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Abstract. Main concepts of a new interdisciplinary research
area known as “Physics of Open Systems’ are introduced with
special reference to a criterion for the relative degree of order in
nonequilibrium states of such systems. Based on this criterion,
the notion of the ‘norm of chaos’ (‘norm of order’) is proposed
and used to differentiate between degradation and self-organi-
zation processes. The possibility of applying methods of open
system physics to investigations in economics, sociology and
physiology is briefly discussed.

1. An excursion into the history
of open system physics

The rise of the theory of open systems has been prepared by
the works of many eminent scientists in the 19th century, with
physicist Ludwig Boltzmann, mathematicians Henri Poincare
and Alexei Lyapunov, and certainly Charles Darwin, a
biologist, among them.

Ludwig Boltzmann called the 19th century the century of
Darwin to emphasize that Darwin’s theory of evolution based
on the principle of natural selection was one of the greatest
scientific achievements at his time. Such conclusion may seem
rather unexpected. Indeed, the 19th century brought about a
wealth of great discoveries in natural sciences, especially in
physics. Suffice it to mention thermodynamics, the funda-
mentals of which were laid by Carnot, Clausius, and
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Thomson in the 19th century. It was also the century of
Michael Faraday and James Maxwell, who created the theory
of electromagnetism. The basis for the modern kinetic theory
was also laid in the 19th century, and one of its initiators was
Ludwig Boltzmann. He suggested the first kinetic equation
for the description of irreversible processes in gases which
even now remains one of the basic equations in the theory of
nonequilibrium processes. Specifically, it describes processes
leading to equilibrium in gases. Ludwig Boltzmann was the
first to propose the statistical definition of entropy, one of the
main thermodynamic characteristics, and proved the famous
‘H-theorem’. According to this theorem, entropy of a closed
system monotonically increases in the course of transition
towards the equilibrium state and remains constant there-
after. Finally, it was Boltzmann who understood that entropy
in closed systems may be a measure of the relative degree of
chaos. Nonetheless, no less a person than Boltzmann defined
the 19th century as the century of Darwin. Thereby, he gave
priority to biological evolution [1].

Now, what underlies such a conclusion?

Boltzmann’s choice of priorities was certainly prompted
by his startling scientific intuition. There were no mathema-
tical models of biological evolution at Boltzmann’s time. But
Boltzmann had little doubt that his own theory of time-
dependent gas evolution in a closed system could be extended
to open systems, including all biological objects. Therefore,
he considered the Darwin theory to be the first step to the
theory of evolution of open systems at large. Boltzmann was
one of the few scientists at that time who came to understand
the significance of this ‘first step’. This induced him to speak
about the Darwin theory as the greatest discovery of the 19th
century.

Boltzmann could hardly rely on this view of his being
shared by many of his contemporaries. To begin with, his own
theory has met with objections by most scientists. In fact, an
extremely heated controversy has arisen. He had among his
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most active opponents Henri Poincare, the great mathemati-
cian and one of the founders of the qualitative theory of
differential equations and the theory of dynamical systems
stemming from the equations of Newton’s mechanics. Poin-
care simply denied Boltzmann’s theory.

Here is a small fragment from a book by I Prigogine From
Being to Becoming (Ref.[2]p 165): “Poincare went so far as to
write that he could not recommend the study of Boltzmann’s
paper because the premises in Boltzmann’s considerations
clashed with his conclusions”’. Having analysed the reversible
equations of mechanics, Poincare came to the conclusion that
the theory of irreversible processes and mechanics are
incompatible. This inference ensued in particular from the
impossibility of constructing a function playing the role of
entropy and implied that mechanics based on the reversible
equations of motion was incompatible with the theory of
irreversible processes.

There is another version of Poincare’s saying cited in a
paper by I Prigogine (see ref. [3]): ““In connection with this, it
is curious to recall a statement by Poincare that he could not
recommend anyone reading the paper of Boltzmann since he
cannot recommend studying scientific arguments in which the
conclusions contradict the initial principles”.

One cannot help noticing the striking difference between
this comment of Poincare and the opinion of Erwin Schro-
dinger, an outstanding representative of the next generation
of physicists and one of those who created quantum
mechanics. A line in page 156 in the book by I Prigoine
reads as follows: ““His (Boltzmann’s) direction of thought, I
might call my first love in science. No other has ever thus
enraptured me or will ever do so again”.

Thus, it was clear as early as at the turn of the 20th century
that the development of the theory of nonequilibrium
processes in physical and biological systems is a most
important problem in natural sciences. However, nearly a
century has elapsed from the understanding of the signifi-
cance of this problem till its partial solution.

The first serious contribution was made by Albert
Einstein, Marian Smoluchowsky, and Paul Langevin with
their theory of Brownian movement, i.e. chaotic motion of
small macroscopic particles suspended in a fluid, first
observed and described by R Brown, a Scottish botanist, in
1827 and thereafter referred to as the Brownian motiont. Itis
caused by the molecules of a liquid randomly colliding with
one another. Therefore, a system of Brownian particles
exemplifies an open system.

It follows from the Boltzmann equation that the average
energy of gas particles is conserved during evolution. This
condition is indispensable if entropy (hence, the degree of
chaos) is to increase in the course of evolution towards the
equilibrium state. On the contrary, the average energy of
Brownian particles varies during this process. For this reason
Boltzmann’s H-theorem is no longer valid.

+ The widespread opinion that R Brown was the first to observe ‘Brownian
particles’” is wrong. Lens systems had been used to obtain a multiplied
image of a subject as far back as the 16th century, and the first microscope
suitable for laboratory observations had been invented almost 200 years
before R Brown described his experiments. Therefore, investigators had an
opportunity to see chaotic motion of small particles in liquids much earlier
than Brown, e.g. Dutch scientists A Leeuwenhoek (1673 —1677) who first
described microorganisms or Jan Ingenhausz who observed movements of
ground charcoal particles at the surface of alcohol. R Brown did not
actually discover chaotic motion of suspended small particles, but he
designed special experiments to study it and undertook to formulate
physical laws underlying this phenomenon (note by GR Ivanitsky)

Note that according to the Boltzmann equation, the
average energy value, rather than the real one, remains
unaltered during evolution. This implies the possibility of
energy fluctuations, which accounts for both the Boltzmann
system and the system of Brownian particles being regarded
as open systems.

The modern statistical theory of open systems has been
created by the joint efforts of many scientists. We have
already noted the key role of Ludwig Boltzmann and Henri
Poincare in the development of the statistical and dynamical
theories of open systems. Later, their mathematical aspects
were elaborated by A M Lyapunov who greatly contributed
to the theory of stability of motion, A N Kolmogorov with his
works on dynamic systems (1957), physicists L I Mandelstam,
A A Andronov, N S Krylov, Ya B Zel’dovich, and many
others. Doubtless, V I Vernadsky, a father of the concept of
the noosphere (anthroposphere), must be reckoned among
those who greatly promoted the development of the theory of
self-organization.

