
Abstract. Theoretical fundamentals of the phenomenon of op-
tical self-switching of unidirectional distributively coupled
waves (UDCW) with the linear coupling coefficient have been
given in Ref. [1]. The present review deals with experimental
examination of this striking phenomenon and pulse self-switch-
ing events along with the theory of UDCW self-switching in the
case of a nonlinear coupling coefficient.

1. Introduction

The phenomenon of self-switching of unidirectional distribu-
tively coupled waves (UDCW) with a linear coupling coeffi-
cient was theoretically examined at length in Ref. [1]. Figure 1
illustrates this phenomenon in the simplest case of identical
waves and presence only one of them at the system input.

There exists a wide class of UDCWs in the integrated [2 ±
8], fibre [9 ± 11] and nonlinear [12 ± 15] optics between which
the energy exchange occurs as they are propagating. To these

waves one can attribute waves in tunnel-coupled optical
waveguides (TCOW), waves with various polarizations in a
birefringent crystal or waveguide, waves undergoing the
Bragg diffraction in a periodical structure, various modes in
the nonuniform waveguide, waves with different frequencies
in a quadratically nonlinear medium, etc. The latter possess a
nonlinear coupling coefficient, whereas the rest Ð a linear
one.
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Figure 1. Plots of T0 � I0l=I00 versusR0 � I00=I0M at L � 2pKl=lb � 1:6p
(1) and 1:2p (2); UDCWs are identical and only a zerothwave arrives at the

system input.



It should be emphasized that the UDCW class is wider
than that of waves with oppositely directed coupled waves
used for producing the optical bistable switches [16 ± 32]. The
theory of linear interaction between UDCWs with a linear
coupling coefficient has long been developed in detail [2 ± 11].

The author was the first to reveal in Refs [33 ± 35]{ that in
the nonlinear regime the UDCW self-switching can occur in
certain conditions. The phenomenon of interest implies that
a small variation of the input intensity for one of the
UDCWs gives rise to an abrupt change in the UDCW
intensities ratio at the system output. The practical value
lies here in the fact that earlier unknown class of optical
transistors with record response time has been proposed [33,
34] on the basis of this effect. The latter and some problems
related to it were investigated by the author and his cow-
orkers in Refs [33 ± 35, 37 ± 73] and by other researchers in
Refs [36, 74 ± 114]. References, as a rule, are arranged in
what follows in the chronological order; sometimes they
were grouped with due regard for closeness of questions
discussed (e.g., [105 ± 116]).

The present review article deals with experiments on
examination of UDCW self-switching in the case of linear
wave-coupling coefficients and with theoretical consideration
of UDCW self-switching in the quadratically nonlinear
medium for the case of a nonlinear wave-coupling coefficient.
What is more, we will concern with the pulse self-switching as
just the latter has been observed in the first experiments [45,
46] (by virtue of the fact that rather high input intensities are
required in its observing). It would be a good thing to
compare also the theoretical prediction of the pulse-shape
change in the process of their self-switching with that found in
the experiment.

2. Reshaping the bell-shape pulse
in its self-switching

Let us consider the problem of shape variation of the bell-
shape laser pulse in its passage through the system with
UDCWs (in the case of a linear wave-coupling coefficient)
characterized by the intensity-dependent refraction index.

2.1 On the equations
The behaviour of the pulse in the system with UDCWs
propagating through the cubically nonlinear medium (and
with allowance made for dispersion as well as delayed non-
linear response, nonlinear dispersion of group velocity, and
coupling coefficient dispersion) can be described by the
equations [69]:
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where L � 2pKl=bl; K � bl=�2lc� is the linear wave-dis-
tributed coupling coefficient; l is the system length; lc is the
coupling length in the linear regime at x � n � Dn � m �
mn � mK � m3 � 0, i.e. the length of a power transfer; l is the
wavelength; Yjn � Yj=jYj, Y10n � Y01n � Y01=jYj, andeYn � eY=jYj are the normalized nonlinear coefficients;
Y � �Y0 �Y1�=2, Yj, Y01 � Y10, and eY are the nonlinear
coefficients of wavequides [1, 34]. If UDCWs are the waves in
TCOW or modes of different order in a separate waveguide,
then usually jY10j5 jYj and the cross terms involving Y10n

and eYn coefficients, as a rule, can be neglected. The term witheYn is significant if by `0' and `1' waves are meant UDCWs of
orthogonal polarizations in the birefringent waveguide. In
this case Y01n � 2=3, eYn � 1=3 (see [1, 72]). For the rest of
UDCWs, among themwaves in TCOW,wemay consider thateY � 0. In addition, aj � Aj=

��������
I0M
p

are the normalized wave
amplitudes; I0M � 4K=jYj is the critical intensity (of complete
self-switching) [1] and it is assumed below that I0M � IM (see
[1]); zn � z=l; Dn � Dl=t2p, where D � q2�bo=c�=qo2 is the
dispersion coefficient; m3 � �ltÿ3p =3� q3�bo=c�=qo3 is the
third-order dispersion coefficient; tn � t=tp, where tp is the
pulse length and t � tÿ z=u; n � ltÿ1p �uÿ10 ÿ uÿ11 �=2;
u � 2u0u1=�u0 � u1� is the mean group velocity; x � ab=K,
a � b1 ÿ b0, bj is the effective index of refraction for the jth
wave �j � 0; 1�; b � �b1 � b2�=2; uj � qo=q�bjo=c� is the
group velocity of the jth wave; m ' Tnl=tp accounts for the
nonlinearity inertia [15]; mn ' tÿ1p �T0=pÿYÿ1 qY=qo� takes
account of the wave nonstationarity and nonlinearity disper-
sion [15]; mK ' �2K=o� qK=qo��Ktp�ÿ1 allows for the wave
nonstationarity and dispersion of the coupling coefficient; T0

is the period of the optical oscillation, and, finally, Tnl is the
time of Y relaxation. We have presented in Ref. [1] the
nonlinear waveguide coefficients expressed through the
waveguide-mode overlap integrals and bY-tensor components
describing the cubically nonlinear media. As shown, the
tensor of isotropic medium may be generally employed forbY. The distinction between coefficients Dn, m, mn, m3, and mK
for the `0' and `1' waves is neglected, though it can be easily
taken into consideration. For this purpose, it will suffice to
provide these coefficients with the additional index j � 0; 1.

Energy of the pulse

I �
� 1
ÿ1

ÿjA0j2 � jA1j2
�
dtn �2:1:2�

is conserved along the system coordinate: dI=dz � 0.
The set of Eqns (2.1.1) is broken up into two independent

equations at K � mK � 0 and eYn � Y01n � 0, which were
given in Ref. [15].

2.2 Quasi-stationary case
The approximation D � m � mn � mK � m3 � 0 holds down
to ultrashort light pulses (tp � 1ÿ10 ps) traversing the fibre
waveguides [45, 46]. Criterion of its validity will be discussed
below.

In the above approximation, Eqn (2.1.1) goes over to the
quasi-stationary equations [33, 34] (wherein time t is present

{A similar switch was put forward simultaneously by Jensen [36] in the

particular case of light coupling into one of the identical TCOWs.
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only as a parameter) which were analyzed in Ref. [1]. As this
takes place, equations with Y01 6� 0 reduce to those with
Y01 � 0 by the use of a trivial substitution [1, 55]. In this case
their solution is expressed in terms of elliptic functions
cn�L; r�, sn�L; r�, and dn�L; r�, for which the simple approx-
imations were found over the self-switching region: r � 1,
expL4 1 [1]. To cite an example, for the simplest event of
identical (a � 0, Y0 � Y1 � Y, n � 0) UDCWs and one
(zeroth) wave at the system input, the jth-wave intensity at
the output is determined by the formula [35, 36]:

Jjl � R0

2

�
1� �ÿ1� j cn �L; r�� ; �2:2:1�

where r � I00=I0M � R0, Jjl � Ijl=I0M, Ijl � Ij�z � l�, Ij0 �
Ij�z � 0�, j � 0; 1 with I00�t� being the time-dependent func-
tion defining the shape of the input pulse.

It follows from (2.2.1) that for the input intensity [35]

I00 � I
� j�
M � I0M

�
1� �ÿ1� j8 exp�ÿL�� �2:2:2�

all the output radiation is concentrated either on the zeroth
(j � 0, I0l � I00, M0 point of the system) or on the first (j � 1,
I1l � I00, M1 point of the system) wave (see Fig. 1). The
differential gain at I00 � I0M constitutes [35]

k � qI0l
qI00
� expL

8
: �2:2:3�

Assessment of TCOW in the GaAs crystal at l � 1:06 mm
places the critical power I0MS at about 14 W with the power
gain qI0l=qI00 equal to approximately 500 [35, 1]. Close to
the exciton resonance, Y magnitude is essentially larger,
whereas I0M is accordingly smaller. For the dual-core fibre
waveguide with Y � 10ÿ12 esu (see, for instance, Ref. [15])
the critical intensity of order 109 W cmÿ2 was estimated in
Refs [37,1], i.e. the critical power of order 100 W. It should
be emphasized that Y depends not only on the nonlinear
properties of the waveguide material but also on the field
density in the waveguide determined by the parameter
V � 2pa�n2j ÿ �n2�1=2=l, where nj and �n are the refractive
indices of the light-carrying core of radius a and the
cladding, respectively.

Let the bell-shape pulse in the form of a `zeroth' wave be
applied to the system with identical UDCWs:

I00�t� � Imax

cosh
��tÿ tmax�=tp

� ;
where Imax is the maximal intensity of the incident radiation
peaked at the point in time tmax, which is advisable to be
presented in the form Imax � I0MRm with I10 � I1�z � 0� � 0.
Here Rm � Imax=I0M defines the ratio between the maximal
input intensity and the critical one.

The form of the output pulses is described by the solution
to Eqn (2.2.1).

The left pulse in Fig. 2 corresponds to the input pulse and
its shape is universally unchanged, whereas the middle and
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Figure 2.Pulse shapes relating to the zerothwave I00=Imax � 1=cosh�tn� at the input, as well as to the zerothwave I0l�tn�=Imax and first wave I1l�tn�=Imax at
the output; tn � t=tp is the normalized time in the accompanying frame of reference; Rm � Imax=I0M; R1 � I10=I0M � 0, a � n � eY � 0, D � 0,

m � mn � mK � m3 � 0; (a) L � 1:4p; (b) L � 2p.
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right pulses apply to those emerging as the zeroth and first
waves, respectively. The magnitude of Rm undergoing a rise
from the top down is also displayed in the figure.

Figure 2a at Rm � 0:9 and Fig. 2b at Rm � 0:985 are
consistent with Imax � I

�1�
M , whereas Fig. 2a at Rm � 1:1 and

Fig. 2b at Rm � 1:015 correlate with Imax � I
�0�
M .

As seen from Fig. 2, the essential shortening of the pulses
as well as rectangular pulse formation and some other
intriguing applications of the process in question are made
possible. Taking into consideration that the minimal time of
radiation self-switching in the system given is restricted by the
time of the nonlinearity relaxation which comprises 10ÿ14 s in
the case of fused quartz, it may be inferred that the pulse
length can be shorten down to 10ÿ14 s. This conclusion was
first confirmed experimentally in Ref. [46] (see Section 3.4). A
possibility of pulse shortening by this means was originally
revealed in Ref. [74]. It has been proposed to employ the pulse
self-switching for restricting their intensities or making the
pulse selection by the intensity [35].

2.3 Effect of dispersion and phase self-modulation
To complete the effective self-switching of radiation at low
input intensities one may use, as followed from formulas
I0M � 4K=jYj and (2.2.3), long systems with UDCWs
possessing reasonably large L parameter at small K and,
hence, at small I0M. Such systems can be realized around
various optic-fibre waveguides: dual-core fibre-optical wave-
guide (TCOW); birefringent optical waveguide with
UDCWs of different polarizations, and, finally, double-
mode fibre-optical waveguide with two unidirectional
coupled optical modes.

To observe and put to use the effect of radiation self-
switching it is worthwhile applying the ultrashort light pulses
to the fibre-optical waveguide (see [43] and Section 3.2).
However, in the case of lengthy fibre-optical waveguide and
ultrashort light pulses the combined influence of second-
order dispersion and phase self-modulation may prove to be
essential and cannot be neglected.

If Dn 6� 0 and m � mn � mK � m3 � n � a � 0, Y0 �
Y1 � Y, then Eqn (2.1.1) goes over to the following equations
[43, 47, 105]:
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here Yn � 2plY=lb, which represent the straightforward
generalization of the equations [33, 34, 1] to the event of a
dispersive medium. The particular case of Dn � 0 has been
examined elsewhere [1].

Apart from integral (2.1.2), Eqns (2.3.1) have another
integral [43, 47]:
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representing generalization of the integral treated in Refs [33,
34, 1] to the event of a dispersive medium.

2.3.1 On the system sensitivity to dispersion in the nonsoliton
regime. The process of self-switching as applied to the bell-
shape ultrashort pulse was numerically investigated in Ref.
[59] with allowance made for the joint influence of dispersion
and phase self-modulation (for m � mn � mK � 0). For defi-
niteness sake, we considered a particular case of the system
based on TCOWs. The calculations permitted the following
conclusions to be drawn [59]:

(1) The pulse-valley depth in the central part of output
pulses becomes incomplete for definite and rather enhanced
dispersion jDnj (see Fig. 2), even though the UDCWs are
identical and Imax � I

�j�
M [see Eqn (2.2.2)].

(2) The larger L, the greater the joint influence of
dispersion and phase self-modulation on the radiation self-
switching. For example, atL � 1:4p the latter phenomenon is
impaired with decidedly higher dispersion level as compared
to that at L � 2p.

(3) If sgnYD � const and jDnj � const, then the time-
dependent profiles of output intensities almost coincide under
changes ofY and D signs.

(4) The joint effect of dispersion and nonlinearity on the
output pulse shape depends on theYD sign and on that point
wherein the system should be placed at D � 0. If D � 0
conforms to the M1 point, then at YD < 0 (self-stretching of
pulses) the joint influence of dispersion and phase self-
modulation corrupting the pulse self-switching is much
weaker than that at YD > 0 (self-compressing of pulses). If
D � 0 conforms to the M0 point, then at YD < 0 the above
effect, on the contrary, is somewhat heightened as compared
with the case ofYD > 0.

