calculated at the eÿ1 level of the function jg�ÿr=2; r=2; t�j
corresponds to estimates [123] for a linear case.

Under conditions of the nonlinear refraction, the coher-
ence of the light field changes nonmonotonically with time, as
in the case of a beam scattered from a phase screen upon the
self-action in a regular medium. At the pulse leading edge,
rc�t� increases because of the nonlinear divergence of the
beam and defocusing of the induced inhomogeneities of the

light field (Fig. 17). Then, with the appearance of caustics in
the path of the light upon increasing the optical strength of
induced thermal lenses, the fragmentation of speckles occurs
and the coherence of the light field deteriorates.

With the development of speckles of the light field, an
increase in the intensity fluctuations is observed after their
decrease caused by nonlinear defocusing at the pulse leading
edge (Fig. 17). The time tcr at which rc and s2I begin to
decrease and increase, respectively, can be estimated, as in the
case of a partially coherent beam in a regular medium, from
the condition that the energy transferred through a speckle
inhomogeneity of the field achieves a critical value. For
parameters under study, the estimate yields tcr � 0:4tp.

The change in time of statistical parameters of the initially
coherent beam upon thermal self-action in the turbulent
atmosphere is weaker as a whole than that of the partially
coherent beam in a regular medium. This is explained by the
fact that the additive contribution of statistically independent
fluctuations of a medium may depress the mutual correlation
between perturbations of the light field and medium.

4.2.2 Wind refraction. A random realization of the light field
in the case of a long pulse is described by system of equations
(4.2) and (4.3), in which the velocity v of the wind flow is
assumed constant. The nonlinear statistical problem contains
the turbulence parameter s2J (4.4), the path length z=Ldf, the
optical thickness az, and the nonlinearity parameter R [(4.5)
and (4.7)].

The instant intensity distribution in individual realiza-
tions changes randomly at the beam cross section against the
background crescent-shaped beam profile typical for a
regular wind refraction (Fig. 18a) [77].

Fluctuations of the light field in the wind flow produced
by the atmosphere are carried away through the beam cross
section by accumulating the nonlinear perturbation enl in the
medium. As a result, thermal defocusing smooths off the
light-field inhomogeneities in the near-axis region of the
beam. The field fluctuations can increase downstream of the
wind flow at sufficiently high radiation powers because of the
aberration nature of a strong thermal defocusing. This is
demonstrated in Fig. 18b by the profile of the scintillation
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2
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index b2I at the cross section of a beam parallel to the direction
of the wind velocity{:

b2I �r; z� �
s2I �r; z�
hI�r; z�i : �4:8�

In focused beams, the power density increases with the
distance and the nonlinear enhancement of the intensity
fluctuations is more pronounced [80]. This allows one to
estimate the critical power of a beam above which the small-
scale fluctuations of the light field increase and the average
value of the maximum radiation intensity in the detection
plane decreases.

The development of small-scale perturbations of the light
field in the direction of the wind flow is confirmed by the
study of spatial coherence [77]. In the direction parallel to the
flow, the scale of the field coherence on leeward of the beam
drops because of the nonlinear enrichment of the spatial
spectrum by high-frequency harmonics. In the direction

perpendicular to the flow, the correlation between the field
and intensity fluctuations is improved in this part of the beam
because of its thermal defocusing. As a result, the light field of
the beam under conditions of the wind refraction in the
turbulent atmosphere becomes statistically anisotropic and
inhomogeneous.

The inertial nature of the thermal nonlinearity justifies the
use of the procedure of moments splitting for obtaining a
closed equation for the field coherence function [11, 177].
However, detailed analysis has shown [77] that the introduc-
tion of the average temperature field breaks the feedback for
intensity fluctuations upon thermal self-action. This leads to
deterioration of the local defocusing of intensity outbursts,
resulting in the enhancement of the scintillation index
(Fig.18b).

4.2.3Wind-velocity pulsations.According to [178], the spatial,
Lv, and temporal, Tv, fluctuation scales of the wind-velocity
components in a horizontal path of the light satisfy the
conditions

Lv4 a0 ; Tv4 tv : �4:9�

It follows from the first condition that the wind-flow
velocity at the beam cross section is virtually constant. The
second inequality implies that in the case of quasi-continuous
radiation at tp > Tv, it is highly probable that a temperature
field is established in the beam for some random distribution
of the wind velocity and the propagation of radiation can be
considered stationary.

