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Abstract. A more accurate formulation of the Abbe theory is
presented using well-known open resonator results, namely,
field representation in terms of the eigenfunctions of the optical
system viewed as a segment of an equivalent lens waveguide; and
the use of the mirror Fresnel number dependence of the diffrac-
tion losses of high-order Gaussian beams for describing the
image distortions due to the objective aperture. The number of
the degrees of freedom of the image within the zero mode waist
area is estimated by using the Hermite-Gaussian functions
within the paraxial approximation framework.

1. Introduction

If the superresolution provides an opportunity of seeing the
invisible, is the very idea of its realization not in conflict with
everyday experience? Indeed, the diffraction image of a point
in an optical system has a finite size, and any attempt to
distinguish details inside the diffraction spot has, at first
glance, no sense.

Nevertheless, the number of reports on superresolution
grows increasingly and reveals some clear-cut trends in
research that suggest the positive answer to the above
question:

(1) algorithmic, aiming at the reconstruction of an object
based on diffraction-limited or distorted primary information

(2) heuristic, related to new ideas and instrumental
techniques intended to overcome the diffraction limit (near-
field, confocal microscopy)

(3) informative, based on the use of up-to-date tools and
devices in conventional optical systems (contrast enhance-
ment, computer-assisted phase-contrast microscopy).

The present communication does not pretend to be a
comprehensive review of the superresolution problem on the
whole and will be restricted to an analysis of recent data
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obtained in the framework of the latter approach. Here is a
brief review of key previous publications.

The use of TV techniques for contrast enhancement in
microscopy has been discussed in the literature since 1951.
Allen et al. [1] and Weiss et al. [2] reported on further
developments of this approach including microscopic obser-
vations of unambiguously identified extended biological
objects and organelles with transverse sizes of down to
d =10 nm using high-magnifying oil-immersion objectives
in conjunction with differential, interferential, and polarizing
contrast enhancement.

This corresponds to the normalized superresolution
S =dr/d=20 for an objective with numerical aperture
NA = 1.3. Here, dg = 0.611F/a is the Rayleigh radius (the
classical resolution limit), F is the focal length, and « is the
aperture radius. A detailed description of the contrast
enhancement can be found in a book by S Inoue [3].

The above findings demonstrated the possibility of
achieving, in principle, superresolution in conventional
amplitude images and were confirmed in a series of subse-
quent studies and in phase-contrast images obtained under
coherent illumination using a computer-aided Airyscan
microscope [4—6].

An important feature of the experiments reported by
Allen and other authors was the fact that the superresolution
was obtained with conventional microscopes using phase-
contrast and polarization techniques in conjunction with
analog video devices. This was achieved by the background
subtraction, a proper choice of the illumination conditions
and compensator and analyzer positions, etc. The conditions
for contrast enhancement were virtually reduced to the
extension of the dynamic range of brightness of the image
when examining anisotropic biological objects in a field with
a phase gradient.

Those works ignored the obvious discrepancy between the
experimental results and the classical diffraction theory of
optical systems [7, 8] and assumed the enhanced resolution to
be related to the substitution of the Rayleigh criterion with
Sparrow’s limit. Also, it was supposed that the image shape
and size inside the Airy disk might be distorted, minor details
disappeared, etc.

Naturally, reports on superresolution gave impetus to
basic research in this field. In 1952, Toraldo di Francia [9]
suggested the possibility of restoring object’s details beyond
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the diffraction limit. A comprehensive analysis of later studies
is outside the scope of the present communication (they are
briefly reviewed in [10]), but it seems appropriate to empha-
size the explanation by Pask [11] of the passage through an
aperture of information on the Fourier component of the
angular spectrum that is outside the numerical aperture of the
objective.

With the field of view of an objective being limited, the
diffraction maximum width may prove large enough to allow
a substantial portion of scattered radiation energy to pass
through the aperture even if the diffraction angle of the
central component is larger than the aperture angle. Note
that the author implicitly assumed the existence of the
scattering function and the location of the aperture in the
far field. However, this line of reasoning does not lead to the
understanding of the presence of image elements whose size is
significantly smaller than the wavelength and which are
formally associated with evanescent waves.

We suggested a different model to explain the super-
resolution in phase-contrast images based on the properties
of wave-front dislocations and Hermite-Gaussian functions
which are eigenfunctions of axially symmetrical optical
systems [12].

This model represents the object’s field as the sum of two
modes TEMg and TEM,. The distance d between the zero-
intensity lines (hereinafter to be called merely zero-lines) for a
certain amplitude ratio may be significantly smaller than the
waist radius wy. At the zero-lines, phase changes by 180° (n-
jumps) occur, which, at a sufficiently large magnification,
may be located in the image plane. The field amplitude at
intermediate points between zero-lines decreases with the
squared distance d, which allowed a simple energy-dependent
resolution criterion d/wy = (S/N)~'/? to be obtained, where
S/N is the signal-to-noise ratio. Also, the study has shown
that the action of a finite aperture disturbs the amplitude—
phase relationship between the modes in the image plane and
results in systematic errors in the location of zero-lines.
Assuming that the zero-lines of the field correspond to the
boundaries of an abstract structural element at the object’s
surface, minimum information on the boundaries of sub-
wavelength structures can be obtained with a very small
number of modes in the object’s field [12]. However, the
cited work did not examine the superresolution in amplitude
images, nor did it use the image representation inside the Airy
disk as functions of the degrees of freedom of the field, or
attempt to numerically estimate the maximum resolving
power.

A common problem in all microscopic studies is the
evaluation of qualitative and quantitative correspondence
between an object and its image. Its importance is even
greater as regards the superresolution, which is confirmed
by the results of near-field microscopy [13—15].