As the severity of influence on the part of Dn depends on
the L parameter determining the self-switching steepness as
well as on theYD sign, the conditions allowing the dispersive
term to be ignored and the consideration of Dn � 0 need not
be reduced to familiar conditions for isolated waveguides:
l5 ld � t2p=2D and l5 lnl; t � tp

������������������������������
l=�4pjYjI00D�

p
. The levels

of jDnj starting from which theDn influence shows itself have
been cited in Ref. [59] for various values of L and sgnYD. By
way of example, atL � 2p andYD < 0 the effect ofDn for the
M1 point makes itself evident by starting from jDnj � 10ÿ3,
whereas at jDnj5 10ÿ3 the term involving Dn can be
neglected. The above effect may be ignored also in the case
of ultrashort pulses (tp4 1 ps) and long fibre-optical
waveguides (l > 1 m), provided l � 1:3 mm that corresponds
to the point with D � 0.

2.3.2 Soliton self-switching. The effect of dispersion is liable
not only to deteriorate the pulse self-switching, but it also has
the ability to enhance the latter by having done complete. For
this purpose, dispersion has to compensate the temporal
nonuniformity of the nonlinear phase accumulation so that
the pulse acquired the phase profile uniform (or nearly
uniform) in time, that is to say became a soliton:

A00�t� �
���������
Imax
p

cosh
��tÿ tmax�=tp

�
with Imax � 2Dn=Yn, i.e. pjYjImax=lb � jDj=t2p.

A question concerning the feasibility of soliton regime
under conditions of self-switching in TCOWs and some
peculiarities of this regime was put rather long ago [43, 47].
It has been proposed in Ref. [43] that paired solitons are
formed in the system at lnl � ld, i.e. two bound solitons one of
which travels as a zerothwave (through the zerothwaveguide,
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where TCOWs are involved), and the other does as a first
wave (through the first waveguide).

Propagation of solitons in TCOWs and some other
systems with UDCWs was numerically investigated in Refs
[105 ± 114]. It was suggested in Ref. [105] that a fundamental
soliton was supplied to the zeroth-waveguide input and its
subsequent behaviour was being studied through numerical
solution of Eqn (2.3.1). Redistribution of the soliton energy
came about between waveguides, but the solitonic shape of
the pulse was conserved in each of the waveguides [105]! In
other words, the paired solitons were being formed and
transfer of energy between them occurred in accordance
with the nonlinear theory [35, 1]. However, regions away
from the self-switching operation [i.e. �Imax=I0M�24 1 and
�Imax=I0M�25 1] were considered solely in Ref. [105]. The
conclusions (as applied to solitons) drawn in Ref. [35] were
supported for the cases at hand.

The set of Eqns (2.3.1) (i.e. equations from [43, 47, 105]
without appropriate references{) was numerically solved in
Ref. [106] for a fundamental soliton coupled into one of the
TCOWs with consideration of the immediate self-switching
region: I00 � I0M. Based on the computer results, the com-
plete soliton switching without decay and shape distortion
[i.e. without `crater' formation and breaking down into
isolated parts as with the quasi-stationary case (see Fig. 2)]
was demonstrated [106]. Thus, the complete self-switching of
soliton energy proved to be possible! This fact owes to the
uniformity of the soliton-phase temporal profile, which is
characterized by the equal and solely z-dependent phase at all
its points. Hence, the soliton is switched as a single whole. It
appears to be wholly at the system output either in the zeroth
wave, or in the first wave depending on the maximal value of
the intensity.

In the case of the fundamental soliton we are up actually
against the temporal analogue of a three-dimensional wave-
guide; therefore, ignoring the phasemodulation and variation
of the soliton width we arrive in the first approximation at

Aj � rj�z� exp
�
ijj�z�

�
coshÿ1�tn� : �2:3:3�

Substituting (2.3.3) in Eqn (2.3.1) gives

ir00 cosh
ÿ1�tn� ÿ j00 r0 coshÿ1�tn�

� ÿDnr0 cosh
ÿ1�tn�

�
1ÿ 2 coshÿ2�tn�

�
ÿ Lr1 exp�ic� coshÿ1�tn� ÿYnr30 cosh

ÿ3�tn� ;

ir01 cosh
ÿ1�tn� ÿ j01 r1 coshÿ1�tn�

� ÿDnr1 cosh
ÿ1�tn�

�
1ÿ 2 coshÿ2�tn�

�
ÿ Lr0 exp�ÿic� coshÿ1�tn� ÿYnr31 cosh

ÿ3�tn� �2:3:4�

where the prime denotes differentiation with respect to zn=2.
In so doing the temporal profile of the field coshÿ1�tn�may be
described and estimated in the same manner as the spatial
field profile was taken into consideration in deriving the
equations in Refs [33, 34, 43] and Eqn (2.1.1) (see also
Ref. [1]), namely, multiply both the sides of Eqn (2.3.4) by

coshÿ1�tn� and thereafter integrate them with respect to tn
between ÿ1 and1. It follows then

ir00 � ÿLr1 sinc ;

ÿ j00r0 �
Dnr0
3
ÿ Lr1 coscÿ

2

3
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3
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2

3
Ynr31 ; �2:3:5�

that is equivalent to the system of equations

c 0 � L�I0 ÿ I1���������
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3
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I 00 � ÿ2L
��������
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p
sinc ; I 01 � 2L

��������
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p
sinc : �2:3:6�

Hence, we arrived at the set of equations identical to that for
the quasi-stationary case [35, 1] and which involves an
effective nonlinear coefficient equal to �2=3�Y rather than
Y. The critical intensity increases, accordingly, by half again
the value for the quasi-stationary case and this conclusion
approximately conforms with numerical findings in Refs
[106, 108].

Thus we can adopt the theory developed in Ref. [1] when
describing the phenomenon of fundamental soliton self-
switching in the first approximation and in so doing we
interpret the jj�z� phases as the soliton phase in the jth wave
(in the jth waveguide, if TCOWs are dealt with), whereas Ij�z�
may be regarded as the soliton peak intensity. In evaluating
numerical parameters for the nonlinear coefficient use could
be made of the following coefficient

Yeff '
� 1
ÿ1Y coshÿ4�tn� dtn� 1
ÿ1 coshÿ2�tn� dtn

� 2

3
Y ; �2:3:7�

resulted from averaging over the temporal profile (akin to
averaging over the transverse cross section in deducing the
equations in Refs [33, 34] (see also Section 2 in Ref. [1]).
Under this rough estimation, the temporal profile is assumed
to be constant and proportional to coshÿ1�tn� in the first
approximation although its slight variation during the pro-
gress of the switching just takes place [106]. This fact
apparently lies at the basis of explanation for some quantita-
tive discrepancy between the above estimate of the critical
intensity and the numerical results [106].

More complicated form of the probe function was
invoked in Ref. [112]:

Aj � rj�z� exp
�
ijj�z� � ib�z�t2� coshÿ1� t

tp�z�
�

and a set of ordinary differential equations was developed for
rj�z�, jj�z�, tp�z�, and b�z�. These equations elude analytical
solving in the region wherein ld ' lc. But just this region is of
prime interest for us, because it conforms to the self-switching
event �jYjImax ' 4K� and soliton formation �pjYjImax=lb '
jDj=t2p� at one time.

Study on the soliton switching by application of a weak
alternating signal was conducted in Ref. [110] using a
numerical approach. In doing so, the figure from Ref. [110]
essentially coincides with Fig. 6 appeared below and dis-
played earlier in Ref. [43], i.e. it illustrates the principle of
operation of a discrete optical transistor [43] in the `key' mode

{This is by no means the unique event of improper borrowing; for

instance, equations from Refs [33, 34] were used in Ref. [81] without any

literature citation.
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for a concrete form of the envelope �sech tn� for ultrashort
pump pulses. Dependence of the soliton-energy transmission
coefficient on the input-signal phase [110] is coincident with
the analogous dependence in the quasi-stationary state [1, 37].

It should be emphasized that the switchingmethod [33, 37,
43] has been actually discussed in Ref. [110] without proper
citation.

The time history of relative maximum positions for two
accompanying solitons was studied in Refs [107, 108]. The
situation was comprehended when solitons with closely
related intensities were fed to the TCOW inputs. If the soliton
maxima at the waveguide input are slightly shifted in time
with reference to each other, then they shift all the more
during the propagation, i.e. as though one soliton begins to be
ahead of the other, whereas this latter lags behind. The
process at hand is enhanced multiply if the soliton self-
frequency shift takes place, being governed by the Raman
effect [114] (and defined by the term including m).

It is common knowledge that the waves polarized along
and orthogonally to the optical axis travel at different
velocities in the birefringent medium. However, the avail-
ability of nonlinearity (the `cross' coefficient Y01) at fairly
high input amplitudes stabilizes the waves against their `walk-
off' (splitting) which is due to the birefringence effect [115]. In
other words, there occurs a mutual `trap' of normally
polarized solitons travelling with equal velocities (`fast'
polarization is retarded, and `slow' one accelerates). It was
suggested to devise the logic elements by applying the
principle of the soliton stabilization [116]: according to
whether the signal pulse is fed or not, the soliton of
polarization orthogonal to this pulse is either trapped and
retarded or not and, correspondingly, it either appears or not
in the `clock window'. The frequencies of mutually trapped
solitons are slightly shifted (by the value of order 0.5 THz) in
opposition. Notice that the terms involving K and eY which
are responsible for the UDCW self-switching have been
neglected in Refs [115, 116].

2.4 Influence of nonlinearity relaxation inertia,
nonlinear dispersion of group velocity,
and the coupling coefficient dispersion
The factors discussed which are allowed, correspondingly, for
the terms in Eqn (2.1.1) with coefficients m, mn, and mK, have
been studied (at D � 0) in Ref. [69]. Their action is mani-
fested, among other factors, in the symmetry breaking for the
pulses at the output (Fig. 3). The reason is that the leading and
trailing edges of the pulse are to be found in different
conditions. By this means, where influence of the parameter
m is concerned, i.e. nonstationarity of the nonlinear response,
we can say that the cubic nonlinearity has yet no time to take
the steady valueY on the pulse leading edge and proves to be
smaller than this value, i.e. as if the critical intensity on the
pulse leading edge is extended as against I0M and the system
has not yet `reached' the point of self-switching.

The term with mK accounts for dispersion of the coupling
coefficient. The physical reason for this looks as follows.
Short pulses possess a wide frequency spectrum. Different
coupling coefficients correlate with various frequency com-
ponents, i.e. a spread of coupling coefficient magnitudes
within the pulse arises. This spread shows up most vividly
for TCOWs as their coupling coefficient strongly depends on
frequency. For other UDCWs the spread is essentially
smaller. Lest the operation of a self-switch be disrupted, the
relative spread of coupling coefficient values is bound to be

much smaller than kÿ1, where k is the gain estimated by Eqn
(2.2.3) in the simplest event.

Let us render concrete an appraisal of

mK ' Kÿ1tÿ1p
qK
ql

ql
qo
� T0

tpp

for TCOWs by expressing mK in terms of the T0=tp ratio.
Numerical estimates show that the value l�Kÿ1 qK=ql� � 7 is
typical for TCOWs (possible though are just as slightly lesser,
so superior values). Considering that tÿ1p �ql=qo� �
ÿlT0=�2ptp�, the above parameter can be crudely estimated
as jmKj ' T0=tp.

Computations done in Ref. [69] evidenced that influence
of jmnj and jmKj coefficients shows up equally: calculated
results agree for mn � ÿmK.

The concurrent effect of terms with m, mn, and mK
coefficients appears in a number of cases to be tangibly
weaker than that of individual terms, i.e. as if they compen-
sate each other [69].

The influence of mn and mK parameters reveals itself also in
strengthening the instantaneous peak intensity of the pulse
`spike' at the first waveguide output (for the first wave) on
account of spike sharpening, i.e. its `compressing' in time [69].

Calculated results also permit estimation of m, mn, and mK
values beginning with which the pulse self-switching is
disturbed [69]. These values were found to be of order 10ÿ3

at L � 2p, and they are substantially higher (of order 10ÿ2)
for L � 1:4p. Thus, if L4 1:4p and there occurs that
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Figure 3. Shape of the output pulses in the zeroth I0l�tn�=I0M and first

I1l�tn�=I0M waves, where tn � t=tp is the normalized time in the accom-

panying reference system: (a) m � 0; (b) 10ÿ3; (c) 10ÿ2; mn � 0, mK � 0,

L � 2p, a � D � n � m3 � 0,Yj � Y,Y01 � eY � 0 (taken fromRef. [69).
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m; mn; mK5 10ÿ2, then terms with m, mn, and mK in Eqn (2.1.1)
are disregarded.

The above findings are useful in forecasting the operation
of discrete optical transistors [43] and logic elements [37]
based on TCOWs and other UDCWs, wherein the contin-
uous sequence of ultrashort pulses is utilized as a pump (with
the aim of estimating the pump and TCOW parameters at
which the distortion of output pulses has yet to be neglected).

We shall now give two specific examples with estimates of
the coefficients m, mn, and mK.

Example 1.Let us assume that a dual-core fibre waveguide
made of fused quartz is employed and it is characterized by
Tnl4 10ÿ14 s,Y � 10ÿ12 esu and the critical intensity of order
109 W cmÿ2 for K � 10ÿ6 [37, 40, 45], conforming to the
power around 100 W with a cross-sectional area S of about
10ÿ7 cm2. To one of TCOWs let there fed ultrashort light
pulses with l � 1:3 mm, i.e. T0 � l=c � 4:3� 10ÿ15 s, whose
amplitude corresponds to the intensity I

�1�
M . Then

m4 10ÿ2 � tp, mn ' 1:4� 10ÿ3tp, mK ' ÿ4� 10ÿ3tp, where
the pulse duration tp is measured in ps. In compliance with
above results for pulses of duration under 1 ps, the effect of
terms with m, mn, and mK coefficients may be essential already
at L5 1:4p (l5 4:2 m). For pulses of duration above 10 ps,
the effect of these terms are disregarded even at L � 2p
(l � 6 m). By way of example, terms involving m, mn, and mK
coefficients in Eqn (2.1.1) can be neglected with confidence
under experimental conditions (tp5 20 ps) [45, 46], the more
so as radiation was shifted experimentally in wavelength to
shorter range: l � 0:53 mm, i.e. T0 � 1:7� 10ÿ15 s.

