
Abstract. Not quite simple and rather obscure relations between
the concepts of `instability' and `tachyons' are discussed.

1. Introduction

Hypothetical particles with imaginary mass were officially
introduced into scientific usage in 1967 by Feinberg [1] under
the term `tachyons' (however, in the nameless form they were
known to theoreticians of various countries long before [2]).
Originally tachyons were considered as individual isolated
particles similar to electrons, protons, etc. But in this under-
standing, tachyons, most likely, cannot be found naturally.
Later, however, it was recognised [2] that they dowidely occur
in nature as elementary excitations (quasiparticles) in com-
plex systems which lose stability and undergo a phase
transition into a more stable state. Illustrations of this
phenomenon from various fields of physics are given below.
Perhaps, one of the most significant examples concerns with
modern unified theories of elementary particles (see, for
example [3]). In such theories, tachyons are introduced on
purpose to make a vacuum state unstable and cause it to
transform thereby imparting masses to massless particles [4].
The discussion of not very simple and not entirely known
relations between the notions of `instability' and `tachyons' is
just the subject of this paper.

To start with, let us formulate some questions which will
right away acquaint the reader with problems to be con-
sidered and whose discussion, in essence, makes up the
contents of the paper.

(a)Most readers associate tachyons with particles moving
faster than light. If this is the case, how should we understand
the words about the real participation of tachyons in the

process related to the instability of a physical system? For the
idea of the impossibility of motions faster than light is deeply
rooted in us.

(b) There is a common explanation for the reasons of the
occurrence of superconductivity at arbitrary weak interaction
between fermions. Near the Fermi surface where the particles
couple, the situation becomes two-dimensional, but in the
two-dimensional case the SchroÈ dinger equation yields bound
states at any attraction. Moreover, the exponential depen-
dence of the two-dimensional coupling energy on the poten-
tial leads to the similar dependence between the band gap and
the critical temperature. But on the other hand, the Cooper
pair is known to be a correlated rather than a bound state,
which differs significantly from the state of a two-atomic
molecule (see, however, [5]). Suffice it to say that pairing
particles have opposite in direction (and equal in value)
momenta. Does not this fact shake our faith in the above
explanation?

(c) The Jeans instability is of the fundamental importance
in cosmogony, resulting in the condensation of bulk matter at
one or several centres [6]. This condensation manifests itself
only under the condition that all the initial dimensions of the
body exceed a certain length (the Jeans length). Therefore, a
body for which this condition is not fulfilled (thin film,
filament, etc) is more stable than the one for which it is met.
Will such a body be stable? If not, how much will the
increment of its density increase diminish?

(d) The Jeans instability relates to longitudinal (in terms of
electrodynamics) degrees of freedom of gravitational field,
which are generated by static gravitational charges, i.e.,
masses. This instability is eventually caused by the intrinsic
property of the field, i.e., attraction of like charges. Does this
property induce the instability of transverse (caused by the
motion of charges, i.e., currents) degrees of freedom of the
field, which are described by the off-diagonal components
g0a �a � 1; 2; 3� of the metric tensor ?

(e) Such components arise as a heavy body rotates. Can
the body self-rotate in the case of positive answer to the above
question (which would obviously come in conflict with
reality)? Can the increase in the relevant field be ceased due
to the law of momentum conservation?

A Yu Andreev, D A Kirzhnits P N Lebedev Physical Institute, Russian

Academy of Sciences, Leninski|̄prosp. 53, 117924 Moscow, Russia

Tel. (7-095) 135-75 11. Fax (7-095) 135-85 33

E-mail: kirzhnit@lpi.ac.ru

Received 3 June 1996

Uspekhi Fizicheskikh Nauk 166 (10) 1135±1140 (1996)

Translated by G N Chuev, edited by L V Semenova

METHODOLOGICAL NOTES PACS number: 11.90.+t

Tachyons and the instability of physical systems

A Yu Andreev, D A Kirzhnits

Contents

1. Introduction 1071
2. Definition and the main properties of the tachyon 1072
3. The tachyon and the SchroÈ dinger equation 1073
4. Transverse instability and the theory of gravity 1073
5. Torsion oscillations of a heavy body 1074
6. Conclusions 1075
7. Appendix. The Lenz rule in electrodynamics and theory of gravity 1076
References 1076