The steady-state thermal self-action of the beam in the
case of the random wind velocity in the path is described by
system of equations (4.2), where ~e � 0, qT=qt � 0, and v�z� is
a random function. In the locally isotropic turbulence field,
the longitudinal, vx, and vertical, vy, components of the
velocity have the normal distribution law. In this case, the
random field of the wind velocity can be assumed as d-
correlated in the direction of light propagation.

The computer realization within this approach corre-
sponds to the detection of the light field in the case of
steady-state propagation of the beam along a path with the
`frozen' random distribution of the wind velocity. Statistical
parameters of the light beam are determined by processing an
ensemble of such detections obtained in time intervals t > Tv,
when distributions of the wind velocity in the path of the light
become statistically independent. The nonstationary model
of thermal self-action of a beam upon turbulent mixing by a
random wind flow was suggested in [179], where the three-
dimensional velocity field was constructed without restric-
tions (4.9).

As numerical experiments show [23, 75, 79, 180], pulsa-
tions of the wind velocity decrease nonlinear distortions of a
beam in the atmosphere. A randomorientation of the velocity
of the transverse wind flow results in irregular changes in the
path of the gradient vector direction for the temperature field
induced in the medium. For this reason, nonlinear distortions
of the beam are not accumulated along the path. The
distribution of the average intensity over the beam cross
section becomes more symmetrical as compared to that for
the nonlinear refraction in the case of the regular wind
velocity. The suppression of nonlinear distortions is especially
strongly manifested in focused beams (Fig. 19) [79].

The intensity distribution over a beam propagating in the
direction of the average wind velocity is, on average,
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Figure 18.Wind refraction of a collimated Gaussian beam in the turbulent

atmosphere in the path of length z � 0:3Ldf for the ratio of turbulence

scalesL0=l0 � 18 and wind velocity v � 10m/s. The absorption coefficient

aabs � 1:4� 10ÿ4 mÿ1, the beam radius a0 � 6l0, and the wavelength

l � 10:6 mm: (a) isophotes at the beam cross section for a random

realization at C2
e � 10ÿ16 cmÿ2=3 and the initial peak intensity

I0 � 380W cmÿ2 (s2J � 0:4, Rv � 28); the diffraction beam size adif is

shown by the dashed circle; (b) profile of the scintillation index at the beam

cross section parallel to the wind velocity; Rv � 0 (dashed lines), 28 (1, 3),

23 (2), s2J � 0:4 (1) and 1.4 (2, 3). Curve 4 is obtained from the average

temperature profile [77].

{ Notice that in the case of a long pulse, the light field is statistically

stationary at t > 3tv and its parameters can be determined by time

averaging.
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axisymmetric provided the dispersions of the wind-velocity
components at the beam cross section are coincident. As the
nonlinearity increases, so does the average radius of the beam,
similarly to the stationary defocusing in a heat conducting
medium. This allows one to reduce the statistical problem on
the average width of the beam propagating along the average
wind flow to the determinate problem on the thermal
defocusing in a medium with the efficient coefficient of the
turbulent thermal conductivity [78]:

wt ' 1:5 a0sv : �4:10�

4.3 Adaptive compensation for distortions
The problem on reducing distortions of the light beams upon
their formation and propagation is of great importance in
modern optics. The most promising are adaptive optics
systems which can correct the wave front of the beam in real
time [181, 182]. With the advent of adaptive telescopes with
laser star lighthouses, the resolution of astronomical observa-
tions was qualitatively improved [183, 184].

4.3.1 Models of adaptive optics systems. Theoretical analysis
of adaptive systems is based on the models that involve the
model of formation and propagation of radiation in a
random medium, the model of a detector and a corrector of
the wave front, and, finally, the control algorithm which
closes the feedback loop in the system. Computer models of
adaptive systems in atmospheric optics allow one to write a
scenario of radiation propagation along the horizontal,
inclined or vertical paths in accordance with optical models
of the atmosphere for a given geographic region [185, 186].
Under conditions of the adaptive control, the light beam at
the transmission aperture z � 0 in system (4.2) is specified as
follows:

E�r; 0; t� � E0�r; t� exp
�
iU�r; t�	 ; �4:11�

where U�r; t� is the controllable wave front, which is formed
by a phase corrector.

According to the control basis, zonal systems are distin-
guished, which reproduce the phaseU�r; t� at a number of the
aperture points, andmodal systems in which the phaseU�r; t�
is represented as a superposition of the Zernike polynomials
describing aberrations of optical systems [see (2.64)].