Following this extensive historical excursus, attention will
now be devoted to the main topic. All other references shall
hereafter be treated as digressions.

2. Physics of open systems.
Dissipative structures. Synergetics

“Physics of open systems” — is an interdisciplinary field of
science. Here is a brief list of key words and notions to
characterize it: Chaos and Order; Open systems; Criteria for
the relative degree of order in open systems; Norm of chaos;
Degradation and self-organizing; Diagnostics of open sys-
tems; Constructive role of dynamic instability of atomic
motion; Transition from reversible to irreversible equations;
Kinetic and hydrodynamic description of nonequilibrium
processes taking into account the structure of ‘continuous
medium’; Description of equilibrium and nonequilibrium
phase transitions based on kinetic and hydrodynamic data;
Unified kinetic description of laminar and turbulent motions;
Quantum open systems. Certainly, many of these concepts
are not at all ‘new’. The purpose of “‘Physics of open systems”
is to elaborate ideas and methods for the integrated descrip-
tion of this broad class of problems [4].

Open systems can exchange energy, matter, and (last but
not least) information with the environment. We shall
consider only open macroscopic systems. They are composed
of many objects, constituent structural elements. These
elements may be microscopic, e.g. atoms or molecules in
physical and chemical systems. They may be small but
macroscopic such as macromolecules in polymers or cells in
biological structures.

Due to the complexity of open systems, they may host a
variety of structures. Dissipation plays a constructive role in
the formation of these structures. At first sight, this seems
surprising because the dissipation concept, is associated with
the attenuation of various forms of motion, energy scattering,
and the loss of information. It is extremely essential, however,
that dissipation is necessary for the formation of structures in
open systems. To emphasize this, I Prigogine has coined the
term ‘dissipative structures’. This comprehensive and exact
term covers all sorts of structures: temporal, spatial and time-
space structures. The latter are exemplified by autowaves [5].

The complexity of open systems provides an ample
opportunity for cooperative phenomena to occur. In order
to emphasize the role of collective interactions in the
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formation of dissipative structures, H Haken has introduced
the term ‘synergetics’, that means joint action [6, 7]. The
objective of synergetics is to reveal common ideas, methods,
and laws in totally different fields of natural science, sociol-
ogy, and even linguistics.

Moreover, synergetics is an area where various special
disciplines cooperate. The scope of synergetics is illustrated
by a series of books under the common title of Synergetics
published by Springer Verlag. The last issue in this series is
volume 67 [8].

Synergetics stems from thermodynamics and statistical
physics. This accounts for the word Physics being the first in
the title of this Section. Thereby, it is emphasized that the
theory of open systems is virtually based on fundamental
physical laws.

3. Degradation and self-organization in evolution

Evolution is the process of changes and development in
nature and society. Worded in this manner, it is a very general
concept. In physically closed systems, evolution in time
results in the equilibrium state to which maximum entropy
and the maximum degree of chaos correspond.

In open systems, it is possible to distinguish two classes of
evolutionary processes:

(1) Development in time towards the nonequilibrium
stationary state

(2) Evolution via a series of nonequilibrium stationary
states of an open system. The latter process is due to variation
of the so-called control (governing) parameters.

Darwin’s theory of evolution is based on the principle of
natural selection. Thus, evolution can either lead to degrada-
tion or represent a self-organizing process during which more
complex and sophisticated structures arise. Can self-organi-
zation be the unique outcome of evolution? The answer is
negative because neither physical nor even biological systems
display an ‘intrinsic drive’ towards self-organization. There-
fore, evolution may also lead to degradation. A physical
example is evolution to the equilibrium state, the most chaotic
one, according to Boltzmann.

Thus, self-organization is only one of the possible routes
of evolution. Criteria for self-organization are needed to
answer the question along which route a process will develop,
but such fundamental concepts as degradation and self-
organization are not necessarily to be defined. This is very
difficult to do, laying aside the ambiguity of such definitions.
Of much greater importance is the comparative analysis of the
relative degree of order (or chaos) in different states of the
open system being examined. Only such analysis can answer
the question whether the open system undergoes self-organi-
zation or degradation.

We have already emphasized the concepts of chaos and
order. Now, what distinguishes order from chaos?

There are cases when the difference between them is rather
clear-cut. However, it appears from the comparison of
laminar and turbulent flows that a seemingly obvious
inference may turn out to be totally incorrect. Quantitative
criteria for the relative degree of order (or chaos) in different
states of open systems allow a more reliable conclusion to be
obtained.

The results of such analysis are objective and provide
additional information which constitutes the basis for the
establishment of the ‘norm of chaos’ and helps to reveal two-
side deviations from the norm under the influence of various

impacts. In biology, for instance, all kinds of stress may cause
deviations in the degree of chaos from the norm. Deviations
on either side suggest ‘pathology’, i.e. represent the process of
degradation.

Therefore, a statement (based on a selected criterion) of
the impaired degree of chaos does not necessarily mean that
self-organization occurs and vice versa, an increase in the
degree of chaos is not always identifiable with degradation.
Such a conclusion is valid only for those physical systems
where thermal equilibrium may be taken as the reference
point for the degree of chaos. For example, in such, an open
system as a generator of electrical oscillations, the equilibrium
state is that of zero feedback when only thermal fluctuations
exist in the electrical contour.

Since an organism normally functions only if a certain
norm of chaos is available, corresponding to an essentially
nonequilibrium state, the above reference point is non-
existent. This accounts for the lack of objective information
about variation of the degree of chaos in biology as well as in
economics and sociology which hampers distinguishing
between self-organization and degradation in such systems.

However, another classification is equally relevant. The
norm of chaos being determined, deviations on either side
may be regarded as ‘pathology’, i.e. degradation. Therefore, it
is possible to monitor the choice of ‘therapy’. Here, a criterion
for the relative degree of order is at stake again. If the
‘treatment’ normalizes the state of the open system, in terms
of this criterion, self-organization occurs. Otherwise, ‘ther-
apy’ leads to further degradation.

What are the criteria for the relative degree of order? What
is the relative measure of order or disorder? These questions
are very difficult to answer and have not until recently been
clarified.

The difficulty in introducing the relative measure of order
(or chaos, for that matter) in open systems is in the first place
due to the absence of exact definitions for the initial concepts:
chaos, order, degradation, and self-organization. It has
already been mentioned that the definitions of these concepts
are to a great extent arbitrary. We have just noted that the
transition to a more chaotic state in sociology, economics,
and especially biology should not necessarily be regarded as
degradation. It is essential to consider deviations from the
norm of chaos.

