
Abstract. Formation mechanisms for spatially nonuniform tem-
perature and charged particle density distributions in a low-
temperature gas discharge plasma are reviewed. Conditions
for the occurrence of, and parameter distributions in, the con-
stricted state of the discharge are analyzed. Spatial temperature
and electron density distributions and the pressure and power-
input dependence of the plasma column radius are determined in
local thermodynamic equilibrium. Special attention is given to a
cluster-containing plasma. For this new type of spatially non-
uniform discharge plasma, the cluster growth process is studied
and the limiting cluster size is evaluated. The potential applica-
tion of the cluster plasma as an illumination source is assessed
and performance characteristics of such a source are calculated.

1. Introduction

Gas discharge plasma comprises the most widely used plasma
model, in which the operating conditions are maintained by
means of electric current flowing in a gas under the action of
an electrical or electromagnetic fields. The region filled with a
gas discharge plasma has a limited size and is surrounded

either by cooled walls or somewhat cooler gas. In such an
object the heat and mass transfer phenomena play an
important role. They occur simultaneously with volumetric
processes of energy release as well as with charged particles
formation and neutralization processes. For these reasons a
gas discharge plasma is always distinguished by notably
enhanced degree of spatial nonuniformity.

Owing to a complicated kinetics of processes proceeded in
a spatially nonuniform gas discharge plasma the latter
appears to be quite attractive object of the basic research.
The reason is that a great variety of elementary processes
proceed onamicroscopic level anddetermine themacroscopic
behaviour of a plasma. The results of studies performed in the
last few decades show a variety of forms, in which spatial
nonuniformities of a gas discharge plasma manifest them-
selves. The study of mechanisms responsible for transition
from one type of a spatial nonuniformity to another is also of
considerable scientific interest. Considering the mechanisms
of formation of a spatially nonuniform plasma and paths for
its transition from one state to another, this physical object
can be regarded as a self-organizing system having a large
number of degrees of freedom.

The spatial nonuniformity of a gas discharge plasma
determines a region of possibilities of its use in devices and
installations of practical interest. Thus, the output para-
meters of powerful gas lasers excited by an electrical discharge
are lowered sharply as a result of considerable disturbance in
the spatial uniformity of a gas discharge plasma [1 ± 3]. The
spatial nonuniformity of plasma in gas discharge lighting
devices limits the size of a luminous region and as a
consequence the light yield of a lamp [4]. As an extreme
manifestation of the spatial nonuniformity of plasma it
should be mentioned extended condensed structures (clus-
ters), which can be formed within a gas discharge plasma
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under certain conditions as a result of condensation of a
supersaturated vapor [5 ± 7]. These structures are of indepen-
dent scientific interest. Besides they may be used as the basis
for development of a new type of light sources having quite
high performance [5 ± 7].

Some common features pertaining to a spatially nonuni-
form gas discharge plasma and specific physical mechanisms
governing both the formation conditions and degree of
nonuniformity are the concern of this article. In addition,
some gas discharge devices of practical interest operating on
the basis of a spatially nonuniform plasma have been
analyzed. The analysis employs modern data about elemen-
tary processes running in a gas discharge plasma and
determining the mechanisms for formation and neutraliza-
tion of charged particles in it.

2. Mechanisms for constriction
of a gas discharge

2.1 General
Constriction (contraction) pertains to the most common
manifestation of the spatial nonuniformity of a gas discharge.
It is a universal physical phenomenon having place in both dc
and ac discharges at enhanced pressures or input energies.
And it consists in an abrupt change of the discharge operation
mode as a result of exceeding somemagnitude of gas pressure
or discharge current. As a consequence of constriction, the
cross section of the region filled with the discharge proves to
be much less than the discharge tube radius. Constriction
prevents the complete usage of the discharge tube volume,
causes a pronounced disturbance in the spatial uniformity of
a gas discharge as well as a lowering in the degree of deflection
from the equilibrium state. This phenomenon is considered
usually as a deleterious one, because it limits from above a
range of parameter variation relevant to a gas discharge,
which found a wide utility in such devices of high practical
importance as plasmotrons, MHD-generators, gaseous
lasers, etc.

Gas discharge constriction phenomenon is a subject of
both the experimental and theoretical research of long
standing, findings of early works being reflected quite fully
in reviews and monographs [1, 2, 8 ± 11]. There are two
important circumstances conditioning our interest to the
investigation of this phenomenon. First and foremost, this
phenomenon determines the limiting outputs of physical
devices and apparatuses of practical interest. As a conse-
quence, both understanding of the constriction mechanisms
and knowledge of their quantitative features are necessary for
optimizing the performance of the facilities mentioned.
However, exploration of gas discharge constriction phenom-
enon is of interest not only with respect to applications, but
also from the viewpoint of basic research. This phenomenon
provides one of the illustrative examples for self-organization
of a gas discharge plasmawhich occurs at amacroscopic scale
as a result of mutual influence of a number of physical
processes proceeding on a microscopic level. The theoretical
analysis of those processes has given birth to establishment of
several constriction mechanisms differed fundamentally from
each other. The possibility of realizing each one depends on
the experimental conditions, specifically, on the kind of a gas
filling the discharge tube.

In spite of the practical significance of the constriction
phenomenon, its experimental investigations have not kept

pace with the theoretical ones for years. This can be
appreciably explained by the difficulties in measuring the
electron radial distribution in the constricted column of a
discharge. This circumstance along with a considerable
uncertainty in the rate constants of elementary processes
determining the character of constriction in a multi-compo-
nent plasma hindered over many years the detailed quantita-
tive investigation of mechanisms of this phenomena and also
the establishment of a relative contribution of each of the
processes in specific experimental conditions. Some advance
in this direction can be noted in last years owing to the
emergence of a considerable number of detailed experimental
studies on both the character of the electron density radial
distribution in a discharge tube and the conditions which
provide the discharge transition into the constricted state.
The analysis of these experiments permits a more full picture
of phenomena occurring in the positive column of discharge
at enhanced currents and pressures to be drawn.

The problem of investigating the gas discharge constric-
tion includes two aspects deserving a special attention. On the
one hand, the constriction of a discharge relates to a class of
critical phenomena in a low-temperature plasma possessing
the instability character. Therewith as a subject of investiga-
tion can serve both the conditions for initiating such an
instability and the character of system transition from one
stable state into another in accordance with external dis-
charge parameters. The main discharge characteristics
depend in a rather complicated manner on such parameters
as gas pressure and temperature, number density and mean
energy of electrons, etc. For this reason the balance equations
governing both the electron number density and gas tempera-
ture can have in certain situations more than one solution.
This means a possibility of existing various modes of radial
distribution for electron number density as well as for gas
temperature under the same external discharge parameters.
Thus, determination of conditions for the discharge constric-
tion is reduced to the problem of stability for the solution of
balance equations governing the electron number density and
gas temperature in a discharge.

As the second important aspect of the gas discharge
constriction problem has to be mentioned the determination
of radial distribution for electron number density as well as
gas temperature in a constricted discharge. This problem is
solved on the basis of simultaneous analysis of nonlinear
balance equations for electron number density and gas
temperature in a discharge with taking account of the
complicated balance of the volumetric and surface processes
of charged particles formation and neutralization along with
the processes of heat release and removal. The analysis is
considerably complicated in the case of discharge in multi-
component gas mixtures, specifically, in the presence of
molecular admixtures. This is concerned with the necessity
for taking into account the energy stored in vibrational
degrees of freedom. When considering below the indicated
aspects of the discharge constriction problem, the main
attention will be paid to an idea content of the matter. This
is turned out to be possible as a result of using the relatively
simple physical models.

2.2 Radial distribution of the electron
number density in a discharge tube
Balance equation.Let us consider a longitudinal discharge in a
long cylindrical tube of radius R0. The steady-state radial
distribution of the electron number density Ne�r� has to be
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found as a solution of the balance equation, the most
generally employed form of which is the following one:

divDa gradNe � nionNe ÿ arecNeNi ÿ gNNe � 0 : �2:1�
In this equation, the first term defines the diffusive

removal of charged particles to the discharge tube wall (Da

is the ambipolar diffusion coefficient). Such a notation is
valid in the case of a quasi-neutral plasma, the transversal size
of which is much greater than the Debye radius

rD '
�

Te

8pNee2

�1=2

(Te is the electron temperature, e is the electron charge). In a
gas discharge plasma this condition is obeyed for all practical
purposes. The second term in equation (2.1) relates to the
volumetric formation of charged particles (nion is the ioniza-
tion frequency on a per-electron basis). It is supposed that the
charge particle formation in the discharge is a result of
collisions of free electrons with neutral atoms or molecules.
Otherwise this form has to be changed. For example, this is
the case when the charged particle formation results from
collisions with participation of excited atoms (associative
ionization or Penning effect). The third term in (2.1) reflects
the process of volume neutralization of charged particles (arec
is the recombination coefficient,Ni is the positive ion number
density in a discharge). The condition of quasi-neutrality
Ne � Ni facilitates in a natural manner the form of this term.
However, the failure to carry out the indicated condition can
be caused not only by the deviation from quasi-neutrality but
also by the presence of ions of various kind in a plasma,
specifically, negative ions. This can be taken into considera-
tion quite easily through the corresponding change in the
form of equation (2.1). The last term in (2.1) describes the
process of electron attachment to gas particles (g is the rate
constant for attachment). This formulation can be also
modified by considering several various channels of electron
attachment as well as possibility for the formation of negative
ions of various kind. As boundary conditions, which have to
be added to equation (2.1), they require usually that both the
electron number density at the discharge tube walls and its
radial derivative at the axis are equal to zero:

Ne�R0� � 0 ; �2:2�

dNe

dr
�r � 0� � 0 : �2:3�

The sense of those conditions is quite obvious and has no need
of some explanations.

Despite an apparent simplicity of equation (2.1), its
solution for a constricted discharge meets not only computa-
tional but also fundamental difficulties. This is caused by the
following circumstances. Firstly, the coefficients of this
equation are, in general, radially dependent. This is because
of the radial nonuniformities in gas temperature, number
densities of charged and excited particles of various kind,
electron energy distribution function and, probably, in ionic
content of a plasma. For this reason, equation (2.1) is entirely
insufficient for determining the radial dependencies of the
discharge characteristics involved. At the rigorous formula-
tion of a problem, this equation has to be analyzed in
combination with balance equations for excited and charged
particles of various kind, heat conduction equation, vibra-
tional energy balance equation and Boltzmann kinetic equa-

tion governing the electron energy distribution function.
These circumstances considerably complicate mathematical
aspects of the problem. In such a situation, analysis of a
problem on the basis of consideration of separate simplified
models appears to be much more fruitful for establishing the
mechanisms of the discharge constriction. In doing so, there is
a possibility to reveal the impact of a given factor on the
character of solution to equation (2.1) by basing ourselves
firstly upon facts which have been stated quite reliably at the
moment.

Schottky solution. At first let us analyze the solutions of
equation (2.1) for the case when the coefficients of that
equation are constant over the discharge tube cross-section.
This occurs at relatively low input energies, which leave the
spatial temperature uniformity in the plasma volume undis-
turbed. It should be noted that in this case taking account of
the electron attachment to neutrals does not change the form
of equation, but only requires a change of the coefficient nion
for the corresponding effective quantity equal to the differ-
ence: neff � nion ÿ gN. Obviously, the stationary discharge is
feasible only if this difference is positive. The simplest case
(Schottky solution) in respect to analysis corresponds to the
situation where the volume recombination of charged parti-
cles in plasma is negligible, and the diffusion removal to the
walls proceeds as the main mechanism of their neutralization.
In this case, which takes place at moderate currents and
relatively low pressures, the solution of equation (2.1) has the
following form [12]:

Ne�r� � Ne�0� J0
�
br
R0

�
; �2:4�

where J0�x� is the zero-order Bessel function and b � 2:405 in
accordance with the boundary condition (2.2). The same
condition provides the interrelationship between the coeffi-
cients of equation (2.1):

neffR2
0

Da
� b2 � 5:77 ; �2:5�

which in its turn determines the dependence of the reduced
electrical field strength E=N on the product NR0.

