
Abstract. Quantum field renormalization group results of the
theory of developed turbulence are reviewed. Background in-
formation about quantum field renormalization theory, includ-
ing operator expansion and the renormalization of composite
operators is given. As an example problem, the stochastic model
of isotropic homogeneous turbulence is considered for which,
using the renormalization technique, the existence of infrared
scaling with Kolmogorov dimensions is proved. The dimension
of composite operators and the infrared asymptotic behavior of
various correlation functions are discussed, and numerical am-
plitude factors of scaling laws are calculated.

1. Introduction

The renormalization group (RG) method introduced origin-
ally in quantum field theory (QFT) to meet the needs of
elementary particle physics was successfully applied, in the
early 70s, by Wilson and others to the theory of critical

phenomena in order to substantiate the critical scale invar-
iance (scaling) and to evaluate universal characteristics of
critical behavior (critical exponents and scaling functions) in
the form of E-expansions. Later on, it was generalized to other
problems exhibiting scaling in the infrared region: critical
dynamics, random walks, polymer physics, and finally, the
theory of fully developed hydrodynamic turbulence. The
present paper is a review of basic results obtained by the RG
method in the turbulence theory for more than the past fifteen
years.

In contrast to the theory of critical behavior, the RG
technique in the theory of a fully developed turbulence is
not still generally accepted and it is used in the form of
rather different formalisms (the field-theoretical RG, Wil-
son's recursion relations, iteration averaging over modes of
sublattice scales), which greatly complicates mutual under-
standing of various specialists in this field of activity.
Therefore, in this paper, a systematic use is made of the
standard field-theoretical RG technique as being reliably
based on the quantum field theory of renormalization and
well-developed methods of evaluation of RG functions and
critical dimensions (analytic regularization, the scheme of
minimal subtractions, etc.); and a detailed account is given
not only for physical results but also for the RG method as
well.

In Section 2 we consider the simplest stochastic model of
homogeneous isotropic turbulence of an incompressible fluid
and give a proof of the existence of infrared scaling with the
Kolmogorov dimensions. In Section 3 we examine more
complicated problems of the RG theory of turbulence related
to renormalization of composite operators, the Wilson
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operator product expansion, and to the study of infrared
asymptotic behavior of various scaling functions.

The RG theory of turbulence raised a lot of new problems
which were absent in the theory of critical behavior: `freezing'
of critical dimensions, `dangerous' composite operators with
negative dimensions, and so on. Solution of these problem
requires going beyond the scope of E-expansions and simulta-
neous use of the RG-technique and other methods (infrared
perturbation theory, operator product expansion, functional
equations of the Schwinger type, etc.). These problems,
which still need further investigation, are also addressed in
Section 3.

Basic references on the physics of a developed turbulence
are [1 ± 4]; on the quantum-field theory of renormalization,
[5, 6]; on application of the RG method in the theory of
critical behavior, [7 ± 10]; on functional methods of QFT, [11,
12].

2. RG method in the stochastic model
of isotropic turbulence

2.1. The Navier ± Stokes equation.
Phenomenology of a developed turbulence
As a microscopic model of a developed (homogeneous,
isotropic) turbulence of an incompressible viscous fluid we
consider the stochastic Navier ± Stokes equation with an
external random force [1, 3, 13, 14]

Htji � n0Dji ÿ qi p� Fi ; Ht � qt � �jq� : �1�

Here ji is a transverse (owing to incompressibility) vector
field of velocity; p and Fi are, respectively, density and
transverse external random force per unit mass of the fluid
(all these quantities depend on x � t;x); n0 is a kinematic
viscosity coefficient; Ht is the Galileo-covariant derivative.
We consider equation (1) on the whole time axis t and specify
its solution by the requirement that j vanishes for t! ÿ1.
Distribution of F is supposed to be Gaussian with zero mean
and correlator


Fi�x�Fj�x0�
� � d�tÿ t 0��2p�ÿd

�
�
dkPij�k�dF�k� exp

�
ik�xÿ x0�� ; �2�

where Pij�k� � dij ÿ kikj=k
2 is a transverse projector; dF�k� is

a certain function of k � jkj and parameters of the model; d is
the x-space dimension. The random force serves as a
phenomenological model of `pumping' energy into the system
which occurs owing to interaction with large-scale motions.
The average power W of pumping is connected with the
function dF in Eqn (2) as follows:

W � dÿ 1

2�2p�d
�
dk dF�k� : �3�

In the framework of the stochastic model one may neglect
initial and boundary conditions and directly consider homo-
geneous developed turbulence [1, 13, 14]; in this case the field
j in Eqn (1) corresponds only to the chaotic (pulsation)
component of realistic velocity.

Equation (1) is solved by iterations with respect to
nonlinearity with a subsequent averaging over distribution
of the stochastic force. Quantities to be evaluated are various

Green's functions, correlation functions


j�x1� . . .j�xn�

�
,

and also response functions, i.e., variational derivatives of
correlation functions with respect to nonstochastic external
forces which may be inserted into the right-hand side of
Eqn (1).

A simplified physical picture of turbulence is as follows
(Refs [1, 4]): the energy of an external source (our random
force) comes to the system from the large-scale motions
(vortices) with a characteristic size lmax, then it is transferred
along the spectrum (`vortex subdivision') owing to non-
linearity of equation (1), and finally at scales lmin (`dis-
sipative length'), where the role of viscosity becomes
important, active dissipation comes to the fore. Independent
parameters are W, n0, and m � lÿ1max (the latter will be called
`the mass' in analogy with quantum-field models); all the
rest may be expressed through them on the grounds of
scaling considerations: at large scales through parameters
W, m, at small scales through W, n0. For instance,
lmin � 1=L, L �W 1=4nÿ3=40 . A developed turbulence is char-
acterized by a large value of the Reynolds number
Re � �L=m�4=3, and as a consequence, by a wide `inertial
range' determined by inequalities m5 k5L for momenta
(wave numbers) and omin �W1=3m2=35o5omax � n0L2

for frequencies [1].
The phenomenological Kolmogorov ±Obukhov theory

[1] was based on two hypotheses. The first one appeared to
be too restrictive and was later modified. We first cite the
original version, denoting it with 10:

Hypothesis 10 (see Ref. [1], p. 319): distribution of Fourier
components j�o;k� of the random velocity j�x� � j�t;x�
within the range k4m, o4omin �W 1=3m2=3 depends on
the total power W of pumping but is independent from
`details of its construction,' in particular it does not depend
on the value of m.

Hypothesis 2 (see Ref. [1], p. 321): in the range k5L,
o5omax � n0L2, the above distribution does not depend on
the viscosity coefficient n0.

The second hypothesis implies, in particular, that in the
range of its applicability the pair correlator of the Fourier
components of velocity in the case of a d-dimensional
problem can be represented in the form


ji�o;k�jj�o0;k0�
� � �2p�d�1d�o� o0�d�k� k0�

� Pij�k�D�o; k� ;

D�o; k� �W 1=3kÿdÿ4=3f
�
Wk2

o3
;
m

k

�
; �4�

where f is a certain function of two independent dimension-
less arguments.

However, according to hypothesis 10, in the inertial range
the dependence on m should vanish, i.e., the function f in
Eqn (4) should be finite when its second argument m=k tends
to zero. However, it is known for a long time (see Ref. [1]) that
this is not the case: owing to the kinematic effect of transfer of
vortices by large-scale motions with k ' m, for dynamic
objects of the type of (4) the limit m=k! 0 does not exist.
The corrected version of 1' is as follows (see, for instance,
Ref. [15]):

Hypothesis 1: within the range k4m, o4 �Wm2�1=3,
simultaneous distribution functions of spatial Fourier com-
ponents j�t;k� of the random velocity field j�t;x� converge
to a finite limit as m=k! 0.
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With the aid of hypothesis 2 [or integrating (4) over
frequencies o, o0] we obtain the following representation for
the static pair correlator:


ji�t;k�jj�t;k0�
� � �2p�dd�k� k0�Pij�k�Dst�k� ;

Dst�k� � kÿd
�
W

k

�2=3

f

�
m

k

�
: �5�

In accordance with hypothesis 1, there exists a finite limit f�0�
of the function f�m=k� when m=k! 0, and the quantity f�0�
appears to be connected with the well-known Kolmogorov
constant (see Section 3.9). Representation (5) is valid for all
k5L, i.e., both in the inertial range m5 k5L, where the
function f�m=k� can be replaced by the constant f�0�, and in
the `energy-containing region' (pumping range), where it is
nontrivial.

Representations of the type of (4) and (5) can be written
for more complicated correlation functions with any number
of fields j. All of them are only based on hypothesis 2, and
taken as a whole, establish the infrared (since the conditions
k5L,o5 n0L2 of hypothesis 2 do not impose restrictions at
large scales) scaling invariance (or, simply, scaling) with
certain Kolmogorov's dimensions DF � D�F � for all `IR-
relevant' quantities F � �j � j�x�, m, t � oÿ1, r � kÿ1

	
withW, n0 being irrelevant:

Dj � ÿ 1
3
; Dt � ÿDo � ÿ 2

3
; Dk � ÿDr � Dm � 1 : �6�

In conclusion we shall more precisely specify the form of
the pumping function dF which is used in RG theory of
turbulence for definition of correlator (2). From a physical
standpoint, a realistic pumping should be infrared, i.e., the
function dF should depend on the parameter m5L and the
main contribution to integral (3) should come from scales
k � m. On the other hand, to employ the standard field-
theoretical RG technique, it is important that the function dF
has a power-like asymptotic form at large k. The function

dF � D0k
4ÿd�k2 �m2�ÿE �7�

used in Refs [15, 16] meets this condition. Here E > 0 has the
meaning of `deviation from the logarithmic theory' (for
details, see Section 2.4). A logarithmic theory is specified by
the value E � 0, whereas the pumping (7) becomes infrared
only when E > 2. In the region 0 < E < 2 the pumping (7) is
ultraviolet (UV) and makes the integral (3) diverge at large k.
This implies that it must be cut off at k4L and, therefore, the
main contribution to this integral comes from scales k � L.
Thus, in this case W � D0L4ÿ2E, unlike W � D0m

4ÿ2E for
E > 2.

In most studies on RG theory of turbulence a purely
power-like pumping corresponding to m � 0 in Eqn (7) is
used:

dF � D0k
4ÿdÿ2E : �8�

This can be done if we only deal with the substantiation of IR
scaling and calculation of critical dimensions (which do not
depend onm for any pumping), and represent other objects of
the type of scaling functions only in the framework of
perturbation theory in the form of E-expansions. In this case
transition to the theory with m � 0 is self-consistent since the
E-expansion of diagrams always results in finite coefficients

when m! 0. However, this does not prove the Kolmogorov
hypothesis 1, because for finite E in the realistic range E > 2 of
IR pumping the limit m! 0 may not exist (a simple example
is the function m2ÿE: its E-expansion coefficients vanish when
m! 0, whereas the function itself diverges if E > 2). There-
fore hypothesis 1 can only be considered in the framework of
models of the type of (7) with the parameter m 6� 0, and
beyond the scope of E-expansion. If we do not touch upon
these problems, we can use the most simplified model (8). A
physical value of E for it is Ep � 2. It corresponds to the
boundary of IR-pumping given by Eqn (7), since for E > 2 the
integral (3) with the function (8) does not exist owing to IR-
divergence, and for E < 2 the pumping is ultraviolet. Note
that at E � 2 the parameter D0 in Eqn (8) acquires the
dimension ofW. Also note that an idealized pumping caused
by infinitely large vortices corresponds to dF�k� / d�k�, while
the function Ckÿd, with a proper choice of the amplitude C,
can be regarded as a power-like model of a d-dimensional d-
function (see Section 3.7). A more realistic model of pumping
is of course the model (7) or its generalization

dF � D0k
4ÿdÿ2Eh

�
m

k

�
; h�0� � 1 ; �9�

where h�m=k� is an arbitrary `good enough' function ensuring
the convergence of integral (3) at small k and normalized to
unity at k4m, where Eqn (9) turns into (8). Most of the
results for the inertial range do not depend on the choice of h,
and we will expound them for the model (9) assuming h
arbitrary.

2.2 Field-theoretical formulation
It is well-known (Refs [17, 18]) that the initial-value problem
for the stochastic equation

qtj�x� � V�x;j� � F�x� ; 

F�x�F�x0�� � DF�x; x0� �10�

in a field or a system of fields j�x� � j�t;x�with an arbitrary
functionalVwhich does not contain time derivatives ofj and
an arbitrary correlator DF of the Gaussian random force F,
when defined in a standard way as we did it for Eqn (1), is
equivalent to a quantum theory of the doubled set of fields
F � j;j0 with the action

S�F� � j
0DFj0

2
� j0�ÿqtj� V�

� 1

2

��
dx dx0 j0�x�DF�x; x0�j0�x0�

�
�
dxj0�x��ÿqtj�x� � V�x;j�� : �11�

Thismeans that statistical averages h. . .i of randomquantities
can be identified with functional averages with the weight
exp S�F�. Therefore, generating functionals of total �G�A��
and connected �W�A��Green's functions for the problem (10)
are represented by the functional integral

G�A� � expW�A� �
�
DF exp�S�F� � AF

� �12�

with arbitrary sources A � Aj;Aj 0 in the linear form

AF �
�
dx
�
Aj�x�j�x� � Aj 0 �x�j0�x�

�
: �13�
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The generating functional of 1-irreducible Green's functions
is given by the Legendre transform ofW�A�with respect toA:

G�F� �W�A� ÿ A�F� ; F�x� � dW�A�
dA�x� : �14�

Independent argument here is F, whereas A � A�F� is
implicitly determined by the second equation in (14). The
source Aj 0 has the meaning of nonstochastic external force
[additional term toV in Eqn (10)], therefore, in particular, the
Green function hjj0i of model (11) coincides with the
simplest response function dhji=dAj 0

��
A�0 in the initial-value

problem (10).
For brevity in what follows we shall use the compact form

of writing used in Eqns (11) ± (13), implying all the necessary
integrations over the variables x � t;x and summations over
indices of the fields F and sources A.

Integral (12) is a standard construction of QFT, therefore,
all the Green functions allow standard Feynman diagram
representations (see, for instance, Ref. [12]). Diagram lines
are represented by elements of a 2� 2 matrix hFFi0 of bare
propagators, which is connected by formula hFFi0 � Kÿ1

with the matrix K defining the free (quadratic in F) part of
action S0 � ÿFKF=2. If V � Lj� nonlinear terms (with a
linear operatorL, ReL4 0), bare propagators for action (11)
are of the form

hjj0i0 � hj0jiT0 � �qt ÿ L�ÿ1 ; hj0j0i0 � 0 ;

hjji0 � hjj0i0DFhj0ji0 ; �15�

where T denotes operator transpose (permutation of argu-
ments in the coordinate representation and qT � ÿq for
derivatives). Propagator hjj0i0 is retarded [this is an auxiliary
condition for equation (10)], while hj0ji0 is advanced.
Together with hj0j0i0 � 0, this results in vanishing of any 1-
irreducible Green's function hj . . .ji1-ir of fields j only (i.e.,
without j0) because any corresponding diagram contains a
closed cycle of retarded lines. For the same reason all vacuum
loops and all connected functions hj0 . . .j0icn of fieldsj0 only
(without j) also vanish [19].

Representation (11), (12) was obtained in Refs [17, 18],
but the diagram technique of the type of (15) was formulated
earlier in Refs [14, 20 ± 22]. In turbulence theory, it is just the
Wyld diagram technique [14]. The functional formulation
(11), (12) essentially simplifies derivation of exact functional
relations of Schwinger's equations type (see Section 3.1), and
what is particularly important, allows one to apply the
standard field-theoretical RG technique to the stochastic
problem (10).

The authors of Refs [17, 18] added to action (11) a term
with a self-contracted line hjj0i0 formally generated by
determinant of the linear operator ÿqt � dV=dj. This
addition exactly cancels all diagrams with self-contracted
lines hjj0i0 which appear among others when Feynman's
diagram technique is applied to action (11) but which do not
arise when diagrams are directly constructed by iterations of
the stochastic equation (10). Following Ref. [19], we shall
simply set the self-contracted line hjj0i0 in diagrams to zero.
This definition provides simultaneous vanishing of super-
fluous diagrams and their compensating contribution to
action (11).

If the above general theorem is applied to the Navier ±
Stokes stochastic equation (1) and (2), we arrive at the theory

of two transverse vector fields F � j;j0 with the action

S�F� � j
0DFj0

2
� j0�ÿqtj� n0Djÿ �jq�j� ; �16�

whereDF is the correlator (2) of the random force. As the field
j0 is transverse, we omitted in Eqn (16) a pure longitudinal
contribution qi p coming from Eqn (1).

Bare propagators (15) for the model (16) in the momen-
tum-frequency representation are of the following form:

hjj0i0 � hj0ji�0 � �ÿio� n0k2�ÿ1 ; hj0j0i0 � 0 ;

hjji0 �
dF�k�

o2 � n20k4
: �17�

Here the function dF�k� is defined by Eqn (2). All lines are,
in vector indices, multiple of the transverse projector Pij�k�
which is not written out explicitly in Eqn (17) but will
always be meant. Interaction in Eqn (16) is described by a
three-leg vertex ÿj0�jq� � j0iVijsjjjs=2 with the vertex
factor

Vijs � i�kjdis � ksdij� ; �18�

where k is the momentum flowing into the vertex through the
field j0. For illustration, Fig. 1 shows diagrams for exact
Green's functions hjji and hjj0i in the one-loop approxima-
tion. Lines of diagrams are associated with bare propagators
(17); vertices with factors (18); the crossed end of a line
corresponds to the field j0; the noncrossed one to the field
j. The perturbation expansion parameter (in the QFT
language, the coupling constant, or charge) is taken to be
g0 � D0=n30 with D0 from Eqn (9).

