
Abstract. The state of the art of the problem of the analytical
continuation of wave fields is reviewed. The problem is a multi-
disciplinary subject which involves radiophysics, acoustics, and
optics on the one hand, andmathematical physics and the theory
of differential equation, on the other. The qualitative aspects of
the problem are examined. A computational algorithm for field
singularities is given. The relation between the singularities and
the `computational catastrophes' of scattering models is dis-
cussed. To illustrate the theoretical material, numerous exam-
ples are discussed in great detail.

1. Introduction

The paper is devoted to the problem of continuation of wave
(electromagnetic) fields to the so-called `nonphysical' domain
of the space, and to the main statements of the theory of such
continuations.

At present this topic is seriously investigated in the
worldwide (mainly mathematical) literature. Here one can
find original papers as well as reviews. On the opposite, there
is a serious gap in this theme in physical literature.

First, we shall give a brief description of the problem dealt
with in this paper.

Let us try to explain what is the continuation of the wave
field and where it can be used. To answer this question, we
imagine the following situation. Suppose that we are looking
at the image of some object in an ideal plane mirror. What
happens? Everybody knows that we do not see the mirror
itself. More precisely, we can see the defects on the surface of
the mirror, dust, etc. (all this is absent for the ideal mirror).
We see the images of all objects positioned before the mirror
(in the `physical' region), and these images appear to be
placed behind this mirror (in the `nonphysical' region of the
space). The reason is that our brain is analyzing information
about the electromagnetic field (light rays) obtained through
our eyes, and reconstructs objects which could originate this
electromagnetic field being placed behind the mirror. In other
words, if we place the real objects identical to the images we see
in the behind-the-mirror space, and then remove the mirror, the
field in the physical region remains unchanged. In fact, our
brain unconsciously carries out the procedure of continuation
of the wave field to the nonphysical domain and reconstructs
there `models' of objects originating the field obtained by our
eyes in the physical region.

This observation was a starting point for the series of
fruitful ideas, in particular, for the method of mirror images.
This method, previously used for plane reflecting surfaces,
turned out to be so simple and effective that there arise a
natural desire to generalize it to the case of non-plane
reflecting surfaces. To do this, let us continue our experiment
curving steadily the reflecting surface. It is evident that the
images behind the mirror will be changed; the impression
arises that the behind-the-mirror space begins to be deformed
as a continuous media. In this process the part of the image
(or even the image as a whole) can disappear (this effect is
well-known for any personwho looked into the curvedmirror
Ð let us remember the laugh room). This effect can be
associated with appearance of `folds' in the hypothetical
behind-the-mirror media, that is, such regions where two (or
more) images exist at the same time. An image can disappear
being `hidden to such a fold'.
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Let us consider the appearance of such a fold on a simple
example (for simplicity the deformation in this example is not
smooth; however, all main effects are the same for smooth
deformations as well). Let us deform the mirror by cutting it
into two parts at a point O and turning these parts into the
`behind-the-mirror' space (see Fig. 1).

Suppose that a source of light (a lamp) is placed at some
point A in the physical region on the bisectrix of the angle
between continuations of the mirror lines OC1 and OC2. In
accordance with the geometrical optics laws one can con-
struct two images B1 and B2 of this source with respect to the
mirrors OC1 and OC2, respectively. From the point Q placed
in region III, the observer will see the image B1 only (at the
point B2 he will see the object placed at the point A 0 of the
physical space). However, being replaced to region I, the
observer will see the image of our source of light at the point
B2. So, we observe that the continuation of the wave field to
the nonphysical region through the left half of the mirror is
different from that through the right part. There exist at least
two continuations of the wave field in the behind-the-mirror
space and the observer sees one of them depending on the
position in the physical space. Therefore, it can be stated that,
say, at the point B2 there exist two images (at one and the
same time!).We shall assume that these two images are placed
on different `sheets' of a kind of a Riemannian surface which
ismapped onto the planewith folds{. The observer can see the
objects placed on one of the sheets, according to his position,
which are reachable from the observation point along a direct
ray. The point O appears to be a ramification point of this
Riemannian surface; the observer cuts (unconsciously) this
surface along the ray OD originated from the point O along
the direction of the segment QO.

When the observer is moving from the point Q to the
region II across the boundary between regions II and III, he
fails to see the image of the light source at the moment he
intersects this boundary; the image will be `hidden in the fold'.
However, up to the moment of intersection of the boundary
between regions II and I, he will not see the image B2 as well.
Can one conclude that the field reflected from the source will
be absent in the region II at all? Clearly, such a conclusion
(being valid from the viewpoint of the `pure' geometrical

optics) is not true. So, what the observer will see from, say,
point Q1 of the region II? Making the cut of our Riemannian
surface along the rayOD1, the observer reconstructs the field
having a singularity on the cut (he sees the field existing on
different sheets of the Riemannian surface on each side of the
cut). Hence, each point of the cut begins to `emanate'; all this
radiation will come to the observation pointQ1 along the ray
OQ1, and the observer will see the cutOD1 as a bright pointO.
Clearly, the same situation takes place in the regions I and III
(the cut exists for observation point in these regions as well).

So, what are the conclusions we can make on the basis of
the example considered?

First, using the method of mirror images one obtains
ramifying continuation of the wave field (the careful reader
could notice that for smaller values of the angle betweenOC1

and OC2 the images B1 and B2 can be placed even over
physical region of the space but on the nonphysical sheet of the
Riemannian surface of the field continued).

Second, when using this method one should `correct' its
initial version adding some integrals over cuts to the field
induced by the images seen from the observation point.

In the case of smooth deformation of the mirror the
situation is similar, but the ramification points (folds) are
located not on the mirror surface but somewhere in the
behind-the-mirror space. For example, if the deformedmirror
has a parabolic form (see Fig. 2), the ramification point O
coincides with the focal point of the parabola.

The examples above show that whereas the field con-
tinuation and its ramification points are of objective nature,
the cuts are subjective (for example, they depend on the
position of the observation point). These cuts are chosen
(unconsciously or not) by the observer, and serve him to
choose a single-valued branch from multiple-valued continua-
tion. The choice of a system of cuts is determined by the
intention (which again can be unconscious) to reconstruct the
real field in some subdomain of the physical region with the
help of `images' of objects placed on the nonphysical part of
the Riemannian surface of continuation.

So, when modeling the field by the mirror image method
for non-plain reflecting surfaces, the system of cuts can be
chosen more or less arbitrarily. Clearly, if our aim is to model
the field in the whole physical region, the cuts are to be done
only in the non-physical regions (we recall that `non-physical
region' can include `non-physical sheets' of the continuation
laying over the physical region of the space). There are no
other fixation of the set of cuts, and its choice can be governed
by considerations of convenience, symmetry, etc.

{This situation is quite similar to that for the analytic continuation of

functions of a complex variable which leads, as is known, to the notion of

ramifying analytic function. Therefore, we use here the terminology of the

theory of analytic functions. The reader will see below that the connection

between the theory of wave fields continuation and the theory of complex-

analytic functions is not only terminological.
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From the mathematical viewpoint the idea of continua-
tion of the wave field is also quite natural. The matter is that
the wave field, being a real-analytic function of the spatial
variables, has not more that one continuation to the `non-
physical' region. This continuation is, as a rule, a ramifying
real-analytic function. Under some regularity conditions (the
analyticity of the boundary data and the boundary itself),
such continuation exists everywhere except for the set of
singularities lying in the non-physical region and having in
generic position the dimension by two units less than that of
the space. The continuation problem is, hence, reduced to:

Ð formulation of the regularity conditions for existence
of the continuation of the initial wave field everywhere except
for a (real-analytic) set of singularities, which is the theore-
tical aspect of the problem;

Ð localization of singularities of the continued field,
which is the computational aspect of the problem.

Why is the above problem important and why is so much
attention now paid to it? The matter is that the above-
described generalization of the method of mirror images to
non-plain reflecting surfaces led to a series of methods for
solving boundary value problems for harmonic oscillations in
electrodynamics, acoustics, optics, quantum scattering the-
ory, elasticity theory and others. Computational algorithms
associated with these methods are essentially based on
information about analytic properties of solutions, in parti-
cular, about location of singularities of the continuation of
the field to the non-physical domain. Such information can
serve as the initial point for constructing qualitative models of
different kind in problems of wave scattering or potential
theory. Finally, information about analytic properties of the
wave field is crucial for investigation of inverse scattering
problems and antennas. For example, it is well-known that
only entire functions of finite power can serve as diagrams for
antennas with plain radiating opening. The function class of
functions which can serve as scattering diagrams or radiation
diagrams for antennas with non-plain radiating openings can
be strictly described only with the help of information about
the continuation of the wave field to the non-physical region
of the space.

We outline the contents of the paper.
Section 2written by B Sternin andVShatalov contains the

consideration of the mathematical theory of continuation of
electromagnetic wave fields. Here two types of continuation
problems are discussed: the sweeping of current and bound-
ary value problems of electrodynamics.

The problems of the first type (the statement of such
problems for the static case goes back to classical works of
Poincare, Gerglotz, and Schwarz) involve the continuation of
a wave field originated by a known system of currents inside
the domain initially occupied with these currents. Such
problems arise, for example, in construction of antennas of
minimal size emanating given fields.

The problems of the second type are, in essence, the
problems of mathematical diffraction theory. Here we
investigate the continuation of an electromagnetic field
obtained by scattering of a wave on obstacles into the domain
initially occupied by these obstacles. As mentioned above,
such problems arise in consideration of computational
algorithms of diffraction theory, in investigations of the
radiation diagrams of antennas, etc.

The investigation of the continuation of wave fields in
Section 2 is based on the theory of differential equations in
complex domains worked out by B Sternin and V Shatalov

[1]. With the help of this theory, one can obtain explicit
formulas allowing to localize singularities of the continuation
of wave fields of the types described above.

One of the most remarkable facts here is the reflection
formula for the Helmholz equation. This formula, being a
generalization of the Schwarz symmetry principle for harmo-
nic functions, differs essentially from the latter by its nonlocal
character. It allows one not only to determine the location of
singularities but also to synthesize in the explicit form the
currents originating a given wave field.

We also consider the problems of both above types for
domains bounded by piecewise-analytic boundaries. We
investigate singularities of wave fields arising at angle points
of such domains, as well as singularities obtained by `multiple
reflections' of a wave field from different parts of the
boundary of such a domain.

Section 3 written by A Kyurkchan expounds on analytic
representations of wave fields used for solving boundary
value problems of refraction theory. They include representa-
tions in the form of wave potentials, expansions in series and
integrals in plane waves (the Rayleigh series and Sommer-
feld ±Weil integrals), expansions in series in cylindrical and
spherical harmonics, and the Wilcox series (in inverse powers
of distance). It is shown that the boundaries of applicability of
such representations are determined by the geometry of the set
of singularities associated with the continuation of the wave
field. The exact bounds of existence domains are established
for all listed representations. The connection between the
asymptotics of the diagram of the wave field near infinite
point on the complex plane of the observation angle and the
singularities of continuation of the wave field are established.

Here we also consider some computational methods for
boundary value problems of scattering theory, known in the
literature as the Waterman method (or zero-field method),
theMMM (Meisel ±Merril ±Mille) method, the method ofT-
matrices, method of auxiliary currents and discrete sources,
and the method of diagram equations which reduces the
boundary value problem to an equation for scattering
diagram, or to a system of equations for coefficients of
expansion of the diagram in some basis. The reasons under-
lying instabilities of these methods and their connection with
analytic properties of solutions are discussed. The conditions
of existence of solutions to inverse problems of scattering
theory and antennas are established. Examples are presented.

The list of references to this paper contains both classical
papers and the most recent achievements in this field of
knowledge.