In this context, it appears useful to consider the principal
concepts at greater length in order to formulate the criterion
for the relative degree of order without which the notions of
degradation and self-organization actually remain void of
meaning.

4. Physical and dynamical chaos.
Nonequilibrium phase transitions

Chaos and order are concepts given special emphasis as early
as in ancient philosophic schools especially by Plato and his
disciples. Disregarding minor details, it is worth mentioning
two principles formulated by them which remain of interest
even now.

According to Plato and his followers, chaos is a state of
matter which persists as matter loses the ability to display its
intrinsic properties. On the other hand, chaos gives rise to the
whole contents of the Universe, i.e. chaos produces order (see
[10]).

Although ‘chaos’ and ‘chaotic motion’ are fundamental
physical concepts, their precise definitions are lacking.
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Indeed, according to Boltzmann, motion in an equilibrium
state is most chaotic. However, motions far from equilibrium
are also called chaotic. Such is the ‘motion’ in noise
generators intended for signals suppression.

Normally, different forms of turbulent motion in gases
and fluids are also described as chaotic [11-13], e.g.
turbulent motion in pipes which arises from laminar motion
when the pressure difference at the ends of the pipe is
sufficiently large. It seems natural to conceive turbulent
motion as being more chaotic than laminar motion. How-
ever, such a view largely stems from the confusion of the
concepts of complexity and chaos. Observation of turbulent
motion primarily reveals its complexity, whereas additional
analysis is needed to estimate the degree of chaos and
appropriate criteria to quantify it [12].

Of late, the concept of ‘dynamical chaos’ has been
extensively exploited to characterize complex motions in
relatively simple dynamic systems [14, 15]. The word
‘dynamic’ implies the absence of fluctuation sources, that is
sources of disorder.

For this reason, the ‘dynamic system’ concept is a some-
what idealized one. A more real chaotic motion, with random
sources taken into account, might be called ‘physical chaos’.
An example is the chaotic motion of atoms and molecules in
equilibrium.

The mathematical notion of ‘dynamical chaos’ can be
traced back to the works of H Poincare and A N Kolmo-
gorov. E Lorenz appears to be the first to have reported an
example of dynamical chaos in 1963 [16]. He was attempting
to solve equations which describe convective motion in gases
and fluids. Convective motion results from the interaction
between gravitational field and temperature gradient created
by an external source of heat. Therefore, it occurs in an open
system.

Imagine a layer of a liquid heated from below. Convective
motion is manifested in that heated elements of the liquid
move upwards and cold ones downwards which results in heat
transfer from the bottom to the top. At rather small
temperature gradients, heat transfer depends on thermal
conductivity. It is a molecular (disorganized) process not
accompanied by ordered hydrodynamic motion which could
control heat transfer by analogy with the mode of traffic
control.

The situation is altogether different when the tempera-
ture gradient exceeds a certain critical value. The change is in
the appearance of a macroscopic motion in a fluid referred
to as convective motion. It results in the self-adjustment of
the thermal flow, that is in the upward movement of heated
elements along one sort of channels and the downward
motion of colder elements in different channels. This
accounts for the strictly ordered distribution of thermal
counterflows.

This situation is reminiscent of the control of traffic
moving in opposite directions. There is however an essential
difference. Indeed, traffic control is in conformity with
driving regulations, whereas convective motion is subject to
self-organization, and only a temperature gradient is given.
The reorganization of motion is due solely to intrinsic
properties of the system, and its outcome is apparent as the
appearance of dissipative dimensional structures at the liquid
surface, the Benar cells.

The liquid inside these cells lifts upward while it flows
down at the edges. Therefore, reorganization results in
enhanced transmission, in excess of that during a disordered

molecular heat transfer. The appearance of the new structure
may be regarded as a nonequilibrium phase transition.

Another example of nonequilibrium phase transition is
the occurrence of coherent electromagnetic radiation in
quantum optical laser generators.

5. Dynamical and statistical description
of complex motion

In the historical Introduction, mention was made of the long-
standing dramatic clash of opinions between adherents of the
two theories, that is, statistical and dynamical descriptions of
nonequilibrium processes. Nowadays, debates are not as
heated as they used to be at the beginning of the century, but
the two theories continue to develop as divergent trends.
Evidently, their synthesis is in order especially in view of
recent break-throughs made in the physics of open systems.

What is the reason for the opposition of these two basic
trends for such a long period? Is their independent develop-
ment justified?

The answer to the second question is self-apparent: a
synthesis is indispensable. The first question is more challen-
ging. It will be dealt with below.

We distinguish between two classes of systems, dynamic
and stochastic (statistical) ones. Such categorization is arbi-
trary because it is actually difficult to discriminate between
dynamical and physical chaos. However, differentiation is
possible based on the results of a numerical experiment. It is
justified because practically all mathematical models of
interest have no analytical solutions.

The basis of the classification may be constituted by the
property of reproducibility of motion under given initial
conditions. Then, by definition, reproducible motions in
nonlinear dissipative systems are reckoned as dynamic,
whereas those non-reproducible in terms of initial character-
istics as stochastic.

Naturally, all processes in a real experiment, where noise
is inevitable, are more or less stochastic. A numerical
experiment allows the initial conditions to be precisely
reproduced (at a given word length of the computer). The
reproducibility of a solution depends solely on the structure
of the mathematical model. If the equations do not contain
random sources, the process is easy to reproduce; hence, the
motion is dynamic, albeit sometimes very complicated and
practically unpredictable. Otherwise (in the presence of
random sources), the motion is non-reproducible in terms of
original characteristics and should be regarded as in nature
stochastic.

It is essential for a study of stochastic processes in a
numerical experiment that computer sources of random
numbers be constructed in compliance with a certain algo-
rithm and therefore actually determined. They may be
considered to be random if their characteristic recurrence
times are significantly longer than characteristic relaxation
times of a dynamic system.

The main feature of dynamical chaos is dynamic instabil-
ity of motion. It is expressed as strong (exponential) diver-
gence of the originally close trajectories and leads to their
mixing, which allows to proceed from the comprehensive
description based on the equations of motion for all particles
to simpler equations for the functions, smoothened over the
mixing volume. Thereby, the manner of description is
changed dramatically. The system of particles is replaced by
a continuous medium [4].
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A major contribution to the investigation into the
relationship between the dynamical and statistical descrip-
tions of complicated motion was made by the prematurely
deceased N S Krylov. He was the first to raise the question
of the role of dynamic instability and mixing as the basis of
statistical physics in his posthumously published book
Works on the Foundations of Statistical Physics (1950) [17].

6. Constructive role of dynamic
instability of motion

Relatively simple dynamic systems can give rise to very
complicated motions perceived as chaotic. This was the
reason for the introduction of such new concepts, as the
strange attractor and dynamical (or determined) chaos.