2.3 IR- and UV-singularities of diagrams
in perturbation theory
To illustrate problems arising in perturbation theory for the
model (16) with pumping (9) we shall consider the pair
correlator of velocity following Ref. [15]. At finite E > 0 all
involved diagrams converge in the region of large momenta
and frequencies, therefore they can be computed withoutUV-
cut-off L. In this method all UV-divergences arise as poles in
E, at E! 0, and the perturbation series for the correlator
assumes the form

hjji � hjji0
"
1�

X1
n�1
�g0kÿ2E�nAn

�
o
n0k2

;
m

k
; E
�#

; �19�

where g0 � D0=n30 with D0 from Eqn (9) and the coefficients
An have poles in E. From Eqn (19) it is seen that to determine
the asymptotic behavior at k! 0 at a fixed charge g0 and
coefficientsAn, it is necessary to sum up the whole series. This
is just the first IR-problem to be solved by the RGmethod. At
the level of canonical dimensions the problem is to determine
asymptotic behavior at l! 0 of expression (19) with rescaled
variables k! lk, o! l2o, m! lm, and irrelevant vari-
ables g0, n0 kept fixed. To formulate the first IR-problem
more accurately, as it follows from the RG-analysis (for

hjji= + + � 1
2

hjj 0i= +

Figure 1.
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details, see Section 2.6), we must replace the canonical values
of exponents l for all IR-relevant variables F by their actual
critical dimensions DF, which also must be simultaneously
determined (besides Dk � 1, which is merely the normal-
ization condition for dimensions).

It is to be noted that the above-formulated IR-problem is
nontrivial for any E > 0, including the range 0 < E < 2, when
pumping (9) is ultraviolet. In this region fromEqn (3) we have
W ' D0L4ÿ2E up to a unimportant dimensionless coefficient
of order 1, which, together with definitions L � �W=n30�1=4
and g0 � D0=n30, gives g0 ' L2E. Similarly, for the region E > 2
of IR-pumping, from (3) we have W ' D0m

4ÿ2E, hence
g0 ' �L=m�4m2E. In both cases the dimensionless expansion
parameter g0=k

2E in the searched IR-asymptotics is not small
[�L=k�2E in the first case and L4=�k2Em4ÿ2E� in the second],
consequently we have to sum series (19), and this is just the
first IR-problem. Therefore, the types of pumping and
corresponding singularities cannot be identified: even for
pumping of the UV-type with 0 < E < 2 in Eqn (9) the
perturbation series contains IR-singularities which will be
summed up by the RG method.

From the above estimates it is clear that these singularities
become less strong when E > 0 decreases and would vanish at
all at E � 0 if we could pass to this limit in Eqn (19). However,
this is impossible since expression (19) contains UV-diver-
gences, i.e., poles in E. Removal of these poles is a classical
UV-problem whose general solution is given by the theory of
UV-renormalization. This theory gives rise to RG equations
which express a simple idea of nonuniqueness of renormaliza-
tion (for details, see Section 2.4). This explains why geneti-
cally related with the problem of UV-divergences, the RG
method proves to be a useful tool for solving the problem of
IR-divergences, at first sight completely different from that of
UV-divergences.

Solution of the first IR-problem will substantiate the
Kolmogorov hypothesis 2. Hypothesis 1 is connected with
the second IR-problem, i.e., with possible singularities of the
coefficients An in Eqn (19) when m=k! 0. In our model (9)
with a finite E these singularities do exist and the problem is
nontrivial. As we said earlier (Section 2.1), the second IR-
problem, contrary to the first one, is not solved automatically
by resumming series of perturbation theory with the use of the
conventional RG technique. Analogous problems also exist
in themodels of critical behavior and are solved by theWilson
operator product expansion [6, 10]. These problems will be
discussed later (Section 3.4), and here we only note that the
second IR-problem is always considered within the frame-
work of the general solution to the first one: at first at any
fixed ratiom=k only the leading term of the IR-asymptotics at
l! 0 is extracted (see above), and then its asymptotic
behavior at m=k! 0 is examined.

2.4 UV-renormalization. RG equations
Here we shall give brief necessary information on the
quantum-field theory of renormalization and RG technique;
a detailed account can be found in monographs [5, 6].

We will consider models whose diagrams may be com-
puted without UV-cut-off L (this quantity can be contained
only in parameters of the type of g0) and UV-divergences
appear as poles in a certain dimensionless `parameter of
deviation from logarithmic theory' E. These are, in particular,
our models of type of (16) and also diverse specific models of
the theory of critical behavior with dimensional regulariza-
tion [8 ± 10].

The procedure of multiplicative renormalization remov-
ing UV-divergences (in our case poles in E) is the following:
the initial action S�F� is declared to be nonrenormalized; its
parameters e0 (e stands for the whole set of parameters) are
called bare parameters and are considered some (to be
determined) functions of new renormalized parameters e.
The renormalized action is assumed to be the functional
SR�F� � S�ZFF�, where renormalization constants ZF (one
per each independent component of the field F) are also to be
determined. Functional averaging h. . .i defining nonrenor-
malized total Green's functions Gn � hF . . .Fi is performed
with the weight expS�F�; whereas averaging with the weight
expSR�F� results in renormalized functions GR

n . Connection
between the functionals S and SR leads to interrelation
GR
n � ZÿnF Gn between the corresponding Green functions

[here Gn � Gn�e0; E; . . .� by definition, dots denote other
arguments like coordinates or momenta], while GR

n and ZF,
by convention, are expressed via parameters e. In the frame-
work of perturbation theory there is a one-to-one correspon-
dence e0 , e, therefore one may take either e0 or e for a set of
independent variables.

For the following it will be convenient to treat instead of
total Green's functions Gn � hF . . .Fi their connected
Wn � hF . . .Ficn or 1-irreducible Gn � hF . . .Fi1-ir parts.
The corresponding generating functionals are connected by
Eqn (12) and the first equation of (14).With the above rule for
renormalization of Gn these relations lead to renormalization
rules forWn and Gn:

WR
n �e; E; . . .� � ZÿnF �e; E�Wn

ÿ
e0�e; E�; E; . . .

�
;

GR
n �e; E; . . .� � Zn

F�e; E�Gn

ÿ
e0�e; E�; E; . . .

�
: �20�

Functions e0�e; E�, ZF�e; E� can be chosen arbitrarily, which
corresponds to an arbitrary choice of normalization of the
fields and parameters e at a given e0. The basic claim of the
theory of renormalization is that for the so-called multi-
plicative-renormalizable models there is a choice for these
functions such, that WR

n �e; E; . . .� remain finite at E! 0 and
fixed e. With this choice all UV-divergences (poles in E) turn
out to be concentrated in the functions e0�e; E� and ZF�e; E�
and disappear from renormalized Green's functions
WR

n �e; E; . . .�. Note that if any of these three sets of Green's
functions (total, connected, 1-irreducible) is UV-finite, other
two sets are also UV-finite automatically. For the following
we will consider connected functionsWn.

RG equations are written for renormalized functionsWR
n

which differ from initial nonrenormalized functionsWn only
by normalization, and therefore, can equally be used for
analysis of critical scaling. We shall demonstrate elementary
derivation of RG equations following Ref. [15]. The require-
ment of elimination of divergences does not determine the
functions e0�e; E� and ZF�e; E� uniquely; there remains a
freedom to introduce an extra dimensional parameter, the
renormalization mass m, into these functions (and implicitly
intoWR

n as well):

WR
n �e; m; E; . . .� � ZÿnF �e; m; E�Wn

ÿ
e0�e; m; E�; E; . . .

�
: �21�

A change in m at fixed e0 produces changes in e;ZF andWR
n ,

but not inWn�e0; E; . . .�. Denoting differentiation mqm at fixed
e0 by eDm and applying it to both sides of equation
Zn
FW

R
n �Wn, we get the basic differential RG equation:

�DRG � ngF�WR
n �e; m; E; . . .� � 0 ; gF � eDm logZF : �22�
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Here summation runs over all renormalized parameters e, and
DRG is the operator eDm � mqm��e0 expressed through the
variables e and m:

DRG � eDm � mqm �X
e

� eDme�qe : �23�

Coefficients of the differential operator (23) and gF from Eqn
(22) are called RG functions and are derived from various
renormalization constants Z. Since the functions WR

n in
Eqn (22) are UV-finite, all RG-functions are also UV-finite,
i.e., have no poles in E. Note that renormalization formulae
(20) for GR

n result in an equation similar to (22), but with the
change gF ! ÿgF.

In the general theory of renormalization [6] they distin-
guish nonrenormalized, S, renormalized, SR, and basic, SB
actions; the latter is obtained from Swhen all bare parameters
are replaced by their renormalized analogs. UV-divergences
are removed after addition to the basic action SB of all
necessary counterterms DS which are determined by certain
rules (see below). If thus obtained renormalized action
SR�F� � SB�F� � DS�F� can be reproduced by the above
procedure of redefinition of fields and parameters in the
initial nonrenormalized action S�F�, the model is multi-
plicative-renormalizable. Therefore, the first step in RG
analysis of any model is to explicitly determine all counter-
terms required for removal of UV-divergences and to verify
the multiplicative renormalizability of a theory.

The form of required counterterms is determined from
canonical dimensions of 1-irreducible Green functions of the
basic theory with the action SB. In contrast to static ones,
dynamical models of type of (11) are two-scale, i.e., with each
quantity F (a field or parameter in the action functional) one
may connect [19] two independent canonical dimensions,
momentum dimension dkF and frequency dimension doF .
They are determined from natural normalization conditions
d k
k � ÿd k

x � 1, dok � dox � 0, d k
o � d k

t � 0, doo � ÿdot � 1
and from requirement that every term of the action functional
be momentum- and frequency-dimensionless. The pair d k

F

and doF results in a total canonical dimension dF. This
quantity depends on the model; for our model (16)
dF � d k

F � 2doF since the action (16) contains a combination
qt � const� D, thus o / k2 with respect to the total dimen-
sion (note that there are certain models of critical dynamics
with o / k4, Ref. [23]).

In the theory of renormalization of dynamical models the
total dimension dF plays the same role as the conventional
(momentum) dimension in static problems. Canonical dimen-
sions of an arbitrary 1-irreducible Green's function G �
hF . . .Fi1-ir for a d-dimensional problem are given by the
relations

d k
G � dÿ

X
F

d k
F ; doG � 1ÿ

X
F

doF ;

dG � d k
G � 2doG � d� 2ÿ

X
F

dF ; �24�

with summation over all the fields F involved into a given
function G. The total dimension dG in logarithmic theory, i.e.,
at E � 0, is a formal index d � dG�E � 0� of UV-divergence
(now we are formulating general rules; in our model (16)
dimensions (24) do not depend on E, see Section 2.5). Super-
ficial UV-divergences which require counterterms for
removal may appear only in those functions G for which d is
a nonnegative integer, see Refs [5, 6].

Analysis of divergences is simplified by the following
observations:

(1) For any dynamic model of the type of (11) all 1-
irreducible Green's functions of basic fields j only (without
j0) vanish (see Section 2.2) and thus do not generate counter-
terms.

(2) If for any reason a certain number of external
momenta or frequencies is factorized out of all diagrams
contributing to a given Green's function, the actual index of
divergence d 0 turns out to be smaller than d � dG�E � 0� by
the corresponding number of units (a Green function gen-
erates counterterms if d 0 is a nonnegative integer).

(3) Sometimes formally dimension-allowed divergences
are absent owing to symmetry requirements, say because of
Galilean invariance of model (16).

(4) Since all counterterms must be local, nonlocal con-
tributions to the action (if they exist) are never renormalized,
i.e., they are the same in SB�F� and SR�F�.

These general considerations and formulae (24) allow us
to determine for any concrete dynamic model all superficially
divergent functions G and explicitly obtain the corresponding
counterterms DS�F� for the basic action SB�F�.

2.5 RG-analysis of stochastic hydrodynamics. IR-scaling
In this section following Ref. [15] we reproduce basic results
of the RG-analysis of model (16), which for the first time were
obtained in Ref. [16].

We start with a simplified massless model with a power-
like pumping (8). The corresponding nonrenormalized and
basic actions have the form

S�F� � 1

2
g0n30j

0k4ÿdÿ2Ej0 � j0�ÿqtj� n0Djÿ �jq�j� ;
�25�

SB�F� � 1

2
gm2En3j0k4ÿdÿ2Ej0 � j0�ÿqtj� nDjÿ �jq�j� ;

�26�

where the nonlocal contribution is written symbolically,
summations over indices of the transverse vector fields
F � j;j0 and integrations over x � t;x are implied, m is the
renormalization mass, e0 � fn0; g0g are bare parameters, and
e � fn; gg are the corresponding renormalized parameters.

Canonical dimensions of fields and parameters of the
model for an arbitrary space dimension d are presented in
Table 1. With these dimensions and Eqn (24) we get d � dG �
d� 2ÿ nj ÿ �dÿ 1�nj 0 , where nj and nj 0 are numbers of the
corresponding fields in G. It is seen from Eqn (18) that each
external line j0 in diagrams for G produces a factor q. Hence,
the number of derivatives in a counterterm is not less than nj 0 ,
and d 0 � dÿ nj 0 � d� 2ÿ nj ÿ dnj 0 according to the rules
of Section 2.4. By the form of d and d 0 we conclude that at
d > 2 superficial divergences are present only in 1-irreducible
functions hj0ji (d � 2, d 0 � 1) and hj0jji (d � 1, d 0 � 0),
and the corresponding counterterms must contain the symbol

Table 1.

Dimen-
sion

F

j�x� j0�x� L;m; m n; n0 W g0 g

d k
F

doF
dF

ÿ1
1
1

d� 1

ÿ1
dÿ 1

1
0
1

ÿ2
1
0

ÿ2
3
4

2E
0
2E

0
0
0
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q. Therefore, the first function generates only the counterterm
j0Dj but not j0 qtj although it has the same dimension. The
second function generates a counterterm with three fields,
j0;j;j, and one symbol q; this term is always reduced to
j0�jq�j owing to the transversality of all the fields. However,
this dimension-allowed counterterm is in fact forbidden by
Galilean invariance [16], which requires that operators qt and
�jq� must enter into counterterms only in the form of a
covariant derivative Ht � qt � �jq�. Therefore, if there is no
countertermj0 qtj, there is noj0�jq�j aswell. In a particular
case d � 2 there appears a new superficial divergence in the
function hj0j0i1-ir (d � 2, d 0 � 0) which generates the coun-
terterm j0Dj0. A two-dimensional problem was examined in
Refs [24, 25] but with mistakes, a correct analysis can be
found in Ref. [26]. For the following we restrict ourselves to
the case d > 2.

In the case of d > 2 only one counterterm j0Dj is
required. Its addition to Eqn (26) results in the renormalized
action

SR�F� � 1

2
gm2En3j0k4ÿdÿ2Ej0 � j0�ÿqtj� ZnnDjÿ �jq�j

�
;

�27�
where Zn is the renormalization constant. It is fully dimen-
sionless and thus can depend on the only dimensionless
renormalized parameter g (dependence on E and d is always
implied).

The explicit form of Zn depends on a choice of a
subtraction scheme. The purpose of a counterterm is to cancel
out poles in E in diagrams, therefore the contribution of a
counterterm should contain such poles. However, its finite
part can be chosen arbitrarily, and its fixation is just the
choice of a subtraction scheme. The most convenient for
practical computations is the minimal subtraction (MS)
scheme [6], in which counterterms contain only poles in E
and no finite contributions. Some studies on turbulence
theory, for instance, performed in Refs [27, 28], make use of
a more traditional scheme in which a freedom of a finite part
of renormalization is fixed by prescribing particular values to
some functions GR

n at an arbitrarily chosen normalization
point k � m, which just introduces the renormalization mass
in the given scheme. Physical results do not depend on the
choice of a particular subtraction scheme, and this choice is
just a question of convenience. We will always utilize the
widely accepted MS scheme.

By this scheme only pure poles in E are subtracted from
diverging expressions, finite contributions are not changed,
and the renormalization constants Z are of the following
form:

Z � 1�
X1
k�1

ak�g�Eÿk � 1�
X1
n�1

gn
Xn
k�1

ankEÿk : �28�

The coefficients ank in model (16) can depend only on the
space dimension d; absence of E in residues ak�g� is a specific
feature of the MS scheme.

The renormalized action (27) is obtained from the
nonrenormalized one (25) by the following renormalization
of parameters:

n0 � nZn ; g0 � gm2EZg ; Zg � Zÿ3n : �29�

Fields are not renormalized, i.e., ZF � 1. The model is
multiplicative-renormalizable and a standard scheme of

derivation of RG equations of type (22) may be used; in this
case also gF � 0 because there is no field renormalization.
Thus, the model (25) contains anomalously small number of
divergences as compared to conventional models of the
theory of critical behavior like j4: there is only one
independent renormalization constant Zn, whereas Zg is
expressed in terms of Zn because there is no renormalization
of the nonlocal contribution of the random force correlator in
equation (27).

All these conclusions remain valid if the power pumping
(8) is replaced by a more realistic one, say (7) or (9). In this
case the bare parameterm0 is not renormalized (m0 � m), and
relationships (29) are supplemented with the trivial equation

m0 � mZm ; Zm � 1 : �30�
The constants Z are calculated directly from diagrams of

the basic theory. In a general case, using the renormalization
constant ZF of any quantity F (field or parameter), we may
determine the corresponding RG-function gF�g�, anomalous
dimension of a given quantity F, and given any charge g (in
general any completely dimensionless parameter, which the
constants Z depend on, may be considered a charge), we
introduce the corresponding b-function b�g�:

b � eDmg ; gF � eDm logZF � b qg logZF : �31�

Here eDm � mqm��e0 (see Section 2.4). From Eqn (29) we have

gg � ÿ3gn ; b � g�ÿ2Eÿ gg� � g�ÿ2E� 3gn� ; �32�

and the operator DRG with e � fg; ng takes the form
DRG � Dm � b�g�qg ÿ gn�g�Dn ; Dx � xqx ; �33�

where we introduced the notation Dx � xqx for an argument
x of any renormalized Green's function.

A one-loop approximation to Zn for the model (27) gives
[19]

Zn � 1ÿ ag

2E
�O�g2� ; a � Cd

4�d� 2� ; �34�

where

Cd � �dÿ 1�Sd
�2p�d ; Sd � 2pd=2

G�d=2� ; �35�

and Sd in Eqn (35) is the area of a unit sphere in a d-
dimensional space, G�x� is the g-function, a � 1=20p2 for
d � 3.