The last relationship reflects the balance of charged
particles, which are generated in the discharge bulk and
neutralized on the walls as a result of ambipolar diffusion.
Independently on the character of approximations used in the
analysis of equation (2.1), its solution has to be supplemented
with the balance relationship which is similar to (2.5). This
latter states the interconnection between discharge para-
meters. The situation involved is typical of transfer equations
with zero boundary conditions.

Considering the volume recombination. Let us take into
consideration a possibility of the volume recombination of
charged particles. Setting for simplicity sake Ne � Ni, we can
conclude that the volume recombination, which is propor-
tional to the square of the electron number density, makes the
most significant contribution to the central, near-axis region
of a discharge tube, where the electron number density is
maximal [13]. In this region, the radial decrease in the electron
number density appears to be smoother than in the absence of
the volume recombination. For comparison of electron
number density radial dependencies in the presence and
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absence of the recombination near the discharge tube walls, it
is convenient to multiply equation (2.1) written in a cylind-
rical frame of reference, by rdr and to integrate it over all the
cross-section of the discharge tube from 0 toR0.This results in

nion

�
ne�r� r dr � arecNe�0�

�
n2e�r� r drÿDaR0

dne
dr
�r � R0� :

�2:6�

Here ne � Ne=Ne�0� is the dimensionless electron number
density. It could be noted that the last term in the right side
of (2.6) is negative, so the recombination and diffusion
contributions are added. The expression in the left side of
(2.6) is proportional to the net discharge current. As it
follows from equation (2.6), when the discharge current is
steady, an increase in the recombination loss is accompanied
by a lowering in the relative contribution of the last term in
(2.6), i.e. lowering in the derivative of the electron number
density near the wall. Comparing this solution with the
Schottky solution (2.4), it might be inferred that the
inclusion of recombination makes the radial distribution of
electron number density to be radially decreasing more
smoothly in the near-axis region and decreasing more
drastically close to the tube wall. The solutions of equation
(2.1) with and without allowance made for the volume
recombination are depicted in Fig. 1 (curves a and b,
correspondingly).

Nonuniform ionization. As may be seen from the analysis
performed above, the spatial electron number density dis-
tribution constituting the solution of the balance equation
(2.1) with radially constant coefficients, is a smooth radially
decreasing function. The discharge fills essentially the whole
volume of a tube and does not experience constriction. Let us
consider a change in the character of solution to equation
(2.1) resulting from taking into account the radial dependen-
cies of its coefficients. As it will be seen from the subsequent
analysis, the most drastic radial dependence is usually
inherent in the rate constant of atomic or molecular ioniza-
tion with an electron impact. The situation is conditioned by
the dependence of that parameter on both the E=N ratio and
ionization degree of plasma. Let us analyze the balance
equation (2.1) for electron number density by taking account
of the abrupt radial dependence of the parameter neff. At first
the charged particle volume recombination is supposed to be
ignored. The real radial dependence of the parameter neff will
be replaced with the model one by presetting the size r0 of the

region in which the effective formation of charged particles
takes place:

neff�r4 r0� � n0; neff�r > r0� � 0 : �2:7�
Multiplying relation (2.1) by r dr and integrating it from 0

toR0 with due regard for (2.7), as well as ignoring the volume
charged particles recombination will result in

dNe

dr
�R0� � n0

DaR0

�r0
0

Ne�r� r dr : �2:8�

The right side of the relationship obtained is proportional to
the number of charged particles formed in a unit time per unit
length of a plasma column. The magnitude of this parameter
is determined by the value of the net discharge current and is
rather weakly sensitive to the size of the region where the
charged particles are generated. Hence, in the absence of the
charge particles volume recombination, the derivative of the
electron number density dNe�R0�= dr is not small as it would
be in the case of constriction. Thus, in the absence of
recombination even a sharp spatial nonuniformity in the
ionization rate constant does not cause constriction.

The form of the solution to equation (2.1) changes in a
qualitative manner in the case that, on the one hand, the rate
of charged particles generation is a drastically decreasing
radial function and, on the other hand, the charged particles
neutralization is mainly resulted from the volumetric pro-
cesses. The last condition takes the following form:

6Da

R2
0

5 arecN0
e ; �2:9�

where N0
e is the characteristic magnitude of the electron

number density in a discharge tube. This condition is valid
at relatively high currents and pressures. In the limiting case
of very high pressures where diffusion is negligible, equation
(2.9) results in

Ne�r� � neff�r�arec
: �2:10�

The recombination coefficient is usually much less radial-
dependent function in comparison with the ionization rate
constant. For this reason, in absence of diffusion, the radial
dependence of the electron number density is practically close
to that of the function neff�r�. Physical reasons determining
rather drastic behaviour of this dependence will be considered
below.

Radius of the constricted column. It should be emphasized that
solution (2.10) obtained above does not obey boundary
condition (2.2). This contradiction is formal in the case
where the ionization rate constant decreases quite sharply in
radial direction and the electron number density near the wall
is negligible. However, a radial decrease in the electron
number density is followed by a rise in the characteristic
time trec � �arecNe�ÿ1 for the charged particles recombina-
tion. In its turn this causes the violation of above-accepted
condition (2.9) concerning the neglecting role of diffusion.
However, allowance made for diffusion is necessary for both
the proper estimation of the transverse size of the constricted
discharge and correct determination of the radial decrease in
the electron number density near the wall. Thus, if free
electrons are formed mainly within a narrow near-axis region
of the discharge tube, the characteristic radius rc of a region
filled with the constricted discharge can be estimated as the

0.2 0.4 0.6 0.8

0.4
0.5
0.6

0.8

1.0

0.2

r/R0
0

b

a

cN
e
�r�
=N

e
�0
�

Figure 1. Radial dependencies of charged particles number density as

stated on the basis of solution to Eqn (2.1) without (a) and with allowance

(b, c) made for volume recombination. Curve c is related to the condition

arecNe�0�R2
0=6Da � 10. All curves are normalized to the same axial

electron number densities.
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distance passed by an electron in the course of ambipolar
diffusion in the recombination time:

rc �
�������������
Datrec

p
�

�������������
Da

arecN0
e

s
: �2:11�

It is easy to verify that onmeeting condition (2.9) the radius of
the region filled with discharge is much less than that of a
discharge tube. Thus the mechanism for the discharge
constriction becomes clear. Under conditions of a spatially
nonuniform gas discharge plasma, the free electrons are
formed mainly in the narrow axial region of a discharge
tube. On satisfying condition (2.9) the major portion of
charged particles is neutralized in the plasma volume and
has no time to reach the wall. So the radius of the region filled
with discharge turns out to be much less than the radius of a
discharge tube. Estimating the radius of the region filled with
charge particles for a specific physical situation it is necessary
to take into account a finite size of the region wherein their
generation proceeds. In view of that themagnitude of rc has to
exceed somewhat estimation (2.11).

It should be emphasized that the exact analytical solution
of the electron number density balance equation is attainable
only for the Schottky limiting case considered above. Gen-
erally speaking this nonlinear equation is not soluble analy-
tically even though its coefficients are constant. Thus, the
determination of the charge particles radial distribution is
based usually on numerical methods. One of those methods
which manifested itself quite well in practice [9, 11] merits a
special attention. This approximate method for solution of
equation (2.1) is based on representation of the function
under investigation in terms of varying parameters C and a
which determine the absolute magnitude of the electron
number density in a discharge and a degree of steepness of
its radial decrease. In accordance with that method, the
solution of equation (2.1) is expressed in the simple approx-
imate form:

Ne�r� � C
�
exp�ÿar2� ÿ exp�ÿa�� : �2:12�

Here r � r=R0 is the dimensionless radial coordinate. Trial
function (2.12) obeys boundary conditions (2.2), (2.3) auto-
matically. This permits us to represent in a unified manner
both the diffusive (at a4 1) and constricted (at a4 1) radial
distributions of charged particles. The magnitudes of the
varied parameters a and C are determined as a result of
solution of two transcendental equations. The first of these
equations is the result of substitution of expression (2.11) into
equation (2.1) and its subsequent integration with respect to
r dr from 0 to R0. The second one is the result of substitution
of the same expression into equation (2.1) and its solution at
r � 0.

Some notion about the accuracy of themethod considered
can be obtained by comparing the approximate solution of
equation (2.1) in the case of constant coefficients and without
regard for the volume recombination (Schottky case) with the
exact solution (2.4). Performing the procedures indicated
above results in the following set of equations:

4Daa
R2
0

� neff
�
1ÿ exp�ÿa�� ; �2:13�

4Daa exp�ÿa�
R2
0

� neff
�
1ÿ exp�ÿa�

a
ÿ exp�ÿa�

�
: �2:14�

Due to a linear form of the initial equation, the result of
calculation does not contain the quantity C. The set of
transcendent equations (2.13), (2.14) is solved quite easily
with a calculator:

a � 0:842;

neff
R2
0

Da
� 4a
1ÿ exp�ÿa� � 5:9 : �2:15�

The solution obtained coincides very closely with the exact
result (2.4). It can be verified quite easily by calculating the
following integral:

I �
�1
0

n
C
�
exp�ÿar2� ÿ exp�ÿa��ÿ J0�2:405r�

o2
r dr ;

where the parameter C is determined through the normal-
ization expression for the electron number density radial
distribution:

C

�1
0

�
exp�ÿar2� ÿ exp�ÿa��r dr � �1

0

J0�2:405r�r dr :

The calculations result in I � 2:26� 10ÿ7, i.e the approx-
imate solution agrees very closely with the exact one. The
described above simple approximate method of the solution
of the electron number density balance equation (2.1) is used
quite successfully when solving this equation in much more
complicated situations [11], which require taking into con-
sideration both the volume recombination and spatial non-
uniformity of the coefficients of equation (2.1).

2.3 Constricted discharge in the presence
of electron attachment
The role of electron attachment to neutrals in the formation
of the charged particles spatial distribution is similar to that
of above-considered volume recombination. Thus, in the case
where the rate constant of charged particles formation
decreases drastically from the axis to the wall of a discharge
tube, whereas the characteristic time of electron attachment
tat � 1=gN is much less than that for diffusive removal of
charged particles to the discharge tube wall tdif � R2

0=6Da,
viz.

1

gN
4

R2
0

6Da
; �2:16�

the discharge becomes constricted [14, 15]. However, diffu-
sion of charged particles always plays a considerable role in
their balance and has to be considered under the analysis of
the radial distribution. Thus, if the size of the region of
predominant ionization ri is much less than the tube radius
R0, then the charged particles radial distribution in the major
region of a discharge tube, where ionization is negligible, is
resulted from the equation

1

r

d

dr

�
rDa

dNe

dr

�
ÿ gNNe � 0 �2:17�

with boundary conditions Ne�0� � N0, Ne�R0� � 0. The
solution of that equation for the main region�

Da

R2
0gN

�1=2

R05 r < R0
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takes the following form:

Ne�r� � N0

�
exp

�
ÿ
�
gN
Da

�1=2

r

�
ÿ exp

�
ÿ
�
gN
Da

�1=2

R0

��
:

�2:18�

As seen from this solution, the characteristic size of a region
filled with electrons re � �Da=gN�1=2 may be considered as the
distance passed by the diffusing particle in the attachment
time 1=gN. The analysis of charged particles balance equation
given above shows that the constricted distribution of
charged particles over the discharge tube cross-section is
realized under conditions when the charged particles forma-
tion proceeds in a narrow near-axis region of a tube and their
volume neutralization prevails over diffusive removal to the
wall. The specific physical situations wherein the indicated
conditions are satisfied will be treated below.