Physics ±Uspekhi 39 (10) 1071± 1076 (1996) #1996 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



2. Definition and the main properties
of the tachyon

The tachyon is, by definition, an object for which in the usual
formula E 2 � p2c2 �M2c4 relating the energy E to the
momentum p, the termM is replaced by the negative quantity
ÿG2. Assuming the Planck constant to be equal to unity, we
rewrite this formula in terms of waves as:

o2 ÿ C 2k2 � G 2 � 0 ; �1�

where o is the frequency, k is the wave vector, C is the
characteristic velocity coinciding here with the speed of light.
Equation (1) is valid for a uniform isotropic system where the
wave is plane. In the general case, denoting the wave function
by c, we can express the wave equation as:

�o2 � C 2D� G 2�c � 0 : �1a�
Let us consider some examples of various instabilities

(references can be found in review [2]). The Jeans instability
corresponds to a wave in which C is the speed of sound and
G 2 � 4pGecÿ2 � c2=a2, where a is the Jeans length, G is the
gravitation constant, e is the density of the substance energy
(see Section 4). The instability of a normal superconducting
state (without Bose-condensate of Cooper pairs) at tempera-
ture below the critical one occurs at C equal to the electron
velocity at the Fermi surface G 2 � D2, where D is the band
gap. The instability of a set of pendula elastically coupled and
placed into a gravity field `head foremost' takes place at C
equal to the speed of sound in the system, G 2 � g=L, where g
is the acceleration of gravity, L is the pendulum length. The
instability of an electromagnetic wave in a medium with
inverse level population corresponds to C � c and
G 2 � 8pxjd12j2, where x � �E1 ÿ E2�=�N1 ÿN2�, E and N
are the level energy and population. And the last example is
the wave of theHiggs scalar fieldf, which plays a great role in
the unified field theories. For this field C � c and
G 2 �M 2 ÿ lf2, where M is the Higgs particle mass, and l
is the coupling constant of the Higgs field interaction.

Turning back to Eqn (1), one can easily verify that the
group velocity of the wave do= dk really exceeds the speed of
light at C � c. If we deal with the information transmission,
we come up against the violation of causality: there are
reference systems where the event-cause occurs later than
the event-effect. On the other hand, at kC4G (for rather
huge dimensions of the system: more than CGÿ1), the
frequency becomes imaginary o � �iG, which, in view of
c � exp�iot�means the exponential growth of the wave with
time t, i.e. the system instability. To understand how so
different properties as noncausality and instability can
combine, we should consider the tachyon Green function
G �t;x� describing the tachyon propagation with time. The
denominator of this function in the frequency±momentum
representation is just the left-hand side of Eqn (1). Accord-
ingly,

G �t; k� � �2p�ÿ1
�
K

�o2 ÿ C 2k2 � G 2�ÿ1 exp�ÿiot� do ;
�2�

where the contour K in the complex plane o represents the
way of bypassing the singularities of the integrand in Eqn (2)
[zeros in the left-hand side of (1)]. This contour can con-
veniently include a distant semicircle in the upper (lower)

frequency semiplane at t below (above) zero (Fig. 1). While
k > G=C the singularities lie along the real frequency axis and
are bypassed in a usual way. In the opposite case the
singularities displace into the complex plane and reside at
points o � �iO, where O �

�����������������������
G 2 ÿ C 2k2
p

. Whether the
Green function describes unstable or non-causal situation
depends on the way of bypassing the singularities, i.e. on the
choice of the contour K in Eqn (2).

In bypassing the contour K1, one can readily see that the
contribution of residuals at the singularities is proportional to
exp�ÿOjtj� which decreases with time (stability) but does not
vanish at t4 0 (noncausality). The choice of the contour K in
the form K2 yields the expression which is proportional to
sinhOt at t5 0 and increases as t!1 (instability), while is
equal to zero at t4 0 (causality). The same results can be
obtained from Eqn (2):�

d2

dt2
ÿ O2

�
G�t;k� � ÿd�t� :

One of the solutions to this equation, exp�ÿOjtj�=2O, is stable
but noncausal. The other one, y�t� sinh �Ot�=O, is causal
[y�x� � 1 at x > 0, y�x� � 0 at x < 0] but unstable. The
difference in these two solutions, exp�Ot�=2O, is the solution
to the free equation for the Green function. The foregoing
illustrates the general principle: the choice of rules for
bypassing the singularities fixes a solution to the free
equation.

