
Abstract. A first-principle statistical theory of nonequilibrium
processes is attempted based on the assumption of quasiclassi-
cal particle motions. This assumption leads to the BBGKY
hierarchy which, in addition to physically reasonable solutions,
contains solutions contradicting the causality principle. In order
to eliminate them, all the distribution functions involved must be
expanded as series in the small parameter e � s=L, where s is
the particle diameter and L is a characteristic macroscopic

length. To zeroth order in e, the BBGKY hierarchy yields the
Gibbs distribution, the first law of thermodynamics, and the
equations of the theory of liquids, thus enabling the thermody-
namical parameters of a substance to be calculated. To the first
order, one obtains (a) a system of five transport equations for
five hydrodynamic variables (mass, three velocity components,
and temperature), (b) a set of equations for the first-principles
calculation of transport coefficients, and (c) the second law of
thermodynamics. The possibility of an entropy increase without
Liouville's theorem being violated is demonstrated.

1. Introduction

Undoubtedly, statistical mechanics belongs to fundamental
sciences. And all fundamental physical theories are con-
structed according to one and the same scheme: first the
initial equations of the theory are postulated on the basis of
analysis of a few typical experiments, and then these equa-
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tions fall into the hands of mathematicians or theoretical
physicists who seek their solutions. In statistical mechanics,
however, the situation is different: the Newtonian equations
which form its basis can be written out in the first pages of any
textbook Ð in fact, in the very first paragraph on the first
page. But nobody knows what next is to be done. The fact is
that the set involves about 1023 equations (according to the
number of atoms and molecules in macroscopic bodies), and
mathematicians are not able to tackle such sets. Because of
this, statistical mechanics from its start in mid-nineteenth
century facedÐ and is still facingÐ amajor problem: how to
convert a virtually infinite set of equations of classical
mechanics into something that could be used for solving
practical tasks. What is more, this has to be done without any
additional postulates or simplifying hypotheses, since a
fundamental theory must only derive from first principles Ð
any simplifying assumption immediately makes the theory
approximate rather than fundamental.

So far the problem of construction of statistical mechanics
has always been solved by trial and error: an approximation
was suggested, its results checked, and only then the linkage
established with equations of motion of classical mechanics.
An example is the theory of equilibrium phenomena. It was
formulated by Gibbs as early as 1902 on the basis of brilliant
insight, while its linkage with the Bogolyubov ±Born ±
Green ±Kirkwood ±Yvon (BBGKY) hierarchy was only
proved seventy years later by Suchov and Gurevich [1].

If we now turn to the theory of nonequilibrium processes,
we find that there are numerous approaches and approxima-
tions, ranging from purelymacroscopic ones based on solving
the transport equations or equations of nonequilibrium
thermodynamics to profoundly `microscopic' theories like
the kinetic theory of gases, theory of linear response, method
of autocorrelation functions, method of projection operators,

etc. In a sense, this diversity of approaches reflects the
diversity of nonequilibrium processes themselves. At the
same time, it is also a consequence of the fact that the most
plausible theories among the nonequilibrium ones have not
yet been selected. In other words, we are not able to argue that
`in this particular case this approach is the most rigorous
because it follows from the initial Newtonian equations
expanded in such-and-such small parameter'.

As I mentioned, the Newtonian equations in statistical
mechanics form an infinite set. The number of mathematical
manipulations that can be applied to such set is also infinitely
large. Keeping within the framework of pure mathematics,
one can easily get lost. To find one's bearings, one needs a
clear-cut guiding principle. Such principle can only be derived
from comprehensive analysis of the physical foundations of
the theory. It is this analysis that the present paper is devoted
to.

I am going to present the material in the following
manner: Fig. 1 shows the scheme of construction of statistical
mechanics as I see it. We shall discuss this scheme moving
from one box to another, from top to bottom. Whenever
possible, our discussion will proceed without formulas, on
fingertips, since it is sometimes hard to trace the physical
essence of things behind the algebraic thicket. The first
sections are written in an especially simple manner Ð so
simple in fact as to seem out of place in a respectable physical
journal. I would ask the reader, however, not to jump at the
conclusions. As a matter of fact, it is in these sections that the
most profound problem of the theory are discussed. Had
everything been so obvious as it might seem at first sight, the
problem of reversibility would not have given rise to so many
heated arguments, and no-one would attempt to attack
frontally the Liouville equation, shoving aside the BBGKY
hierarchy. Rather than that, the BBGKY hierarchy would
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Figure 1. The scheme of construction of statistical mechanics.
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have longwon the honourable title of `fundamental equations
of statistical mechanics' (sadly, today this hierarchy is almost
forgotten by all). Moreover, I would ask the reader to pay
special attention to the first sections of the paper, since the
principles set forth in these sections are in fact the only
lodestar which highlights the general direction of develop-
ment of the theory.

So, the main purpose of this paper is the analysis of the
general structure of statistical mechanics on the basis of
simple physical reasoning and initial theoretical assumptions.
Of course, it would be impossible to avoid considering its
mathematical methods altogether. However, this will be
reduced to aminimum required for understanding the essence
of the theory. The interested reader will find detailed
calculations and proofs in my monograph Classical Statis-
tical Mechanics [2].

2. Equations of motion and probability

As seen from the scheme in Fig. 1, statistical mechanics is
based on the equations of motion of classical mechanics
(Newtonian equations), and on the postulates of theory of
probability. It is sometimes argued that the symbiosis of these
seemingly so different theories is only necessary because there
are too many particles: had they been fewer, we could have
solved the corresponding set of equations, compute the paths
of all particles, and calculate all the parameters of interest
exactly (the currently popular method of molecular dynamics
is based on this philosophy). To find out whether this is
actually the case, we begin our tour of the scheme in Fig. 1
with the analysis of such well-known concepts as probability
and Newtonian equations.

2.1 Stable and unstable systems
We start with the simplest physical experiment. Imagine a
display on which a digit lights up at t � 0, followed by a
second digit a minute later, and so on. For simplicity we
assume that there are just two digits, zero and one. Now the
question is which digit is going to appear on the display at tk,
k > 0. Since, by assumption, the law which governs the
generation of numbers is not known, this question cannot be
answered a priori. We can wait, however, until there are many
enough (say, N ) digits on the display, and then analyse the
sequence. If we find any kind of regularity in the sequence of
digits (for instance, 010101...), we can with some confidence
predict that at t � tk the digit that appears on the screen will
be one (or zero). One must bear in mind, however, that this
confidence is based on the assumption that the law according
to which the numbers are generated remains unchanged up to
the time tk, k > N . Obviously, the longer the sequence of
digits (the larger the accumulated experience), the stronger
the confidence, and at N � 1 the confidence will become
certainty. Systems which permit predicting the future by
analysing the past under assumption that the experimental
conditions remain unchanged are referred to as ordered
systems, and their behaviour is called deterministic (that is,
predictable).

Nowwhat if we cannot find any regularity, or if it does not
exist at all? In this case we shall not be able to predict which
digit will light up on the display at tk. Nevertheless, we can
always count how many zeros and ones are among those
digits which have already appeared on the screen. Then, if we
are sure that the rules of the game are not going to change, we
may assume that there will be approximately the same

number of zeros and, respectively, ones in the next sequence
onN digits. In other words, wemay hope that the probability
of occurrence of zeroP � n=N remains the same (here n is the
number of zeros in the series of N digits). Systems for which
the accumulated experience does not allow making unambig-
uous predictions for the future are called chaotic, and the
process of realisation of unpredictable events is referred to as
a random process.

Among other distinctions, there is one important differ-
ence between deterministic and chaotic systems: while in the
former the present instant is not distinguished in any way, in
the latter there is a clear-cut distinction between the past and
the future. Indeed, the regularity established in deterministic
systems works in the past, present and future. In those
systems where chaos reigns, however, the future can never
be predicted for sure. Therefore, for the future we always
have P < 1. The present and the past are always certain:
Napoleon was born on August 15, 1769, and there is no
power in the world to change this fact. Accordingly, for the
past we always have P � 1. This implies that a reduction in
the probability distribution occurs at the time of observation
t: the probability changes abruptly from P < 1 to P � 1.
Knowing the past, we can reproduce it as accurately as
required. This, however, does not take us anywhere: the
future in chaotic systems remains as unpredictable as it has
been, no matter how often we recollect the memory of the
past.

Consider now a system whose behaviour is governed by
the Newtonian equation

dp

dt
� F �1�

where p � mv is the momentum of the body having mass m
and velocity v � dr= dt, F is the force. Solving the Cauchy
problem for Eqn (1) with initial conditions

r�0� � r0; p�0� � p0 ; �2�
we can calculate the path of the body

r � r�t�; p � p�t� ; �3�
that is, determine its position and velocity at any time t > 0.
From the uniqueness theorem, the solution found in this way
is unique. Obviously, the movement along the path is
predictable, and the system described by Eqn (3) is determi-
nistic. This statement, however, applies not to the system as
such, but rather to the mathematical model which we ascribe
to this particular body. As a matter of fact, there is one very
important distinction between the mathematical model and
the real body: the model assumes that the initial condition
dX0 is defined with zero error, whereas the accuracy of a
physical experiment is always finite. Because of this, the
transition to the mathematical model is a certain idealisation
which is far from being always justified. If the properties of
the system under investigation are such that the smaller the
initial inaccuracy dX0, the smaller the deviation of the real
path X�t� � �r�t�; p�t�	 form the calculated path X��t� Ð
that is, if

dX�t� � X�t� ÿX��t� ! 0 at dX0 ! 0 ; �4�
then we can go over to the limit dX0 � 0 and assume that,
even though the real body does not precisely follow the
calculated path (if only because the condition dX0 � 0 can
never be realised in practice), the deviations are small enough
to be neglected. An example of such system is a bobsleigh
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pilot who steers his sleigh along the bottom of an ice trough.
Any deviation from the calculated path laid along the bottom
of the trough gives rise to a gravity component which forces
the sleigh back, and does this the faster, the steeper the walls
of the trough and the greater the deviation (Fig. 2a). Such
systems are referred to as stable.

Along with the stable systems, there also are unstable
systems for which

dX�t� ! 1 �5�
for any arbitrarily small but finite dX0.

An example is the same bobsleigh pilot who this time
decides to take a ride downhill along the top of an ice ridge,
which essentially is the same trough turned inside out
(Fig. 2b). In case of a slightest deviation from the calculated
path laid along the top of the ridge, the gravity component
will force the sleigh astray rather than back. As a result, if at
t � 0 the sleigh was slightly off the top to the right, it will slide
to the right, and the sooner, the greater the initial (uncontrol-
lable) deviation; or to the left if it started a little left from the
top. In both cases the deviation from the calculated path
dX�t� will increase unlimitedly with the time, according to a
law which is impossible to predict. Indeed, let us assume that
we have managed to calculate all paths which pass at t � 0
across the region of initial inaccuracy dX0 (which actually
cannot be done since the number of these paths is infinitely
large, and they all fan out to both sides). Even this would not
help us to define the position of the sleigh at any t > 0,
because we do not knowwhich path will be taken by the sleigh
(recall that dX0 is the accuracy of our measurements, and we
cannot distinguish anything that is less than dX0). This
example shows that in the case of unstable systems the
calculation of paths becomes meaningless, since we can say
nothing about the behaviour of the system in the future even if
we know the paths. This does not imply, however, that there is
nothing at all that we can say about the behaviour of the
system `bobsleigh pilot on ice ridge'.

If the sportsman has enough patience to do this exercise
time and time again, we shall soon find that, say, in 70 cases
out of 100 he slides to the right of the ridge, and in 30 cases to
the left. This allows us to hope that the result will be
approximately the same in the next hundred of rides. In
other words, we can determine the probability of the events
`the pilot right of the ridge' and `the pilot left of the ridge'. Of

course, on the basis of this knowledge we cannot tell whether
in his, say, 27th ride the pilot will end to the right or to the left
of the ridge. This does not mean that in his 27th ride the sleigh
ran downhill without any path: the traces it left on the ice
prove that this is not the case.Moreover, we can use the traces
and the Newtonian equation to calculate the path and the
velocity of the downhill ride. This, however, can only be done
post factum; we cannot predict the path of the sleigh. In other
words, a predictable path (that is, such as can be calculated
before carrying out the experiment) has turned into an
unpredictable, random one. Simultaneously, the `time
arrow' comes forward: the past (traces on the ice) is certain,
the future (the outcome of the next ride downhill) is
unpredictable. The distinction between the past and the
future makes the unstable systems unpredictable. This seems
to conflict with the fact that the Newtonian equation is
invariant with respect to the transformation

t! ÿt 0; p! ÿp 0 �6�
(transformation (6) implies that the process develops like in a
movie run backwards: scattered fragments reassemble into a
cup which jumps on the table). The equation by itself,
however, does not yet define the path: it must be supplemen-
ted by the initial conditions. As we have seen, even a slight
inaccuracy in defining the latter makes the trajectory of
motion unpredictable. The same will occur at the turnpoint
(at the time when we implement transformation (6)): because
of a small inaccuracy in defining t 0 and p 0 the sleigh may end
up anywhere else but at the starting point. In order to get back
to the starting point, the sleigh must be placed with absolute
precision on the path which brought it to the turnpoint. This,
however, is not possible since the path is a line without
thickness. This is the reason why the path of the sleigh after
the turnpoint is unpredictable future.

Formally, these arguments only apply to unstable sys-
tems, and do not apply to stable ones. Actually, however, this
is not exactly the case. Recall that absolute stability, which is
achieved through transition to the limit dX0 � 0, is a
mathematical abstraction; in real experiments the initial
inaccuracy is always non-zero. Transition to the ideal model
with dX0 � 0 is far from being always worthwhile even in the
case of stable systems. If dX0 could actually be made equal to
zero, bobsleigh championships would make no sense, with all
pilots crossing the finishing line at one and the same time
(which follows from the uniqueness theorem). It is the
unpredictability of paths followed by real sportsmen that
adds the spirit of challenge to a sporting event.

So far we have been considering a macroscopic system
`bobsleigh pilot on the hill' with a purpose inmind: wewanted
to make a point that the arising problems are not peculiar to
microcosm. In the case of our bobsleigh pilot we can still hope
that he will almost precisely follow the calculated path
downhill if we position him on the top of the hill with the
accuracy of, say, 1 cm (which, of course, is never done in
practice). When we deal with microcosm this is hoping
against hope. To prove this, let us make a simple estimate.

Assume that two spherical molecules of a gas collide at an
angle a, which is known to the accuracy of d0. We also assume
that before and after collision the particles move by their own
momentum, and at the time of collision their paths change
according to the law `the angle of incidence equals the angle of
reflection' (both assumptions follow from the laws of classical
mechanics). As seen fromFig. 3, after collision the inaccuracy
in the definition of the angle increases to d1 > d0 because the

dX0

Â

dX0

b

Figure 2. Calculated (dashed lines) and real (solid lines) trajectories of

sleigh.
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surface of the colliding particles is convex{. Obviously, after k
collisions the inaccuracy becomes

dk � d0
�
d1
d0

�k

> d0 :

Since k � t=t, where t is the mean time between two
successive collisions of the particles, we have

d�t� ' d0
�
d1
d0

�t=t

or

d�t� � d0 exp
�
a
t

t

�
; where a � ln

d1
d0
' 1 : �7�

Assume now that we would like to monitor the path of one
particle for one second. This attempt will only be successful if
the error in the definition of the angle is not greater than p,
because otherwise we cannot tell whether out particle is flying
forward or backwards. Since for a gas under normal condi-
tions we have t � 10ÿ10 s, Eqn (7) implies that the condition
d�t� < p can only be satisfied if we know d0 to a fantastic
accuracy d0 � exp�ÿ1010�, which is far beyond any reason-
able limit.