Using formulas (32), we obtain RG functions in the one-
loop approximation:

gn�g� � ag�O�g2� ; bg � ÿ2Eg� 3ag2 �O�g3� : �36�

The coefficient a in Eqn (34) is positive, which ensures that at
small E > 0 in the physical region g > 0 there is an IR-stable
(IR-attracting) fixed point g� � 2E=3a�O�E2� of the RG
equation b�g�� � 0, b 0�g�� > 0. From the condition
b�g�� � 0 and the last of equations (32) the value gn�g�� may
be found exactly without computing diagrams: g�g�� � 2E=3,
and no corrections of order of E2, E3, etc. We explicitly
evaluated the constant (34) from diagrams only to verify that
the coefficient a is positive, i.e., to prove the existence of g� in
the region g > 0.
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From a solution to the RG equation it follows (see Section
2.6) that if there is an IR-stable fixed point, the leading terms
of IR-asymptotic expansion of Green's functionsWR

n in any
one-charge model obey RG equation (22) with g! g�. For
our model in view of Eqn (33) and gF � 0, from Eqn (22) we
obtain

�Dm ÿ g�nDn�WR
n � 0 ; g�n � gn�g�� �

2E
3
: �37�

Canonical scale invariance is expressed by the equations�X
F

d k
FDF ÿ d k

Wn

�
WR

n � 0 ;

�X
F

d oF DF ÿ d oWn

�
WR

n � 0 ; �38�

where F is the set of all arguments of WR
n ; n � fnj; nj 0 g

and d k;o
... are canonical dimensions of F and WR

n . Each of
equations (37), (38) describes scale invariance under
rescaling of those variables, derivatives with respect to
which are involved into the differential operator. If we are
interested in scaling behavior when some of the variables F
are fixed, we should eliminate the corresponding deriva-
tives DF by combining the available equations. For
instance, in a model of type of (16) with D0 � g0n30,
functions WR

n in the coordinate representation correspond
to F � ft;x; m; n; g;mg, where t and x are the sets of all
times and coordinates, respectively; and we are interested
in scaling behavior under rescaling of t, x, m at fixed m, n,
g. Substituting required dimensions from Table 1 into
Eqns (37), (38) and excluding Dm and Dn, we arrive at
the searched equation of the critical IR-scaling:

�ÿDx � DtDt � DmDm ÿ Dn�WR
n � 0 : �39�

Here the coefficients

Dt � ÿDo � ÿ2� g�n ; Dn � d k
Wn
� Dod oWn

; Dm � d k
m

�40�

have the meaning of the corresponding critical dimensions.
Substitution of the known [see Eqn (37) and Table 1] values
g�n � 2E=3, d k

Wn
� ÿnj � �d� 1�nj 0 , doWn

� nj ÿ nj 0 (dimen-
sion of a connected function WR

n is equal to the sum of
dimensions of the involved fields) into Eqn (40) results in the
following expressions for the critical dimensions:

Dj � 1ÿ 2E
3
; Dj 0 � dÿ Dj ;

Dt � ÿDo � ÿ2� 2E
3
; Dm � 1 : �41�

There are no corrections of order of E2, E3 or higher, and at the
physical value E � 2 these dimensions coincide with the
Kolmogorov dimensions (6).

This is just the main result of paper [16] reproduced later
by many authors. Recall that the exact RG equation (22)
takes the form (37) only for IR-asymptotics of Green's
functions. Analysis of the exact equation, conditions for
entering in the critical regime, and computation of amplitude
factors for scaling laws are presented in Section 2.6.

2.6 Solution of RG equations. Invariant variables.
RG-representations of correlation functions
Consider RG equations for a pair correlatorD � hjji of the
velocity for the model (16) with pumping (9) at d > 2 [15].
Since there is no renormalization of fields (Section 2.5), their
renormalized Green's functionsWR

n coincide with nonrenor-
malized ones Wn, the only difference is in the choice of
variables and in the form of perturbation theory (expansion
in g or in g0). From dimensional considerations we have (the
transverse projector is everywhere omitted)

D � nkÿdR�s; g; z; u� ; s � k

m
; z � o

nk2
; u � m

k
;

�42�

whereR is a function of completely dimensionless arguments.
The correlator D �WR

2 obeys the RG equation (22) with
gF � 0 and DRG defined by Eqn (33):

DRGD � 0 ; DRG � Dm � b�g�qg ÿ gn�g�Dn : �43�

From Eqns (42) and (43) it follows that

D � �nkÿdR �1; �g; �z; �u� ; �z � o
�nk2

; �u � u � m

k
: �44�

Invariant variables �g, �n, �u are first integrals of equation (43)
depending on the scale parameter s � k=m and normalized to
g; n, u at s � 1, respectively. Equation �u � u � m=k holds
because Dm is absent in operator (43), for there is no
renormalization of parameter m, see Eqn (30). Equation (44)
is valid since both sides of it satisfy RG equations and
coincide at s � 1 in view of the normalization conditions for
invariant variables.

For static (simultaneous) correlator

Dst � 1

2p

�
doD � n2k2ÿdR�s; g; u� �45�

an analog of Eqn (44) is the representation (provided �u � u)

Dst � �n2k2ÿdR�1; �g; u� : �46�

For operator (43) the invariant charge �g � �g�s; g� is
implicitly determined by relations

log s �
��g

g

dx

b�x� ; �g�1; g� � g ; �47�

and for the invariant viscosity �n � �n�s; n; g� we have

�n � n exp
��g

�g

gn�x�
dx

b�x�
�
�
�
gn3

�gs2E

�1=3

�
�
g0n30
�gk2E

�1=3

: �48�

The second equation in (48) follows from the first one and
relations (32) between RG-functions; whereas the third
follows from the second and renormalization formulae for
parameters (29). In the one-loop approximation (36) relations
(47) result in the following expression for �g:

�g�s; g� � gg�
g�s2E � g�1ÿ s2E� : �49�

Here g� � 2E=3a with the constant a given by Eqn (34) is the
coordinate of a fixed point in this approximation.
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Expressions of type of (44) and (46) with explicit form of
the invariant variables of type of (47) and (48) will be called
RG-representations of the corresponding Green's functions.
Evaluating RG-functions (31) and functions R in Eqns (42),
(45) to a finite order of the renormalized perturbation theory
in g and substituting them into the RG-representation, we
obtain the corresponding approximation of improved pertur-
bation theory with contributions of higher order partially
summed up.

Formulae (47) and (48) represent the invariant variables
�e � f�g;�ng in terms of renormalized parameters e � fg; ng and
the scale variable s � k=m: �e � �e�e; s�, or vice versa,
e � e��e; s�. Further it will be convenient to express �e in terms
of momentum k and bare parameters e0 � fg0; n0g, which
have a direct physical meaning in ourmodel. This can be done
since parameters e0 are renormalization-invariant
(DRGe0 � 0 by definition of operator DRG, see Section 2.4),
i.e., they are first integrals of the RG equation and, conse-
quently, are some functions of another complete set of first
integrals, in this case of variables �e. By dimensional con-
siderations (completely dimensionless parameters are only g
and �g) and in view of Eqns (29), (47), (48) and normalization
conditions, we obtain

g0k
ÿ2E � �gZg��g� ; n0 � �nZn��g� : �50�

Here the renormalization constants Z can in turn be
expressed via simpler objects, RG-functions (32). Formulae
for the charge renormalization (29) and definition of the b-
function (31) result in the relation qg logZg �
ÿ1=gÿ 2E=b�g�. Integrating it under the normalization con-
dition Zg�0� � 1 we obtain

Zg�g� � exp

(
ÿ
�g
0

dx

�
2E
b�x� �

1

x

�)
: �51�

Note that for the b-function (32) the term 1=x in Eqn (51)
provides convergence at x � 0. Furthermore, from the above
expression for qg logZg it follows that qg log�gZg� �
ÿ2E=b�g�5 0, which indicates that the function gZg�g�
monotonously increases in the interval 0 < g < g�, where
the b-function is negative. When g! g�, the function
gZg�g� diverges.

The behavior (ensured at small E and supposed at large E)
of functions b�g� and gZg�g� are shown in Fig. 2 by solid and
dashed lines, respectively, also there is a graphic solution to

the renormalization equation g0mÿ2E � gZg�g� in g [see
Eqn (29), an analogous relation between the quantities
g0k

ÿ2E and �g is the first equation in (50)]. From the figure it
is clear that:

(1) Values of g and �g always lie in the interval �0; g��
irrespective of the magnitude of the bare charge, i.e., g and �g
are small at small g� � E.

(2) �g�s; g� ! g� � E when s � k=m! 0 and �g�s; g� ! 0
when s!1, i.e., a fixed point g� � E is IR-attracting (a
synonym is IR-stable), whereas the trivial fixed point g� � 0 is
UV-attracting. Each of these fixed points determines the
corresponding asymptotics of Green's functions.

Let us write out general formulae (50) in the one-loop
approximation (36). From Eqn (51) we obtain Zg�g� �
g�=�g� ÿ g�, and hence, g0mÿ2E � gg�=�g� ÿ g�, in accordance
with Eqn (29). Now we may express the invariant variables
(47) and (48) in the form

�g � g�

�
1� g�

g0kÿ2E

�ÿ1
; �n � n0

�
1� g0k

ÿ2E

g�

�1=3

; �52�

which does not contain the renormalization mass m.

2.7 IR-scaling at fixed g0 and m0
Consider the IR asymptotic behavior of correlators (42) and
(45). It follows from the general RG-representations (44) and
(46) if we replace all invariant variables �e by their asymptotic
expansions, which further shall be denoted by �e�. A key point
is that in the given approximation �g� � g� � const is the
coordinate of an IR-attracting fixed point, whereas other
quantities of the type of�n� remain nontrivial functions of their
arguments. Thus, for the leading term of IR-asymptotics of
the dynamic correlator (44) we get

D � �n�kÿdf��z�; u� ; �z� � o
�n�k2

; f�z; u� � R�1; g�; z; u� ;
�53�

and analogously for the static correlator (46) we get

Dst � �n2�k
2ÿdf�u� ; f�u� � R�1; g�; u� ; �54�

where �n� is the IR asymptotic form of the invariant variable
(48):

�n� �
�
g0n30
g�k2E

�1=3

�
�
D0

g�

�1=3

kÿ2E=3 : �55�

Parameters g0 and n0 in �n� are grouped into the combination
D0 � g0n30 which enters into the random force correlator (9).

Asymptotic representations similar to Eqns (53) and (54)
can be derived for any Green's function; they always obey the
simplified RG-equation (43) with the change g! g�.

For fixed g0 and n0 formulae (53) ± (55) correspond to the
IR-scaling with critical dimensions (41) regardless of the
explicit form of scaling functions f in Eqns (53) and (54).
When dealing with Eqn (41), one should take into account
that in the coordinate representation the critical dimension of
any connected Green's function is equal to the sum of
dimensions of all the involved fields, whereas in the momen-
tum representation we have

D
�
D�k;o�� � 2Dj ÿ Do ÿ d ; D

�
Dst�k�

� � 2Dj ÿ d : �56�
The scaling functions f are expressed by formulae (53) and

(54) through the corresponding functionsR in correlators (42)

g0mÿ2e

gZg

g� g

b�g�

Figure 2.

December, 1996 Quantum éeld renormalization group in the theory of fully developed turbulence 1201



and (45). The functions R can be computed directly from
diagrams in the form of a series

R�g; . . .� �
X1
n�1

gnRn�. . .� �57�

of the renormalized perturbation theory; dots denote all
arguments of R different from g. Making the change g! g�,
expanding then g� and Rn in E, and grouping contributions of
the same order, we obtain from Eqn (57) the E-expansions of
the corresponding scaling functions:

f�z; u� �
X1
n�1

Enfn�z; u� ; f�u� �
X1
n�1

Enfn�u� : �58�

It is important that evaluation of Eqn (58) to any finite
order in E requires only a finite number of diagrams since
g� � E and the coefficients Rn in Eqn (57) for renormalized
correlators do not contain poles in E which could compensate
the smallness of g� � E. Note also that all the coefficients fn in
Eqn (58) in the model under consideration are finite in the
limit u � m=k! 0, in accordance with the Kolmogorov
hypothesis 10 (though this does not prove it at finite E, see
Section 2.1).

In the lowest (first) order of renormalized perturbation
theory for model (9) we have

D � gn3m2Ek4ÿdÿ2Eh�u�
jio� nk2j2 ; Dst � gn2m2Ek2ÿdÿ2Eh�u�

2
: �59�

The first expression was derived by substitution of the
function (9) with D0 � g0n30 into the corresponding bare
correlator (17) and subsequent change n0 ! n, g0 ! gm2E;
whereas the second expression was obtained by integration of
the first one over o according to Eqn (45). From formulae
(59) it is easy to determine the first terms of the corresponding
series (57) and (58).

In turbulence theory instead of the static correlator (45) a
(one-dimensional) spectrum E1�k� of pulsation energy is
often considered. It is connected with Eqn (45) by the formula

E1�k� � Cd

2
kdÿ1Dst�k� �60�

with Cd given by Eqn (35). Its RG-representation automati-
cally follows from Eqn (54). In the lowest order we get from
Eqn (59)

E1�k� � 1

4
Cd �g�n2kh�u� �61�

with �g and �n given by (52). In the IR-range k2E=g0 ! 0 we
obtain

E1�k� � �CdD0�2=3
�
E�d� 2�

24

�1=3
k1ÿ4E=3h�u� : �62�

When restricted to the inertial range u � m=k5 1, the
function h�u� in these formulae turns into h�0� � 1 in
accordance with Eqn (9).

We will complete this section with a historical reference.
As we have already said, the existence of scaling with
dimensions (41) was established in Ref. [16]. Explicit one-
loop expressions for the spectrum (62) and the invariant
viscosity (52) in the framework of model (8), i.e., with h � 1
in Eqn (62), were first obtained in Ref. [29] for d � 3 with the

help of a special procedure similar to the RG technique in the
form of the Wilson recursion relations [30] but without
conventional scale transformations of parameters. It was
important that the quantity �n was identified with an effective
turbulent viscosity which phenomenologically describes the
influence of small-scale components of the velocity field on
the large-scale ones [1]. The result of Ref. [29] was then
reproduced (for arbitrary d > 2) and employed in many
studies, for instance, in papers [31 ± 33, 27]. In Ref. [27] this
was obtained in a more self-consistent way with the use of the
standard field-theoretical RG technique.

Attempts to go beyond the scope of the simplest approx-
imations (52) and (62) were made in Refs [28, 34]. In
particular, in Ref. [34] the coefficient R2 in the representation
(57) for the function (42) was computed for u � 0 and s � 1.

However, this is not enough for evaluation of the
corresponding coefficient in Eqn (58), since in computation
of coordinate of a fixed point g� the contribution of terms of
order E2 must be taken into account, and this has not been
carried out yet (it requires evaluation of two-loop diagrams,
whereas for evaluation ofR2 it is enough to consider one-loop
diagrams). In Ref. [28] a correction to the expression (62)
connected with finite (without poles in E) renormalization of
fields was calculated in the one-loop approximation. This is
needed for the renormalization scheme used in Refs [27, 28],
and corresponds in the MS scheme (where the field renorma-
lization is absent) to the one-loop correctionR2 in representa-
tion (57) for the function (45). However, in this paper two-
loop corrections to RG-functions also were not computed,
and since they give contributions of the same order to RG-
representations, the calculation of Ref. [28] also is not
complete.

Thus, at present, particular formulae of the type of (62)
are known only with one-loop accuracy, which corresponds
to the lowest order in E on representation (58) of scaling
functions. Calculation of subsequent terms in expansions (58)
is a complicated but exclusively technical problem.Moreover,
there is no much sense in this work since the problems
connected with the Kolmogorov hypothesis 1 cannot be
solved within the framework of E-expansion (see Section
2.1), and qualitatively, it is unlikely that inclusion of E-
corrections at a large real value Ep5 2 may give practically
more accurate results. In fact, it is only important that RG-
representations of the type of (44) and (46) are exact formulae
which guarantee the IR-scaling with exact dimensions (41).

2.8 IR-scaling at fixed W and m0: independence of m0

and `freezing' of critical exponents at EE > 2
In this section we present the proof (Ref. [15]) that Green's
functions for the models (16) and (9) do not depend on the
viscosity coefficient n0 in the whole range E > 2 of IR-
pumping and that in this region critical dimensions (41) are
frozen at Kolmogorov's values (6).

Expressions (41) obtained in Section 2.5 for critical
dimensions correspond to IR-scaling at fixed g0 and n0, or g,
n, and m in renormalized terms. For models considered in the
theory of critical behavior, the problem is always formulated
in this way, and formulae of the type of (41) are final answers
(although usually series in E are not truncated). In the given
case it is not so because the Kolmogorov ±Obukhov theory
[1] deals with scaling at fixed n0 andW. The pumping power
W is related to the parameter D0 � g0n30 � gn3m2E in Eqn (9)
by formula (3), and in order to get final answers it is necessary
to express g0 viaW.
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Taking for definiteness the model (7) and evaluating
integral (3) with the UV-cut-off L � �W=n3�1=4, we obtain

W � D0Cd

4�2ÿ E�
�
�L2 �m2�2ÿE �m4ÿ2E

1ÿ E

ÿ �2ÿ E�m
2�L2 �m2�1ÿE
1ÿ E

�
�63�

withCd fromEqn (35). The Reynolds number Re ' �L=m�4=3
for a developed turbulence is very large, therefore from
Eqn (63) it follows

D0 � g0n30 �WB�L;m; E� ' c1WL2Eÿ4 when 2 > E > 0 ;

c2Wm2Eÿ4 when E > 2 ;

�
�64�

where c1 � 4�2ÿ E�=Cd, c2 � c1�1ÿ E�. Definition of the
function B�L;m; E� in Eqn (64) is clear from comparison
with Eqn (63), specifically, B�L;m; 2� � 2=

�
Cd log�L=m�

�
at

E � 2. Simple approximations (64) are valid outside of the
transitional region around E � 2, its width is not large (of
order of 1= logRe), therefore in what follows we shall
consider approximations (64) to be valid everywhere up to
E � 2. Note that representation of the type of (64) holds for
any model of the type of (9). The choice of a particular model
affects only nonessential, in what follows, coefficients c1, c2
and the shape of functions B�L;m; E� in a narrow transitional
region near E � 2.

Independence of the IR asymptotic behavior of Green's
functions from the viscosity coefficient n0 in the region E > 2 is
obvious from Eqn (64) and the observation (first mentioned
in Ref. [29]) that the parameters g0 and n0 enter into
expressions of the type of (53) only as a combination
g0n30 � D0 in representation (55) for �n�. In the region
0 < E < 2 this will not take place since here remains the
dependence on n0 through L, see Eqn (64).