As a rule, the word ‘chaos’ has negative connotations in
physics, biology and economics. However, the concept of
chaos is a many-faceted one. For example, life can exist
neither in complete chaos nor in perfect order. A normal
organism needs a certain norm of the degree of chaos which
can be estimated and maintained based on quantitation of the
relative degree of chaos.

Given an opportunity to measure the relative degree of
chaos, the word requires no additional attributes. It is
therefore appropriate to ask whether the term ‘dynamical
chaos’ is relevant. In fact, it was coined to characterize the
complex states which arise from dynamic instability, i.e.
exponential divergence of trajectories at a minor change of
the initial conditions.

However, this term is somewhat in conflict with the fact
that the trajectories computed from dynamic equations can
be reproduced based on the initial data in a numerical
experiment. Moreover, we shall demonstrate below that
dynamic instability can play a constructive role in the physics
of open systems [4,19,20].

Let us consider an illustrative example from sociology.

Imagine yourself participating in an international con-
ference. Assume further that the conference is about to end.
Take this situation as the initial one. The participants must
choose between two possible courses of action when leaving
the conference:

1. They withdraw together without moving too far from
one another.

2. The participants depart each to his (her) residence or
institution, that is ‘diverge exponentially’. In other words, the
motion of the participants is ‘dynamically unstable’. Now,
which way (‘motion’) is more efficacious in terms of using new
information obtained at the conference?

Certainly, the former variant may be useful because it
gives an opportunity to continue personal contacts and
discussions. However, the latter type of ‘motion’, that is
‘dynamic instability’ and ‘mixing’ of the participants’ trajec-
tories is actually more conducive to further progress in
science.

This example shows that dynamic instability of motion
and mixing do not necessarily lead to ‘chaos’ and can play a
positive constructive role.

Turning back to physical systems, it is appropriate to
consider a rarefied gas. From the standpoint of mechanics, gas
evolution may be described using a system of equations for all
its atoms. Such a task is beyond the capabilities of even the
most powerful computers. What is to be done? How can
nonequilibrium processes be described in a gas, that is a
system composed of a huge number of particles? The solution

of the problem is possible by virtue of the constructive role of
dynamic instability of atomic motion in a gas.

Dynamic instability of motion, i.e. exponential divergence
of the trajectories, and effects of external factors are
responsible for the mixing of trajectories in phase space.
This accounts for the possibility of smoothening at physically
infinitesimal scales and introducing the concept of ‘contin-
uous medium’ to pass from reversible microscopic equations
of motion for gas particles to irreversible kinetic and
hydrodynamic equations for macroscopic functions of the
continuous medium.

In this approach, the atomic structure of a system is taken
in account to define ‘a point of continuous medium’. This
requires that physically infinitesimal time and length scales be
defined as well as the corresponding physically infinitesimal
volume which actually stands for the ‘point’ of a continuous
medium [11, 18, 4].

Naturally, it is desirable that such definitions agree with
the definition of the minimum mixing region and the
minimum time for the development of dynamic instability.

7. Criterion for the relative degree of order
in different states of open systems. S-theorem

Of all macroscopic functions, only entropy S possesses a
combination of properties that allow it to be used as a
measure of uncertainty (chaos) in the statistical description
of processes in macroscopic systems. Entropy was first
introduced into thermodynamics as a state function whose
change shows the amount of heat transferred to a system
(dQ = TdS). This equality expresses the second law of
thermodynamics for quasi-equilibrium, i.e. reversible pro-
cesses. In a reversible adiabatic process at dQ = 0, entropy is
constant.

Boltzmann gave a statistical definition of entropy for both
equilibrium and nonequilibrium (irreversible) processes and
proved the famous H-theorem.

It states: The entropy of a system tending to an equili-
brium state grows and remains unaltered after equilibrium is
attained. According to Boltzmann, the degree of chaos
monotonically increases during evolution and has the max-
imum value at equilibrium, entropy being a measure of
uncertainty (chaos).

In this context, it is essential that during the evolution of a
closed system to equilibrium in compliance with the Boltz-
mann equation, the average energy (E) remains constant.
However, conservation of average energy in course of
evolution is not a common property of all kinetic equations.

For the Brownian movement, it varies in the course of
evolution to equilibrium. For this reason, Boltzmann’s H-
theorem cannot be straightforwardly applied to this case. The
role of entropy in Brownian motion is played by a function
which is an analog of thermodynamically free energy in
nonequilibrium processes. However, free energy has no
properties necessary to be a measure of uncertainty for the
system’s state. Only entropy possesses such a combination of
properties.

It is only natural that the criterion for the relative degree
of order needs to be universal. There is no reason it should be
applicable only to a class of systems where average energy is
conserved during evolution. Which route may lead to the
solution of this problem?

Entropy being the sole function with the properties of a
measure of chaos, there is but one option. It is necessary to
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redefine entropy so that the average energy remains constant
in the course of evolution.

The previous paragraphs concerned evolution in time. Itis
equally possible to consider the evolution of stationary states
in open systems at slowly changing governing parameters. It
is for this type of evolution, that the criterion for the relative
degree of order in various states of open systems will be
introduced below. This criterion was for the first time
formulated for specific cases [12] and called the ‘S-theorem’.
Later, its general formulation was suggested, to make
possible the direct comparison between the relative degrees
of order from experimental data [18, 4].

The letter S in the name of the ‘S-theorem’ is the first letter
of the word ‘Self-organization’. Curiously, the term ‘H-
theorem’ was suggested by Berbery, an English physicist,
only a few years after it had been proved. The letter H in the
name of the H-theorem is derived from the English word
‘Heat’.

Let us consider the evolution of stationary states of an
open system at a varying control parameter a. Let us further
assume the existence of two states with the control parameters
a = 0and a = ay, e.g. the stationary states of the Van der Pol
generator at different values of the feedback parameter [12].
Of course, the description of generation should take into
account both current and charge fluctuations. Then, thermal
fluctuations of the current and the charge in the electrical
contour correspond to the former parameter value, when
feedback is absent. The developed generation state, with the
feedback parameter considerably exceeding the threshold,
corresponds to the latter value.

In the general case, the degree of order of the distinguished
states differs, which accounts for one of them being more
chaotic than the other. Let us term it ‘physical chaos’. As a
rule, this state is nonequilibrium and more ordered than the
equilibrium state. However, in the case of a generator with
a = ay, it coincides with the equilibrium state.

Let us denote the macroscopic characteristic of the
stationary state as X. The role of X for a generator can be
played by the oscillation energy E. Let us further denote the
distribution functions of two distinguished states as fy, /| and
the corresponding entropy values as Sy, S;.