From our example of the bobsleigh pilot it follows that
there are two causes of unpredictability of the path of the
sleigh: one internal, due to the instability of the system itself,
and one external, which results from the lack of tools capable
of reducing the initial inaccuracy dX0 to zero. A chaotic
system can be transformed into a stable one by eliminating at
least one of these factors. We have already said that any
ambiguity in the path of the sleigh can be eliminated by
changing the profile of the hill. Observe that the same result
can be achieved by reducing dX0 to zero, since the value of
dX�t� will then also be zero (the uniqueness theorem). In
macroscopic systems the uncertainty can be eliminated in
both ways; inmicroscopic systems this is not possible. Indeed,
we cannot transform `convex' molecules into `concave' ones.
Neither can we eliminate the external uncertainty. The
displacement dX0 � exp�ÿ1012� is so small that it could be
caused by a butterfly flapping its wings a hundredmiles away.
This `butterfly effect' cannot be eliminated: it is impossible to
shield the system from external disturbances with such high
precision. We should note from the start that this `butterfly
effect' has no macroscopic consequences, since the energy

supplied to the system is negligibly small. Much greater
energy is required to cause displacement of macroscopic
masses to macroscopic distances.

2.2 Comments
The main result of the above discussion is that the emergence
of chaos is possible and even unavoidable in molecular
systems whose particles obey the laws of classical mechanics.
Because of this, such systems must be described with the
methods of theory of probability. Of course, the latter does
not mean that the particles are no longer moving along their
paths. The paths still remain, but they have become unpre-
dictable rather than predictable. Since the purpose of any
physical theory is to predict the future, it is clear that
statistical mechanics cannot be based on the analysis of
unpredictable paths of particles. In other words, the concept
of trajectory of a particle must be expelled from statistical
mechanics. This makes the latter essentially different from
ordinary mechanics, whose main task consists in the calcula-
tion of the paths.

3. Liouville equation

We see that even though atoms and molecules move accord-
ing to the laws of classical mechanics, it is no use trying to
calculate their paths. The only thing we can do is to find the
probability of occurrence of a particle at a certain point in
space. This requires using the concept of the Gibbs ensemble.

3.1 Gibbs ensembles
We saw that in order to find the probability of the event
`bobsleigh to the right of the ridge' we had to make the pilot
take 100 rides down the hill. Alternatively, we can imagine
that 100 different pilots rush down 100 different hills. If we
now assume that all 100 sportsmen and all 100 hills are exactly
alike, then in this `gedanken experiment' the probability of
the event `bobsleigh to the right of the ridge' can be still
defined as P � n=N ; this time, however,N is not the number
of rides taken by one and the same pilot, but the total number
of copies of the pilot, and n is the number of pilot copies who
slide to the right of the ridge. In statistical mechanics it is said
that the copies of a given system constitute the Gibbs
ensemble, and the probability of a given event is usually
defined as the average over the ensemble.

When we say that all sportsmen and all hills are exact
copies of each other, we do not mean that all sportsmen have
the same complexion or are fond of reading detective stories;
only those parameters should be the same which substantially
affect the process in question. It is assumed that these
definitive parameters can be given with the required accuracy;
averaging is carried out over the uncontrollable degrees of
freedom. All this fully applies tomolecular systems composed
of atoms and molecules.

Further on we shall only deal with closed systems,
insulated from the environment with walls impenetrable by
particles or heat. The state of such systems is characterised by
their volume V, the shape of the vessel containing the fluid,
the number of particles N, the potential of interaction
between the particles F�r� (where r is the distance between
the particles), and the total energy E�N� and total entropy S�N�
(see Section 9). These parameters will be referred to as
external. Obviously, all the copies of the system which
constitute the Gibbs ensemble must have the same external
parameters. This, however, is not yet sufficient, because the

{I hope that the rigorous reader will excuse my reference to `convex and
concave surfaces' of a molecule. In fact, we are talking about different

types of the potential of interaction of molecules.

a

d0 d1
v0

v

v

v0

Figure 3. Change of inaccuracy angle d at collision.
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same values of the external parameters may correspond to
entirely different distributions of the local states of the
system, characterised by the density of particles n �r; t�, the
mass velocity c �r; t�, the temperatureY �r; t�, etc. The latter
play a very important part in nonequilibrium systems,
because the type of process which takes place in the system
depends on the form of functions n �r; t�, etc.

Unlike the external parameters, the local parameters have
the meaning of those averaged over the ensemble of copies.
Assume, for example, that we are interested in the density of
particles n. In order to find it we must count the number of
copies nk in which at the time t the following event is realised:
`k particles occur with infinitesimal volume dV near point r',
where k runs from zero to infinity. Then we can find the
probability Pk � nk=N of this event, and define

n �r; t� �
X1
k�0

kPk �r; t� :

All other local variables are determined in a similar fashion.
Now let us define more exactly the concept of `closed

isolated system'. Permanently isolated systems are of no
interest to us, since we are unable to act upon them. So we
assume that at t < 0 the system is open, and we can apply
external action to bring the system into a required initial state.
Then, at t � 0, we `close' the system, ceasing completely to
interfere with its life, and start to monitor the spontaneous
drift of the system towards thermodynamic equilibrium (this
process can be monitored with instruments whose effect on
the system is infinitesimally small).

The initial state we prepared at t < 0 has the meaning of
the average over the ensemble of copies. This implies that out
of all conceivable diversity of copies we selected only those
whose average yields the required values of n0�r�, c0�r�, etc.
In other words, we carry out averaging with respect to only
those configurations of molecules which are compatible with
the given macroscopic state of the system. There is nothing
new in this method of averaging. After all, when we deal with
the equilibrium system we also carry out averaging with
respect to only those configurations which are compatible
with the given values of density n0 � const and temperature
Y0 � const. The equilibrium systems only differ from the
nonequilibrium ones in that the initial parameters of the latter
n �r; 0� � n0�r�, c �r; 0� � c0�r�, etc., are functions of the
coordinates.

The number of local characteristics of the system is
extremely large: pressure, compressibility, density, and so
on, and so forth. Now the question is as follows: if we are to
determine unambiguously the macroscopic evolution of the
system, do we need to fix all the local macroscopic para-
meters, or it will suffice to fix only some of these? To answer
this question we recall that in mechanics the properties of the
system are determined by its Hamiltonian

H�N� �
XN
i�1

p2i
2m
�U�N�;

where pi is the momentum of the ith particle, and
U�N� �

P
i; j F�ri j� is the configuration energy of the system,

ri j � jri ÿ rjj. Accordingly, we may assume that the local
macroscopic parameters which define the mean (over the
ensemble) value of the Hamiltonian

E�N� � hH�N�i

�
�
V

d3r

�
n �r; t� mc2�r; t�

2
� 3

2
n�r; t�Y�r; t� � 1

2
hFi
�
;�8�

at the same time define the mean values of other local
parameters. The first term in braces in Eqn (8) has the
meaning of the kinetic energy of ordered motion of particles
and is determined by the density n�r; t� and the velocity
c �r; t�. The second term,which relates to the kinetic energy of
thermal chaotic motion of the particles, depends on the
density and the temperature Y�r; t�. The third term, which
relates to the density of the potential energy of the particles,
also depends on n and Y. Thus, the mean value of the
Hamiltonian of the system is uniquely determined by five
hydrodynamic variables{:

n �r; t�; ca�r; t�; where a � x; y; z; and Y�r; t�; �9�

whereas all other local parameters of the system are functions
of hydrodynamic variables.

We have already said that the values of hydrodynamic
variables are determined by transport equations. Given the
initial conditions, the solution of the latter is unique (when the
deviation from equilibrium is not too large). Therefore, the
initial conditions imposed on the hydrodynamic variables
unambiguously predetermine their time evolution. This in
turn implies that at t > 0 the averaging over the ensemble
must be performed for the preset values of n�r; t�, c�r; t� and
Y�r; t�.

The above definition of the Gibbs ensemble lies in the
basis of the entire nonequilibrium statistical mechanics. It is
interesting that, as a matter of fact, it also points to the main
task of the theory. If averaging over the ensemblemust always
be carried out with the preset values of hydrodynamic
variables, then the main task of the theory consists in the
first-principle derivation of transport equations whose solu-
tion determines the time evolution of these variables. And
since the transport equations, apart from the unknown
hydrodynamic variables, involve also the transport coeffi-
cients, another Ð and no less important Ð task of the theory
is the calculation of these coefficients from first principles.

3.2 Liouville equation
In order to characterise the microscopic state of the system,
one must define the coordinates ri and the momenta pi of all
N particles of the system. Alternatively, one can introduce the
concept of 6N-dimensional phase space, formed by 3N
coordinates of particles ria and 3N momenta of particles pia
�a � x; y; z�. In this case the state of each copy of the
ensemble will be defined by the position of one point in the
phase space (which is usually referred to as the `portrayal
point'). And since the number of copies in the ensemble{ is
N 4 1, the portrayal points of all copies fill the entire
available phase space.

Now let us introduce the concept of N-particle distribu-
tion function g�N� which has the meaning of the density of
probability (defined as average over the ensemble) of the

{These variables are called hydrodynamic because their values are

determined by equations of hydrodynamics. I believe, however, that the

equations of hydrodynamics would be more correctly referred to as

transport equations.

{Do not confuse the number of copies in the ensembleN with the number

of particles N in one copy.
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following event: `at time t particle 1 occurs at point r1 and its
momentum is p1, particle 2 occurs at point r2 and its
momentum is p2, and so on up to the last particle number
N'. Since the probability by definition is always positive, g�N�
can be written as

g�N��r1; . . . ; rN; p1; . . . ;pN; t�
� exp

�
O�N��r1; . . . ; rN; p1; . . . ;pN; t�	 : �10�

Since the number of copies of the ensembleN (or, which is
the same, the number of experiments repeated with one and
the same systems) is fixed once and for ever, none of the
portrayal points in the phase space can disappearÐ they only
can move from one infinitesimal volume of phase space dG�N�
to an adjacent one, or accumulate within dG�N�. Accordingly,
the equation of balance of the number of copies has the form

qg�N�
qt
� div6N � _X�N� g�N�� � 0 ; �11�

where the velocity vector _X�N� of the displacement of the
portrayal points in 6N-dimensional has 6N components
dri= dt and dpi= dt. Expressing the latter with the aid of the
Newton equation, after some straightforward algebra we
come to the Liouville equation

qg�N�
qt
�
XN
i�1

�
qU�N�
qri

� qg�N�
qpi

ÿ pi

m
� qg�N�
qri

�
; �12�

which can also be written in the form (see Eqn (10))

qO�N�
qt
�
XN
i�1

�
qU�N�
qri

� qO�N�
qpi

ÿ pi

m
� qO�N�
qri

�
: �13�

We derived Eqn (12) under assumption that the particles
move without friction (condition required for the system to be
aHamiltonian one). This condition is very important because
it ensures `perpetual' motion of the particles.

Since the Liouville equation is a differential one, itmust be
supplemented by boundary and initial conditions. It is
obvious that g�N��r1; . . . ; rN, p1; . . . ;pN; t� � 0 when at least
one particle is outside the volume of the system V, or when its
momentum becomes infinite. For the initial conditionwe take

g�N��r1; . . . ; rN; p1; . . . ;pN; 0� � g�0��N��r1; . . . ; rN; p1; . . . ;pN� ;

where g�0��N� is a preset function. Later on (see Section 3.4) we
shall discuss this condition in greater detail, and presently we
are going to consider some corollaries of the Liouville
equation.

3.3 Global conservation laws
Integrating Eqn (12) with respect to the coordinates ri and the
momentapi of all particles with due account for the boundary
conditions, we get

q
qt

�
V

dr1 . . . drN

�1
ÿ1
g�N� dp1 . . . dpN � 0 ;

that is,�
V

dr1 . . . drN

�1
ÿ1
g�N� dp1 . . . dpN � G�0��N� : �14�

Setting the integration constant equal to

G�0��N� � VNP3N; �15�

where V is the volume occupied by the system, and
P � �������������

2pmY
p

is the normalisation momentum, we rewrite
Eqn (14) as the normalisation condition for the N-particle
distribution function (the probability conservation law):

1

VNP3N
�
V

dr1 . . . drN

�1
ÿ1
g�N� dp1 . . . dpN � 1 : �16�

Representing the HamiltonianH�N� of the system in the form

H�N� �
XN
i�1

p2i
2m
�U�N� ; �17�

multiplying Eqn (12) byH�N�, and integrating with respect to
coordinates and momenta of allN particles, we get the energy
conservation law

qE�N�
qt
� 0; E�N� � const ; �18�

where the total (global) energy of the system is

E�N��t� � 1

VNP3N
�
V

dr1 . . . drN

�1
ÿ1

H�N�g�N� dp1 . . . dpN:

�19�

Finally, we multiply Eqn (12) by O�N�, Eqn (13) by g�N�,
add together the resulting expressions and integrate again
over all ri and pi to get the conservation law for the global
entropy of the system:

qS�N�
qt
� 0; S�N� � const ; �20�

where

S�N��t� � ÿ kB

VNP3N
�
V

dr1 . . . drN

�
�1
ÿ1

O�N�g�N� dp1 . . . dpN : �21�

These three conservation laws are actually the mathematical
definition of the physical concept of `closed isolated system'.

3.4 Comments
The facts presented in this section are for themost part known
well and long. The construction of the theory of none-
quilibrium processes would be just not possible without the
formulas presented above. This is the reason why I quote
them here.

It is much less known, however, that the Liouville
equation cannot be used for the straightforward definition
of the globalN-particle distribution function g�N�. The fact is
that this is a differential equation, and the solution of any
differential equation is unique only given the initial (and
boundary) conditions. With this statement of the problem,
the Liouville equation is precisely equivalent to the set of
Newtonian equations, which also has a unique strictly
deterministic solution when the initial conditions are set.
We, however, are interested in the states of chaotic systems
Ð states which are not described by such a solution. We have
also seen that averaging over the Gibbs ensemble is always
carried out for a fixedmacroscopic state of the system (that is,
with the preset values of hydrodynamic variables). In other
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words, we must always perform averaging over all micro-
scopic states of the systemwhich are compatible with its given
macroscopic state. Nobody knows how to accomplish this
while remaining within the framework of the concept of N-
particle distribution function g�N�. All this points to the fact
that the Liouville equation must be regarded as a necessary
first (but far not the last) step on the way to construction a
logically consistent theory of nonequilibrium phenomena Ð
and nothing more. As we shall see, the next step is the
transition to the concept of l-particle distribution functions
g�l� with l � 1; 2; . . . ; N.

4. BBGKY hierarchy

All further theory is based on the concept of the correlation
sphere, which will be our next starting point.

4.1 Correlation sphere
Assume that in the ocean of particles which constitute the
system we have managed somehow to fix the coordinate and
momentum of particle 1. Now we ask how the rest Nÿ 1
particles of the system are going to behave. To answer this
question, imagine that we put an observer on particle 1 in each
copy of the ensemble, ask them all to measure coordinates
and particles of surrounding particles at the time t, and
average the collected data over all copies of the ensemble.
We shall find that if the distance to particle 1 is large enough
(say, greater than Rc), then the behaviour of some particle 2,
located at point r2, will be completely unpredictable: particle
2 may move with any velocity in any direction. Of course, this
is because chaos reigns in the system. If, however, r12 is less
than Rc, the result will be different: there will be a certain
correlation in the behaviour of particles 1 and 2 due to
interaction between the particles. The nature of this interac-
tion may be diverse: it may be direct if particle 2 falls within
the force field of particle 1, or indirect, when particle 1 acts
upon some intermediate particle 3, which then acts upon
particle 2. At present, however, this does not concern us. The
main thing is that, as a result of such interactions, a kind of
order emerges within the correlation sphere of radius Rc (the
correlation radius), whereas absolute chaos reigns elsewhere.
Of course, the correlation radius is a convention, because the
transition from `order' to `disorder is always gradual and
smooth. For qualitative analysis, however, it is convenient to
assume that the transition from `order' to `disorder' occurs
abruptly at r12 � Rc, and this is what we are going to do.