The control algorithms are divided into two main classes:
the aperture probing and phase conjugation [181, 182]. In the
aperture probing systems, the phase U�r; t� is defined from
the condition that the chosen `objective function' achieves a
maximum in the observation plane z0 (for example, radiation
power incident on a given aperture). The phase conjugation
systems are based on the reversibility principle. Information
on phase perturbations along the path is carried by the wave
c�r; z; t� scattered from a flashing point in the observation
plane z0 or a laser lighthouse [183, 184], or by the reference
radiation propagating along the channel of the incident beam
in the opposite direction relative to a transmission aperture.

The efficiency of the adaptive systems is estimated, along
with realizations of the light field at short exposures of the
image, from statistical parameters obtained by the MCM,
which corresponds to a long exposure in the detection plane.
In papers [187, 188], the long-exposure scattering function of
a point of the adaptive telescope with the Hartmann detector
of the wave front was investigated.

4.3.2 High-power beams in the atmosphere. In the case of the
beams propagating under conditions of the nonlinear refrac-
tion, methods of adaptive optics are primarily intended to
enhance the efficiency of the laser radiation energy transfer
along atmospheric paths. Because a random walk and
irregular defocusing of the beam in a random wind flow
mainly result in a decrease in the power density on a receiving
aperture, the compensation for these perturbations is the
most important problemof adaptive optics systems. Thewind
refraction is mainly determined by the first- and second-order
phase aberrations, which can be compensated bymeans of the
modal correction with a comparatively small number (no
more than ten) of control channels [189, 190].

The modal control of the beam phase based on the
maximization of the `objective function' was considered in
the quasi-stationary approximation (Tv4 tv) in Ref. [191].
The dynamic compensation for irregular distortions caused
by pulsations of the wind velocity at Tv5tv was studied in
[192]. It was shown that as the radiation power and period of
velocity pulsations increase, the efficiency of the adaptive
control of the beam phase grows as compared to that for its a
priori correction based on averaged parameters of the
irregular atmosphere. Computer simulation of the transient
process of the beam dynamic focusing upon wind refraction
in the atmosphere with `frozen' turbulence was carried out in
Refs [81, 193, 194].

The enhancement of stability of the adaptive focusing of a
high-power beam in the turbulent atmosphere was considered
in a series of papers [195 ± 197], where the algorithm of the
phase control based on the simplex method was developed. In
the case of dynamic focusing of a beam under conditions of
wind-velocity pulsations, this algorithm is stable up to the
velocity variance sv ' 0:25v20, whereas a standard gradient
procedure of searching for a maximum of the `objective
function' becomes unstable for s2v ' 0:1v20. In these papers,
the efficiency of the adaptive control of the beam phase was
studied by theMCM in the case of nonlinear refraction under
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Figure 19.Distribution of the average intensity hI�x; y�iN in the focal plane
of a Gaussian beam upon wind refraction under conditions of wind-

velocity pulsations. The path length is z � 0:3Ldf, the nonlinearity para-

meter Rv � 64, the relative variance of the wind-velocity components in

the plane perpendicular to the propagation direction s2v � 0:4, the number
of realizations N � 100. Points M and C indicate positions of the

maximum intensity maxhIi in (a) the absence of pulsations (s2v � 0) and

(b) for s2v � 0:4 [79].
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conditions of the simultaneous effect of wind-velocity
pulsations and large-scale fluctuations of the refractive
index in the path. It was demonstrated that the radiation
energyW�t�, averaged over the sampling, incident during the
time t � 12tv on a receiving aperture is approximately 30%
greater than the energy W0�t� in the absence of the control
(Fig. 20).

The efficiency of correction of turbulent and nonlinear
distortions in the case of short pulses was numerically
examined in [198] for the system of wave-front reversal.

The results of studies on the adaptive correction of
distortions of a high-power laser beam in the turbulent
atmosphere are presented in [82] for the example of imaginary
scenario of the laser antimissile defence. The point-by-point
control of the beam phase was considered on the basis of the
phase conjugation algorithm. It was found for specific
radiation parameters and conditions in the high-altitude
atmospheric path, that the turbulence on average depresses
the attenuation of the radiation intensity at the end of the
path caused by the nonlinear refraction. This results from the
turbulent spreading of the thermal field gradients induced in
the beam channel. The adaptive compensation of the distor-
tions based on the phase conjugation algorithm results in a
str thermal self-action than in the
ab high-power beam phase in the
tur
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The review does not concern statistical problems of laser
physics, which are related to the formation of radiation in
lasers, analysis of the lasing stability, and the sensitivity of
laser systems to parameter variations. Problems of the
statistical study of the effect of the laser radiation on a
substance, surface, and complex molecules could be the
subject of a separate review.
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