In the general case, there is no such notion as energy for an
open system and only the effective energy can be introduced.
It may just as well be termed the effective Hamilton function
and denoted as He. It is defined by the distribution function
of the physical chaos state Heir = — In fjy and as a rule vanishes
with a change of the control parameter. For this reason,
functions substituted by the corresponding new values fj, So,
if the entropy difference Sy — S; needs to be used as a measure
of the relative degree of order in the distinguished states.
These new values are determined from the equality condition
for the examined states of the average effective Hamilton
function. When the physical chaos state coincides with the
equilibrium state, as is the case with the Van der Pol
generator, renormalization is carried out by substituting
temperature 7 by the new value 7. It is determined from the
solution of the equation which describes the equality condi-
tion for the average effective Hamilton functions in the two
states of interest. This equation has the form:

JHeffjo(X, a:ao)dX:JHefffl(X, a=a)dX. (1)

Given the correct choice of the ‘physical chaos state’, the
solution of this equation has the form:

T(a)>T. )

The sign of equality is relevant at a = a, i.e. for the state of
physical chaos. Evidently, the state ‘0’ should be ‘heated’ to
equalize average energies. As the comparison is now made at
identical values of the average effective energy, the entropy
difference Sy, S can serve as a measure of the relative degree
of order in the distinguished states.

The renormalized distribution function may be presented
in the form of the canonical Gibbs distribution:

- Feff(T) _~Heff(X) )

Aal) = exp =T )

The corresponding expression for the Boltzmann—Gibbs—
Shannon entropy is derived from the equation

So=— J In(7o (X)) fo(X) dX. (4)

Now, let us turn back to the equation (1). If the ‘0’ state is
coincident with equilibrium, its solution has the form (2), with
T standing for the temperature. In the general case, the ‘0’
state, i.e. the state of physical chaos, is a nonequilibrium one.
The distribution (3) includes effective temperature which is
equal to unity for the physical chaos state. Therefore, the
solution (2) should be written in the form

T(a)>1. (5)

Here, the sign of equality also corresponds to the state of
physical chaos. However, both effective temperature and free
energy are now dimensionless. If the inequality (5) is valid at
control parameter values a > ay, the choice of the condition
‘0’ in the form of physical chaos is correct, and the relative
degree of order in the distinguished states is defined by the
difference between the corresponding entropies. ~

Using the expression (3) for the distribution function f
and the constancy condition for the average effective Hamil-
ton function, the expression for the entropy difference may be
presented as the inequality:

S‘O—S1:—J(lnfl(NX)>f1(X)dX>0. (6)

Jo

on the condition that

(Hegr) = const . (7

The known inequality Ina>1—1/a at a :fl/fo is used to
derive the formula (6).

To summarize, the result of computing the relative degree
of order in the two distinguished nonequilibrium states is
represented by two inequalities. One (5) confirms the correct
choice of the ‘0’ state as presenting physical chaos. Given the
opposite inequality, physical chaos would be represented by
the state ‘1’. The formula (6) provides a quantitative measure
of the relative degree of order in the distinguished states.

The above calculations were made for the case of one a
parameter. When several control parameters are available, it
is possible to optimize the search for the most ordered state.

Let us now apply the ‘S-theorem’ to estimate the relative
degree of order upon the transition from laminar to turbulent
flow [4, 13, 18, 21].
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8. Is turbulent motion more chaotic
than laminar motion?

The concept of ‘turbulent motion’ was first introduced more
than one hundred years ago. However, until recently, the
question of which of the two motions (laminar or turbulent) is
more chaotic had not been answered convincingly. The
majority of authors considered the answer to be perfectly
clear: laminar motion must be more orderly. However, this
opinion is due to the confusion of the concepts of ‘complexity’
and ‘chaos’.

The conspicuous complexity of the turbulent flow is
possible to see, so to say, with the naked eye. Nevertheless,
the definition of the relative degree of its order requires that
the relevant criterion be used. Calculations based on the S-
theorem allowed the general results (5), (6) to be specified for
the case of transition from the laminar flow in a pipe to the
steady state turbulent flow.

It will be clear from the forthcoming discussion that
laminar flow may be assumed to represent the state of
physical chaos. The role of the effective Hamilton function
is played by the average kinetic energy of the laminar flow.
For the equality of this energy in both laminar and turbulent
flows to be true, the laminar flow should be ‘warmed up’:

m
kB Tlam = kB Tturb + ? <(5U)2> = kB Tturb . (8)

The temperature difference is defined by the sum of squared
diagonal elements in the Reynolds stress tensor. Reynolds’
stress representing collective degrees of freedom, the equality
(8) may be interpreted as indicating that a part of thermal
(chaotic) motion is replaced by the collective degrees of
freedom during the transition from laminar to turbulent
motion. This justifies the choice of the Reynolds stress tensor
as the order parameter of the turbulent flow.

The above discussion accounts for the choice of laminar
flow as the physical chaos state.

Therefore, the chaotic motion fraction decreases and that
of a more ordered motion increases with the development of
turbulence. We shall see that it is reflected in reduced entropy.

The result (6) which in the present case defines the relative
degree of order in laminar and turbulent flows has the form:

T(Stum = Surv) = 5 ((0u)°) > 0. 9)

Thus, the entropy of the turbulent flow is lower than that
of the laminar one. This implies a higher degree of order in the
turbulent flow. Here, the role of the control parameter is
played by the pressure difference at the ends of the pipe. At its
zero value, the fluid is in an equilibrium state characterized by
the maximum degree of chaos. This is another important
example of a physical system in which the equilibrium state is
taken as the reference point for the degree of chaos. One more
example is the Van der Pol generator.

When the pressure difference is other than zero, all states
are better ordered. This adds weight to the argument, in
accordance with what is said in Section 3, that the transition
from laminar to turbulent flow is an example of the self-
organization process. However, this does not mean that the
degree of order grows monotonically with increasing Rey-
nolds number.

A higher degree of organization of the turbulent motion
compared with that of the laminar one is also apparent as
demonstrated below.

The momentum transfer between layers in a laminar flow
is mediated through a molecular mechanism which consists in
independent changes of momenta of individual gas particles.

Conversely, in the case of a turbulent flow, the momentum
transfer from one layer to another is a collective process. It
other words, individual disorganized motion in a laminar
flow changes, upon transition to the turbulent flow, into
collective (hence, more organized) motion.

This results in the turbulent viscosity coefficient being
much higher than the corresponding parameter for a laminar
flow.

A higher degree of order in turbulent motion is also
confirmed by calculations of entropy production.

9. Estimation of the relative degree of order
from experimental data

Practical application of the S-theorem implies that the
effective Hamilton function is known. It is easy to find
provided a mathematical model of the process in question is
available. In many cases, however, there are no adequate
mathematical models for open physical systems. This pro-
blem is even more complicated as far as biological, social, and
economic entities are concerned.