Example 2.Let us next assume that TCOWs are fabricated
from a layered structure of the GaAs(100 �A)/
Al0.3Ga0.7As(100 �A) �n � 3:5� type, which represents a multi-
quantum-well structure with a nonlinear coefficient
Y � 10ÿ4 esu. Provided K � 2� 10ÿ4, the critical intensity
comprises 1:3� 104 W cmÿ2 resulting in a power some
1.3 mW for S � 10ÿ7 cm2. The time of the nonlinearity
relaxation diminishes down to Tnl � 0:04 ns on bombarding
this structure with protons [97]. Let light pulses of l � 0:9 mm
(T0 � 3� 10ÿ15 s) and duration tp � 40 ns be coupled into
one of the TCOWs. Then the term with m � 10ÿ3 may show
itself, if the distance of two linear light transfer from one core
to the other confines itself to the TCOW length (L � 2p,
l � 3 mm) and the effect of terms with mn and mK is over-
looked. For shorter pulses of tp � 4 ns, the term with
m � 10ÿ2 will be exhibited already at L � 1:4p (l � 2 mm).

In the event of soliton self-switching, the inclusion of
terms with m, mn, and m3 leads to enhancement of the critical
intensity [109].

2.5 On the speed of self-switches response
The speed of the self-switch response may be limited by
factors being allowed for the m, D, mK, and mn coefficients in
Eqn (2.1.1), for instance, through the second-order disper-
sion. But the main limitation usually concerns the nonlinear-
ity inertial effect and therefore for simplicity we assume that
D � mK � mn � m3 � n � 0. It should be emphasized that in
this situation the speed of response characterizing the
switches and optical transistors at hand is determined only
by the time of relaxation of the medium optical nonlinearity
rather than the time of light travelling along the waveguides.
To have a `feeling' for this conclusion, imagine the sequence
of the zeroth-wave square pulses alternating in intensity, with
values given by Eqn (2.1.3) with j � 0 and j � 1, and coupling
into the system input. As this takes place the length of pulses

and interval between them fall far short of the time of light
transit along the waveguides, and yet they are well over the
time of nonlinearity relaxation. If the switching time was
determined by the time of light travelling along the wave-
guides, then the systemwould have not obviously managed to
switch the pulses. But a switching event proceeds. The matter
is that in this case one may ignore the term accounting for
nonlinearity relaxation in nonstationary equations (2.1.1)
which govern such switching. In which event nonstationary
equations (2.1.1) become quasi-stationary [33, 34, 1], wherein
the running time t � tÿ z=u is present as a parameter.
Analysis of equations unambiguously showed that these
pulses would be switched [33, 34, 1]: one pulse would be
found in the zeroth wave at the system output, the next Ð in
the first wave, etc. The experiment favoured the above
conclusions [46] (see also Section 3.4) and demonstrated the
valley and spike on the output ultrashort pulse of duration
under 5 ps, whereas the time of light pulse travelling
comprised 5 ns, i.e. it was as great as 1000-fold.

3. Experimental evidence of the UDCW
nonlinear power transfer and self-switching

This section is concerned with the experiments the aim of
which is to disclose the phenomenon of light self-switching
predicted in Refs [33 ± 36]. Attention was drawn as far back
as in 1984 [37] to the fact that observation of this phenom-
enon in fibre-optical waveguides hold much promise, and
just in these waveguides it has been first observed. In the
experiments [40, 45, 46], laser radiation with a single
transverse mode was coupled into one of the cores possessed
by a dual-core fibre waveguide and the distribution of power
between cores at the system output was investigated as a
function of input intensity. Cores together with a common
cladding made from fused quartz have formed the single-
mode waveguides tunnel-coupled with each other. The gap d
between cores was small (d � 8 mm), which is why the
controllable coupling of laser radiation into one of the
cores (without affecting the other) has always posed a
problem. To solve the latter, a special procedure of radiation
coupling was developed [40, 117] whose essence consists in
the following (see Fig. 4). Radiation (l � 0:53 mm) was
transmitted through the glass wedge 1 and then was focused
on the end of the waveguide 3 with the aid of a micro
objective 2. The focused radiation reflected partially from
the waveguide end, then it was transmitted again through the

7

9 8

6

l � 0:53 mm

1

4

l � 0:63 mm

5

20� 8�

3 2

Figure 4.Layout of the first experiment on light nonlinear pumping over in

TCOWs: 1 Ð glass wedge; 2Ð 8� micro objective; 3Ð waveguide; 4Ð

screen; 5 Ð 20� micro objective; 6 Ð removable mirror; 7, 8 Ð

photocathodes; 9Ð prism.
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micro objective 2 and reflected from the wedge-1 surface,
and, finally, this radiation was incident on the screen 4.
Synchronous with propagation of the above laser beam,
`auxiliary' radiation of an He ±Ne laser (l � 0:63 mm) was
coupled into the waveguide from its opposite side by the use
of a micro objective 5. This radiation fell on the screen 4
after being transmitted through the waveguide 3 and micro
objective 2 as well as reflected from the wedge 1. Therefore,
the images of waveguide-core input faces and focal spot of
coupled radiation were viewed on the screen. The image of
the input face for one of the waveguide cores and that of the
focal spot were brought into coincidence by moving the
waveguide input face with the help of micrometric screws
and in doing so the coincidence between longitudinal axes of
the coupled light beam and the light waveguide core could be
gained.

3.1 Nonlinear transfer of light energy in TCOWs
Under first experimentation [40], the second-harmonic pulse
(tp � 80 ns) from the neodymium-glass laser in the Q-switch-
ing mode was applied to one of the waveguide cores. In this
experiment (see Fig. 4), the nonlinear transfer of radiation
power in TCOWs has been observed for the first time and the
results corresponded closely to theory (Fig. 5), i.e. the
feasibility of radiation self-switching was indirectly con-
firmed. However, the direct observation of the phenomenon
itself has not met with success mainly due to parasitic
stimulated Brillouin scattering (SBS) and TCOWs of insuffi-
ciently good quality.

The experiment conducted in Ref. [40] can be viewed also
as an approach to measuring the coupling coefficient K and
nonlinear coefficientY of optical waveguides. The theoretical
curve in Fig. 5 fitting experimental data was calculated
according to Eqn (2.2.1) for L � 0:24p and P0M � 95 W.
From L � 0:24p at l � 18 cm it follows that K � 5:2� 10ÿ7.
Given K and P0M, we arrive at Y � 2KcbS=pP0M �
4� 10ÿ13 esu. For the coefficient n2 appearing in the known
expression [7, 12, 15] n � n0 � n2hE 2i, the following estimate
n2 � Y=2n0 � 1:3� 10ÿ13 esu was made, which is in agree-
ment with tabulated data (see, for instance, [15]).

Shortly after publishing the paper [40], nonlinear transfer
of radiation energywas observed in the analogous experiment
[76], in which TCOWs were fabricated around layered
periodic structure of the multiquantum-well (MQW) type:

GaAs(100 �A)/Al0.3Ga0.7As(300 �A) involving 25 periods. In
doing so the critical power was reduced down to about 1 mW
because of resonance enhancement of cubic nonlinearity in
the vicinity of exciton resonance{, tuning out from which
comprised DE � 56 meV. Furthermore, n2 � 10ÿ7 cm2 Wÿ1,
loss coefficient approximately equals 6.5 dB mmÿ1

(d � 15 cmÿ1), and, finally, TCOW length l � 2mm.GaAlAs
laser diode at room temperature served as a radiation source
(l � 0:85 mm and tp � 100 ns), whereas TCOWs were cooled
down to a temperature of 180 K, exciton resonance whereat
corresponded to l � 0:82 mm. Unfortunately, the procedure
of radiation injection into a waveguide has not been described
in Ref. [76]. Two more years later the nonlinear radiation
transfer was observed in the ridge TCOWs based on MQW
Ga0.7In0.3As(150 �A)/GaAs(150 �A) structures for the wave-
length l � 1:15 mm [87]. Tuning out from the exciton
resonance measured DE � 40 meV with n2 � 2:25� 10ÿ7

cm2 Wÿ1, loss coefficient d � 30 cmÿ1, and the length of a
single linear energy transfer comprising about 0.4 mm. Long-
itudinal distribution of radiation energy over waveguide axis
has been studied by a procedure of its sequentional cleaving
off.

3.2 On a possibility of observation and use of the
radiation self-switching effect; a discrete optical transistor
In order to observe the phenomenon considered it was
suggested [43] to feed the train of ultrashort light pulses
into one of the waveguide cores, because in this case the
parasitic influence of stimulated Brillouin scattering is
eliminated and the threshold intensity of a waveguide-end
breakdown increases. The discrete analogue of an optical
transistor has been also proposed [43] with a continuous
sequence of ultrashort pulses of intensity close to a critical
one (see Fig. 6) being used as a pumping source. In the
absence of light dispersion, the right-angled shape of
ultrashort pumping pulse looks as optimal, and yet if
dispersion is essential then solitonic form is preferable:
coshÿ1�tn� (see Section 2.3). In these events, complete
switching of pulses is possible.

3.3 Observation of light self-switching
in TCOWs and demonstration of possibilities
for optical transistor development
Advanced dual-core optic-fibre waveguide, as compared with
that employed in Ref. [40], was used in further experiments
[45] two years later. The former was fabricated on the base of
fused quartz and had two parallel equal cores of a � 1:3 mm
radius in the common cladding with difference in refraction
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P0l=P1l
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Figure 5.Power ratio at the TCOWoutput (waveguide length l � 18 cm) as

a function of radiation power at the input (light is coupled into one of the

waveguides): open circlesÐ experimental data [40], solid lineÐ calculated

by (2.2.1).
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Figure 6. Schematic diagram of a TCOW-based discrete optical transistor:

1Ðpumping pulses; 2Ðsignal; 3Ðmixer; 4Ðentrance micro objective;

5ÐTCOW; 6Ð dividing micro objective (taken from Ref. [43]).

{Attention was drawn to this fact still in Ref. [35].
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indices of the core and cladding reaching Dn � 0:005 and
d � 8:6 mm. In this experiment (the scheme whereof is
displayed in Fig. 7) a train of ultrashort light pulses pertaining
to the second harmonic of an Nd :YAG laser (l � 0:53 mm)
operated in the regime of passive mode synchronization, was
coupled into one of the waveguide cores by employing the
refined technique [117]. Light beams emerging from both the
cores were spatially separated and each of them was set off to
its own photocathode (23 and 24 in Fig. 7). Approximately
8%-fraction of the coupled radiation power was directed to
the third photocathode 25 (of sensitivity � 1:15 mA Wÿ1)
with the aid of plate 26. Owing to small losses in the optical
waveguide we may consider that I0l � I1l � I00. Electric
signals from photocathodes with various time delays were
applied to the same input of an `Tektronix' oscillograph
(Df � 1 GHz, rin � 50 Ohm) on whose screen we could
distinguish three trains of ultrashort pulses (see Figs 8 ± 11):
the first train (the very left) is the signal proportional to the
input one; the second and third trains match the output
signals from one and the other cores.

By selecting the light filters in holder 27, an equality
between amplitudes of the second and third pulse trains on
the screen at I0l � I1l was reached. Due to broadening of the
third-train pulses (after travelling through a delay cable 50 m
in length) the latter merged together in the lower part of the
screen.

The apparatus employed has enabled one to monitor the
radiation power averaged over the time interval ta � 0:5 ns.
Doing so led to underestimating the maximum intensity of
separate train pulses (tp � 50 ps) and their envelopes on the
oscillograph screen approximately by an order of magnitude.
Taking into consideration above data, the appraised coeffi-
cient of conversion from the amplitude of `input' signal on the
oscillograph screen to the power comprised some
(0:08� 50 Ohm)� (1.15 mAWÿ1)� (tp=ta)� 0:46 mVWÿ1.

Power variation for pulses within each train provided a
way for keeping track of the power distribution for each
separate pulse over TCOW outputs in relation to its input
intensity. To put it differently, owing to bell-shape change of

separate pulse intensity (from pulse to pulse) within a train we
arrived at a kind of input pulse `sweeping' into an intensity
sequence from the zero point to the envelope maximum.
Power of the input train as a whole was varied either through
the use of light filters 6 or at the expense of the natural scatter
in the amplitudes of an envelope for laser pulse trains.

Some refinements were introduced into the experiment
discussed [45] by comparison with that in Ref. [40]. Firstly, a
30 ± 40%-reflectance mirror 7 was employed in the optical
`sighting' system that was responsible for branching off the
red and green portions of visible light in the screen direction,
being larger than those in Ref. [40] by 6 ± 10 times. This served
to enhance the image brightness on screen 15 for the input
waveguide face, and in turn permitted employment of wide
(20� 20 cm2) metallic mirrors 16, 17 placed 170 cm apart in
order for increasing the optical path between the entrance
objective and the screen up to 10m and for securing therewith
the compactness of all the measuring unit. Secondly, mirror
18 (which replaced the removable mirror 6 from Ref. [40])
reflected more than 95% of a green light emerging from the
optical waveguide, and transmitted in excess of 75% of a red
light incident on it from the other side. Doing so allowed
viewing of enlarged (�2000) image of the entrance waveguide
face on screen 15 at all times (controlling the l � 0:53 mm-
radiation coupling into one of the cores) and simultaneously
analyzing of the light pulses emerged from a waveguide exit,
on the oscillograph screen. The Nd :YAG laser could operate
either in the regime of solitary pulse trains or with repetition
frequency of 3 Hz with a consequent lightening of the
radiation injection control and unit adjustment.

All optical scheme of the experiment (see Fig. 7), including
both the lasers, has been rigidly `bound' to the massive
platform (lying on the air-cushion) of a holographic table.
By this means the system was excluded from outer sources of
mechanical vibrations. Accuracy of the micrometric displace-
ment of an entrance waveguide face in the direction normal to
the light beam was over 0.2 mm per point.

More than one sets of experiments have been conducted.
Waveguide characteristics were unvaried in the course of each
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Figure 7.Layout of the first experiment on light self-switching in TCOWs [45]: 1 ± 4Ð laser with passive mode synchronization; 5Ðfrequency doubler; 6

Ð filter; 7Ðmirror; 8Ðmicro objective; 9Ðdouble-core optic-fibre waveguide; 10, 11Ðholders; 12, 13Ðmicrometric adjusting gears; 14Ðmicro
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grating and screen (for revealing the stimulated Raman scattering).
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run, i.e. L � const. By way of illustration let us consider
oscillograms pertaining to four sets of measurements for the
waveguide sections with l � 128 cm (Fig. 8 Ð A run), 101 cm
(Fig. 9 Ð B run), 113 cm (Fig. 10 Ð C run), and 128 cm (Fig.
11 ÐD run); the input intensity increases from the top down
similar to that in Fig. 2 (theoretical estimate of pulse shapes).