2.4 Thermally nonuniform plasma
The thermal nonuniformity of a gas discharge gives the most
general cause for its spatial nonuniformity. A sizable part of
the input energy is removed to the tube wall as a result of the
molecular heat conductivity. This causes a difference in
temperature between the axis and the wall of a discharge
tube, the magnitude of which rises as the input energy
increases. Since the gas pressure p is constant over the cross-
section of a discharge tube, the spatial nonuniformity in
temperature causes analogous nonuniformity in the reduced
electrical field strengthE=N by virtue of the gas state equation
p � NT. In its turn, this results in a drastic radial dependence
of the rate constant for ionization of atoms or molecules by
electron impact. It is convenient to express the degree of
steepness of that dependence through its logarithmic deriva-
tive

bi � d ln nion
d lnT

����
p�const

� d ln nion
d ln�E=N� : �2:19�

In conditions relevant to a weakly ionized plasma, where
electron-electron collisions have little or no effect on the
electron energy distribution function, the magnitude of the
parameter bi is determined by the ratio E=N and does not
depend on ionization degree of plasma. The magnitudes of
that parameter determined on the base of experimental
dependencies nion�E=N� are compiled in Table 1. As seen,
these magnitudes are in excess of unity over a wide range of

discharge parameters. It means that a relatively low difference
in temperature (of the order of temperature itself) can cause a
difference in the ionization rate constant as high as several
orders of magnitude.

2.5 Recombination mechanism
for disconstriction of a discharge
A predominance of volume charged particles recombination
over surface one is a necessary condition for the constriction
of a discharge column. Among various mechanisms of
volume recombination which can be realized in a gas
discharge plasma, the dissociative recombination of electrons
and molecular ions

e�AB� ) A� B �2:20�
occupies a prominent place [17 ± 19]. As a result of this
process one of the atoms (A or B) can be found in an excited
state. The energy released in the course of formation of the
electron bound state is transformed into the kinetic energy of
atoms flying apart. For this reason, process (2.20), which does
not require the third particle participation, is characterized by
a quite high intensity in conditions pertaining to a gas
discharge plasma with molecular ions. The typical value of a
rate constant of the process under consideration at Te � 1ÿ3
eV lies in the range 10ÿ8ÿ10ÿ7 cm3 sÿ1, whereas that for the
triple recombination process

2e�A� ) A� e �2:21�
is as low as 7 ± 8 orders of magnitude in the similar conditions
and Ne � 1012 cmÿ3. It follows that the volumetric mechan-
ism for charged particles neutralization predominates over
the surface one only if a plasma contains molecular ions.

In a molecular gas discharge where molecular ions usually
belong to the prevailing sort of ions, the dissociative
recombination is the main channel for the volume neutraliza-
tion of charged particles. In a rare-gas discharge, molecular
ions predominate over atomic ones at relatively high pres-
sures and moderate gas temperatures. Estimation of the
relative content of atomic N1i and molecular N2i ions in a
rare-gas discharge can be performed on the base of the
equilibrium relationship

N1iN

N2i
� g1iga

gmol
exp

�
ÿD

T

�
1

2pr20

��������
mT
2p�h

r �
1ÿ exp

�
ÿ �ho

T

��
;

�2:22�

where ga, g1i, gmol are the statistical weights of corresponding
neutral and ionized particles; r0 is the equilibrium inter-
nuclear distance; m, reduced mass; D, dissociation energy,
and �ho is the vibrational energy quantum for the molecular
ion.

The dissociation energies of rare-gas molecular ions lie in
the range 1ÿ2 eV, therefore, as it follows from expression
(2.22), the molecular ions prevail over the atomic ones only at
moderate gas temperatures T4 1000 K. The inert gas
temperatures at which the equilibrium values of atomic and
molecular number densities (calculated on the base of relation
(2.22)) were equal to each other are presented in Table 2. Of
course, these values depend on the number density of neutral
atoms.

The temperature dependence of the relative content of
molecular ions in a rare-gas discharge forms the basis of a
noteworthy mechanism for its disconstriction at elevated

Table 1. Values of bi versus ratio E=N for the discharge initiated in some
gases [16].

Gas
Values of bi at E=N, 10ÿ16 V cm2 equal to

0.5 1 3 5 10 30 40

He
Ne
Ar
Kr
Xe
H2

D2

O2

CO
N2

CO2

ì
3.1
ì
ì
ì
ì
ì
ì
ì
ì
ì

ì
3.1
ì
ì
ì
ì
ì
ì
ì
ì
ì

2.8
2.4
4
4
6
ì
ì
7.7
ì
ì
2

3.3
2.1
3.2
3.2
4.6
10
8
4.6
ì
10.4
0.6

1.3
1.3
2.6
2.6
3.0
3.3
2.9
3.0
ì
5
0.9

0.84
1.0
1.9
1.9
2.1
1.3
1.3
ì
3.9
2.3
1.4

ì
0.5
0.85
0.85
1.2
0.54
0.5
ì
1.3
0.85
1.0
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input energies. This phenomenon has been observed by
V Baranov and K Ul'yanov [20] and described theoretically
in works [21, 22] after a while. In accordance with this
mechanism, at a moderate energy input when the gas
temperature in the axial region of a discharge tube does not
exceed values given in Table 2, the molecular ions prevail thus
promoting the discharge constriction. Further increase in the
energy input gives rise to the gas temperature at a time. This
brings about the thermal destruction of molecular ions and as
a consequence a decline in the contribution of the volume
neutralization to the charged particles balance. In its turn this
is accompanied by upsetting of the gas discharge constriction
and, correspondingly, by a rise in the cross-section of the area
filled with the discharge current. A rough estimation of the
constricted discharge radius may be performed in this case on
the base of the solution to the heat conduction equation,
namely, considering this value as a dimension of the region
where the gas temperature is so high that the relative content
ofmolecular ions is negligible [21]. A rise in the input energy is
followed by that in the size of the region filled with a
discharge. This is just an essence of the disconstriction
phenomenon. The latter is illustrated in Fig. 2 where
dependence of the relative radius of the constricted discharge
inAr on the currentmeasured at various gas pressures is given
[20].

2.6 Constriction of a molecular gas discharge
The main distinctive feature of a molecular gas discharge
results from the existence of inner molecular degrees of
freedom which are related to their vibrational and rotational
motions. As it follows from the results of a number of
experimental and theoretical studies [23 ± 24], the main
portion (usually over 90%) of energy input to a molecular
gas discharge therewith is expended for the excitation of

molecular vibrations. The vibrational energy is further
transformed into translational one as a result of intermole-
cular collisional relaxation. However, the rate of this trans-
formation is rather small. For instance, transformation of a
quantum of vibrational energy of N2 molecule into thermal
energy at room temperature requires more than 1010 inter-
molecular collisions. For this reason, over a wide range of
discharge parameters the state of a molecular gas is far from
equilibrium. This state is characterized by an extraequili-
brium vibrational energy content. The transformation of this
inner energy into that of translational motion, i.e. into heat,
proceeds extremely slowly, so the main portion of the
vibrational energy of molecules is removed to the wall as a
result of diffusion, whereas the translational gas temperature
remains to be relatively small.

The rise in the energy input and/or gas pressure causes an
increase in importance of volumetric vibrational relaxation
processes and their contribution to the balance of molecular
vibrational energy. This is accompanied also by an enhance-
ment in the translational gas temperature and, as a conse-
quence, in the spatial nonuniformity of a gas discharge
column. The transition of a molecular gas discharge from
the mode with diffusive removal of vibrational energy to the
walls to that with volumetric vibrational relaxation can
proceed in an avalanche-like, explosive manner [25 ± 27].
This results from the strong temperature dependence of the
vibrational relaxation rate constant. Local gas heating due to
possible current fluctuations is accompanied by a drastic rise
in the vibrational relaxation rate constant ofmolecules, which
in turn stimulates further gas heating. If the time required for
smoothing (through molecular heat conduction) the formed
local thermal nonuniformity exceeds the characteristic time of
the vibrational relaxation at local magnitude of gas tempera-
ture, the avalanche-like rise in gas temperature takes place,
which is accompanied by the change in the prevailing
mechanism of vibrational relaxation. As a result of this
temperature rise, which is similar to a thermal explosion, a
gas discharge column becomes to be spatially nonuniform,
whereas a molecular gas changes to the state close to
thermodynamically equilibrium one.

The analysis of conditions governing the transition of a
molecular gas discharge from the mode with diffusive
removal of vibrational energy to the walls to that with
volumetric vibrational relaxation will be performed on the
base of a simple model [25] involving the balance equations
for translational and vibrational energies. The mean number
of vibrational quanta per molecule is denoted in what follows
by e. Assuming that the vibrationally excited molecules are
formed as a result of electron-molecule collisions (rate
constant of this process is keV) and removed to the walls
through diffusion (characteristic time is tD), one obtains the
steady-state balance equation for the vibrational energy:

eÿ e0
tD
� NeNkeV : �2:23�

This equation has to be analyzed in combinationwith the heat
conduction equation, a simplified form of which looks as

CV
Tÿ T0

tT
� eÿ e0

tVT
�ho : �2:24�

Here CV is the specific heat capacity of a gas at a constant
pressure, tT is the characteristic time for heat conductivity, �ho
is the energy of vibrational quantum of a molecule, tVT is the

Table 2. Inert gas temperatures (K), at which the equilibrium number
densities of atomic and molecular ions become equal [9].

N, cmÿ3 Gas temperature, K

He Ne Ar Kr Xe

1016

1017

1017

1018

1530
1740
2100
2630

740
870
1010
1230

910
1060
1250
1500

780
900
1050
1250

650
740
860
1010

p � 20 Torr

50

i, m¡

rc
R0

1010 104103102

0.4

0.2

Figure 2. The dimensionless constriction radius rc=R0 versus the discharge

current measured at different pressures and R0 � 1:3 cm [20].
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characteristic time of collisional vibrational relaxation; sub-
script `zero' denotes the equilibrium values of parameters e
and T which are reached at the discharge tube wall. It is
presumed therewith that while the portion of vibrational
energy released in a volume as a heat is relatively low, just
this process provides the main source of gas heating. Such an
assumption is justified over a wide range of discharge
parameters because in a molecular gas discharge the con-
tribution of other sources of heating (elastic electron-mole-
cule scattering, excitation of molecular rotation) is usually
still lesser. Inserting the dimensionless temperature

Y � Tÿ T0

T0
�2:25�

and approximating the abrupt temperature dependence of the
molecular vibrational relaxation rate to the standard expo-
nential form [28]

1

tVT
� 1

tVT�T0� exp�bVTY� ; �2:26�

the set of equations (2.23), (2.24) can be brought to the form

Y � A exp�bVTY� : �2:27�

Here the factor

A � NeNkeV �hotT tD
CVtVT�T0�T0

; �2:28�

and parameter

bVT � d ln�1=tVT�
d lnT

�T � T0�4 1 �2:29�
determines a degree of steepness for the temperature depen-
dence of molecular vibrational relaxation rate. In Table 3, the
values of this parameter are given and they were determined
on the base of measurements at various temperatures [16]. As
is seen, the condition bVT4 1 which provides the basis for
expansion (2.26) is obeyed quite well at moderate tempera-
tures.