Therefore, we can choose the rules for bypassing the
singularities, which would meet the causality conditions but
correspond to an increasing field and describe an unstable
system. The Green function of a general type G�t;x1 ÿ x2�
being considered as above, vanishes everywhere except for the
upper part of the light cone, i.e. casuality conditions of the
general type are fulfilled. It remains to clear up the question of
the tachyon velocity exceeding the speed of light (see above).
Referring the reader to the review [2] where the illustrations
from electrodynamics (a wave in a medium with inverse level
population, a wave in a dispersive absorbing medium) are
discussed in detail, we only notice here that the group velocity
of the signal fails to characterise the rate of the energy and
information transfer as the wave packet transforms in the
course of propagation. The transformation takes place in the
case of absorbing or, on the contrary, unstable medium.
However, in the case of tachyon the wave packet can be only
constructed from harmonics with k > G=C, whose increment
is equal to zero, though the group velocity exceeds C. Here,
too, there is no information transmission faster than light and

o

K1

�t > 0�

K1

�t < 0�

a

o

K2

�t > 0�

K2

�t < 0�

b

Figure 1.
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we deal with a sort of scrolling text in electrical advertising.
Even at the initial moment the wave packet is not spatially
localised (including only part of harmonics), and the occur-
rence of the wave packet maximum at a certain point is
associated with the amplification of a signal already available
at this point due to the system instability rather than with the
energy (and information) transmission (see Ref. [2]). Notice
that in the electric advertising there is also some instability;
minor cause has a great consequence (an operation of a relay
ignites a lamp).

Thus, we have answered the question (a) formulated in
Section 1: in an unstable medium tachyon does not transmit
information at velocity exceeding the speed of light, but it is
this transfer that makes impossible motions faster than light.
Therefore the participation of the tachyon in a real physical
process of system transformations is not in conflict with any
general principles.

3. The tachyon and the SchroÈ dinger equation

To set the stage for answering the questions (b) and (c), it is
worthwhile to establish a simple relation between the tachyon
field equation and the general SchroÈ dinger equation, which
would enable us to use the well-known quantum mechanical
regularities in the solution of tachyon problems. We begin
with Eqn (1a) and consider G to depend, in the general case,
on the spatial coordinate x. Comparing this equation with the
SchroÈ dinger equation for the steady state of a particle with the
mass equal to 1/2�

D� Eÿ V�x��c � 0

one can readily see that

o2

C 2
, E;

G 2

C 2
, ÿV�x� : �3�

Thus, the tachyon instability �o2 < 0) corresponds to the
state in the attraction field ÿG 2=C 2. Accordingly, a finite
body where the tachyon moves corresponds to a potential
well with dimensions depending on the body geometry. The
bound state energy Eb in the well immediately determines the
increment of the tachyon field increase:

c � exp�Ot�; O � C
����������
ÿEb

p
: �4�

To start with, let us consider a three-dimensional body all
dimensions of which are comparable and make up a quantity
of the order of L. Since bound states appear in a three-
dimensional potential well of depth V only at V > Lÿ2, the
tachyon instability will arise only at L > C=G. This is just the
condition for the body dimensions, which was already
formulated in Section 1 in relation to the Jeans instability.
Thus, the tachyon instability of a three-dimensional body
takes place at rather huge dimensions of the body [otherwise,
the second term in the left-hand side of Eqn (1) would bemore
in absolute value than the third one and the frequency would
remain real].

