
Abstract. Transition radiation of elastic waves generated by a
mechanical object that performs a uniform rectilinear motion
along an inhomogeneous elastic system (a string, beam, mem-
brane, or plate) is discussed in detail. The effect is analyzed by
assuming that the law of motion of the load admits the genera-
tion of neither Cherenkov nor bremsstrahlung radiation and
that the role of inhomogeneities is played by the supports of
the elastic system. The radiation reaction spectrum and the loss
of contact between the object and the elastic system are con-
sidered.The practically important cases of periodically and
randomly varying elastic parameters are examined, and the
resonance and instability conditions for the vibrations of the
radiating object are found. Variation of the main radiation
characteristics with the angle at which the object crosses the
inhomogeneity region is examined. The so-called diffraction
radiation of elastic waves is briefly discussed.

1. Introduction

Transition radiation is a phenomenon that arises upon a
uniform rectilinear motion of a perturbance source with a

zero natural frequency in an inhomogeneous medium or near
it [1]. For the first time, this phenomenon was described by V
L Ginzburg and I M Frank [2] who analyzed radiation of
electromagnetic waves by a charged particle crossing the
boundary between an ideal conductor and vacuum. Already
in early studies concerned with transition radiation, it was
demonstrated that this phenomenon was universal from the
physical point of view because it occurred irrespective of the
physical nature of the waves. This provided a basis for the
investigation into acoustic transition radiation initiated in
1962 and carried out parallel with extensive studies on
electromagnetic transition radiation [3]. Today, there is a
wealth of reports on both the electromagnetic and acoustic
radiation, including several review papers [4, 5] and a
monograph [1] published in 1984 which is in fact a compre-
hensive account of transition radiation in classical electro-
dynamics.

This review is devoted to transition radiation of elastic
waves{ excited by mechanical objects traveling in inhomoge-
neous elastic systems{ exemplified by a railroad track. The
locomotive's wheels pressed against the rails by gravity are
known to excite elastic waves in the track due to track
inhomogeneities caused in the main by crossties and rail
joints (on Russian railroads, at least). Current collectors of a
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{ In this review, the term `elastic waves' is used both in the classical sense

(waves in a deformed body) and as a general name for transverse waves in

a string or a membrane as well as for flexural waves in a beam or a plate

resting on an elastic foundation.

{ `Elastic system' is a solid body, such as a string, beam, membrane, or a
plate, resting on an elastic foundation and undergoing deformation.



moving electric locomotive serve as another source of elastic
waves in overhead contact wires, the emission being due to
clamps, fixtures, overhead switches, etc.

It would be safe to say that transition radiation of elastic
waves may be observed in everyday life (suffice it to see a
streetcar, trolleybus, or automobile at the entrance to a
bridge). The question is how important it is to take transition
radiation into consideration when analyzing the dynamics of
elastic systems. It is known that the power of radiation
generated by a moving source is higher the closer the source
speed to the velocity of wave propagation in the medium. The
average speed of modern trains in France and Japan is
between 200 and 275 km hÿ1, and the world record speed
reached in France amounts to 452 km hÿ1. The Japanese `500'
project to be implemented within the next decade envisions
the construction of high-speed trains operated at 500 km hÿ1.
These speeds characterize elastic wave sources. As regards the
wave velocities, surface waves (Rayleigh waves) are known to
propagate at speeds of 400 ± 600 km hÿ1 in stiff roadside soils
and 150 ± 400 km hÿ1 in soft (peat) aqueous soils. The
velocities of flexural waves in the trolley wires is 200 ±
400 km hÿ1. It is easy to see from the comparison of these
figures that the speed of an elastic wave source (train) may be
equal to or even higher than the wave velocity. In some
regions of Europe, where railroads lie on soft (peat) soils,
surface waves produced by a running train can even be seen
with the naked eye. Measurements made by railroad compa-
nies in the United Kingdom, Germany, Switzerland and
France confirm increasing vibrations of the railroad track
when a train moves at a speed close to surface wave velocity.
This required the imposition of speed limits or strengthening
ground at `soft' sections of the track.