A qualitative agreement between experimental (see Figs
8 ± 11) and calculated (see Fig. 2) results was evidenced in
these studies.

Experiments permitted a common regularity to be
revealed: at small intensities of the coupled radiation
(4 0:3 GW cmÿ2), the shape of envelopes for the second
and third pulse trains on the oscillograph screen was
unchanged along with a relationship between their ampli-
tudes (Figs 8 ± 11). Such conditions correlate with a linear
regime. The area in Fig. 1 where �I00=I0M�25 1 and the curve
T0�I00=I0M� is nearly parallel to the abscissa axis, conforms to
the latter.

With increase in I00 amplitude (i.e. height of the first
pulse train), the amplitude of a second (and for the D run Ð
third) train slightly rose but this enhancement was retarded
gradually and came to naught. Close to a certain (for a
given run) magnitude of the I00 amplitude, there occurred a
dip at the centre of a second pulse train (Figs 8b, 9b, 10b,
and 11d), i.e. a decrease in amplitudes of the train pulses. At
the centre of a second pulse train in Fig. 11 and that of a
third train in Figs 8 ± 10, the intensity spike was observed in
the process. Such situation fits a `crevasse' in the self-
switching curve (see Fig. 1) and a relationship I00 � I

�1�
M

linking the amplitudes.
The pulse spike appeared at the centre of a second pulse

train (for the D run Ð at the centre of a third train) with
further increase in I00 amplitude, whereas a dip was observed
(see Figs 8c, 9c, 10d,e, 11e,f) at the centre of a third pulse train
(for the D run Ð at the centre of a second train). The self-switching effect itself can be seen in Fig. 10c ± e:

the pulse spike at the centre of a second pulse train becomes
so pronounced with a small rise in I00 amplitude that the
second pulse train is again rendered higher than the third
one. In this case small differences of the input power are
amplified multiply at the system output. Such amplification
of the I00 differences comes into existence close to the value
I00 � I0M with cbI0M=2p � 1 GW cmÿ2, which correlates
with an estimate of the critical intensity presented in Ref.
[37]. For other sets of experiments there occurs
cbI0M=2p � 1 GW cmÿ2, too.

The gain k � qI0l=qI00 may be evaluated either from a
correlation of Fig. 10 with Fig. 10e (small rise in height of the
first pulse train approximately by 20% brings about signifi-
cantly larger increase in height of the second train around
100%) or from viewing in detail the isolated graphic pre-
sentation in Fig. 10e. Let us estimate the gain with the
photograph in Fig. 10e. The height difference for adjacent
pulses (marked with arrows) from a second train is 5 ± 7 times
greater than that for the same pulses in a first train.
Considering a modest distinction between the height differ-
ences for adjacent pulses pertaining to the first and second
trains in the linear regime (in the second pulse train displayed
in Fig. 10a this difference is 1.5 times as great as in the first
one) we shall arrive at a rough estimation of the optical
transistor differential gain: k � 3ÿ5.

It should be emphasized that the oscillogram in Fig. 10e
was recorded under conditions when the amplitude
I00 � I

�0�
M > I0M, since, firstly, the heights of the most peaked

pulses in the second train are brought again into proximity,

a

b

c

10mV

50mV

50mV

100 ns

Figure 8.Oscillograms of pulses pertaining to the input signal I00 (left pulse

train) and output signals I0l (middle train) as well as I1l (right train) [45].

Experimental set is labelled as A.

a

b

c

10mV

100 ns

Figure 9. Pulse oscillogramsmeasured in the course of the experimental set

B.
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and, secondly, the second train height newly becomes greater
than that for the third train, i.e. I0l > I1l.

In the case of experimental sets A, B (Figs 8, 9), the
amplitude I00 does not reach the I0M values typical of these
sets.

Self-switching effect may be observed also in the oscillo-
grams of the D set (see Fig. 11) where as contrasted to the
previous experimental sets the third pulse train (the very
right) emerges from the zeroth waveguide, and the second
train Ð from the first waveguide. The amplitude of a second
train in Fig. 11b,c is under the amplitude of a third train,
while at a greater input intensity (Fig. 11d ± f) the amplitude
of a second train is already above the third-train amplitude.
Figure 11d corresponds to the amplitude I00 � I

�1�
M . Evolu-

tion of the self-switching event is clearly defined in Fig. 11d ±
f: with a small rise in input intensity, the pulses from a zeroth
optical waveguide (at the centre of a third pulse train) are
impetuously built up. As this takes place it is clearly seen in
Fig. 11f (complying with the portion of the characteristic
nearby the self-switching point M) that the power change at
the waveguide output multiply stands out above variation of
the input power: second and third pulse trains in a literal
sense `go to pieces' of isolated ultrashort pulses.

It should be emphasized that the shape of the `total' pulse
train (the very left on the oscillograph screen) always remains
to be unvaried Ð bell-shaped Ð and coinciding with the

shape of the initial laser train, i.e. light power is only
redistributed between TCOWs.

Correlating Figs 1, 2 with Figs 8 ± 11 and determining the
amplitude of which pulse firstly recovers from its growth as
the amplitude I00 goes higher as well as finding the relation-
ship between amplitudes of the second and third trains in a
linear regime (by counting the height of the third-train pulses
from the `pedestal') we may conclude that: the second train
emerges from the zerothwaveguide in the case of oscillograms
presented in Figs 8 ± 10, whereas for Fig. 11 Ð from the first
waveguide; inequalityL > p is obeyed for all the oscillograms
with L � 1:8p for Fig. 10 and L � 1:6p for Fig. 11.

Whilst the experimental and theoretical results qualita-
tively coincide, there appears quantitative disparity between
them as far as the estimate of a self-switching slope (optical
transistor gain) at I00 � I0M is concerned. First, based on
the above-mentioned magnitude of the L parameter, the
gain in the event of Fig. 10 according to the theoretical
consideration by Eqn (2.2.3) proves to be equal to
exp�L�=8 � 35ÿ50, i.e. it is about an order of magnitude
greater than the measured quantity. Second, based on
estimation of the experimental values of I

�1�
M =I0M and

I
�0�
M =I0M, the parameter L for the C set of experiments
turns out in accordance with Eqn (2.2.2) to equal
L � pÿ 1:2p that is essentially lower than the cited above
magnitude of L. As opposed to Fig. 2, the intensity dips in
Figs 8 ± 11 were found to be incomplete.

The main reason for the above-mentioned quantitative
disparity owes to a departure of the ultrashort pulse shape
from a rectangular one along with averaging the power
recorded over the time interval of about 0.5 ns with the aid
of ameasuring apparatus. Thematter is that only a portion of
ultrashort pulse with a certain intensity I00 � I

�0�
0M (or

I00 � I
�1�
M ) is involved in the self-switching act and is trans-

ferred to an output of the first (or zeroth) waveguide; the rest
of this pulse remains at an output of the first (or zeroth)
waveguide. But in recording, the apparatus integrates these
fast variations in the ultrashort-pulse power over the time
interval ta � 0:5 ns. And the result is that the envelope dips on
an oscillograph screen (Figs 8b, 9b, 10b, 11d) prove to be
incomplete (as distinct from Fig. 2), while a magnitude of the
gain estimated against an oscillogram (for instance, according
to Fig. 10e) appears to be conservative as compared with the
theoretical finding due to Eqn (2.2.3)

In the case of D-set oscillograms (Fig. 11d ± f), the
experimental data points were indicated in Fig. 12 (one's
own ultrashort light pulse fits each point in this figure) along
with calculated curves [70] (see also Appendix) allowing for
integration of the power recorded by an apparatus at hand
(ta � 0:5 ns; furthermore, the pulse `pedestal' was excluded).
Having regard to such integration effect, the theoretical and
experimental results correlated not only qualitatively, but
quantitatively as well. It stands to reason that the experiment
of interest (as also is the previous one) can be used in
determining K,Y, and n2 (see Appendix).

To verify the absence or presence of a stimulated Raman
scattering and to estimate its effect, removable diffraction
grating 29 (see Fig. 7) of 300 lines per 1 mm was placed in the
path of light beams leaving a waveguide. Correlating pictures
on screen 30 and on the oscillograph screen we revealed that
the above-mentioned pulse dips and spikes are not accom-
panied, as a rule, by SRS, i.e. they are brought about at the
intensities beyond the threshold value for the Raman effect.
In particular, stimulated Raman scattering was not evidenced

a

b

c

d

e

100 ns

20mV

Figure 10. Pulse oscillograms measured in the course of the experimental

set C.
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in the sets of experiments involved. Because of this, the
pattern mentioned cannot be assigned to the Raman effect.
Some other nonlinear phenomena, such as stimulated Bril-
louin scattering, second harmonic generation, and third
harmonic generation were also lacking under conditions of
the present experiment.

Relying on the above discussion, we may conclude that
the phenomenon of radiation self-switching has been origin-
ally observed [45] in the class of UDCW-based systems and
the feasibilities of developing the optical transistors on a basis
of this phenomenon have been demonstrated as well.

Before long, the analogous experiment was conducted in
Ref. [84] and a self-switching phenomenon bracketing
UDCWs of different polarizations was also supported.
Here, the circularly polarized waves were used. Self-switching
of UDCWs possessing orthogonal polarizations has been
predicted in Refs [34, 37] and was observed at a later date in
Refs [90, 104].

A year odd later, the experiment [45] was repeated in Ref.
[92] and the radiation self-switching event in TCOWswas also
observed. However, simple interruption of the light-beam
portion with the razor blade [92] seems to be less successful
solution to the problem of controllable light coupling into one
of the waveguide cores as compared to that in Ref. [45]. Prior
to development of the light-coupling procedure in Ref. [117],
we also have tried to use safety razor for intercepting one of
the cores and got the conclusion that this approach does not
reliably ensure a controllable radiation injection into one of

the optical waveguide cores through light diffraction on the
razor's edge.

3.4 Breaking down and shortening
of an ultrashort light pulse in its self-switching
The phenomena discussed were first observed in the experi-
ment [46]. The same optic-fibre waveguide and procedure of
light coupling into its cores [117] were employed here if
compared with Ref. [45]. Two light beams emerged from
both the TCOWs were spatially separated (by distance
around 5 mm) and directed toward a slit of the high-speed
electron-optic (streak) camera. It is clearly seen in the photos
(Fig. 13) taken from camera screen and corresponding
densitograms (Fig. 14) that at certain intensity �I00 � I

�1�
M � of

the input pulse there occurs an intensity dip in the central part
of one of the output pulses (in Fig. 13 Ð top) and as if the
latter breaks down to two portions. While at the same site of
the other output pulse we can view a narrow and an abrupt
intensity spike (Fig. 13a, c; Fig. 14a, c). At scarcely larger
input intensity �I00 � I

�0�
M � the spike discussed above gives

way to the dip and the dip Ð to the spike (Fig. 13b, d;
Fig. 14b, d). Durations of the dip and spike comprised less
than 6 ps, while the optical waveguide length formed around 1
m, i.e. time of light travel along waveguides came to about 5
ns. By this is meant that the switching time is determined not a
time of light travel in TCOW but only a time of optical
nonlinearity establishment which in the case of fused quartz
comprises a value of order 10ÿ14 s.

a

b

c

d

e

f

100 ns

100 ns

10mV

10mV

10mV

Figure 11. Oscillograms of pulses pertaining to the input signal I00 (left pulse train) and output signals I1l (middle train) as well as I0l (right train).

Experimental set is labelled as D.
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Two years later, the experiment analogous to that in Ref.
[46] was carried out in Ref. [93]; here, pulses of duration in the
200 fs area were applied to the input and an autocorrelator
was employed in recording the output pulses.

3.5 Subsequent experiments
Some attempts at reducing the critical intensity I0M of light
self-switching were made in Refs [95, 96] by exploiting exciton
resonance in TCOWs fabricated around layered MQW-type
structures from A3B6 semiconductors possessing pronounced
nonlinearity. The severity of the problem lies in the fact that in
the vicinity of exciton resonance, where nonlinearity is
especially significant, the light absorption becomes excessive.
This circumstance compels to reduce the TCOW length l thus
depressing the self-switching steepness; by increasing K we
can conserve the high steepness of switching but in so doing

IM inevitably rises. Radiation self-switching events have been
observed in the strip-type ridge TCOWs (Fig. 15) with light-
carrying layer making multiquantum-well structure, which is
comprised of the 60-periods GaAs(100 �A)/
Al0.28Ga0.72As(100 �A), and with exciton resonance conform-
ing to l � 0:839 mm [96]. Light coupling into one of the
waveguides alone was attained at the expense of employing
the zeroth waveguide of length longer by 500 mm than the first
waveguide. Two specimens were studied in the experiment
[96]. For one of the specimens (ridge height 0.74 mm,
interridge gap of about 1 mm) we had l � 0:870 mm,
DE � 53 meV, l � 1:2 mm, a � 31 cmÿ1, transmittance
some 1%. For the other one (ridge height 0.74 mm, interridge
gap at around 2 mm) the main parameters were as follows:
l � 0:878 mm, DE � 66 meV, l � 3:1 mm, a � 5 cmÿ1. The
critical self-switching power PM � 10 W was fairly high, in
spite of using that structure, while the critical intensity
comprised a value of order 108 W cmÿ2, i.e. it was only an
order of magnitude lower than in Ref. [45], where a normal
optical fibre based on fused quartz was utilized. Since l � 1
mm in Ref. [96], while l � 1 m in Ref. [45], then from data
presented in Ref. [96] it follows that the MQW nonlinearity
was nothing more than four orders of magnitude greater
when comparing with optical fibre [45]. On the other hand,
from experimental findings of previous work [95], the MQW
nonlinearity reached n2 � 1:67� 10ÿ5 cm2 Wÿ1, i.e. it was
more than an analogous parameter of fused quartz by seven
orders of magnitude. The paradox may be possibly explained
by the following reasons. First, continuous radiation was
employed in Ref. [95], whereas ultrashort light pulses were
under experimentation in Ref. [96]. Because of this, consider-
ing `slowness' of the MQW nonlinearity (without proton
bombardment tnl � 20 ns, and with proton bombardment
tnl � 0:04 ns [97]) we may assume that nonlinearity in Ref.
[96] `has not managed', and in Ref. [95] `has managed', to
reach its peak (steady) magnitudes, which is why the effective
nonlinearity was much pronounced in Ref. [96] as compared
to Ref. [95] (even if the tuning out from resonance would be
equal in both the works cited [95, 96]). It is conceivable that
due to the same reason the effective ratio between MQW
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Figure 12. Experimental data points and calculated dependences of

output-pulse intensities on input ones with consideration for a pulse

integration with respect to time by the apparatus at hand: (a) fits Fig.