This statement proves the Kolmogorov hypothesis 2 for
E > 2 (see Section 2.1), which automatically results in the IR-
scaling with Kolmogorov's dimensions (6). We shall explain
the mechanism of `freezing' of exponents (41) at their
Kolmogorov's values for E � 2 throughout the whole range
E > 2.

As said above, in the Kolmogorov ±Obukhov theory
fixed (and in this sense `critically dimensionless') parameters
are n0 andW, and, consequently, the functionL � �W=n30�1=4,
whereas m is a dimensional parameter with Dm � 1. From
Eqn (64) it is seen that when 0 < E < 2, parameters D0 and g0
are critically dimensionless, and for E > 2 they acquire the
critical dimension

D�D0� � D�g0� � 2Eÿ 4 ; E > 2 : �65�

Expressions (41) follow from the formulae (53) and (55) of
critical scaling under the assumption that g0 is dimension-
less, therefore, they are valid only in the range 0 < E < 2.
For E > 2, new values of dimensions D0j � Dj � D�D0�=3,
D0o � Do � D�D0�=3, D0m � Dm � 1 are obtained if one takes
Eqn (65) into account in formulae (53) and (55). These
values do not depend on E and coincide with values (41) at
E � 2, i.e., with the Kolmogorov dimensions (6). This is just
the essence of the statement about freezing of dimensions in
the region E5 2 [15]. It is consistent with the Kolmogorov
hypothesis 1 in the sense that dimensions characterize the

behavior of Green's functions also in the inertial range,
where no dependence should occur on `details of the
pumping mechanism' (Section 2.1); and the choice of a
particular value of E > 2 in the range of IR-pumping is just
one of those `details.'

Thus, the standard RG-analysis of the model (16), (9) in
terms of the variables W, n0, m allows us to prove indepen-
dence of Green's functions from the viscosity throughout the
whole range E > 2 of IR-pumping, which proves the Kolmo-
gorov hypothesis 2 for this region. The main unsolved
problem is the dependence of scaling functions on the
argument m=k. To prove hypothesis 1, it is necessary to
prove that there exists a finite limit, when m! 0, for static
correlators for all E > 2. As already said, these questions go
beyond the scope of the RG method and will be discussed in
the next section.

3. Composite operators, operator product
expansion, the first Kolmogorov hypothesis

3.1 Renormalization of composite operators.
Use of the Schwinger equations and Galilean invariance
By composite operators Fwe call any local (unless opposite is
specified) monomials or polynomials constructed of fields
and their derivatives at one point, for instance, j2�x�,
j0�x�Dj�x�, ji�x�qkjl�x�. For our model these operators in
detail are written as F � F�x;F�, x � t;x, and the functional
argument F will usually be omitted. Since field arguments in
Green's functions containing a composite operator F�x� do
coincide, there arise extra UV-divergences. They are removed
by a specific procedure of renormalization of composite
operators (details will be given below); for renormalized
Green's functions we can write conventional RG equations
which predict IR-scaling with definite critical dimensions
D�F � of some `basic' operators F. Due to renormalization
the value of D�F � in a general case does not coincide with a
simple sum of critical dimensions of fields and derivatives
entering into a given operator.

Study of renormalization of composite operators is
important both in itself, since their dimensions and correla-
tion functions can be measured experimentally and for some
operators such data are available [35 ± 38], and in view of the
problem of proving the Kolmogorov hypothesis 1 (see
Section 3.5). The general theory of renormalization of
composite operators can be found, for instance, in mono-
graphs [6, 9, 10]; below we present only the most necessary
information.

A composite operator F is called UV-finite if all Green's
functions of the type of



F�x�F�y1� . . .F�yn�

�
with one

operator F and any number n5 0 of simple fields F are finite
(no poles in E). Here h. . .i is understood as averaging with the
weight expSR�F�. The generating functional of connected
functions of this type is the following:

hFiA �
� DFF exp�SR�F� � AF

�� DF exp�SR�F� � AF
� : �66�

Therefore, the operator F is UV-finite if and only if the
functional hF iA defined by Eqn (66) is UV-finite. Note that
the simplest operators F � 1 and F � F�x� are UV-finite and
that the UV-finiteness of F leads to the UV-finiteness of all
operators qF , qqF with any number of external derivatives
with respect to x � t;x.
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In a general case, composite operators are renormalized
with mixing, i.e., an UV-finite renormalized operator is a
linear combination of nonrenormalized ones, and vice versa.
A complete basis for composite operators is composed of all
kinds of local monomials Fa�x� (a is an enumerating index),
including the simplest ones F � 1;j;j0. Monomials are
classified according to the magnitude of dimension
d�F � � dF (`dimension,' if not defined precisely, is always
understood as a `net canonical dimension') which is equal to
the sum of dimensions of all fields and derivatives involved in
F (see Table 1 in Section 2.5). For a given monomial Fa, an
UV-finite renormalized operator F R

a � Fa � counterterms is
constructed uniquely (for a given subtraction scheme). The
counterterms are linear combinations of the Fa itself and
(possibly) of other nonrenormalized monomials Fb mixed in
Fa and meeting the obligatory condition d�Fb�4 d�Fa�.
Coefficients for all operator counterterms in the MS scheme
contain only poles in E.

According to the magnitude of dF monomials are grouped
into finite families. If we add to a given family with a given dF
all `junior' families of lower dimension dF ÿ 2; dF ÿ 4; . . . ; we
obtain a closed system, all monomials of which can mix in
renormalization only between themselves.

The renormalization matrix ZF and the corresponding
matrix gF of anomalous dimensions (RG-functions) for a
given closed system F � fFag are defined by the relations

Fa �
X
b

�ZF�ab F R
b ; gF � Zÿ1F

eDmZF : �67�

The matrix ZF in Eqn (67) is an analog of renormaliza-
tion constants of fields ZF (see Section 2.4), and can be
calculated directly from diagrams for composite operators as
a series in g, and with ZF at hand we may determine the
matrix of anomalous dimensions gF�g� from Eqn (67) in the
same from. Its value g�F � gF�g�� at a fixed point of the b-
function (32) determines the contribution generated by
renormalization of operators (67) to the total matrix of
critical dimensions

DF � d k
F � DodoF � g�F � dF ÿ g�ndoF � g�F ; �68�

which enters into the equation of critical scaling for compo-
site operators:

�ÿDx � DtDt �Dm�F R
a �x� �

X
b

�DF�abF R
b �x� : �69�

This equation is written in the notation (39), d k
F , d

o
F , dF in

Eqn (68) are diagonal matrices of the corresponding dimen-
sions (Section 2.4) of the system of operators under con-
sideration. Note that diagonal elements ofDF without g�F have
the meaning of the sum of critical dimensions of the fields and
derivatives involved into a given operator; g�F is an additional
term coming from renormalization of operators. If a given F
is not renormalized [i.e., F R�x� � F�x�], then its critical
dimension is a simple sum of dimensions (41) of all fields
and derivatives.

Definite critical dimensions are inherent not in the F R
a

themselves, but in those linear combinations of basic opera-
tors

�F
R
a �

X
b

�UF�abF R
b ; �70�

which diagonalize the matrix DF in Eqn (69) under the
change F R! �F

R
: DF ! �DF � UFDFU

ÿ1
F � diag. This

requirement determines the matrix UF in Eqn (70); diagonal
elements �DF are critical dimensions of basic operators (70)
searched for. In a massless model, when there are no
admixtures of junior (with smaller dF) operators, the matrix
UF is determined from the condition UFDFU

ÿ1
F � diag, and

critical dimensions are eigenvalues of DF. However, in a
mass-dependent model of type of (9), since all matrices are
block-triangular (see above), the critical dimensions of
senior (with maximal dF) operators can also be determined
from eigenvalues of the senior ± senior block of operators
entering in DF. Complete evaluation of the matrix DF is
required only for determining admixtures of junior opera-
tors in Eqn (70).

In what follows we will always assume that diagonal
elements of UF equal unity. Under such an auxiliary
condition the matrix UF in Eqn (70) is determined from DF

uniquely (if there is no accidental degeneration), therefore
there is a definite correspondence between Fa and �F R

a , and a
definite meaning of a critical dimension associated with a
given Fa:

Das�Fa� � D� �F R
a � : �71�

If a certain set of composite operators fFag closed with
respect to renormalization is splitted into two subsets fFbg
and fFgg so, that any operator Fg is not admixed to any Fb
under renormalization, then the matrix ZF in Eqn (67) is
block-triangular, i.e., �ZF�bg � 0, and such are matrices DF in
Eqn (68), and UF in Eqn (70). In this case dimensions Das�Fb�
associated with the set Fb and the corresponding basic
operators �F R

b are entirely defined by the block �ZF�bb 0 ,
whereas the block �ZF�gg 0 determines the dimensions Das�Fg�,
but not the basic elements �F R

g [they contain an admixture of
operators F R

b determined by nonzero matrix elements
�UF�gb].

So, the set fFbg turns out to be closed also with respect to
renormalization. Possible examples are all junior operators of
any closed set, all Galilean-invariant operators (see below), all
operators of the form qF, etc.

At the same time, in the expansion of complete sets fFag
or fF R

a g over basis �F
R
a , operators of the form

�F
R
b contribute

generally to all Fa, whereas operators �F
R
g enter only into

expansions of operators Fg. In particular, if an operator Fg is
unique, contribution of the dimension Das�Fg� associated with
it only appears in the expansion of Fg itself and is absent in all
other Fb. Examples are an operator of the form ofjn in the set
of all operators with dF4 n (see below), and, in a more
general formulation, all exceptional operators discussed in
Section 3.3.

Information on renormalization of composite operators
can sometimes be obtained with the help of various Schwin-
ger's equations and Ward's identities for Galilean transfor-
mations without evaluation of diagrams.

In a broad sense of the word, any relations of the type of�
DF dX�F�

dF�x� � 0

which state that any (functional) integral of the total
(variational) derivative is equal to zero, are called the
Schwinger equations, see Ref. [12]. Specifically, for the
model (16) the following relations are valid:
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�
DF d

�
exp�SR�F� � AF�	

dj0i�x�
� 0 ;

�
DF d

�
ji�x� exp�SR�F� � AF�	

dj0i�x�
� 0 :

Using notation (12) and (66), we can rewrite them in the form�
dSR�F�
dj0i�x�

�
A

� ÿAj 0i �x� ; �72��
ji�x�dSR�F�
dj0i�x�

�
A

� ÿ
ji�x�Aj
0

i �x�
�
A
� ÿAj 0i �x�

dWR�A�
dAi�x� :

�73�

The right-hand sides of these equations are UV-finite and
have definite critical dimensions [the functional WR�A� is
dimensionless, and critical dimensions of sources A are
expressed through the known dimensions of fields by the
requirement that constituents of the linear form (13) are
dimensionless]. Therefore, operators in h. . .i on the left-hand
sides also exhibit the same properties: these are UV-finite
operators of the type of (70) with the known (from the form of
right-hand sides) critical dimensions. This also allows us to
obtain information on the renormalization matrices ZF

entering into given operators of local monomials (see an
example in Section 3.2).

Another method is to use the Ward identities for Galilean
transformations F�x� ! Fv�x� with an arbitrary varying
velocity v � fvi�t�g sufficiently rapidly decreasing at jtj ! 1:

jv�x� � j�xv� ÿ v�t� ; j0v�x� � j0�xv� ; x � �t;x� ;

xv �
ÿ
t;x� u�t�� ; u�t� �

�t
ÿ1

dt 0 v�t 0� : �74�

By a strict Galilean invariance we call equations of the
type of H�F� � H�Fv� for a functional and F�x;Fv� �
F�xv;F� for a composite operator if they are valid for an
arbitrary transformation (74); and by a simple Galilean
invariance we mean the same properties but fulfilled only
for usual transformations with v � const and u � vt. For
instance, the functional (27) is invariant but not strictly
invariant since SR�Fv� � S�F� � j0qtv for it. Strictly invar-
iant are only operators constructed of invariant cofactors j0,
qj and their covariant derivatives (q and Ht), for instance,
qjqj, j0Htqj. The cofactor Htj is invariant but not strictly,
whereas the factors j and qt are not invariant.

All exact relationships derived by a group change of
variables [in our case (74)] in a functional integral may be
considered to be the Ward identities in a broad sense of the
word. For the first time the Ward identities for transforma-
tions (74) were employed in Ref. [16] to prove the absence of
renormalization of the vertex in the model (16). Similar
identities for time-dependent gauge transformations in criti-
cal dynamics were derived earlier in Ref. [39]. The Ward
identities including composite operators were examined in
Ref. [40]. Below we give the most general and clear formula-
tion of consequences of the Galilean invariance obtained in
Ref. [41].

In a general case, in the compact notation F�x;F� � F�x�,
F�x;Fv� � Fv�x�, we have:

Fv�x� � F�xv� �
X
k5 1

v kFk�xv� � . . . �75�

Here dots denote all kinds of contributions with derivatives of
v with respect to t. The additional term breaking the Galilean
invariance is a polynomial in the velocity and its derivatives;
coefficients of the type Fk are local operators of junior
dimension; it is implied that they have vector indices con-
tracted with indices of v. For any particular operator F it is
not difficult to write the complete expression (75), and it
always contains a finite number of contributions.

In Ref. [41] it is shown with the help of theWard identities
that renormalization F�x� ! F R�x� in the framework of the
standard MS scheme commutes with transformation (75):

�F R�v�x� � �Fv�R�x� � F R�xv� �
X
k5 1

v kF R
k �xv� � . . . ; �76�

�counterterms F�x��v � counterterms Fv�x� : �77�

From relations (76) and (77) a number of useful con-
sequences follows:

(1) For any (strictly) Galilean-invariant operator F the
corresponding operator F R and the sum of counterterms are
also (strictly) invariant. Thus, critical dimensions associated
with Galilean-invariant operators and basis elements are
entirely determined by mixing of invariant operators between
themselves only.

(2) An operator of the type of jn (indices are either free or
with any contractions) can be admixed in renormalization
neither to itself nor to another operator of the same
dimension dF � n. Indeed, if counterterms for F contain jn,
the left-hand side of equation (77) contains a contribution v n.
However, it cannot be on the r.h.s.: at dF � n the operator F
contains at most n fieldsj, and if their number is smaller than
n, there is no v n inFv; whereas ifF � jn, then the contribution
to Fv is v

n, but it disappears from the counterterms because it
has no UV-divergences. The contradiction obtained proves
the statement. It then follows that the critical dimension (71)
associated with an operator of the type of jn has no
corrections coming from g�F, i.e., it is reduced to the sum of
critical dimensions of the cofactors:

Das�jn� � nDj � n

�
1ÿ 2E

3

�
: �78�

Some generalizations of this equation will be discussed in
Section 3.3.

In a general case, by substituting Eqn (67) into Eqn (76),
one can obtain relations between matrices ZF of the initial
system F and analogous matrices for operators Fk in Eqns
(75) ± (77) with lower dimensions dF.

3.2 Composite operators in energy-momentum
conservation laws
The equation hF1iA � hF2iA for functionals of type of (66) is
equivalent to the equation F1 � F2 for the corresponding
operators (random quantities). Therefore, relations (72) and
(73) for a model like (16) can be rewritten as equations for
composite operators [40]:

qtji � qsPis � DF
isj
0
s � A

j 0
i ; �79�

qtE� qiSi � _Edis � jiD
F
isj
0
s � jiA

j 0
i : �80�

They express the conservation laws of momentum and energy
(all quantities per unit mass): ji is the momentum density,
E � j2=2 is the energy density,Pis is the stress tensor, Si is the
density vector of the energy flux, _Edis is the rate of energy
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dissipation; the right-hand sides contain the contribution of
nonstochastic external force A

j 0
i (see Section 2.2) and the

contribution of the random force with its correlator (2). The
explicit expressions are as follows:

Pis � pdis � jijs ÿ n0�qijs � qsji� ; �81�
Si � pji ÿ n0js�qijs � qsji� �

j2ji

2
; �82�

_Edis � ÿ n0�qijs � qsji�2
2

: �83�

Here n0 � nZn, and p is a nonlocal composite operator

p � ÿ qi qs
D
�jijs� ; �84�

having the meaning of pressure. The contributions with p to
Eqns (79) and (80) arise because the result of formal
differentiation of SR�F� with respect to j0�x� in Eqns (72)
and (73) should be contracted with the transverse projector
P?ij � dij ÿ qi qj=D, since the field j0 is transverse.

We stress that equations (79) and (80) do not contain the
symbol of averaging h. . .i, and hold for operators (random
quantities) themselves, not only for their mean values.
Formula (3) for the pumping powerW is a result of averaging
of the corresponding contribution to Eqn (80):

W � hjDFj0i �
�
dx0DF

is �x; x0�


ji�x�j0s�x�

�
: �85�

Since the correlator (2) is of d-shape in time and symmetric in
t; t 0, we should put the response function hjj0i in Eqn (85) at
t � t 0 to be the half-sum of limits from above and below:


ji�x�j0s�x 0�
� � P?is d�xÿ x0� at t � t 0 � 0 ;

0 at t � t 0 ÿ 0 :

�
�86�

If substituted into Eqn (85), this equation leads to expression
(3).

Correlation functions of composite operators can, in
principle, be measured experimentally. Real observables are
quantities of the type of (81) ± (83) constructed from non-
renormalized monomials and bare parameters. In particular,
there are data on the static pair correlator of the dissipation
operator (83) in the inertial range that testify to the presence
of scaling with the critical dimension D� _Edis� � 0:2, Refs [35 ±
38]. It rather strongly differs from its canonical dimension
d� _Edis� � 4, which should be a result of the renormalization-
generated `anomaly' of the type of contributions of order E to
Eqn (41) from the anomalous dimension g�n .

The first question that arises in a theoretical study of an
operator of the type of (81) ± (83) is whether a given operator
F has a definite critical dimension D�F � at all. The problem is
nontrivial since it is just basic operators (70) that possess
definite dimensions, and F in a general case is a linear
combination of those operators with different critical dimen-
sions, and (if so) this should be taken into account for
analyzing experimental data. Therefore the operator F, with
an exception for some rare cases, cannot be considered
separately: to expand it over the basis (70) we first have to
construct it, and this requires to analyse renormalization of
the whole closed system of operators which the operator F
belongs to.