Therefore, it is sometimes necessary to be able to
determine the relative degree of order in open systems directly
from experimental data. This can be achieved in the following
way:

1. By selecting control parameters for a given system, e.g.
two states of the system with control parameters ¢, and
ap + Aa.

2. By experimentally obtaining sufficiently long temporal
realizations for the chosen values of the governing para-
meters.

)(()(l‘,a())7 X([,a0+A£l). (10)
These data are loaded into a computer and used to construct
the corresponding distribution functions:

fo(X,a0), (X, a0+ Aa). (11)
The two distributions are normalized to unity.

Further operations are routine.

3. By assuming one of the states, e.g. ‘0’ state, to be the
state of physical chaos and finding the effective Hamilton
function:

Her = —Info(X, a) - (12)
Thus, it is derived directly from experimental data. Similar to
what was said above, the term ‘effective Hamilton function’ is
due to the fact that the distribution function renormalized to a
given value of (Hr) has the form of the canonical Gibbs
distribution:

i) = exp Pt M),

(13)
Here, Tlis the effective temperature. For the state of physical
chaos, T =1. B

The effective free energy as a function of T is estimated
from the normalization condition for the function fy. The
dependence of effective temperature on variation of the
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control parameter Aa can be found (as above) from the
condition that the average effective energy be constant

| tacfoxoam) ax = [ Has v+ sayax. 4)
The choice of the physical chaos condition is justified if the

solution of this equation has the form (5). The relative degree
of order is again calculated by the formula (6).

10. Diagnosis of medico-biological objects based
on the S-theorem

Let us consider some applications of the S-theorem for the
purpose of medico-biological diagnostics. Investigations into
this problem were initiated in Kiev and Moscow in 1990,
using both mathematical models and experimental data. In
1994, the first results of the analysis of cardiograms based on
the S-theorem were obtained by the joint efforts of biologists
and clinicians in the Laboratories of Nonlinear Dynamics at
the Saratov and Potsdam Universities of [22 —24].

Analysis of the relative degree of order for the purposes of
medico-biological diagnosis was performed using data col-
lected by examining both individual patients and selected
groups of them.

Biological experiments reported by T G Anishchenko
revealed significant differences in the responsiveness of male
and female rats to the noise stress. Biochemical studies have
also demonstrated opposite changes in the conditions of the
two sexes. This finding provided the basis for a study of men
and women’s behavior in response to stress. The evaluation
was also made using the S-theorem.

Two cardiograms were obtained from each subject
included in the study, one before and the other after identical
stress impact (a shrilly acoustic signal).

Two cardiograms being available from each subject, this
allowed a change in the relative degree of order to be
individually estimated using the S-theorem. The experiment
has demonstrated opposite changes in the degree of order in
men and women, the former showing a decreased degree of
chaos, while in the latter it increased.

In both cases, there was a deviation from the ‘norm of
chaos’ suggesting ‘pathology’. It is for physicians to decide
which ‘disease’ is more dangerous.

The return to the ‘norm of chaos’ may be spontaneous.
Then, the ‘recovery’ occurs unaided, with time serving as the
control parameter.

If the patient’s conditions are normalized by drug therapy,
its efficacy is possible to evaluate using the same criterion.

Naturally, each doctor has his (her) own criteria unrelated
to the S-theorem. However, it may be equally useful to take
advantage of the additional objective information derived
from the analysis of the relative degree of order as described
above.

The efficacy of medical diagnosis may be enhanced
substantially if based not only on information about a given
patient but also takes into consideration statistical data
obtained by examining cohorts. However, the very first
investigations in this sphere proceed from the assumption
that both the cardiovascular system and the nervous system
controlling it function in a similar way in all humans. This
actually reduces the problem to the examination of different
states of one and the same system.

The analysis was conducted using tachograms which
depict time-dependence of cardiac rhythm patterns. The

choice of the ‘reference point’ for the relative degree of order
was based on the S-theorem using power spectra of tacho-
grams obtained from a group of healthy subjects. The
reference point for physical chaos was the state of a healthy
subject producing a tachogram with the maximum degree of
chaos. If entropy of this state is denoted as Sy, then the main
characteristic is the difference between entropies

AS=5-35S, (15)
which characterizes the degree of chaos relative to its ‘norm’
in the group of healthy subjects.

A large group of patients was then examined. It turned out
that they could be subdivided into three groups based on
selected criteria. One group was comprised by patients in
which the disease was associated with a decrease in the degree
of chaos, i.e. ‘excessive order’. Two other groups included
patients exhibiting an enhanced degree of chaos in the heart’s
work. In one of them, this rise was moderate, whereas in the
other, the patients were characterized by an anomalously high
degree of chaos in the cardiac performance.

It should also be recalled that these studies proceeded
from the very strong assumption of the identity of cardiovas-
cular function in all the patients. However, this restriction
may prove rather weak because only relative characteristics
were examined. At any rate, these investigations have
demonstrated that the S-theorem may be used as a sensitive
tool in diagnosing the state of medico-biological systems.

11. What is self-organization?

Two classes of systems were outlined in a previous Section.

One of them includes many physical systems exemplified
in the foregoing discussion by two cases. To begin with, it is a
Van der Pol generator in which losses (of electrical resistance)
are first compensated as the feedback parameter grows while
its further rise results in the transition to the developed
generation region. According to the S-theorem, this is a case
of self-organization. This process starts from equilibrium,
that is, thermal fluctuations in an electrical contour in the
absence of feedback. This leads to the conclusion that the
process of self-organization may be defined as the transition
from a most chaotic (equilibrium) state to a more ordered one
(generation).

The situation is similar in the transition from laminar to
turbulent flow in a pipe with increasing pressure difference (a
higher Reynolds number).

Here, the reference point for the degree of chaos is also the
equilibrium state of a fluid in the absence of pressure
difference, that is at the zero control parameter. In this case,
hydrodynamic motion is lacking and only chaotic motion of
molecules occurs. Evidently, this state is most chaotic.

Again, the process of self-organization is the transition
from a more chaotic to a less chaotic state. Is this the universal
definition of self-organization? It can be inferred from the
previous section that the process of self-organization is not
necessarily associated with an increase in the degree of order.

Indeed, there is a broad class of systems (in the first place,
biological systems) for which neither the state of complete
chaos (thermodynamic equilibrium) nor that of ideal order
can be realized. Biological systems would not function under
such conditions.

A more fundamental notion for such systems is the ‘norm
of chaos’ which has been used more than once in the previous
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discussion. This notion is compatible with that of ‘health’.
Then, self-organization is the process of reconvalescence.