Correlation sphere is the key concept of the entire theory:
if the orderly processes only take place within the correlation
sphere, then all the laws formulated in statistical mechanics
are based on the processes within the correlation sphere,
whereas everything that occurs outside is irregular and
haphazard from the microscopic standpoint, and cannot
contribute to those effects which can be regularly reproduced
time and time again. Without going into the details, I would
like to emphasise that arguments developed above apply not
only to gases and liquids, but also to crystals, because only
those particles in crystals are engaged in direct interaction
which fall within the correlation sphere.

Before we proceed further, I would like to make two
remarks. Calculations for equilibrium thermodynamic sys-
tems indicate Ð and the experiments confirm this Ð that the
value of Rc usually does not exceed a few diameters of
particles s (with the exception of critical phenomena). Since
on the average all particles move with the thermal velocity v0,

themean time spent by particle 2 within the correlation sphere
of particle 1 is t ' Rc=v0. And finally, because the volume of
the correlation sphere is finite, we can introduce the concept
of the maximum number M of particles found within the
correlation sphere. The usual values are

Rc9�5ÿ10�s ' 10ÿ7 cm; t ' Rc

v0
' 10ÿ12 s; M9103 :

�22�

In nonequilibrium systems these parameters have approxi-
mately the same values.

And the last point is as follows. Widely used in the kinetic
theory of gases are such concepts as the mean free path length
Rk and the mean free path time tk. To avoid confusion, it
ought to be stated from the outset that these have no relation
to the correlation radiusRc and the characteristic microscopic
time t. If anything, this follows from the fact that when the
density of gas tends to zero, n! 0, the quantities Rk and tk
tend to infinity, while Rc and t tend to zero. Indeed, the rarer
the gas, the less correlated is the behaviour of its individual
particles, and the longer the path of a particle between
successive collisions. Free path length and free path time are
the characteristics of paths of particles, and in statistical
mechanics the concept of a `path' is outlawed. Accordingly,
there is no room for such concepts as free path length and free
path timeÐ they are replaced with the concept of correlation.

4.2 l-particle distribution functions
Consider the conditional probability{ g1;...; l=l�1;...;N of the
event consisting in that particle 1 occurs at point r1; p1; . . .,
particle l occurs at point rl; pl on condition that the restNÿ 1
particles of the system occur at points rl�1; pl�1; . . . ; rN; pN

(the numbering of particlesmay be arbitrary). By definition of
conditional probability, we have

g1;...;N � g1;...; l=l�1;...;Ngl�1;...;N ; �23�
where g1;...;N is the unconditional probability of distribution
of particles 1; . . . ; N in 6N-dimensional phase space, and
gl�1;...;N is the same for particles l� 1; . . . ; N. Since the
position of the latter is of no interest to us, we integrate the
right-hand and the left-hand sides of Eqn (23) over all
possible position of particles l� 1; . . . ; N. As a result, we get

1

VNÿlP3�Nÿl�
�
G�N�
g1;...;N d�l� 1� . . . d�N�

� 1

VNÿlP3�Nÿl�
�
G�N�
g1;...; l=l�1;...;Ngl�1;...;N d�l� 1� . . . d�N�:

�24�

Of course, the conditional probability g1;...; l=l�1;...;N depends
on the coordinates of particles l� 1; . . . ; N. As we have seen,
however, the positions of particles are only correlated at
distances smaller thanRc. Accordingly, if we draw a sphere of
radius Rc around each of l particles whose coordinates are
fixed, the particles which fall outside of these spheres will not
correlate with the fixed particles of the selected set. Let us now
split the range of integration in Eqn (24) into Vl and Vÿ Vl,
where Vl9lR3

c is the volume of all correlation spheres drawn

{Here and further we shall represent any function c�l� of coordinates and
momenta of particles (and of the time t) as c�l��r1; . . . ; rl; p1; . . . ; pl; t�
� c1;...; l, and the differentials dri dpi will be denoted simply as d�i�.
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around the particles of the selected set. In the integral over the
volume Vÿ Vl, the conditional probability g1;...; l=l�1;...;N can
be factored out, since, by virtue of arguments developed
above, it does not depend on the coordinates of particles
l� 1; . . . ; N. Naturally, this cannot be done in the integral
over the volume Vl. If, however, we go over to the so-called
thermodynamic limit

N; V!1 at n0 � N

V
� const ; �25�

we immediately find that, sinceV4Vl, the integral overVl in
Eqn (24) can be simply discarded. As a result, Eqn (24)
becomes

1

VNÿl P3�Nÿl�
�
G�N�
g1;...;N d�l� 1� . . . d�N�

� g1;...; l=l�1;...;N 1

VNÿl P3�Nÿl�
�
G�N�
gl�1;...;N d�l� 1� . . . d�N� :

Since any unconditional probability must satisfy the normal-
isation condition,

1

VNÿl P3�Nÿl�
�
G�N�
gl�1;...;N d�l� 1� . . . d�N� � 1 ; �26�

we finally get

g1;...; l � g1;...; l=l�1;...;N

� 1

VNÿl P3�Nÿl�
�
G�N�
g1;...;N d�l� 1� . . . d�N� : �27�

Here in the function g1;...; l=l�1;...;N we have dropped the
subscripts l� 1; . . . ; N, because there is no dependence on
these particles in the volumeVÿ Vl. The functiong�l� defined
in this way is called the l-particle distribution function.
Observe that it is rigorously defined only in the thermo-
dynamic limit, since it is only then that we may neglect the
integral over Vl.

4.3 Hierarchy of BBGKY equations
Now that we have defined the l-particle distribution func-
tions, wemust find the set of equations which will enable us to
calculate them. With this purpose we integrate the Liouville
equation (12) with respect to the coordinates of particles
l� 1; . . . ; N, and use Eqn (27). After some straightforward
manipulations we get the infinite set of linked Bogolyubov ±
Born ±Green ±Kirkwood ±Yvon equations (or, for short, the
BBGKY hierarchy):

qg1;...; l
qt

�
Xl
i�1

�
ÿpi

m
� qg1;...; l
qri

� qU1;...; l

qri
� qg1;...; l
qpi

� n0

P3
�
G�N�

qFi; l�1
qri

� qg1;...; l�1
qpi

d�l� 1�
�
;

l � 1; 2; . . . ; 1 �28�
(these equations have been derived under assumption that

U1;...; l �
X

14 i<j4 l

Fi j ;

where Fi j � F�ri j� is the potential of pairwise interaction
between particles i and j; the more complicated triple,
quadruple, etc. interactions are neglected). The last, Nth
equation in this hierarchy coincides with the initial Liouville

equation. After transition to the thermodynamic limit
N � 1, however, this equation `goes to infinity' and becomes
meaningless.

Since the BBGKY hierarchy is a set of integro-differential
equations, to make it to define uniquely the sought-for
solution we must supplement it with the condition of
attenuation of correlations

g1;...; l !
Yl
i�1
gi at ri j !1 �29�

for the functions with l5 2, and impose the normalisation
condition on the one-particle function with l � 1:

1

VP3
�
V

dr

�1
ÿ1
g�1��r; p; t� dp � 1 : �30�

It is obvious that condition (29) implies that the events which
take place beyond the correlation sphere do not correlate
(independent events). Now, multiplying the normalisation
condition by N, we can bring it into the form of the law of
conservation of the number of particles:�

V

n�r; t� dr � N ; �31�

where the density of particles is

n �r; t� � n0

�1
ÿ1
g�1��r; p; t� dp

P3 : �32�

In addition, we define the mean velocity of particles c�r; t� by
an obvious relation

mn �r; t� c�r; t� � n0

�1
ÿ1

pg�1��r; p; t� dp

P3 ; �33�

and the temperature Y �r; t�, which has the meaning of the
kinetic energy of thermal chaotic motion, is given by a
similarly straightforward formula

3

2
n �r; t�Y�r; t� � n0

�1
ÿ1

�pÿmc�2
2m

g�1��r; p; t� dp

P3 :
�34�

Some other physical parameters of the system (for example,
the density of potential energy) can be defined in a similar
fashion.

4.4 Local conservation laws
Upon transition to the thermodynamic limit, the global
conservation laws lose sense because the values of N, E�N�
and S�N� go to infinity{. They must therefore be replaced with
local laws. The latter can be obtained in the standardwaywith
the aid of the BBGKY hierarchy.

Integrating the first equation in the hierarchy, which
defines g�1�, and taking due account of Eqns (32) and (33),
we get the continuity equation

qn
qt
ÿ q�nca�

qra
� 0 ; �35�

which has the meaning of the law of conservation of the
number of particles. Multiplying the equation for g�1� by p1

{Of course, the ratios E�N�=N and S�N�=N remain finite. The meaning of

these ratios in the case of nonequilibrium systems, however, is not clear.
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and integrating with respect to p1, we get the local law of
conservation of momentum

mn
dca
dt
� ÿ qPab

qrb
�36�

where Pab is the stress tensor whose particular formwe do not
specify here). Similarly, multiplying the first equation in the
hierarchy by �pÿmc�2 and integrating with respect to p, we
get the local law of conservation of temperature (that is, the
kinetic energy of thermal chaotic motion):

n
d

dt

�
3

2
Y
�
� ÿ qJ

�Y�
a

qra
� q�YF� ;

where J�Y� is the thermal flux vector, and q�YF� is the strength
of source responsible for the conversion of kinetic energy into
the potential energy. Since q�YF� can be represented as

q�YF� � ÿ qJ
�YF�
a

qra
;

we finally get

n
d

dt

�
3

2
Y
�
� ÿ qJa

qra
; J � J�Y� � J�YF� : �37�

Finally, the local law of conservation of entropy can be
derived from the global law (20) using all equations in the
BBGKY hierarchy:

n
ds

dt
� ÿ qI

�s�
a

qra
� q�s� ; �38�

where I�s� is the entropy flux vector, and q�s� is the source of
entropy (detailed derivation can be found in Refs [2, 3]). The
source in Eqn (38) does not contradict in any way the
Liouville theorem, since the latter only holds for closed
isolated systems, whereas Eqn (38) describes processes within
the correlation sphere which is an open system.

4.5 Comments
The material presented in this section can be found in any
textbook on statistical mechanics (with the exception of Eqn
(38)). At the same time, the conclusions that can be based on
the above formulas, are much less known.

Firstly, if we carefully examine the train of thought which
has brought us to the BBGKY hierarchy, we note that each
consecutive step is forced, and, which is most important,
predetermined by the results obtained at the previous step. As
soon as we found that the paths of particles cannot be
calculated in principle, the only remaining possibility was to
describe the state of the systemwith themethods of the theory
of probability. As soon as we introduced the global prob-
ability g�N� into classical mechanics using the concept of the
Gibbs ensemble, we needed the Liouville equation to define
g�N�. Comparison of g�N� with those assumptions which are
incorporated into the definition of the Gibbs ensemble,
however, shows that the Liouville equation defines not the
probability we need. This called for transition to the local
description in terms of the l-particle distribution functions.
These functions in turn can only be defined with the aid of
equations of the BBGKY hierarchy.

Secondly, I would like to emphasise that we can only go
over to the BBGKY hierarchy after transition to the thermo-

dynamic limit, which makes the global description in terms of
theN-particle distribution function totally impossible: it is as
though the transition to the thermodynamic limit breaks the
linkage of the equations of the BBGKY hierarchy and the
local conservation lawswith those global relationswhich gave
rise to them in the first place. Among other things, this
transition simplifies the task considerably: while with the
global approach we had to define the distribution function
g�N� which depends on an infinite number of coordinates, the
local approach requires defining the correlation in the
behaviour of a few tens or hundreds of particles which fall
within the correlation sphere; all other particles have no effect
on the state of matter at the given point r.

The BBGKY hierarchy is by nomeans the final step in the
modification of the initial Newtonian equations. Of course,
we may use Eqns (32) ± (34) to impose additional restrictions
on the distribution functions whose introduction is required
by the initial concept of the Gibbs ensemble. The BBGKY
equations still involve time derivatives, which means that
their solution requires imposing initial conditions. This,
however, would imply uniqueness of the solution, which
does not agree with the notion of chaos which reigns in
molecular systems (see Section 3.4).

No less important is the following. The BBGKY hier-
archy involves the only symbolic parameter n0 � N=V which
has the meaning of the density established in the system when
it finally arrives at the thermodynamic equilibrium at t � 1.
Accordingly, the solution of the hierarchy must also be a
function of n0. This, however, contradicts the causality
principle which states that physically meaningful solutions
can only depend on those parameters that are defined at the
time t 04 t; they cannot depend on the density
n �r; t � 1� � n0. Therefore, the work on the BBGKY
hierarchy must be continued.

5. Expansion in e

Starting with the Newtonian equations and moving along the
only avenue available, we arrived at the BBGKY hierarchy.
The latter, however, features a number of properties which
seem tomake it not suitable for solving the problems faced by
the theory. We can only hope that there are physically
meaningful equations hidden inside the hierarchy itself. Our
task consists in finding them. As we shall see, this task is
accomplished by expanding the equations of the hierarchy in
a small parameter e.

5.1 Characteristic parameters of the system
Any macroscopic system has at least two characteristic
microscopic parameters: the radius of the correlation sphere
Rc, and the characteristic time of evolution towards equili-
brium within the correlation sphere t. In addition, any closed
isolated system has two characteristic parameters: the system
size L, and the characteristic time of relaxation of the entire
system towards equilibrium T. This allows introducing two
dimensionless parameters

e � Rc

L
; w � t

T
; �39�

whose numerical values may, of course, vary considerably
depending on the particular properties of the system in
question. The simplest estimates indicate, however, that for
the majority of macroscopic systems (although by no means
for all) they are not just small, but infinitesimalÐof the order
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of 10ÿ8 or less. In the end, this is a consequence of the fact that
inequalities

Rc5L ; t5T : �40�

are almost always satisfied.
The discussion to follow will only be concerned with such

systems and such processes that comply with the above
inequalities; systems and processes for which at least one of
these inequalities does not hold call for special treatment.

5.2 `Fast' and `slow' distribution functions
Having such small parameters at hand, it would be natural to
try using them for solving the BBGKY hierarchy. This task,
however, is not that simple, since neither e nor w enter
explicitly the equations of the hierarchy. Accordingly, the
first thing to be done is to introduce these parameters into the
equations.

Obviously, both macroscopic and microscopic processes
take place in any nonequilibrium macroscopic system. Since
the BBGKY hierarchy gives a complete description of the
system, it must involve the distribution functions for the
processes of both kinds. Observe that, on the one hand, all
hydrodynamic variables (that is, functions n �r; t�, c �r; t� and
Y�r; t�) exhibit substantial variations only over distances of
the order of L and time of the order of T. Therefore, they
depend on the dimensionless distance r=L and dimensionless
time t=T:

n � n

�
r

L
;
t

T

�
; c � c

�
r

L
;
t

T

�
; Y � Y

�
r

L
;
t

T

�
: �41�

Now, since the hydrodynamic variables are linked with the
one-particle distribution function g�1� via relations (32) ±
(34), the functiong�1�must depend on the same dimensionless
variables (and the dimensionless momentum p=P):

g�1�

�
r

L
;

p

P ;
t

T

�
� exp

�
o�1�

�
r

L
;

p

P ;
t

T

��
: �42�

Therefore g�1� and hydrodynamic variables n, c, andY form
the group of slow functions.

On the other hand, making use of the condition of
attenuation of correlations (29), we can represent the multi-
particle distribution functions g�l�, l5 2 in the form

g1;...; l � exp�O1;...; l�
Yl
i�1
gi ; O1 � 0 ; �43�

where

O1;...; l � O�l�
�

r1
Rc

; . . . ;
rl
Rc

;
p1

P ; . . . ;
pl

P ;
t

t

�
! 0

at ri j !1 : �44�
The functions O�l�, defined in this way, describe mutual
correlation of particles within the correlation sphere. They
form the group of `fast' functions, which vary considerably
over the time t ' t and the distance of the order of Rc (and
vanish outside the correlation sphere).