This analysis for all operators contained in Eqns (79) and
(80) was carried out in Ref. [40] within the framework of the
MS scheme for themassless model (25). Note that the absence
of a mass m removes admixtures of junior operators to the
senior ones and does not distort critical dimensions of the
latter, since they are uniquely determined by the senior ±
senior block because the matrix (68) is block-triangular (see
Section 3.1).

The central result of paper [40] is that all operators in
Eqns (79) and (80) are UV-finite and possess definite critical
dimensions equal to

3ÿ 4E
3
� Dj � Do � D�qtji� � D�qsPis� � D�Aj

0
i � �87�

for all terms in Eqn (79), and

4ÿ 2E � 2Dj � Do � D�qtE� � D�qiSi� � D� _Edis� �88�

for all terms in (80). The operators E � j2=2 andPis are UV-
finite and have dimensions

2ÿ 4E
3
� 2Dj � D�E� � D�Pis� ; �89�

and the vector of energy-flux density Si defined by Eqn (82) is
a sum of theUV-finite contributionwith dimension 3ÿ 2E, an
additional term cDji with a different dimension 2� Dj �
3ÿ 2E=3, and an UV-divergent coefficient c. As this addi-
tional term is transverse, it does not contribute to equation
(80) and can be neglected, which is reduced to a physically
admissible redefinition of the vector Si.

We shall explain the technique of treating composite
operators by this example. We start with the scalar
F�x� � j2�x� � 2E�x� with dF � 2. The massless model does
not contain other scalars with dF � 2, and the scalar cannot
be admixed to itself [consequence 2 of relations (76) and (77)],
therefore the operator is not renormalized, F R � F, and has a
definite dimension D�F � � 2Dj in accordance with Eqn (78).

Consider equation (79). All contributions to it, except
qsPis, are obviously UV-finite and thus are not renorma-
lized, therefore it is also UV-finite owing to equation (79)
[recall that it is equivalent to the Schwinger equation (72)].
Renormalization of any operator of the type of qF is
performed by renormalization of the operator F itself [i.e.,
�qF�R � q�F R�], therefore it is sufficient to consider the
renormalization 3� 3 matrix (67) for three symmetric
tensor operators with dF � 2 entering into Eqn (79):

F1 � qijk � qkji ; F2 � jijk ; F3 � dik p : �90�
The last operator is nonlocal but is needed since it enters into
Eqn (79). The general rule that counterterms must be local
(Section 2.4) is also valid for composite operators: nonlocal
operators cannot be counterterms, and thus, during renor-
malization, cannot be admixed to other operators, in parti-
cular to themselves. (However, in renormalization local
operators can be admixed to the nonlocal ones.) In view of
its dimension and structure, the operator j2dik is permissible
in Eqn (90); but it is not renormalized (see above) and is not
admixed to other operators [corollary 2 of relations (76) and
(77)], thus, it is completely split off.

The operator F1 in Eqn (90) is amultiple of a simple fieldj
and is not renormalized (i.e., F1 � F R

1 or Z11 � 1,
Z12 � Z13 � 0); for the second and third operators we have
F2 �Z21F

R
1 � Z22F

R
2 ,F3 � Z31F

R
1 � Z32F

R
2 � F R

3 (nonlocal
F3 is not admixed). The constants Z are connected with each
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other, since from Eqns (84) and (90) we get F3 � ÿP kF2 up to
the factor dik, which entails F R

3 � ÿP kF R
2 because external

factors like the projector P
k
ij � qiqj=D do not affect renorma-

lization. From this result and taking into account that j is
transverse, we obtain

F3 � Z31F
R
1 � Z32F

R
2 � F R

3 � ÿP kF2
� ÿP k�Z21F

R
1 � Z22F

R
2 � � ÿZ22P

kF R
2 � Z22F

R
3 :

Comparing the coefficients of F R
i , we find Z31 � Z32 � 0,

Z22 � 1. The remaining unknown element Z21 can be found
by requiring that the divergence

qP � q�F3 � F2 ÿ nZnF1� � q�F R
3 � Z21F

R
1 � F R

2 ÿ nZnF R
1 �

be UV-finite (see above). Three operators qF R are indepen-
dent, therefore the coefficient for each of them should be UV-
finite, and consequently, it should coincide with its UV-finite
part. For the coefficient for qF R

1 we obtain Z21 ÿ nZn � ÿn,
and thus, Z21 � n�Zn ÿ 1�. We used the fact that in the MS
scheme constants of the type of Zn and diagonal elements of
any matrix ZF are of the form of Eqn (28), so that their UV-
finite part is unity, and all nondiagonal elements ofZF consist
only of poles in E and thus have no finite part.

Therefore, for the system (90) the matrices ZF and gF in
Eqn (67) can be found without computing diagrams:

ZF �
1 0 0

n�Zn ÿ 1� 1 0

0 0 1

0BB@
1CCA; gF �

0 0 0

ngn 0 0

0 0 0

0BB@
1CCA : �91�

Here the RG-function gn is defined by Eqn (32). Using the
known (see Table 1 in Section 2.5) canonical dimensions
dF � 2; 2; 2; doF � 1; 2; 2 of the operators (90), we may
construct thematrix of critical dimensions (68) and thematrix
UF from Eqn (70) which diagonalizes Eqn (68):

DF �
2ÿ g�n 0 0

ng�n 2ÿ 2g�n 0

0 0 2ÿ 2g�n

0BB@
1CCA; UF �

1 0 0

ÿ n 1 0

0 0 1

0BB@
1CCA:
�92�

Here g�n � 2E=3 according to Eqn (70). Since the matrix DF is
triangular, its diagonal elements D�F � � 2ÿ g�n ; 2ÿ 2g�n ;
2ÿ 2g�n are critical dimensions searched for, and the corre-
sponding basic operators (70) have just these dimensions, i.e.,
�F R
1 � F R

1 ,
�F R
2 � F R

2 ÿ nF R
1 ,

�F R
3 � F R

3 . The tensor (81)
expressed initially through nonrenormalized operators (90)
can be expressed with the help of Eqn (67) in terms of
renormalized operators, and then in terms of the basic
operators (70):

P � F3 � F2 ÿ nZnF1 � F R
3 � n�Zn ÿ 1�F R

1

� F R
2 ÿ nZnF R

1 � �F R
2 � �F R

3 :

This result is expressed in terms of two operators �F R with the
same (see above) dimension D�F � � 2ÿ 2g�n � 2ÿ 4E=3.

We presented a detailed analysis of the renormalization of
a simple system (90) by way of example; more complicated
systems may be considered in a similar way [40].

To analyse the vector (82), one should investigate into the
closed system of six vector operators with dF � 3:

qtji ; Dji ; qij2; qs�jijs�; jij
2; ji p : �93�

An analogous system for scalars in Eqn (80) consists of seven
operators with dF � 4:

qtj2; Dj2; qiqs�jijs�; qi�jij
2�; jDj; j4; qi�ji p� :

�94�

From dimensional considerations it seems that we need to
add the nonlocal operator jDFj0 from Eqn (80), and in a
particular case of d � 3, also the operator �j0�2, which has at
d � 3 the same dimension dF � 4. But these two operators are
not renormalized and are not admixed to operators involved
into the system (94), therefore this system can be considered
independently [19]. In Ref. [40] it was shown that employing
Schwinger's equations and Ward's identities, one can deter-
mine the renormalization 6� 6 matrix for the system (93) up
to two nondiagonal elements remaining unknown; and the
7� 7matrix (94) up to three nondiagonal elements remaining
unknown; all other are expressed in terms of Zn. The
remaining unknown elements do not influence critical dimen-
sions and are unimportant for the analysis of contributions to
equation (80). The searched critical dimensions DF for system
(93) turn out to be equal to 3ÿ g�n , 3ÿ 2g�n (triple degenera-
tion), and to 3ÿ 3g�n (double degeneration), and for family
(94) we have 4ÿ 2g�n (double), 4ÿ 3g�n (quadruple), and
4ÿ 4g�n , where g

�
n � 2E=3 [40].

The dissipation operator (83) is a linear combination of
nonrenormalized monomials Fi from system (94) [enumera-
tion follows the sequence in (94)] and upon renormalization is
reduced to one of the basic operators (70) for that system:

_Edis � n0
�
F5 ÿ F3 ÿ F2

2

�
� n
�
F R
5 ÿ F R

3 ÿ
F R
2

2

�
� n �F R

5 : �95�

DimensionD� _Edis� � 4ÿ 2E is given by Eqn (88). For physical
value E � 2 we get D� _Edis� � 0, which does not completely
coincide with the expected experimental value 0.2 [35 ± 38].
Nevertheless, this is not so important as compared to the
main result, i.e., transformation of the canonical dimension
dF � 4 into the critical one DF owing to of contributions of
anomalous dimensions of order E.

3.3 Critical dimensions of senior operators
When we discuss the problems concerning the Kolmogorov
hypothesis 1, the decisive role belongs to the information on
critical dimensions of Galilean-invariant operators (70) with
h �F R
a i 6� 0 in a mass-dependent model (see Section 3.4). This

condition eliminates, in particular, all operators of the type of
qF for which hqFi � qhFi � 0 owing to the translation
invariance. These data are scarce, and in this section we
present all the information we know. The class of scalars
with dF � 4 has only one independent monomial of that type,
namely, F � qijkqijk. The corresponding basic operator (70)
is the dissipation operator (83) with the critical dimension
exactly known from (88) [19].

In the class of the needed type with dF � 6 there are two
independent monomials, namely,

F1 � qijkqijl qkjl ; F2 � q2jiq
2ji ; �96�

where q2 � D is the Laplacian. At first sight we can add one
more independent monomial qijkqkjlqlji, but in fact it is
reduced to a sum of three nonessential terms of the type of qF.
At d � 3 the system (96) can be enlarged with two other
operators, F3 � qij0kqij0k and F4 � j0ij0kqkji, but they are
nonessential since both of them have zero mean hF i � 0
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values because of closed cycles of retarded lines in the
corresponding diagrams (Section 2.2). This property also
survives after renormalization, since the operators (96) with
hF i 6� 0 do not admix to them for the same reason (cycles).

Critical dimensions associated with two essential opera-
tors (96) have been calculated in Ref. [42]. One of those
dimensions was determined exactly for arbitrary d (it is d-
independent) with the aid of the Schwinger equations, but the
second dimension was evaluated only for d � 3 and in the
one-loop approximation:

D1 � 6ÿ 2E ; D2 � 6ÿ 8E
7
�O�E2� : �97�

For irrelevant operators F3;4 it was found that D3 �
6ÿ 2E=9�O�E2� and D4 � 6� 2E=3 (the last value is exact).

In Ref. [43] critical dimensions of all relevant operators of
the type of qjqj with canonical dimensions dF � 4 were
evaluated at arbitrary d in the one-loop approximation. They
include the scalar qijkqijk discussed earlier, two independent
irreducible tensors Fik of the second rank,

I:p: �qijlqkjl� ; I:p: �qljiqljk� ; �98�

and three independent irreducible tensors Fiklm of the fourth
rank:

I:p: �qijlqkjm � qljiqmjk� ;
I:p: �qijkqljm � qijkqmjl � qkjiqljm � qkjiqmjl� : �99�

We denote with `I.p.' the operation of selection of an
irreducible part, i.e., subtraction of appropriate expressions
with d-symbols ensuring that the expressions obtained are
traceless, i.e., the contraction over any pair of indices is zero.
For instance,

I:p: �qijlqkjl� � qijlqkjl ÿ
dikqmjlqmjl

d
:

Critical dimensions associated with tensors (98) in the
one-loop approximation at arbitrary d are given by

DF � 4ÿ 4E
3
� 2E
3d�dÿ 1��d� 4�

�
h
4� 8dÿ d 3 �

�����������������������������������������������
16ÿ 16d 2 ÿ 4d 3 � 5d 4

p i
�O�E2�
�100�

(for d � 2; 3; 4 the square root is an integer), and for operators
(99) we get

DF �

4ÿ 4E
3
ÿ 8E�12ÿ 4d� d 3�
3d�dÿ 1��d� 4��d� 6� �O�E2� ;

4ÿ 4E
3
� 8E�d� 2�
3d�dÿ 1��d� 4� �O�E2� ;

4ÿ 4E
3
� 4E
3d
�O�E2� :

8>>>>>><>>>>>>:
�101�

At d � 3 we have DF � f4ÿ 32E=21; 4ÿ 10E=9g for (98) and
DF � f4ÿ 32E=21; 4ÿ 64E=63; 4ÿ 8E=9g for Eqn (99); at
E � 2 all these dimensions are strictly positive.

Passing to operators of higher dimensions, we first
mention the statement (78) for an arbitrary in the index
structure operator of the type of jn. For the first time it was
given in Ref. [15], a formal proof based on theWard identities
of Ref. [40] was presented in Ref. [44]; within a certain

generalization of the Wilson RG it was derived also in
Ref. [45] (see below).

The proof of Eqn (78) given in Section 3.1 can be
generalized to some other classes of operators. For instance,
for a monomial constructed only from symbols j and qt (we
shall denote it with F � qmt jn) with a particular set (free or
with contractions) vector indices, we have [42]:

Das�qmt jn� � nDj �mDo � n

�
1ÿ 2E

3

�
�m

�
2ÿ 2E

3

�
: �102�

For the elements of the nonrenormalized basis instead of the
monomials qmt j

n we can choose polynomials, which are
obtained from them by substitution of the covariant deriva-
tives Ht for all operations qt. The rule (102) remains valid for
all these operators, too.

Let us now formulate the general rule. We will call a given
element F (a monomial or a polynomial) of the chosen
nonrenormalized basis an `exceptional element' if its Galilean
transformation (75) contains an exceptional UV-finite con-
tribution that cannot be generated by any other nonrenorma-
lized basis element with the same dF. The initial F cannot be a
counterterm, i.e., in renormalization it can admix neither to
itself nor to other elements, and the critical dimension (71)
associated with it obeys the rule

Das�except: F � �
X

D� factor of F � : �103�

Equations (78) and (102) are just particular cases of the
general rule (103). It may also be applied to other cases, for
instance, to the operator F � j0�Htj�n which is also excep-
tional. To avoid misunderstanding, we must note that the
concept of exceptionality can depend on the choice of the
nonrenormalized basis, but the complete set of critical
dimensions of the system under consideration does not
depend on this choice.

Almost all the known results about critical dimensions of
composite operators in the model (16) were obtained within
the standard quantum-field theory of renormalization. The
only exception is the work [45], where the authors made an
attempt to generalize the Wilson RG technique to the case of
some composite operators. In Ref. [45] relation (78) was
obtained for operators jn, and the following result for the
contribution F � n0qijkqijk to the dissipation operator (83):

D�F n� � nD�F � � n�4ÿ 2E� : �104�

However, equations of motion for composite operators used
in Ref. [45] (in the field-theoretical language they are
associated with certain senior Schwinger's equations) do not
contain the random-force contributions of the type of terms
with DF in Eqns (79) and (80), which leads to the loss of part
of diagrams (the necessasity to take the random-force
contribution into account was noted in a subsequent Ref.
[46]). Also in these works the possibility of mixing of
operators in renormalization is not discussed at all. There-
fore, it is difficult to consider the proof given in Ref. [45]
reliable.

Scalar Galilean-invariant operators with dF � 8 including
the operator _E 2

dis with
_Edis from Eqn (83) were investigated in

Ref. [47]. It turns out that the operator _E 2
dis unlike

_Edis itself is
not UV-finite (which would have ensured the fulfillment of
equation (104) for n � 2) or even multiplicatively renormaliz-
able. With the help of the Schwinger equations the authors of
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Ref. [47] found exact critical dimensions of some operators
with dF � 8, but all of them become negative only when E > 3.
On the other hand, there are arguments, Refs [48, 49], in favor
of the existence of an infinite number of operators with the
same symmetry which become dangerous at E > 2 together
with _Edis, so the problem of validity of Eqn (104) remains
open.

Also note that throughout Sections 3.1 ± 3.3 by critical
dimensions we understood dimensions of the type of (41)
describing IR-scaling at fixed g0; n0 (see Section 2.7). Transi-
tion to the scaling at fixed W; n0 in the Green functions of
composite operators is accomplished like that for the Green
functions of simple fields (see Section 2.8). The standard
formula (68) remains valid at E < 2, and when E > 2, it is
replaced by the following expression [49]:

DF � d k
F �

2doF
3
� 2g�F

E
� dF ÿ 4doF

3
� 2g�F

E
: �105�

With the use of Eqn (105) it can, in particular, be verified that
dimensions (78) associated with jn and dimension
DF � 4ÿ 2E of the dissipation operator (83) are frozen
throughout the whole region E > 2 at their Kolmogorov's
values at E � 2. We will not dwell upon this in detail since for
the following just dimensions corresponding to the scaling at
fixed g0; n0 will play the main role in the analysis of IR
asymptotic behavior of scaling functions (see Sections 3.4
and 3.5).

3.4 Investigation of the asymptotics at m! 0
with the use of operator product expansion
The RG-representations (53) and (54) describe the IR-
asymptotics at k � m! 0, o � kDo ! 0 of correlation
functions of the model (16) and (9) at an arbitrary fixed
u � m=k. To the inertial range there corresponds an addi-
tional condition u5 1. From Eqns (55) and (54) it follows
that the first Kolmogorov hypothesis for a simultaneous pair
correlator (see Section 2.1) is equivalent to the requirement
of cancellation of the m-dependence in the combination
D

2=3
0 f�u� when u! 0, and taking relations (64) into account

we obtain [15]:

f�u� � const � f�0� for 0 < E4 2 ;

const� u4�2ÿE�=3 for E5 2 :

�
�106�

The scaling functions in Eqns (53) and (54) are not
determined by the RG equations. A standard method for
their computation is the E-expansion (58). From the analysis
of diagrams of perturbation theory it is known that the
coefficients fn of the E-expansion in Eqn (58), when u! 0,
have only weak singularities of the type of u log u, i.e., they are
finite at u � 0. Therefore theKolmogorov hypothesis 1 can be
postulated in the framework of the E-expansion, which,
however, does not prove it at finite E, since for any arbitrarily
small value of E there are diagrams which diverge atm! 0. A
formal formulation of the problem is that it is necessary to
sum the E-expansion series (58) when E is assumed to be small
and under the additional condition E log u � 1.