Equation (2.27) is well known in chemical physics,
because it determines the thermal explosion condition for an
exothermic chemical reaction [28]. It is easily seen that the
steady-state solution of this equation exists only at the
condition

A4
1

bVT e
�2:30�

(e is the base of the natural logarithm). If condition (2.30) is
obeyed, equation (2.27) has two solutions, one of which (low-

temperature) is stable, whereas the high-temperature one is
unstable with respect to temperature fluctuations. The
inequality which is opposite to (2.30) constitutes the condi-
tion for the thermal instability of a molecular gas discharge.
This condition is fulfilled on exceeding certain value of the
discharge current or gas pressure.

2.7 Nonthermal mechanism of gas discharge constriction
One more physical mechanism defining the possibility of
disturbance of the spatial uniformity in gas discharge para-
meters, relates to the dependence of the electron energy
distribution function on the ionization degree of a gas
discharge plasma [29 ± 32]. Such a dependence is typical for
an inert gas discharge and can be realized in conditions where
the electron-electron and elastic electron-atom collisions
make comparable contributions to the electron energy
balance.

The range of plasma parameters, wherein a drastic
dependence of the gas particles ionization rate constant on
the ionization degree occurs, can be estimated in the following
way. In two limiting cases, the electron energy distribution
function does not depend on the electron number density.
Namely, at low ionization degrees, where the relationship

nee5
m

M
nea �2:31�

is valid at any electron energy (m, M are the electron and
atomic mass, correspondingly, nee, nea are the rate constants
for the electron-electron and elastic electron-atom collisions,
respectively), the electron energy distribution function f �e� is
determined mainly by the electron-atom collisions and can be
expressed in the form [33]:

f �e� � C exp

�
ÿ
�e
0

de
T� e2E2M=�3m2n2ea�

�
: �2:32�

In the opposite limiting case, where the relationship takes
place in the form

nee4
m

M
nea ; �2:33�

the electron energy distribution function has the Maxwellian
form

f �e� � 2���
p
p Tÿ3=2e exp

�
ÿ e
T

� ��
e
p

: �2:34�

In the range of the plasma ionization degrees which is
intermediate between ranges (2.31) and (2.33), the electron
energy distribution function depends on the ionization degree
of plasma. In contrast to the electron-atom elastic collision
rate nea, the electron-electron collision rate

nee � 2pe4

e2
Ne

�����
2e
m

r
lnL �2:35�

(lnL is the Coulomb logarithm) is characterized by the
sharply falling energy dependence. For this reason, the
situation is typical where in the low electron energy range
inequality (2.33) is valid, and the electron energy distribution
function has the near-Maxwellian form, whereas in the
electron energy range close to the atomic-resonance excita-
tion threshold the opposite relation (2.31) is valid. In this
range, equation (2.32) is more proper for description of the

Table 3. Values of the parameter bVT defined by expression (2.29) as
determined from measurements of kVT�T� for various gases.

T, K Values of bVT for various gases

H2 D2 N2 O2 CO Cl2

200
300
500

3.2
4.2
3.7

3.2
6.3
4.8

3.4
10.7
14.2

2.9
4.5
7.0

2.4
5.5
6.7

1.6
2.8
3.8
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electron energy distribution function. This equation provides
a sharper fall of the function with increase in electron energy.

The region of intermediate electron energies, where the
electron energy distribution function undergoes transition
from the Maxwellian form (2.34) to function (2.32), is
determined by the ionization degree of plasma. For this
reason, the values of rate constants for both the excitation of
atomic resonance states and ionization of an atom by an
electron impact are sharply increasing functions of the
ionization degree of a plasma. The form of those functions
can be determined on the base of solution to the Boltzmann
kinetic equation with consideration for both the interelec-
tron and electron-atom collisions. Approximate methods of
the solution to this nonlinear integral equation were devel-
oped in Refs [34 ± 37], where the rate constants of atomic
ionization by an electron impact were calculated as a
function of the ionization degree of a rare-gas plasma. The
authors treated the case where the main mechanism of
charged particles formation relates to the step atomic
ionization.

The sharp increasing fashion of the dependence involved
in the case of a volume neutralization of charged particles
causes the discharge constriction even in the absence of a
thermal nonuniformity, i.e. at relatively low input energies.
This nonthermal mechanism of a gas discharge spatial
nonuniformity is realized in a region of moderate ionization
degrees of plasma:

1

2p
m

M

sea�Te�T 2
e

e4 lnL
4

Ne

N
<

1

2p
m

M

sea�It� I 2t
e4 lnL

: �2:36�

Here sea is the cross-section of elastic electron-atom colli-
sions, e is the electron charge, Te is the electron temperature,
It is the energy of a resonance atomic level, lnL � 10 is the
Coulomb logarithm. At values of Te � 1 eV, It � 15 eV,
sea�Te� � sea�It� � 10ÿ15 cmÿ2, which are typical for a rare-
gas discharge plasma, condition (2.36) relates to the region of
a plasma ionization degree Ne=N � 10ÿ6ÿ10ÿ4.

3. Thermal regime of a gas discharge plasma

3.1 Local thermodynamic and ionization equilibrium
Let us consider a state of a gas discharge plasma which is
realized in a high-pressure arc discharge and is spoken of as
local thermodynamic equilibrium. Due to a high number
density of atoms and a high number density of electrons,
collisional processes in this state are more essential than
transport ones. Hence, transport of particles owing to
nonuniformity of plasma is not essential, and a near-equili-
brium state is supported at each plasma point which is
characterized by certain gaseous T and electron Te tempera-
tures, and corresponds to the Maxwellian distribution func-
tions of electrons and atoms over velocities.

These temperatures are established due to processes of
electron interaction with external fields, collisional processes
with electrons and atoms, and heat transfer lengthwise of the
discharge tube cross-section. But the relation between elec-
tron and gaseous temperatures is determined by collisional
processes and interaction of electrons with external fields
alone, so that transport processes leave this relation unaf-
fected. In particular, if a gas-discharge plasma is supported by
a constant electric field of the strength E, then the difference
of the electron and gaseous temperatures is equal to

Te ÿ T �Ma2

3

hv2=ni
hv2ni ; �3:1�

where M is the atomic mass, a � eE=m, e is the electron
charge, angular brackets stand for averaging of the corre-
sponding quantity over electron velocities v with the Max-
wellian distribution function, n is the electron-atom collision
frequency. Specifically, if the collisional frequency does not
depend on the electron velocity, formula (3.1) has the form
[33, 38, 39]:

Te ÿ T �Mw2

3
; �3:2�

where w is the electron drift velocity.
Local thermodynamic equilibrium is attained in a gas-

discharge plasma if a time of energy exchange between
electrons as a result of their collisions proves to be small in
comparison to that of energy exchange with atoms and also to
typical times of the electron energy transport to other
discharge regions; the same criterion must be satisfied for
atoms. We shall consider below the regime of local ionization
equilibrium which requires a more rigorous criterion. In this
regime, the electron number densityNe at each point of a gas-
discharge plasma is connected with the atomic number
density N by the Saha formula [33]

N 2
e

N
� gegi

ga

�
mTe

2p�h2

�3=2

exp

�
ÿ J

Te

�
: �3:3�

For simplicity, we consider only one-component atomic gas.
Here J is the atomic ionization potential, m is the electron
mass, �h is the reduced Plank constant, ge � 2, gi, ga are the
statistical weights of an electron, ion and atom, respectively.
Notice that because of the condition Te5 J (in this paper we
express temperatures in energetic units) the number density of
excited atoms is small compared to that for atoms in the
ground state, so that excited atoms do not make a contribu-
tion to the total atomic number density. Furthermore, the
gas-discharge plasma considered is quasi-neutral: Ne � Ni.
The criterion of the validity of the local ionization equilibrium
takes the form

trec5 tdif ; �3:4�
where trec / �KN 2

e �ÿ1 is the typical time of recombination for
a probe electron,tdif � R2

0=5:78Da� is a typical time of
electron drift from the plasma-filled region. Here K is the
rate constant of three-body recombination of electrons and
ions which is given by the formula [18]

K � 6:4� 10ÿ22 cm6 sÿ1
�
1000

Te

�9=2

;

where the electron temperature Te is expressed in kelvin,R0 is
a plasma radius, Da is the coefficient of ambipolar diffusion
which is expressed through the ion diffusion coefficient by the
formula

Da � Di

�
1� Te

T

�
:

Thus, the criterion of local ionization equilibrium is satisfied
if the parameter

Z � tdif
trec
� KN 2

eR
2
0

5:8Da
�3:5�
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is large. Further we will check the validity of this criterion for
a certain gas-discharge plasma under consideration.

3.2 Heat balance of a gas-discharge positive column
Let us consider the heat balance of the positive column of gas
discharge assuming the heat removal to be determined by
thermal conductivity. Then the heat balance equation has the
following form for a cylinder discharge tube:

1

r

d

dr

�
K�T�r dT

dr

�
� p�r� � 0 ; �3:6�

where K�T� is the heat conduction coefficient, p�r� � iE is the
specific power of heat release, so that i is the electric current
density, E is the longitudinal electric field strength in the
discharge.

Equation (3.6) permits the temperature difference
between the axis and walls in a gas-discharge tube to be
determined. Assume that the radial distribution of the
electron number density is governed by the Schottky expres-
sion (2.4), which corresponds to the case where the heat
release caused by the electric current flow through a gas
does not affect the electron density radial distribution. As this
takes place, the last term in equation (3.6) has the form

p�r� � p0J0

�
2:4r

R0

�
:

Let us approximate the temperature dependence of the heat
conduction coefficient with the power function

w�T� � w0
�
T

T0

�n

;

whereT0 is the near-wall gas temperature. Thus we obtain the
following equation:

w0
�n� 1�

1

r

q
qr

�
r
q
qr

Tn�1
�
� ÿp0Tn

0 J

�
2:4

r

R0

�
: �3:7�

Double integration of this equation with due regard for the
boundary conditions formulated above results in

T�r� � T0

�
1� 0:13�n� 1�PlJ0�2:4r=R0�

w0T0

�1=�n�1�
; �3:8�

where Pl � iE � 1:36p0R
2
0 is the power released per unit

length of a discharge tube. This expression is valid on
condition that the emission of light takes away relatively
small portion of the input energy.

From expression (3.8) it follows the relationship for the
temperature difference between the axis and wall:

T�0� ÿ T0 � T0

�
1� 0:13�n� 1�Pl

w0T0

�1=�n�1�
: �3:9�

For the majority of gases the parameter n is close to or
somewhat below unity, so the temperature difference in a
discharge tube may be thought of as proportional to the
square root of the total power input to a good approximation.

Let us consider this problemmore generally. The distribu-
tion of the specific power of heat release over the tube cross-
section may be specified in the form

p � p0

�
1ÿ

�
r

R0

�a�
:

Then the power of heat release per unit length of the discharge
tube is equal to

P � pp0 R2
0a

a� 2
;

whereas the temperature difference can be expressed through
equation (3.9) with the numerical coefficient dependent on
the parameter a:

T�0� ÿ T0 � T0

�
1� f �a��n� 1�Pl

w0T0

�1=�n�1�
; �3:9a�

here f �a� � �a� 4�=4p�a� 2�. As is easy to see, the tempera-
ture difference in a discharge is only weakly sensitive to the
radial distribution of the thermal sources. Thus, at
�n� 1�Pl=w0T0 � 1, the variation of the parameter a from 1
up to 10 tends to lower the relative temperature difference by
1.5%, whereas at �n� 1�Pl=w0T0 � 10 such a decrease does
not exceed 8%. In this manner the specific power input Pl

uniquely determines for all practical purposes both the
difference and the radial distribution of temperature in a
discharge.