By virtue of inequalities (40), all `slow' functions remain
constant over distances of the order of Rc, or, to be more
precise, their variations by the order of magnitude do not
exceed e. For example, the variation of density over dr9Rc is

dn � qn�r=L; t=T�
qr

� dr9 qn
Lq�r=L� Rc � e qn

q�r=L� ' en :
�45�

At the same time, similar changes for the `fast' functions are

dO�l� �
qO�l�
qr
� dr9 qO�l�

Rcq�r=Rc� Rc �
qO�l�
q�r=Rc� ' O�l� : �46�

Therefore, when solving equations for O�l�, one may assume
that the functions g�1� and n, c and Y are constant and
independent of r.

5.3 Expansion in e
Substituting Eqn (42) and Eqn (44) into the BBGKY
hierarchy (28) and going over to dimensionless variables, we
get

w
qo1

qt
� e p1

m
� qo1

qr1
� ÿF�1� � qo1

qp1

� Z�1� ; �47�

w
qO1;...; l

qt
�
Xl
i�1

�
ÿpi

m
� qO1;...; l

qri
ÿ
�
ÿ dU1;...; l

dri
� ÿF1;...; �i�;...; l

ÿ F�i�
�� � qoi

qpi

� dU1;...; l

dri
� qO1;...; l

qpi

� ÿZ1;...; �i�;...; l ÿ Z�i��� :�48�
In these equations the collective force F1;...; �i�;...; l which acts
upon particle i from the side of the rest Nÿ l particles in the
system where the coordinates of particles 11; . . . ; i; . . . ; l are
fixed is

F1;...; �i�;...; l � ÿ n0

P3
�
G�N�

dFi; l�1
dri

gl�1

� exp
�
O1;...; l�1 ÿ O1;...; l

�
d�l� 1� : �49�

The functions

Z1;...; �i�;...; l �
n0

P3
�
G�N�

dFi; l�1
dri

gl�1

� exp
�
O1;...; l�1 ÿ O1;...; l

� qO1;...; l�1
qpi

d�l� 1� ; �50�

which also appear in Eqns (47) and (48), have the meaning of
sources of correlation entropy (I am not going to dwell upon
this matter, referring the reader to Ref. [2]).

Since the BBGKY hierarchy now involves the parameters
e and w, it can be solved by means of expansion in these
parameters. Before doing this, it is expedient to set e � w,
since these parameters are of the same order of magnitude:

e ' 10ÿ7ÿ10ÿ10 ; w ' 10ÿ8ÿ10ÿ12 : �51�

This done, we set

o1 � o�0�1 � eo�1�1 � . . . ;

g1 � g�0�1 � eg�1�1 � . . . � g�0�1 �1� eo�1�1 � . . .� ;
O1;...; l � O�0�1;...; l � eO�1�1;...; l � . . . �52�

and proceed in the standard manner: substitute these
expansions into Eqns (47) and (48) and collect similar terms
Ð that is, follow the regular prescriptions of the perturbation
theory.
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5.4 Comments
To end this section, I would like to emphasise once again that
the purpose of expansion consists not only (and not so much)
in simplifying the BBGKY hierarchy. Rather, it serves to
select the groups of those equations which really describe
physical processes. In this respect, on the way towards
constructing the theory the expansion is a step as fundamental
as is, for example, the transition from the Liouville equation
to the BBGKY hierarchy.

6. Thermodynamic equilibrium

We start our study of the expansion in e by analyzing the
terms of the zero order, which, as we shall demonstrate,
describe the state of local thermodynamic equilibrium.

6.1 BBGKY hierarchy in the zero order in e
In the zero order in e we simply drop in Eqns (47) and (48) all
terms containing e and w. Taking into account the symmetry
of all functions with respect to subscript inversion, which
follows from the symmetry of the initial Hamiltonian of the
system (17), we may drop the summation sign in Eqn (48).
Then we get

ÿ F
�0�
�1� �

qo�0�1
qp1

� Z�0��1� � 0 ; �53�

ÿ p1

m
� qO

�0�
1;...; l

qr1
ÿ
�
ÿ dU1;...; l

dr1
� F

�0�
�1�;...; l

�
� qo

�0�
1

qp1

� dU1;...; l

dr1
� qO

�0�
1;...; l

qp1

� Z�0��1�;...; l � 0 : �54�

Our manipulations, however, do not end at this point.
Observe first that the collective force F

�0�
�1� which acts upon

particle 1 from the side of all the other Nÿ 1 particles of the
system, is the total force acting on this particle, since there are
no other forces in the equation of the zero approximation
(53). This force must be equal to zero, because otherwise
particle 1 would have started moving under the action of this
force. This would eventually change the density of matter,
which is forbidden since equations (53), (54) do not depend on
the time. Accordingly, we must set F

�0�
�1� � 0, whence

g�0��1� � expfo�0�g � exp

�
ÿ�pÿm p�2

2m ~Y
� ~o

�
; �55�

where ~o, ~Y, p are the arbitrary integration constants which
can be found from Eqn (32) ± (34):

~o � ln
n �r; t�
n0

; p � c�r; t� ; ~Y � Y�r; t� ; �56�

where n, c and Y are the exact values of the hydrodynamic
variables{.

The slow dependence of n, c and Y on r=L and t=T,
defined by these formulas, does not contradict the assump-
tion that they remain constant with respect to the fast
variations of r=Rc and t=t as used in solving the equation
F
�0�
�1� � 0 (recall that n, c and Y are constant to within the

terms of the order of e, which in the zero approximation are
dropped).

A second simplifying assumption is that not only the force
F
�0�
�1�, but also all sources of local entropy must be equal to

zero, because otherwise the local entropy would have been
time-dependent, contrary to the zero-approximation equa-
tions. From condition Z�1�;...; l � 0 it follows that

qO�0�1;...; l
qp1

� 0 ; l5 2 : �57�

As a result of these simplifications, the equation for the one-
particle distribution function becomes an identity 0 � 0, and
the equations for the higher functions take the form of
equations of balance of forces acing upon particle 1 in the
system where the coordinates of particles 1; . . . ; l are fixed:

Y
qO�0�1;...; l
qr1

� ÿ dU1;...; l

dr1
� F

�0�
�1�;...; l ; l � 2; 3; . . . ; 1 : �58�

Indeed, on the right-hand side of Eqn (58) we have the
`individual' force ÿ dU1;...; l= dr1, which acts on particle 1
from the side of all fixed particles, and the `collective' force

F
�0�
�1�;...; l � ÿn

�
V

dF1; l�1
dr1

exp
ÿ
O�0�1;...; l�1 ÿ O�0�1;...; l

�
d3rl�1 ;

�59�

which acts upon particle 1 from the side of those Nÿ l
particles of the system whose coordinates are involved in the
averaging. These forces are counterbalanced by the force of
thermal motion of the particles ÿYdO�l�= dr1 on the left-
hand side of Eqn (58).

6.2 Gibbs distribution, theory of fluids
and the first law of thermodynamics
The potential of pairwise interaction F�r� under the integral
in Eqn (59) is usually modelled by the Lenard-Jones potential

F�r� � 4l
��

s
r

�12

ÿ
�
s
r

�6�
; �60�

where l is the energy constant, and s is the effective diameter
of particles. Hence it follows that with r5RF ' �5ÿ10� s the
integral becomes practically equal to zero. Because of this, the
integral in Eqn (59) is usually taken not over the entire volume
V, but rather over the sphere of radius RF. Assume that this
sphere contains MF densely packed particles. Then the
particle whose number is l �MF � 1 falls outside of the
sphere of radius RF, and will therefore not contribute to the
collective force. Because of this, the difference
O1;...; l�1 ÿ O1;...; l will cease to depend on l when l >MF, and
the collective forceF

�0�
�1�;...; l will vanish because the integrand in

Eqn (58) contains an odd function of r. Then the BBGKY
hierarchy becomes

dO�0�1;...; l
dr1

� ÿ 1

Y
dU1;...; l

dr1
;

whence

O�0��l� � ÿ
U1;...; l

Y
; l >MF : �61�

{Recall that averaging in the Gibbs ensemble must always be carried out
with strictly fixed values of these variables.
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Monte-Carlo numerical calculations confirm the conclusion
that at

l >MF '
�
RF
s

�3

' 1000

the BBGKY hierarchy takes the form of Eqn (61): they
indicate that in this case the result ceases to depend on the
number of particles l in the cell.

Now let us consider a physically infinitesimal volume
dV ' �dR�3. We assume that its diameter is dR4RF, and at
the same time dR5L (the latter ensures that the values of the
hydrodynamic variables within dV can be assumed to be
constant). The matter outside of the volume dV will be
referred to as thermostat, whereas inside is the system of M
particles under investigation. As follows from Eqn (61) and
Eqns (55) and (56), theM-particle distribution function of the
system is

g�M� � exp

�
ÿH1;...;M

Y
� ~O

�
; �62�

and is thus the local Gibbs distribution (~O in Eqn (62) is the
normalisation constant). A standard procedure, proposed by
Gibbs himself, can be used for deriving the fundamental
thermodynamic equation YS�M� � E�M� ÿ F�M� (where
S�M�, E�M� and F�M� are, respectively, the entropy, the
internal energy, and the free energy of the volume dV),
whence follow all the identities of thermodynamics which
are implications of its first law. Generally speaking, if g�M� is
known, it is possible not only to derive all the identities, but
also to calculate all the relevant variables (which is done, for
instance, using the Monte-Carlo method). Along with this, it
is possible to transform the equilibrium BBGKY hierarchy
(58) into the Ornstein ± Zernike equation for the two-particle
distribution function g�2� and seek solution of this equation.
This approach leads to the so-called statistical theory of
fluids, which has a number of definite advantages over the
methods of numerical experiment.

6.3 Comments
Even the analysis of the zero approximation in e indicates that
we are on the right track. Indeed, equation (56) has enabled us
to eliminate the nonphysical constant n0 from the equilibrium
hierarchy (53) and (54), replacing it with the local density
n �r; t�. As will be shown below, the same applies to all higher
approximations in e. More than that, we have used the local
Maxwell distribution (55) to introduce into the hierarchy the
local temperature Y �r; t� which has the meaning of the
kinetic energy of thermal chaotic motion of particles. Finally,
in the zero approximation in e the time derivatives have
disappeared from equations of the hierarchy Ð hence, it is
no longer necessary to solve the Cauchy problem and to
formulate the initial conditions for the distribution functions.
Rather than that, we describe the system with the aid of the
local Gibbs distribution, which is known to occupy the
maximum possible volume in the phase space and thus to
perform automatically averaging of the parameters of the
matter over the largest possible number of microscopic states
of the system, compatible with the given values of hydro-
dynamic variables. To conclude, from arguments developed
above it follows that equilibrium described by the BBGKY
hierarchy in the zero order is, generally speaking, local rather
than global thermodynamic equilibrium.

7. BBGKY hierarchy in the first order in e

7.1 System of Eulerian transport equations
In the preceding section we made a tacit assumption that the
values of hydrodynamic variables are knownÐotherwise the
solution of the zero-approximation equations would have
been not possible because the BBGKY hierarchy in the zero
order in e involves the density n �r; t� and the temperature{
Y �r; t� as independent parameters. Obviously, before solving
the equations of the hierarchy, one has to define the local
values of these parameters in some way or other. They can
only be found from equations of balance (35), (36), and (37)
which describe processes on the scale of the entire macro-
scopic system.

The solution of equations of balance must start with the
expansion of the latter in e. Since in the zero approximation in
e we assumed that the exact values of n, c and Y are known
(see Eqn (56)), the left-hand sides of equations of balance need
not be expanded{; it is only the right-hand sides that are to be
expanded in e. It is easy to prove that in the zero approxima-
tion in e the stress tensor Pab � dabP�0�, where P�0� �n; Y� is
the equilibrium pressure whose value can be calculated, for
example, with the methods of the statistical theory of fluids.
In the same zero approximation, the heat flux J in Eqn (37) is
found to be equal to zero. As a result, the equations of balance
(35) ± (37) reduce to the set of five Euler equations in five
unknown hydrodynamic variables:

qn
qt
� q�nca�

qra
� 0 ; �63�

n
d�mca�
dt

� ÿ qP
�0�

qra
; a � x; y; z ; �64�

n
d

dt

�
3

2
Y
�
� 0 �65�

(in hydrodynamics it is usually assumed that
P�0� � P�0� �n; Y� rather than n � n�P�0�; Y�, but currently
this does not concern us).

The BBGKY hierarchy can also be used for deriving,
apart from the equations of balance in n, c and Y, the
equation of balance for the local entropy (38), as well as a
number of other relations, like the equation of balance of
potential energy e�F�:

n
de�F�

dt
� ÿ qI

�F�
a

qra
: �66�

Now what information do they carry? Using equation (56),
which defines g�1� in the zero approximation, and the
expressions which link I�s�, I�F� and q to the distribution
functions, it is easy to show that in the zero approximation
these equations assume the form

{Generally speaking, the equations in the BBGKY hierarchy ought to

involve also the mass velocity c�r; t�. In the zero approximation in e,
however, this velocity is assumed to be constant, and, according to

Galileo's relativity principle, the physical properties of a system do not

depend on the constant velocity at which this system is moving.

{I would like to remind once more that n, c and Y are precisely those

parameters which are assumed to be fixed when one formulates the notion

of `the ensemble of Gibbs copies'.
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n
de�F�

dt
� 0 ; n

ds

dt
� 0 ; �67�

where

n
dA

dt
� q�nA�

qt
� q�canA�

qra

and A may denote both e�F� and s. So it turns out that in the
zero approximation in e the isolines ofY, e�F� and s are kind of
frozen into the corresponding elements of the volume of the
fluid dV, and drift in the space together with these elements.
This implies that the moving isolines of the internal energy

e � 3

2
Y� e�F�

and the entropy s do not obey the laws of thermodynamics
derived in Section 6. Indeed, assume that at the time t � 0 the
functions Y�r; 0�, e�F��r; 0� and s �r; 0� were constant over
the volume of the system. From Eqn (67) it follows that they
will remain constant at any other time t > 0. On the other
hand, from thermodynamics it follows that

de � Y
kB

ds� P�0�
dn

n2
;

which complies with the condition de � ds � 0 only if
dn � 0. The condition dn � 0, however, can only be satisfied
in the approximation of incompressible fluid; in the more
realistic models of matter we have n �r; t� � var, and the
thermodynamic relations are incompatible with the transport
equations. This incompatibility is not accidental.

The cause of incompatibility is that the processes
described by the transport equations and the evolution of
thermodynamic parameters develop on different time scales.
We shall consider this in greater detail in Section 9; currently
we just note that, by definition, all the processes in the closed
isolated systems (which are the only object of our interest) end
by the time t � T, where T is the time of relaxation of the
system towards equilibrium. At the same time, the changes in
the thermodynamic parameters, which are dealt with in
thermodynamics, take place without violating the thermo-
dynamic equilibrium. This is only possible as long as they
occur over the time dt4T. This is the reason why the
thermodynamic phenomena just do not have enough time to
manifest themselves before the transport processes are
through. In other words, we must forget about thermody-
namics when studying the transport processes. At first this
statement may seem too radical. Recall, however, that all
macroscopic parameters in thermodynamics are functions of
n andY, and that thermodynamics establishes certain linkage
between the increments of these parameters. If we had taken
this linkage into account, the system of transport equations
would have been overdetermined, and would therefore have
no solution. Thus, in the zero approximation in e (that is, in
the Eulerian approximation) we must forget about equations
of balance (67).

And one final remark is as follows. We saw that the one-
particle distribution function must satisfy the normalisation
condition�

V

n �r; t� d3r � N

(see Eqn (31)). In the thermodynamic limit N � 1, and the
normalisation condition becomes meaningless. Its place is
taken over by the system of transport equations which defines

the values of density n at any point r and at any time t. The
structure of transport equations is such that their solutions
automatically satisfy all global conservation laws, including
the law of conservation of particles (which implies satisfying
the same normalisation condition).