Now let us consider a quasi-two-dimensional body (thin
film), one dimension of which (thickness) is not subject to the
above formulated condition, i.e. d5C=G. In essence, we deal
here with the two-dimensional free motion in the direction
parallel to the film surface and with the one-dimensional
motion in a narrow potential well in the direction perpendi-

cular to the surface. According to quantum mechanics, the
bound states originate in a one-dimensional potential well of
arbitrary small depth, the bound state energy Eb depending
on the well depth quadratically. Finally, in the quasi-one-
dimensional case (thin filament) the motion will be confined
by two directions perpendicular to the filament axis, and,
therefore, the potential well will be two-dimensional. In the
relevant quantum-mechanical problem, the bound states also
appear at arbitrarily small depth of the well and the energyEb

depends exponentially on this depth.
The foregoing consideration enables us to answer the

questions (b) and (c) (see Section 1). Especially simple is the
answer to the former one. Superconductivity arises when the
ground state of a system becomes unstable with respect to the
formation of Bose-condensate of Cooper pairs. This instabil-
ity is of tachyon character (see Section 2) and therefore
originates simultaneously with the appearance of the bound
state in the relevant quantum-mechanical problem. The
superconducting pairing occurs in the narrow region of the
momentum space near the Fermi surface. Therefore, owing to
the uncertainty principle, the motion in the coordinate space
will resemble the motion in a quasi-one-dimensional cylinder,
whose axis corresponds to the direction of the normal to the
Fermi surface in themomentum space. Relatively free motion
along the Fermi surface will correspond in the momentum
space to a two-dimensional potential well in the coordinate
space. Hence, we immediately infer the pairing at arbitrarily
weak attraction, the exponential character of the dependence
between the band gap and the well depth, etc. As for the
nature of the Cooper pair, whether it is a bound state or
something quite different, it is absolutely irrelevant to the
above consideration. Therefore, the explanation formulated
in the question (b) is, in essence, correct though lacking
precision.

The answer to the question (c) is also straightforward. The
value of increment is of the order ofG for a three-dimensional
body with rather huge dimensions. Bodies, one (film) or two
(filament) dimensions of which are small, are still unstable (in
one- or two-dimensional cases there is always a bound state)
but the increment of their field increase is significantly less
than in the three-dimensional case. Using the expression for
the bound state energy, well-known from quantum mecha-
nics: dÿ2 exp�ÿVÿ1dÿ2� (filament of thickness d), V 2d2 (film
of thickness d), and formula (4), we can easily derive the
following estimates for the relation between the increment O
(for the filament and the film, respectively) and the increment
G (for the three-dimensional body)

exp�ÿxÿ2�
x

; x : �5�

Here x � dG=C5 1 is a small parameter standing for the
thinness of the filament and the film. Thus, `thinned' unstable
matter does live much longer than `bulk' one.

4. Transverse instability in the theory of gravity

Bearing in mind question (b), we start with general considera-
tions concerning the occurrence of transverse instability in the
physics of gravity. It differs from electromagnetism by the
attraction of like sign charges, i.e. masses (and the absence of
unlike sign charges and their screening). This leads to the
opposite signs of the coupling constants ÿGm2 and e2

involved in the Newton and Coulomb laws, which manifests
itself, in particular, as the Jeans instability. This instability
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increases the density oscillations and immediately results
from the equation for the longitudinal (plasma) oscillations
in electrodynamics:

o2 � v2k2 � o2
p ; o2

p � 4pe2nmÿ1 ;

where n is the concentration of particles,m is their mass, and v
is characteristic velocity. Actually, replacing the electromag-
netic coupling constant in the latter equation by the gravita-
tion one, we can arrive at the Jeans equation, which is
obviously of tachyon character

o2 � c2sk
2 ÿ 4pGecÿ2 �6�

(see below direct derivation of this equation).
For the same reason the transverse waves in heavy liquid

might also be expected to be unstable as evidenced by the
spectrum of transverse electromagnetic waves in the medium
o2 � c2k2 � o2

p when in addition to the fields the current
density oscillates rather than the charge density (as in plasma
waves). Therefore, the arguments concerned with the well-
known in electrodynamics Lenz's rule also hold true: a
reactive current induced by a changing external field is
directed opposite to this change and tends to decrease its
effects. Reactive current is proportional to the coupling
constant o2

p and changes its sign in the case of gravitation
where the reactive current brings the system away from the
initial state rather than moves it close to it (see Appendix).