Relationship (3.9) is convenient for the analysis of the
thermal regime of a glow discharge. Let us demonstrate it by
the example of a gas-discharge CO2-laser. Its radiation power
increases with a rise in the discharge power. But processes of
vibrational relaxation, which correspond to quenching of
vibrationally excited molecules in collisions with helium
atoms or with each other, are accelerated with increase in
gaseous temperature. Because of a strong temperature
dependence for the rate constant of this process, quench of
laser generation takes place at a certain gaseous temperature.
This factor determines the maximum specific power of CO2-
laser in the end, and the temperature of quench of laser
generation appears to be close to 700 K [1]. The maximum
specific power which is introduced into the discharge and
provides this temperature on the tube axis, equals
P � 8W cmÿ1 in accordance with formula (3.8). Using a
typical efficiency of CO2-laser which is 15%, we arrive at
1W cmÿ1 for the maximum specific power of laser generation
that corresponds to optimal parameters of real laser systems
of this type.Notice that according to formula (3.9) the specific
laser power per unit length of a discharge tube does not
depend on a tube radius. Thus, a simple relationship (3.9)
allows us to analyze the temperature difference in a positive
column of gas discharge and make reliable estimations.

3.3 Thermal instability of a gas discharge plasma
As known, passage of electric current through a gas discharge
leads to a heat release in the bulk which must be compensated
by processes of heat transfer. In arc discharges, where heat
release can be strong enough, heightened heat transport
causes contraction of a plasma region carrying an electric
current. Contraction of a discharge leads to an increase in
temperature gradients, and therefore enforces heat transfer
processes. This thermal character of a gas discharge contrac-
tion corresponds to one of the mechanisms of contraction
which were considered in the previous section. We shall
consider below the peculiarities of this process as applied to
the thermal plasma of an arc discharge under conditions of
local thermodynamic equilibrium.

Let us analyze the thermal balance equation (3.6). It is
convenient to represent this equation in the case at hand in the
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form

d

dx

�
x
dY
dx

�
� A exp�bY� � 0 : �3:10�

Here

Y � Tÿ T0

T0
; A � R2

0pT0

4T0KT0
; b � T0

d ln p

dT
T0 ;

where T0 is the wall temperature. We assume therewith that
the heat release power p depends on the cross-section of a
discharge tube through the gaseous temperature, and that
such temperature dependence is sharply defined, i.e. b4 1.
For example, in the case of local thermodynamic equilibrium
in an arc discharge plasma we have

p / Ne / exp

�
ÿ J

2Te

�
; �3:11�

where Ne is the electron number density, J is the atomic
ionization potential. From this it follows that

b � J

2T0
4 1 :

The solution of equation (3.10) is given by the Fock's
formula

Y � 1

b
ln

2g

Ab�1� gx�2 ; �3:12�

where g is the integration constant. In this solution we take
account of the boundary condition dT= dr � 0 on the axis.
The condition Y�x � 1� � 0 leads to the following equation
for the parameter g:

2g � Ab�1� g�2 :

As it is seen, the real solution to this equation exists under
the condition Ab < 1=2. Violation of this condition means
that the heat removal due to thermal conductivity cannot
compensate a thermal release in the bulk. It causes a thermal
instability which leads to contraction of a gas discharge.
Decrease of a region where heat release takes place promotes
to an increase in heat removal that provides the heat balance
in a system under consideration.

The threshold of the instability development corresponds
to the conditions g � 1; Ab � 1=2, i.e. bY � ln�2=�1� x��.
From this we get the following ratio between the specific
power of heat release on the axis of a discharge tube p0 and
near their walls p�Tw�:

p0
p�Tw� � 4 : �3:13�

The electric current radius re is defined from the equality
of the total power of heat release and heat removal. It gives

r2e �
K�T0�
dp= dT

:

3.4 Contraction of a gas discharge plasma
in the local ionization equilibrium
One can consider in detail the case of developing the above
thermal instability under conditions of local ionization
equilibrium in a plasma of the positive column of a high-
pressure arc discharge. In so doing the analytical expressions

for the plasma distribution over the tube cross-section can be
obtained that allows us to make the detailed analysis of the
problem. Then along with the gaseous thermal conductivity,
we take into account the electron thermal conductivity, so
that the thermal balance equation (3.6) takes the form

1

r

d

dr

�
r

�
K�T� dT

dr
� Ke�Te� dTe

dr

��
� p�r� � 0 : �3:14�

Here r is the distance from the discharge tube axis, T, Te are
the gas and electron temperatures, K�T�, Ke�Te� are the
coefficients of gaseous and electron thermal conductivity,
p�r� � i�r�E is the specific power of heat release, so that i�r� is
the electric current density,E is the electric field strength. This
equation occupies a prominent place in the analysis of an arc
discharge plasma and is referred to as Elenbaas ±Heller
equation [40, 41].

A small parameter of this theory is the ratio of the electron
temperature to the atomic ionization potential considering
that usually Te5 J. Hence, the electron number density
depends strongly on the electron temperature, so that in the
region where the plasma is concentrated the gas and electron
temperatures vary slowly. It allows determination of the
distribution of plasma parameters over the tube cross-section
by using a small parameter Te=J.

Let us introduce a reduced parameter

y �
�
Te�0� ÿ Te�r�

�
J

2T 2
e �0�

: �3:15�

Then according to formula (3.11) we arrive at

Ne�r� � Ne�0� exp�ÿy� :
The power of heat release varies correspondingly over the
tube cross-section in the form p�r� � p0 exp�ÿy�, where
p0 � p�0�. As it is seen, this function depends strongly on
the electron temperature. Hence, in the region which deter-
mines the plasma thermal balance, variation of the electron
and gas temperatures is insignificant.

With this result let us introduce the parameters

DTe � Te�0� ÿ Te�r� ; DT � T�0� ÿ T�r� : �3:16�

The connection between these parameters follows from
equation (3.12). Assuming the power-like dependence for
the frequency n of electron-atom collisions on the collisional
velocity v : n / va, we have

DT � DTe
1� aÿ aT=Te

2Te=Tÿ 1
: �3:17�

Substituting this relationship into equation (3.14) and using a
new variable x � r2=R2

0, we bring this equation to the form:

d

dx

�
x�exp�ÿy� � x� dy

dx

�
ÿ A exp�ÿy� � 0 : �3:18�

We took into account the fact that the electron thermal
conduction coefficient is proportional to the electron number
density and separated out this dependence. Parameters of
equation (3.18) are given by the formulae

x � TK�T� �1� aÿ aT=Te�
Ke�Te� �2Te ÿ T� ; A � p0R

2
0J

8T 2
e Ke�Te� : �3:19�
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Notice that all the parameters of formula (3.19) are taken on
the discharge tube axis, and in addition A4 1.

Equation (3.18) represents the equation of the thermal
balance for plasma of a gas-discharge positive column, so that
the first term in this equation describes heat removal resulted
from gaseous and electron thermal conductivity, and the
second term includes heat release due to passage of an electric
current through the plasma. Let us consider two regimes of
thermal removal successively, so that in the first one the heat
removal is determined by gaseous thermal conductivity, and
in the second case it is due to electron conductivity. In the first
case x4 1, thus one can neglect the term exp�ÿy�. Then the
thermal balance equation takes the form of the Fock's
equation (3.10) and has the following solution:

y � 2 ln

�
1� Ax

2x

�
: �3:20�

This corresponds to the following distribution of the electron
number density over the tube cross-section:

Ne�r� � Ne�0� exp�ÿy� � Ne�0�
�1� r2=a2�2 ;

a2 � 16T 2
e TK�T� �1� aÿ aT=Te�

p0J �2Te ÿ T� : �3:21�

Integrating over the tube cross-section, we arrive at the total
power of heat release per unit length of a discharge tube:

P � IE �
�
p0 exp�ÿy�2pr dr

� 16T 2
e TK�T� �1� aÿ aT=Te�

J �2Te ÿ T� : �3:22�

In the other limiting case x5 1, we shall consider two
ranges of the y-variable change, so that within the first range
y > ln�1=x� the solution to equation (3.18) is given by
formula (3.20). In the range y < ln�1=x� with introduction
of a new variable Y � Ne�r�=Ne�0� � exp�ÿy� we bring
equation (3.18) to the form:

d

dx

�
x
dY

dx

�
� AY � 0 : �3:23�

The solution of this equation with the boundary condition
Y�0� � 1 is expressed through the Bessel function:

Y � J0
ÿ
2
�������
Ax
p �

: �3:24�

In this limiting case, a plasma region where distribution (3.24)
for the electron number density is valid, gives the main
contribution to the total discharge current and to the total
discharge power. From this it follows for the total discharge
power per unit length of a discharge tube:

IE �
�
p0Y2pr dr � 1:36 p0r

2
0 ; �3:25�

where the Bessel function is equal to zero at the plasma radius
r0:

r20 � 5:78
R2
0

A
� 12T 2

e Ke�Te�
p0J

: �3:26�

This yields the following expression for the discharge power
per unit length of a discharge tube:

P � IE � 16T 2eKe�Te�
J

Combining expressions (3.19) and (3.27), we get for the heat
release power per unit length of a tube for both regimes under
consideration:

P � IE

� 16T 2
e

�
3:4TK�T��1� aÿ aT=Te� � 0:24�2Te ÿ T�Ke�Te�

�
J�2Te ÿ T� :

�3:28�
As it is seen, the thermal balance of the plasma at hand

depends weakly on the tube radius because plasma is
concentrated near the tube axis. The effective plasma radius
is given by formulae (3.21), (3.26) according to which it is
inversely proportional to the specific discharge power p0, i.e.
an increase in the specific power of heat release leads to a
decrease in the plasma radius.

It is convenient to combine formulae (3.21) and (3.26) for
the plasma radius. Let us define the effective plasma radius on
the base of the relationship�

Ne�r�2pr dr � 1:36N0r
2
0 ;

which holds for the electron distribution described by the
Bessel function (3.24). This yields r20 � 2:31a2. Then, sewing
together formulae (3.21) and (3.26) with allowance made for
the above relationship, we obtain for the effective plasma
radius:

r20 � 12T 2
e Ke�Te� 1� 3:4x

p0J
: �3:29�

As it follows from the above analysis, a gas discharge
plasma which is found in a local thermodynamic equilibrium
can be described by the theory relying on the ratio of the
electron temperature to the atomic ionization potential as a
small parameter. Then the distribution of plasma parameters
over the cross-section of a discharge tube can be obtained in
an analytic form and may be expressed through the electron
and gas temperatures on the tube axis. As an illustration of
the results of this theory, Table 4 lists parameters of an argon
positive-column arc plasma under conditions of local ioniza-

Table 4. Parameters of an argon plasma for the positive column of a high-
pressure arc discharge under conditions of local ionization equilibrium.

Parameter Parameter magnitudes in various conditions

1 2 3 4 5 6

T, 103 K
Te, 103 K
Pressure, atm
N, 1018 cmÿ3

Ne, 1014 cmÿ3

w, 105 cm sÿ1

E, V cmÿ1

x
P, W cmÿ1

I, A
p0, W cmÿ3

r0, cm
Z � tdif=trec

2
6
2
7.3
0.71
1.58
6.1
13
4.1
0.67
11
0.36
8

1
6.5
1
7.3
2.4
1.85
11
1.1
2.8
0.26
79
0.14
7

1
6.5
3
22
4.2
1.85
33
1.9
2.2
0.07
410
0.051
8

2
7
2
7.3
7.1
1.77
9.2
1.0
9.7
1.1
180
0.17
82

2
8
1
3.7
29
1.94
6.4
0.11
65
10
570
0.28
930

2
8
2
7.3
40
1.94
13
0.15
47
3.7
1600
0.14
960
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tion equilibrium. Parameters T, Te,N,Ne, w, and p0 from this
table correspond to a tube axis.