7.2 BBGKY hierarchy in the first order in e
In this approximation, equation (47) for o�1� takes on the
form

qo�0�1
qt
� p1

m
� qo

�0�
1

qr1
� ÿF

�1�
�1� �

qo�0�1
qp1

� Z�1��1� : �68�

We are going to solve this equation by the method used by
Chapman and Enskog for solving the Boltzmann equation.
Since, according to Eqn (55),

o�0� � ln
n �r; t�
n0

ÿ
�
pÿmc�r; t��2
2mY�r; t� ; �69�

we may differentiate this expression with respect to t to
eliminate the time derivative qo�0�=qt from Eqn (68). With
this purpose, we differentiate Eqn (69) with respect to t, and
use the earlier obtained Euler equations to replace the
derivatives qn=qt, qc=qt and qY=qt with the derivatives with
respect to r. As a result, after some cumbersome calculations
we arrive at the following expression:

qo�0�1
qt
� p1

m
� qo

�0�
1

qr1
�
�
1ÿ 1

Y

�
qP�0�

qn

�
Y

�
p̂a
m

1

n

qn
qra

�
�

p̂2

2mY
ÿ 1

n

�
qP�0�

qY

�
n

�
p̂a
m

1

Y
qY
qra

� p̂ap̂b
mY

Dab �
�
p̂2

mY
ÿ 1

�
1

3

qca
qra

�
X4
k�1

X�k�x�k� ; �70�

where p̂ � pÿm c, x�k� are the gradients of hydrodynamic
variables,

x�1� � qn
qr

; x�2� � qY
qr

; x
�3�
ab � Dab ; x�4� � qca

qra
;

X�k� are the corresponding coefficients from Eqn (70), and

Dab � 1

2

�
qca
qrb
� qcb
qra

�

is the velocity deformation tensor.
Observe now that the equations of the first order in e are

linear with respect to the unknown variables o�1� and O�1��l� .
Accordingly, their solutionmay be sought as a sumof the four
solutions,

o�1� �
X4
k�1

c�k�1 x�k� ; O�1�1;...; l �
X4
k�1

C�k�1;...; l x
�k� ; �71�

where c�k� andC�k��l� are new unknown functions. Substituting
these expressions into Eqn (68), we come to the set of four
equations for c�k�1 :

X�k� � ÿF
�k�
�1� �

p̂1

m
� Z�k��1� ; �72�
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which, of course, must be supplemented by the relevant
equations for C�k��l� , l � 2; 3; . . . ; 1.

7.3 Comments
This section contains two nontrivial results: the first is that the
transport equations are incompatible with the relations of
thermodynamics, and the second is Eqn (71) which tells us
that the general solution of the BBGKY hierarchy in the first
order in e is a sumof four particular solutions, each of which is
proportional to its own gradient. This is a consequence of the
fact that the equations of the first order in e are linear with
respect to the unknown functions o�1� and O�1��l� . Since this
linearity with respect to o�k� and O�k��l� remains in the k
approximation in e, this additivity is the universal property
of the sought-for solution.

8. Transport equations

8.1 Navier ± Stokes ± Fourier transport equations
In order to obtain the transport equations in the first order in
e, we must go back to the exact equations of balance of
number of particles (35), momentum (36), and temperature
(37). Like in the case of the Euler equations, the derivatives of
hydrodynamic variables on the left-hand side of these
equations need not be expanded because they are equal to
their exact values; we only expand the right-hand sides of the
equations of balance which involve the stress tensor Pab and
the heat flux J � J�Y� � J�YF�. For example, let us consider
the kinetic component of the heat flux J�Y�, which, as we
readily surmise, has the form

J�Y� � n0

�1
ÿ1

p̂

m

p̂2

2m
g�1��r; p; t� d

3p

P3 ; p̂ � pÿm c :

�73�

Substituting here g�1� � g�0��1� �1� eo�1�� and using g�0��1� as
defined by Eqn (55), we get

J�Y� � n

�1
ÿ1

p̂

m

p̂2

2m
exp

�
ÿ p̂2

2mY

�
d3p

P3

� n

�1
ÿ1

p̂

m

p̂2

2m
exp

�
ÿ p̂2

2mY

�
o�1�

d3p

P3 : �74�

The first integral on the right-hand side is zero because of
the odd function p in the integrand; with the aid of Eqn (71)
the second integral can be represented as a sum of four
integrals:

J�Y�a � ÿ~m�n�
qn
qra
ÿ ~m�Y�

qY
qra
ÿ ~m�D�

b
Dab ÿ ~m�c�a

qcg
qrg

; �75�

where, for example,

~m�n� � ÿn
�1
ÿ1

p̂

m

p̂2

2m
exp

�
ÿ p̂2

2mY

�
w �1��p̂� d

3p

P3 �76�

(the remaining coefficients are obtained from Eqn (76) by
replacing w

�1�
1 with k � 2; 3, 4).

It is easy to demonstrate that the gradients in the
expansions of Pab and J�YF� can be factored out of the
integrals. As a result, we get

Pab � dabP�0� ÿ l�n�a
qn
qrb
ÿ l�Y�a

qY
qrb
ÿ l�D�Dab ÿ l�c�ab

qcg
qrg

;

Ja � ÿm�n� qnqra ÿ m
�Y� qY

qra
ÿ m�D�

b
Dab ÿ m�c�a

qcg
qrg

; �77�

where m�n� � ~m�n� � m~~�n�, etc.
In the case of multicomponent systems these relations

must be supplemented by similar formulas for the mass flow
of each component.

It is obvious that the above transport coefficients l and m
are functions of n and Y. At the same time, they exhibit no
explicit dependence on r and t; the dependence on the latter is
parametrical, since n � n �r; t� andY � Y�r; t�.

Substituting Eqn (77) into the initial equation of balance,
we get the generalised system of Navier ± Stokes ±Fourier
(NSF) transport equations, which holds up to the terms of the
order of e2:

qn
qt
ÿ q�can�

qra
� 0 ; �78�

n
d�mca�
dt

� ÿ qP
�0�

qra
� q
qrb

�
l�n�a

qn
qrb

�
� q
qrb

�
l�Y�a

qY
qrb

�
� q
qrb

ÿ
l�D�Dab

�� q
qrb

�
l�c�ab

qcg
qrg

�
; �79�

n
d

dt

�
3

2
Y
�
� q
qra

�
m�n�

qn
qra

�
� q
qra

�
m�Y�

qY
qra

�
� q
qra

ÿ
m�D�b Dab

�� q
qra

�
m�c�a

qcg
qrg

�
: �80�

In the case of multicomponent systems, these equations must
be supplemented by equations of conservation ofmass of the i
component, which are similar in structure to Eqn (80).

8.2 Comments
In a sense, the NSF equations are the culmination of the
theory. Accordingly, they deserve a lengthier comment.

The first thing thatdrawsourattention is that the transport
equationsconstituteaunifiedclosedsetof fiveequations in five
unknown hydrodynamic variables n, ca and Y. This is only
natural, since each of these has the meaning of a conservation
law:Eqn (78) is the conservationofmass (numberofparticles),
Eqn (79) is the conservation of momentum and Eqn (80)
expresses the conservationof kinetic energyof thermal chaotic
motion of particles (temperature). Obviously, these three laws
must hold simultaneously for anymacroscopic process, which
is ensuredby the systemof transport equations. It is interesting
that the entropy does not figure among the `fundamental'
hydrodynamic variables, since, unlike the mass, the momen-
tum and the temperature, it is not conserved (see the equation
ofentropybalance (38)which includes theentropysourceq). In
other words, the local entropy is no longer an integral of
motion. As noted above, the reason is that the correlation
sphere, which determines all the local parameters of matter, is
an open system which continuously exchanges particles,
momentum and energy with the environment. The principle
of conservation of entropy only holds for closed (completely
isolated) systems.

No less important is the fact that the system of transport
equations, together with equations of the BBGKY hierarchy,
gives a complete description of the system. Indeed, having
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solved the transport equations and found n and Y, one can
use the equations of the equilibrium theory to find the
distribution functions in the zero order in e which allow
calculating all thermodynamic parameters of the system.
Then, having solved the first-order equations with the
known n and Y, one can calculate all coefficients of transfer
with the aid of formulas of the type of Eqn (76).

From practical point of view, however, more important is
the fact that our system of transport equations is somewhat
different from the commonly used equations, since each of the
equations of our system involves terms containing the
gradients of all hydrodynamic variables (recall that the
conventional Navier ± Stokes equation contains terms pro-
portional only to Dab and qcg=qrg, and the conventional
Fourier heat transfer equations involves only the term with
qY=qr). This implies that our equations describe cross effects,
neglected by the conventional transport equations.

The above derivation of transport equations also clarifies
their physical meaning. For example, the heat transfer
equation (80) is usually treated as the equation of balance of
heat, whose increment is given by

dQ �
�Y
Y0

CV�n; Y� dY ; �81�

where

CV � Y
kB

�
qs
qY

�
n

is the heat capacity at constant volume. Actually, Eqn (80)
has the meaning of the equation of balance of temperature Ð
that is, of the kinetic energy of thermal chaotic motion of
particles Ð and does not involve CV.

Observe finally that all the results obtained above are
based on the expansion in e � Rc=L. Alternatively, this
expansion may be regarded as expansion in the gradients of
hydrodynamic variables, because the zero approximation in e
corresponds ton,candY � const, the first approximation in e
corresponds to the linear values of these gradients, and so on.

9. The second law of thermodynamics

Our discussion of the theory of nonequilibrium processes
would have been incomplete if we had not touched upon the
problem of entropy increase. Early in this century this
problem attracted keen attention; these days the interest has
subsided considerably, not because the problem had been
solved, but rather because everyone got used to the thought
that this problem has no solution{. I believe, however, that
such pessimism is hardly justified. In order to explain,
however, how one can marry up the two seemingly incompa-
tible statements Ð the conservation of entropy which follows
from the laws of mechanics, and the entropy increase
according to the second law of thermodynamics Ð it is
necessary to perform a comprehensive analysis of founda-
tions of the latter. This is what we are going to do.

9.1 Static and dynamic processes
The first and the second laws of thermodynamics are some-
times supplemented by the so-called `zero law', which states

that any closed isolated system gradually evolves to the state of
thermodynamic equilibrium, and in no circumstances will
spontaneously (that is, without external aid) leave it.

As a matter of fact, this law is equivalent to the second
law, because it establishes the direction of evolution of the
system. We shall see that it is this formulation of the second
law that is better suited for the purposes of statistical
mechanics.

Assume that the equilibrium mentioned in the zero law is
established over the time T (time of relaxation of the system
towards equilibrium). This time marks a natural watershed
between two types of processes, the static processes and the
dynamic ones. Obviously, if at t � t0 we start to change the
external parameters of the system (volume V, surface
temperature Ys, etc.), this will eventually result in the
exchange of energy between the system and the environment.
This exchange may proceed either very slowly Ð over the
time

dt � tÿ t04T �82�
(quasistatic, or, for short, static processes), or quicklyÐ over
the time

dt � tÿ t09T �83�

(dynamic processes). In the first case the system, having
received a dose of external energy dEext, has enough time to
come back to the state of thermodynamic equilibrium, which
implies that constant pressure n and constant temperature Y
are established throughout the entire volume of the system.
Since all thermodynamic parameters of the system at equili-
brium are functions of n and Y, we can make a more general
statement: in the course of static processes, the values of all
thermodynamic parameters of the system are always constant
throughout its volume and therefore do not depend on the
spatial coordinate r. Of course, the parameters still depend on
the time t, because otherwise nothing would have changed in
the system, and the system would have been at absolute rest.
In static processes the functions

n � n�t�; Y � Y�t� �84�
may be arbitrary, since they are governed by the external
parameters of the system. It is only important that they
change slowly:

1

n

dn

dt
5

1

T
;

1

Y
dY
dt
5

1

T
: �85�

If all thermodynamic parameters are constant throughout
the volume of the system V, then the gradients of all
thermodynamic parameters in the course of static processes
are always equal to zero,

qn
qr
� qY
qr
� qP

�0�

qr
� . . . � 0 ; �86�

which in turn implies that static processes do not give rise to
any transport processes (recall that the flows of mass,
momentum and energy are always proportional to the
gradients of hydrodynamic variables; if the gradients are
zero, the flows are zero as well). Thus, in the course of static
processes the energy is only exchanged with the environment,
which is the agency that gives rise to all processes that take
place in the system. There is no exchange of energy between
different parts of the system itself. Because of this, each
elementary volume of the system dV is practically isolated

{To quote from Landau and Lifshits, ``It is unlikely ... that the law of

entropy increase could ever be derived on the basis of classical mechanics''

[4].
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from the rest, and the system seems to consist of separate
`bricks' which do not interact with one another.

Of course, gradients exist in the system no matter how
slow the action is, because otherwise the disturbance would
not be able to propagate across the volume of the system,
and so our neglect of the gradients is an idealisation.
However, as implied by the transport equations and convin-
cingly confirmed by experiments, this idealisation is the
closer to reality, the slower the exchange of energy with the
environment is; it becomes perfectly true in the limit of
infinitely slow processes.

If the processes of exchange with the environment are fast
enough (that is, if conditions (85) do not hold), then the
gradients can no longer be neglected. The nature of all effects
is changed dramatically, since the existence of gradients gives
rise to the flows ofmass, momentum and energyÐ that is, the
exchange processes between adjacent elements of the volume
of the system dV. As a result, the additivity, which is
characteristic of the static processes, is violated, the system
ceases to be a collection of noninteracting `bricks' and
becomes a whole. Each of the `bricks' dV contributes to the
evolution of the other `bricks' dV 0. It is important that this
contribution depends not only on the state of dV 0 at the given
time t, but also on its state at the earlier times t 0 < t, because
the signal from dV 0 reaches dV with a certain lag. Because of
this, the system becomes sluggish, the external perturbation
propagates at a finite speed Ð in other words, we observe
effects which were not present in case of static processes. In
essence, this is explained by the fact that the response of the
system to fast dynamic action is determined by those degrees
of freedom of the system which had been blocked in case of
slow static processes. This is the reason why, for example, the
concept of transfer coefficients is not used in the theory of
equilibrium processes: they have no effect on the properties of
equilibrium systems. We start our analysis of dynamic and
static processes with the latter.

9.2 Global static entropy
In thermodynamics, the system under investigation is
regarded as a kind of `black box' capable of exchanging
energy with the environment. Only a small number of the
external parameters of the system is assumed to be known: the
volume V, the surface temperature Ys, the amount of energy
supplied to the system dE ext, etc. The task of thermody-
namics is to gain as much information about the `black box'
as possible with the minimum number of assumptions on the
properties of matter inside the box. In case of static processes
this is done with the aid of the energy conservation law (the
first law of thermodynamics).

The energy conservation law states that the external
energy dE ext supplied to the body is always equal to the
increment of the internal energy dE int. Assuming that
dE ext � dW� dQ, where dW is the mechanical work, and
dQ is the heat, we get

dE ext � dW� dQ � dE int
�N� : �87�

It is proved in thermodynamics and confirmed by statistical
mechanics that

Y dS�N�
��
V
� kB dE

int
�N� : �88�

Since dW � 0when dV � 0, we combine Eqn (87) and (88) to
get

dS�N�
��
V
� kB

dQ

Y
: �89�

Now we use Eqn (89) to eliminate dQ from Eqn (88) and
obtain the final formulation of the first law of thermody-
namics:

Y dS � kB
ÿ
dE int
�N� � dW

�
: �90�

If we now compare the resulting expression for the
increment of entropywith the second law of thermodynamics,
we immediately see that it is the `wrong' entropy. Indeed, by
the second law of thermodynamics the entropy can only
increase, whereas the static entropy S�N� as defined by Eqn
(90) may either increase or decrease depending on whether we
supply heat to the body � dQ > 0� or take it away � dQ < 0�.
Therefore, let us continue our analysis.