Railroad engineers make their best in attempts to reduce
the ratio of the speed of trains to the speed of surface waves
excited in the track without decreasing the traffic efficiency.
The train speeds are chosen to be maximum possible under
conditions posing no `elastic barrier' problem{. In this
situation, transition radiation is likely to have considerable
effect on rail-track dynamics.

Let us now consider the generation of transition radiation
in elastic systems. Suppose a spring-supported beam{ resting
on an elastic foundation, whose stiffness changes in the
vicinity of point x � 0 (Fig. 1a), is subjected to a constant
uniformly moving �x � Vt� load} P (such a model describes
an automobile driving onto a bridge or a train entering a
tunnel in a rock). Far from the inhomogeneity region
(Fig. 1b), the moving load carries its deformation eigenfield
symmetrical with respect to the load and remaining stationary
in the moving coordinate system x � xÿ Vt. As the load
approaches the inhomogeneity region (Fig. 1c), this field
undergoes a distortion; it becomes asymmetric with respect
to the load and an external horizontal force R�t� is needed to
maintain the uniform motion of the load. Some time after the
load traversed the inhomogeneity region (Fig. 1d), the

eigenfield becomes symmetric again. However, the eigenfield
energy changes during the load transition from the `soft' part
of the elastic beam foundation to the `stiff' one. It is this
change caused by the work of forces P andR�t� that gives rise
to transition radiation, which actually is a portion of field
energy that `breaks away' in the form of free waves.

The transition radiation of elastic waves, although it is on
the whole similar to that of electromagnetic and acoustic
waves due to the universal physical nature of the phenom-
enon, displays some specific features. For instance, it may
result in the loss of contact between themoving object and the
elastic system. Moreover, `mechanical' implications of the
theory raise a number of questions that are not crucial to
answer in electrodynamics and acoustics. Therefore, con-
siderable attention has been paid in the present review both
to classical problems of radiation spectrum and radiation
reactions and to issues such as resonance, vibration instabil-
ity, and loss of contact reported to occur during elastic wave
transition radiation.

The review primarily examines one-dimensional models
of elastic systems. These models are used to explicitly
demonstrate physical mechanisms of the processes of interest
and describe real mechanical structures. The review is
organized in the following way. Section 2 analyzes `pure'
effects of transition radiation in cases where the law of load
motion permits neither Cherenkov nor bremsstrahlung radia-
tion of elastic waves, and the inhomogeneity is represented by
the elastic-system clamping, a most typical solitary inhomo-
geneity in mechanics. Sections 3 and 4 deal with the
practically important cases of periodic and random changes

{ `Elastic barrier' is an analog of the sound barrier, related to the elastic

wave propagation velocity.

{ The term `a spring-supported beam (string, membrane, plate)' implies

that the beam (string, membrane, plate) lies on an elastic foundation.

Stiffness of an elastic foundation is the summarized stiffness of the springs

per unit length (for a beam and a string) or unit area (for amembrane and a

plate) of the elastic system.

} The term `a moving load' is used when the elastic inertial properties of a

moving mechanical object are not taken into account, and only a given

vertical force is supposed to affect the elastic system at the point of contact.
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Figure 1. (a) Stiffness of the foundation. (b ± d) Transformation of the

deformation eigenfield of the load leading to transition radiation of elastic

waves.

984 A I Vesnitski|̄, A V Metrikin Physics ±Uspekhi 39 (10)



in the elastic-system parameters. The last Section 5 explores
qualitative features of transition radiation related to multi-
dimensionality of elastic systems.