The application of phase-contrast microscopy and profile
measurements [16— 18] traditionally implies determination of
the equivalent height function /i (r) related to the physical
parameters of the surface and to the ‘field portrait’. In the
simplest case, it is proportional to the reflected-wave phase.
However, the local value of this phase in the case of
inhomogeneous, anisotropic, and transparent stratified struc-
tures does not provide information about the real surface of
an object as caused by its physical parameters [7, 8] but
represents the phase of the ‘field portrait’. An even more
complicated dependence of these functions arises when the
size of structural elements is comparable with the wavelength

and also if the polarization of the incident light is taken into
account. Indeed, in the theory of optical systems, an object is
given by a complex function of coordinates at the plane of
field representation, and the complete correspondence of such
a ‘field portrait’ with the real physical object is far from being
evident. Few analytical solutions available from the diffrac-
tion theory suggest that the ‘portrait’ depends on local
impedance values, incident wave polarization, and other
factors. Therefore, a priori information is sometimes neces-
sary or at least desirable to correctly interpret images
obtained (especially subwavelength images).

Numerical field calculations in the scalar approximation
[8, 19, 20] entail marked inaccuracy already at the normalized
sizes of structural elements at the object’s surface such as
d/7. = 20; labor-consuming analytical solutions of the strin-
gent diffraction theory and numerical calculations are avail-
able for a very small number of models [8, 20]. Direct
measurements with the use of ‘near-field” microscopy [13—
15] in the optical frequency range yield conflicting results and
fail to provide quantitative characteristics for complex fields,
which hampers the real possibility of obtaining the ‘field
portrait’ of an object, while simulation of optical images in
the microwave range [21, 22] requires a number of assump-
tions and poses certain experimental problems.

Measurements with a coherent-probe microscope [23, 24]
have also demonstrated the disturbed linear relationship
between a subwavelength object and its phase image because
of diffraction at the aperture at small d/A. Therefore, one has
for the time being to reconcile oneself with the lack of a simple
algorithm for the evaluation of the correspondence between a
real subwavelength structure and its field portrait.

Probing measurements of the near-field phase and ampli-
tude by M Totzeck using dielectric models in the microwave
frequency range [21, 22] appear to be of special interest since
they demonstrated the possibility of identifying structures
with linear size as small as 0.034 in the ‘field portrait,” to
evaluate the correspondence between an object and its
‘portrait’ in some specific cases and the effect of a finite
aperture.

Ref. [22] also reported results of computer simulation of
transferring the field portrait of a phase object by an optical
system. As usual, the action of the entrance aperture was
identified with that of a low-pass filter. The author concluded,
based on the results of calculations [22], that a major portion
of the initial information was lost at the aperture, and the
likeness between the image and the object could be obtained
only if the following conditions were satisfied:

(1) There is marked phase contrast at the boundaries of
structural elements (the difference between diffracted wave
phases on either side of the boundary close to m);

(2) For structural elements in the form of an extended slit,
its width is not less than 0.25 4;

(3) Images are interrelated in terms of polarization. The
difference between objects and their phase images increases
with decreasing d// ratio. It is calculated that the slit width in
the image significantly exceeds the real value already at
d/.=0.4.

Thus, it may be inferred from [21, 22] that although
plausible information on an object exists in the amplitude
and phase of the near field for objects’s sizes as small as
d/7.=0.03, in the image phase such information is only
available at d/1 > 0.25. This is equivalent to the assertion
that the superresolution coefficient S (an excess over the
Rayleigh criterion) in phase images is not greater than 2.
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This conclusion seems natural because, to our knowledge, nom<q= La (2b)
. . . ~ T A
all studies concerned with the theory of optical systems ’ AF’

ignored energy-related aspects and identified diffraction at
the aperture with the cut-off of higher spatial frequencies,
which inevitably led to the classical resolution criterion and
was at variance with experimental findings.

It follows from this brief review of superresolution studies
that a few problems of different levels should be specified and
considered separately:

(1) Physical and theoretical explanation of the essence of
the phenomenon, evaluation of the role of energy relation-
ships, consensus of concepts, terminology, models, and
resolution criteria;

(2) Elaboration of the consistent theory of superresolu-
tion;

(3) Determination of a ‘field portrait’ in the basis of
optical system eigenfunctions and criteria for the correspon-
dence between a real physical object and its ‘field portrait,’
with due regard for the specificity of functional images
(phase, polarization, gradient, etc);

(4) Analysis of adequate technical tools for the realization
of superresolution in various functional images;

(5) Comparison of experimental findings and key theore-
tical data.

At present, we have no acceptable explanation for the
available experimental findings. The further discussion con-
cerns feasible models and approaches to the solution of the
superresolution problem with special emphasis on the physi-
cal nature of the phenomenon of interest, requisites for the
development of a strict theory, new results of subwavelength
structure measurements with a computer-aided phase-con-
trast microscope, and qualitative comparison of known
experimental findings and data ensuing from the proposed
physical concept.

2. The theoretical model

The theory of optical systems [8] considers an object
expanded in either plane waves or eigenfunctions of an optical
system. These functions are in fact solutions of the Fredholm
integral equation with a symmetric kernel and may be
represented as the product of two functions of the transverse
coordinates x, y. For an arbitrary function o(xo, y9), e.g., for
the field of an object in the @, ,, basis, the amplitudes O, ,,
can be defined as

o0

0(x0,30) = D Onm®u(x0) Pm(30) - (1)

n,m=0

The works of Toraldo di Francia, Landau, and Pollack
reviewed in [8] demonstrated that solutions for eigenfunctions
®,(x0), Pu(yo) for a small field of an object of size L have the
form analogous to angular spheroidal functions with a
limited range of eigenvalues y, ,,, and the image field may be
represented by a finite sum

E(x’y) = Z VanOan(p(x) djm(}’)
0

n,

3
Il

VnYmOn.m®Pu(X) () -
0

(2a)

1nd
3

n

The finite number of terms in (2a) is due to the fact that
moduli of eigenvalues 7, ,, decrease sharply at

which leads to loss of information contained in the remaining
terms of the sum.