4. Cluster plasma

4.1 Some applications of an arc discharge plasma
Spatially nonuniform plasma under consideration has wide-
spread applications, among which plasmotrons should be
primarily mentioned [42, 43]. In plasma generators an arc
discharge plasma is used as a heat-transfer agent for many
problems of technology, chemistry andmetallurgy.Usually, a
working object in the form of a powder or dust is introduced
in a gas stream which passes through a region of arc
discharge. The formed output flow of a hot weakly ionized
plasma with an admixture of particles and/or chemically
active radicals is ready to use. For example, a plasma flow
with small powder particles is played against the treatment of
surfaces, and a plasma flow with radicals and excited atomic
particles is applied to a production of some chemical
compounds. This plasma flow allows one to make the
diagnostics of metals on the basis of the emission spectro-
scopy method. A metal under study is introduced in the
process into a gas flow in the form of a dust or solution, and
then the gas flow passes through an arc discharge region.
Afterglow of excited atoms of metals in an arc plasma allows
determination of a relative content of various metals in the
object involved.

The occurrence of new directions in science and technol-
ogy leads to new applications of this plasma.One possibility is
correlated here with the production of fullerenes comprising
polyatomic carbon molecules in which all the carbon atoms
are located on the surface of a sphere or spheroid as the
regular hexagons and pentagons [44 ± 46]. Harnessing an arc
discharge for this purpose is determined by a high tempera-
ture of an arc plasma, by high temperature gradients in the
plasma and by a simple procedure of introducing the carbon
fragments to plasma as a result of thermal evaporation of
graphite electrodes. Carbon fragments resulting from thermal
decay of a carbon surface are combinations of hexagon
elements of the graphite surface [47]. These fragments may
unite into fullerene-like molecules and are swept away to a
cold boundary of the plasma region where their hardening
occurs. This technology is used both for the production of
fullerenes and nanotubes. Furthermore, introduction of some
metal powder into graphite electrodes can lead to formation
of endohedral molecules [48, 49] which make fullerene
molecules with one or several metallic atoms on the inside.

With the aim of demonstrating the applied features of arc
plasmas, we shall consider below a cluster plasma making an
arc plasmawith themetallic clusters incorporated. In this case
plasma processes exert some influence on cluster properties.
Because the cluster ionization potential falls between the
atomic ionization potential and the work function pertaining
to a metal surface, clusters are readily ionized in gaseous
plasma. This is reflected in the cluster behaviour. In parti-
cular, the electrophoresis phenomenon making itself evident
in the directional motion of charged clusters occurs in a gas
discharge plasma. It results in cluster motion from the anode
towards the cathode under the action of the discharge electric
field. This phenomenon simplifies introduction of clusters
into plasma. First, neutral metallic clusters, which are formed
as a result of evaporation of a hot wire and penetrate into a
gas discharge plasma through a grid near the anode, are

rapidly ionized and propagate over all the plasma volume by
the drift and diffusion processes. Second, since clusters make
effective emitters, their radiation can determine afterglow of
the plasma under consideration. This allows the use of an arc
plasma with clusters as a light source. And third, notice a rich
chain of processes involving clusters which include mainly the
growth and decay of clusters of various sizes. Kinetics of these
processes determines the behaviour of the plasma under study
and will be considered below.

4.2 Cluster radiation in plasma
Macroscopic particles or clusters introduced into a hot gas
can determine, in certain situations, radiative properties of
such a system. This effect was discovered in flames as far back
as in the last century [50, 51] and it underlies an old idea of a
gas-discharge light source with particles as emitters [52].
When analyzing a gas discharge lamp in which radiation is
emitted by clusters, let us consider at first some peculiarities of
cluster radiation. It should be emphasized that clusters are
more effective emitters than other particles in plasma. Indeed,
in absence of clusters, plasma radiation results from pair
collisions involving electrons. For example, radiation of the
Sun photosphere, which mainly contributes to the light
intensity reaching the Earth's surface, results from the process

e�H! Hÿ � �ho : �4:1�

Radiation of powerful arc lamps is determined by photo-
recombination of electrons and ions in an arc plasma:

e�A� ! A� � �ho : �4:2�

These radiative processes possess low effectiveness as they are
connected with a small parameter of the system which is the
ratio of the electron number density to a typical atomic
number density. This small parameter disappears if radiative
transitions are made between discrete states of the system as
in the cluster case. In going from atoms to molecules and then
to clusters, discrete spectral lines of radiation are transformed
first into bands, which become continuous in some spectral
ranges. Hence, clusters are effective emitters within a con-
tinuous spectral range. Comparing gaseous systems with
small particles as emitters and bulk radiative systems, one
can conclude that in the first case the radiative power is
proportional to the total number of atoms in the particles or
clusters, whereas in the second case it is proportional to the
area at the surface of a macroscopic emitter. Thus, a cluster
plasma by its nature is an effective light source.

A cluster can emit radiation in some spectral range, if the
latter is active for the cluster, i.e. there appear mechanisms
which cause radiative transitions within this spectral range.
Metallic clusters under consideration are characterized by a
plasma frequency resonance in an optical range:

op �
�
4pN 2

e e
2

m�

�1=2

; �4:3�

whereNe is the electron number density in a conduction zone,
m� is the effective electron mass, e is the electron charge. This
resonance causes an effective radiation from heated metallic
clusters in the corresponding spectral range.

Radiation of clusters leads to an additional energy loss in
a gas discharge plasma. When including this process into the
thermal balance of a gas discharge plasma, we can rewrite
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balance equation (3.22) in the following form:

P � IE � 12 T 2
e Ke�Te��1� 3:4x�

J
� Prad ; �4:4�

where Prad is the power of plasma radiation which is
determined by cluster contribution. Taking the radiative
losses into consideration for a given electron temperature on
the tube axis, and hence for a given electron number density
on the axis, leads to an increase in the volume which is
occupied by the plasma. The effective plasma radius account-
ing for radiative losses is given by the formula

r20 �
15T 2

e Ke�Te��1� 3:4x�
p0J

� Prad

p0
: �4:5�

The other peculiarity of cluster radiation stems from the
fact that the cross-section of absorption by a small macro-
scopic particle of the radius r for photons of the wavelength l
has the form [53]

sabs � pr2 rl ; �4:6�

i.e. it is a product of the particle cross-section and a small
parameter r=l. From this it follows that the absorption cross-
section for a small particle is proportional to its volume or to a
number n of atoms in it. This conclusion is confirmed by
measurements of the absorption cross-sections for some
metallic clusters (Ag, Li, K) [54 ± 57] which are used below
as model ones. Let us represent the absorption cross-section
of a cluster in the form of a resonant formula

sabs�o� � s0G 2
���hoÿ �ho0�2 � G 2

�ÿ1
; �4:7�

whereG is the resonance width,o0 is the resonance frequency,
s0 is the maximum absorption cross-section which is propor-
tional to a number of cluster atoms. The parameters entering
this formula have only a weak dependence on the cluster size.
A statistical treatment of experimental data [54] for cluster
ions Ag�9 and Ag�21 yields �ho0 � 3:9� 0:1 eV, G � 0:59�
0:03 eV, s0=n � �9� 1� � 10ÿ17 cm2; for cluster ions K�9 ±
K�900 [55, 56] it leads to the following parameters:
�ho0 � 2:00� 0:05 eV, G � 0:26� 0:10 eV, s0=n � �34� 6��
10ÿ18 cm2, and in the case of cluster ions Li�139 ± Li

�
1500 [57]

these parameters are equal to �ho0 � 3:1� 0:1 eV,
G � 1:12� 0:15 eV, s0=n � �52� 8� � 10ÿ18 cm2. Below we
use these data as model ones for determining the radiative
parameters of arc plasmas involving clusters.

Let us go from the absorption cross-sections of clusters to
the radiation power of an individual hot cluster. According to
the Kirchhoff law, the spectral power of a system radiation
I�o� is connected with the absorption cross-section of this
system by the relationship [58, 59]:

I�o� � 4pcsabs�o� i�o� ; �4:8�

where c is the speed of light, i�o� is the spectral radiative
power of black body per unit volume and unit solid angle:

i�o� � �ho3

4p3c3
�
exp��ho=T� ÿ 1

� : �4:9�

From the above formulae it follows that the total radiation
power of a plasma with clusters is proportional to the total
cluster mass in a plasma volume and does not depend on the

cluster distribution over size. This result is valid also in the
case of a hot gas radiation stemming from particles present in
gas [58, 60] and follows immediately from theory of radiation
as applied to small macroscopic particles; the theoretical
findings are confirmed by experimental data for some metal
clusters. Below we shall give some parameters of radiation
characterizing a gas discharge plasma with clusters by
employing the above data for the absorption cross-sections
of clusters which are used as model ones.

Table 5 presents the specific power of plasma radiation
per unit mass of clusters which is equal to

P �
�
I�o� dO

M
; �4:10�

whereM is the cluster mass. It is essential that the total power
of cluster radiation is proportional to their total mass. Table 6
contains values of the light yield for a gas discharge plasma
involving clusters considered. The light yield is given by the
formula

Z �
�
I�o�V�o� do�

I�o� do ; �4:11�

where I�o� is the spectral power of cluster radiation, the
function V�o� characterizes perception of photons of a given
wavelength by eye. It has the maximum equal to 683 lm/W at
the radiation wavelength l � 555 nm. From comparison of
data from Table 6 for clusters and black body it follows that
metallic clusters possess a more effective spectral parameters
as compared to black body; this is due to their transparence to
infrared radiation.

4.3 Kinetics of processes in a cluster plasma
Clusters introduced in a gas discharge plasma are partially
evaporated in consequence of the high temperature. As a
result, a vapor consisting of atoms of a cluster material is
formed. This vapor makes an admixture to the main gas, and
clusters are found in an equilibrium with this vapor. Evolu-
tion of clusters in a gas discharge plasma is accompanied by
their evaporation and attachment of atoms to them. Accord-
ing to the classical theory of nucleation [61 ± 63], a critical
cluster radius exists so that clusters of larger sizes grow and

Table 5. The specific radiation power P (107 W/g) for metallic cluster ions.

Ion Temperature, 1000 K

3.0 3.2 3.4 3.6 3.8 4.0

Li
K
Ag

21
2.8
0.64

28
10
0.89

38
14
1.2

51
20
1.7

67
27
2.3

87
34
3.1

Table 6. The light yield (lm/W) for radiation of metallic clusters.

Ion Temperature, 1000 K

3.0 3.2 3.4 3.6 3.8 4.0

Li
K
Ag
Black body

51
108
51
22

63
122
62
29

74
135
71
36

85
146
79
43

94
156
84
50

102
165
88
57
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undersized clusters evaporate. Under conditions in question,
the critical radius being determined by the vapor pressure is
supported by the evaporation and attachment processes.
Clusters can naturally go to walls of the discharge tube as a
result of drift and diffusion processes. This determines their
lifetime in a discharge tube. But for a high-pressure gas-
discharge plasma this lifetime is large enough though it just
determines some system parameters. We shall analyze below
some kinetic properties of processes which exert influence on
the behaviour of metallic clusters in a gas discharge plasma.