2. Phenomenon of transition radiation
in one-dimensional elastic systems

It is appropriate to start the analysis of the phenomenon of
elastic wave transition radiation from the examination of the
simplest case of a mass in the field of a constant vertical force
uniformly moving along a semibounded spring-supported
string (Section 2.1). The role of the perturbance source in
this system is played by the mass pressed against the string by
force P (the analog of a charge in electrodynamics), and the
inhomogeneity is represented by the point where the string is
fixed (analog of the boundary with an ideal conductor). The
solution to the problem will be sought in two stages. Let us
first assume that the force of inertia acting vertically on the
moving mass is negligible compared with the force P; in other
words, the string is affected by the constant vertical forceP. In
the framework of this assumption, we will try to elucidate
`mechanical' causes for radiation, determine the horizontal
component of the reaction of the elastic system to the moving
load (caused, in particular, by transition radiation), and
analyze the spectral density of radiation energy. In the second
stage, we intend to explore the problem as it was originally
stated, that is, taking into consideration the interaction
between the mass and string vibrations, which is of impor-
tance when the motion occurs at speeds close to the wave
propagation velocity in the string.

As mentioned in the Introduction, transition radiation
results from the transformation of the deformation eigenfield
of the load during its motion in an inhomogeneous elastic
system. This process is characterized in detail by the energy
and momentum changes during the transition radiation of
elastic waves, which will be analyzed in Section 2.2.

The string model examined in Section 2.1 fits rather well
to describe vibrations in the overhead contact wire system,
but it would be unwise to use it for the description of
vibrations in a railroad track or a bridge. This raises the
question: `Can qualitatively new features in elastic wave
transition radiation arise from considering the flexural
rigidity of an elastic system (it is the lack of flexural rigidity
that is themajor property distinguishing a string from a beam,
which is a universally accepted model of a rail and a bridge)?
We will analyze this problem in Section 2.3 concerned with
the uniform motion of a mass along a semibounded hinged
beam resting on an elastic foundation.

2.1 Transition radiation in a semibounded string.
Radiation process, its reaction and energy
Let us consider the uniformmotion �x � Vt� of massm in the
field of a constant vertical force P, traveling along a string
that has a linear density (mass per unit length) r, tension N,
rests on an elastic foundation with rigidity k, and is fixed at
point x � 0 (Fig. 2). In order to analyze `pure' transition
radiation, let us assume that V < c (c is the wave velocity in
the string), i.e., no Cherenkov radiation is present.

The vertical mass and string vibrations without loss of
contact are defined by the following equations [6, 7]:

Utt ÿ c2Uxx � h2U � ÿ 1
r
�P�m �U0�d�xÿ Vt� ;

x4 0 ; t4 0 ; �2:1a�

U0�t� � U�Vt; t� ; �2:1b�

U�0; t� � 0 ; U! 0 at xÿ Vt! ÿ1 ; �2:2�

where c2 � N=r; h2 � k=r; U�x; t� and U0�t� are the vertical
string and mass displacements, respectively; and d is Dirac's
delta function. Equation (2.1a) represents the balance of
vertical forces applied to a string element. Equation (2.1b) is
in fact the condition for no loss of contact between the mass
and string. The boundary conditions (2.2) indicate that the
string is fixed rigidly at x � 0 and that its flexure tends to zero
infinitely far away (to the left) from the moving mass.

Let us assume that the following condition holds at t4 0:

jm �U0j5P ; �2:3�

i.e., the force of inertia acting on the mass in the vertical
direction is much weaker than force P. In this case, the string
may be supposed to be subjected to a constant moving loadP,
and its vibrations can be approximately described by the
equation

Utt ÿ c2Uxx � h2U � ÿP

r
d�xÿ Vt� ; x4 0 ; t4 0

�2:4�
in conjunction with the boundary conditions (2.2).