The series (2a) may be interpreted [8] as the expansion of
function E(x, y) into its constituent components in infinite-
dimensional Gilbert space, in which the functions @, ,,, form
the basis. Each term of the series is actually one degree of
freedom of the image field. The filtering effect of the aperture
manifests itself in the limitation on the range of eigenvalues
’y}’l,lﬂ'

This result makes it possible to approach the super-
resolution problem from a different standpoint, which implies
the calculation of additional or ‘internal’ degrees of freedom
inside the Airy disk.

The present report provides an opportunity to further
elaborate the approach to the physical interpretation of the
observed superresolution first initiated in [12]; also, we will
use the aforementioned fruitful concepts of the eigenfunc-
tions of an optical system and the degrees of freedom of an
image to prove the possibility, in principle, of increasing the
number of degrees of freedom in excess of the (2b) limit.

In order to determine eigenfunctions of an optical system,
let us consider the simplified optical scheme of a microscope
shown in Fig. 1, where a flat mirror is placed in the focal plane
z = 0 and illuminated through lens /; by a Gaussian beam of
the zeroth mode TEM,( with waist radii wy and Wy in the
planes of the object and the lens, respectively. The reflected
beam passes through the lens in the backward direction and
has a waist radius W; in the image plane z;. The optical
equivalent of the scheme presented in Fig. 1 is an open
resonator or a fragment of a lens waveguide in Fig. 1b. The
eigenfunctions of optical resonators have been described in
great detail [8, 25-28]; for stable configurations in the
paraxial approximation, they are in fact the complete ortho-
normalized set of the Hermite-Gaussian or Laguerre-Gaus-
sian modes with two integer-valued indices n, m and p, [ for
the Cartesian and polar coordinate systems, respectively:

) 2
Un.m = Hn (\/55) Hm<\/il> eXp (7 %) ’
' w w w

2 : 2
oyl (4P sin Ip P
Up,/ - Lp (2 }@72) { COS l¢ } eXp( 1,1;2) ’ (3)

where H, ,, and L;, are the Hermite and Laguerre polyno-
mials, respectively.

The paraxiality condition is equivalent to the fulfillment
of the inequality */2n°w} < 1 or the assumption that the
characteristic scale of field changes d. , satisfies the condition

kd:,,
o >T. (4)

It was shown [26] that neglecting third-order terms in the
phase multiplier of the diffraction integral for the computa-
tion of the field in a confocal resonator is equivalent to the
restriction of the Fresnel numbers

Ne < (N4)*. (3)
The estimates below indicate that inequalities (4) and (5)

are not fulfilled under real conditions; hence, functions (3) are
not exact solutions for an optical system with large Fresnel
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Figure 1. (a) Simplified optical arrangement of a microscope: /| is the
objective; F'is the flat mirror located in the focal plane z = 0; wy and W,
are the waist radii of the zeroth modes in the plane of the object and lens,
respectively; and a is the aperture radius. (b) Fragment of a lens waveguide
(optical equivalent of the scheme in Fig. 1a): w,, and W, are the radii of the
nth mode; W; is the zero-mode waist radius in the image plane; and z,, is the
boundary of the near field, in which the amplitude of the nth mode
decreases exponentially.

numbers. Nevertheless, we will consider (3) as the basis,
assuming that the use of more accurate solutions, e.g., in the
form of spheroidal or ellipsoidal functions [8], is unlikely to
substantially affect the results.

Now, let us turn again to Fig. 1b and suggest that a
dephasing transparency with transfer function 7 (xg, yo) is
placed in the focal plane z = 0; it has no effect on the basis (3)
and functions solely as a spatial modulator.

The field Ey(x,y,0) = T'(xo, yo) e(x,y) due to the cur-
rents induced at the transparency surface and the field e(x, y)
of an incident wave within a limited region satisfy the
boundary conditions in the equivalent plane of the represen-
tation z = 0. In the general case, the field Ey(x, y,0) can have

local components with a spatial scale of changes d < 4 and
can serve as a source of scattered waves in the form of higher-
order Gaussian beams.

Let w, ,, and W, , be the radii of the corresponding
modes in the plane z = 0 and in the plane of lens /,. Bearing
in mind the remarks made above, the eigenfunctions of the
lens waveguide fragment and the equivalent open resonator
with the transfer function 7(x, y) are represented by a set of
Hermite-Gaussian functions

o ()0 (2)

(1+22/b2)1/2 "\w w

Un.m(x,y,2) =
<exp| < Jx 00 explitm +n+ 1], (6

where

c 2 1/2 a2 2b
I\ wgm2mtnmnl » §=arc ang . W=

with b being the confocal parameter.

By analogy with (1), the vector field Ey(xo, yo,0) can be
represented as a series of Hermite-Gaussian functions [8, 26 —
28]; for the sake of simplicity, we will confine ourselves to
considering one polarization component and omit index

notations:
2 2y
s, (fvo> o, (fyo) .

wo wo

- A) ”lﬂ
Ex(x0,0,0)= > =

nm 4/ w%nZ’"“’m!n!