11d; (b) fits Fig. 11e; (c) fits Fig. 11f (see Appendix).
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Figure 13. Pulse photographs taken from the camera screen [46]. Two

vertically located spots correlate with pulses emerged from two TCOWs.
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nonlinearity [96] and far less inertial optic-fibre nonlinearity
[45] under picosecond pulses proved to be not so large as when
operating with nanosecond and more lengthy pulses. Second,
the authors [95] have come to the exciton resonance:

DE � 13 meV (for l � 2 mm) much closer and thus have
gained much more pronounced nonlinearity and far lower
critical intensity (equal to 170Wcmÿ2) than inRef. [96]. It has
been possible to achieve (in the authors' view [95]) through
MQW GaAs/Al0.3Ga0.7As having been resided between
optical waveguides and when only weak exponentially falling
(in a transverse direction) tail of the field profile has travelled
through this medium. In consequence, radiation absorption
has decreased in importance and this allowed the exciton
resonance to be approximated. Notice that some peculiarities
of planar waveguides [95] have been considered earlier in Ref.
[94]. However, it is well to bear in mind that the nonlinear
waveguide coefficient Yj is proportional to the overlap
integral taken between the field profile and nonlinearity
profile (see Eqn (2.1.8) in [1]), whereas for the scheme of
experiment inRef. [95] this overlapping is smaller if compared
with Ref. [96].

Self-switching of radiation with l � 1:06 mm was also
observed [60, 61] in a dual-core optic-fibre waveguide with
end-separated light-carrying cores (Fig. 16). This experiment
is analogous to that described in Section 3.3, although the
procedure of light coupling into waveguides was to be sure
significantly simpler. Employment of TCOWs with end-
separated light-carrying cores made just as a controllable
injection of radiation into waveguides (or one of them), so the
switch association much easier.

Self-switching of one more type of UDCW Ð unidirec-
tional distributively-coupled waveguide modes Ð has been
experimentally examined, too [98].
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Figure 14. Streak-camera recorded intensity pulse profiles (densitograms) [46] compatible with Fig. 13.
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Figure 15. Ridge TCOWs with a light-carrying layer making multiquan-

tum wells from the GaAs(100 �A)/Al0.28Ga0.72As(100 �A) layers [96]. For

one of the specimens d � 1 mm, h � 0:74 mm, whereas for another one Ð
d � 2 mm, h � 0:82 mm.
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The experiment on studying the soliton self-switching in
TCOWs and other systems involving UDCWs should be
forthcoming in the near future. Any research group posses-
sing a solitonic laser could carry out the former. Critical
intensity of soliton generation Ps=S has to correlate in this
case with the critical intensity of its self-switching. For
instance, for optic-fibre waveguide l � 1 m in length we
arrive at P0M � 100 W [37, 40, 45, 1] and the condition
Ps � P0M is fulfilled at the pulse length of order 100 fs (see
Section 2.3).

3.6 Requirements to the system and pump parameters
To observe the phenomenon of radiation self-switching and
to realize devices on its base it is important to think of
requirements imposed upon parameters of pumping and
UDCW-based system wherein this phenomenon is intended
to be detected and used.

3.6.1 Requirements to the system parameters. Scatter in the
magnitudes of some parameters (gap between waveguides,
width of waveguides, etc.) will show itself in a spread in K
values (with relevant dispersion sK), which in turn will
produce a scatter in IM values. It is requisite that above
scatter fits within the limits of a linear portion of the
characteristic. Alternatively, the middle self-switching point
M0 for some parameters coincides with the pointM1 for other
parameters [see Eqn (2.2.2)], and radiation self-switching
disappears. For this purpose it is essential that, according to
estimates, the following inequality is met:

jsKj
K

< 8 exp�ÿL� ; �3:6:1�

so that the relative spread in values of the coupling coefficient
ought to be less than inverse gain �kÿ1�. Self-switches with the
gain k � 10 are to be used in optical computers. Such self-
switches offer relative scatter in values of gap between
waveguides less than 1%. For other parameters of the system
(width of waveguides, values of Dn), requirements to a scatter
in their values are less strict Ð no more than a few per cent,
because these parameters affect the coupling coefficient to a
lesser extent.

3.6.2 On a permissible deviation of TCOWs from perfectness.
Constancy of radius a of each of the cores, gap d between the
cores, difference between the refractive indices Dn of the core
and cladding along the TCOW axis furnishes steadiness of b
and K coefficients. In real TCOWs, variations in values of a,
d, andDn cause a spread in values of b andK along the TCOW
length which could be characterized by their dispersions sb
and sK. Admissible deviation from the waveguide perfection
(i.e. condition of TCOW fitness for an optical transistor) can
be formulated in the first approximation in terms of (3.6.1)
and

sb5K ; �3:6:2�

whereK is the average coupling coefficient over l. Meaning of
inequality (3.6.1) implies that spread in I0M values stemming
from scatter inK, may not exceed the size of the linear portion
of a self-switching characteristic, so that the relative spread in
values of the K coefficient was less than inverse gain �kÿ1�;
(3.6.2) follows from the condition of the theory applicability.

In this manner for reducing the effect of TCOW non-
ideality (scatter in a, d, Dn parameters) it is more advanta-
geous to operate at small l and large K (matching large I0M),
which are rather readily achieved in a discrete optical
transistor [43] (see Section 3.2).

3.6.3 Requirements to pumping. Practical realization of the
optical transistor in question places heavy demands on the
stability of pump intensity Ip. Firstly, the Ip stability is
requisite for obviating nonlinear distortion under a signal
amplification. Secondly, amplitude of the amplified signal is
to be far in excess of that for the amplified `parasitic' pump
variation. In other words, the change-in-signal gain factor
ought to be vastly superior to a change-in-pump gain. As a
consequence, an optical transistor with coupling of the
coherent pump and signal in different waves into a waveguide
input (see Refs [55, 56, 62] and Section 4 in Ref. [1]) is obliged
to be muchmore unreceptive to the pump intensity instability
than the optical transistor with injection of the incoherent
pump and signal in a single wave into a waveguide input (see
[34] and Section 3 in Ref. [1]). In the second, most unfavour-
able, case (see Eqn (2.2.2)) the first condition implies that
deviation DIp from a given value Ip � I0M meeting a central
part of the characteristic-curve linear portion, may not exceed
dimensions of the linear portion, i.e.

jDIpj < 32
K

jYj exp�ÿL� or

�
DIp
Ip

�2

5 64 exp�ÿ2L�:
�3:6:3�

In the case of D � 0, the pump pulse profile in a discrete
optical transistor has to be as close to the rectangular form as
possible. Such a profile can be attained in a variety of ways.
First, we can do it by using the self-modulation of ultrashort
pulses in the nonlinear optical fibre with dispersion through
the agency of a delay line with negative dispersion or by
employing special transparents [15]. Second, ultrashort pump
pulses prior to coupling into the input of a discrete optical
transistor may be passed through yet another nonlinear
system with UDCWs for purposes of rectangular pulse
shaping (and what is more at the expense of the self-switching
phenomenon) [43]. The possibility for such a rectangular
pulse shaping was demonstrated in Ref. [47] and in Section
2.2 above (see Fig. 2).

5 cm

3 cmI00 I0l

I1l

a

16 mm 1125 mm
b

20 mm

c

Figure 16. Dual-core optic-fibre waveguide with end-separated cores (a)

along with its cross-sectional area at the ends (b) and over the region of

tunnel coupling (c) [60, 61].
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3.6.4 On the influence of self-focusing on the UDCW self-
switching. Self-focusing event does not wittingly produce any
barriers to the light self-switching, if the latter occurs at
smaller input power than the self-focusing phenomenon:

S
4K

jYj
cb
2p
� PM < Psf � cbl2

32p2jYj ; �3:6:4�

where K � �lb=2l�m, and m is the number of linear light
transfers.

Hence it follows that if the waveguide length is not too
small:

l >
32pmbS

l
� 32� p� 1:5� 10ÿ7 cm2

10ÿ4 cm
� 0:15 cm; �3:6:5�

and specifically l5 1ÿ2 mm, then radiation self-switching
occurs at smaller power level than the radiation self-focusing.
Because the estimate

2pa
l

���������������
�Dn�2n

p
� 2:4

holds true, then bS � l2=�Dn� and (3.6.5) is equivalent to
Dn > 30YI00 : �3:6:6�

In this manner condition (3.6.6) implies that the light-induced
variation of the refractive index of order YI00 ought to be
considerably less than the difference between the refractive
indices of the core and cladding. It was pointed out in Refs
[40, 45, 46] that this condition is fulfilled with a major safety
margin.

The self-switching phenomenon is able to result in
decreasing the waveguide effective cross section and, as a
consequence, in increasing the nonlinear coefficientY and in
reducing I0M.

3.6.5 On the Raman effect. Stimulated Raman scattering in a
glass optical waveguide results in a frequency shift of the first
Stokes component equal to about 500 cmÿ1. Once the pump
wavelength l � 1:064 mm, radiation of the wavelength
l � 1:12 mm, 1.18 mm, etc. arise in the optical waveguide.
The coupling coefficient K for TCOWs at these wavelengths
will have to exceedmaterially (by 1.5 ± 3 times) an appropriate
value of K at l � 1:06 mm, and in consequence it will be
significantly higher for Stokes components than K corre-
sponding to the initial pump. Owing to this the Stokes
components of propagating light will not be involved in the
switching process and they may produce a parasitic back-
ground. These components have to be removed from valid
signal at the TCOW output by isolating the initial pump
radiation with the aid, for instance, of a diffraction grating.
Under this spectral selection at the TCOW output, the
negative part of SRS will reduce only to a decrease in pump
intensity being tantamount (in the first approximation) to the
presence of small optical losses in TCOWs. But moderate
losses, as shown in Refs [43, 1], would not violate the effect of
radiation self-switching.

The part played by SRS is decreased in importance as one
passes to short waveguides with UDCWs (l4 10 cm) and just
these systems are suitable for producing compact devices. At
l4 10 cm, the portion of pump intensity converted into
Stokes components is under 1% and exponentially falls with
a decrease in l.

3.6.6 Effect of optical waveguide bends on the light self-
switching. Presence of a bend strongly enhances the field
`spreading' out of a waveguide, i.e. it adds to the light field in
the mode tail exponentially depending on the curvature
radius [4, 6]. Thus, a waveguide bend severely contributes to
the field overlapping and then to the waveguide coupling
coefficient and consequently the parameter L (and so the self-
switching steepness) along with the intensity I0M.

3.6.7 Influence of the waveguide temperature variation and
heating on the optical transistor operation.A certain heating of
waveguides is unavoidable on passage of radiation through
them. It seems likely that such variation of temperature has to
affect the operation of a TCOW-based optical transistor to a
greater extent than is considered to be the case with other
UDCWs as the base, since waves in TCOWs are spatially
separated. Let us estimate the degree of this effect.

An optical transistor based on TCOWs operates at the
pump intensity close to the critical one: Ip � IM; in this case
the time-average intensities of waves are equal approximately
(see Fig. 1 in Ref. [35] and Ref. [1]) and hence variation of
their refraction indices Dn is closely alike, i.e. if TCOWs are
identical, then their identicality �a � b1 ÿ b0� should be
conserved in time. This being so, the displacement of a
working point caused by temperature variation may be
induced in the main by changing only the coupling coefficient
K through the alteration of the waveguide refraction indices
or gap d between waveguides. Let us make an estimate of
values Dn, Dd for a dual-core optic-fibre waveguide whose
losses due to heating-up amount to 1 dB kmÿ1, while these
losses are five orders of magnitude lesser for the segment of 1
cm in length, and thus power of the heat released reaches
DQ � 10ÿ4 W at the average radiation power 10 W. Heat is
gave off for the most part in the waveguide cores of S � 10ÿ7

cm2 in cross-sectional area, hence at density r � 2:2 g cmÿ3,
heat capacity C � 0:2 cal gÿ1 Kÿ1, and thermal conductivity
~K � 0:003 cal Kÿ1 cmÿ1 sÿ1, the time of establishment of the
thermal equilibrium between a core and cladding (t 0 �
rCS=~K � 10ÿ5 s) is too small. As a consequence, a rise in the
core temperature with respect to a cladding is also insignif-
icant and comes to DT � t 0DQ=Cm � 10ÿ2 K. Inasmuch as
qn=qT � 10ÿ5, Dd=d � 10ÿ7DT and the initial (without heat-
ing) Dn � 0:005, then relative temperature variations of Dn
and Dd would run to 2� 10ÿ5 and 10ÿ9, respectively. There-
fore, temperature variations of K and IM over a dual-core
optic-fibre waveguide can be neglected [43].

In the case of GaAs-based TCOWs with heat losses of
1 dB cmÿ1, the temperature variations of K and IM are
insignificant as well due to an estimate made in Ref. [43].

4. Optical switching from one frequency to
another in a quadratically nonlinear medium

The present section demonstrates the possibility of light
switching in the other group of unidirectional distributively
coupled waves with an amplitude-dependent coupling coeffi-
cient (see Introduction to Ref. [1]). To be specific, the waves
with frequencies o and 2o propagating through a quad-
ratically nonlinear medium will be analyzed below. These
waves were under study over 25 years and it aimed at
attaining the maximum value of the radiation power transfer
from one wave to another [12 ± 14]. The possibility of
radiation sudden switching in such systems has been eluci-
dated in Refs [50, 51, 53, 54]. We rendered concrete the
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situation when a powerful pump radiation at the frequency o
or 2o and a weak alternating control signal at the frequency
2o or o, respectively, were applied to the input of the
quadratically nonlinear medium. It was found that at certain
conditions a small change in the signal intensity brings about
an abrupt switching of radiation from one frequency to the
other at the system output: say, from the frequency 2o to that
of o, and vice versa. An optical transistor and amplifier can
be produced starting from these switchings and correspond-
ing formulae for their gain factors have been derived else-
where [51, 53, 54].

The switching time is determined by the time of non-
linearity relaxation being of order 10ÿ15 s in the case of
quadratic nonlinearity. Thus, the speed of response charac-
terizing optical transistors and light switches considered in the
present section, is significantly higher (at least by an order of
magnitude) than that for analogous devices using the cubical
nonlinearity of a medium as the base (see Sections 2 and 3,
also Ref. [1]).