The problem (2.4), (2.2) can be solved by the method of
images. Using the expression for the eigenfield of a load in a
boundless spring-supported string [8]

UP � ÿ P

2rhb
exp

�
ÿ h

b

��xÿ Vt
���; b �

����������������
c2 ÿ V 2
p

; �2:5�

which satisfies Eqn (2.4) at x 2 �ÿ1;1�, we may represent
the solution to (2.4), (2.2) as a sum of the eigenfields of the
load and eigenfield of the fictitious source of forceÿPmoving
in compliance with the law x � ÿVt. In this way, we obtain
the following expression for string vibrations at t4 0:

Uÿ � ÿ P

2rhb

(
exp

�
ÿ h

b

��xÿ Vt
���ÿ exp

�
h

b
�x� Vt�

�)
:

�2:6�
After the load passed the clamp of the string �t5 0�, the string
will sustain free vibrations that obey the initial conditions
defined by Eqn (2.6) at t! 0:

U��x; 0� � lim
t!0

Uÿ�x; t� � 0 ;

U�t �x; 0� � lim
t!0

Uÿt �x; t� �
PV

rb2
exp

hx

b
: �2:7�

U�x; t�

x

V � const

P

0

Figure 2.Uniform motion of a mass along a semibounded string.
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The initial conditions (2.7) imply that the string energy is non-
zero as the load passes the clamp �t � 0�, and it is this
circumstance that accounts for string oscillations at t > 0.

According to [8], string displacements at t > 0 are defined
by the expression

U��x; t� � P

rhb

(
sinh

hVt

b
exp

hx

b

ÿ sinh

�
h

b
�x� Vt�

�
Y�x� ct�

)

� PV

pr
Y�x� ct�

� h

ÿh

sinh
ÿ
x
���������������
h2 ÿ z2
p

=c
�
cos tz

z2�c2 ÿ V 2� � h2V 2
dz :

Figure 3 shows string profiles at different time moments. At
the beginning, the load carries its eigenfield. As the load
approaches the clamp, the field undergoes a distortion (due to
image effects) and becomes asymmetric with respect to the
load. When the load crosses the clamp, the string has zero
potential energy and nonzero kinetic energy. At t > 0, the
profile shows a pulse running to the left of the clamp (with a
bend at the top) traveling at speed c. It is precisely this pulse
(whose shape varies in time due to wave dispersion in the
spring-supported string and due to string-clamp interaction
that represents the transition radiation of elastic waves.

Now, let us find radiation energy W r. Disregarding
viscous losses, the energy stored in the string at t � 0 is
equal to the radiation energy, i.e.,W r � H�0�, where

H�t� � 1

2

�0
ÿ1
�rU 2

t �NU 2
x � kU 2� dx

is the energy of a semiinfinite string �x4 0� resting on an
elastic foundation. Substitution of (2.7) yields

W r � 1

2

�0
ÿ1

rU 2
t �x; 0� dx �

P 2V 2

4rhb3
: �2:8�

It appears from (2.8) that the transition radiation energy
increases as the speed of the load approaches the wave
velocity in the string. Evidently, the radiation reaction must
equally grow, leading to the rapid wear of the elastic
construction. Since radiation propagates along the string,
the reactionmust also act in a horizontal direction. According
to [6], the expression for the horizontal component of the
string reaction has the form

F r � ÿP

2

ÿ
Ux�Vt� 0; t� �Ux�Vtÿ 0; t�� :

Substitution of (2.6) into this expression results in

F r � ÿ P 2

2rb2
exp

2hVt

b
: �2:9�

Therefore, the horizontal reaction of the string actually grows
with increasing load speed. Moreover, it increases as the load
approaches the clamp. In the railroad overhead contact wire
system, structures holding the current-carrying wire are the
`weakest link' of the system. It cannot be otherwise, as follows
from Eqn (2.9), because mechanical stresses in the wire
increase dramatically as the current collector traverses the
clamps. Both the transition radiation reaction and the
reaction of the deformation field arising near the clamps are
responsible for the enhanced stress.

The work done by the horizontal component of the string
reaction is described by the expression

W f � V

�0
ÿ1

F r dt � ÿ P 2

4rhb
: �2:10�

Note that the radiation energy increases in proportion to
V 2=b3 as the motion becomes faster, whereas the work of the
horizontal reaction of the string grows as 1=b. This difference
in the laws of energy growth indicates once again that the
work necessary to slow down a load is done by both the
deformation field of radiation formed and the deformation
field localized near the clamp.