2. Mathematical theory of continuation
of wave fields

Here we present a method of continuation of wave fields
outside their initial domain of definition and discuss the
localization of singularities of the resultant continuation.
This method is based on the complex theory of differential
equations worked out in the series of works by B Sternin and
V Shatalov (see Ref. [1] and the bibliography therein) in
recent years. The exposition will be carried out for solutions
of the Helmholz equation

�D� k2� u�x� � 0 �1�

in Rm (m � 2 or m � 3), though the methods to be presented
are applicable in a much more general situation.
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2.1 Statement of problem
and review of main methods
Let us first formulate the mathematical statement of the
continuation problem. Let D � Rm be some domain. The
domain D can be viewed as the domain occupied by a
scatterer, antenna, etc. Let a solution u�x� to Eqn (1) be
given in the complement RmnD of the domain D. Suppose
that the boundaryG ofD is a closed analytic surface (curve) in
Rm; later on we restrict ourselves to the case when the
equation of the boundary G is given by a polynomial. The
statement of the continuation problem is as follows:

Investigate the possibility of continuation of the function
u�x� as a solution to theHelmholz equation (1) to inner points of
the domain D and localize the singularities of such continuation
(that is, determine their position).

Before solving this problem, let us make some remarks.
First, we note that this solution is unique if the continua-

tion problem is solvable. This follows from the real analyticity
of solutions to the Helmholz equation (see, e.g. Refs [4, 5])
and from the uniqueness theorem for analytic functions.

Second, the problem in hand can have no solution at all.
For example, the solution of the exterior Dirichlet problem
for Eqn (1)

�D� k2� u�x� � 0 ;

u�x�
���
G
� j�x�

with non-analytic data j�x� cannot be continued through the
boundary G at any its point (in the opposite case the function
j�x� is analytic as a trace of analytic function u�x� on the
analytic surface G). Hence, it is necessary to add some
constraints in the statement of the problem in order to
guarantee the existence of the continuation of the solution
to inner points of the domain D.

Third, the analysis shows that the continuation of u�x�
inside the domainD is, in general, a ramifying function having
singularities at some points of D. Hence, for separating a
single-valued solution one has to introduce a system of cuts
on which the obtained continuation will have jumps (dis-
continuities of first kind).

There exist at least two statements of the continuation
problem for which the solvability can be guaranteed. These
are, first, the continuation of solutions to exterior boundary
value problems with analytic input data and, second, the
continuation of wave fields induced by a given (analytic)
current distribution in D inside the domain initially occupied
by currents as a solution to a homogeneous equation. The
first problem arises, for example, when considering the
diffraction of an electromagnetic wave on a scatterer, the
second, called `sweeping of charge' in the case of static fields,
when considering the optimization of the size of the antenna
originating a given electromagnetic field.

Let us briefly review methods used for solving continua-
tion problems. It seems that the first method used for solving
problems of this kind was that based on the Schwarz
symmetry principle (see Refs [6 ± 9]). This method (in its initial
formulation) was applicable for the continuation of static
fields. It is based on the fact that any harmonic function
vanishing on an analytic curve G satisfies the relation

u�x; y� � u
ÿ
R�x; y�� � 0 ; �2�

where �x; y� ! R�x; y� is the anticonformal mapping defined
in a neighborhood of the curve G, which interchanges the

parts U1 and U2 of this neighborhood with mutual boundary
G. We remark that the mapping R depends only on the curve
G. The modification of Eqn (2) to the Neumann conditions
[when the normal derivative qu=qn of the considered harmo-
nic function u�x� vanishes on G] has the form

u�x; y� ÿ u
ÿ
R�x; y�� � 0 : �3�

However, later it was found out that the symmetry principle
in the form (2), (3) is not valid (even in two dimensions) for the
Helmholz equation (1); in three dimensions, even for the
Laplace equation this principle is valid only if the surface G is
a plane or a sphere (see Ref. [10]). The reason is that the
connection between values of function u�x� [which satisfies
Eqn (1)] in domains U1 and U2 has not a pointwise [as in (2),
(3)] but integral character. The corresponding reflection
formula will be discussed later.

The further progress in the investigation of continuation
problems was due to works by I Vekua [11] and H Lewy [12].
In these papers the continuation problem is investigated in the
two-dimensional case, and the investigation method is based
on the Riemann method of solving the Cauchy problem.
These authors clarify the fact that to investigate the continua-
tion problem in the real space it is natural to extend the
equation considered to the complex domain. The reason for
this extension is that the Helmholz equation (1) (as well as the
simpler Laplace equation) has complex characteristics, along
which the singularities of solutions to these equations
propagate. So, to solve the continuation problem it is natural
to use the following scheme (see Refs [13 ± 15]):

(a) reduce the problem to some problem in the complex
domain;

(b) investigate the singularities of solutions to the complex
problem obtained;

(c) obtain the singularities of the initial real problem as the
`trace' of the complex singularities for real values of the
variables.

We also mention here works by P Garabedian [16, 17],
who investigated the character of reflection formulas in the
multidimensional case. However, in these works the reader
will find no explicit reflection formulas applicable to the
solution of the problem of localization of singularities.

In recent years themethods based on the integral equation
technique have spread widely. This technique was used by
many authors; we mention here papers by R Millar [18, 19]
(for a more detailed presentation see the review [14] and the
bibliography therein, as well as recent papers [20, 21] by the
authors). We should also mention a series of works by
D Khavinson and H Shapiro (see also the review [14]), who
used the method of unitary solution to the equation in
question.

Finally, the method of integral transforms of complex-
analytic functions worked out by B Sternin and V Shatalov
(see Refs [1, 22 ± 24]) gives an opportunity to investigate the
continuation problems in a general situation. The discussion
of this method is presented below.

2.2 Reduction to the complex Cauchy problem
Here we illustrate the application of the methods of complex
theory of differential equations on the example of the
`sweeping-of-charge' problem (see Refs [1, 13 ± 15, 25])
(possibly, for the Helmholz equation it would be better to
call this problem `sweeping of sources' or `sweeping of
currents', but this terminology is not in custom). The
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consideration of methods of the continuation of solutions to
boundary value problems will be carried out in Section 2.6 for
the case of a piecewise-analytic boundary.

For any (generalized) function f�x� we denote by U f the
solution to the following problem:

�D� k2�U f�x� � f�x� ; �4�

which satisfies the radiation conditions at infinity. To begin
with, let the function f�x� coincide in D with some function
possessing an analytic continuation to all complex values of
x [this function will also be denoted by f�x�], and vanishing
outside D. The solution u�x� to the problem (4) can be
viewed as an electromagnetic field induced by the current
distribution f�x� in the domain D (the antenna). The
sweeping charge problem has in this case the following
formulation: find a (generalized) function w�x� with as small
support (lying inside the domain D) as possible, such that the
solution Uw to the equation

�D� k2�Uw�x� � w�x�

coincides with U f outside the domain D.
So, one should find a current distribution w�x� which

occupies less volume compared with the initial one but
originates the same electromagnetic field outside D.

To construct the function w�x� let us consider the
difference u�x� � U f�x� ÿUw�x�. Since the support supp w
of the functionw�x� is lying insideD (Fig. 3), the function u�x�
satisfies the equation

�D� k2� u�x� � f�x� : �5�

in some neighborhood of the boundary G. Besides, since
U f�x� � Uw�x� outside D, the function u�x� vanishes identi-
cally outside D.

The inclusion f�x� 2 L2�Rm� (L2�Rm� is the space of
functions which are square-integrable in Rm) together with
Eqn (5) shows that u�x� is continuous on the boundaryGwith
its first derivatives. Therefore, we have

u
���
G
� qu
qn

����
G
� 0 :

So, the function u�x� satisfies the following Cauchy problem
�D� k2� u�x� � f�x� ;

u
���
G
� qu
qn

����
G
� 0 : �6�

in the domain Dnsuppw. Conversely, if u�x� is a solution to
the problem (6), we can put

Uw�x� � U f�x� ÿ u�x� in Dnsuppw ;
Uw�x� � U f�x� outside D

and continue this function inside the domain supp w in an
arbitrary way (the values ofUw will possibly be changed in an
arbitrarily small neighborhood of supp w). So, the solution of
continuation problem is reduced to the solution of the
Cauchy problem (6) inside the domain D. The support of the
future `swept charge' w�x� is, clearly, the set of singularities of
the solution u�x� to the problem (6) (more precisely, an
arbitrarily small neighborhood of this set).

As was already mentioned, the singularities of solutions
to problems of the type (6) are naturally investigated in the
complex space. So, to construct a solution to the problem (6)
we consider the complexification of this problem:

�D� k2�uc�x� � fc�x� ;
uc�x� has zero of second order on Gc ; �7�

where x � �x1; . . . ; xm� are now complex variables in the
complex Cartesian space Cm, the right-hand part fc�x� is an
analytic continuation of the function f�x� to the complex
values of its variables, and Gc is a complexification of the
surface G, that is the set in Cm, determined by the same
equation as G (we recall that, by supposition, the equation of
the surface G is a polynomial one). Clearly, if uc�x� is a
solution to the problem (7), then the restriction of this
function to real values of the variable x lying inside D gives
a solution to the problem (6). And real singularities of the
function u�x� are intersections of complex singularities of uc�x�
with the real domain D. This intersection gives us exactly the
support of the `swept charge'.

The above reduction of the continuation problem to the
Cauchy problem (7) shows that the singularities of the
continued field are `brought' to points of the domain D from
the complex space along (complex) characteristics of the
Helmholz equation (1).

2.3 Integral transform and solutions
to the Cauchy problem
The solution to the Cauchy problem (7) can be obtained with
the help of the above-mentioned integral transform of
complex-analytic functions. In this section, we shall discuss
main definitions and theorems connected with this integral
transform. Necessarily, the exposition will be short; the
reader can find all details in the book [1].

Let f�x� be an analytic (possibly, many-valued) function
of complex variables x � �x1; . . . ; xm�.

The function

f
_
�p� � f

_
�p0; p1; . . . ; pm� �

�
h�p�

Res
f�x� dx1 ^ . . . ^ dxm

p0 � p1x1 � . . .� pmxm
;

�8�

G

D

supp w

Figure 3.
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will be called the Laplace ±Radon transform of f�x�. Here ^ is
the sign of interior product of forms (see, e.g., Ref. [26]), Res
is the residue at the plane

Lp �
�
xj p0 � p1x

1 � . . .� pmx
m � 0

	 �9�

(see Refs [1, 27 ± 29]), and h�p� is an �mÿ 1�-dimensional
surface (homology class), lying in Lp with the boundary in Gc.
Let us illustrate the definition (8) in the two-dimensional case
�m � 2�.

Since the function f
_
�p� given by Eqn (8) is a homogeneous

function of degree ÿ1 in the variables p, it is sufficient to
compute the integral (8) at p1 � 1. For such a case the
integrand equals

Res
f�x1; x2� dx1 ^ dx2

x1 � �p0 � p2x2� : �10�

The residue (10) can be computed, for example, in variable x1

as usual one-dimensional residue; the differential dx2 in this
computation is ignored and is transferred to the result
without changes. Since the form (10) has a polar singularity
of the first order at x1 � ÿ�p0 � p2x

2�, we obtain

Res
f�x1; x2� dx1 ^ dx2

x1 � �p0 � p2x2� � f�ÿp0 ÿ p2x
2; x2� dx2 : �11�

The expression (11) is a differential form on the complex
plane C of the variable x2. We remind the reader (see, for
example, Ref. [26]) that the residue of 2-form with a
singularity on hyperplane is a 1-form on the same plane.
This form can be integrated over any curve h�p� lying in this
plane with boundary in Gc (Fig. 4). It is clear that the
boundary points of the contour h�p� being points of intersec-
tion of the plane (9) will be changed when p changes. This
leads to the dependence of the contour h�p� on p. So, in the
two-dimensional case we have

f
_
�p0; 1; p2� �

�
h�p�

f�ÿp0 ÿ p2x
2; x2� dx2 :

Clearly, one could compute the function f
_
at p2 � 1, using the

variable x2 for computation of the residue. It is easy to see
that the result of such computations is the same; in doing so it
is necessary to take into account the anticommutativity of the
exterior product dx1 ^ dx2 � ÿdx2 ^ dx1.