Now, let us turn back to the aforementioned studies on
the responsiveness of men and women to stress. Earlier, we
have agreed to regard post-stress conditions as ‘pathology’.
This means that the transitions to the ‘norm of chaos’ in
women is actually the ‘recovery’ referred to above as self-
organization, i.e. the transition from a more chaotic to less
chaotic state.

Conversely, the stress-induced state in males is ‘illness’
which corresponds to a more ordered state.

Hence, the ‘recovery’ (self-organization) in men is the
transition from an ordered state to a more chaotic one.

Thus, the concepts of self-organization and degradation
in biological systems cannot be unequivocally related to an
enhanced (self-organization) or impaired (degradation)
degree of order respectively.

A more fundamental notion for such systems is the ‘norm
of chaos” which can be estimated from empirical data using
the ‘S-theorem’.

To summarize, it appears from the above analysis that in
certain cases self-organization is easy to observe, e.g. the
generation developing in a Van der Pol system with an
increasing feedback parameter. Other well-known examples
are the appearance of a new structure (Benar cells) at the
liquid surface heated from below and Taylor vortices between
rotating coaxial cylinders.

Using the most fortunate term ‘dissipative structures’
coined by I Prigogine, the self-organization process may be
described as the spontaneous occurrence of structures in
nonlinear dissipative open systems, e.g. temporal dissipative
structures in the Van der Pol generator and spatial dissipative
structures exemplified by the Benar cells and Taylor vortices.
The famous Belousov—Zhabotinsky reaction is an example
of time-space structures. Elimination of the control para-
meter (feedback, temperature gradient, etc) in all these cases
results in a ‘system at rest’, i.e. one in the state of thermo-
dynamic equilibrium.

Such understanding of the term ‘self-organization’ under-
lies the theory of formation of dissipative structures. The first
systematic exposition of this range of problems has been given
in the well-known works of I Prigogine and G Nicolis [25].
The starting point was Prigogine’s ideas on thermodynamics
of irreversible nonequilibrium processes. H Haken’s theory of
self-organization is based on the appearance of structures due
to collective interactions. In other words, cooperative pro-
cesses are posited as being of primary importance. This
prompted H Haken to use the term ‘synergetics’ for this new
interdisciplinary field of research. The basic equations of
synergetics are also nonlinear dissipative equations, e.g.
reaction-diffusion equations or Ginzburg—Landau time
equations.

In more complicated cases such as transition from one
turbulent motion to another, in biological systems, it is
possible to distinguish between the processes of degradation
and self-organization based on the criterion for the relative
degree of chaos (or order) in different states of open systems.
In such cases, the understanding of self-organization as the
appearance of new structures or the transition from less to
more ordered states becomes insufficient.

This inference is valid for all systems in which the
equilibrium state can not serve as the reference point for the
relative degree of chaos (or order). Here, the ‘norm of chaos’
concept is of greater importance and, in the general case,

certainly applies to the nonequilibrium state, with the
transition from ‘pathology’ to ‘health’ corresponding to self-
organization. Since deviation from the norm is possible in two
directions (towards a greater or smaller degree of chaos), the
self-organization process may in the general case also proceed
in two directions.

Therefore, the traditional definition of self-organization
as the spontaneous formation of structures in dynamic
nonlinear dissipative open systems is too ‘narrow’. A more
comprehensive description of self-organization processes,
even their mere identification, is feasible by the methods of
the statistical theory of open systems [4].

The basic equations of this theory are kinetic equations
for the distribution functions f{X, R, f) of the values of the
internal parameters X in space and time most essential for the
problem being considered. These equations may be used to
obtain a wide class of dynamic nonlinear dissipative equa-
tions for the moments of distribution function f(X, R, 1)
including reaction-diffusion equations for the first moments
X(R, T), that is basic equations of the modern self-organiza-
tion theory (synergetics).

It follows from the above that the theory of self-
organization (synergetics) has numerous important implica-
tions despite the fact that it is a very young interdisciplinary
field of science. However, the term °‘self-organization’ is
actually rooted deep in ancient thought. This is a very
interesting question worthy of illustration by the following
facts.

In 1966, the book on ‘Principles of Self-Organization’ [26]
was published in the Russian language. It is a collection of
reports delivered to a Symposium at the Illinois State
University, USA, in 1961. Here is a quotation from the
Preface to the Russian edition by A Lerner, the editor:

“Despite the marked prevalence of self-organizing sys-
tems and persistent attempts of scientists to understand the
phenomena occurring in such systems, self-organization has
in a way remained for many centuries perhaps the most
mysterious phenomenon, the most intimate of nature’s
secrets’.

The Preface goes on to state: ““... the reader will hardly find
here a report which would not claim to disclose the mystery of
self-organization™.

Heinz von Foerster, the editor of the American publica-
tion, writes in the Introduction with reference to a story by
Plato, a famous Greek philosopher: “The house of Agathon
was the place where the first memorable symposium was held
on the problems lying at the junction of different sciences,
attended by philosophers, statesmen, dramatists, poets,
sociologists, linguists, doctors and students learning various
trades”.

The report by Y Eshby, a known expert in the field,
contains a statement to the effect that the word ‘self-
organization’ can also mean ‘transition from bad to good
organization’, even though the author does not explain how
to distinguish between ‘bad’ and ‘good’. An approach to this
problem is illustrated by the above-mentioned analysis of
cardiograms which allowed to differentiate between ‘health’
and ‘pathology’. Such a distinction is also possible based on
the above criterion for the relative degree of chaos in different
states of open systems.

Naturally, there are more diagnostic criteria to evaluate
the state of biological systems. However, the comparison of
different diagnostic tools is a matter which requires special
attention.
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12. Physics of open systems for sociologists
and economists

H Haken has reported one of the earliest applications of
synergetics to sociology [6]. The expedience of applying
synergetics for this purpose is due to the important role of
collective effects in social processes. Specifically, they are to a
great extent involved in shaping public opinion even though
separate acts of choice are, by necessity, individual. A model
survey of social systems was carried out by the group of
W Weidlich [27] who suggested simple models for the
description of the formation of public opinion, population
migrations, and urbanization.

At present, methods of synergetics are extensively
employed to simulate economic processes. Economics is an
ancient science with deeply rooted traditions and advanced
methods of qualitative and quantitative description of var-
ious processes. Nevertheless, there is a wealth of unresolved
problems challenging the physics of open systems to apply its
methodology in this field.

A substantial part of these problems is related to the
optimization of the relationships between production, dis-
tribution, and consumption based on the criterion for the
relative degree of order in open (social or economic) systems.
Such an approach may hopefully provide additional informa-
tion necessary to monitor the efficiency of the assumed
control parameters, to estimate the ‘norm of chaos’, and to
‘treat the disease’, that is a deviation from the ‘norm of chaos’
on either side.