9.3 Global dynamic entropy
So far we have been considering open systems capable of
exchanging energy with the environment throughout the
entire time taken by a given process. Let us now turn to
closed isolated systems which can only host spontaneous
processes leading to thermodynamic equilibrium (the zero
law of thermodynamics). By definition, that latter are always
dynamic processes since they come to an end by the time
t � T, where T is the relaxation time. Because of this, the
analysis of closed isolated systems is equivalent to the analysis
of dynamic processes.

We start with a more precise definition of the concept of a
`closed system'. Systems which are once and for all isolated
from the outside world are of no interest to us because they
always are in the state of thermodynamic equilibrium (any
deviations would have long relaxed to equilibrium). There-
fore, the term `closed isolated systems' will refer to such
systems which are `closed' for external action only for the
duration of the dynamic processes Ð that is, at 04 t4T. At
t < 0 the system is assumed to be open, which allows us to use
external forces for `preparing' the desired initial distribution
(generally speaking, nonequilibrium). We also assume that
the system is open after the process is through (at t > T),
which will permit us to study the outcome of the process. In
this way, our system is a `black box' only at 04 t4T, at all
other times it is open. This definition of the `black box'
obviously differs from the one we used in Section 8. Such
systems, however, are of special interest to us, because it is
only such systems that are considered by nonequilibrium
statistical mechanics (see Section 3).

So, let us consider a closed system, in which by the time
t � 0 we have `prepared' a nonequilibrium initial state. When
we `close' the system, it begins to evolve spontaneously from
the initial (nonequilibrium) state to the final equilibrium
state. Its total energy E remains constant in the course of
this evolution, and the work W done by the system on the
external bodies is zero. According to (90), the increment of
global entropy dS�N� in such process must also be equal to
zero. Thermodynamics, however, argues (and this is con-
firmed experimentally) that by the time t � T the entropy of
the system always increases. This statement can be easily
proved: when the system comes to equilibrium and is `opened'
again, we can bring it back to the initial state using quasistatic
(that is, infinitely slow) action and compare its initial entropy
S
�0�
�N� with the final entropy S�N�. The result will always be the

same:
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dS�N� � S�N� ÿ S
�0�
�N� > 0 : �91�

How can we explain this? I believe that there is only one
answer: the energy conservation law in the form of Eqn (90)
only holds for infinitely slow static processes, whereas a
closed system, by definition, can only host fast dynamic
processes. The arising contradiction can only be explained
by the different rates of static and dynamic processes.

To formalise this statement, we introduce the concept of a
certain infinitely large time T1 � 1 which can be identified
with the time of completion of the static process. It is obvious
that

t5T5T1 ; �92�
where t is the characteristic microscopic time, and T is the
macroscopic time of relaxation of the system towards
equilibrium. The superfast microscopic evolution towards
equilibrium within the correlation sphere occurs at t9t, the
dynamic processes in the macroscopic system take place on
the scale of

t9t9T �93�
and superslow static processes correspond to

T5 t5T1 �94�

Accordingly the global entropy can be split into two parts:

S�N��t� � S st
�N�

�
t

T1

�
� S din

�N�

�
t

T

�
: �95�

If t satisfies inequality (93), then t=T1 ' 0,
S st
�N��t=T1� ' S st

�N��0� ' const, whereas Sdin
�N��t=T� � var. In

this case

dS�N��t� � dSdin
�N�

�
t

T

�
> 0 ; dS st

�N�

�
t

T1

�
� 0 : �96�

If t satisfies inequality (94), then, conversely,
S din
�N��t=T� ' Sdin

�N��1� � const, and

dS�N��t� � dS st
�N�

�
t

T1

�
� kB
Y

�
dE int
�N�

�
t

T1

�
� dW

�
t

T1

��
; dSdin

�N� � 0 : �97�

We see that Eqn (95) unites both laws of thermodynamics.
The assumed additivity of static and dynamic entropies is the
consequence of the fact that different degrees of freedom of
the system are responsible for static and dynamic processes
(see Section 11).

9.4 Local dynamic entropy
Let us define the local dynamic entropy by an obvious
relation

Sdin
�N�

�
t

T

�
�
�
V

n

�
r

L
;
t

T

�
s din
�

r

L
;
t

T

�
d3r : �98�

In the course of dynamic processes the local entropy can not
only move from one location to another, it can also be
generated, since otherwise it would be impossible to satisfy
the inequality dS din

�N� > 0. Therefore, the equation of balance
of local dynamic entropy (cf. Eqn (38)) is postulated in

thermodynamics of irreversible processes:

n
ds din

dt
� ÿ qI

din
a

qra
� qdin : �99�

Integrating the latter over the volume of the system V, we get

qS din
�N�
qt
�
�
V

qdin
�

r

L
;
t

T

�
d3r > 0 : �100�

This inequality holds either when for any r and t we have

qdin
�

r

L
;
t

T

�
5 0 ; �101�

or when�
V�

q�

�
r

L
;
t

T

�
d3r > ÿ

�
ÿV

qÿ

�
r

L
;
t

T

�
d3r ; �102�

where q�5 0, qÿ4 0.
In the first case the chaos is assumed to grow at every

point of the system; in the second case the global growth of
chaos, as indicated by the general increase in the entropy, may
be accompanied by a local advance of order (like the
emergence of crystallisation nuclei in supercooled liquid, or
creation of biological structures in solutions).

Inequality (101) is postulated in thermodynamics of
nonequilibrium processes and held as something like a
universal truth: since all the processes in Nature are accom-
panied by the increase in entropy, inequality q > 0 indicates
the direction of their development (or, metaphorically,
`defines the arrow of time'). Undoubtedly, the global entropy
of a closed isolated system will always increase. This does not
mean, however, that the same applies to the local entropy.
Moreover, this last statement cannot be proved within the
framework of thermodynamics. Indeed, during the entire
dynamic process, which is only when the entropy can be
generated, the system remains closed for external action. At
the same time, the values of global entropy measured before
commencement and after completion of the dynamic process
(that is, at t < 0 and t > T) tell us nothing about the changes
of local entropy in the course of the process. Even if we
`opened' the system at 04 t4T, we could still say nothing
about the behaviour of the local entropy, because the
equilibrium thermodynamics does not supply us with the
tools for measuring the entropy of nonequilibrium systems.

Statistical mechanics seems to favour the second (less
trivial) assumption, because it states that the value of q is
proportional to the first power of gradients of hydrodynamic
variables (see Eqn (107)). So the sign of qmay change when a
gradient changes its sign (thismatter, however, call for further
investigation).

9.5 Entropy in statistical mechanics
Let us now try to compare thermodynamic and statistical
entropies. The difficulty become obvious at once: it is only the
global entropy that is clearly defined in thermodynamics; we
know little about the local entropy. Conversely, in statistical
mechanics the global entropy S�N� does not seem to exist: in
the thermodynamic limit it goes to infinity, and the only
entropy-like quantity is the local entropy s �r; t�. Never-
theless, this juxtaposition is useful because it will help to
clarify the physical meaning of the concept of entropy.

We shall start our discussion of entropy with the analysis
of another integral of motion, the global internal energy E�N�.
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From the fact that this energy is always constant in closed
isolated system it does not yet follow that the structure of this
parameter remains unchanged in the course of dynamic
processes. Indeed, substituting the definition of Hamiltonian
(17) into Eqn (19) for E�N�, we find that E�N� is the sum of the
mean values of kinetic and potential energy. It is obvious that
one kind of energy in nonequilibrium systems may transform
into the other. Since, by definition, the kinetic energy is

E kin
�N� /

�
p2

2m
g�1� d�1� ;

and the potential energy is

E
�F�
�N� /

�
Fg�2� d�1� d�2� ;

the conversion of one type of energy into the other must be
accompanied by the redistribution of energy with respect to
correlations. If we had defined the potential energy of the
system U�N� not as a sum of the two-particle potentials,
U�N� �

P
Fi j, but had included also the three-particle poten-

tials Fi j k, four-particle Fi j k l, etc, setting

U�N� �
X
i j

Fi j �
X
i j k

Fi j k � . . .� F1;...;N ;

then the flow of energy would not have been cut short at the
second correlation (that is, atg�2�), but rather would continue
further up to g�N�.

So we see that a flow of energy with respect to correlations
is possible in nonequilibrium closed systems. A similar flow
arises in the case of entropy. To find it, we set

O�N� �
X
i j

oi j �
X
i j k

oi j k � . . .� o1;...;N :

Substituting this expression into the definition of global
entropy (21), we get

S�N� �
XN
l�1

S�l��t� ;

where

S�l��t� /
�
o1;...; l g1;...; l d�1� . . . d�l� :

Differentiating S�l� with respect to t, and defining the
derivatives qg�l�=qt with the aid of the BBGKY hierarchy,
we write the increment of the l-particle global entropy S�l� in
the form

dS�l�

dt
� J �lÿ1� ÿ J �l� ;

where

J�l� /
�
qF1; l�1
qr1

� qo1;...; l�1
qp1

g1;...; l�1 d�1� . . . d�l� 1�

and J �0� � J �N� � 0. Hence directly follows the law of
conservation of global entropy (20), since

dS�N�
dt
�
XN
l�1

dS �l�

dt
� ÿJ �0� ÿ J �1�

�� ÿJ �1� ÿ J �2�
�� . . .

� ÿJ �Nÿ1� ÿ J �N�
� � J �0� ÿ J �N� � 0 :

This is only natural, because the BBGKY hierarchy had been
obtained from the Liouville equation.

Let us now introduce the concept of the local correlation
entropy, which will be defined as

S �l��t� �
�
V

n �r; t� s�l��r; t� d3r :

Differentiating s�l� with respect to t, and replacing the
derivatives qg�l�=qt with the aid of the appropriate equations
of the BBGKYhierarchy, we get the local law of conservation
of correlation entropy:

n
ds�l�

dt
� ÿ qI

�l�
a

qra
� q�l� :

Since the total local entropy is

s �r; t� �
XN
l�1

s�l��r; t�

and

I �s� �
XN
l�1

I�l� ; q�s� �
XN
l�1

q�l� ;

by adding together the equations in ds�l�= dt we get equation
of balance (38) for the total local entropy (cf. also Eqn (99)).

We saw that all the processes are determined by what
happens within the correlation sphere. This completely
applies to the local entropy. Since the entropy S �l� is
proportional to the integral of o�l�, S �l� goes to zero at
l5M, where M is the maximum number of particles within
the correlation sphere, because o�l� � 0. Therefore,

dS �l�

dt
� J �lÿ1� ÿ J �l� �

�
V

q�l��r; t� d3r � 0 at l5M :

Hence it follows that

~J � J �lÿ1� � J �l� � const at l5M :

The condition J �l� � ~J, however, cannot be satisfied at l � N,
because, by definition, J �N� � 0. Therefore,

dS �N�

dt
� J �Nÿ1� � ~J 6� 0 :

To better understand the physical meaning of this equation,
we note that

S�N� �
XNÿ1
l�1

S �l��t� � S �N��t� � const

and hence

dS �N�

dt
� ÿ

XNÿ1
l�1

dS �l�

dt
' ÿ

XM
l�1

dS �l�

dt
� ÿ dS �M�

dt
; �103�

where

S �M� �
XM
l�1

S �l� :

We see that the N-particle correlation entropy consumes all
the surplus entropy generated inside the correlation sphereÐ
that is, at l4M. The source of entropy (the correlation
sphere) turns out to be extremely far removed from the sink
(the N-particle correlation), because M9103, and N ' 1023.
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All intermediate correlations with the numbers
M < l < Nÿ 1 act as conduits of the entropy, which transmit
the latter without loss from the source to the sink. It is
important that the nature of the source and the sink is
different: the capacity of the source depends on what is
going on inside the correlation sphere, and the capacity of
the sink is governed by the response of the entire system.
Upon transition to the thermodynamic limit, the `sink' goes
to infinity and disappears. The remaining global entropy
related to one particle needs no longer to be constant:

�s�t� � lim
N!1

XM
l�1

S �l��t�
N
� var :

This removes the main obstacle in the way of the mechanistic
foundation of the laws of thermodynamics: the mechanical
entropy ceases to be a constant quantity.

Let us now return to the equation of balance of local
entropy (38). Expanding this equation in e, we found that
s�0� � const in the zero approximation. Since, however, the
zero-approximation equation itself only holds when t9T
(this follows from the fact that equilibrium is established is a
closed isolated system at t0T, and Eqn (38) degenerates into
an identity 0=0), the condition s�0� � const also holds only
for t9T. When t4T (that is, in the course of static
processes), the local entropy may change. All this prompts
us to identify the latter with the static entropy:

s�0��t� � sst
�

t

T1

�
: �104�

At the same time, fromEqn (38) in the first order in e it follows
that

n
ds�1�

dt
� ÿ qI

�1�
a

qra
� q�1� :

Since this equation describes variations of the local entropy
over distances of the order ofL and time of the order ofT, the
function s�1� as defined by this equation must be identified
with the dynamic entropy:

s�1��r; t� � sdin
�

r

L
;
t

T

�
: �105�

Thus, from the expansion in e it follows that

s �r; t� � sst
�

t

T1

�
� sdin

�
r

L
;
t

T

�
; �106�

which obviously coincides with the purely thermodynamic
formula (95).

The above-defined global dynamic entropy Sdin
�N� � N �s din

may, of course, vary with the time. So far, however, we have
no evidence that it always increases in accordance with the
second law of thermodynamics. It does not seem likely,
however, that any controversy could arise on this matter.
Moreover, I believe that the proof of increasing entropy is not
too important for the construction of self-consistent statis-
tical theory.

As a matter of fact, in the first order in e (as well as in all
higher orders) the substitution of solution (71) of the BBGKY
hierarchy into the right-hand side of Eqn (38) results in the
expression

n
dsdin

dt
�
X4
k�1

�
ÿ q
qra

ÿ
g�k� x

�k��� q�k� x�k�
�
; �107�

in which g�k� and q�k� are found by solving the BBGKY
hierarchy in the first order in e, and the gradients x�k� can be
found from the transport equations. This implies that the
right-hand side of Eqn (107) is a known function of r and t,
and so the calculation of sdin�r; t� reduces to simply taking the
integral with respect to t. The latter implies that the leading
role in the tandem `transport equations ± entropy' belongs to
the transport equations which define the right-hand side of
Eqn (107) and thus the local entropy. If it can be proved that
the transport equations admit solutions which comply with
the zero law of thermodynamics, then we need not care about
the entropy: it will always behave properly. In particular,
from Eqn (107) it follows that when the system arrives at
thermodynamic equilibrium and all the gradients vanish, the
dynamic entropy also ceases to grow.

9.6 Comments
In equilibrium thermodynamics, the entropy S�N� and the
internal energy N�N� are the two fundamental quantities,
while in the theory of nonequilibrium phenomena the entropy
occupies a secondary place. Why?

In mechanics there are just three quantities Ð the mass
(the number of particles), the momentum and the energy Ð
whose values must always be conserved. In addition, there is
the entropy (the logarithm of the phase volume of the system)
whose value must remain constant, but only in case of closed
isolated systems. In open systems the entropy is not con-
served. As a matter of fact, this gives the answer to our
question.

At equilibrium, from transport equations, which have the
meaning of conservation laws for mass, momentum and
energy, it follows that the values of all five hydrodynamic
variables (that is, n, ca, and Y) must be constant throughout
the entire volume of the system. According to Galileo's
relativity principle, however, the physical parameters of
matter which is at rest in an inertial system of coordinates
cannot depend on the velocity at which this system is
moving. Therefore, the number of independent parameters
which define the state of matter reduces from five to two, n
and Y. In particular, the local internal energy and the local
entropy are also found to be functions of n and Y:
e � e�n; Y�, s � s�n; Y�. If n and Y are constant, the global
conservation laws for internal energy and entropy, which
hold for any closed isolated system, are automatically
satisfied.