Like in the theory of critical behavior [6, 10], a problem
of this sort is solved with the aid of the well-known Wilson
operator product expansion [a synonym is the short-
distance expansion (SDE)]: in accordance with SDE, the
product j�x1�j�x2� of two renormalized field operators
at x � �x1 � x2�=2 � const, t � �t1 � t2�=2 � const, r �
x1 ÿ x2 ! 0, t � t1 ÿ t2 ! 0, may be represented in the

following form [15]:

j�x1�j�x2� �
X
a

Ca�r; t� �F R
a �x; t� : �107�

Here the coefficients Ca are regular in m
2; �F R

a are all kinds of
renormalized basic operators of the type of (70) with definite
critical dimensions Da consistent with symmetry of the left-
hand side. The renormalized correlatorD � hjji is obtained
by averaging the expression (107) with the weight expSR; as a
result the quantities h �F R

a i appear on the right-hand side. Their
asymptotic behavior at m=m! 0 is obtained from the
corresponding RG-equations (see Section 3.1) and is of the
form

h �F R
a i / mDa=Dm : �108�

[For the model (16) Dm � 1]. Thus, the operator product
expansion (107) results in the following representation for the
scaling function of the correlator D � hjji:

f�u; . . .� �
X
a

Aa�u; . . .� uDa : �109�

Here the coefficients Aa are regular in u2, dots in Eqn (109)
denote possible extra arguments of f [E for the static function
(54) and E; z for the dynamic one, Eqn (53)]. Note that simple
regularity of the functionsCa;Aa inm / u takes place only for
the standard formulation of the asymptotic problem with
fixed g0 (see Section 2.8), therefore, dimensions Da in
Eqn (109) are given by the relation (41) for any E > 0.

Representation (109) solves the problem of summation of
E-expansions of the scaling function at E log u � 1. When
u! 0, the leading contributions to Eqn (109) are those with
minimal values of the dimensions Da; in the framework of E-
expansions with minimal da at E � 0, i.e., with a minimum
number of fields and derivatives. The operators with Da < 0,
if they exist, will be called `dangerous' [15]; they are associated
with the contributions to Eqn (109) divergent at u! 0.

The problem of dangerous operators does really exist in
the framework of the model (16) beyond the scope of the E-
expansion. Specifically, from Eqn (78) it is seen that all
operators associated with integer powers of the velocity field
become dangerous when E5 3=2, i.e., before entering into the
region E5 2 of real IR-pumping. With increasing E other
dangerous operatorsmay appear, for instance, when E5 2 the
dissipation operator (83) becomes dangerous. Its dimension is
known exactly [19]: DF � 4ÿ 2E, see Section 3.2. On the basis
of results of Refs [19, 40], it was assumed in Ref. [15] that in
the region 0 < E < 2 only operators associatedwithjnmay be
dangerous. In the region 3=2 < E < 2 their contributions to
Eqn (109) diverge whenm! 0 and must be summed up. This
was done in Ref. [15]. But the assumption made in Ref. [15] is
invalid since it follows from Eqn (102) that operators
associated with q pt j

n (i.e., operators with an arbitrary
arrangement of p symbols qt inbetween n factors j) may
also become dangerous at E < 2 if p < n=2: the dimensions
(102) vanish at E � 3�2p� n�=2�p� n�. However, it was
shown in Ref. [42] that the technique of summation [15] may
be readily generalized to operators of this sort as well. It will
be expounded in the next section.

3.5 Substantiation of the Kolmogorov hypothesis 1 in
the interval 0 < EE < 2 within infrared perturbation theory
Relevant summation of the contributions of all dangerous
operators of the type ofjn was performed inRef. [15] with the
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use of a version of infrared perturbation theory (IRPT), first
suggested in quantum electrodynamics [11] andwidely used in
turbulence theory for studying IR-singularities in self-con-
sistency equations [50 ± 54].

The formulation of IRPT employed in Ref. [15] is based
on splitting the fields in the functional integral (102) into `soft'
(long wavelength) and `hard' (short wavelength) components
with a subsequent negation of space-time (or only of space,
Refs [42, 55]) inhomogeneity of the soft field. For the
correlator in the inertial range summation of contributions
of all dangerous operators of the type ofjn in Eqn (107) leads
(we expound the results ofRef. [15] in a later formulation [56])
to the expression



j�x1�j�x2�

� �X1
n�0

tn

n!


�jq�n�C0�r; t� � . . . �110�

Here C0 is the coefficient for �F R
a � 1 in Eqn (107); indices

j � ji�x; t� in the form jq are contracted with those of the
gradient q � q=qri; and dots denote contributions of all the
remaining operators. Since Eqn (110) includes all nonrenor-
malizedmonomials of the type ofjn, there (and only there) all
dangerous operators associated with them with dimensions
(78) are contained [see the remark in the text after formula
(78)]. Expression (110) may be rewritten in a compact form:


j�x1�j�x2�
� � 

C0�r� vt; t���� . . . �111�

Here




. . .
��

denotes averaging over a random time-indepen-
dent quantity v, whose distribution is defined by the relations



v n
�� � 
jn�x�� � const�mnDj � . . . �112�

with free vector indices. Moments (112) are nonzero only for
even n; the contribution mnDj comes from a dangerous
operator; dots stand for unessential (less singular) terms
coming from possible admixtures in jn. Representation
(111) and its analog for the response function hjj0i were
obtained in Ref. [15] under the assumption that self-interac-
tion of hard fields was negligible. This corresponds to the
lowest order of perturbation theory in g0 for expressions
inserted into hh. . .ii. They coincide with the corresponding
massless bare Green's functions (17). A generalized formula-
tion of Eqn (111) with the exact function C0 from Eqn (107)
was obtained in Ref. [44]. In Ref. [56] it was shown that
relations of the type of (110) ± (112) can also be derived
without IRPT by using only the short-distance expansion
(SDE) for the product jj itself and not only for its average
hjji. This allows to get rid of the IRPT artificial parameter,
the momentum k�, which separates the regions of soft
�k4 k�� and hard �k > k�� momenta; note also that the
SDE technique contains a constructive recipe for evaluation
of all Wilson's coefficients Ca from Eqn (107), in particular
the coefficient C0 involved into Eqn (111). An important
generalization of relations (110) and (111) was found in Ref.
[42], where summation was performed not only of contribu-
tions of all operators of the type of jn, like in Eqn (110), but
also of all other operators of the type of q pt j

n, which can also
become dangerous at E < 2 (see Section 3.3). Instead of
vt � v�t1 ÿ t2� in Eqn (111) appears an integral over the
interval �t1; t2� of a time-dependent velocity v�t�with a known
distribution. It is important that this integral vanishes at
t1 � t2 like vt in Eqn (111), i.e., the given classes of dangerous
operators do not contribute to the static correlator with

t1 � t2. But at t1 ÿ t2 � t 6� 0 the singular dependence on m
through the distribution (112) survives in Eqn (111), i.e., the
Kolmogorov hypothesis 1 is not extended to the dynamic
correlator [15]. Note that representations of the type of (111)
are well-known in the technique of self-consistency equa-
tions (see, for instance, Refs [50 ± 54]) and have a simple
physical interpretation: they describe the kinematic effect of
transport of turbulent vortices as a whole by the large-scale
field v [1]. A new feature of the approach [15] and
subsequent investigations into the topic is a combination of
representations (111) with RG-representations by means of
relations (108), (109), and the use of RG and SDE technique
for the calculation of critical dimensions Da and coefficients
Aa in Eqn (109).

As was said above, all dangerous at E > 3=2 operators of
the type of jn, q pt j

n do not contribute to the static correlator,
but the Kolmogorov hypothesis 1 can be broken by other
dangerous operators which appear as E grows. In particular,
when E > 2 the dissipation operator (83) with the exactly
known dimension DF � 4ÿ 2E and all its powers become
dangerous provided the Eqn (104) is correct; with the further
increase of E other operators also can become dangerous.
Investigation of these problems is simplified to some extent if
one takes the results of Ref. [57] (see also Ref. [42]) into
account. It is shown there that the product of two fields with
coinciding times and contracted vector indices after a certain
subtraction (see below) is a strictly Galilean-invariant object
(in the sense of Section 3.1) and its SDE only contains
operators with the same symmetry:�

ji�x1�ji�x2� ÿ
�j2�R�x1� � �j2�R�x2�

2

������
t1�t2

�
X
invar

Ca�r� �F R
a �x� : �113�

Here summation runs over all strictly Galilean-invariant
operators and �j2�R�x� � j2�x� � const in a mass-depen-
dent model (in a massless model j2 is not renormalized).
Note that Eqn (113) can contain any invariant operators, in
particular tensor ones, the tensor indices are naturally
contracted with analogous indices of the coefficients Ca.
Without loss of generality it can be assumed that the
expansion is carried out over irreducible tensors (for exam-
ples, see Section 3.3), then the contribution to the correlator
hjji will only come from scalars since the averages (108) for
nonscalar irreducible tensors equal zero. For the same
reason, contributions to the correlator from all operators of
the form qF with external derivatives disappear
(hqFi � qhF i � 0 owing to translation invariance). Sub-
tracted terms on the left-hand side vanish in the momentum
representation after averaging for k 6� 0.

Thus, the contribution to the SDE-representation (109) of
the scaling function of the static correlator comes only from
strictly Galilean-invariant scalar operators without external
derivatives constructed from the field j only (Section 3.4).
All such operators have an integer even dimension
dF � 2n � 0; 2; 4 . . . For small dF there is a comparatively
small number of such operators: dF � 0 corresponds toF � 1;
there are no such operators at dF � 2; for dF � 4 there is the
only (up to equivalence with respect to additions of the type of
qF) operator, namely the dissipation operator (83) with
dimension D � 4ÿ 2E; for dF � 6 there are two independent
operators (96) with dimensions (97), in the neighborhood of
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E � 2 they are not dangerous. The classification with respect
to dF corresponds to a classification for the contributions with
respect to powers of u2n�O�E� in the SDE-representation (109),
which is generally accepted in the theory of critical behavior
(and is the only possible in the framework of the E-expansion).
It follows from the above that the first terms of SDE
representation up to the contributions of order of u 6�O�E�

and higher in our case are of the following form:

f�u� � a1 � a2u
2 � a3u

4 � a4u
4ÿ2E � . . . �114�

With the known E-expansions of the function f�u� as a whole
and exponents Da, we may obtain the coefficients ai in
Eqn (114) in the form of E-expansions; each of them begins
with the power E or higher.

Representation (114) can be verified directly by expanding
diagrams for the model (16) in powers ofm2. From Eqn (114)
it follows that coefficients for 1 and m2 should be finite, but
even the next term of the Taylor series in m2 does not exist
because of the IR-singularity of the type of m4 logm. After
evaluation of the coefficient for m4 logm in one-loop dia-
grams (see Fig. 1) for the static correlator, we can determine
the coefficient a4 in Eqn (114) in the lowest (first) order in E.
This calculation for the model (9) with an arbitrary d > 2
gives [58]

a1 � E
3a
�O�E2� ; a4

a1
� a2

3
�O�E� ; �115�

where a is the constant defined by Eqn (34); a2 is the
coefficient for u4 in the expansion of the function h�u� from
Eqn (9) in powers of u � m=k: h�u� � 1� a1u2 � a2u4 � . . .
Note that contributions of the type ofm2 coming from certain
diagrams shown in Fig. 1 contain IR-divergences, but they
cancel out when summed in accordance with the representa-
tion (114).

On the grounds of the results obtained for investigated
operators of junior dimensions we may suppose that at E < 2
only operators of the type of jn and q pt j

n can be dangerous.
They only contribute to the dynamic correlator, and this is
consistent with the Kolmogorov hypothesis 1 or, equiva-
lently, with Eqn (106), in the region 0 < E < 2. When passing
across the boundary E � 2, the dissipation operator and
(probably) all its powers become dangerous. There is a hope
that if we could sum them up, this would confirm the
Kolmogorov hypothesis 1 (106) in some interval E5 2 near
the boundary E � 2.

In Refs [31, 32], the averages of nonrenormalized opera-
tors calculated with the use of an iteration procedure similar
to the Wilson RG-transformations were discussed. In parti-
cular, there was considered the so-called asymmetry (skew-
ness) factor defined by the formula [1, 2]

S � ÿ

�q1j1�3�
�q1j1�2�3=2 : �116�

Its value was found to be S � 0:49 [31, 32], or, upon
correction of a discovered error, S � 0:59 [59]. It seems
difficult to interpret this procedure in terms of the field-
theoretical RG. The author of Ref. [60] found it doubtful that
it could be possible to calculate averages of the type of
Eqn (116), which are mainly determined by the dissipation
range, with the aid of a fixed RG point describing the IR
asymptotic behavior. This is really the case: the average hF i of
a nonrenormalized operator in the framework of a theory

with the cut-off L generally contains a L-divergent regular
contribution coming from the first terms of its Taylor
expansion in powers of m2 with positive powers of L in the
coefficients. It mainly comes from momenta k � L, contrary
to a singular contribution coming from the region k5L. In
renormalized theory the regular contribution is removed by
the L-renormalization procedure (for operators it is usually
reduced to a simple subtraction of the regular part hF i from
F), upon which UV-divergences remain only in the form of
poles in E, and they may be removed by a multiplicative E-
renormalization (Section 2.4). Note that Eqn (107) contains
renormalized operators; and Eqn (108) gives the leading
singular contribution to their averages.

3.6 IR asymptotic behavior
of the triple velocity correlator
IR asymptotic behavior of the triple correlator of velocity
field was investigated in Refs [13, 51, 61 ± 65, 43]. It is of
interest in view of the problem of proving cancellation of IR-
divergences in skeleton diagrams for self-consistency equa-
tions [51], and for analysis of the spectral energy-balance
equation [1, 2, 61, 62], see also Section 3.7. This problem was
studied within the framework of RG and SDE technique in
Refs [64, 65, 43].

Consider a renormalized static triple correlator of the
velocity field for the massless model (8) with 0 < E4 2 in the
k-representation:


ji1
�k1�ji2

�k2�ji3
�k3�

� � �2p�dd�k1 � k2 � k3�DA�k� ;
A � fi1; i2; i3g ; k � fk1;k2;k3g : �117�

From dimensional considerations we get

DA�k� � n3k3ÿ2dRA�s; g;n� ; s � k

m
;

k2 � k21 � k22 � k23 ; n �
�

ni � ki

k
; i � 1; 2; 3

�
: �118�

According to Eqn (37) the function (118) obeys the RG-
equation DRGDA�k� � 0 with DRG given by Eqn (33), there-
fore the RG-representation analogous to Eqn (46),

DA � �n3k3ÿ2dRA

ÿ
1; �g�s�;n� ; �119�

is valid for it. In the asymptotic region s! 0 we have �g! g�
and �n! n� according to Eqn (55):

DA '
�
D0

g�

�
k3ÿ2dÿ2ERA�1; g�;n� : �120�

Representation (120) describes IR asymptotic behavior of the
correlator when k! 0 and n � const, see Section 2.7. The
SDE technique (Section 3.4) allows to study the asymptotic
behavior ofDA�k� in three regions of the type of k15 k2 ' k3
�Pi ki � 0�, i.e., when ni5 1 in the scaling function fromEqn
(120), which is necessary for some problems (see Sections 3.7
and 3.8). In view of the symmetry of DA�k� in momenta it is
sufficient to determine its asymptotic behavior in one of the
regions, say at n15 1.

This was done in Refs [64, 65, 43] with the aid of operator
product expansion (107) for fields with coinciding times.
Substitution of Eqn (107) into the triple correlator

Dijl�x1;x2;x3� �


ji�x1�jj�x2�jl�x3�

�

December, 1996 Quantum éeld renormalization group in the theory of fully developed turbulence 1211



gives

Dijl�x1;x2;x3� �
X
a

Cjl;a�r23�


ji�x1� �F R

a �x23�
�
; �121�

where r23 � x2 ÿ x3, x23 � �x2 � x3�=2. The asymptotic
range jr23j5 jx1 ÿ x23j in the coordinate representation
corresponds to k15 k2 ' k3 in Eqn (118).

The product jj�x2�jl�x3� with coinciding times is not a
Galilean-invariant object, therefore its SDE must also con-
tain non-invariant operators. However, they will not con-
tribute to the triple correlator (117) with ki 6� 0 because of its
invariance. Therefore, in Eqn (121) we can restrict ourselves
to strictly Galilean-invariant operators; the leading term of
the asymptotic expression searched for is determined by the
operator with the minimal value of DF. All scalars can be
neglected since the Fourier transform of the correlator

ji�x1� �F R

a �x23�
�
in Eqn (121) corresponding to them is a

vector proportional to k1i and obviously cannot contribute to
the correlator (117) which is transverse in all the external
momenta.

Among all nonscalar strictly invariant operators studied
earlier (Sections 3.1 ± 3.3) it is the operator F � qjjl � qljj

from system (90) which has the minimum dimension,
DF � Dj � 1 � 2ÿ 2E=3, at E � 2, d > 2. The expression on
the l.h.s. of SDE for jijj has dimension 2Dj, therefore the
dimension of any of the coefficientsCa is uniquely determined
by the dimension of �F R

a : D�Ca� � 2Dj ÿ D� �F R
a �. For our

operator F we get D�C� � 2Dj ÿ D�F� � Dj ÿ 1 � ÿ2E=3,
from which it follows in the massless model that
C�r� / jrj2E=3. The structure of indices of the corresponding
contribution to Eqn (117) is determined by the transversality
of fields and by requirements of symmetry. The final result for
the asymptotics in Eqn (117) searched for in the range
k15 k2 ' k3 looks as follows [64, 65, 43]:

Dijl�k� ' ig�D0

8
k
2ÿdÿ4E=3
1 k

ÿdÿ2E=3
2 Pin�k1�

�
�
a1k1m

�
Plm�k2�Pjn�k2� � Pjm�k2�Pln�k2�

�
� a2Plj�k2�k2n�k1k2�

k22

�
: �122�

Here P is the transverse projector; a1;2 are numerical coeffi-
cients which can be obtained as E-expansions. With the one-
loop approximation for the correlator (117) they can only be
found in the leading order in E, which gives a1 � ÿ1,
a2 � 2ÿ d.

A representation similar to Eqn (122) was obtained earlier
in Ref. [63] on the basis of direct analysis of skeleton
diagrams. This representation coincides with Eqn (122) at
E � 2 and differs for an arbitrary E. This appears to be in
contradiction with the representation (120), i.e., with the total
dimension of correlator (117). Therefore we consider the
representation (122) to be correct.