In case of spontaneous ‘recovery’, i.e. without interference
from the outside (‘medication’), ‘reconvalescence’ may also
be regarded as a self-organization process. Certainly, similar
to the situation with biological systems, the equilibrium state
cannot serve as the reference point in estimating the relative
degree of chaos in social and economic systems. Only the state
corresponding to the ‘norm of chaos’ may be used for this
purpose. Identification of such a state is the principal task
which can be accomplished using criteria for the relative
degree of order in physics of open systems.

13. Concluding remarks

A few years ago, G Cagliotti, an Italian investigator,
published a popular-science book under the title of Dynamics
Ambiguity. The two first Italian editions (1982, 1986) were
later translated into German (1990) and English (1992) [28].
The English version had the foreword by H Haken. The
Preface to the Russian edition due to appear soon was written
by I Prigogine. The two experts welcome the publication.
Now, why was the book received so favorably?

The book is first and foremost about the links and
relationships between science and art, that is, the connection
between ‘two cultures’ as the catchword goes. Suffice it to
mention the author’s interpretation of the transition from
perception to idea. One of the first pages in the book reads as
follows: “A study of perception may reveal integrating
factors. That is, originally disordered sensory stimuli become
correlated and organized in the brain into ordered coherent
structures which are then converted to a thought™. In other
words, the transition from perception to idea is the transition
from a less to more ordered state of the brain.

True, this is a very beautiful picture of the birth of an idea.
The question is how close it is to reality. The book gives no
answer since it does not consider the criteria for a relative

degree of order in open systems which would allow for the
distinction between ‘order’ and ‘chaos’. Doubtless, some
information about the modulation of orderliness accompany-
ing the generation of an idea can be obtained from the
analysis of brain activity using encephalograms and the
above criteria from the physics of open systems, specifically
the S-theorem.

Such an approach implies a series of experimental studies
designed to elucidate ‘the thought production rate’, its
difference in men and women, the influence on artistic
performance, etc. Naturally, joint efforts of specialists
representing different scientific disciplines are necessary to
solve such a difficult problem.

Finally, all this brings to mind the famous book of Erwin
Schrodinger What is Life? published in English in 1944 and in
Russian in 1947. We shall refer to only two fragments directly
related to the present discussion.

Chapter 6 entitled “Order, disorder, and entropy”
queries: “What is a characteristic feature of life?”” The answer
is found on page 105 of the Russian edition:

“How would we express in terms of the statistical theory
the marvellous faculty of a living organism by which it delays
the decay into thermodynamical equilibrium (death)?”

We said before: “It feeds upon negative entropy”,
attracting, as it were, a stream of negative entropy upon itself
to compensate the entropy increase it produces by living and
thus to maintain itself on a stationary and fairly low entropy
level.

If D is a measure of disorder, its reciprocal, 1/D, can be
regarded as a direct measure of order.

Since the logarithm of 1/D is just minus the logarithm of
D, we can write Boltzmann’s equation thus:

—(entropy) = kg log <%) . (16)

Hence, the awkward expression ‘negative entropy’ can be
replaced by a better one: entropy, taken with the negative
sign, is itself a measure of order. Thus, the device by which an
organism maintains itself stationary at a fairly high level of
orderliness (fairly low level of entropy) really consists in
continually sucking orderliness from its environment.”

Schrodinger’s opinion as stated in this fragment is very
interesting. It reflects a standpoint that was for many years
shared not only by many biologists but also by physicists. We
can compare Schrodinger’s ideas with the results cited above.

In accordance with the S-theorem, entropy may be used as
a measure of the relative degree of order in open systems only
on the additional premise that the average effective energy is
the same for the states being examined.

One of such states with entropy Sy is assumed to represent
physical chaos. The system in this state must be ‘heated’ if the
equality condition for the average energy is to be met, which
will result in Sy — S,. Then, the difference between the
renormalized entropy and entropy S of a more ordered state

So—S=0 (17)
is the quantitative measure of chaotic motion in the case of
physical chaos which becomes more ordered in the latter
state.

This has been demonstrated earlier in the present paper
using physical examples. One of them was a Van der Pol
generator in which physical chaos was represented by thermal
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oscillations in the electrical contour in the absence of feed-
back. Another example was the state of developed generation.
The former state was ‘heated’ to make average energies
identical. As a result, the expression of the form (17) served
as a measure of the quantity of energy associated with thermal
fluctuations in the contour which was transformed to the
energy of ordered oscillations. Such a transformation of the
motion provides an example of the spontaneous (!) transition
towards a more ordered state, i.e. self-organization.

One more example was the transition from laminar to
turbulent flow. The former was taken to be the state of
physical chaos and ‘warmed up’ to equalize average energies.
This resulted in the transition of a part of chaotic motion in
the laminar flow to the more ordered (collective) motion of
the turbulent flow. Such a transition may also serve as an
example of self-organization.

Understandably, the definition of self-organization in
biological systems is not equally unambiguous. Here, the
estimation of the norm of chaos (or order) is crucial, and the
process of self-organization is regarded as the spontaneous
(without ‘therapy’) return to the norm of chaos, i.e reconva-
lescence.

Therefore, an ‘organism’ as an open system maintains
itself by virtue of its ability to transform the energy of chaotic
motion to that of a more ordered motion. Evidently, this
offers an opportunity to clarify Schrédinger’s point of view.

Another very interesting statement which Schroédinger
makes in the final chapter of his book is worth citing. A
paragraph on page 108 of the Russian edition reads as
follows: ““An organism’s astonishing gift of concentrating ‘a
stream of order’ on itself, and thus escaping the decay into
atomic chaos — of ‘drinking orderliness’ from a suitable
environment — seems to be connected with the presence of
the ‘aperiodic solid’, the chromosome molecules, which
doubtless represent the highest degree of well-ordered atomic
association we know of - much higher than the ordinary
periodic crystal...”.

This is truly a remarkable thought, but it cannot be
considered here at greater length. Suffice it to answer the
following question: “Is the degree of order in an aperiodic
crystal higher than in an usual periodic one, in terms of the
above theory?” There is every reason to argue that the answer
must be in the affirmative!

Indeed, there is an analogy with the relative degree of
order for laminar and turbulent flows. It seems natural to
identify a laminar flow with a periodic crystal and a turbulent
one with an aperiodic crystal. The thermal atomic motion in
periodic crystals may be assumed to represent the state of
physical chaos. Hence, collective degrees of freedom in
aperiodic crystals are of greater importance than in periodic
ones. This suggests, in conformity with the S-theorem, a
higher degree of order in an aperiodic crystal than in a
periodic one. This inference, however, remains to be quanti-
tatively confirmed.

We have referred to only a few selected items in
Schrédinger’s book. But it actually contains many other
valuable insights and will surely point the way to new
developments in the statistical theory of open systems.
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