Recall now that equilibrium thermodynamics is in fact
always concerned with closed isolated systems, whose state is
determined by three global parameters{ N, E�N�, and S�N�.
Since the local values of e�n; Y� and s�n; Y� are constant
throughout the volumeof the system, the equationsE�N� � Ne
andS�N� � Ns establish a one-to-one correspondence between
global (E�N� and S�N�) and local (e and s) parameters. Because
of this, uniquely defined are also the derivatives of the global
variables with respect to n and Y, which are in fact the main
subjectof thescienceof thermodynamics.Andsince it isalways
possible to invert the equations E�N� � E�N��n; Y� and
S�N� � S�N��n; Y�, representing them as n � n �E�N�; S�N��
and Y � Y�E�N�;S�N��, it is clear that the two global para-

{Of course, apart from E�N� and S�N�, thermodynamics also deals with

other characteristic functions. One must bear in mind, however, that they

all are combinations of E�N� and S�N� (for example, the free energy is

F�N� � E�N� ÿ S�N��Y=kB�). Because of this, little is changed by switching
to other characteristic functions.
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meters E�N� and S�N� unambiguously define the state of the
entire closed isolated system.

In nonequilibrium systems, the functions n �r; t� and
Y �r; t� still define all parameters of matter at a given point
r. However, the linkage between these variables and edin and
sdin is not functional, as in the case of equilibrium, but integral:

dedin �
�t
0

�
I
�1�
�l� �

qn
qr
� . . .

�
dt ;

dsdin �
�t
0

�
I�1� � qn

qr
� . . .

�
dt

(see Eqn (107)). This dependence cannot be inverted, and we
can no longer assume that, for example, n � n �edin; sdin� Ð
hence, there is no one-to-one correspondence between
e � est � edin, s � sst � sdin and the other parameters of the
system. It follows that the fundamental (universal) depen-
dence is the dependence of all parameters of matter on the
density and the temperature, rather than on the internal
energy and the entropy. As a result, the entropy loses its
privileged position, and behind this downfall are the three
conservation laws of classical mechanics (and Galileo's
relativity principle).

10. Irreversibility of dynamic processes

There are at least two reasons why the problem of entropy
increase attracts so much attention. First, it was not clear
until now how to reconcile the increase in thermodynamic
entropy, required by the second law of thermodynamics, with
the constancy of mechanical entropy which follows from the
Liouville theorem. Secondly, until now it was tacitly assumed
that it is the increasing entropy that is the primary cause of
irreversibility of dynamic processes.

The first issue was resolved when we demonstrated that
the BBGKY hierarchy defines entropy in such a way that it
must not necessarily remain constant (the term with source q
in the equation of balance (38)). This does not conflict with
the Liouville theorem, since the latter only holds for closed
isolated systems, whereas the equation of balance (38)
describes processes taking place within the correlation sphere
which is an open system continuously exchanging particles,
momentum and energy with the environment. Admittedly,
there is no proof so far that the source of entropy q in the
equation of balance (38) is always positive. It does not seem
likely, however, that further studies are going to reveal any
contradictions with thermodynamics.

The second issue is also settled, because, in accordance
with Eqn (107), it is not the entropy that governs the transport
processes, but the other way round. Hence it follows that the
increase in entropy must only be regarded as a criterion of
irreversibility of processes taking place in the system, and, as
will be shown presently, not the only one. In essence, this
criterion was promoted by thermodynamics to the rank of a
law just because out of the three global parameters (N, E�N�,
and S�N�) only the entropy is sensitive to the irreversibility.

10.1 Cause of irreversibility
So, the increasing entropy is not the cause of irreversibility.
Then who is the culprit? Irreversibility is due to the properties
of Newtonian equations which create chaos in unstable
dynamic systems. In greater detail this issue was discussed in
Section 2; here I will just briefly summarise our arguments.

Classical mechanics is based on two postulates: the New-
tonian equations of motion and the assumption of the
absolute accuracy of measurements (the latter is overlooked
in all textbooks). If the second postulate is true (that is, the
system is stable), then the evolution of the system is
deterministic; otherwise the evolution is random, chaotic,
and the entire picture is changed dramatically. The motion of
particles in deterministic systems is described by their paths
whose shape can be calculated in advance by solving the
Cauchy problem for Newtonian equations. In case of non-
deterministic systems we can only speak of the probability of
a particle to occur at one part of space or another. This
probability can be calculated only using the concept of
ensemble of Gibbs copies.

The motion of particle along a path is reversible: if we
revert its momentum at t � t 0 (see Eqn 6)), it will retrace the
same path back to the starting point. In chaotic systems,
however, as demonstrated in Section 2, the particles after the
turning point may go anywhere else but not to where they had
started. Moreover, in the case of nondeterministic systems
this reversal will have little effect in general on the evolution
of the system, since the system on the average will always
move from the less probable state to the more probable,
regardless of the direction of motion of individual particles.
In fact, this follows immediately from the Boltzmann formula
P�N� � exp�N �s=kB�, since �s �t� can only increase in closed
isolated systems (here S�N� � N �s �). Having attained the most
probable value Pmax, corresponding to �s � �smax, the system
will remain in this state forever.

10.2 Irreversibility and expansion in e
We see that the primary cause of irreversibility of macro-
scopic processes is chaos arising in dynamic systems. As I said
before, however, both the Newtonian equations and the
BBGKY hierarchy, which is a direct implication of the
former, may describe both deterministic and chaotic systems.
At the same time, the transport equations which follow from
the BBGKY hierarchy only describe the chaotic systems,
because they are time-irreversible. Indeed, from Eqn (32) ±
(34) it follows that if we replace twithÿt 0, and pwith p 0, (see
Eqn (6)), the hydrodynamic variables will be transformed
according to

n �r; t� ! n0�r; ÿt 0� ; c �r; t� ! ÿc0�r; ÿt 0� ;
Y �r; t� ! Y0�r; ÿt 0� : �108�

Ifwenowapply transformation (6) to theEuler equations, and
take due account of Eqn (108), we find that the Euler
equations remain the same. This means that they are time-
reversible. If, however, the same transformation is applied to
the generalised Navier ± Stokes ±Fourier equations, some of
the terms will change sign, and some will not. As a result, the
`reverted' equationwill differ from the initial one, andafter the
`turnpoint' the system will never come back home Ð is has
become irreversible.Obviously, this irreversibility hasnothing
to do with the entropy: it is a consequence of the expansion in
e, which has allows us to select the class of irreversible
solutions out of all solutions of the BBGKY hierarchy.

10.3 Local criteria of irreversibility
If we may say so, the overall increase in the entropy of the
system is a global criterion of irreversibility. In addition, it is
possible to formulate local criteria of irreversibility on the
basis of the zero law of thermodynamics.
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Figure 4 shows a certain nonequilibrium distribution of
density n�g��r; t� of particles of kind g in a multicomponent
system. Since the total number of particles N�g� remains
unchanged in the course of diffusion, the equilibrium dis-
tribution established in the system at t!1 must appear in
the diagram as a horizontal straight line bisecting the curve
n�g��r; t� in such a way that the hatched areas above and
below n

�g�
0 are equal to each other (otherwise the particles in

the area of excess would be not sufficient to make up for the
deficit of particles in the depleted area). In order that the
process should be directed towards equilibrium, the particles
must drift from the area of excess to the depleted area. In the
case of the state shown in Fig. 4, this is only possible if the
diffusion flux

I�g� � ÿD�g� qn
�g�

qr

is directed counter to the density gradient. It is easy to see that
I�g� < 0 only when the coefficient of diffusion D�g� is positive.
Similarly, one can show that the coefficients of heat conduc-
tion m�Y� and viscosity l�D� in the expressions for the flux of
temperature and the flux ofmomentum are also positive. As a
result, we come to inequalities

D > 0; m�Y� > 0 ; l�D� > 0 ; �109�
which ensure compliance with the zero law of thermody-
namics, which can be aptly called `the law of irreversibility'.

10.4 Comments
So, what is the cause of irreversibility of all macroscopic
processes? To put it in a nutshell, one can say that the
irreversibility is due to a trivial cause Ð to the fact that all
macroscopic parameters ofmatter are functions of the density
and the temperature. Since the density and the temperature
do not change their values when the time is reversed (see Eqn
(108)), all the other parameters ofmatter remain indifferent to
time reversal. In other words, the macroscopic state of matter
does not depend on the direction of motion of individual
particles; it only responds to the values of n andY, which have
the meaning of values averaged over coordinates and
momenta of individual particles. The reversible Newtonian
equations transform into the irreversible transport equations

at the stage when the BBGKY hierarchy is expanded in e,
since it is then that the initial conditions are eliminated from
the equations, and the explicit time-dependence of the
distribution function is replaced with the parametrical
dependence on t via the functions n �r; t� and Y �r; t�.

11. Equilibrium and nonequilibrium systems

Now we ask ourselves, what is the difference between
equilibrium and nonequilibrium systems? If we are only
interested in what happens on the macroscopic level, the
answer is very simple: the gradients of hydrodynamic vari-
ables and the resulting flows are zero in equilibrium systems,
and nonzero in nonequilibrium ones. But what happens on
the microscopic level?

Let us turn to Eqn (43), according to which the l-particle
distribution function g�l� has the form

g1;...; l � exp�O1;...; l�
Yl
i�1
gi :

In equilibrium systems we have

gi � g�0�i � exp

�
ÿ p2i
2mY

�
(see Eqn (55)), and O1;...; l � O�l��r1; . . . ; rl� is a function of
only ri (see Eqn (57)). This means that here the subspace of
momenta is entirely separate from the subspace of coordi-
nates, and in the subspace of momenta the probability of the
event `the momentum of ith particle is pi' does not depend on
the momenta pj, j 6� i of other particles of the same group.
These events are independent because the probabilityg�0�1;...; l in
Eqn (43) is proportional to the product of probabilities
g�0��1��pi�. Now, if all particles of the system move indepen-
dently of one another, then this system is in the state of utmost
chaos. This chaos, however, reigns only in the subspace of
momenta. The subspace of coordinates is to some extent
ordered, because certain correlation exists between the
molecules within the correlation sphere, described by the
correlation functions O�0��l� . Since at ri j > Rc the functions
O�0��l� turn to zero, all correlations vanish in the subspace of
coordinates outside of the correlations sphere, and complete
chaos reigns here too (this applies not only to gases and
liquids, but also to crystals).

In nonequilibrium systems, for which O�l� � O�0��l� � e O�1��l� ,
the situation is different, because O�1��l� are now functions not
only of the coordinates, but also of the momenta. As a result,
certain correlations between particles arise also in the sub-
space of momenta, which makes the chaos, so to say, more
ordered. As the system comes closer to thermodynamic
equilibrium, these correlations subside gradually, and the
degree of chaos in the subspace of momenta increases. Since
the measure of chaos is the dynamic entropy, the latter
increases as the system approaches the state of equilibrium,
and reaches its maximumwhen equilibrium is attained. At the
same time, no correlations arise in the subspace of momenta
in the course of infinitely slow static processes, because in this
case the system permanently occurs at the state of thermo-
dynamic equilibrium. Accordingly, the variations of static
entropy have nothing to do with the second law of thermo-
dynamics. We see that it is different degrees of freedom of the
system that are responsible for static and dynamic processes
(see Section 9.1).

r

n�g�

I�g�

Figure 4.Direction of the diffusion flux I�g� in a closed isolated system.
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In the case of equilibrium systems all correlations between
the particles of a given group disappear when at least one of
the particles escapes from the correlation sphere. The same
happens in nonequilibrium systems. The only exception is the
highest N-particle correlation between all N particles of the
system. Indeed, from Eqn (103) it follows that

dS �M��t� � ÿ dS �N��t� ;
where

S �N��t� /
�
o1;...;N g1;...;N d�1� . . . d�N�

is the N-particle correlation entropy. And since we have
dS �M� 6� 0 in nonequilibrium systems, dS �N� must also be
nonzero. It follows that, apart from the short-range correla-
tions, which vanish outside the correlation sphere, there must
also be a global correlation embracing the entire system{.
This correlation is established by transport equations whose
solutions describe regularity in the motion of particles no
matter how far they are from one another. As a result, the
equation dS �N� � ÿ dS �M�may be interpreted as one describ-
ing the conversion of the entropy of macroscopic ordered
motion S�N� into the entropy of chaotic motion of particles
S�M�. At equilibrium we have S �M� � 0, since there are no
macroscopic correlations in equilibrium systems. Therefore,
S �N� can only decrease on the way towards equilibrium, and
this means that the increment of the macroscopic entropy can
be only negative, dS �N�4 0. Accordingly, the increment of
the dynamic entropy can be only positive, dS �M�5 0, in full
agreement with the second law of thermodynamics.

12. Alternative theories

In the construction of the theory of nonequilibrium phenom-
ena we moved step by step from one box of the diagram in
Fig. 1 to another, and I repeated again and again that this is
the only way possible. Now I will briefly recapitulate the logic
behind this scheme, to make it clear why the alternative
theories, which digress from this scheme, cannot claim to be
consistent.

12.1 Scheme of construction of theory
As noted above, the postulates of the theory actually lay
down the guidelines for construction of the theory. Indeed, as
soon as we found that the Newtonian equations give rise to
chaos, it became clear that the evolution of such systems can
only be described by the methods of probability theory. The
probability theory, however, always deals with mass experi-
ments, whose outcome is averaged to define the sought-for
probability. In classical mechanics, `repeatability' can only be
implemented with the aid of Gibbs ensembles. As soon as we
defined the N-particle distribution function g�N� within the
framework of Gibbs ensemble, we immediately faced the
problem of equation which defines this function, etc., which
brought us to the formulations of the BBGKY hierarchy.
Admittedly, at this point wemet with a certain ambiguity.We
saw that the state of any macroscopic system is characterised
by parameters e and w. Their values must be selected
depending on the characteristics of the system in question,
and especially on the properties we are concerned with. We
have only investigated one possibility, e ' w5 1. This choice

immediately brought us to the equilibrium thermodynamics
and the theory of transport processes; a different choice of e
and w would have taken us elsewhere (for example, e ' w ' 1
would have brought us to the theory of Brownian motion; see
Section 12.3). A more detailed study of the available options
is a task for the future. However, even what is already known
may turn out to be useful in other respects.

If we try to sort out the various directions of development
of the contemporary theory of nonequilibrium processes, we
find that from almost any box of the diagram in Fig. 1 we can
draw one or more additional links. How promising are they?
Making such forecasts is a thankless task. If, however, in our
construction of statistical mechanics we have really selected
the right avenue, and, most importantly, if we know well why
we are pursuing this direction, we must be able to state clearly
the reasons whywe did not go in other directions. This is what
I will try to do now.

12.2 Theories based on Liouville equation
In the long run, the entire statistical mechanics is based on the
Liouville equation. In this context, however, I am going to
discuss only those theories which attempt to solve the
Liouville equation without going over to the BBGKY
hierarchy (for example, the method of projection operator).
How promising are they? To answer this question, let us recall
why we went from the Liouville equation to the BBGKY
hierarchy.

The Liouville equation defines the N-particle distribution
function g�N�, which characterises the state of all N particles
of the system at the same time. Its value is determined by just
three global parametersN,E�N�, andS�N�; the local state of the
system remains undefined. At equilibrium this is of no
importance, because the global and the local parameters are
linked together by trivial relations E�N� � Ne and S�N� � Ns.
In nonequilibrium systems, however, the same values of N,
E�N�, and S�N� correspond to infinitely many local states.
Since these states are not identified when we define g�N�, we
must assume thatg�N� is defined as average over the ensemble
which represents all possiblemacroscopic states of the system.
The deficiency of this definition is obvious. To remove
ambiguity, we introduced the concept of the one-particle
distribution function g�1�, whose value is defined by five
basic macroscopic parameters of the system, n �r; t�, ca�r; t�,
and Y �r; t�. This in turn called for introducing other l-
particle distribution functions, and brought us eventually to
the BBGKYhierarchy. Because of this, any attempt to bypass
the BBGKY hierarchy seems futile to me. As far as I know,
the history of the theory of nonequilibrium processes sup-
ports this conclusion, because so far no feat of this kind has
been a success.