Let us now find the spectral density of radiation energy.
This radiation parameter can be quantified with up-to-date
measuring instruments and used to evaluate the state of
elastic systems interacting with moving objects.

Applying the integral Fourier transformation with respect
to time

Vo�x;o� �
� 1
ÿ1

U�x; t� exp iot dt : �2:11�

to (2.4), (2.2) yields

c2
q2

qx2
Vo � �o2 ÿ h2�Vo � P

ro
exp

iox
V

; �2:12�

Vo�0;o� � 0 : �2:13�
The solution to (2.12), (2.13) with regard for the conditions at
infinity (string displacement tending to zero at joj < h and
energy removed from the clamp at joj > h) has the form

Vo � VP
o � V r

o � ÿa�o�
�
exp

iox
V
ÿ exp

�
ÿ ix

����������������
o2 ÿ h2
p

c

��
;

�2:14�

t < 0

U�x; t�
V

t < 0

t � 0

Ut�x; 0�

t > 0

c

V

Figure 3. Profiles of a string subjected to a moving load as it traverses the

clamp and after this (when the string undergoes free vibrations).
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The first term in (2.14) describes the eigenfield of the load,
while the second one characterizes free waves that represent
transition radiation at joj > h.

The radiation energy is equal to the energy flux through
the cross section x! ÿ1 taken with the inverse sign and
integrated with respect to time (see [8]):

W r � N

� 1
ÿ1

UxUt

���
x!ÿ1

dt � ÿ N

4p2c

��� 1
ÿ1

o
����������������
o2
1 ÿ h2

q
� a�o�a�o1� exp

�ÿit�o� o1�
�

� exp
h
ÿix

� ����������������
o2 ÿ h2
p

�
����������������
o2
1 ÿ h2

q �i����
x!ÿ1

do do1 dt :

Integration with respect to time yields a delta function, which
allows the integral to be taken for o1 to obtain

W r � N

pc

�1
h

o
����������������
o2 ÿ h2
p

a2�o� do : �2:15�

The spectral density of radiation

S�o� � N

pc
o
����������������
o2 ÿ h2
p

a2�o�

for various load speeds V is shown in Fig. 4. S�o� is seen to
have a maximum that is shifted to the high-frequency region
with increasing V. At o!1, the spectral density of the
radiation energy decreases as 1=o. Note that taking integral
in (2.15) yields (2.8).

We have so far neglected mass inertia (see the condition
(2.3)). Let us now check whether the solution to (2.6) satisfies
condition (2.3). Comparison of the two expressions reveals
that inertia of the mass may be neglected provided the
inequality

V 2

�c2 ÿ V 2� 3=2
5

2r
hm

�2:16�

is fulfilled. It is clear that condition (2.16) is not satisfied at
V! c and m=r!1. Hence, for fast-speed heavy objects
inertia cannot be disregarded.

Let us analyze the initial problem (2.1), (2.2). Using the
method of images, it can be rewritten as

Utt ÿ c2Uxx � h2U � ÿ 1
r
�P�m �U0�

� �d�xÿ Vt� ÿ d�x� Vt��; x4 0 ; t4 0 ;

U0�t� � U�Vt; t� : �2:17�

Because of the problem's linearity, the solution to (2.17) must
be sought in the form

U � Uÿ �Um ;

whereUÿ is the solution to (2.4) described by expression (2.6)
and Um is the solution to

Utt ÿ c2Uxx � h2U

� ÿm

r
�U0

�
d�xÿ Vt� ÿ d�x� Vt��: �2:18�

Using (2.6) and the fundamental solution for the operator

q2

qt 2
ÿ c2

q2

qx2
� h2

of the form

J0
��h=c� �������������������c2t 2 ÿ x2

p �
Y
ÿ
ctÿ jxj�

2c

(where J0 is the zero-order Bessel function and Y is the unit
function), the expression for U�x; t�may be written as