(8)
The coefficients A, ,, are defined by the formula
\/i 00 00
An,inzij J EO(XanO)
\/ win2mtnmlinl J—oo J—oo
2x 2
X @ (fko) @, (\/—y 0) dxo dyo , )
wo wo
and the field at an arbitrary plane z may be written as
E(x,y,z) :Z AnmUn m(x,¥,2) . (10)

n,m

Hence, in the present case, the object transforms the
principal mode Upp(x,y) to the ‘spectrum’ U, ,(x,y) in
indices m, n.

The field representation in the form of propagating non-
uniform waves (6) is valid for limited index values. At large
m, n, the transverse component of the wave vector exceeds
2n/A, and the amplitude decreases exponentially at finite
distances z,,.

It is known from the theory of resonators [8, 25—27] that
diffraction losses are largely dependent on the Fresnel
number Ng = a?>/bJ and the fraction of the mode energy
outside the mirror. In order to estimate superresolution and
diffraction losses for higher-order modes, one needs to
measure the effective mode radii wy ,. In a symmetrical
quasi-spherical resonator with distance between the mirrors
2F, the size of the principal-mode spot in the plane z = 0 at a
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sufficiently large magnification M = Wy /wy is [25]

Fi
Wy & ——
TEW() ’

where W), is the radius of the TEM, o mode at the mirror. The
waist radius wy for Wy = a is approximately half as small as
the radius of the Airy disk dr, which is universally accepted to
be the resolution criterion.

Let us consider a simple two-mode model [12] and show
that limited information on the coordinates of the boundaries
of a subwavelength structure x|, = £d/2 can be transmitted,
under certain conditions, with a phase image in the form of n-
jumps of the phase. In the one-dimensional case for the field
portrait given by

T x?
Ey(x) = Up(x) + axUs(x) = \/v? exp (— 2>

Wo

ar 4X2 .
l+—=|—-1 2
SF(PRCY i pent
the distance d between zero-lines is a function of the

amplitude a,

1_{1&}“?

Wwo

(11)

2]

Let us assume that the optical system does not introduce
any amplitude-phase distortions into the field portrait Ey(x).
Then, in the image plane z conjugate to z =0, where
¢ = arctanz;/b = 0, the normalized distance D;/W; = d/wy
remains unaltered and can be measured at a sufficiently large
magnification, when D; > A. In the case of defocusing or
phase distortion, when ¢ # 0, the field has a finite minimum
value in the vicinity of x|, = £d/2, and the coordinates are
complex quantities. As the field Ey(x) intersects the zero-line
X1 2, its phase experiences a m-jump, which can be interpreted
as the intersection of the wave front dislocation line near
which there is a large phase gradient.

It follows from this isolated example that limited informa-
tion on a subwavelength structure can be obtained even with a
small increase in the number of internal degrees of freedom
for the field. Also, this simple example may be used to
illustrate a marked difference between the phase-related and
amplitude-related information derived from the field portrait
(11) and the effects of energy relationships between field
components. The amplitude contrast in the vicinity of x =0
falls off as squared d/wy as the distance d decreases, whereas
n-jumps in arg Ey(x) occur at any d/wy value. Let us further
assume that the normalized amplitude a; in the image plane
proved to be smaller than the critical value v/2 due to the
increase of diffraction lasses with increasing the mode index.
In this case, information concerning zero-lines is totally lost in
the field portrait.

Let us now consider a more general case of an unlimited
number of modes and find the dependence of the waist
effective radii w, of higher-order modes on a single mode
index n. The effective radius w, of an even nth mode is defined
by the condition

(12)

At small n, the plots of functions @, presented in [25, 27]
may be used for the numerical evaluation of w,,. Atlarge n, the
representation [8] of the Hermite polynomials as a series in
powers of ¢t = \/EWH/W() =2G,, ie.,

H,(1) :2"1"—2”-1(”) A (13)

2
H,(0) = 2"2(n))'/? |

is suitable for the same purpose.

If the indices n and the normalized mode radii in the series
(13) are sufficiently large (G, > 1), itis possible to use only the
first term; in such an approximation, G,(n) is implicitly
defined by the equation

1,2nfglnn+n1nG,ﬁG§+o.54:o. (14)

The G, dependence on # is plotted in Fig. 2. The dashed
line shows its approximation by the function G, = n'/2.

Gn

30

20

10

0 500 1000 n

Figure 2. Dependence of the normalized radius of the nth mode
G, = w,/wo on index n. Dashed line shows approximation by the function

G, = /n.

Let us now consider spatial variation of modes with large
indices n, paying special attention to the following feature
essential for the final conclusion. In the fixed cross section
z =0, a rise in # entails the growth of w, concomitant with a
slow decrease in the mean distance between the adjacent zeros
of the @, (v/2x/wy) function along the coordinate x. Figure 3
shows, for the sake of illustration, the plots for n =0, 2, 12
borrowed from [27], which demonstrate an approximately
twofold fall in the period D, of the function &, as compared
with D,. Naturally, the functions @,,(\/fx /wo) are not strictly
periodical in the interval +w,, but this aperiodicity becomes
immaterial at high n.

The number of zeros of the function @,(v/2x/wy) in the
interval 2w, is n, and the mean value of the half-period D, at
large n is D, = 2w, /n. Let us denote the number of zeros in
the interval —wy < x < + wy as S(n), assuming their dis-
tribution to be uniform.

This yields, for the number of zeros or half-periods S(n) of
the function &, (v/2x/w) within the diameter 2wy in the same
approximation,

Sy~ —=~n'?>qG,.

n
— 15
G (15)
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Figure 3. Hermite-Gaussian functions withn = 0, 2, 12. It is seen that, with
increasing n and decreasing D,,, the functions behave quasi-perodically
within the interval —1 <7 < 1.