The examination of singularities of integrals of the type
(8) via the known singularities of the function f�x� plays an
important role in what follows. The reasons of appearance of
singularities of the integrals are as follows:

A. The coincidence of boundary points of the contour
h�p� with each other; at such ps the contour h�p� `vanishes'
(this fact gave the name `vanishing homology classes' for such
contours; see Refs [1, 27, 28]).

B. The coincidence of one of boundary points of the
contour h�p� with one of singular points of the function f�x�.

C. `Pinching the contour' h�p� between some two singular
points of the function f�x� (such phenomenon is known as
`pinch' in the Feynmann integrals theory; see Ref. [28]).

D. The motion of one of boundary points of the contour
h�p� to infinity.

The situations A ±C can be easily described in terms of
relative positions of the plane Lp, the surface Gc and the
singularity set of the function f�x�. Let us present this
description.

The situation A takes place only when the plane Lp is
either tangent to Gc or passes through one of singular points
of this surface.

The situation B takes place only when the plane Lp passes
through one of the intersection point between Gc and the set
of singular points of f�x�.

The situation C takes place if the planeLp is tangent to the
set of singularities of the function f�x� or goes through one of
the singular points of this set.

The situation D seems a little bit different from the three
above situations. However, this situation can be described in
similar terms if we include into consideration the `infinite'
(improper) points of the complex space C 2. Below we shall
illustrate this technique on examples. Here we only remark
that infinite points of the complex space can originate real
singularities in continuation problems. Such a situation takes
place, for example, while considering the two-dimensional
scattering problem on the disk or the three-dimensional
scattering problem on the sphere.

In the three-dimensional case the investigation of singula-
rities of integral (8) is a little bit more complicated. To
investigate this problem one needs to perform the stratifica-
tion of the union of Gc with the set of singularities of the
function f�x�, that is, to decompose this union in smooth
manifolds (strata) of different dimension and to consider the
tangency between each of these strata and the plane Lp (see,
e.g. Ref. [1]).

Let us now describe the main properties of the Laplace ±
Radon transform{.

First, this transform is invertible, and the inverse trans-
form has a similar form. The role of the planeLp in the inverse
transform plays the plane

eLx �
�
pj p0 � p1x

1 � . . .� pmx
m � 0

	
:

Second, the following commutation formula with differ-
entiation�

qf
qxi

�_
�p� � ÿpi d

dp0
f
_
�p� :

takes place for this transform.
We do not concentrate on the description of the function

classes used for the Laplace ±Radon transform since this
information is not directly used in the investigation of
singularities of continuation of solutions to the Helmholz
equation.

Lp\Gc

h�p�

Lp

Figure 4.

{The reader can find the details in Ref. [1].

1226 A G Kyurkchan, B Yu Sternin, V E Shatalov Physics ±Uspekhi 39 (12)



Now we are able to describe the procedure of solving the
problem (7). Applying the Laplace ±Radon transform to the
equation involved into (7), we obtain the equation

�p21 � . . .� p2m�
d2u
_�p�
dp20

� k2u
_�p� � f

_
�p� : �12�

One can show that if the function u�x� satisfies zero Cauchy
data on the surface Gc, then the function u

_�p� satisfies zero
Cauchy data on theLegendre transformLGc of the surfaceGc.
This transform is defined as

LGc �
�
pjLp is tangent to Gc at some regular point

	
;

�13�

and the bar denotes the closure. Supplying the equation
obtained with zero Cauchy data on LGc, for the function
u
_�p� we obtain the Cauchy problem for an ordinary differ-
ential equation (12) (more precisely, for the family of such
equations) with constant coefficients, which can be solved
explicitly. We remark that the singularities of solution u

_�p� to
this Cauchy problem are:

(1) singularities of the right-hand part f
_
�p�;

(2) singularities originated by singular points of initial
surface (13);

(3) singularities originated by the degeneracy of Eqn (12);
these singularities arise at

p21 � . . .� p2m � 0 : �14�

All these singularities can be computed explicitlywith the help
of only algebraic operations even without solving the Cauchy
problem for Eqn (12). This gives a possibility of investigating
the continued field by purely algebraic methods. In the next
section we illustrate the computation of singularities on
examples.

2.4 Examples
Let us first consider the `sweeping-of-the charge' problem for
a unit circle in the plane:

Du�x1; x2� � k2u�x1; x2� � f�x� ;

where

f�x� � 1 for �x1�2 � �x2�24 1 ;

0 for �x1�2 � �x2�2 > 1 :

(

The corresponding Cauchy problem is

Du�x1; x2� � k2u�x1; x2� � 1 ;

u�x1; x2� has zero of the second order

on Gc �
��x1�2 � �x2�2 � 1

	
: �15�

Let us compute the Laplace ±Radon transform f
_
�p� for the

right-hand side f�x� of problem (15) equal to 1. Due to Eqn (8)
we have

f
_
�p0; 1; p2� �

�
h�p�

dx2 ; �16�

where h�p� is the curve connecting points of intersection of the
plane Lp with the curve Gc. The equations of this intersection

are

p0 � x1 � p2x
2 � 0 ;

�x1�2 � �x2�2 � 1 ;

hence

x2 � 1

p22 � 1

�
ÿp0p2 �

�����������������������
p22 � 1ÿ p20

q �
:

So, integral (16) equals

f
_
�p0; 1; p2� �

2
�����������������������
p22 � 1ÿ p20

q
p22 � 1

:

Taking into account the degree of homogeneity of the
function f

_
, we finally obtain

f
_
�p� �

2
�������������������������
p21 � p22 ÿ p20

q
p21 � p22

: �17�

Function (17) has singularities on sets p20 � p21 � p22 and
p21 � p22 � 0. Let us present a geometrical treatment of these
singularities. First, it is evident that singularities at
p20 � p21 � p22 arise due to the tangency of the plane Lp with
the surface Gc (see case A above). Therefore,

p20 � p21 � p22

is the equation of the Legendre transform of the set
Gc � f�x1�2��x2�2 � 1

	
.

To describe geometrically the singularities of function (17)
which lie on the set p21 � p22 � 0 one needs to introduce the
`infinite' (improper) points of the complex space C 2. To do
this, we represent each point �x1; x2� 2 C 2 as a ray in the
complex space C 3 with coordinates �x0; x1; x2�, containing
the origin and the point �1; x1; x2� (see Fig. 5, where the real
analogue of the considered situation is drawn). So, each point
�x0; x1; x2� 2 C 3 with x0 6� 0 represents the point �x1=x0,
x2=x0� of the space C 2.

It is clear that this point is not changed under the
multiplication of all the coordinates �x0; x1; x2� by one and
the same nonvanishing number l, and, hence, depends only
on the proportion x0 : x1 : x2. The proportion x0 : x1 : x2,
corresponding to x0 � 0 does not determine any point from
C 2; these are exactly improper points of C 2. The set of all
proportions x0 : x1 : x2, with at least one nonvanishing xi is

x2

x0

x1

1

Figure 5.
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called the complex projective space and is denoted byCP 2. In
the neighborhood x0 � 0, x1 6� 0 coordinates on CP 2 are
x0=x1, x2=x1, and in the neighborhood x0 � 0, x2 6� 0 they are
x0=x2, x1=x2. Clearly, the equation ofGc in the spaceCP 2 has
the form�

x1

x0

�2

�
�
x2

x0

�2

� 1 or �x1�2 � �x2�2 � �x0�2 : �18�

The intersection of the set (18) with the set fx0 � 0g of
improper points of CP 2 is a pair of points

�0; 1; i� ; �0; 1;ÿi� : �19�

Clearly, if the plane Lp (in CP 2) is approaching to the plane
containing one of the points (19), then one of the points of
intersection Lp \ Gc goes to infinity. Since the equation of Lp

in coordinates �x0; x1; x2� of the space CP 2 is

x0p0 � x1p1 � x2p2 � 0 ;

this situation takes place for p1 � �ip2, that is, for
p21 � p22 � 0. This describes the corresponding singularities
of function (17).

Now we write down the problem (12) for the case
considered:

�p21 � p22�
d2u
_

dp20
� k2u

_ �
2
�������������������������
p21 � p22 ÿ p20

q
p21 � p22

;

u
_
has zero of the second order for p20 � p21 � p22 :

It is easy to see that the singularities of the solution u
_
are lying

in one of the following three sets:

p1 � ip2 ;

p1 � ÿip2 ; �20�
p21 � p22 � p20 :

Therefore, the singularities of the solution u�x� to the
problem (15) are lying at such �x1; x2� that the plane eLx passes
through one of the points of intersection of surfaces (20) or is
tangent to one of these surfaces. The main interest for us
makes the case when eLx passes through the points �0; 1; i� and
�0; 1;ÿi� of intersection of the first two lines (20) with the
third. This condition gives x1 � �ix2 or
�x1�2 � �x2�2 � 0 : �21�

It can be shown that the cases when eLx passes through the
point �1; 0; 0�, as well as when eLx is tangent to one of surfaces
(20) do not lead to the appearance of new singularities of the
function u�x�. So, the set of complex singularities of solutions
to the problem (15) is given by formula (21).

As a consequence of Section 2.2 one can conclude that the
support of the `swept charge' in the problem under considera-
tion can be found as an intersection of the set (21) with the real
space R2, that is, the center of the circle x1 � x2 � 0. We
remark that the singularities of continuation has `come' to the
center of the circle along the complex lines x1 � �ix2 from
infinite points of the surface Gc.

Let us present here (without computations) two three-
dimensional examples of investigation of the singularities of
continuation. In these examples f�x1; x2; x3� is a function

possessing continuation up to an entire function of complex
arguments.

Consider the problem

Du�x� � k2u�x� � f�x� for x35 �x1�2 � �x2�2 ;
0 for x3 < �x1�2 � �x2�2 :

(
�22�

For this problem the singularities of analytic continuation
uc�x� have the form

�x1�2 � �x2�2 � 0 ; �x1�2 � �x2�2 �
�
x3 ÿ 1

4

�2

� 0 :

So, the ray coming from the point �0; 0; 1=4� to�1 along the
axis x3 is exactly the support of the `swept charge' for the
problem (22).

For the problem

Du�x� � k2u�x� �
f�x� for �x1�2 � �x2�2 � �x

3�2
a2

4 1 ;

0 for �x1�2 � �x2�2 � �x
3�2
a2

> 1

8>><>>:
the singularities of the function uc�x� are given by

�x1�2 � �x2�2 � �x3 �
�������������
a2 ÿ 1
p

�2 � 0 i �x1�2 � �x2�2 � 0 :

Hence, the singularities of continuation of the function
u�x� inside the ellipsoid

�x1�2 � �x2�2 � �x
3�2
a2

4 1

are lying on the segment
�ÿ �������������

a2 ÿ 1
p

;
�������������
a2 ÿ 1
p �

of the x3-axis
for a > 1, or on the circle x3 � 0, �x1�2 � �x2�2 � 1ÿ a2 in the
case a < 1. The support of the swept charge for a > 1
coincides with the mentioned segment. If a < 1, then one
can choose the disk x3 � 0, �x1�2 � �x2�24 1ÿ a2 as the
support of the swept charge; the necessity of adding such a
disk to the set of singularities is due to the necessity of
introducing a cut inside the ellipsoid for separating a single-
valued branch of the continuation.

2.5 The reflection formula for the Helmholz equation
Here we consider the formula generalizing the Schwarz
symmetry principle (2), (3) to the Helmholz equation. This
formula will be used in the following section for investigating
singularities of continuation for boundary value problems.
We present here the formulations only; the reader can find the
details in Refs [30, 31].

So, let G be an algebraic curve in the space R2, dividing
this space into two domains U1 and U2, and let u�x1; x2� be a
solution to Eqn (1) vanishing on G. Reflection formula is a
formula expressing the value of function u�x� at an arbitrary
point x0 of the domain U1 via values of the same function in
the domain U2.