So far we have associated the notions of `longitudinal' and
`transverse' with charge and, consequently, current degrees of
freedom, appealing to physics of electromagnetism. Cer-
tainly, they can be interpreted independently by dividing the
vector of current velocity j (or, which is, practically, the same,
the velocity vector v) into a potential (longitudinal) and a
solenoid (transverse) components. The former is charac-
terised by the fact that its rotor is equal to zero (vortex-free
flow) and the latter by the fact that its rotor is nonzero, but the
divergence is equal to zero. Having regard to the well-known
continuity equation, one can readily see that oscillating in the
transverse mode is really the rotor of current or velocity
rather than that of density (concentration). Accordingly,
oscillating in the longitudinal mode is genuinely the density
or divergence of the current (velocity).

As applied to the gravitation, one can easily verify that in
the Newton approximation only the longitudinal modes
excite. This corresponds to the well-known conclusion about
potentiality of small oscillations in liquid and is immediately
seen from the Euler linearised equation

_v � ÿH�dp��mn�ÿ1 ÿ Hdf ;

which, together with the continuity equation, the state
equation dp � c2sd�mn�, and the Newton equation for the
gravitation potential

Ddf � 4pGd�mn�;
leads to the Jeans tachyon Eqn (6). As for transverse modes,
their excitation can be only described in post-Newtonian
approximation, when the off-diagonal components g0a � ga
of the metric tensor generated, for example, by the rotation of
a heavy body, come into play (see Section 5). Here distinction
must be made between co- and contravariant components ui
and u i of 4-velocity and their three-dimensional components
(for relatively slow motions) va and va (see Ref. [7]). The

relation between these quantities is as follows:

va � gai u
i � g0a � ~va ; u0 � 1 ; ~va � gab v

b : �7�

Particularly noteworthy is the case with superfluid liquids
whose covariant velocity component is equal to the gradient
of the phase of the order parameter [7]. Therefore, in terms of
this component, the flow is potential and the relevant
oscillations are longitudinal. However, va has nonzero rotor
and it is its oscillations that are of transversal character.
Especially simple is the case with rotating superfluid liquid (it
is quite interesting for pulsar physics [7]). In spherical
coordinates x1;2;3 � r; y;f where an axis coincides with the
rotation axis, the quantity v3 (but not v

3!) is generally equal to
zero due to the axial symmetry of the system. Therefore the
first formula in Eqns (7) relates the contravariant velocity to
the nondiagonal component of the metric tensor (Levi-Civita
formula)

v3 � ÿ~g 3 ; ~g a � gab gb : �8�
Now we can pass on from general observations to a

particular problem where the transverse instability is obvious
(Fig. 2). Let us consider a thin (of thickness d) film of `bulk'
superfluid liquid extending to infinity in the direction of the
Cartesian axes x2, x3. Travelling on the film is the wave

~g 3 � f �x1� exp�i�kx2 ÿ ot�� ;
which is transverse due to Eqn (8) and zero divergence of the
velocity. Restricting ourselves, for simplicity, to the lowest
post-Newtonian approximation (k2x25 1, kd5 1,
k2 � 8pGe=c2), we can easily arrive at tachyon equation (1)
with C � c and G � k, which indicates the instability of the
studied system (see, however, Section 5) and gives the positive
answer to question (d) from Section 1.

5. Torsion oscillations of a heavy body

To conclude the paper, let us turn our attention to the last
question (e) and show that the tachyon instability can be
decreased by the action of the conservation laws. Particularly,

x3

x2

x1

d

Figure 2.

1074 A Yu Andreev, D A Kirzhnits Physics ±Uspekhi 39 (10)



we will deal with the conservation of momentum in the
problem of torsion (obviously transverse) oscillations of a
heavy spherically-symmetric body (superfluid liquid in a solid
shell) at frequency o (Fig. 3). The relevant component of the
Einstein equation for ~g 3, which is the generalisation of the
static equation [7], is�

�1ÿ x2�
�
q2x �

4

x
qx

�
ÿ 3

2
xqx � z2

�
1ÿ x2

2

��
~g 3 � 0 ;

�9�

where x � kr, z � ���
6
p
o=k, k2 � 16pGe. Equation (9) can be

rewritten in the form�
D� 15ÿ 3x2=4

4�1ÿ x2�2 � z
2 1ÿ x2=2

1ÿ x2

�
U � 0 ;

where

U � �1ÿ x2�3=8~g 3�n; x� ;

n is the unit vector of the oscillation axis which is obviously of
tachyon form (though the squares of the frequency and the
mass depend on x). Therefore, the equationmight be expected
to describe a system unstable with respect to increasing ~g 3 (or,
eventually, the angle velocity).