The functions
sin (snx)
o (\/Zx> o wo
wo (snx)
os| —
wo
at S(n) =0, 1, 2, ..., S(nmax) and the appropriate renorma-

lization may be regarded as a new basis of a finite dimension-
ality. In this basis, the field

(16a)

(16b)

can be represented in the interval —wy < x < +wjy by a series
in functions (16a); in this series, s has the sense of the index of
eigenfunctions @,(x) within the waist diameter of the zeroth
mode (2wyp). It follows from (15) that s = n'/2, and only a
limited number of modes in the series (10) make contribution
to Ey(x). This line of reasoning suggests the possibility of the
existence of a limited basis (16a) in the complete set of
functions (10) necessary for the representation of the field
inside the zero-mode waist.

Also, the number S(imax) = G, (Mmax) may be interpreted
as a superresolution parameter or the number of ‘internal’
degrees of freedom of a field, because it defines the minimum
half-period D,

2Wo

_og Mo AW
Dy =26, 27 G (Mmax)

(17)

The same refers to the field distribution along the coordinate
y, and the total maximum number of the ‘internal’ degrees of
freedom is

Gz(nmax) = Nimax -

Eqn (17) may be used to estimate the value of z, at which
the equality D,(z,) =2z, /lnfl/2(rcwo)71 = A/2 is fulfilled.
The interval z,, in which the amplitude decreases exponen-
tially increases with increasing mode index:

-~ won'/? N Jnl/?
Z = = .
" 4 4NA

Variation of the amplitude in this interval is defined by an
exponent with index nz/D,(z) = mwon'/?/2). = n'/? J2NA.

Figure 2 shows that a 10-fold superresolution can be
obtained if the image contains approximately 100 modes
along a single coordinate, with the mode radius wjg being
only 10 times that of the radius wy.

Qualitative estimates in the above formulas should be
treated with caution because of the aforementioned disagree-
ment with the paraxial approximation and the assumptions
adopted without estimates. We believe, however, that the
main qualitative relationships and conclusions will remain
valid after a more accurate analysis.

Putting aside for a while the interpretation of the function
S(nmax) as the number of internal degrees of freedom, we will
focus on the diffraction losses, which determine the number
of effective modes 0 < n < ny,x and the largest radius of the
meaningful mode W, < W, at the exit from an optical
system. A substantial difference between the series (2a) and
(16Db) lies in the criteria for the truncation of the expansion.

A rough estimate of S(nmax) is possible based on the
equality of the nth-mode radius in the lens plane to the lens’
radius W, . = a. Bearing in mind that wy = AF/aW,, we
have

a W, T
s ()

It follows from (18) that ny,x naturally increases with the
Fresnel number Ng.

Itis possible to obtain a more exact dependence of 7,,x on
the system’s parameters taking into account the relationship
between complex amplitudes 4, ,, and B, ,, inside and at the
outlet of an open resonator, respectively [8, 27, 28]:

(18)

By = An.m exp(—jfl - ﬂ) . (19)

The functions o(Ng, n, m) and (N, n, m) increase with
growing n, m and describe the amplitude and phase distor-
tions introduced by the lens in the image field E (x,y). The
corresponding permissible levels o < @, < 8 can be found
experimentally or by calculation. If < &, the indices first
become restricted in phase and then in amplitude, which leads
to the prevalence of phase distortions over amplitude ones in
the image.

The absence of modes with n > 1y, in the image results in
the limited superresolution S(7max ). In order to qualitatively
estimate the effect of optical system parameters on S(#max),
we must know the behavior of losses at large index values.
Unfortunately, we do not have analytical dependences of
losses on mode indices for nonconfocal resonators, and they
can be obtained only in an indirect manner.

The configuration for Wy > wy given in Fig. 1b resembles
that of a hemispherical resonator, which makes it possible to
use the formulas of L A Vainshtein [8, 27, 28] for plane-
parallel resonators with round mirrors

87 ,0(m + 9) m

T > a2 =< %p, (20)
[(Iﬂ+5)2+52]2 Lp 45 4

A p =

where m = (81tNF)1/2, 0 = 0.84, and k; , is the pth root of the
Ith-order Bessel function.

In the case of confocal configuration, one may also use
Slepyan’s formulas given in [§]
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2n(8nNE ) exp(—4nNg)
plp+1)! ’

T
[))I‘p = (2p+/+ 1)0([‘[, E .

O(/,I, =
(1)

Hereafter, we will ignore the difference between indices
n, m and p, [ despite the fact that the radial and azimuthal
indices in the cylindrical system of coordinates are not
equivalent.

Note that in this case formulas (21) overestimate indices
p(Np) as compared with (20). It appears from these formulas
that phase distortions prevail over amplitude ones; therefore,
maximum values of indices for a given level of distortions
should be estimated in terms of phase. Numerical calculations
indicate that at / =0 and p > 1, dependences pya.x(Ng) for
(20) and (21) are rather well approximated by the expressions

Pmax = 04NF (228_)
and
Pmax = SNF . (22b)

The difference between the coefficients is related to the
fact that losses in a confocal resonator are smaller by an order
of magnitude than those in a resonator with flat mirrors.

The use of the approximation S = n'/? and the assump-
tion that n = p lead to a simple dependence of the limiting
superresolution on the Fresnel number

Sy(Ne) = (CNe)'”, (23)
where C ~ 0.4—5. The corresponding graphs are shown in
Fig. 4.

To obtain S = 10, it suffices that Ng be equal to 250,
which gives, at NA = 1 and 1 = 633 nm, realistic values for
the entrance aperture diameter 2a = 0.32 nm.