To write down the reflection formula for the Helmholz
equation, we need the notion of the Schwarz function of the
curve G. Let

j�x1; x2� � 0 ; �23�

be the equation ofG, wherej�x� is a polynomial in x1; x2 with
real coefficients. Equation (23) can also be viewed as the
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equation of the complexificationGc of the curveG if x1 and x2

are complex variables. After the change of variables

z � x1 � ix2 ; z � x1 ÿ ix2

the equation of the curve Gc is rewritten as

F�z; z� � j
�
z� z
2

;
zÿ z
2i

�
� 0 : �24�

Denote by z � S�z� the solution of Eqn (24) with respect
to z, and by z � eS�z�, the solution of this equation with
respect to z. The function S�z� is called the Schwarz function
of the curve G (see Refs [6 ± 10, 14] and others). Clearly, the
functions S�z� and eS�z� are algebraic functions of their
arguments. Then, if gradj 6� 0 on G, these functions are
regular in a neighborhood of the real part G of the curve Gc.

Identifying the space R2 with the complex plane C by the
relation z � x1 � ix2, we define the mapping R as

R�x1; x2� � R�z� � S�z� ; �25�

where the bar stands for the complex conjugation. The
mapping (25) possesses the following properties:

1. The mapping R is defined and regular in a neighbor-
hood of the curve G.

2. The mapping R interchanges the domains U1 and U2

inside this neighborhood.
3. The mapping R is an idempotent, that is, R

ÿ
R�x; y�� �

�x; y�.
4. The mapping R is identical on G.
We remark that the above-defined mapping R is exactly

the mapping involved in formulas (2) and (3), describing the
Schwarz symmetry principle.

Let V0�x1; x2; y1; y2� be the Riemann function for the
Helmholz operator. It is known that

V0�x1; x2; y1; y2� � J0 k

�����������������������������������������������
�x1 ÿ y1�2 � �x2 ÿ y2�2

q� �
;

where J0 is the Bessel function of the zeroth order. In
particular, the function V0 is an entire function of its
arguments. We define the functions V1 and V2 as solutions
to the following two Cauchy ±Goursat problems in the space
C 2:

�Dy � k2�V1�x; y� � 0 ;

V1�x; y� � V0�x; y� for y 2 Gc ;
V1 � 1 for y1 ÿ iy2 � S�x1 � ix2� �26�

and

�Dy � k2�V2�x; y� � 0 ;

V2�x; y� � V0�x; y� for y 2 Gc ;
V2 � 1 for y1 � iy2 � eS�x1 ÿ ix2� : �27�

The solutions to problems (26) and (27) exist in C 2 as
ramifying analytic functions in �x; y�, and the singularities of
these functions (both in x and in y) coincide with the
singularities of the functions S�z� and eS�z�. Let us introduce
the function

V�x; y� � V1�x; y� ÿ V2�x; y� ;

which will be called the reflected Riemann function corre-
sponding to the curve G.

Now the reflection formula is

u�x� � ÿuÿR�x��
� 1

2i

�R�x�
G

(�
u�y� qV

qy1
�x; y� ÿ V�x; y� qu

qy1
�y�
�
dy2

ÿ
�
u�y� qV

qy2
�x; y� ÿ V�x; y� qu

qy2
�y�
�
dy1

)
; �28�

where the integral is taken over any curve connecting some
point of GwithR�x�. We remark that the integral on the right
of Eqn (28) does not depend on the choice of such a curve.

The classical symmetry formulas of the form (2) for the
Laplace equation and for the Helmholz equation with the
straight line as G are particular cases of formula (28). For
these cases the straightforward computation shows that
V � 0 and, hence, the integral term on the right of Eqn (28)
vanishes. However, even in the case whenG is a circle �k 6� 0�,
it is easy to see that the integral term in this formula does not
vanish; this is exactly the reason why the `pure' symmetry
principle of the form (2) is not valid for the Helmholz
equation.

2.6 Continuation of solutions for domains
with piecewise-analytic boundary
Consider first the sweeping-of-charge problem. Let D � Rm,
m � 2 orm � 3, be a domain whose boundary G consists of r
pieces Gj, j � 1; . . . ; r, with equations

Pj�x� � 0 ; �29�

where Pj�x� are irreducible polynomials, and let U�x� be a
solution to the equation

�D� k2�U � f : �30�
Here, as above, the function f vanishes outside D and
coincides with some entire function (also denoted by f) inside
this domain.

To simplify our considerations, we suppose that the
intersections of all characteristic conoids{ of complexifica-
tions of surfacesGj andGl, j 6� lwith the real spaceRm do not
intersect one another and have no common points with the
boundary of the domain D.

Let us consider the problem of continuation of the
function U as a solution to the homogeneous Helmholz
equation into the domain D with boundary consisting of
two pieces G1 and G2 (Fig. 6). So, let the function U�x� be a

{By a characteristic conoid of a surface one calls the union of all

characteristics emanated from characteristic points of this surface; the

exact definitions see in Ref. [1].

U U1

U12

U21

U2 D

G1

G2

Figure 6.
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solution to the homogeneous equation

�D� k2�U � 0 :

given in Rm nD. Denote by eU1 the differenceeU1 � Uÿ u :

For the function eU1 to be a continuation of a solution of
homogeneous equation into the domain D across the bound-
ary part G1, the function umust satisfy the equation

�D� k2�u � f

and have zero of the second order on the surfaceG1. However,
the function eU1, constructed in such a way, will not be a
solution to the homogeneous equation outside the domain D
(near the surface G2), since

L eU1 � LUÿ Lu � ÿf : �31�

However, if we introduce the cut along G2, then the functioneU1 in Rm will be a solution to the homogeneous equation,
having insideD singularities corresponding to the intersection
of the characteristic conoid of the complexification of the
surface G1 with the real space Rm.

Continuing the solution to the homogeneous equation
across the boundary part G2, one can construct (in similar
fashion) the function eU2, which is a solution to the homo-
geneous equation in Rm with the cut along the surface G1.

So, the solution is given on the Riemannian surface which
covers the domain D at least twice.

Now the continuation of the function eU1 across the
surface G2 leads to the functioneU12 � eU1 ÿ v ;

where the function v satisfies Eqn (31) and has zero of order
two on G2. Similarly, the continuation of solution eU2 across
G1 gives the function eU21. Continuing the functions eU12 andeU21 across G1 and G2, respectively, we obtain the functionseU121 and eU212; . . .

The above-described procedure defines a Riemannian
surface on Rm which has ramifications at points of intersec-
tion of boundary parts G1 and G2, as well as at points of
intersection of characteristic conoids of complexifications of
the surfaces G1 and G2 with the real space Rm.

So, the following statement is valid:
Theorem 1. Under the above assumptions, the solution to

Eqn (30) can be continued as a solution to the homogeneous
Helmholz equation up to a ramifying analytic function given on
the above-constructed Riemannian surface.

Let us now turn to the consideration of boundary value
problems. These problems will be investigated in the two-
dimensional case with the help of the reflection formula.
Consider the domain D � R2, with a piecewise-analytic
boundary G � [jGj, j � 1; . . . ; r, such that the components
Gj of this boundary are described , as above, by Eqns (29). Let
the function u�x; y� be a solution to the homogeneous
equation

�D� k2�u � 0 �32�
in D which satisfies the conditions

u�x; y�
���
Gj

� fj�x� �33�

on the boundary of this domain. It is supposed that the
functions fj satisfy compatibility conditions on the neighbor-
ing parts of the boundary.

Suppose, for simplicity, that the boundary ofD consists of
three algebraic parts G1, G2, and G3 (Fig. 7). It is also
supposed that the singularities of the Schwarz function
Sj�x� iy� of each of the curves Gj, j � 1; 2; 3 do not lie on
the boundary of the domain D.

The mapping Rj: D! Dj, determined by the formula

Rj�x; y� � Sj�x� iy� �34�

corresponds to each part Gj of the boundary. Under these
mappings the curves Gl are taken into the curves G

j
l , and the

curve Gj is taken into itself (see Fig. 7), since Rj�x; y�
��
Gj
� id.

By Dj we denote the image of the domain D under the
mapping Rj.

The function u�x; y� can be continued into the domainDj,
and the continuation is performed as follows. We use the
reflection formula

u�x0; y0� � ÿu
ÿ
Rj�x0; y0�

�� 1

2i

�Rj�x0 ; y0�

Gj

oj � F
�
fj�x; y�

�
�35�

near the boundary. Then, moving the point �x0; y0� 2 Dj

along some curve in such a way that its image remains in the
domain D, we perform the analytic continuation of the
integral on the right of Eqn (35). Here �x0; y0� 2 Dj, the
mappings Rj are defined by formulas (34), oj is a known
differential form depending in a linear way on function u�x; y�
and its derivatives of the first order with coefficients
determined by the curve Gj [see formula (28) above], F is a
known functional, and the integral is taken over any curve
connecting Gj with the point{ Rj�x0; y0� 2 D.

The domains Dj can be `glued' to the domain D along the
corresponding curves Gj. By the same procedure each domain
Dj can be reflected from the curve G j

l , l 6� j to the domain Djl

G31 G32

G23
G2

G31

G21

G3

G1

G12

D12

D21

D2

D

D1

D3

�x; y�

G13

Figure 7.

{The above discussion on the reflection formula refers to the case when

the function under consideration satisfies the homogeneous boundary

condition. The generalization of this formula to the case of nonhomoge-

neous boundary conditions (33) is also possible. The reader can find the

details in Ref. [1].
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(see, for example, the domainD12 on Fig. 7), and the function
u�x; y� can be continued to this domain as well.

We remark that all reflected domains have to be con-
sidered on the corresponding Riemannian surface. The
reflected domains can contain the singularities of the corre-
sponding Schwarz functions, leading to singularities of the
mappings Rj. So, we obtain a Riemannian surface to which
the function u�x; y� can be continued.

It is clear that the values of the function u�x; y� continued
along a curve coming to a point �x; y� through domains D1

and D12 will not coincide with values of the same function
obtained by the continuation through the domains D2 and
D21. This shows that the points of intersection of different
parts of the boundary are the ramification points of the
continuation in question.

Hence, the constructed Riemannian surface ramifies at
points of intersection between different analytic parts of the
boundary (of the domain D or the corresponding reflected
domains), as well as at points of singularity of the Schwarz
functions of curves, corresponding to these parts.

So, let u�x; y� be an arbitrary solution to the Helmholz
equation (32) satisfying the boundary conditions (33). The
following statement is valid:

Theorem 2. Under the above-formulated conditions the
function u�x; y� can be continued up to a ramifying analytic
function defined on the Riemannian surface constructed above.
The continuation to each reflected domain can be obtained by
step-by-step application of the reflection formula (35).

3. Applied aspects of the continuation theory
of wave fields

To be definite, in this section we shall consider exterior
diffraction and scattering problems. This is connected with
the fact that up to now the most of results on the discussed
topic are obtained exactly for these problems. The under-
standing that there exists the problem of continuation of a
solution to a boundary-value problem out of its initial
domain of definition had come after a series of failures of
attempts to numerically realize classical and other computa-
tional schemes. The matter is that working out some
computational algorithm one often has in mind some
representation of the searched solution. The choice of specific
representation in strong extent determines certain analytic
properties of the solution in question. For example, the
solution of a boundary value problem can be represented in
the form of expansion in some full system of functions each
satisfying the equation considered (say, the Helmholz equa-
tion), and some additional conditions (say, the radiation
condition). The coefficients of this expansion are found
from the boundary condition. This is, clearly, one of the
simplest schemes of constructing the computational algo-
rithm of solving a boundary value problem. There exist a lot
of different schemes which will be considered below. Here we
mention only one important observation. The described
scheme (and its analogues) can be successfully realized only
in the case when the existence domain of the chosen analytic
representation includes the domain (together with its bound-
ary) in which the solution is searched. Unfortunately, this
condition is valid very rarely. The latter fact was clarified
quite recently, though the reason for this phenomenon is clear
enough in most cases. The matter is that a solution to the
Helmholz equation (or toMaxwell's equations in a stationary
case) is a real-analytic function which vanishes at infinity

(according to the radiation condition) and, hence, this
solution has singularities near the origin. These singularities
naturally lie outside the domain where the solution is
searched, or on its boundary. However, the geometry of
singularities determines boundaries of existence for analytic
representations of the solution, and these boundaries coincide
with the boundary of the main domain only in exceptional
cases (for example, for a sphere).