12.3 Theory of Brownian motion
So, if theway from equations ofmotion of classical mechanics
to the BBGKY hierarchy is uniquely predetermined, then the
BBGKY hierarchy (along with the Newtonian equations)
may claim the role of fundamental equations of statistical
mechanics. Statistical mechanics, however, is not only ther-
modynamics and transport equations Ð it also includes the
theory of fluctuations. Is the BBGKY hierarchy suitable for
describing the fluctuation processes? To answer this question,
let us discuss the theory of Brownian motion.

With this purpose we consider a colloid solution consist-
ing of large colloid particles of diameter a, suspended in a
liquid whose molecules have the size s5 a. We assume that

{For example, in the flow of liquid inside an arbitrarily long pipe, all

particles have a velocity component parallel to the walls of the pipe.
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the system is at thermodynamic equilibrium, which serves as
background for the fluctuations of solvent molecules, which
eventually give rise to Brownian motion of the colloid
particles. Since these fluctuations occur on the length scale
of L ' Rc and the time scale of T ' t, the parameters e and w
are of the order of unity:

e ' w ' 1 ; �110�

this implies that we have to retain the time derivatives in
equations of the BBGKY hierarchy. In this approximation,
the first equation in the hierarchy becomes

qg1
qt
� ÿ p

M
� qg1
qr
� n0

�
qF12

qr1
� qg12
qp1

d3 r2 d
3p2

P3

� n0
�
qC12

qr1
� qG12

qp1

d3r2 d
3p2

P3 ; �111�

where g�1� is the one-particle distribution function of the
colloid component,M is themass of colloid particle,F12 is the
potential of interaction of colloid particle with solvent
molecules, g12 is the two-particle distribution function
which describes interaction of colloid particle with solvent
molecules, C12 is the potential of interaction between two
colloid particles, and G12 is the corresponding distribution
function. Since the concentration of colloid particles n is
assumed to be small compared with the concentration of
solvent molecules n,

n5 n ; �112�
the second integral in (111) may be dropped.

Multiplying Eqn (111) by the equilibrium concentration
of colloid particles n, and integrating with respect to
momenta, we get (cf. Eqn (32), (33))

qn
qt
� ÿ q�nva�

qra
; �113�

where

n�r; t� � n0
�1
ÿ1
g�1��r; p; t� d

3p

P3 �114�

is the instantaneous density of colloid particles, and

n�r; t�v�r; t� � n0
�1
ÿ1

p

M
g�1��r; p; t� d

3p

P3 �115�

is their instantaneous velocity. Assuming that deviations
from equilibrium are small, we may write

n � n0�1� dn� ' n0;
g�1� � exp�o�0� � do� � g�0��1��1� do� ; �116�

where the equilibrium distribution function is

g�0��1� � exp

�
ÿ p2

2MY

�
:

Substituting Eqn (116) into Eqn (114), we get

n0�1� dn� � n0
�1
ÿ1
g�0��1�

d3p

P3 � n0
�1
ÿ1
g�0��1�do

d3p

P3 : �117�

Equating n0 to the first integral, and dn to the second, we get
the normalisation condition

1 � 1

P3
�1
ÿ1

exp

�
ÿ p2

2MY

�
d3p �118�

and the definition of probability

dn �
�1
ÿ1
g�0��1� �p2� do

d3p

P3 : �119�

Accordingly, from Eqn (115) we get

v�r; t� �
�1
ÿ1

p

M
g�0��1� �p2� do�r; p; t� d

3p

P3 ; �120�

since at equilibrium the velocity of particles is v0 � 0.
Observe now that, since the system at equilibrium is

spatially homogeneous, the velocity v cannot depend expli-
citly on r and t; the dependence of v on r and t can only be
parametrical, v � v

ÿ
dn �r; t��. Taking advantage of the

smallness of dn, and expanding v into a series, we get

v�r; t� � ÿD qdn
qr
� . . . ; �121�

where D is a so far unknown constant. Substituting this into
Eqn (113) and cancelling out n0, we come to the diffusion
equation

qdn
qt
� DDdn ; �122�

which was used by Einstein as a basis for his theory of
Brownian motion (in Eqn (122) D is the Laplacian).

Now we multiply Eqn (111) by p=M and integrate with
respect to p, getting as a result the equation of balance of
momentum

qva
qt
� ÿ qPab

qrb
� Fa ; �123�

in which the stress tensor

Pab �
�1
ÿ1

papb
M2

g�0��1�do
d3p

P3 �124�

has the meaning of the force acting from the side of colloid
particle on solvent molecules, and the collective force

Fa � ÿn0
�
qF12

qra
g�0�12 dO12

d3p1 d
3p2

P6 d3r2 �125�

has the meaning of the random force on colloid particle from
the side of solvent molecules. Since the colloid particle is
`almost' a macroscopic body, the term qPab=qrb must be
balanced out by the force of friction from the side of solvent,
which, according to Stokes' law, is

qPab
qrb
� 6pZava ;

where Z is the viscosity. Substituting this expression into Eqn
(123), we come to the Langevin equation

qv
qt
� ÿ6pZav� F ; �126�

which can also serve as basis for the theory of Brownian
motion. Tomake the two approaches tally with each other, in
the Einstein equation we must set
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D � Y
6pZa

: �127�

We see that the theory of Brownian motion can be
constructed on the basis of the BBGKY hierarchy, and thus
the hierarchy may claim the role of fundamental equations of
statistical mechanics.

12.4 Kinetic theory of gases
For a long time the statistical theory of nonequilibrium
processes had been virtually identified with the kinetic theory
of gases. As amatter of fact, the structure of the kinetic theory
is very similar to the structure of statistical mechanics: first
the Newtonian equations are used to derive the kinetic
Boltzmann equation, then the latter is used for formulating
the exact equations of balance for the mass, the momentum
and the energy, and finally, these equations are transformed
into the transport equations by solving the Boltzmann
equation. If we replace the words `Boltzmann equation for
the one-particle distribution function' with `equations of the
BBGKYhierarchy for l-particle distribution functions', it will
be just impossible to tell one theory from the other. Of course,
there is one very important distinction: the Boltzmann
equation is an approximate implication of the Newtonian
equations, whereas the BBGKY hierarchy is the exact
consequence of the latter. Given this, could it be possible to
regard the kinetic theory as a particular case of the statistical
theory in the limit of dilute gas? To answer this question, we
must examine once again the physical assumptions of both
theories.

The Boltzmann equation, like the first equation in the
hierarchy, has the form

qg1
qt
� ÿp1

m
� qg1
qr1
� I1 ; �128�

with the difference that the collision integral is

I1 � IB � n0

�
p12
m
Z
�
g
0
1g

0
2 ÿ g1g2

�
dO

d3p2

P3 ; �129�

in the Boltzmann equation, and

I1 � IBBGKY � n0

�
qF12

qr1
� qg12
qp1

d3r2
d3p2

P3 �130�

in the BBGKY hierarchy (here p12 � jp1 ÿ p2j and Z is the
scattering cross-section). In addition, in Eqn (129) the prime
at functions g1 and g2 indicates that the momenta p1 and p2

of particles 1 and 2 are measured before collision, and the
absence of prime at g1 and g2 indicates that p1 and p2 are
measured after collision. Since it is assumed that the collision
itself obeys the laws of classical mechanics, the conditions of
conservation of momentum and energy are imposed on p1

and p2:

p1 � p2 � p01 � p02 ; p21 � p22 � p 0 21 � p 0 22 : �131�
Stricken with the amazing similarity of the two equations,

Bogolyubov attempted to derive the Boltzmann equation
from the BBGKY hierarchy. His approach was based on
two ideas: to reduce the hierarchy to a sequence of kinetic
equations with the aid of expansion in powers of n0, and then
to transform each equation in the sequence into a Boltzmann-
type equation. Let us start with the first idea.

Since n0 enters the equations of the BBGKY hierarchy
only as a factor in front of the integral terms, in the zero order

in n0 all these integral terms vanish, and the BBGKY
hierarchy reduces to a set of differential equations. In
particular, as follows from Eqn (128), the first equation in
the hierarchy takes on the form

qg�0�1
qt
� ÿp1

m
� qg

�0�
1

qr1
:

Its solution is

g�0�1 � g�0��1�
�

r1 ÿ p1

m
t

�
;

whence it follows that particle 1 at t!1 flies away to
infinity. All the other equations in the zero approximation
have similar solutions, which means that particles of an
arbitrary set of l particles, l � 1; 2; . . . , after collision always
scatter to infinity. Bogolyubov invented a clever trick to avoid
divergence at t!1; further studies revealed, however, that
the Bogolyubov method ensures convergence of only the first
two terms in the expansion in n0, whereas the remaining terms
still diverge. Today, almost fifty years later, no-one has
succeeded in reducing the BBGKY hierarchy to a sequence
of kinetic equations. And I believe that no-one ever will. The
fact is that, as we have seen, n0 is a nonphysical parameter (see
Section 4.5). It is not surprising then that the expansion in n0
leads to nonphysical results. The structure of a correct
expansion must always be such that the zero-order term
should describe the state of thermodynamic equilibrium:
otherwise it will be not possible to eliminate n0 and replace it
with n andY{. If this statement is correct Ð and I believe it is
Ð then the BBGKY hierarchy is not reducible to a sequence
of kinetic equations because, by definition, the kinetic
equations must contain time derivatives, whereas at equili-
brium we have qg�l�=qt � 0.

The second idea of Bogolyubov is also unlikely to be
feasible, because the Boltzmann collision integral IB involves
one-particle distribution functions defined at tÿ t and t� t
Ð that is, before and after collision. In this case the transition
to t! 0 is not possible, because the concept of `collision'
itself becomes meaningless. Apart from that, the Boltzmann
theory assumes that in the interval between tÿ t and t� t the
particles move along paths defined by the Newtonian equa-
tion. At the same time, in the BBGKY hierarchy the values of
all distribution functions g�l� are defined at one and the same
time t, and the concept of `path' is altogether expelled from
the theory. It is obvious that the assumptions of the
Boltzmann theory and the BBGKY hierarchy are incompa-
tible. For the same reason, Bogolyubov's attempt to trans-
form the first (converging) term if the expansion in n0 with the
aid of time-shift operator is unlawful, because this operator
introduces new time tÿ t into the hierarchy, and shifts back
the particles along their paths, thus tacitly implanting the
concept of path into the theory. If, however, we renounced the
deterministic description of motion of particles along their
paths at the early start (when we carried out averaging over
the ensemble of Gibbs copies and in the derivation of the
BBGKY hierarchy), we just cannot go back to the determi-
nistic description of the system at the end of the day (when
solving the equations of the hierarchy).

So we see that the kinetic Boltzmann theory cannot be
regarded as a limiting case of the BBGKYhierarchy at n! 0.

{Recall that n �r; t� and Y �r; t� are those local macroscopic parameters
that must be fixed in order to define the concept of `ensemble of Gibbs

copies'.
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This does not mean, however, that Boltzmann's theory is
wrong: it can exist in its own right as an approximate theory
of nonequilibrium ideal gas. I would like to recall here theVan
der Waals equation. This equation also cannot be derived
from the exact equations of statistical mechanics. This fact,
however, does not prevent it from being one of the best, if not
the very best equation of state.

12.5 Thermodynamics of irreversible processes
This theory is based on the attempt to use the equations of
equilibrium thermodynamics for describing local dynamic
processes. First it is assumed that each physically infinitesimal
element of volume of matter dV is at the state of local
equilibrium and hence obeys the equation

Y
kB

d�dS� � d�dE� � P d�dV� ;

or, with due account for the time-dependence of processes,

Y
kB

d�dS�
dt
� d�dE�

dt
� P

d�dV�
dt

: �132�

Then, replacing the time derivatives in Eqn (132) by respective
fluxes, after some straightforward manipulations we come to
the equation of entropy balance (38), in which the entropy
source q�s� is a positive quadratic form

q�s� �
X
k

Ji x
�i� > 0 ; �133�

where Ji �
P

k Lik x�k� are the fluxes caused by the gradients
x�k�, and Li j are the transport coefficients (cf. (77)).

This substantiation of formula (133) cannot be accepted.
Of course, we can use Eqn (132), but one must bear in mind
that functions dS, dE, and dV, which enter this equation,
depend on the `slow' time t=T1, that is, dS � dS�t=T1�, etc.
At the same time the flow used in transforming Eqn (132) are
functions of the `fast' time t=T. Since inequality (133) is
assumed to describe the process of entropy production in
the course of dynamic processes (that is, at 04 t4T), the use
of Eqn (132) is not justified, because equation (132) on these
time intervals degenerates into an identity 0 � 0. Accord-
ingly, there are no grounds for identifying q in Eqn (133) with
the source of local entropy. This does notmean, however, that
Eqn (133) itself is wrong. We saw that the zero law of
thermodynamics imposes certain restrictions on the transport
coefficients, which must always be positive (see Eqn (109)).
Since, however, thermodynamics of nonequilibrium pro-
cesses is based on inequality (133) rather than on equation
(132), all results of the theory still hold Ð it is the proof that
must be changed. Earlier it had been assumed that inequality
(133) is a consequence of the second law of thermodynamics;
nowwemust accept that it has nothing to dowith the entropy,
and follows from the zero law of thermodynamics.

13. Conclusions

In the Introduction to this paper I said that `statistical
mechanics belongs to fundamental sciences', and any `funda-
mental theory must only derive from first principles Ð any
simplifying assumption immediately makes the theory
approximate rather than fundamental'. I hope that I have
managed to implement this program statement. In any case,
starting from the Newtonian equations, we have derived the

macroscopic transport equations which describe processes in
continuous media. And, which is important, we did not use
any additional hypotheses.

The results are primarily of methodological value because
we have succeeded in resolving most of the contradictions
which made classical mechanics and thermodynamics see-
mingly irreconcilable, and in definingmore clearly the scheme
of construction of statistical mechanics and its tasks. I shall
briefly recapitulate some of the results.

1. In Section 2 we showed that the transition from
deterministic description of molecular systems in terms of
paths to probabilistic description is absolutely necessary.

2. In Section 3 we showed that the description of
molecular systems with the aid of Liouville equation is not
sufficient, and it is necessary to go over to the BBGKY
hierarchy and the concept of l-particle distribution functions.

3. In Sections 4 and 5 we showed that the BBGKY
hierarchy involves nonphysical parameters which can only
be eliminated by expanding the distribution functions in small
parameter e.

4. In Sections 6 ± 8 we showed that Gibbs distribution and
the entire equilibrium thermodynamics follow from the
BBGKY hierarchy in the zero order in e, and all transport
equations in the first order in e.

5. In Sections 9 and 11 we showed that entropy in
nonequilibrium systems may increase in full agreement with
the second law of thermodynamics, and without violating the
laws of classical mechanics.

6. In Section 10 we showed that expansion in e resolves the
eternal paradox of irreversibility, which consists in that the
initial Newtonian equations, which describe the system on the
microscopic level, are time-reversible, whereas the transport
equations, which follow from the Newtonian equations and
describe the system on the macroscopic level, are irreversible.

Apart from their methodological value, however, our
results may find practical application. I will only point to
two possibilities.

Firstly, the first-principle system of transport equations
somewhat differs from the equations used so far. This may
affect the results of some particular calculations.

Secondly, we have obtained new expressions which permit
calculating the transport coefficients from first principles.

The relative order that we have set among themultitude of
theories of nonequilibrium phenomena may also be regarded
as a practical result.

And one final remark. The theory presented here is purely
classical: we have not made a single reference to quantum
effects. The attentive reader will readily notice here many
features typical of a quantum theory. These analogies call for
special analysis.

The author is grateful to V I Roldugin, V M Starov,
V I Kogan, G N Sarkisov who read the manuscript and made
valuable comments.
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