Let us now consider the effect of defocusing on super-
resolution, because this may be one more cause for the
disturbance of phase relations between modes.

15

| |
0 100 200 Ng

Figure 4. Plots of limiting superresolution vs the Fresnel number: (a) from
the Vainshtein formula [28]; (b) from the Slepyan formula [8].

Indeed, it follows from (7) that the dependence of the
phase of the n, m-mode on the axial coordinate z grows with
n,m:

p(z)=m+n+1) arctang .

The phase shift of the n,m-mode relative to the zeroth
mode

dqon,m = q)n«,m — $o0 = (I’Vl + Vl) arctan g (24)
vanishes only in the conjugate waist planes z = 0 and z = z;.
A change in the sign of the object’s plane displacement dz
relative to the focal plane entails a change in the sign of the
phase difference d¢,, ,, which can be visually perceived as the
inversion of the phase image.

The equivalent confocal parameter b for a concentric
resonator is close to zero. Therefore, de¢,, , asymptotically
approximates (n+4 m)m/2 at relatively large defocusings
(z > b). The initial amplitude—phase relationship needs to
be retained if an image is to be adequately reproduced. For
this reason, the requirements for the quality of objectives
and the accuracy of focusing grow with increasing n, m. It is
easy to see that in the case of defocusing within the standard
depth of focus dz = i/2(NA)2, phase shifts considerably
exceed T.

Let us now turn to the concept of the degrees of freedom
for the field in an image, which is crucial for good under-
standing of the problem in question.

In the Abbe diffraction theory of optical images [7, 8], the
number of independent elements ¢ is equal to the ratio of the
linear field size to the Airy disk radius. In our model presented
in Fig. 1b, the axis z of an equivalent resonator defines the
position of the center of the zero-mode Gaussian beams. At
first sight, this model contains a preferred axis, at variance
with the known requirement [7] that an optical system should
be isoplanar. However, at a large magnification (W > wy),
the configuration of an equivalent resonator resembles that of
a concentric one, in which the position of the optical axis is
less determinate. It is quite natural that a displacement of
point x relative to the optical axis in the lens plane resultsin an
additional restriction upon the maximum radius W, = a — x,
and, hence, on the spatial resolution which linearly decreases
as the edge is approached. This fact allows the above
discrepancy to be partly eliminated and the data obtained to
be interpreted in the following way.

Suppose that the concentric resonator in Fig. 1b has
¢ = gxqy independent zeroth modes ®g,(x), Po.(y) with
v,u < ¢ that are analogs of the angular prolate-spheroidal
functions [8] with differently oriented wave vectors k,, , within
the solid angle (a/F)*.

From this point of view, the series

E(X,y) = Z BOA,O,U«,udsO,U(x) (DO,U(y)

U

(25)

may be interpreted [8] as the expansion of the function E(x, y)
in the zeroth modes in Gilbert space where the functions
Do .u(x,p,z) of the ‘external’ degrees of freedom form the
basis. The space dimensionality is ¢, i.e., the number of
external degrees of freedom.

For each of the ¢ states of field (25), there is a finite subset
S(n)2 = nmax Of effective internal degrees of freedom related,
for example, to the higher-order modes ®;(x,y) (15). They
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form a finite-dimensional Gilbert subspace in the basis @, ,,,
with the number of degrees of freedom for each coordinate
being determined by the Fresnel number Ng of the optical
aperture (see graphs in Fig. 4).

We believe that the most important result of the above
analysis is the presence of propagating high-order modes in
the field portrait, which allows, in principle, the number of the
degrees of freedom of an image to be increased. Another
important finding is a much broader range of transmitted
spatial frequencies in the case of correct interpretation of the
effect of the entrance aperture. The field representation in the
basis of an optical system serves to explain, in the two-mode
model approximation, the transmission of minimal informa-
tion on a subwavelength field portrait and demonstrates the
effect of amplitude and phase distortions. The quasi-periodi-
city of the high-order Hermite-Gaussian functions provides
formal grounds for the representation of internal degrees of
freedom of a filed.

However, the proposed physical concept, not confirmed
by consistent computation, has important aspects worthy of
special analysis in the future.

To begin with, one must be certain that the obtaining of
exact solutions for the eigenfunctions does not introduce
substantial corrections into the results obtained in previous
paragraphs. Naturally, the energy contribution of higher-
order components to (25) decreases with increasing index.
Therefore, one of the conditions for the realization of super-
resolution is the discrimination between weak components
and relatively intense low-order modes in the image field.
With the contrast enhancement technique, this is achieved by
compensating for the background and broadening the
dynamic range of image brightness, and in computer phase-
contrast microscopy, by measuring local phase values of the
low-intensity interference field. Also, it is worth noting that
the use of higher-order modes makes it possible to obviate the
fundamental near-field problem and account for the trans-
mission of information on the higher spectral components in
the field portrait which formally correspond to exponentially
decaying plane waves with D,, < 1.

3. Measurements with a computerized
Airyscan phase microscope

The optical arrangement of the computer-aided phase-con-
trast microscope Airyscan [29] is based on the modified
scheme of a Linnik-type interferometer with phase modula-
tion of the reference wave. The light source is an He-Ne laser
(4 = 633 nm), local values of the interference signal phase are
measured with a coordinate-sensitive detector (image dis-
sector and analog-to-digital converter). The software enabled
an operator to obtain pseudocolored topographs, cross
sections, and three-dimensional images, to carry out statis-
tical analysis using standard program packets, to record
dynamic processes at arbitrary points, to perform their
Fourier analysis, etc. The block diagram of the instrument is
shown in Fig. 5, where [ is the zero-mode He-Ne laser, 2 is the
beam-splitter, 3 is the reflecting object, 4 is the reference
mirror with a piezotransducer, and 5 is the dissector image
tube.