Let us discuss this question in more detail. For simplifica-
tion of the presentation we shall consider only scalar wave
fields. We remark that all the results obtained for this case
remain valid in the vector case as well.

3.1 Analytic representation of wave fields.
Diagram of wave field
So, the wave field is understood as a solution u to the
homogeneous Helmholz equation

�D� k2�u � 0 ; �36�

satisfying at infinity the condition of, say, the following form

lim
r!1 r

�
qu
qr
� iku

�
� 0 �37�

(k � const is the wave number), and the boundary conditions
given on some surface G. Here we restrict ourselves to the
consideration of only two types of this surface: the closed
surface bounding a compact body (a domain D), and infinite
periodic surface. (In the latter case the condition at infinity
differs from that formulated above). If G is the boundary of a
compact body, then the wave field u is often represented in the
form of the following two expansions [32 ± 35]:

u�r; y;j� �
X1
n�0

Xn
m�ÿn

amn�ÿi�n�1h�2�n �kr�Pm
n �cos y� exp�imj� ;

�38�

u�r; y;j� � exp�ÿikr�
kr

X1
p�0

ap�y;j�
�kr�p : �39�

Expansion (38) is often referred as the Rayleigh representa-
tion or as series in wave harmonics (metaharmonic functions
[36]). Relation (39) is called the Atkinson ±Wilcox series. In
these formulas r; y;j are spherical coordinates of the observa-
tion point, h

�2�
n �kr� is the spherical Hankel function of the

second kind (nth order), Pm
n �cos y� is the adjoint Legendre

polynomial. For vector fields, analogous expansion formulas
are presented, for example, in Refs [34, 35, 37].

From (39) one can see that the following asymptotic
formula

u�r; y;j� � exp�ÿikr�
kr

f�y;j� �O

�
1

�kr�2
�

�40�

is valid as kr!1. Here f�y;j� � a0�y;j� is the wave field
diagram. All other coefficients in Eqn (39) can be expressed in
terms of the diagram f�y;j� with the help of the following
recurrent relations

ap � i

2p

�
p�pÿ 1� �D

�
apÿ1 ; a0 � f ; �41�
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where

D � 1

sin y
q
qy

�
sin

q
qy

�
� 1

sin2 y

q2

qj2

is the Beltrami operator.
It is easy to show (see, e.g. Ref. [38]), that the Fourier

series for the diagram has the form

f�y;j� �
X1
n�0

Xn
m�ÿn

amnP
m
n �cos y� exp�imj� ; �42�

and the coefficients amn in the expansions (42) and (38) are the
same. So, from the relation (40) one can see that in the so-
called far zone, that is, for kr4 1, the wave field is completely
determined by the function f�y;j�Ð the diagram of the wave
field [up to the values of the order of 1=�kr�2]. On the other
hand, the relations (38) and (39) together with equalities (41)
and (42) allow one to reconstruct the wave field everywhere
except for some neighborhood of the origin provided that the
diagram f�y;j� is known. The boundary of this neighborhood
will be determined in the next section. We remark that the
series (38) and (39) become identical in the domain of their
existence after some rearranging of their terms [35].

In the two-dimensional case the Rayleigh expansion has
the following form

u�r;j� �
X1
n�ÿ1

an�ÿi�nH�2�n �kr� exp�inj� ; �43�

where r;j are polar coordinates of the observation point, and
an are the Fourier coefficients of the diagram f�j� of the wave
field determined by the relation

u�r;j� �
��������
2

pkr

r
exp

�
ÿikr� ip

4

��
f�j� �O

�
1

kr

��
: �44�

Here, similar to the three-dimensional case, the relation (43)
allows one to reconstruct the field everywhere except for some
neighborhood of the origin provided that the diagram (that is,
the asymptotics of the field in the far zone) is known. In
contrast to the three-dimensional case, the series (43) cannot
be rearranged into the expansion in powers of 1=kr. The
corresponding expansion has the form [35]:

u�r;j� �
��������
2

pkr

r
exp

�
ÿikr� ip

4

�X1
n�0

bPn

�kr�n f�j� ;

where

bPn �
�
i

2

�n
1

n!

Yn
s�1

��
sÿ 1

2

�2

� d2

dj2

�
;

and has the character of asymptotic series.
There exist one more method of analytic representation of

wave field Ð integrals over plane waves or the Sommerfeld ±
Weil representation [38, 39]. In the three-dimensional case
this representation has the form

u�r; y;j� � 1

2pi

�2p
0

�p=2�i1
0

f�a; b�

� exp
n
ÿikr�sin y sin a cos�jÿ b� � cos y cos a

�o
sin a da db :

�45�

In (45), the integration over the parameter a is fulfilled along
the path lying in the complex plane a � a1 � ia2. Therefore,
the diagram f�a; b� of the wave field must be analytically
continuable to the whole complex plane a � a1 � ia2. We
remark that Eqn (45) remains unchanged in the vector case as
well.

For two-dimensional wave fields we have

u�r;j� � 1

p

�p�i1
ÿi1

f�c� exp�ÿikr cos�cÿ j�� dc : �46�

Here the integration is fulfilled over a contour in the complex
plane c � a� ib. The integrals (45) and (46) converge, as it
will be shown, in a half-space bounded by some plane z � z0
(by a straight line y � y0 in two dimensions). Rotating the
coordinate system, one can perform the analytic continuation
of the wave field to a neighborhood of the origin with the help
of Eqns (45) and (46). The modifications of the above plane-
wave representations which converge outside a convex
neighborhood of the origin are presented in Refs [40 ± 42].

In considering problems of scattering of wave fields by
periodic boundaries between twomedia, the representation of
wave field by series in plane waves (the Rayleigh series) is
widely used. In the two-dimensional case such a representa-
tion has the following form [43]:

u�x; y� � 2

b

X1
n�ÿ1

g0�wn� exp�ÿiwnx� exp�ÿivny�
vn

: �47�

Here b is the period of the boundary described by the equation
y � f�x� � f�x� b�,

wn � 2p
b

n� k sin y ; vn �
����������������
k2 ÿ w2

n

q
; �48�

and one chooses a branch of the square root such that
Re vn5 0, Im vn4 0. Here y is the incidence angle of the
plane wave, and g0�wn� is the diagram of the central period
(see Section 3.2).

The series (47) converges, as well as integral (46) does, in
some half-plane y > y0. The scattering coefficient of spectral
order m is connected with the quantity g0�wm� by the
following relation

Rm � 2

b

g0�wm�
vm

: �49�

So, one can reconstruct the wave field everywhere except for a
neighborhood y4 y0 of the Ox axis by the scattering
coefficients of all spectral orders, or, what is the same, by
the diagram of one period.

In three dimensions, the corresponding representation has
quite similar character (see, e.g. Refs [15, 44, 45]).

All these representations of wave fields can be obtained
from the wave potential representation

u�r� �
�
G

�
m�r 0� qG�r; r 0�

qn 0
ÿ n�r 0�G�r; r 0�

�
ds 0 : �50�

Here r is the radius of the observation point, r 0 is the radius of
the integration point on G which is some smooth enough
closed surface (a contour in two dimensions), q=qn 0 denotes
differentiation along the exterior normal of G, m and n are
densities of potentials of double and single layers, respec-
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tively, and G�r; r 0� is the Green function. It has the form

G�r; r 0� � exp
ÿÿikjrÿ r 0j�
4pjrÿ r 0j �51�

in the case of three dimensions and

G�r; r 0� � 1

4i
H
�2�
0

ÿ
kjrÿ r 0j� �52�

in two dimensions, where H
�2�
0 is the second-kind Hankel

function of the zeroth order. Finally, for two-dimensional
problems with periodic boundary

G�r; r 0� � 1

2bi

X1
n�ÿ1

exp
�ÿiwn�xÿ x 0� ÿ ivnjyÿ y 0j�

vn
: �53�

The following expressions

m � u�r 0� or m � û�r 0� ;

n � qu
qn 0

����
G

or n � qû
qn 0

����
G
;

are commonly used for the densities m and n of potentials.
Here u�r 0�, qu=qn 0jG are the values of the wave field and its
normal derivative on G. The quantity û is the total field, that
is, û � u� u0, where u0 is some given (initial) wave field
satisfying a nonhomogeneous Helmholz equation.

Representations similar in their sense take place in the
vector case as well (see, e.g. Refs [33, 34]).

From the preamble to this section it is clear that all the
singularities of the wave field u�r� have to be contained inside
the surface (contour) G. This circumstance, being very
important, is crucial for some numerical methods (see Section
3.4).

3.2 Analytic properties of diagram and boundaries
of existence domains of analytic representations
Using asymptotic expansions (51) and (52) of the Green
function for r4 r 0, kr4 1, we obtain the following expres-
sions for the wave field diagram:

f � k
�
G

�
m
q
qn 0
ÿ n
�
exp�ikr 0 cos g� ds 0 ; �54�

where k is a numerical coefficient; k � k=4p, cos g �
cos y cos y 0 � sin y sin y 0 cos�jÿ j 0� in three dimensions,
and k � 1=4i, cos g � cos�jÿ j 0� in two dimensions.

In scattering problems with periodic boundary the dia-
gram g0�w� is given by the following integral [43]:

g0�w� � 1

4i

�b=2
ÿb=2

�
m
q
qn 0
ÿ n
�

� exp
�
iwx� iv f�x�� ���������������������

1� f 0 2�x�
q

dx ; �55�

where v �
����������������
k2 ÿ w2
p

, Im v4 0.
To shorten the exposition, we consider below mainly the

two-dimensional case formulating only the final results in
three dimensions. So, let us consider the integral (54), where
for simplicity we put m � 0. This corresponds to the case

m � û�r 0�
���
G
; n � qû

qn 0

����
G
;

when the Dirichlet condition û
��
G� 0 is given on G. Integral

(54) becomes

f�j� � i

4

�
G

qû
qn 0

exp
�
ikr 0 cos�jÿ j 0��ds 0 : �56�

Let r � r�j� be an equation of G in a polar coordinate
system. Then the relation (56) takes the form

f�c� �
�2p
0

q�j� exp�ikr�j� cos�cÿ j�� dj : �57�

Here we have performed the change of variables j! c,
j 0 ! j and introduced the notation

q�j� � i

4

�
r�j� qû

qr
ÿ r

0�j�
r�j�

qû
qj

������
r�r�j�

:

It is easy to see that the diagram f�c� is continuable to the
whole complex planec � a� ib as an entire function [40, 41].
Using the simple relation

cos�cÿ j� � 1

2

�
R
�
cos�jÿ a� � i sin�jÿ a��

� 1

R

�
cos�jÿ a� � i sin�jÿ a��� ;

where R � exp jbj, the upper sign is taken for b > 0, and the
lower for b < 0, it is easy to show that as R!1 the
following asymptotic relations

f
ÿ
a� ijbj� � f E� �z��

�
1�O

�
1

R

��
�58�

take place, where

f E� �z�� �
�2p
0

q�j� exp
�
ikr�j�

2
exp��ij�z�

�
dj �59�

are entire functions of finite degree of the variables

z� � exp
ÿjbj � ia

�
:

Actually, evaluating integrals (57) by the Schwarz inequality,
we obtain

max
jzj�R

�� f E� �z��� < exp

�
R

�
kr0
2
� e
��

;

where r0 � maxj r�j� is the radius of the minimal circle
containing the surface G, e > 0 is an arbitrary number.
From this estimate, since e is arbitrary, we obtain

lim
R!1

lnmax
jzj�R

�� f E� �z����
R

� s�4 kr0
2
; �60�

that is, f E� �z�� are entire functions of the first order with finite
degree s� which does not exceed kr0=2. This result remains
valid in the case when m 6� 0 onG as well. So, if a function f�c�
is a diagram of a wave field and, hence, is representable as
integrals of the type (57) or (54), where m and n are integrable
functions (currents) on G, then this diagram is analytically
continuable to the whole complex plane c � a� ib and near
the infinite point of this plane (for jbj ! 1) it asymptotically
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coincides with some entire function of the complex variable
z � exp

ÿjbj ÿ ia sign b� [see Eqn (58)]. The quantity
s � max�s�; sÿ� is called the degree of the wave field
diagram.