Calculating the function R in Eqn (118) as a series of
renormalized perturbation theory in g and combining the
result with (120) and (122), we obtain the corresponding
approximation of improved perturbation theory (Section
2.7). It is not unique to any finite order since it depends, for
instance, on a momentum or a combination of momenta
which enter into the scale variable s in Eqn (118). Different
versions differ from each other by a subsequent order of
smallness at small E. In the lowest order one can take the

correlator searched for in the form

D�k� � ig�D0�k1k2k3�2ÿdÿ4E=3
4�k2ÿ2E=31 � k

2ÿ2E=3
2 � k

2ÿ2E=3
3 �

Pis�k1�Pjt�k2�Plp�k3�

� �kdÿ2�4E=31 �k1tdsp � k1pdst� � k
dÿ2�4E=3
2 �k2sdtp � k2pdst�

� k
dÿ2�4E=3
3 �k3sdtp � k3tdsp�

�
: �123�

Expression (123)meets the needed properties of symmetry
and transversality, is in agreement with the first order of E-
expansion, and exhibits the correct asymptotic behavior (122)
in all regions ni5 1 with coefficients a1 � ÿ1,
a2 � 2ÿ dÿ 4E=3 different from the one-loop analogues,
a1 � ÿ1, a2 � 2ÿ d, only by contributions of order E. In
fact, it coincides with the known EDQNM-approximation [2,
62] up to a fixed overall amplitude factor. Therefore all the
results known for this approximation are automatically valid
for representation (123), see Sections 3.7 and 3.8.

3.7 RG-approach and equation
of the spectral energy balance
A central role in the phenomenological description of a
developed turbulence belongs to the equation of spectral
energy balance [1, 2]:

qtE�k� � ÿ _Edis�k� � T�k� � _Epump�k� : �124�

Here E�k� � �dÿ 1�D�k�=2 [with the function D from the
static correlator (5)] is the spectral energy density [all
quantities per unit phase volume dk=�2p�d, i.e.,
E � �2p�ÿd � dkE�k�, etc.]; _Edis � �dÿ 1�n0k2D�k� is the
dissipation rate; _Epump�k� is the external source of energy
pumping; and

T�k� �
�
dx exp�ÿikr�T�r� ; T�r� � ÿ
ji�x�jj�y�qjji�y�

�
;

�125�

(with r � xÿ y) is the so-called transfer integral connected in
the momentum representation with the static correlator (117)
by the relation

T�k� � �2p�ÿd
�
dk1 dk2 d�k� k1 � k2�ikjDljl�k;k1;k2� :

�126�

At x � y the coordinate function T, Eqn (125), vanishes
owing to translation invariance (the symbol q may be moved
out from h. . .i), therefore�

dkT�k� � 0 ) T�k� � ÿ�2p�d qJi�k�
qki

; �127�

where Ji�k� is the vector of density of the energy flux along the
spectrum [�2p�d provides a correct normalization]. Due to
isotropy we have

Ji�k� � ki J�k� ; I�k� � Sd J�k�kd ; �128�

where I�k� is the total energy flux to the outside through the
surface of a sphere with radius k in themomentum space; Sd is
the area (35) of a unit d-dimensional sphere. The flux I should
satisfy the conditions I�0� � I�1� � 0. Integrating (124) and
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taking Eqn (127) into account, we can derive the energy
balance equation for any spherical layer. Specifically, for the
total integral we have

_Edis � �2p�ÿd�dÿ 1�n0
�
dk k2D�k�

� �2p�ÿd
�
dk _Epump�k� �W : �129�

When applied to the balance equation (129), basic
assumptions of the phenomenology are reduced to the
following [1, 2]:

(1) Both the viscosity and energy pumping are unessential
in Eqn (124) in the inertial range m5 k5L, therefore in a
stationary problem we have

T�k� � 0 �130�

up to corrections in positive powers of m=k and k=L.
(2) In the inertial range the functionDijl in Eqn (126) obeys

the relation of generalized homogeneity

Dijl�lk1; lk2; lk3� ' l3Djÿ2dDijl�k1;k2;k3� �131�

up to corrections in higher powers of l unessential when
l! 0.

(3) Integral (126) is IR- andUV-finite, i.e., we may neglect
the contributions to it coming from the ranges ki4m and
ki5L, where relation (131) is not valid.

From assumptions 2 and 3 it immediately follows that in
the inertial range

T�k� � T0�y�kÿy � . . . ; y � dÿ 1ÿ 3Dj : �132�

Here the traditional notation is introduced: y for the exponent
and T0�y� for the amplitude of the leading term. From Eqn
(132) and (127) we derive Ji�k� � �2p�ÿdki kÿyT0�y�=�yÿ d�,
and hence, for the energy flux in Eqn (128) we obtain I�k� �
�2p�ÿdkdÿySdT0�y�=�yÿ d�. It is seen that condition (130)
[i.e., T0�y� � 0] is equivalent to the requirement that the
energy flux be constant, and (for a nonzero flux) it holds
only at y � d, i.e., only at the Kolmogorov value Dj � ÿ1=3
in Eqn (132). Assuming thatT0�y� is analytic in the vicinity of
y � d, we have T0�y� � T 00�d��yÿ d� � . . ., and equating the
corresponding energy flux I � �2p�ÿdSdT 00�d� in the inertial
range to the total energy of dissipation (or pumping) (129), we
arrive at the relation

_Edis �W � �2p�ÿdSdT 00�d� ; �133�

which connects _Edis through Eqns (126) and (132) with the
triple correlator.

Carrying differentiating with respect to y in Eqn (133)
explicitly, we can rewrite it in a more convenient form. To do
it, we must extract the factor yÿ d from integral (126). It can
be shown (see Ref. [2], p. 317; Ref. [22]) that this integral does
not change if the integrand is multiplied by the factor
ÿ�k2=k�yÿd, and consequently, by the combination�
1ÿ �k2=k�yÿd

�
=2 from which the factor yÿ d is extracted

explicitly. This transformation of integral (126) allows us to
rewrite Eqn (133) in the form

_Edis �W � Sd k
d

2�2p�d
��

dk1 dk2 F�k;k1;k2� log k

k2

����
y�d

;�134�

where F�k;k1;k2� is the integrand of (126) with the Kolmo-
gorov value of dimension y � d. The factor kd can be included
into the integrand of Eqn (134), this is equivalent to making
by the change ki ! ki=k all momenta dimensionless.

It is important that the major contribution to Eqn (134)
comes from the inertial range since the convergence proper-
ties of integrals (126) and (134) are the same.

Usually assumptions 1 ± 3 are considered on the basis of
some approximations, for instance, on the basis of EDQNM-
approximation [2, 62] mentioned in Section 3.6. Following
Ref. [64] we shall see how these properties are fulfilled, using
RG and SDE and considering the model (16) by way of
example. The initial relation (124) is obtained by multi-
plication of equation (79) with Aj

0 � 0 by ji�x0� with t 0 � t,
averaging h. . .i, and by Fourier-transform with respect to
xÿ x0. The factors dÿ 1 result from the contraction over
indices in transverse projectors, the role of _Epump�k� is played
by the quantity �dÿ 1�dF�k�=2 [see the text after formula (85)]
with the function dF from Eqn (2). For model (9) at any E > 0
and k5L the contribution of dissipation to Eqn (124) can
always be neglected in comparison to the contribution of
pumping (obviously from the estimate based on critical
dimensions). Therefore for the stationary problem from
Eqn (124) we have in the whole IR-region k5L

T�k� � ÿ _Epump � ÿ�dÿ 1�dF�k�
2

: �135�

From Eqns (135) and (9) for the inertial range we obtain

T�k� � T0k
ÿd�4ÿ2E ; T0 � ÿ�dÿ 1�D0

2
; �136�

where the constant D0 is expressed in terms of W � _Edis by
relations (64). When comparing Eqns (136) and (132) it is
necessary to take into account that Dj in Eqn (132) is the
Kolmogorov dimension defined by relations (41) for E4 2
and by (6) for any E5 2 (the effect of freezing, see Section 2.8).
This means that the role of y in Eqn (132) is played by the
quantity

y � dÿ 1ÿ 3Dj � dÿ 4� 2E for E4 2 ;
d for E5 2 :

�
�137�

From Eqns (64) and (137) it follows that when E < 2,
expression (136) for T�k� takes the form (132) with the
amplitude T � const� L2Eÿ4 6� 0, i.e., the property (130) for
E < 2 is not fulfilled. In contradistinction to the case E < 2, for
any E > 2 it is fulfilled identically since the leading contribu-
tion of the type of Eqn (132) in this region should be of the
form const� kÿd, in accordance with Eqn (137), whereas it is
absent in Eqn (136) and this expression as a whole is just a
correction with an additional smallness �m=k�2Eÿ4. Just at the
boundary E � 2 it becomes leading and the amplitude
T0 / D0 acquires the smallness 1= log�L=m� (Section 1.8),
therefore up to this accuracy the statement (130) is also valid
for E � 2.

For the massless model (8) which may be considered only
in the region E < 2, the smallness in the amplitude T0 / D0

ensuring (130) appears only in the limit E! 2 since in this case
Eqn (64) assumes the following form:

D0 � �2p�dSÿ1d

4�2ÿ E�L2Eÿ4

�dÿ 1� W : �138�
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Owing to the factor 2ÿ E, the function (8) with D0 from
Eqn (138) vanishes in the limit W � const, E! 2 for any
k 6� 0. More precisely,

dF�k� ! 2�2p�d
dÿ 1

d�k� when E! 2 ; �139�

if we take into consideration the known power-like represen-
tation of d-function:

d�k� � lim
D!�0

�2p�ÿd
�
dk �Lx�ÿD exp�ikx�

� Sÿ1d kÿd lim
D!�0

�
D
�
k

L

�D�
: �140�

Thus, the first of basic assumptions (130) is fulfilled in the
model (9) for any E5 2, and in the model (8) only when
E! 2ÿ 0.

Let us now discuss assumptions 2 and 3 from the RG
standpoint. Equation (131) is an obvious consequence of the
IR-scaling and Kolmogorov hypothesis 1 [which we can
dispense with if we dilatate the parameter m in Eqn (131)].
Nevertheless, the possibility of using Eqn (131) as the
integrand in Eqn (126) to derive Eqn (132) is nontrivial,
since the arguments of two fields in the coordinate triple
correlator (125) coincide. Therefore, as a matter of fact, we
now deal not with a triple, but with a double correlator of the
field ji and a composite operator jijj (the symbol q can be
moved out from the operator h. . .i). In a general case its
dimension is not equal to the sumof field dimensions owing to
a possible contribution of anomalies g�F (Section 3.1), and (if
this contribution exists) the critical dimension of an integral
of the type of Eqn (126) is not determined by the dimension of
the integrand.

In the given case there is no such danger: the composite
operator jijj studied in detail in Section 3.2 is represented as
a sum of two operators, F �1� � jijj ÿ n0�qijj � qjji� and
F �2� � n0�qijj � qjji�, with definite critical dimensions
D1 � 2Dj and D2 � Dj � 1. The first of them cancels in
Eqn (133) the contribution of pumping; and the second of
dissipation. At the Kolmogorov value Dj � ÿ1=3 the
leading operator is the first one, just it enters in Eqns (132)
and (135). Its dimension has no anomaly g�F (Section 3.2),
therefore in this case equation (131) indeed results in
Eqn (132).

Within the phenomenology this was substantiated by the
assumption 3, i.e., by the required convergence of integral
(124). From the representation (122) derived by the RG- and
SDE-technique it follows that integral (126) does converge
for 0 < E < 3. Here the upper boundary is determined from
the IR-convergence; and the lower boundary from the UV-
convergence (for details see Ref. [64]). Note that the
boundaries of convergence are the same as in the
EDQNM-approximation [62], since it has a correct asymp-
totic behavior (Section 3.6). (The assumption that there is a
possible connection between these boundaries and dimen-
sions of composite operators was first put forward in Ref.
[66].)

The general conclusion is that the RG- and SDE-
technique allow to substantiate the assumptions 1 ± 3,
which were postulated phenomenologically for models of
the type of (9) at any E5 2, and in a simplified model (8) at
E! 2.

3.8 On non-Kolmogorov solutions
to the energy balance equation
Besides the solution y � d with a nonzero energy flux, other
possible solutions y � y�d� to the equation T0�y� � 0 for the
amplitude in Eqn (132) meeting the requirement (130) also
may be interesting. They can be sought numerically by
computing T0�y� with the help of relations (126) and (132)
on the basis of any scale-invariant model for a triple
correlator. In Ref. [62] (see also [64]), with the use of a
correlator of the type of (123) the authors obtained the
solution y � y�d� shown in Fig. 3 as an ABCDE curve.
Following Refs [62, 64], we give it in coordinates gÿ d,
where g � �2yÿ 2d� 5�=3 � 1ÿ 2Dj is the index of the
energy spectrum E�k� / kdÿ1D�k� / kÿg, and it exists only
near d � 2 (revised values dc � 2:066, d 0c � 2:075 were pre-
sented in Refs [64, 67]). The conventional Kolmogorov
solution y � d in this coordinates is associated with the line
g � 5=3 at any value of d. It is interesting to note that though
the ABCDE curve was obtained on the basis of particular
approximation (123) for the triple correlator, its limit points
A;E at d � 2 have a simple physical interpretation in the exact
theory. Let us explain this remark in more detail.

A specific feature of a two-dimensional problem is the
second (in addition to the energy) conserved quantity, the
enstrophy



rot2j�k�� / k2D�k� [2], which in terms of the

transfer integral means that there is the second conservation
law

�
dkT�k�k2 � 0, in addition to Eqn (127). This allows us

to introduce the notion of the spectral density of enstrophy
flux k2T�k� � ÿqJe

i =qki. In the inertial range it follows from
Eqn (132) that Je

i �k� � Je
0kik

2ÿy and T0 � Je
0 �yÿ 4�. Conse-

quently, at d � 2 there may exist a regime with a zero energy
flux and a nonzero enstrophy flux. This regime corresponds
to y � 4, i.e., in accordance with Eqn (132), Dj � ÿ1 is the
point A in Fig. 3. Formally, we can separate the factor yÿ 4
from integral (126) at d � 2 in the same way as it was done in
the general case for the factor yÿ d [see the derivation of
formula (134) in Section 3.7]. However, it is worth to
remember that the value Dj � ÿ1 in Eqn (123) corresponds
to the boundary value E � 3 at which the IR-divergence
appears in Eqn (126) (this is due to the dangerous Galilean-
invariant operator qj appearing at E5 3, see Section 3.6).
Therefore the problem of a rigorous proof of existence of a
solution of this type is nontrivial and at present it is
intensively discussed in the literature [68]. The second limit
point E in Fig. 3 is associated with the value Dj � 0
corresponding to the equidistribution of the enstrophy over
spectrum, k2D�k� � const.

2 2.025 2.050 dc d 0c

3

g

2

1

g � 5=3

B

E

D

d

C

A

Figure 3.
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Of special interest is the point D in Fig. 3 with dc ' 2:066
corresponding to intersection of two solutions. At this point,
y � dc, and not only the quantity T0�y� itself vanishes, but
also its derivative T 00�y� and the energy flux (see Section 3.7).
Therefore equation (134) cannot be fulfilled at finite values of
W andD0. In accordance with the interpretation given in [62],
the region d < dc corresponds to the inverse energy flux and
theKolmogorov scaling is not realized here. InRef. [62] it was
assumed that with decreasing d the solution y � d in this
region `skips' onto the curve BA.

In Ref. [67] it was stated that equation (134) can be
fulfilled only when d � dc �O�E�, D0 / Eÿ2. Actually equa-
tion (134) has been obtained as a limiting case when E! 2,
therefore one cannot speak about its internal consistency
when E! 0. In a more general relation (135), a zero of
order of g� / E at E! 0 in the amplitude (123) is compen-
sated by the pole 1=E, which appears owing to UV-
divergence at E! 0 if we obtain T�k� by evaluation of
Eqn (126). This removes the illusory contradiction discov-
ered in Ref. [67].

3.9 Problem of singularities at EE! 2 in a massless model.
Calculation of the Kolmogorov constant
The main part of studies on the RG-theory of turbulence has
been performed in the framework of amasslessmodel (8) with
a pure power pumping, for which the parameters W and D0

are connected by formula (138). A realistic problem corre-
sponds to the limit E! 2ÿ 0, where the power law turns into
a d-function (139). Correct normalization is ensured by the
factor 2ÿ E present in Eqn (138). The parameter D0 / 2ÿ E
enters into the IR asymptotic expressions only through the
invariant viscosity (48), therefore in representations of the
type of (54), (120) for static correlators it will never be present
in expressions for the corresponding scaling functions, but
will enter into the overall factor D

n=3
0 / �2ÿ E�n=3, where n is

the number of fields in a given correlator [according to the
frequency dimension there is one factor per each field, and in
the IR asymptotic region it turns into Eqn (55)]. If we believe
that there exists a limiting theory at E! 2ÿ 0, we must
assume that scaling functions must have singularities of the
type of �2ÿ E�ÿn=3 which compensate zeros Dn=3

0 / �2ÿ E�n=3
in amplitude coefficients. Rigorous proof of the presence of
singularities of this kind is a complicated and yet unsolved
problem of the theory. It apparently has a certain relationship
with the general problem of freezing and substantiation of the
Kolmogorov hypothesis 1 for the whole range E5 2 in a
mass-dependent model (Section 2.8). However, the very
statement that there exists a limiting massless model with
the d-shaped pumping (139) seems to be rather plausible, in
any case, just this hypothetical limit model with E! 2ÿ 0 is
in fact a subject of most studies on the RG-theory of
turbulence. In this connection we note that the exact relation
(86) and convergence of the integral at E � 2 (a consequence
of SDE and total dimension) provided by the factor
D0 / �2ÿ E� in the amplitude (123) proves in fact that there
is a required pole 1=�2ÿ E� in the scaling function of the triple
correlator. This is the only way to make parameter _Edis �W
finite.

Experiment shows that in the inertial range the function
E1�k� (a one-dimensional energy spectrum) connected with
the static correlator (5) by formula (60) satisfies the following
representation

E1�k� � CKW
2=3kÿ5=3 : �141�

Dimensionless numerical factorCK is called the Kolmogorov
constant; its experimental value is CK � 1:3� 2:7 [38, 69].