Field sizes were calibrated against certified diffraction
gratings with a 0.85-um spacing. Interchangeable 10 to 100x
objectives were used, but most measurements were performed
using a Zeiss 100/0.9 objective. The general optical magnifica-
tion achieved with the microscope was 3.500x, and zooming

_

Figure 5. Optical scheme of a computer-aided Airyscan phase-contrast
micrscope [29]: 1, zero-mode He-Ne laser; 2, beam-splitter; 3, object; 4,
reference mirror with a piezotransducer; and 5, dissector image tube.

allowed 300%x300-nm image fragments to be distinguished
with a minimal pixel size of 3 nm.

We present here new data obtained by G E Kufal’ with a
view to reveal major factors affecting superresolution. More
detailed data on measuring objects of different nature can be
found in [29-33]; in some cases, they confirmed good
correspondence between an object and its image for struc-
tures 100—2000 nm in size.

The identification of a phase image with the real structure
was greatly facilitated in the case of its large size and in the
presence of an a priori information. For example, measure-
ments of the profile of optically inhomogeneous phase-
shifting Levenson-type masks [34] yielded reliable data
notwithstanding their complicated structure. These results
confirmed that computer-aided phase-contrast microscopes
are equally promising for monitoring semiconductor inte-
grated circuits [30] and measuring submicron line widths.

Examination of virtually any polished reflecting surface
with the Airyscan microscope revealed traces of its mechanical
treatment, microinclusions, and defects with linear sizes of a
few microns. Zooming fragments in the images allowed
progressively smaller structures to be detected, e.g., extended
structures measured only few tens of nanometers were in many
cases found in the linear fragments of 200 —300 nm in size.

It proved far more difficult to interpret images of
biological objects, which required even more professional
skill and a priori information. Nevertheless, plant cells were
found to show a contrast nucleus, walls, and mitochondria.
Cell images of fungus Corioulus hirzurus exhibited a protein/
lipid bilayer in the walls with a width of individual layers of 50
and 80 nm [31]. Also, chromatin distribution in E. coli was
studied.

Figure 6a presents a topograph of a smallpox vaccine
containing virus particles about 400 nm in transverse dia-
meter. Note also characteristic subunits with an apparent size
of about 30 nm.

Figure 6b shows the cross-sectional profile of Rickettsia
provazekii which confirms the possibility of recording con-
trast elements of biological structures with a 220-nm differ-
ence in the equivalent height and a linear size of less than 50
nm. Under certain conditions, images contained prominent
artifacts in the form of characteristic concentric rings due to
light speckles and interference; these features, however were
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Figure 6. (a) Topograph of a smallpox virus vaccine (phase-contrast
image). (b) Cross-sectional profile of Rickettsia provazekii.

markedly different from the structures shown in Fig. 6a in the
shape, size, and equivalent height.

The images were highly susceptible to accurate focusing
which was a minor fraction of the nominal depth of focus
dz = 2/2[NAJ* 7).

Of special interest are the results of measuring latex
spheres which are frequently used as test structures. Latex
suspensions with particles of 50, 110, 260, 630, and 920 nm in
diameter were applied on a substrate of polished silicon or
aluminum (note that surface finish had marked effect on the
profile of interest). The measured dimensions were close to
the real ones in the case of large particle diameter (920 and
630 nm) in suspensions applied on aluminum. Deviations
increased with decreasing particle diameter and were close to
the asymptotic limit at 300 nm. The results were even more
accurate for spheres of small diameter on a silicon substrate,
with the limit of 500 nm. Isolated 50— 110-nm spheres were
readily distinguishable, but their measured size was usually
overestimated. The topographs exhibited spheres of appar-
ently pseudoelliptic shapes with axial ratios of 0.7-0.9,
spreading in the direction of the polarization plane.

The results of these measurements confirm the impor-
tance of examining the ‘field portrait’ for a certain class of
models, including dielectric spheres with small refractive
index.

Diffraction-grating images displayed the following spe-
cific features: maximum contrast at H-polarization of the
incident wave, impaired contrast of the profile image with
decreasing grating spacing, and the lack of significance for
the measurements of gratings with the number of lines over
1800/mm; the minimally discernible spacing in a periodical
structure (ca 400 nm) exceeded greatly the minimal width
(50—100 nm) resolvable for single slits.

Profile measurements using certified sandwich structures
with a slit width of 50-400 nm [5] were particularly
demonstrative. The height difference was normally not more
than 200 nm, although the slit depth exceeded 2 pm. With
decreasing width, the effect of artifacts increased and the
results of measurements were lacking in significance. Struc-
tures with a determinate profile displayed inversion of
contrast as the object’s surface moved relative to the focal
plane. This finding is in qualitative agreement with (24).

Images of stepwise structures at d/ = 1/4 showed slope
widths of several nanometers, but these figures do not reflect
the real resolving power of the microscope.

Of course, all these findings are insufficient to comprehen-
sively describe the properties of phase-contrast images of
subwavelength structures. However, taken together with the
results of previous studies [1 —6, 21 —24, 30—33], they provide
enough material for the following general conclusions:

1. Superresolution is possible for both conventional
amplitude images and phase-contrast images under coherent
illumination. A specific feature of phase images is the
separation of information on the local distribution and
anisotropy of the refractive index, in conjunction with the
reliable identification of the boundaries of contrast structural
elements, to which minimal field intensities correspond.

2. Marked superresolution is attainable only with large
numerical apertures of the objectives and at high magnifica-
tions.