As is well-known [32, 46], the diagram of the systemwith a
plane aperture is an entire function of finite degree. In
contrast, the diagram of the system of currents distributed
on some closed surface G which is not a part of the plane, is
not an entire function of exponential type, but just coincides
[in the sense of asymptotic equality (58)] with some entire
function of finite degree in a neighborhood of infinity.
Nevertheless, this is sufficient for using numerous properties
of entire functions of exponential type.

One of such properties important for what follows is the
fact that the coefficients c�n of everywhere convergent series

f E� �z�� �
X1
n�0

c�n z
n
� �61�

satisfy the following limit relations [46]:

lim
n!1

������������
n!jc�n jn

q
� s� : �62�

These relations allow us to establish exact boundaries for
domains of representations of wave field by series (38) and
(43) over metaharmonic functions, as well as by Atkinson ±
Wilcox series (39).

Let us now consider the series (43). It is easy to see that its
coefficients am, can be found from the following relations

am � im
�2p
0

q�j�Jm
ÿ
kr�j�� exp�ÿimj� dj : �63�

Using the asymptotics of the Bessel function as jmj ! 1,
from (63) we obtain

am � ijmj

jmj!
�2p
0

q�j�
�
kr�j�
2

�jmj
exp�ÿimj� dj

�
1�O

�
1

m

��
:

�64�

On the other hand, using relation (59) for the coefficients
c�n of series (61), we have

c�n �
in

n!

�2p
0

q�j�
�
kr�j�
2

�n

exp��inj� dj ; n5 0 : �65�

Comparing formulas (64) and (65) we find that the following
relations

ajmj � c�m

�
1�O

�
1

m

��
; aÿjmj � cÿm

�
1�O

�
1

m

��
�66�

are valid as jmj ! 1. Let us introduce the functions g��x��
and gÿ�xÿ�, associated via the Borel transform to the
functions f E� �z�� and f Eÿ �zÿ�, respectively [47]

g��x�� �
X1
n�0

n!
c�n
x n�1�

: �67�

The functions g��x�� and gÿ�xÿ� are regular in domains
jx�j > s� and jxÿj > sÿ, respectively [46]. Expansion (43)

can be written down in the form

u�r;j� �
X1
m�0

am�ÿi�mH�2�m �kr� exp�imj�

�
X1
m�1

aÿm�ÿi�mH�2�m �kr� exp�ÿimj�

� F1�r;j� � F2�r;j� :

Using the asymptotics for the functions H
�2�
m �kr� as m!1

one can show that the convergence of the series for the
functions F1 and F2 is equivalent to the convergence of the
following two series

bF1�w1� � i

p

X1
m�1

am�mÿ 1�!wÿm1 ;

bF2�w2� � i

p

X1
m�1

am�mÿ 1�!wÿm2 ; �68�

respectively, where

w1 � ikr

2
exp�ÿij� ; w2 � ikr

2
exp�ij� : �69�

Comparing now the power series (68) and (67), we see that the
regularity domains for the functions F1 and g�, as well as for
F2 and gÿ coincide. In other words, the function F1 is regular
in the domain

jw1j � kr

2
> s� ;

and F2, in the domain

jw2j � kr

2
> sÿ :

So, we have found out that the expansion (43) is valid in
the domain

kr

2
> s � max�s�; sÿ� : �70�

Since the expansion (43) is a power series in its principal
part [see Eqns (68)], then there exists at least one singular
point of the function u�r;j� on the circle r � 2s=k. Clearly,
this point can be located only inside the domain D or on its
boundary G. Hence, the relation (43) allows one to continue
the wave field u�r;j� inside the domain D up to the circle
r � 2s=k.

Consider now the representation (46). The integral (46)
converges or not depending on the behavior of the integrand
near points ÿi1, p� i1. The expression in the exponent of
the integrand in Eqn (46) has the form

ÿ ikr
2

z exp�isj�
�
1�O

�
1

z2

��
; s � �1 ;

and for function f�c� the asymptotics (58) takes place. So, the
convergence of integral (46) is equivalent to the existence of
the following two integrals

g��w1; 0� �
�1 exp�i0�

0

f E� �x�� exp�ÿw1x�� dx� ;

gÿ�w2;ÿp� �
�1 exp�ÿip�

0

f Eÿ �xÿ� exp�ÿw2xÿ� dxÿ ;
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which are Borel transforms of the functions f E� and f Eÿ for
half-planes

Re
�
w1 exp�i0�

	
> h��0� ; Re

�
w2 exp�ÿip�

	
> hÿ�ÿp� ;

where the functions g� and gÿ are regular. Here h��g� are
indicatrices of growth [46] of functions f E� �x��. In view of
Eqn (69) we deduce that integral (46) converges in the domain

r sinj � y >
2

k
sS � 2

k
max

�
h��0�; hÿ�ÿp�

�
; �71�

and the function u�r;j� has at least one singular point on the
straight line y � 2sS=k, and this point is located inside D or
on its boundary.

In papers [40, 41], the following modification of repre-
sentation (46)

u�r;j� � 1

p

�p=2�i1
ÿp=2ÿi1

f�j� c� exp�ÿikr cosc� dc : �72�

was suggested.
It can be shown that the integral (72) is regular in the

domain R2nB0, where B0 is a convex hull of singularities of
continuation of the function u�r;j� insideD. From the above
considerations it is clear thatB0 is a smallest closed convex set
containing sets B� and Bÿ (conjugated diagrams of functions
f E� and f Eÿ , respectively. So, the integral (72) allows one to
perform analytic continuation of the function u�r;j� into the
domain D inside G up to the boundary of the set B0.

Representation (47) of the wave field scattered by the
periodical boundary in the form of series over plane waves
regularly (absolutely and uniformly) converges in any closed
domain lying inside the half-plane (71) [43].

In three dimensions, for the diagram f�y;j� of the wave
field there is an asymptotic equality similar to (58)

f�y;j� � f E�z;j�
�
1�O

�
1

R

��
; �73�

on the complex plane y � y1 � iy2 [38], where

z � R exp��iy1� ; R � exp jy2j ;

f E�z;j� is an entire function in z of finite degree s not
exceeding kr0=2, where r0 is the radius of the minimal sphere
containing G. As above, the quantity s is called the degree of
the diagram. Series (38) and (39) converge in the domain
r > 2s=k, and the corresponding plane-wave representations
do this in the half-space z � r cos y > 2sS=k, where sS �
h�ÿp=2�, h�g� is the indicatrix of the growth of the entire
function f E�z;j�, and quantities s, sS are characteristics of
the growth of the function f E independent from j.

In many situations (for example, for scattering of a plane
wave by an obstacle bounded by a smooth surface G, as
shown below in Section 3.3; see also Refs [44, 15, 48]) the
quantities s and sS can be foundwith the help of rather simple
relations. In two dimensions these relations have the follow-
ing form [40, 41]

s � max
j0; s

����kr�j0�2
exp�isj0�

���� ;
sS � max

j0; s
Re

(
kr�j0�

2
exp

�
is

�
j0 ÿ

p
2

��)
; �74�

where j0 are the roots of the equations

r 0�j�
r�j�

����
j�j0
� ÿis ; exp�isj0� � 0 ; s � b

jbj ; �75�

and the maximum in Eqn (74) have to be searched among the
roots (75) which are taken inside a contour C by a mapping,
say, of the form x � r�j� exp�ij� that takes points of the
contour G to the contour C on the plane z � r exp�ij�.

In three dimensions [38]

s � max
y s0j0; s

����kr�y s0 ;j0�2
exp�isy s0�

���� ;
sS � max

y s0j0; s
Re

�
kr�y0;j0�

2
exp�isy s0�

�
; �76�

where y s0, j0 are found from the conditions

r 0y�y;j�
r�y;j�

����
y s0 ;j0

� ÿis ; r 0j�y;j�
����
y s0 ;j0

� 0 ;

exp�isy s0� � 0 ; s � �1 ; �77�

r � r�y;j� is the equation of the surface G in spherical
coordinates. Here again the maximum in Eqn (76) is searched
among those roots of equations (77) which are taken inside
contours Cj which are images of sections of surface G by the
plane �j;j� p� on the plane z � r exp�ia� under themapping
x � r�y;j� exp�iy�.

Finally, for scattering of the plane wave by the periodic
boundary y � f�x� we have [43]

sS � max
x0; z��R

Re
�
F�x0�

	
: �78�

Here

F�x� � ÿs k
2

�
xÿ isf�x�� exp�ÿisb� ;

and x0 are the roots of the equation

f 0�x�
����
x�x0
� ÿis :

The quantities s and b are here of the same sense as in relations
(75). If the boundaryG has non-analytic points, themaximum
in relations (74), (76), and (78)must be taken over these points
as well.

A lot of examples of usage of the above relations are given
in Refs [15, 38, 42 ± 44] and others.

3.3 Inverse problems in theory of scattering and antennas
The results of the previous section allow one to establish the
existence conditions for solutions of inverse problems of
theory of scattering and antennas [40, 41, 48]. These condi-
tions are worth formulating in the form of the following
theorems.

Theorem 3. The function f�a� given on the interval �0; 2p�
and analytically continuable to the whole complex plane
c � a� ib, is a diagram of a wave field regular outside the
circle of the radius a iff asymptotic equalities (58) take place as
jbj ! 1. In (58) f E� �z�� are entire functions in
z� � exp

ÿjbj � ia� of finite degree s4 ka=2.
In three dimensions a similar theorem is formulated as

follows:
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Theorem 4. A regular function f�y1;j� defined on the unit
sphere �04y14 p, 04j4 2p� and analytically continuable
to the whole complex plane y � y1 � iy2, is a diagram of a wave
field regular outside the sphere of the radius a iff asymptotic
equality (73) takes place as exp jy2j ! 1. In this equality
f E�z;j� is some entire function in

z � exp

�
jy2j ÿ i

y2
jy2j y1

�

of finite degree not exceeding ka=2.
Similar in sense theorems, though in much more compli-

cated formulation, are presented in Ref. [32]. These theorems
allow one, in particular, to prove the uniqueness of inverse
scattering problems, as well as to show approaches to the
problem of determinating the form of a scatterer via a given
diagram. We do not discuss these questions here; the reader
can find such a discussion in themonograph [32] and in works
cited there.

Let us consider here a simpler, but at the same time
important, question about the sense of restrictions contained
in the formulations of the above theorems.

It is well-known (see, e.g. Ref. [46]) that the antenna with
plane opening possesses the diagram whose width is strongly
connected with the size of the opening and cannot be done
arbitrarily small without a strong decrease in the radiating
power which is comparable with the input power of the
antenna. Antennas with a significant fraction of non-radiat-
ing power are called overdirected. The distribution of currents
(fields) at the opening of such antennas is of rapidly
oscillating character and cannot be easily realized [49]. The
mathematical problem of finding such distributions via a
given diagram appears to be unstable and a small change in
the input data essentially changes the distribution of field on
the aperture.