It should be emphasized that under conditions accom-
panying such light switching the complete transformation of
optical radiation into the second harmonic is possible already
at tuning out of the synchronism [50, 51].

4.1 General formulae
Let us demonstrate the possibility of radiation switching from
one frequency �2o� to the other �o� (or vice versa) at the
output of a medium possessing only quadratic nonlinearity
(and when cubic nonlinearity is entirely absent). Light switch-
ing is accomplished here by coupling the high-power con-
tinuous radiation (pump at the frequency mo, m � 1; 2) and
weak controlling signal (at the frequency �mo, �m � 2=m) into
the entrance of a medium, and by small varying the signal
intensity.We shall make it apparent also that small changes of
a weak input signal may be transformed into much more
pronounced variations of the output intensity with the same
frequency, i.e. an optical transistor and amplifier based on
this concept might be designed.

Equations for the field amplitudes of the waves propagat-
ing at the frequencies o and 2o through a quadratically
nonlinear medium are well known for a long time [12 ± 14]:

c

o
b1
dA1

dz
� iwA2A

�
1 exp

�
2iDzo
c

�
;

c

o
b2
dA2

dz
� iwA2

1 exp

�
ÿ 2iDzo

c

�
; �4:1:1�

where

w � e1ŵ�o � 2oÿ o�e2e1 � e2ŵ�2o � o� o�e1e1
are the convolutions of the quadratic-susceptibility tensor,
bj � nj cos

2 sj=4p, sj is the angle between a wave vector and
the Poynting vector, nj is the refraction index at the frequency
oj � jo; D � n2 ÿ n1, j � 1; 2.

Let us introduce real variables Aj�z� � rj�z� exp�ijj�,
phase difference c�z� � j2 ÿ 2j1 � 2Dzo=c, and quantitieseIj�z� � jAjj2 � r2j proportional to power fluxes Ij�z� �
�cbj=2�eIj�z� in the direction of wave vectors (in essence, to
the wave intensities). Let two waves be applied to the medium
entrance (at z � 0): pump wave at the frequency mo, and the
signal with the frequency �mo and with initial parameters:

Im�z � 0� � Im0 ; jj�z � 0� � jj0 ;

C�z � 0� � C0 � j20 ÿ 2j10 : �4:1:2�

We are interested in the magnitudes of wave intensities and
phases at the exit of a medium l in length, i.e.

Ij�z � l� � Ijl ; jj�z � l� � jjl ; C�z � l� � Cl :

With normalized variables in use

Jj�z� � Ij�z�
Im0

; Jj0 � Jj�z � 0� ; Jjl � Jj�z � l�

the solution to a set of equations (4.1.1) and (4.1.2) takes the
form [13]:

J2l � Ja � �Jb ÿ Ja� sn2�S; r� ; J1l � 1� J �m0 ÿ J2l ;

�4:1:3�

where

r2 � Jb ÿ Ja
Jc ÿ Ja

; S � �Jc ÿ Ja�1=2L� F �m; r� ; L � pl
lnl

y
;

m � arcsin

�
J20 ÿ Ja
Jb ÿ Ja

�1=2

; lnl � pcb1
�������
cb2

p
ow

���������
2Im0
p ; Ja < Jb < Jc

are the roots of the equation

J�1� J �m0 ÿ J�2 ÿ �Gÿ eDJ�2 � 0 ; �4:1:4�

here

G � J10
�������
J20

p
cosC0 � eDJ20 ; eD � Db1 �������

cb2
p

w
���������
2Im0
p :

According to findings of Refs [35, 38, 51, 1], the self-
switching event happens provided

r2 � 1 and expS4 1 : �4:1:5�

In so doing Eqn (4.1.3) is approximated by the formula (see
Ref. [38] and Appendix 2 to Ref. [1]):

J2l '
�
1ÿU

1�U

�2

; �4:1:6�

where U � r41 exp�2S�=256.

4.2 Pump wave at the frequency x,
signal wave at the frequency 2x
In the case of applying the powerful pump wave with the
frequency o �m � 1� and a weak controlling signal with the
frequency 2o � �m � 2� to the entrance of a quadratically-
nonlinear medium, we have

J10 � const � 1 ; J20 � I20
I10
5 1 ;

Jjl � Ijl
I10

; G �
�������
J20

p
cosC0 � eDJ20 ;

and Eqn (4.1.4) takes the form

J�1� J20 ÿ J�2 ÿ
h �������

J20
p

cosC0 � eD�J20 ÿ J�
i2
� 0 : �4:2:1�

{Quantity L depends on the pump intensity throughout Section 4.
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When cosC0 � �1, Eqn (4.2.1) possesses an exact solution

Ja � J20 ; Jb; c �
�
1� J20

2
�
eD2
2

�

�
�����������������������������������������������������������
�J20 ÿ eD2�2

4
� ÿ� �������

J20
p

ÿ eD�2
s

: �4:2:2�

(Notations a, b, c are conventional in this case, because the
inequality Ja < Jb < Jc is obeyed only for a part of the values
J20 and eD.)

(1) Let us consider the situation arising under synchro-
nous (D � 0, n1 � n2 � n) interaction of propagating waves.
As this takes place, we have

Ja � J20 cos
2C0 ; Jb; c � 1�

�������
J20

p
cosC0 ; �4:2:3�

and the parameters entering Eqn (4.1.6) are expressed in the
following way:

r21 � 1ÿ r2 � 2
�������
J20

p
cosC0

ÿjr21j5 1
�
; S � L :

�4:2:4�

It follows from Eqns (4.1.3) and (4.2.4) that at zero signal
intensity �I20 � 0� and expL4 1 we arrive at J2l � max � 1
�I2l � max � I10�, i.e. all the radiation emerges from the
system at the frequency 2o; whereas at very small but nonzero
signal intensity [50, 51]:

I20 � I2M � 64I10
cos2C0

exp�ÿ2L� ; �4:2:5�

inferred from the condition r41 exp�2S�=256 � 1, we come up
with the relationship J2l � min � 0 �I2l � min 5 I10� point-
ing to the fact that all the radiation leaves the system at the
frequency o (Fig. 17). The situation appears to be paradox-
ical: in the absence of 2o-radiation at the system input, almost
all the output radiation is found with the frequency 2o, and if
we apply a weak radiation at this frequency to the system
input (as though `wishing the yield of the second harmonic to
be enhanced further'), then radiation at this frequency will
not be found increased, but suddenly it will disappear on the
whole Ð SHG effect wears off!

By reference to Eqns (4.1.3), (4.2.3), and (4.2.4), let us
deduce the gain factor pointing out how many times the
change in the output power for each harmonic is larger
than variation in the input signal power. Provided
r41 exp�2L�=2565 1, i.e. at sufficiently low I20, namely, at
I205 I2M, the gain does not depend on the input intensity
of waves with the frequency 2o and assumes a simple
form [50, 51]:

k � qI2l
qI20
� 1ÿ qI1l

qI20
' ÿ qI1l

qI20
' ÿ cos

2C0

16
exp 2L : �4:2:6�

Thus, an optical transistor can be constructed starting
from the frequency transformation in a quadratically-non-
linear medium, the gain whereof is defined by formula
(4.2.6).

(2) The light switching character is changed drastically on
accounting for tuning out of the synchronism �D 6� 0�when it
is compared with the case of D � 0. The gain at the condition�� �������J20
p ÿ eD= cosC0

��5 8 exp�ÿL� is calculated with the fol-

lowing expression [54]:

k � qI2l
qI20
� ÿ qI1l

qI20

�
�cos2C0 � eD2�� ������������������������������

1� eD2 tan2C0

q
� eD tanC0

�2
16�1� eD2 tan2C0�3

�
� eD
cosC0

������
I10
I20

r
ÿ 1

�
exp
�
2L

������������������������������
1� eD2 tan2C0

q �
: �4:2:7�

With the proviso that jeDj5 1 and j cosC0j � 1, (4.2.7) is
somewhat facilitated [51]:

k � qI2l
qI20
� ÿ qI1l

qI20
' cos2C0

16

� eD
cosC0

������
I10
I20

r
ÿ 1

�
exp 2L :

�4:2:8�
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Figure 17.Normalized output intensities J1l � I1l=I10 Ð 1 and J2l � I2l=I10
Ð 2 (a, c), and cosCl (b, d) against normalized intensity of the input signal

J20 � I20=I10. Relationship J10 � const � 1 holds true. Dashed lines

correspond to L � pl=lnl � 4, whereas solid lines Ð to L � 5. D � 0 for

(a, b) and eD � 0:015 for (c, d) (taken from Ref. [51]).
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If I20 ! 0, then jqI2l=qI20j ! 1, i.e. we arrive at the analogue
of the `giant amplification' predicted earlier [37] for the
cubically-nonlinear UDCW-based systems with a constant
coupling coefficient (see Section 4.4 in Ref. [1]).

The complete transformation of radiation into the sec-
ond-harmonic wave could be possible during such switching
conditions even at the presence of tuning out of the synchron-
ism: when I20 � I10eD2= cos2C0, we arrive at qI2l=qI20 � 0 and
I2l � I10, i.e. a main radiation is virtually transferred to the
second-harmonic radiation altogether (even at D 6� 0), if, of
course, the relationship cosC0 6� 0 holds true [50, 51] (see Fig.
14).

The signal intensity I20 � I2M, at which J2l is minimal,
may be deduced from the expression [54]:

I2M � I10
eD

cosC0

"

�
8�1� eD2 tan2C0�2 exp

�
ÿL

������������������������������
1� eD2 tan2C0

q �
���������������������������
cos2C0 � eD2q � ������������������������������

1� eD2 tan2C0

q
� eD tanC0

�
375
2

:

�4:2:9�

At jeDj5 1 and j cosC0j � 1 one obtains [54]:

I2M � I10

� eD
cosC0

� 8 exp�ÿL�
j cosC0j

�2
: �4:2:10�

The operational regime of an optical transistor (i.e. linear
amplification) under the conditions D 6� 0 and D > 0 is
accomplished only within the range
I10eD= cos2C0 < I20 < I2M.

Results of the analysis of Eqns (4.2.5) ± (4.2.10) are
confirmed by the findings (see Fig. 17) evident from the
numerical solution to the set of equations (4.1.1) with initial
conditions (4.1.2).

Let us make an estimate. Assume that the main radiation
with the frequency o and intensity I10 � 2� 107 W cmÿ2 is
coupled into the KTP crystal of length l � 1 cm, nonlinearity
w � 3� 10ÿ8 esu and n � 1:78 coincidentally with a weak
control signal at the frequency 2o with D � 0, C0 � 0, and
b1 � b2 � n=4p. In this case

eI10 � 8pI10
cn
� 9� 104 erg cmÿ3;

lnl � ln

8pw
������eI10q � 0:8 cm ; L � 1:25p :

In compliance with (4.2.6) dI1l=dI20 � 160. The signal gain in
the `giant amplification' regime �D 6� 0� is still more by a
factor of eD ��������������

I10=I20
p

.

4.3 Pump wave at the frequency 2x, signal wave at the
frequency x
In the event of applying the high-power pump wave at the
frequency 2o �m � 2� and a control signal at the frequency o
� �m � 1� to the input of a quadratically-nonlinear medium,
namely,

J20 � const � 1 ; J10 � I10
I20
5 1 ; Jjl � Ijl

I20
;

G � J10 cosC0 � eD ;

�J105 1�, Eqn (4.1.4) takes the form

J�1� J10 ÿ J�2 ÿ �J10 cosC0 � eD�1ÿ J��2 � 0 : �4:3:1�

Notice that with the proviso cosC0 � �1, the exact solution
to Eqn (4.3.1) could be gained as in the previous case (see
Section 3.2):

Jb � 1 ; Ja; c � 1� eD2 � 2J10
2

�
����������������������������������������������������
�1ÿ eD2�2

4
� J10��1ÿ eD�2

s
: �4:3:2�

(As before, the root notations are conventional.)
(1) Let us consider firstly synchronous interaction of

propagating waves (D � 0, n1 � n2 � n) when the roots of
Eqn (4.3.1) are calculated approximately by the following
formulae:

Ja � J 210 cos
2C0 ; Jb; c � 1� �1� cosC0�J10 ; �4:3:3�

and the parameters r21, S entering (4.1.3) equal [53, 54]:

r21 � 2J10 cosC0 ; S � L� ln
4���������������������������������

2J10�1� sinC0�
p : �4:3:4�

If expressions (4.3.3) and (4.3.4) are substituted into Eqn
(4.1.3), then we arrive at the conclusion that J2l is maximal
and I2l � I20 with the zero signal �I10 � 0� and the inequality
expL4 1 held true, i.e. almost all the output radiation is
concentrated in the second-harmonic wave. The input inten-
sity I10 � I1M at which J2l comes to nought and nearly all
output radiation possesses the frequency o, is determined by
the relationship r41 exp�2S�=256 � 1 from which one readily
obtains [53, 54]:

I1M � 8I20
1ÿ sinC0

exp�ÿ2L� : �4:3:5�

The gain factor at I105 I1M does not depend on the input
intensity of the wave with the frequencyo and simply appears
as [53, 54]:

qI2l
qI10
� 1ÿ qI1l

qI10
� ÿ qI1l

qI10
� ÿ 1ÿ sinC0

2
exp 2L : �4:3:6�

Provided sinC0 � 1, the radiation switching effect wears out:
qI2l=qI10 � 0.

Consequently, it is possible to devise an optical transistor
on the base of the parametric double-frequency interaction in
a quadratically-nonlinear medium. The gain factor of this
transistor is deduced from Eqn (4.3.6) and proves to be
sixteen-fold higher (at sinC0 � ÿ1) than that in the event of
coupling into the system input the pump wave at the
frequency o and the signal at the frequency 2o [see Eqn
(4.2.6)].