Notice that the cluster temperature determining the
cluster evaporation time lies between the electron and gas
temperatures. In cluster sources of light, optimal cluster
temperatures are located within a narrow range, because a
low cluster temperature leads to a small radiation power, a
high cluster temperature causes prompt cluster evaporation,
and parameters of these processes depend strongly on the
cluster temperature. Below we shall determine the cluster
temperature in a gas discharge plasma on the basis of a simple
model [59, 64] according to which atoms and electrons
collided with the cluster strongly interact with it. This means
that the atom extracts, on average, the energy 3�Tcl ÿ T�=2
from the cluster as a result of their collision, and the electron
transfers an average energy 3�Te ÿ Tcl�=2 to it, where T, Te,
Tcl are the temperatures of atoms, electrons and clusters,
correspondingly, expressed in energy units. Using this model,
we obtain the thermal balance equation for a cluster in the
form:

3

2
�Tÿ Tcl�N�vasa � 3

2
�Te ÿ Tcl�Ne�vese

� en�nat ÿ nev� : �4:12�
Here N, Ne are the number densities of buffer gas atoms and
electrons, �va, �ve are the average velocities of atoms and
electrons, correspondingly ��va �

���������������
8T=pm

p
, �ve �

������������������
8Te=pme

p
,

where m is the atomic mass, me is the electron mass), sa is the
cross-section of atom-cluster collision, se is the cross-section
of electron-cluster collision, en is the atomic binding energy
for the cluster, nat is the frequency of atomic attachment to the
cluster surface, and, finally, nev is the frequency of atomic
evaporation from the cluster surface. Further we shall assume
an occurrence of equilibrium between the processes of growth
and evaporation of clusters: nev � nat. We take the cross-
section of atom-cluster collision to be equal to a cluster cross-
sectional area sa � pr2, where r is a cluster radius, and when
evaluating the cross-section of electron-cluster collision, we
shall take into account the Coulomb interaction of these
particles, so that this cross-section is given by

se � pr2
�
1� Ze2

rTe

�
; �4:13�

where Z is the cluster charge. From this it follows for the
cluster temperature:

Tcl � T� zTe

1� z ; �4:14�

where

z �
�
1� Ze2

rTe

�
Ne

N

�
m

me

�1=2

:

As seen, the cluster temperature ranges between the gas and
electron ones. As it follows from above expression, a cluster
charge exerts some influence not only on its drift motion
under the action of electric fields, but also on the cluster
temperature.

Let us determine the average cluster charge assuming that
clusters are found in local ionization equilibrium with
electrons, so that the distribution of clusters over charges is
given by the Saha formula. Introduce PZ�n� Ð the prob-
ability that a cluster consisting of n atoms possesses a charge
Z. Then from the Saha formula we have

PZ�n�Ne

PZ�1�n� � 2

�
mTe

2p�h2

�3=2

exp

�
ÿ JZ�n�

Te

�
; �4:15�

where JZ�n� is the ionization potential of a cluster consisting
of n atoms and having a charge Z. For a large metallic cluster
we arrive at

JZ�n� � J0�n� � Ze2

r
;

where r is a cluster radius. Represent the ionization potential
of a neutral cluster in the form:

J0�n� �W0 � Cnÿ1=3 :

where W0 is the metal work function. As a result, we get for
the ionization potential of a large cluster:

JZ�n� �W0 � Cnÿ1=3 � Ze2

r
: �4:16�

In particular, assuming this formula to be valid for small
clusters down to an atom, we apply it to tungsten clusters
which will be considered below. From this formula we obtain
for the atomic ionization potential: J0 �W0 � C � 7:98 eV,
and the tungsten work function is equal to W0 � 4:4 eV [65,
66]. It yields C � 3:58 eV. Let us rewrite formula (4.16) in the
form

JZ�n� �W0 � C

n1=3
� Zg
n1=3

; �4:16a�

and in the tungsten case we arrive at g � e2n1=3=r � 9:2 eV.
It is convenient to define the mean cluster charge Zn

according to the relation PZ�n� � PZ�1�n�. Then we get from
above formulae for this quantity:

Zn � Ten
1=3

g
ln

�
2

Ne

�
mTe

2p�h2

�3=2

exp

�
ÿW0

Te

��
ÿ C

g
: �4:17�

Table 7 lists some parameters of xenon cluster plasma which
consists of a xenon arc plasma with tungsten cluster ions. In
particular, an average charge of cluster ions can be found in
this table for the mean cluster size equal to n � 103.

A liquid drop model constitutes a simple and realistic
model successfully applied to an account of large metallic
clusters. This model allows us to describe various processes
with participation of clusters and study their kinetics in
gaseous and plasma systems. In particular, within the frame-
work of this model we used above the cross-section of cluster
collisions with atoms: sa � pr2, where r is a cluster radius.
According to the liquid drop model, a cluster radius is
connected with a number of atoms in it by the relationship
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n � 4pr3r=�3ma�. Here r is the cluster material density in a
bulk system, ma is the atomic mass. From this one can
determine the mobility of cluster ions in plasma within a
framework of the Chapman ±Enskog approximation:

K � 3
���
p
p

e
ÿ
8Nsa

����������
2Tm
p �ÿ1

; �4:18�

where m is the atomic mass for a buffer gas, N is the number
density of these atoms. Since the cross-section of atom-cluster
collision sa is proportional to n2=3, the mobility of cluster ions
is inversely proportional to n2=3. Values of the mobility
pertaining to tungsten cluster ions in a xenon arc plasma are
given in Table 7 for the cluster size n � 103 and the discharge
regimes at hand.

The mobility of tungsten cluster ions determines the
cluster drift motion in plasma both in the longitudinal and
transverse directions. In particular, let us analyze the motion
of cluster ions towards the walls. The transverse electric field
strength follows from the condition that the electron flux to
the walls reduces to zero on scales of ion fluxes:

je � ÿDeHNe � eEKeNe � 0 ;

where De is the diffusion coefficient of electrons. Using the
Einstein relationship between the diffusion coefficient and
mobility �eDe � KeTe�, we arrive at the transverse electric
field strength in a gas discharge plasma: eE � TeHNe=Ne.

Under conditions of local thermodynamic equilibrium, when
one can introduce the electron and gas temperatures, this
relation takes the form

eE � 4Ter
2

r20�1� r2=r20�3
: �4:19�

The maximum electric field strength equals eEmax � 2Te=r0.
It allows estimation of the maximum drift velocity of cluster
ions: wmax � ZKEmax.

Now let us analyze the character of the cluster growth and
evaporation processes in a gas discharge plasma. Notice that
because clusters are charged, the collisions involving two
clusters are insignificant. Therefore, the main processes of
the cluster growth and decay proceed according to the scheme

An � A>An�1 : �4:20�

Then, within the framework of the liquid drop model, the
frequencies of atomic attachment to a cluster nat and atomic
evaporation from the cluster surface nev are defined as follows
[59, 69]:

nat �
�������
8T

pm

r
saN ;

nev�t� �
�������
8T

pm

r
saNsat�T� exp

�
ÿ en ÿ e1

T

�
; �4:21�

where N is the number density of free atoms of a cluster
material, Nsat�T� is the number density of atoms in a
saturated vapor at a given temperature, sa is the cross-section
of atomic attachment to the cluster surface which is assumed
to be equal to the cluster cross-section, en is the atomic
binding energy for a cluster consisting of n atoms, e1 is the
atomic binding energy for the corresponding bulk system.
Within the framework of a liquid drop model, the atomic
binding energy for a cluster is the monotonous function of its
size and has the form

en � e1 ÿ Denÿ1=3 : �4:22�

According to the liquid drop model of clusters, which is
valid for n4 1, the frequency and rate constant of atomic
attachment to a cluster equal [59, 69]:

na � Nkn ; kn � k0�T�x n2=3 : �4:23�

Here x is the probability of atomic attachment to the cluster
surface as a result of their contact. Evidently, for a large
cluster this quantity coincides with that of a bulk surface. The
parameter k0 in formula (4.23) is equal to

k0 � 1:93T 2=3m1=6rÿ2=3 : �4:24�

The above expressions form the basis for a quantitative
analysis of kinetic properties of a cluster gas-discharge
plasma.

Let us consider evolution of clusters in a gas discharge
plasma when interacting with their own atomic vapor.
Denote the number density of clusters each involving n
atoms by Nn. The total number density of atoms entering
into the cluster composition equals then Ntot �

P
n nNn. It

should be emphasized that equilibrium between processes of
clusters evaporation and attachment of atoms to clusters

Table 7. Parameters of an arc xenon plasma with tungsten clusters*.

Parameter Parameter magnitudes in various conditions

1 2 3 4 5 6

p, atm
T, 103 K
Te, 103 K
N, 1018 cmÿ3

Ne, 1015 cmÿ3

E, V cmÿ1

I, A
P, W cmÿ1

p0, W cmÿ3

r0, cm
Z � tdr=trec
[W+]/[W]
Z

Tcl, 103 K
Prad, 107Wgÿ1

wB, cm sÿ1

dm= dt, mg hÿ1

Z, lm W ÿ1

1
2
5.5
3.67
0.48
5.0
5.8
29
20
1.04
9800
0.095
3.0
3.45
9.4
5.3
10
46

3
2
5.5
11
0.84
15
1.6
25
103
0.42
4.3�104
0.055
2.75
2.96
4.1
4.8
2.9
30

2
2
5.6
7.3
8.7
11
2.8
29
77
0.53
3.0�104
0.073
2.88
3.36
7.9
5.4
3.2
43

3
2
5.6
11
1.1
16
1.7
27
140
0.38
5.2�104
0.059
2.77
3.17
6.0
5.2
1.9
39

3
2
5.7
11
1.4
17
1.8
31
190
0.34
6.3�104
0.064
2.79
3.40
8.6
5.5
1.3
44

3
2
5.8
11
1.7
18
2.0
35
260
0.32
7 . 6 -
�104
0.070
2.82
3.65
13
5.8
0.89
50

*N,Ne are the number densities of xenon atoms and electrons;T,Te,Tcl

are the temperatures of xenon, electrons, and clusters; E, I are the
electric éeld strength and the total discharge current; r0 is the current
radius; Z � tdif=trec is the criterion of a local ionization equilibrium; p0 is
the speciéc power of heat release on the discharge-tube axis. The
following notations are used for parameters of tungsten cluster ions:
�W��=�W� is a degree of ionization of atomic tungsten vapor; Z is the
average charge of tungsten cluster ions; wB is the mean velocity of
tungsten cluster-ions drift towards the cathode. Under conditions
studied, one half of energy, which is introduced into discharge, is spent
on cluster radiation.Here Z is the light yield of the systemwith allowance
made for heat losses in the discharge; dm=dt is the total cluster mass
transferred through the discharge in the cathode direction per unit time
( dm= dt � pr20 EI=Prad, Prad is the power of cluster radiation per unit
cluster mass).
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establishes relatively fast, so that evolution of clusters in their
own vapor is determined by evaporation of small clusters and
growth of large ones. Let us trace this process. The balance
equation for the number density of clusters of a given size has
the form

qNn

qt
� Nknÿ1Nnÿ1 ÿNknNn ÿ nnNn � nn�1Nn�1 : �4:25�

Here kn � k0�T� x n2=3 is the rate constant of atomic attach-
ment to a cluster, nn is the frequency of cluster evaporation,
and once the detailed balance principle is involved we arrive
at

nn�1 � kn�Tcl�Nsat�Tcl� exp
�

De
Tcln1=3

�
: �4:26�

Using this relation in the balance equation (4.25), we may
obtain the equation in the limit n4 1:

qNn

qt
� ÿ q

qn

�
k0�T�x n2=3

�
NNn ÿNsat�Tcl�

�
Tcl

T

�1=2

� exp

�
De

Tcln1=3

�
Nn�1

��
: �4:27�

The balance equation for a number density of free atoms has
the form

qN
qt
� ÿ q

qt

X
nNn �

�
n dn k0�T�x n2=3

�
�
NNn ÿNsat�Tcl�

�
Tcl

T

�1=2

exp

�
De

Tcln1=3

�
Nn�1

�
� 0 :