It turns out, however, that the momentum conservation
law prevents the `self-rotation' of the body considered. This
statement is, by no means, trivial since the momentum of the
body is conserved together with the momentum of the
gravitation field. In principle, these quantities might be of
opposite sign and, increasing, they would completely com-
pensate each other. This is just the case with the Jeans
instability which takes place despite the law of energy
conservation, since the increase in the kinetic energy is
cancelled by the increase in the (negative) gravitation energy.
The same is true of the transverse instability in a thin film (see
Section 4) where the gravitation energy ÿR2=32pG
(R � rot ~g a) is negative. Therefore the problem of the
stabilising role of the law of momentum conservation
deserves special consideration.

We will use the following definition of the total (including
the gravitation term)momentumof the systemM: in the static
case �o � 0� at large distances r from the body, the
momentum behaves asymptotically as

~g 3 ! ÿ2GMrÿ3 : �10�

This case takes place at the stability boundary between the
stable �o2 > 0� and unstable �o2 < 0� regions. This boundary
corresponds to the value ac of the dimensionless gravitational
coupling constant a � rg=R � k2R2=6, separating the stable
(a < ac) and unstable (a > ac) regions; here rg � 2Gm=c2 is
the gravitation radius, R is the geometrical radius, and m is
the body mass. In the state stable with respect to the
gravitational collapse, a < 1 and the condition for the
instability of transverse oscillations considered is ac < 1.

To determine the quantity ac let us turn to Eqn (9) at
o � 0. Its boundary conditions are set from the following
reasoning. Initially, the momentum of the nonrotating body
and, according to Eqn (10), the value of ~g 3 outside the body
are equal to zero. The same holds true in the course of
oscillations ato! 0 due to momentum conservation. There-
fore at r � R (or x � x0 �

�������
6ac
p

)

~g 3 � 0; qx ~g 3 � 0 :

But a homogeneous differential equation of the second order
with zero boundary conditions has only a trivial zero
solution. Only at x0 !1 there is a solution proportional to
xÿ9=2 and satisfying the boundary conditions. It corresponds
to ac !1 which means the absence of instability. Thus, the
answer to the question (d) [more precisely, to the second
question under label (d)] is also positive.

6. Conclusions

To conclude the paper, we would like to emphasise once again
the main statement which makes up its pivot. Whether
tachyons are found in nature as independent particles or
not, today they constitute the all-important element of
systems unstable with respect to the phase transition into the
stable state. It is the tachyon mode that increasing with time
performs a phase transition breaking down the pre-existing
phase and forming a new one. Near the phase transition
point, the `soft mode' whose frequency tends to zero and its
square passes on from positive values through zero to
negative ones takes on the decisive role. This is just the
tachyon degree of freedom which has be repeatedly spoken
about in the foregoing. The tachyon parameters: velocity C
and (imaginary) mass G determine the characteristics of the
phase transition itself and the final properties of the system. It
should be reiterated: despite unusual properties, the tachyon
is not an idle idea of theoreticians, but a real component of the
physical picture of universe.

7. Appendix. The Lenz rule in electrodynamics
and the theory of gravity

We advance some arguments in support of the suggestion on
the Lenz rule made in Section 4. The relation between reactive
jr and external je currents

jr�o;k� � C
je�o;k�

o2 ÿ c2k2 � iod
�A:1�

R

o

Figure 3.
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can be expressed as

jr�t;x� � ÿC
�

je�tÿ jxÿ yj cÿ1; y�
4pjxÿ yj dy :

It is seen that the sign ofC indicates the Lenz (+) or anti-Lenz
(ÿ) behaviour of the system. From the Maxwell and post-
Newtonian Einstein equations yield relation (A.1) with the
parameter C equal to o2

p and ÿk2, respectively. The signs of
o2
p and ÿk2 agree with the conclusions of Section 4.
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