U � ÿ P

2rhb

�
exp

�
ÿ hjxÿ Vtj

b

�
ÿ exp

h�x� Vt�
b

�
� m

2rc

�

�m�=Dÿ
ÿ1

�U0�t�J0�n�� dtÿ
�m�=D�
ÿ1

�U0�t�J0�nÿ� dt; x4Vt;�m�=Dÿ
ÿ1

�U0�t�J0�n�� dtÿ
�ÿmÿ=Dÿ
ÿ1

�U0�t�J0�nÿ� dt; x5Vt;

8>>><>>>:
�2:19�

where m� � x� ct, D� � c� V,

n��x; t; t� � h

c

���������������������������������������������
c2�tÿ t�2 ÿ �x� Vt�2

q
:

The unknown U0�t� can be found using the continuity
condition for no loss of contact between the string and mass,
U0�t� � U�Vt; t�. For x � Vt, we obtain

U0�t� � ÿ P

2rhb

�
1ÿ exp

2hVt

b

�

� m

2rc

��tD�=Dÿ
ÿ1

�U0�t�J0
ÿ
n��Vt; t; t�� dt

ÿ
� t

ÿ1
�U0�t�J0

ÿ
nÿ�Vt; t; t�� dt� : �2:20�

The integro-differential Eqn (2.20) is reduced by term-by-
term differentiation to the Volterra integral equation of the
second kind in �U0�t�, which is convenient to use in numerical
analysis. Figure 5 qualitatively depicts �U0�t� dependences for
different V. It is clear that the load P�m �U0�t� vertically
applied to the string increases as the mass approaches the
clamp. Naturally, this must lead to a rise in both the radiation
energy and radiation reaction (this self-evident fact is con-
firmed by calculations). Therefore, taking into consideration
mass inertia in the framework of the `string' model results in
increased transition radiation power.

h o

So

1

2

Figure 4. Spectral density of transition radiation energy at different load

speeds: (1) V � 0:8c; (2) V � 0:4c.
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2.2 The laws of energy and momentum variation
upon transition radiation of elastic waves
Transition radiation originates from changes in the deforma-
tion eigenfield of a perturbation source in an inhomogeneous
medium. What forces are responsible for the work needed to
maintain this process? What momentum is transferred to the
elastic system? Analysis of the laws of energy and momentum
variation belowmay help to answer these questions and better
understand physical mechanisms underlying transition radia-
tion. For simplicity, let us use the case of a string subjected to
a moving load as described in Section 2.1.

2.2.1 The law of the energy variation.Let us first determine the
energy of the deformation eigenfieldWP. Using (2.5) and the
general expression for the energy of a spring-supported string
(see Ref. [6]), we obtain

WP � 1

2

� 1
ÿ1

�
rV 2

ÿ
UP
x

�2 �N
ÿ
UP
x

�2 � k
ÿ
UP
�2�

dx � P 2c2

4rhb3
:

�2:21�

When the load crosses the clamp, the energy of the deforma-
tion eigenfield is zero, that is, its change DWP is ÿWP.

As noted in Section 2.1, in the vicinity of the clamp the
load is subjected to a horizontal force of the resistance to
motion F r. Hence, a uniform motion of the load along the
string can be maintained if an external forceR, which is equal
to F r in magnitude but has the opposite direction, is applied
to the load. The work done by force R is determined by the
opposite-signed expression (2.10).

It is obvious that the point of contact between the load
and the string near the clamp moves not horizontally. There-
fore, work is also done by the vertical forceP. The workAPof
this force is defined by the equation

AP � ÿP
h
Uÿ�0; 0� ÿ lim

t!ÿ1Uÿ�Vt; t�
i
� ÿ P 2

2rhb
: �2:22�

Comparing (2.21), (2.22), and (2.10) with the expression for
the radiation energy (2.8), we may write the law of energy
variation as

W r � ÿDWP �WR � AP : �2:23�

Thus, it follows from (2.23) that the motion of the load is
associated with the transformation of the eigenfield energy to
the radiation energy, with work being done by both the
external force R, which maintains the uniform movement of

the load, and the vertical forceP (the load itself). Note that all
the quantities in Eqn (2.23) are bounded, unlike those in the
expressions for energy variation in electrodynamics [1]. This
can be accounted for by the absence of a jump in dimension-
ality between a zero-dimensional (pointlike) perturbation
source and a one-dimensional waveguide (in electrodynamics,
the zero-dimensional charge perturbs the three-dimensional
medium).