�4:28�
Let us analyze the above balance equations by leaning

upon the simplest distribution function of clusters over sizes:

Nn � A exp

�
ÿ n

�n

�
; �4:29�

where the normalized constant is A � Ntot=�n. Let us intro-
duce the critical cluster size n0 for which the integrand comes
to zero, and expand the exponent of (4.28) near this point.We
have then�

dn xk0�T� n2=3NNn

�
1ÿ exp

�
De

Tcln1=3
ÿ De

Tcln
1=3
0

��

�
�
dn xk0�T� n2=3NNn

De
Tcl

��
n

n0

�1=3

ÿ 1

�
� 0 :

From this equation we obtain

n0 � �n

�
G�5=3�
G�4=3�

�3
� 1:033�n : �4:30�

This leads to the following equation for the mean cluster size
�n:

d�n

dt
� 1

Ntot

d

dt

�
n2 dnNn � 1

Ntot

�
n2 dn

qNn

qt

� 1

Ntot

�
dn xk0�T� n5=3NNn

De
Tcl

��
n

n0

�1=3

ÿ 1

�
� 0:6xNk0�T� De

Tcl
�n 1=3 : �4:31�

The solution to this equation yields

�n �
�
t

t

�3=2

; where
1

t
� 0:4xNk0�T� De

T
; �4:32�

and this allows determination of a typical time of the cluster
growth up to its mean size �n:

tgr � t�n 2=3 : �4:33�

To determine a typical cluster size in a gas discharge
plasma, it is necessary to equate this time and the lifetime t0 of
clusters in plasma under conditions considered. It yields

�n �
�
t0
t

�3=2

: �4:34�

Thus, evolution of clusters in a gas discharge plasma
which results from processes of cluster evaporation and
attachment of atoms to clusters, is adequately described on
the basis of the liquid drop model for clusters. According to
this model, a large cluster with n4 1 becomes akin to a
spherical liquid drop whose density coincides with the density
of the corresponding bulk liquid. This model allows us to
analyze processes in a gas discharge plasma involving charged
clusters and to determine typical parameters of clusters.

4.4 Tungsten clusters in a gas discharge plasma
Properties of a gas discharge plasma involving clusters and
evolution of clusters themselves are determined by para-
meters of these clusters. The latter are compiled in Table 8
for some metallic clusters; they have been resulted from
treatment of some parameters of the corresponding bulk
systems [66]. We shall enlarge below on clusters of tungsten
as themost refractorymaterial. For tungsten clusters, the rate
constant k0 entering formula (4.24) equals
k0 � 9:1� 10ÿ12 cm3 sÿ1 at temperature T � 2000 K. The
probability of attachment of tungsten atoms to a tungsten
material surface at their contact is equal to x � 0:566, as it

Table 8. Parameters of clusters of some refractory metals*.

Metal Tm, K Tb, K e1, eV De, eV Q, eV p0, 105 atm W0, eV

Be
Ti
V
Fe
Co
Ni
Cu
Pd
Ag
W
Pt
Au

1560
1885
2190
1811
1765
1728
1360
1827
1234
3693
2045
1333

2744
3560
4665
3145
3230
3070
2816
3300
2440
5930
4100
3150

3.02
4.25
4.62
3.6
3.90
3.84
3.13
3.66
2.60
7.99
5.30
3.43

0.89
2.00
2.30
1.86
1.86
1.75
1.35
1.79
1.25
3.04
2.20
1.53

3.12
4.51
4.96
3.88
4.08
4.12
3.26
3.55
2.74
7.97
5.33
3.58

6.1
23
85
22
31
46
7.1
2.7
5.6
22
24
6.8

3.92
3.95
4.12
4.58
4.41
4.50
4.40
4.8
4.3
4.54
5.32
4.3

*The following parameters, which are taken for a liquid bulk metal at
themelting point, are given in this table:Tm is themelting point;Tb is the
boiling point, i.e. the temperature at which the pressure of saturated
vapor is equal to 1 atm; e1, De are the parameters entering formula
(4.22); the saturated vapor pressure is determined by formula
psat�T� � p0 exp�ÿQ=T�; W0 is the work function of a polycrystal
metal. Some discrepancy between the boiling point Tb in the table and
its value following from formula for the saturated vapor pressure,
results from the accuracy of data used and approximation employed.
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follows from data for pressures of tungsten saturated vapor
and rates of atomic evaporation from the tungsten bulk
surface [66] within the temperature range 3000 ± 3600 K.

An equilibrium between clusters of different sizes in a gas
discharge plasma proceeds through an atomic vapor which
arises by cluster evaporation. Under collisions with electrons,
this vapor can be partially ionized. The ionization process
which transfers a part of the cluster material to an atomic
ionized state may be considered as harmful in cluster
applications. Hence, under optimal conditions a degree of
an atomic vapor ionization must be small that restricts the
electron temperature in a gas discharge plasma. The constant
of ionization equilibrium for tungsten atomic vapor
(W>W� � e) is given by the Saha formula:

K � �W
��Ne

�W� �
g
e
gi
ga

�
meTe

2p�h2

�3=2

exp

�
ÿ J

Te

�
:

Here [X] is the number density of particles of a given sort, the
statistical weights are equal to ge � 2 for an electron, gi � 12
for an ion (its ground state is 4P), and ga � 25 for the tungsten
atom (the ground state is 5D); the ionization potential of the
tungsten atom equals J � 7:98 eV. Values of this equilibrium
constant in the temperature range 5000 ± 7000 K are pre-
sented in Table 9.

Thus, in the regime of cluster evolution under considera-
tion, clusters are found in an equilibrium with their own
atomic vapor. So that processes of the cluster growth and
decay regulate the density of atomic vapor, and the distribu-
tion function of clusters over sizes results from their interac-
tion with this atomic vapor through the above processes.
Since the density of atomic vapor is determined by the cluster
temperature, typical times of cluster evolution depends
strongly on the cluster temperature. According to formulae
(4.32), (4.33) this quantity (for the mean cluster size �n � 1000)
yields tgr � 1:1 s for Tcl � 3400 K, tgr � 0:66 s for Tcl � 3500
K, and tgr � 0:33 s for Tcl � 3600 K. These values constitute
typical cluster times under conditions studied.

4.5 Cluster source of light
The above analysis shows that a gas-discharge cluster plasma
can be used as a light source.We shall discuss below at greater
length some prospects of such application. First cluster lamps
were constructed by Scholl and collaborators [70 ± 73] on the
base of clusters of tungsten, rhenium and other refractory
materials. Under the action of a microwave discharge of the
100 W in power, a gas discharge plasma is initiated in some
small-volume region. In this region clusters of a refractory
metal are also generated, and they emit radiation. The
maximum light yield for tungsten clusters is 53 lm Wÿ1, and
that for rhenium clusters is 62 lm Wÿ1. Though these values
are slightly lower than that of best gas-discharge lamps, they
exceed remarkably the typical light yields of incandescence
lamps (13 lm Wÿ1), i.e. cluster lamps can be of interest in

applications. Notice that electron and gas temperatures of
cluster lamps are smaller than those of gas-discharge ones.
Figure 3 gives spectra of radiation of cluster lamps on the base
of clusters of tungsten and rhenium [70 ± 73]. The colour
temperature of these lamps when using the clusters of
tungsten, rhenium and hafnium equals 5100 K, 5500 K and
5600 K, correspondingly, whereas the cluster temperature
ranges to 3000 ± 4000 K. It is lower in comparison with the
colour temperature because spectra of cluster emission are
impoverished in infrared radiation as compared to spectrum
of black body.

The principal peculiarity of the cluster lamp realized by
Scholl et al. [70 ± 73] is the chemical regeneration of a cluster
material. In this case, a certain chemical compound is selected
wherein a cluster material is transformed at low temperatures;
this compound is found in the gaseous phase and does not
react with the walls. At high temperatures the compound at
hand is separated into its components in such a way that one
of the latter features a cluster material. These compounds are
WO2Br2 in the tungsten case, Re2O7 in the rhenium case,
MoO2Br2 in the case of molybdenum, HfCl4 in the hafnium
case and, finally, ZrI4 in the case of zirconium. There are
appropriate chemical compounds for such metals as tanta-
lum, niobium, titanium. At low temperatures the above metal
enters into the composition of the gaseous chemical com-
pound, whereas at high temperatures this chemical com-
pound breaks down, and clusters are formed from one of the
resultant component. In the tungsten case, the clusters
formed consist evidently of WO2. Thus, in a gas discharge
plasma a chemical equilibrium is supported such that gaseous
molecules are found in a cold region, and clusters which emit
radiation are generated in a hot region. For some refractory
metals such as Ir, Pt, Ru, Rh, V, Cr, Mn and Fe, one fails to
select appropriate chemical compounds which allow the
transfer of these metals to gaseous molecules at low tempera-
tures. Notice that this concept is used also in existing
incandescence lamps with a tungsten wire. Here, chemical
regeneration of tungsten allows an increase in the wire
temperature, i.e. increase in the light yield, and also an
increase in the lifetime of these lamps.

This method of chemical regeneration enables conserva-
tion of a cluster material from its attachment to walls of a gas-

Table 9.The ionization equilibrium constantK (cmÿ3) for atomic tungsten
vapor.

T, 103 K
K, cmÿ3

5.0
7.4�1012

5.2
1.6�1013

5.4
3.3�1013

5.6
6.4�1013

5.8
1.2�1014

6.0
2.1�1014

T, 103 K
K, cmÿ3

6.2
3.7�1014

6.4
6.1�1014

6.6
1.0�1015

6.8
1.6�1015

7.0
2.4�1015 ì
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Figure 3. The emission spectra of cluster light sources on the base of Re (a)

and W(b).
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discharge tube and therefore it is of importance for real
cluster lamps. But variations in a chemical content can lead
to changes in energetic, kinetic and radiative parameters of
the gas-discharge cluster plasma, and this information is
required for theoretical analysis of these lamps. Hence, in
theoretical modelling of these systems it is convenient to
abandon complex schemes of cluster lamps based on chemical
regeneration of clusters. Nevertheless, it is necessary to keep
in mind such possibilities and use them in the course of
experimental modelling on these systems.

As it follows from the above analysis, a cluster lamp is a
promising light source. But because it makes a complex
technological object, the realization of this problem requires
accumulating various information on properties of clusters
and bulk of refractory materials. In any case, the experi-
mental [72, 73] and theoretical [74] investigations having been
conducted up until this point convince us that cluster lamps
offer the promising light sources.

5. Conclusions

The physics of gas discharges ranks among the oldest
branches of physical science. Various results in this area
have become to be classical and found their places in reference
books. Gas discharge has various applications, and now they
make up the main aspect of development in gas-discharge
physics. But these applied problems are based on under-
standing the fundamentals of a gas discharge. As an illustra-
tion, mention may be made of studies on a nonuniform
plasma which are the topic of this paper. Fundamental
problems of a nonuniform plasma such as phenomena of
contraction of a current region and electrophoresis, provide a
basis of study on a cluster plasma, i.e. a gas discharge plasma
containing clusters. In addition, this plasma shows specifics
which makes it, in particular, to be a promising source of
light. Investigation of some features of this plasma is
accompanied by solution to new fundamental problems.

The present work was supported by the Russian Fund of
Fundamental Research.
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