The RG-calculation of the Kolmogorov constant in the
model (1), (2) was discussed inRefs [31 ± 33, 15, 67, 70 ± 73]. In
Refs [31 ± 33], use was made of the Wilson recurrence
relations; in Ref. [15], of the field-theoretical formulation.
First let us present a brief computation for model (8) at E < 2
given in Ref. [15].

From Eqns (54), (55), (60), and the first equation of (64)
we derive

E1�k� � CK�E�W 2=3kÿ5=3
�
L
k

�4�2ÿE�=3
; �142�

where CK�E� is an analog of the constant CK in Eqn (141) for
an arbitrary E < 2:

CK�E� �
�
2Cd

g2�

�1=3

�2ÿ E�2=3f�E� : �143�

Here Cd is taken from Eqn (35) and the function f�E� �
f�u � 0; E� comes from Eqn (54). Assuming that the product
�2ÿ E�2=3f�E� is finite when E! 2 (see above), and expanding
it in a series in E, we arrive at the following expansion of the
Kolmogorov constant [15]:

CK�E� � E1=3
X1
n�0

pnEn : �144�

In the lowest approximation f�E� � g�=2, g� � 2E=3a with
a from Eqn (34) corresponding to expression (62) for E1�k�.
From (144) we obtain

CK�E� � 2

��d� 2�E
3

�1=3
; �145�

which gives CK ' 3 at d � 3 and a real E � 2 [15].
Expression (145) is the first term of the exact E-expansion

given by Eqn (144). Its deviation from experiment is not
surprising since there are no obvious reasons for corrections
to Eqn (144) to be small. A value of the Kolmogorov constant
more close to the experimental one was obtained in Refs [31 ±
33] within the so-called Yakhot ±Orszag RG-theory based on
a version of the Wilson recurrence relations. We briefly
explain their method of calculation. Though equation (3)
and its consequence (138) for the power pumping are exact for
the stochastic problem (1), the authors of Refs [31 ± 33] do not
employ them. The connection between parametersW andD0

turns out to be a nontrivial problem which in these works is
solved with the use of relations (134), (126), (123). The
integral (134) is calculated numerically for the particular
approximation (123) with the exact value E � 2 in exponents
[which corresponds to y � d in the notation (134)], and the
first order of the E-expansion of the parameter g� is sub-
stituted into Eqn (123) (this parameter is known only to this
order of approximation). For d � 3 this leads to the following
connection betweenW and D0:

D0

2pW

����
E�2
' 1:5 . . . �146�

Substitution of this expression into Eqn (62) with h�0� � 1
results in the value

CK ' 1:606 . . . �147�
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of the Kolmogorov constant and is in a good agreement with
experiment. (Note that the value CK � 1:617 presented in
Refs [31 ± 33] slightly differs from Eqn (147), apparently
because of a different accuracy of the numerical integration
in Eqn (134). The most accurate value of the constant (147)
can be found in Ref. [67].)

From the standpoint of exact theory the above-mentioned
method of computation of the constant (147) is not entirely
faultless since it does simultaneously negate two qualitative
effects: a zero at E � 2 in the ratioD0=W [a consequence of the
exact relation (138)] and a singularity of the scaling function
from Eqn (54) (a consequence of the supposed existence of a
theory with E � 2, see above) compensating this zero. There-
fore, the calculations of Refs [31 ± 33] should be regarded as a
special method for computation of the above-mentioned
uncertainty 0�1, apt for agreement with experiment.
However, the authors of Refs [31 ± 33] do not point at this
uncertainty, considering the result (146) to be qualitatively
correct (instead of exact D0=W � 0 at E � 2). In this case
difficulties with the interpretation of the stationary equation
of energy balance (124) arise: from Eqn (146) it follows that
the pumping contribution in the inertial range at the
Kolmogorov value of the field dimension �E � 2� remains
finite, and in view of relation (130) (considered in this
approach to be valid) it can be canceled only by the
dissipation contribution, but this proves impossible when
powers of momenta are conventionally estimated from
dimensions (Section 3.7). The authors of Refs [31 ± 33] try
to find a way out of this contradiction [which, in fact, is
illusory, since the pumping contribution is a multiple of
D0 / �2ÿ E� and vanishes at E � 2 in the exact theory] in the
following manner. In the Yakhot ±Orszag RG-approach it is
assumed that the RG-technique in the region k5L leads to
an equation analogous to Eqn (124) when the kinematic
coefficient of viscosity n0 in the dissipation contribution
_Edis�k� � �dÿ 1�n0k2D�k� is replaced with the k-dependent
`effective eddy viscosity,' whose role is played by the
invariant variable �n��k� from Eqn (55). Upon this replace-
ment, powers of k in pumping and dissipation contributions
appear to be the same at E � 2, and when the explicit form of
amplitudes [see Eqns (55) and (61)] is taken into account,
these contributions really cancel in the lowest order in E. The
condition of cancellation is the relation f�1; g��=g� � 1=2 at
E � 2 in model (8); it should in essence be considered exact in
the Yakhot ±Onszag approach though this is not directly
noted.

Themost detailed exposition of the given approach can be
found in Refs [32, 59]; generalization to the problems of a
turbulent mixing of a passive impurity, damped turbulence,
etc., is given in Refs [32, 33, 45, 46, 74 ± 77], a critical analysis
is presented in Refs [60, 70, 78].

From the viewpoint of the standard field-theoretical RG-
technique the approach of Refs [31 ± 33] briefly presented
above is inconsistent. Moreover, the very problem, the
necessity of cancellation of the pumping contribution by
something in the inertial range when the condition (130) is
satisfied is illusory, since in reality the pumping contribution
is a multiple of D0 / �2ÿ E� and vanishes when E! 2. In
connection with the substitution n0 ! �n��k� in equation (124)
it should be said that the correct RG-technique allows
substantiation of a similar replacement n0 ! �n! �n��k� in
renormalization-invariant objects of the type of correlators
expressed via renormalized parameters (see Section 2.6), but
separate nonrenormalized constants of the type of n0 cannot

be thus transformed into momentum-dependent quantities:
they can be expressed through invariant variables and
momentum k, but only in such a combination in which the
k-dependence cancels out, see Eqn (50). It also should be
noted that the physical idea of mutual cancellation of the
contributions of pumping and dissipation in the inertial range
contradicts the conventional phenomenology of a developed
turbulence, actually denying the very notion of inertial range.
A similar `detailed equilibrium' is realized only in models of
the type of critical dynamics [23] describing systems in the
state of a thermal equilibrium. They differ qualitatively by the
mechanism of pumping (dF � const or const� k2) from
models of a fully developed turbulence.

The last remark concerns the calculation of the Kolmo-
gorov constant (143), see Ref. [70]. The employed relation
(138) was obtained by substituting the function (8) into
integral (3) with the cut-off k5L, where L �W=n30 is a
parameter determined exactly. In nonphysical conditions of
UV-pumping, it is, in principle, equally possible to cut off
integral (3) not at L but at a certain value of the order of L.
This will lead to the change L! cL in Eqn (138) with an
unknown parameter c � 1. Thus, an extra factor c2ÿE will
enter the relation (143), and when expanded in E, this will
change (in fact, arbitrarily) the E-expansion coefficients (144)
of the Kolmogorov constant. Note that a similar uncertainty
is also present if calculations are donewith the help of relation
(134), since the latter contains only the value of the integral at
y � d, which corresponds to E � 2, and, therefore, correlators
can be determined only up to arbitrary factors of the type of
c2ÿE. Consequently, one should not attach too much impor-
tance to the numerical results obtained in the framework of
the simplest approximations. Coincidence of values of the
Kolmogorov constant obtained by different methods with
each other and with the experimental value to an order in
magnitude is quite a good result.

3.10 On deviations from Kolmogorov scaling.
IR renormalization group
At present there are experimental data which testify to small
deviations from predictions of the Kolmogorov theory
(Section 2.1) in static correlators of certainGalilean-invariant
quantities [35 ± 38]. To be more precise, the point is in
deviations of experimentally measurable exponents of the
distance r � jxÿ yj from the values predicted by the Kolmo-
gorov theory. At the level of phenomenology they are usually
described by extra exponents of �mr�... in correlators (in
contradiction with the Kolmogorov hypothesis 1), whereas
theoretical models explain them by strongly developed
fluctuations of the operator of energy dissipation (83), see,
for instance, [79]. Specific discussion in the literature concerns
the following two expressions for static �t � 0� correlators in
the inertial range:

hF n
r i � const� �Wr�n=3�mr�qn ; �148�

E�x�E�y�� � const�W 2�mr�ÿm : �149�

Here Fr � j1�x� ÿ j1�y�, j1 is a particular component of the
velocity;E�x� � _Edis�x� is operator (83);W is themean power
of the energy pumping (3); r � jxÿ yj.

According to the Kolmogorov theory we should have
qn � m � 0 in Eqns (148), (149); experiment (by exponents of
r) gives 0:24m4 0:5 [35 ± 38]. In Ref. [36], in particular, it
was found that m � 0:20� 0:05. The experimental graph of
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dependence of qn on n for even 24 n4 18 is presented in Ref.
[36]. Usually it is supposed that q25 0, though the experi-
mental value of q2 is indistinguishable from zero [36 ± 38].
With the aid of a coordinate version of equation (124) one
may rigorously prove that q3 � 0. For n5 4 the exponents qn
become noticeably different from zero [36].

From the viewpoint of the RG-theory expounded ear-
lier, the quantity (149) possesses a definite critical dimension
2DE with DE � 4ÿ 2E according to Eqn (88); and Eqn (148)
is a mixture of terms of different dimensions. This repre-
sentation reflects only the leading contribution with dimen-
sion nDj � n�1ÿ 2E=3�. The Kolmogorov values of expo-
nents (148), (149) are obtained at E � 2. The general
formulae of IR-scaling (Sections 2.7, 2.8) admit the presence
of arbitrary scaling functions f�mr� on the r.h.s. of Eqns
(148), (149), and representation (148), (149) is to be under-
stood as the statement concerning the explicit form of the
leading term of asymptotic behavior at mr! 0 of these
scaling functions.

In Ref. [45] (see also Refs [75, 76]) an attempt was
undertaken to interpret Eqns (148), (149) on the basis of the
standard RG-theory for a massless model (8) by choosing the
real value of E slightly different from E � 2. When applied to
Eqns (148), (149), this means that n=3� qn � ÿnDj, m � 2DE

with dimensions Dj � 1ÿ 2E=3, DE � 4ÿ 2E known from
Eqns (41), (88), from which it follows that m � 2�4ÿ 2E�,
qn � ÿnm=6. With an appropriate choice of E < 2 one can
obtain any given m > 0, but then all qn will be negative in
contradiction with the exact equation q3 � 0 and conven-
tional phenomenological notions, according to which q25 0.
Therefore a simple idea of Ref. [45] of the shift of E for
explaining representations (148), (149) is not valid, to say
nothing of pumping (8) being ultraviolet for E < 2 (see Section
2.1) and being able to lead only to relations of the type of Eqns
(148), (149) with the changem! L, thus coming into contra-
diction even with the Kolmogorov hypothesis 1.

The authors of Ref. [80] tried to obtain representation
(148), (149) by using the RG-technique for a mass-dependent
model (9) considering only the contribution of the dissipation
operator (83) to SDE-representations of the type of Eqn (109)
(it is important that objects in Refs (148), (149) are Galilean-
invariant, and Eqn (83) is the only known operator with this
symmetry which can be dangerous around E � 2).

This leads to the representations

hF n
r i � const� �D0�n=3rÿnDj

�
1� Cn�mr�DE � . . .

�
; �150�


E�x�E�y�� � const�D2
0r
ÿ2DE

�
1� CE�mr�DE � . . .

�
; �151�

with a usual Dj � 1ÿ 2E=3, DE � 4ÿ 2E at any E, with D0

from Eqn (9) and some universal (depending only on E)
coefficients Cn, CE. For E < 2 the leading contributions at
m! 0 to Eqns (150), (151) are the first terms, and this
produces the results of Ref. [45]. In Ref. [80] the possibility
of a choice of E > 2 was considered. In this case the second
terms in Eqns (150), (151) give the leading contribution, and
they should be identified with expressions (148), (149), which
gives m � DE � 4ÿ 2E < 0, qn � m�3ÿ n�=3. These answers
again do not agree in signs with experimental values and, as
noted in Refs [48, 49], contradict the exact equations
q2n4 2qn which follow from the property that the averaging
measure in Eqn (148) is positive. This contradiction can be
removed if and only if it is assumed that besides the
dissipation operator there exists an infinite number of

operators of the same symmetry which become dangerous at
E � 2; however, in practice, operators of this type are not
known [see the discussion of relation (104) in Section 3.3].

In a series of papers [81 ± 85, 25] attempts were undertaken
to investigate the dependence of spectrum (60) onm and thus
to determine the exponent q2 in Eqn (148) with the use of a
new `infrared renormalization group.' The general idea is that
IR-divergences (when m! 0) can be handled exactly in the
same way as UV-divergences (whenL!1). In the formula-
tion of Ref. [85] this reduces to the statement that IR-
divergences can be removed by the conventional procedure
of multiplicative renormalization of fields and parameters;
natural freedom of this procedure leads to the corresponding
RG-equations (see Section 2.4). In the earlier formulation of
Ref. [81], the RG-equations realizing the same idea were
derived by the recurrence procedure with a consecutive
elimination of contributions of small rather than large (as
usual) momenta of integration. Note that for the first time a
similar idea was proposed (but not realized) in report [66],
p. 116.

However, the results obtained with the use of the IR
renormalization group simply cannot be considered reliable,
since general statements necessary for derivation of RG
equations (the structure of divergences, multiplicative renor-
malizability, etc.) have never been proved rigorously here
and, in fact, they were assumed to be true in analogy with the
corresponding statements of conventional (ultraviolet) renor-
malization theory. In reality, there is no analogy at all and
thus there is no IR-renormalization theory similar to the
universal well-developed UV-renormalization theory. The
latter is based on two statements: (1) an UV-divergent part
of any one-loop 1-irreducible diagram is a simple polynomial
in a set of external momenta and frequencies, and its degree is
determined from dimension; (2) the same is valid for any
multiloop diagram if one removes divergences of all its
subdiagrams beforehand. The first of these statements is
obvious, and the second is rather nontrivial but it was
rigorously proved by many authors for a wide class of
quantum-field models (see, for instance,the theorem on R-
operation in Ref. [5]). Unlike UV-divergences, there is no
simple and universal rule for definition of the general
structure in momenta and frequencies for IR-divergent parts
even of simplest one-loop diagrams, to say nothing of multi-
loop ones. The model of turbulence with an effective viscosity
used in Refs [81, 82, 85] has been analysed from this
standpoint in Ref. [55], where it was shown that the multiple
of logm contributions from one-loop 1-irreducible diagrams
do not coincide in the momentum-frequency structure with
terms of the action functional, and thus they cannot be
removed by multiplicative renormalization. This possibility
was realized in the calculation made in Ref. [85] just because
the author voluntarily (and illegitimately from the viewpoint
of renormalization theory) restricted himself to zero external
frequencies.

The general conclusion is that the modern RG-technique
ensures the existence of IR-scaling for asymptotic behavior at
m � k! 0 of static correlators, but does not yet allow to
solve exactly the second IR-problem, i.e., to determine
dependence on m at m=k! 0. To solve it we apparently
need to find all dangerous operators and perform explicit
summation of their contributions to SDE-representations for
equal-time correlators of the type of Eqns (148), (149), as it
has been done with operators of the form of jn in representa-
tion (110) for non-equal-time Green's functions. It is
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obviously a complicated problem that requires essential
development of the existing technique.

4. Conclusion

In conclusion, we mention the studies on the RG-theory of
turbulence which we could not consider in this review because
of the lack of volume.

For the first time the RG-technique was successfully
applied to hydrodynamics in Ref. [86], where fluid was
considered in the state of a thermal equilibrium and sub-
stantiation of the equations of hydrodynamics was discussed
in connection with the problem of `long-time tails' of
correlation functions.

In a series of works the RG-approach was used to study
more realistic models of a fully developed turbulence, which
take account of weak [87 ± 90] and strong [91] anisotropy,
gyrotropy (the violation of spatial parity) [92, 93], compres-
sibility [74, 94 ± 96], inhomogeneity, damping, and real
geometry of the problem [46, 59, 70, 97 ± 100]. The problem
of possible IR-relevant corrections to the Navier ± Stokes
equation was touched upon in Refs [16, 32, 78, 101] and
considered in detail in Ref. [102].

The authors of Refs [31 ± 33, 76, 77, 103 ± 105] analysed
the turbulent convection of a passive scalar impurity and
effects of thermal conductivity. In Ref. [103] substantiation
was obtained for the phenomenological Richardson's `4/3
law' for spreading of a cloud of impurity particles and the
expression

u� � 1

2

�������������������������
1� 8�d� 2�

d

r
�O�E�

was found for the inverse effective turbulent Prandtl number
reproduced then by many authors. The Batchelor constant
was computed in Refs [33, 77] for a spectrum of the passive
impurity analogous to Eqn (60); convective turbulence was
investigated in Ref. [76].

Magnetohydrodynamic turbulence was studied in Refs
[106 ± 109]; with anisotropy, in Ref. [89]; with gyrotropy, in
Refs [92, 110]. In Ref. [110] the RG-method was used to
examine the phenomenon of a turbulent dynamo, sponta-
neous generation of a large-scale magnetic field. The
Langmuir turbulence of a plasma was studied in Refs [111,
112].

In Refs [65, 93, 97, 98, 100, 113] the model of a developed
turbulence based on the principle of maximal randomness of
the velocity field [13] and different fromEqn (1) was proposed
and thoroughly investigated.

In Ref. [101] (see also references therein and earlier papers
[114, 115]) an iteration procedure similar both to the Wilson
RG-procedure and to the technique of iterative averaging
over modes of lattice scales, which was more traditional for
turbulence theory, was developed. Another similar approach
was suggested in Ref. [116]. In Refs [117 ± 121] the IR
asymptotic behavior of velocity correlators was studied in
the framework of the hypothesis about algebra of fluctuating
quantities (which is a phenomenological formulation of the
operator product expansion, see Section 3.4); in Refs [117,
118] a two-dimensional turbulence was analysed by the
technique of conformal-invariant quantum field theories. In
Ref. [122] higher orders of the E-expansion were investigated
for the exactly solvable model of turbulent convection.
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