3. Using standard structures with clear-cut edges, good
correspondence between an object and its phase image can be
achieved when the superresolution parameter is S = 2—6.

4. Superresolution of up to S = 20 is possible in images of
unidentified structures, but their profiles are highly suscep-
tible to careful focusing.

5. Polarization dependence of phase images is largely a
function of the ‘field-portrait’ properties of real objects.

6. The resolution in images of isolated structures is higher
than in periodic ones.

7. Characteristic artifacts in phase images can be seen as
apparent breaks of the surface related to wave-front disloca-
tions and phase uncertainty [12]. A displacement of an object
relative to the focal plane may lead to profile inversion, local
profile distortions caused by coherent noise, and speckle
structures due to reflections in the optical system and
apparent contrast enhancement at local height differences
close to 1/4. A priori information is necessary for the correct
interpretation of images.

8. The distance between boundary lines where the optical
parameters and the profile height of independently certified
test structures with high reflection coefficient undergo a sharp
change may serve as a criterion for the resolution in phase
images. Normalized superresolution S may be defined as the
ratio of the Airy disk radius to the minimal measured distance
between the contrast boundary lines of extended structural
elements.

4. Conclusions

The present review and the previously published literature
demonstrate the possibility of superresolution in phase
images.

The data available disagree with the Abbe diffraction
theory [7, 8] in which the effect of the aperture reduces to the
restriction of the angular spectrum. The aim of the present
report is to explain this discrepancy. The most essential
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features in this context are the use of eigenfunctions of an
optical system as the basis, the calculation of diffraction
losses taken from the theory of open resonators, the extension
of the concept of the degrees of freedom of an image to the
Airy disk, and the consideration of the ‘field portrait’ of a
subwavelength structure as a separate problem.

It appears appropriate to remind that the Kirchhoff
theory [7, 8, 26] implies the smallness of the numerical
aperture and represents the phase in diffraction integrals as
a power series in transverse coordinates in which the second
and third terms describe the Fraunhofer and Fresnel diffrac-
tion, respectively, whereas higher-order terms are neglected.
The object’s field is represented by a series in plane waves, and
components with imaginary negative values of the wave
number (to which evanescent waves formally correspond)
are normally assumed [8] to make no contribution to the
image.

The Fresnel approximation is employed in the Fredholm
integral equation to calculate eigenfunctions of an open
resonator, which leads, in the paraxial approximation, to the
Hermite-Gaussian functions. In this case, however, the lack
of exact solutions for large Fresnel numbers does not hamper
the formal field representation in the basis of eigenfunctions,
and the use of solutions in the paraxial approximation reveals
a number of regular features in higher-order modes. We think
that exact solutions will confirm the diffraction limitation on
the maximum mode index and the dependence of their
complex amplitude on the Fresnel numbers of the mirrors;
then, the disagreement with the results of analysis described
earlier in this paper will primarily affect numerical estimates.
A decrease in the quasi-period D, with increasing index of
transverse modes and the existence of solutions at D, < A
allows the conflict with the classical image theory (in which
they are identified with non-propagating waves) to be
eliminated and ensures qualitative agreement with experi-
mental findings.

A formal sequel to the proposed concept is the representa-
tion (10) of the object’s field as a series in Hermite-Gaussian
modes with the unlimited transverse index, which is equiva-
lent to the cancellation of the restriction on the spatial
frequency spectrum of the field portrait, the description of
diffraction at the aperture by the amplitude-phase distortion
function (19), the evaluation of the number of effective modes
in an image, the introduction of the concept of the internal
degrees of freedom of an image, and the explanation of some
regular features in the experimentally observed superresolu-
tion. The most important of these features are the dependence
of superresolution on the Fresnel number for the entrance
aperture, a rise in sensitivity to focusing with decreasing linear
size, and phase inversion in the vicinity of z = 0.

The impaired correspondence between the image and the
‘field portrait’ is the inevitable payment for the superresolu-
tion.

When the present work had already been prepared for
publication, we read a review of H G Schmidt-Weinmar [35]
devoted to a broader problem of reconstructing source fields
with the subwavelength spatial resolution based on optical
measurements in the far field; reading through this review
allowed a few corrections to be introduced into the proposed
concept. The review [35] is not directly concerned with
microscopy and effects of the entrance aperture but contains
an analysis of studies relevant to the general theory of
propagation of electromagnetic waves reported by A Som-
merfeld, C J Bouwckamp, H Kasimir, G Herzle, and

N Trulley whose results can be used to develop a new
approach to the explanation of superresolution in micro-
scopy.

Here are the findings of primary importance for our
purpose.

The field of a source may be represented by non-uniform
multipole waves to which a complex two-dimensional spec-
trum of spatial frequencies corresponds. Information avail-
able in the far field is contained in the spectrum of uniform
plane waves, and the superresolution is related to non-
uniform waves of higher orders. Two groups of functions
may be arbitrarily distinguished in the basis of the source-
field representation. Propagating waves and the classical
resolution limit are related to lower-order functions, while
essentially non-uniform waves decaying in the direction of
their propagation correspond to higher-order functions. They
are able to transmit limited information on the more intricate
structure of a source within a given wavelength. Multipole
fields are characterized by the power-like dependence of the
rate of amplitude decay down to a certain distance (‘barrier’
width) at which the spatial period in the transverse plane is
smaller than the wavelength. Behind the ‘barrier,” whose
width is proportional to the order of multipole, the ampli-
tudes decrease as 1/r. In the framework of this model, it is
possible to estimate the number of effective modes contribut-
ing to the image.

The text book by A Siegman [36] reports a formula for the
mean period of the Hermite-Gaussian function at large
indices and the effective radius coincident with the formula
(15) in our review.
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