Let us consider an example illustrating the importance of
the restrictions involved into the above-formulated theorems.
As such an example, we consider the problem of synthesis of
antenna lattice formed by open ends of waveguides located on
the arc of the circle of radius a [50, 51] (a two-dimensional
problem). The boundaries of the waveguides are orthogonal
to the side surface of ideally conductive cylinder.

The diagram f�j� can be realized by such a lattice in
accordance to theorem 3 only in the case when the set of
singularities of the field corresponding to this diagram is
contained as a whole inside the mentioned circle of radius a.

Consider the realization of the so-called Gaussian dia-
gram

f�j� � exp

�
ÿp sin2 j

2

�
: �79�

It is easy to see that for this diagram

f E�z� � exp

�
ÿ p

2
� pz

4

�
: �80�

Generalizing (71), we introduce the quantity

sS�g� � max
�
h��g�; hÿ�pÿ g�

	
: �81�

Then in the coordinate system turned through the angle g the
field corresponding to the diagram (79) will be regular in the
domain yg > �2=k�sS�g� [see Eqn (71)], where yg is the
ordinate in the coordinate system turned by the angle g. In

other words, the field having the diagram (79) is regular
outside the half-plane

yg 4
2

k
sS�g� ; �82�

and has at least one singular point on the line yg � �2=k�sS�g�.
Hence, the domain B0 obtained as intersection of planes (82)
for all angles g is exactly the convex hull of the singularities of
the field with diagram (79). Since [46]

h�g� � lim
R!1

ln
�� f EÿR exp�ig����

R
;

then, taking into account (81), we obtain that for the example
considered

sS�g� � p

4
j cos gj : �83�

Hence, in this case the set B0 is a segment
ÿp=2k4 y4 p=2k of the Oy axis.

As follows from (71), (81), and (83), the degree s of
function (80) equals s � p=4. Hence, in accordance with
theorem 3, the diagram (79) can be realized by the considered
lattice only in the case when the radius a of the cylinder is
greater that p=4.

Figure 8 shows continuous amplitude, and Fig. 9, phase
distributions of the component Ej of the field realizing
diagram (79) with the degree p � 15. Here the numbers of
curves correspond to the following values of the radius ka of
the cylinder: 1 Ð ka � 40, 2 Ð ka � 20, 3 Ð ka � 16, 4 Ð
ka � 8. It is seen that the last distribution (curve 4) is close to
`overdirected', though the circle with ka � 8 encircles the
segment B0 (the critical radius of the given diagram is
ka � 7:5).
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As can be seen from the example considered, the criteria of
realizability of the diagram involved into theorem 3 can be
generalized, for instance, in the form of the following
affirmation [50, 51]:

Let B be a convex closed domain. Then a function f�a� given
on the segment 04a4 2p and analytically continuable to the
whole complex planec � a� ib can be realized as a diagram of
integrable currents distributed on an arbitrary closed Lyapunov
contour encircling B, iff asymptotic expansions (58) take place
as jbj ! 1, where f E� �z�� are entire functions of finite degree in
z� � exp

ÿjbj � ia
�
, and the corresponding set B0 [the convex

hull of singularities of the field with the diagram f�a�] satisfies
the relation B0 � B.

Further generalizations of this criterion are given in Ref.
[50]. In short words, all the versions of realizability criteria
contain one and the same requirement: the singularities of the
wave field corresponding to a given diagram must be contained
in the support of currents realizing this diagram.

In different interpretations, this requirement is also
crucial in a lot of widely used methods of solving direct
problems of diffraction theory.

Information on the localization of singularities of the
wave field is also very important for solving inverse scattering
problems (reconstruction of the form of a scatterer by its
diagram) [32]. For example, knowledge of the geometry of the
setB0 (the convex hull of singularities of the wave field) allows
one to evaluate the dimensions of the scatterer [32]. The above
relations (70), (71), (74), and (76) make it possible to find the
set B0 in the investigations of scattering of the plane wave. In
papers [15, 40 ± 44] one can find a lot of examples of finding
the set B0 for scatterers of different geometry. So, for
example, for the diffraction of a plane wave on a three-axis
ellipsoid

x2

a2
� y2

b2
� z2

c2
� 1

for a5 b5 c the set B0 is an ellipse in the plane xy with
semiaxes

���������������
a2 ÿ c2
p

,
���������������
b2 ÿ c2
p

. For a � b � c the ellipsoid
reduces to a sphere, and the singularity set becomes a point
in its center. The question why we see the sphere instead of its
center is quite natural. It seems that the complete answer to
this question cannot be obtained in the framework of the pure
diffraction theory. However, it is clear that under one and the

same illumination conditions an uneven sphere will be better
recognized than the polished one. This fact is quite under-
standable form the viewpoint of the singularity theory. The
matter is that the uneven sphere is in fact some body with the
form close to the spherical one whose surface can be
represented (in the first approximation) by a function with a
piecewise-continuous derivative. So, singular points of the
field scattered by such a body will be located, in particular, on
the surface of this body. Moreover, the closer the form of the
body is to the spherical one, the more such singularities will
occur. In the limit, these singularities will fill the spherical
surface densely, but their `amplitude' will become very small
comparable with the amplitude of the singularity in the center
of the sphere, where, by the way, the field has an essential
singularity [44, 15].

From the example considered it is clear that for the
scatterer to be `unseen', that is, hardly recognized, its form
must be as close to the ideal analytic surface as possible. It
must have no angles or other irregularities.

These considerations are, surely, of intuitive character.
The clear qualitative and quantitative recommendations can
be given only on the basis of a detailed analysis of the process
of wave scattering by bodies of different geometry and with
different media parameters, which can be carried out on the
basis of corresponding mathematical models.

3.4 Analytical properties of wave fields and computational
methods of solving diffraction theory problems
Mathematical models of scattering and diffraction of waves
are constructed using different numerical methods. The most
rigorous methods are based on some analytical representa-
tions of the wave (or diffraction) field. The mostly used are
representations in wave harmonics (metaharmonic functions)
of the form (38) or (39), in the form of series in plane waves
(47), and by wave potentials (50). Then, with the help of the
boundary condition the problem is reduced to a system of
algebraic equations, or to an integral or integrodifferential
equation with respect to the potential density (surface or
auxiliary current [52, 53]). On the basis of the above
discussion, we can suppose that the methods of such kind
will lead to the correct computational algorithms only with
taking into account the analytic properties of the solution.
The existing literature on numerical methods of solving
boundary value problems of electrodynamics and acoustics
confirms this supposition. So, the algorithms using expan-
sions of the form (38) or (43) [3] turn out to be stable only in
the case when the minimal sphere (circle) encircling all
singularities of the wave field is contained as a whole inside
the scatterer, that is, when the inequality

rmin >
2s
k

�84�

holds. Here rmin is the radius of the minimal sphere inside the
scatterer surface G, and s is the degree of the diagram of the
wave field (see Section 3.2). This fact, at first glance, contra-
dicts the known Vekua theorem on the completeness of
metaharmonic functions [36]

cnm�r; y;j� � h�2�n �kr�Pm
n �cos y� exp�imj� ;

cn�r;j� � H �2�n �kr� exp�inj�
on any Lyapunov surface (contour), as well as of any linear
combination of these functions in any closed subdomain
outside the scatterer. The explanation to this contradiction
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is that (seeRef. [54]) the series in such functions giving the best
approximation of the wave field everywhere outside the
scatterer is not, in general, absolutely convergent. Being
rewritten in the form of the Rayleigh series [Eqn (38) or Eqn
(43)] it may be rearranged (as already noted) in its infinite
remainders to a series in powers of 1=r and, hence, converges
only outside a sphere (circle) passing through themost distant
singular point of the wave field.

Condition (84) for a scatterer, say, of an ellipsoidal form
means that the eccentricity e of the ellipsoid must satisfy the
condition e < 1=

���
2
p

[15, 41].
A similar situation also arises while using expansions in

plane waves of the form (47). Namely, algorithms based on
the usage of expansions of the form (47) [2] are stable only
under the condition

ymin >
2sS
k

; �85�

where ymin is a minimal ordinate of the surface y � f�x�, and
the quantity sS is defined by (71). For example, in scattering
of a plane wave by the surface

y � a cos

�
2p
b

x

�
;

a > 0, b is the period, condition (85) is reduced to the
following restriction [43]:

2pa
b

< 0:447743 . . .

For a trokhoid given by

x � a�t� t cos t� ; y � at sin t ;

a > 0 ; 0 < t4 1 ; 04 t < 2p ;

the condition (85) restricts the entire mentioned range of the
parameter t by values t < 0:2784613 . . . [55].

In practical numerical investigations the restriction of the
form (84), (85) appear in the form of the so-called `computa-
tional catastrophes', that is, complete loss of the stability of
the algorithm during the attempts of increasing the computa-
tional accuracy by enlarging dimensions of the corresponding
algebraic systems.

Below, we shall consider an example of occurrence of a
catastrophe of such kind in connection with another class of
numerical methods, that is, the methods based on representa-
tions of the form (50). Using such representations, it is
possible to reduce the boundary value problem to integral
equations of the first or second kind with respect to the
surface currents [32], that is, the currents distributed directly
on the surface G of the scatterer. In recent years, the methods
based on the representations of the form (50) (such as method
of auxiliary currents [52, 53] and the method of discrete
sources [56, 57]) have gained widespread acceptance. In
these methods the support of currents is not the scatterer
surface, but some other surface S lying inside the scatterer.
These methods are preferable due to their algorythmical
simplicity, universality and high speed of action. However,
the efficiency of thesemethods depends strongly on the choice
of the auxiliary surface SÐ the support of currents. The first
version of the methods in question, the nonorthogonal series
method, was presented in Ref. [58], where, in particular the

completeness of the system of functionsG�r; rn�was proved in
the case of arbitrary location of points rn inside G when the
points defined by the radius-vector r lie on an arbitrary
Lyapunov surface G [see Eqns (51) and (52)]. The reason of
this phenomenon is quite clear in view of the results of the
preceding section. Solving a boundary value problem by the
auxiliary current method or by its discrete analogue, one
searches densities of wave potentials distributed on an
auxiliary surface S which realize the required wave (diffrac-
tion) field. The distribution of these densities is found from
the boundary value condition. The integral equation of the
first kind with a smooth kernel arising in this process has, for
instance, the following form [52, 53]:�

S
n�r 0�G�r; r 0� ds 0 � u0�r� ; r 0 2 S ; r 2 G : �86�

We see that this approach has a lot in commonwith solving an
inverse scattering problem: in both cases the problem is
reduced to an integral equation of the first kind. It is clear
that for the given right-hand side u0�r� Eqn (86) may have no
solutions. On the other hand, it is easy to show [52, 53] that if
the surface S encircles all singularities of the wave field u�r�,
Eqn (86) has a solution. More precisely, the following
theorem takes place [52, 53, 56]:

Let S be an arbitrary closed nonresonance Lyapunov
surface in D (D is a domain inside G). Then necessary and
sufficient condition of solvability of equation of the type (86) in
Lp�S�, p5 1 is that the surface S encircles the set of
singularities of the scattered field continued inside D.

The requirement of the absence of resonances, that is, of
the absence of free oscillations in the domain inside S on the
given frequency f � kc=2p, is connected with the form of Eqn
(86). If one reduces the boundary value problem to equations
containing both densities m and n of potentials, then this
requirement may be omitted. The condition that all singula-
rities of the wave field are encircled by the surface S is needed
for the discrete analogue of the method as well [52, 53].

Let us consider an example illustrating the above con-
siderations. Figures 10 and 11 show the results of solving the
problem of scattering of the plane wave by the elliptic cylinder
with semiaxes ka � 3; kb � 1:2; kf � 2:7495 . . . (2f is an
interfocal distance) by the method of discrete sources [59].
Integral in Eqn (86) was replaced by a sumwith the help of the
rectangle formula, and right- and left-hand parts were
equated at the so-called collocation points the number of
which can exceed the number of terms in the sum approximat-
ing the integral, that is, the number of sources. In the latter
case we obtain an overdetermined algebraic system.