(2) Tuning out of the synchronism �D 6� 0� does not
tangibly alters the switching behaviour (at least for eD5 1).
Parameters entering Eqn (4.1.4) can be expressed at J105 1 in
the following way [54]:

Ja � eD2 � 2eD�cosC0 ÿ eD��1ÿ eD2�ÿ1J10 ;
Jb; c � 1� �1� cosC0��1� eD�ÿ1J10 ;
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r21 �
2�cosC0 ÿ eD�J10
�1ÿ eD2�2 ;

S � L
��������������
1ÿ eD2p

� ln
4�1ÿ eD2��

2J10
�
1� �1ÿ eD2�1=2 sinC0 ÿ eD cosC0

�	1=2 :
�4:3:7�

By application of just written relationships (4.3.7) we can
derive from Eqn (4.1.3) that the middle switching point M1 is
somewhat shifted (as compared to the case of D � 0) and the
signal intensity corresponding to that point is calculated by
the formula [54]:

I1M �
8I20�1ÿ eD2�2�1� �1ÿ eD2�1=2 sinC0 ÿ eD cosC0

�
�cosC0 ÿ eD�2

� exp
�
ÿ2L

��������������
1ÿ eD2p �

; �4:3:8�

and the gain at I105 I1M takes the form [54]:

qI2l
qI10
� ÿ

�cosC0 ÿ eD�2 exp�2L ��������������
1ÿ eD2p �

2�1ÿ eD2�2�1� �1ÿ eD2�1=2 sinC0 ÿ eD cosC0

� :
�4:3:9�

When C0 � 0; p, one arrives at [53]

qI2l
qI10
� ÿ�1ÿ

eD� exp�2L�1ÿ eD2=2��
2

:

Thus, tuning out of the synchronism somewhat decreases the
gain factor without disturbing the characteristic linearity [53].
Therein lies a notably essential dissimilarity from the case of
I205 I10 discussed above in Section 4.2 and Ref. [51].

Since tuning out of the synchronism does not disturb a
linear character of the amplification curve and affects the
gain factor with relative weakness, and in addition to that
the gain at D � 0 proves to be much higher than in the case
of I205 I10 (8 times more at sinC0 � 0, and 16 times more at
sinC0 � ÿ1), then from the standpoint of an optical
transistor construction the limiting case I204 I10 offers far
more promise [53] when compared to the reverse case of
I205 I10.

Figure 18 displays the results of the analysis applied to
Eqns (4.3.5) ± (4.3.9).

Let us consider below the numerical example [53]. Assume
that pump radiation with the wavelength l � 0:53 mm and
intensity 8� 107 W cmÿ2 is coupled into the KTP crystal of
length l � 1 cm (and with w � 3� 10ÿ8 esu, n � 1:78) at an
angle of synchronism (phase-matching). The above intensity
is attained at a relatively minor average power (' 10 W)
through radiation focusing into the crystal centre and using
the continuous sequence of ultrashort (' 100 ps) light pulses
with repetition interval around 10 ns and peak power close to
100 W; the temporal profile of pulses has got to be near-
rectangular in shape. Under these conditions lnl � 0:8 cm,
L � 1:25p. Synchronous with the pump wave, a weak
alternating control signal (coherent with a pump) with the
wavelength l � 1:06 mm is injected into the crystal. The thin
(� 200 mm) glass plate is interposed in the path of signal and
pump waves in front of a crystal input and theC0 value close
to p=2 is matched by making a turn of this plate. In

compliance with (4.3.6), the signal modulation would be
enhanced by the factor 2600.

4.4 On the wave autosynchronization
The switching of waves is accompanied by their autosynchro-
nization and abrupt change of the wave phase difference
(Fig. 17b, d and Fig. 18b) on small signal variation [51, 53,
54]. This phenomenon attendant to radiation self-switching is
organically connected with the latter, just as the autosynchro-
nization and abrupt change of the phase difference accom-
panies self-switching of UDCWs with a linear coupling
coefficient [38, 37, 1]. In essence, the abrupt change of the
wave phases (sharp phase shift) does produce radiation
switching. Two years after the papers [51, 53] issued, just
mentioned conclusion concerning the sharp phase shift [51,
53, 54] was experimentally supported in Ref. [118], and six
years later Ð in Refs [119, 120].

Seven years after the publications [50, 51, 53], the idea of
radiation self-switching was confirmed in Ref. [121].

4.5 Light switching by phase variation
One may switch the radiation at the system output by varying
the input phase of a signal (or a pump). Dependences of Jjl
and cosCl on the initial phase difference C0 for some
magnitudes of the pump intensity can be found in Refs [50,
52, 53] and are given in Fig. 19. The dependence of Jjl onC0 is
analogous to that displayed in Fig. 14 [1] and pertaining to
UDCW-based optical waveguide with a linear coupling
coefficient.

Strong dependence of the output phase difference on the
input one may be used also for steep amplification of the
phase shift (it is small at the input and high at the output), i.e.

Jjl
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Figure 18. Normalized output intensities J1l � I1l=I20 Ð 1 ± 1 000 and
J2l � I2l=I20 Ð 2 ± 2 000 (a), and cosCl (b) against normalized intensity of

the input signal J10 � I10=I20. Relationship J20 � const � 1 holds,
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for abrupt enhancement of phase modulation. This phenom-
enon may in turn find application to broadening of the
frequency spectrum (chirp) and, as a consequence, to a pulse
shortening.

4.6 On the self-switching of other UDCWs with nonlinear
coupling coefficients
We have detailed in the foregoing the problem of light self-
switching for UDCWs with nonlinear coupling coefficient by
treating as an example the system with UDCWs at the
frequencies o and 2o, which were propagating through a
quadratically-nonlinear medium.

Analogous switching effectmay occur under conditions of
accompanying four-wave interaction in a medium with cubic
nonlinearity Y, when two high-power plane reference waves
withA1 andA2 amplitudes interact with a couple of relatively
weak signal waves of amplitudes A3 and A4; Aj�z � 0� � Aj0,
Aj�z � l� � Ajl [52]. Here, wave frequenciesmay differ, i.e. the
Aj-amplitude wave possesses the frequency oj. To estimate
the switching steepness, one can rely on the results obtained in
Ref. [122], whilst the switching phenomenon itself has not
been discussed in the work cited. If one of the signal waves is
generated as a result of such interaction �A40 � 0�, then for
optimal tuning out of synchronism the variation of the output
signal intensity would be

k � qjA4lj2
qjA30j2

' exp

�
YjA10A20j2pl

l

�
times as large as the signal intensity change at the system input
[52]. In consequence, an optical transistor can be constructed
on the basis of this interaction. The interaction behaviour
reminds one of that of waves with orthogonal polarizations
and the coefficient of linear coupling equal to zero (see [1]).
This can be traced to a similarity of equations governing these
processes. As pointed out in Section 4.11 [1] and Ref. [72],
self-switching of UDCWs of orthogonal polarizations with
equal-to-zero linear coupling coefficient constitutes essen-
tially a particular case of the degenerate four-wave interaction
when all the waves possess a single frequency and their
polarizations coincide in pairs (two waves are polarized
along the x axis, while two others Ð along the y axis). This
self-switching phenomenon can also form the basis of a logic
element development.

Analogous logic elements are constructible starting from
accompanying stimulated Raman scattering effect as well
[123].

It seems likely that the phenomenon of light self-switching
involving UDCWs with a nonlinear coupling coefficient and
the possibility of developing an optical transistor on its base
have been first predicted in Ref. [34], where UDCWs were
considered in a medium with quadratic and cubic nonlinea-
rities (see also [48]).

4.7 On the synchronism of coupled waves
Interaction of unidirectional distributively-coupled waves
(with the constant coupling coefficientK) between themselves
opens up new fields of use not only in optical transistor
constructing but also in a synchronous conversion of fre-
quency. It was demonstrated in Refs [124 ± 126] that some
previously unknown types of phase synchronism referred to
as `coupled-wave synchronisms' (CWS) [126] appear to be
possible under frequency conversion and, in particular, under
second-harmonic generation in the conditions of UDCW
interaction (with the coupling coefficient K). While the
present review article deals with the problems of UDCW
self-switching, it is not out of place to discuss the CWS
peculiarities as well. Firstly, because the latter are connected
with a nonlinear UDCW interaction and, secondly, for CWS
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Figure 19.Normalized output intensities J1l (1 ± 1
00) and J2l (2 ± 2 00) (a, c),

and cosCl (b, d) against initial phase differenceC0 atL � 5 for the cases of

synchronous D � 0 (a, b) and asynchronous eD � 0:015 (c, d) wave

interactions at J20 � 0:5� 10ÿ3 (1 ± 3), 10ÿ3 (1 0 ± 3 0), 1:5� 10ÿ3 (1 00 ±
3 00); J10 � const � 1 (taken from [51, 54]).
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enable, in my opinion, the frequency conversion efficiency to
be enhanced and, consequently (in accordance with findings
presented in Sections 4.2 and 4.3), good opportunities for
UDCW self-switching to be provided. The basic possibility of
exhibiting such synchronisms is seen by referring to the
following reasons. Linear interaction of UDCWs produces
splitting of each wave into the fast and slow components, i.e.
the refraction index of each wave is split into two effective
quantities [3 ± 8]:

b���jk � bjk � gj

(where gj � �a2j =4� K 2
j �1=2, j � 1; 2 is an ordinal number of

the frequency oj � jo, k is an ordinal number of the wave),
each being consistent with the field type of its own. Thus, if
waves of different types (slow and fast components) are
involved in the nonlinear interaction at various frequencies
(say,o and 2o), then the splitting discussed permits, in certain
situations, the medium frequency dispersion to be compen-
sated and the synchronism condition to be fulfilled.

When generating the second harmonic under conditions
of `coupled-wave synchronism'

pg1 ÿ qg2 � D �4:7:1�

(where p � 0;�1, q � �1, and D � �b21 ÿ b11 � b20 ÿ b10�=2
is the dispersion), amplitudes of the harmonics rise propor-
tional to the distance z passed by the waves [124 ± 126]:
jA20j / zC

�0�
p; q, jA21j / zC

�1�
p; q.

Effective nonlinear susceptibilities (ENS) C
�0;1�
p; q depend

now on the coefficients Kj of a wave linear coupling and the
parameters aj of tuning out. These ENS have been analyzed in
detail elsewhere [125 ± 129] under a variety of relationships
between aj and Kj. They are dependent on the overlap
integrals of modes pertaining to different frequencies.

There appear six variants of a synchronism in accordance
with possible combinations of p and q indices in Eqn (4.7.1).

Under the synchronism 1 (p � 1, q � ÿ1: g1 � g2 � D,
b���1k � b�ÿ�2k ), the type `�'-field of the frequency o, i.e. slow
component of the basic wave, synchronizes with the type `ÿ'-
field of the frequency 2o, i.e. fast component of the second
harmonic. Under the synchronism 2 (p � 0, q � ÿ1: g2 � D,
b���1k � b�ÿ�1k � b�ÿ�2k ), slow and fast components of the basic
wave generate the fast field component at the doubled
frequency. Interpretation of the rest four CWSs is analogous
to that given above.

The original character of CWS at hand [126] was
intimated in Ref. [130], but as the trouble with this idea the
authors of [130] pointed to a lesser overlap integral taken over
profiles of the basic wave and a wave harmonic (and, in
consequence, to a lesser effectiveness of SHG) as compared to
the event with a single optical waveguide. However, that is not
entirely the case. Thematter is that due to perturbation theory
the influence of the adjacent waveguide makes itself evident
(in the first approximation) only in the change of the
propagation constant, whereas the field profile remains
unvaried in this approximation. On the contrary, appearance
of CWS is liable to permit (at sufficiently large coupling
coefficients) a synchronization of the zero-order wave-mode
interaction at different frequencies (as verified by numerical
results [126, 128, 129]), while in solitary waveguides synchron-
ism is attained between wave modes of various orders
possessing substantially lesser overlap integrals. One such
advantage of CWS, where frequency conversion in optical

waveguides is involved, over known synchronisms implies
that we can tune smoothly in synchronism [126, 127] either
mechanically [126] (by varying distance between waveguides)
or electrooptically [127]. Another advantages of CWS for
light beams propagating through TCOWs have been demon-
strated in Refs [126, 128].

Notice that CWS were examined experimentally and used
successfully in measuring the TCOW coupling coefficient
[131].

It would be interesting to know that results in Ref. [126]
were patented in the Netherlands [132] ten (!) years later
(among other things the possibility of smooth mechanical
tuning in synchronism predicted in Ref. [126]).

Some other questions of repeating the results found in
Refs [37, 41, 43] within a few years of their publications and
without any citation have been broached in Ref. [133].

4.8 Radiation self-switching in quadratically nonlinear
TCOWs
Switching of radiation from one frequency to the other is also
possible in quadratically nonlinear TCOWs, where light
switching from one waveguide to another can occur as well.

Reduced equations governing amplitudes of twoUDCWs
in a quadratically nonlinear medium with the coupling
coefficients dependent on and independent of the wave
amplitudes have been derived and analyzed in Ref. [128]:

ib10
dA10

dzn
� K1A11 exp�ia1zn� � ÿP10 ;

ib11
dA11

dzn
� K1A10 exp�ÿia1zn� � ÿP11 ;

ib20
dA20

dzn
� 2K2A21 exp�2ia2zn� � ÿP20 ;

ib21
dA21

dzn
� 2K2A20 exp�ÿ2ia2zn� � ÿP21 ; �4:8:1�

where

P1k �
X
m; l

w�1�kml A2mA
�
1l exp�idmlkzn� ;

P2m �
X
k; l

w�2�mkl A1kA1l exp�ÿidmlkzn� ;

dmkl � 2b2m ÿ b1k ÿ b1l ; zn � zo
c

;

k; l;m � 0; 1 are the wave numbers; Kj is the coefficient of
coupling between `0' and `1' waves at the frequency jo, which
depends on the type of UDCW. The terms entering P1k and
P2m conform to six channels of nonlinear wave interaction,
each being characterized by its own nonlinear coefficient w�1�kml
or w�2�mkl.

In the case of TCOWs, only zeroth coefficients may be
taken into account due to exponentially dropping field
profile:

w�1�000 � w0 ; w�1�111 � w1 ; w�2�000 � w0 ; w�2�111 � w1 ;

while the remaining ones may be put equal to zero:
w�1�kml � w�2�mkl � 0, unless all the indices are equal between
themselves. In this event, Eqn (4.8.1) integrates to the
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following expressions [54]:

E � b10I10 � b11I11 � b20I20 � b21I21 ;
G � 2K1

�����������
I10I11

p
cosc1 � 2K2

�����������
I20I21

p
cosc2

� w0I10
������
I20

p
cosc20 � w1I11

������
I21

p
cosc21 � b210I10

� b211I11 � b220I20 � b221I21 ; �4:8:2�
where

c1 � j11 ÿ j10 � a1zn ; c2 � j21 ÿ j20 � 2a2zn ;

c2k � j2k ÿ 2j1k � 2Dkzn ; D1 � b21 ÿ b11 ;
D0 � b20 ÿ b10 ; a1 � b11 ÿ b10 ; a2 � b21 ÿ b20

and real amplitudes and phases of the waves have been
introduced: Ajk � rjk exp ijjk; Ijk � r2jk, Ijk�z � 0� � Ijk; 0.