The singularities of the wave field in this problem are
located at focal points [44, 15]. Figure 10 shows the
dependence of the remainder d in the boundary value
condition on the parameter kd characterizing the distance
between the auxiliary contour S and the contour G of the
cross-section of the cylinder. As Swe have chosen the cofocal
ellipse with the small axis b1 � bÿ d. Numbers 1, 2, 3 denote
graphs obtained when 30, 80, and 120 sources, respectively,
were used. It is seen that for the correct choice of the auxiliary
contour (so that it encircles the interfocal segment), one can
obtain very high accuracy of computations, and no destruc-
tion of the algorithm occurs even for large dimensions of
algebraic systems. The value of the error in the boundary
value condition is the most pertinent and very sensible
indicator of the correctness of the solution obtained since
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the integral characteristics (such as the scattering diagram)
are computed with much more high accuracy then boundary
conditions. However, the norm of current on the auxiliary
contour can also serve as an indicator of the algorithm
stability.

In Figure 11 we present the graphs of the dependence of
the norm of current kn�r 0�k on the parameter kg defined by
the relation g � aÿ a1, where a1 is the length of the large
semiaxis of the auxiliary elliptic contour with small semiaxis
equal to kb1 � 0:7. Curves 2 and 3 correspond to dimensions
of algebraic system 60� 60 and 120� 120. Curve 1 corre-
sponds to the case when the number of collocation points was
five times more that the number of discrete (auxiliary) sources
(the dimension of the algebraic system is 60� 300). It can be
seen that as soon as the auxiliary contour fails to encircle the
interfocal segment (for kg > 0:25), the computational cata-
strophe occurs: the norm of current increases the faster, the
larger is the dimension of the algebraic system, that is, the
higher is the potential accuracy of computations (see Fig. 10).

So, the considerations of this subsection show the
importance of taking into account the analytical properties

of solutions for constructing correct computational algo-
rithms of solving boundary value problems of diffraction
theory. In the first part of the paper it was shown that this
information can be obtained a priori, that is, before solving
the corresponding boundary value problem. In the next
section we shall discuss a method of solving boundary value
problems of diffraction theory where this a priori information
about analytical properties of solutions is used in working out
and verification of the computational algorithm.

3.5 Method of diagram equations
This method was applied to solving the problem of scattering
waves by a compact obstacle [42, 60], a periodic boundary
between twomedia [55, 61], the group of scatterers [62], and to
some other problems. The algorithms constructed on the
basis of this method proved to be highly effective and stable.
In this method, the boundary value problem is reduced to an
integrooperator equation with respect to the diagram of the
wave field or to an algebraic system with respect to coeffi-
cients of expansion of this diagram in some basis. The
resultant equations allow one to find the diagram directly
without the auxiliary stage of computing the densities of wave
potentials (currents) on the scatterer surface (or on the
boundary between media). Besides, since the diagram is
almost invariant (see Section 3.3) with respect to the choice
of the support of `currents', it is possible to obtain the correct
algorithms of solving the problem of scattering of waves by
the group of scatterers up to their mutual contact [62]. Other
merits of this method will be discussed below.

To be definite, let us consider a concrete realization of the
methodon the example of the problemof scattering of a sound
wave on a three-dimensional compact scatterer with Dirichlet
conditionson theboundary [42]. In this case the representation
(54) takes place for the scattering diagram, where we have to
put m � 0 in accordance to the boundary condition. Then,
using a modification of integral (45) allowing the reconstruc-
tion of the wave field u�r; y;j� everywhere outside the convex
hullB0 of singularities of the functionuvia thediagram f�y;j�,
one can (if the surface G encircles B0) find the density of the
potential n�G� [see the text after Eqn (53)].

Finally, substituting the expression found for n�G� into the
representation (54), we obtain the required integrooperator
equation for the diagram f�y;j�. If one substitutes the
expansion of the diagram into the series in spherical harmo-
nics

f�y;j� �
X1
n�0

Xn
m�ÿn

amnP
m
n �cos y� exp�imj� �87�

into the equation obtained and performs the integration over
the surface of a unit sphere, the following algebraic system
can be found

anm � a0nm �
X1
n�0

Xn
m�ÿn

Gnm; nm anm ; �88�

for coefficients anm of expansion (87). In deriving it, one
should take into account the orthogonality of functions
Pm
n �cos y� exp�imj�. In the latter formula

a0nm � in�2n� 1� �nÿm�!
�n�m�!

�2p
0

�p
0

q0�y;j� jn
ÿ
kr�y;j��

� Pm
n �cos y� exp�ÿimj� dy dj ; �89�
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Gnm; nm � inÿn�2n� 1� �nÿm�!
�n�m�!

� i

4p

�2p
0

�p
0

�
k2r2�y;j�h�2� 0n �kr�P m

n �cos y� sin y

ÿ kr 0yh
�2�
n �kr�

d

dy

�
Pm
n �cos y�

�
sin y

ÿ im
kr 0j
sin y

h�2�n �kr�Pm
n �cos y�

�
jn�kr�

� Pm
n �cos y� exp

�
i�mÿm�j� dy dj ; �90�

and

q0�y;j� � ÿ k

4p

�
r2�y;j� sin y qu

0

qr
ÿ r 0y�y;j� sin y

qu0

qy

ÿ r
0
j�y;j�
sin y

qu0

qj

������
r�r�y;j�

;

jn�x� is the spherical Bessel functions of order n.
We see that, in contrast to traditionally used methods, the

matrix elements of algebraic system (88) are determined by
two-dimensional integrals (and not four-dimensional as with
traditional methods such as, for example, the method of
integral equations with respect to surface currents).

The matter is that in the current integral equations
method the reduction to an algebraic system is performed
with the help of some projection relations. To do this it is
necessary to integrate twice over the surface G: first in the
process of substitution of the expansion, say, in metaharmo-
nic functions, of the searched current into the integral
equation, and, second, when projecting the equality obtained
to some basis. In the method under consideration the second
integration is fulfilled over a unit sphere, where spherical
functions are orthogonal. In the case of a body of rotation the
system (88) and formulas (89) and (90) are essentially
simplified [42].

The system (88) was obtained from the integral equation
which was valid under the condition that the set B0 is
contained as a whole inside G. However, deducing the system
of equations we had to perform a series of mathematical
operations which could change the conditions of existence of
solutions. If one performs the estimate of the asymptotics (as
n!1, n!1) of the matrix elements and right-hand sides
of the system, then, using some sufficient criterion of
solvability of infinite algebraic system by the reduction
method, the conditions required can be obtained.

Performing corresponding estimates of integrals (90), we
obtain [42], that, for example, for n4 n

jGnm; nmj4 const� s1
nn!

;

where s1 coincides with the above defined parameter s [see
the relations (76) and (77)]. Similar, for n4 n one can obtain
that

jGnm; nmj4 const� n!
s n
2

;

where the parameter s2 is defined by the relation

s2 � min
y s0 ;j0 ; s

����kr�y s0 ;j0�2
exp�isy s0�

���� ;

and the minimum is searched on the set of roots of Eqn (77)
which are taken by the change of variable x � r�y;j� exp�iy�
outside contours Cj on the plane z � r exp�ia� [see the text
after Eqns (77)].

For right-hand sides a0nm the asymptotic estimate of
integrals (89) gives [42]:

ja0nmj4 const� sn

nn!
; s � max�s1; s0� ;

where s0 � kr0=2 and r0 is the distance to the furthest from
the origin point inside G corresponding to a singularity of the
continuation of the function q0�y;j� to the domain of
complex angles y. For the case when u0 is a field of a plane
wave, we have s0 � 0, that is s � s1.

As we have already mentioned, the quantity 2s=k equals
the distance from the origin to the furthest singularity of the
continuation of diffraction field inside G. Conversely, the
quantity 2s2=k equals the distance from the origin to the
nearest singular point occurring during the continuation of
the field from the boundary ofG into the domain interior with
respect to G.

If we replace the unknown coefficients anm in system (88)
by new ones putting

anm � s
n

n!
xnm ;

then for coefficients xnm we obtain a new algebraic system
which is solvable under the condition

s2 > s ; �91�

that is, in the case when the domain to which the exterior field
is extendible has a nonempty intersection with the domain to
which the interior field might be extendible (if, for example,
we solve the interior boundary value problem). Condition
(91) preserves its form, and the quantities s and s2 preserve
their meaning independently of the type of boundary condi-
tions on G.

Let us consider two examples. Figure 12 shows the
scattering diagram of the spheroid with semiaxes
ka � kb � 5, kc � 0:125 for the case of a plane wave incident
along the rotation axis (solid line) [59]. The dashed line shows
the dependence of azimuthal component of the vector
scattering diagram of a plane electromagnetic wave falling
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normally on a thin disk of the radius ka � 5. This dependence
is taken from Ref. [63].

The Table contains data illustrating the convergence in
computation of the diffraction on the spheroid with semiaxes
ka � kb � 5, kc � 0:5. Here cond is a conditional number of
the system of equations, Si is the integral cross-section of
scattering, S0 is the value of this parameter obtained from
optical theorem, N is an upper limit of summation over n in
the system of the form (88).

It can be seen that the results become stable in the second
or third sign for N5 kd=2� 2, where d is a maximal size of
the scatterer. This conclusion also remains valid when one
solves scattering problems for obstacles with another geome-
try.

This remarkable fact of high convergence of algorithms of
the diagram equations method has a simple explanation. The
matter is that in this method the problem is formulated
directly for the scattering diagram (or its Fourier coeffi-
cients). On the other hand, the structure of the diagram, that
is, its width, the width and the level of its main petal etc. is
determined mainly by the ratio of the size of the scatterer to
the wavelength. Therefore, almost independently of the form
of the scatterer, the convergence is the same as with the
solution of the problem of scattering on a sphere surrounding
the scatterer.

The second example shows that the condition (91) is not
only sufficient, but also necessary for the system of algebraic
equations with respect to coefficients xnm to be solvable by the
reduction method. Figure 13 illustrates the dependence of the
quantity j1ÿ S0=Sij on the ratio a=cwhen kc � 1 for the body
formed by the rotation of the curve r�y� � c cos2 y� a sin2 y
around the polar axis. Condition (91) for this case has the
form a=c > 0:5. From Fig. 13 one can see that for a=c � 0:5
the qualitative jump occurs: for a=c > 0:5 with the growth of
N the accuracy is increased, and for a=c < 0:5 it decreases,
that is, the algorithm is destroyed.

The scatterers for which the boundary G satisfies the
inequality s2 > s1, are called weakly non-convex in Refs [42,
60]. Such are, in particular, all convex scatterers. The class of
weekly non-convex scatterers is much wider than the set of
bodies for which the methods based on the representation of
the wave field in the form of expansion (38) are applicable
(that is, those for which the so-called Rayleigh hypothesis is
valid). At the same time, as shown by computations, the
diagram equations method allows one to construct computa-
tional algorithms with very high speed of convergence close to
that achieved for the method of separation of variables (when
the latter is applicable).

4. Conclusions

Summing up the above material, we can conclude that the
mathematical part of the problem of continuation of solu-
tions to Maxwell and Helmholz equations is solved in
principle. In particular, there is full clarity with the localiza-
tion of singularities of continuation. Concerning the physical
or applied part of the problem, here the work, in the author's
opinion, is just begun. We come to the analogue of the
situation that existed in the sixties Ð seventies after it was
found out that the diagrams of the so-called aperture
antennas are related to some class of entire functions. This
fact then allowed joining different questions of antenna
constructing into the framework of the unified synthesis
theory.

In the present review, we tried, in particular, to demon-
strate that the wave fields continuation theory not only allows
one to obtain a deeper understanding of such a complicated
phenomenon as the diffraction of electromagnetic and sound
waves, but also gives concrete recommendations on creation
of highly effective and stable algorithms of mathematical
modelling of diffraction and scattering problems.
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