Moreover, when considered only synchronously interact-
ing field types at the frequencieso and 2o (for CWS), analysis
of radiation self-switching from one frequency to the other by
using Eqn (4.8.1) manages to perform [73] and it is analogous
to that made in Sections 4.1 ± 4.3.

Under the synchronism 2, the complete self-switching is
possible, since both the field types at the frequency o
experience interaction and, when merging with each other,
they might be fully converted to the second harmonic
(Fig. 20).

Let us assume that the synchronism-2 condition is met,
2o-frequency signal is coupled into the first waveguide, and
o-frequency pumpwave is injected into the zerothwaveguide.
Besides, if nonidenticality of TCOWs is small: �a1=K1�25 1,
and their length appears to be reasonably large: exp eL4 1,
then the intensity of the second harmonic at the system output
may be estimated as follows [73]:

I2; l � I2�z � l� � I10; 0 J
�q�
2; l � I10; 0

�
1ÿU

1�U

�2

; �4:8:3�

where expressions for eL, J �q�2; l , J
�q�
2; 0, c

�q�
0 can be found in Ref.

[73], Ij� Ij0� Ij1, and

U � u� J
�q�
2; 0 cos

2 c�q�0 exp�2 eL �
64

; u �
�
a1
16g1

�2

exp 2 eL :

Formula (4.8.3) is of a radically different kind from
analogous formulae (4.1.6), (4.2.4) in that the additional
term u enters the numerator and denominator of the former.
This suggests that (as opposed to [51]) I1; l is allowed to be
commensurable with I2; l or else considerably in excess of it
even at zero input signal, if TCOWs are nonidentical �a1 6� 0�.
In the absence of tunnel coupling �Kj � 0�, namely, in the
conditions taken up in Sections 4.1, 4.2 and [51, 54], the
equality I1; l � 0 holds at a zero signal. The character of
radiation self-switching and a system sensitivity to variations
in the signal and pump waves depend on the parameter u.

According to (4.8.3), the output intensity of the second
harmonic for I21; l � 0 is estimated by the formula [73]:

I2; l � I10; 0

�
1ÿ u

1� u

�2

;

from which it follows that at u5 1 nearly all the radiation is
concentrated in the second harmonic. When a signal of the
power

I21; 0 � I21; 0M � �1ÿ u� 128I10; 0

cos2 c�q�0
exp�ÿ2 eL��1� q

a2
2g2

�ÿ1
;

�4:8:4�
complying with the condition u � 1 is coupled into the system
input, all the radiation power at the output is concentrated in
the first harmonic [73], i.e. output power is transferred from
the wave of one frequency to that of another frequency under
application of a weak signal to the waveguide input. Notice
that when u > 1, there exist no signal magnitudes at which all
the output radiation possesses the frequency o. Hence, the
condition u5 1 holds the greatest interest, because just in this
event the complete radiation self-switching occurs.

The steepness of the self-switching characteristic at
I21; 05 I21; 0M is defined by the expression [73]:

dI2; l

dI21; 0
� ÿ dI1; l

dI21; 0
� ÿ �1ÿ u�
�1� u�3

�
1� q

a2
2g2

�
cos2 c�q�0

32
exp 2 eL ;
�4:8:5�

where Ij; l �
��Aj0�z � l���2 � ��Aj1�z � l���2, and exp eL4 1.

If a1 6� 0, then we can also control the relationship among
intensities of theo-wave and 2o-wave at the system output by
varying the pump intensity. Sensitivity of the system to a
change in the pump intensity is estimated at the zero signal as
follows [73]:

dI2; l

dI1; 0
� ÿ dI1; l

dI1; 0
� ÿ �1ÿ u�
�1� u�3 �u

2 � 4 eLuÿ 1� : �4:8:6�

Extraordinary interesting result follows from Eqns (4.8.5)
and (4.8.6) at u satisfying the condition [73]:

u �
����������������
4 eL2 � 1

q
ÿ 2 eL ; �4:8:7�

when the optical switch appears to be insensitive (in the first
approximation) to the pump change, but it is highly sensitive
to the signal variation, i.e. signal gain is estimated from
formula (4.8.5) with u � 0. To put it differently, an optical
transistor stable to the pump instability and possessing high
gain factor relative to the signal could be developed in this
regime. The former is analogous to the optical transistor
based on cubically-nonlinear TCOWs and some other
UDCWs with a linear coupling coefficient in a cubically-
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Figure 20. Plots of coefficients of the power transfer at the frequencies jo
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p
lo=c � eL ���

2
p � 5.
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nonlinear medium, which has been described earlier in Refs
[1, 52, 55 ± 57, 62].

Expediency of employing TCOWs for the purpose of
development of optical switches and transistors considered
inRefs [51, 53] and in Sections 4.2, 4.3 above has been stressed
still in first publications [51, 53]. Some specific features of that
self-switching event were examined in Refs [70, 73] and in the
present section.

Just the same radiation self-switching from one frequency
to the other was described by Stegeman and coworkers [120]
six years after our publications [51, 53]. Whilst their work
formally concerned the situation with light self-switching
from one frequency to another in tunnel-coupled optical
waveguides (TCOW), and yet the peculiarities of such switch-
ing (resulted exactly from the use of TCOWs) were not taken
into account, as conditions of the `coupled-wave synchron-
ism' (CWS, see Section 4.7) were not in use. Therefore, graphs
dealingwith output intensities inRef. [120] coincide in essence
with those from the article [53] (see Fig. 15). In Ref. [120],
synchronism was attained throughmodulation of a quadratic
nonlinearity.

Giving a report at the CLEO '96 conference in Anaheim,
CA in June 1996, Stegeman{ related the regenerated interest
in second harmonic generation to new possibilities for
construction of all-optical switches. He cited his still unpub-
lished work and anew failed to mention (hushed up) our
publications on this subject [51, 53].

5. Logic elements

With the availability of optical transistors it will be simple in
concept to construct on their base some optical logic elements
capable of performing arithmetic and logic operations [134,
135]. These elements have to feature two well-defined states
`0' and `1' with switching in between which is realized under
application of a small signal. The type of a logic element,
which may be AND or OR, is determined by the relationship
between the signal magnitude and the width of the amplifica-
tion region of an optical transistor.

The TCOW-based and other UDCW-based logic ele-
ments [34, 37, 39] depend for their operation on the relation-
ship between the power transfer coefficient for each wave (see
Fig. 1 and Ref. [1]) and the signal input intensity: the steep
region (with very large gain ks4 1) gives way to a slanting one
(where ks � 0) and the self-switch at hand operates as a pulse
limiter for intensity with existence of two well-defined states
`0' and `1'. The middle switching point M1 can be adopted for
the state `1', where T1 � 1, whereas the point M0 { or the
region positioned somewhat righter than this point, where
T1 � 0, is adopted for the state `0'. Let us assume that the
pump wave is such that the system finds itself at the point M0

without signal coupling into the waveguide. Synchronous
with the pump wave, two logic signals of intensity
Isa � Isb � Is are applied to the same waveguide or to the
neighbouring one. The TCOW-based logic elements AND
and OR [37] differ in relationship between the signal
amplitude Is and the width DI of the amplification region for
the self-switch, which is estimated by formula (2.2.2) in a

particular case (DI estimates for other regimes can be found in
Ref. [1]). As a rule, the following relationship Is � DI=2 is
chosen for the logic elements AND, which is why combina-
tion of signals at the system input correlates with addition of
pump intensities at the output. For the logic element OR,
intensities meet the condition Is5DI, i.e. the input signal
intensity `falls' within the region where a self-switch operates
as a pulse limiter [35], and on the signal combination at the
waveguide input the coefficient of the power transfer T1

would remain about the same as though a single signal is
applied to the waveguide, i.e. close to unity (see Fig. 1 and
Ref. [1]). There is no difficulty in seeing that under this choice
of parameters and the proper selection of output power levels
�c� compatible with logic levels `0' and `1' (say, T14 0:1 and
T15 0:9, respectively) we shall arrive at Is � DI=2 when
a � 1, b � 1) c � 1; a � 0, b � 1) c � 0; a � 1,
b � 0) c � 0, i.e. the logic element AND appears, whereas
for Is5DI we shall have a � 1, b � 1) c � 1; a � 0,
b � 1) c � 1; a � 1, b � 0) c � 1, i.e. the logic element
OR.

To ensure that output intensities of logic elements do not
depend on the input phases of signal and pump waves, we
may, for example, adopt the signal polarizations to be
orthogonal to each other (their total intensity equals sum of
signal intensities) and a pump-wave frequency to be different
from a signal frequency (see [41] and Section 5.4 in Ref. [1]).

At the moment perspectiveness of the TCOW-based logic
elements advanced in Ref. [37] is universally recognized (see,
for instance, Ref. [136]).

6. On the physical meaning of the UDCW
self-switching phenomenon

A crude analogy of cubically-nonlinear system with UDCWs
to a nonlinear rigid-rod pendulum may help in revealing the
physical meaning of this phenomenon. One can say that
critical intensity �I00 � IM� accords with potential energy of
the pendulum turned `upside down', i.e. its position of
unstable equilibrium at the top point with zero velocity at
that point. As this takes place, a small variation of initial
energy I00 gives rise to a large change in the pendulummotion
being described by hyperbolic functions. If energy measuring
well below critical one ��I00=IM�25 1� can be imparted to the
pendulum, then it will oscillate in the neighbourhood of the
down position of stable equilibrium (a regime close to a linear
one). If energy comprising well above critical one
��I00=IM�24 1� is imparted to the pendulum, then it will
gyrate on the rod periodically passing through a top position.
The pendulum motion is described by trigonometric func-
tions in last two cases.

We can likely say that at themiddle self-switching pointM
(when I00 � IM) there comes a kind of `resonance' between
distributed coupling specifying the frequency of spatial beats
and the nonlinear constraining force. This resonance gives
rise to a sharp dependence of a difference in effective phase
velocities of the waves (and, consequently, degree of energy
transfer in between) on the input intensity.

7. Conclusions

In summary we shall dwell briefly on some prospects for
applying optical switches and transistors advanced for the
first time in Refs [33, 34] and pioneered in realization in Ref.
[45].

{ JaÈ ger M, Stegeman G et al., in Proc. Conference on Lasers and Electro-

optics Ð CLEO '96 (Anaheim, California, June 2 ± 7, 1996); Technical

Digest Series 9 122 (1996).

{The pump wave can be applied both to the input of one waveguide and
the inputs of both the waveguides (see [1]).
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First, the speed of response typical of such optical
elements is crucially superior to switches based on the
Fabry ± Perot resonators [24, 25] because it is determined by
the optical-nonlinearity setting time tnl rather than the time of
field setting in a resonator.

Second, for the most part these devices make optical
waveguides and, as known, great power densities can be
concentrated on them; in consequence, light switching is
possible at relatively small input power.

Third, the devices concerned are free of a powerful
reflected wave at the entrance which induces noises; this
wave is intrinsic to bistable elements around oppositely
directed waves and, in particular, to those with a Fabry ±
Perot resonator as the base.

Fourth, these devices feature two inputs and two outputs
(quadripoles) and thus they are suitable for combining into
optically integrated circuits.

And fifth, such switches are more sensitive to a signal
variation (being possessed far greater gain factor) as against
the competitive waveguide-based switches (say, of the
Mach ±Zehnder type) and hence the former hold greater
promise for constructing optical transistors and amplifiers.

8. Appendix

To attain not only qualitative accord between theory and
observation, but qualitative one as well [45], let us allow for
above-mentioned intensity averaging over apparatus time ta.
In doing so we shall count off the height of each pulse
possessed by the third train from the lower boundary of a
subsequent pulse `pedestal' (see Figs 8 ± 11). Then electric
signals on the oscillograph screen would be expressed [see
Eqn (2.2.1)] in terms of the input-signal instantaneous
intensity I00�t� � I a00 form �t�:

S00 � m0S
1

ta

� ta=2

ÿta=2
I00�t� dt ;

S0M � m0S
I0M
ta

� ta=2

ÿta=2
form �t� dt ;

Sjl � mlS
1

2ta

� ta=2

ÿta=2
I00�t�

(
1� �ÿ1� j cn

�
L;

I00�t�
I0M

�)
dt ;

�A:1�

wherem0 � 4:6mVWÿ1,m0; l are the coefficients;ml depends
on optical filters 28 (see Fig. 7) and being different for various
sets of experiments it comprises ml � 2:5m0 for the D run;
area of the waveguide cross section S � pa2 � 5� 10ÿ8 cm2;
I a00 is the amplitude of I00�t�, and, finally, form �t� defines the
pulse profile. For ta4 tp, then integration limits in (A.1) may
be considered infinitive.

Figure 12 displays the dependences Sjl�S00� [70] plotted
(for oscillograms in Fig. 11d ± f ) by the least-squares method
in accordance with experimental data and assuming that each
ultrashort pulse takes the form [15]:

form �t� � sin2�pt=tp�
�pt=tp�2

: �A:2�

For such pulse profile we have S00 � m0I
a
00tp=ta,

S0M � m0I0Mtp=ta. Experimental data fit the curves Sjl�S00�
(see Fig. 12) reasonably well. The third pulse train in Fig. 11

correlates with radiation emerged from the zeroth waveguide,
while I a00 in Fig. 11d fits the system point M. The following
pairs of parameters correspond to the oscillogram in Fig. 11d
and some curves in Fig. 12a [70]: L � �1:63� 0:03�p,
S0M � �23:6� 1� mW; for Fig. 11e and curves in Fig. 12b Ð
L � �1:59� 0:03�p, S0M � �22:8� 1� mW; for Fig. 11f and
curves inFig. 12cÐL � �1:57� 0:03�p,S0M � �24� 1�mW.
If we put tp=ta � 0:1, then I0M � 109 W cmÿ1, which is agree
with the estimate submitted in Ref. [37] well before the
experiment (and presented in [1]). Knowing L � 1:6p,
K � 5� 10ÿ7 is easily obtainable, and given K and I0M, we
arrive at values of Y � 4� 10ÿ13 esu and n2 � 1:3� 10ÿ13

esu coinciding in the order of magnitude with tabulated data
(see, e.g., [15]) and with observable findings [40] (see Section
3.1).
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