The question that now arises is whether the law of energy
variation is violated when mass inertia cannot be neglected
[condition (2.3) is not fulfilled]. The answer is `yes' because the
velocity of mass crossing the clamp has a vertical component
VU, and a termÿmV 2

U=2 appears in the right-hand side of Eqn
(2.23). In the general case, if the moving object has internal
degrees of freedom (e.g., two-mass oscillator), the law of
energy variation for transition radiation has the form

W r � ÿDWP �WR � AP ÿ
�
EÿMV 2

2

�
;

where E is the mechanical energy of the object when it passes
the clamp andM is its total mass. If the object's inertia (in the
general case, internal degrees of freedom) is taken into
account, the expressions for DWP and AP remain unaltered,
whereasWR andW r change.

2.2.2 The law of momentum variation. The deformation
eigenfield, which moves together with the load, transfers not
only energy, but also momentum (note that, the problem of
wave momentum in elastic systems remains a matter of
controversy [9]). Using the general expression for the wave
momentum in a string and Eqns (2.5), we obtain the equation
for the momentum of the eigenfield pP

pP � ÿr
� 1
ÿ1

UP
x U

P
t dx �

P 2V

4rhb3
: �2:24�

Note the simple relation between the energy and the
momentum of the eigenfield:WP � �c2=V�pP, which reduces
toWP � cpP at V! c.

During the eigenfield transformation, an additional
momentum is introduced into the elastic system, which is
due to the action of force R that maintains the uniform
motion of the load. The momentum pR due to this force is
defined by the expression [see (2.9)]

pR �
� 0

ÿ1
R dt � ÿ

� 0

ÿ1
F r dt � P 2

4rhbV
: �2:25�

The string does not only receive momentum from forceR, but
also transfers momentum pT to the clamp. As inferred from
the general expression for the horizontal force T that acts on
an obstacle from the spring-supported string [6], the following
momentum is transferred to the clamp at t4 0 (i.e., while the
load moves along the string):

pT
t�0 �

� 0

ÿ1
T�0; t� dt � P 2c2

4rhVb3
; �2:26�

where

T�x; t� � 1

2

h
r
ÿ
Uÿt
�2 �N

ÿ
Uÿx
�2 ÿ k

ÿ
Uÿ
�2i

:

Since no string displacement occurred when the load
crossed the clamp �t � 0�, its horizontal (wave-related)

t

�U0

V1 > V2

V2

V1

Figure 5. Time dependence of the vertical acceleration of the mass at

different load speeds.
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momentum was zero, and the entire momentum of the system
was stored in the clamp. Indeed, it appears from a comparison
of (2.24), (2.25), and (2.26) that the law of momentum
variation at t4 0 has the form

pP � pR � pT
t�0 : �2:27�

At t5 0, the `exchange' of momenta between the string
and the clamp continues, and part of themomentum is carried
away with radiation onto infinity. Therefore, the law of
momentum variation has now the form

p r � pT
t�0 ÿ pT ; �2:28�

where p r is the momentum of transition radiation and pT is
the total momentum transferred to the clamp for time
t 2 �ÿ1;1�. The radiation momentum is determined by the
expression

p r � ÿ P 2

2prhVb3

�
bV� �2V 2 ÿ c2�

�
p
2
ÿ arctan

b
V

��
:

�2:29�

Note that p r is a negative quantity, which is natural since the
radiation propagates to the left. Expression (2.29) was
obtained using the solution to the problem in the spectral
form (2.14) by the method described in Ref. [1]. The
momentum pT is actually the difference between (2.26) and
(2.29).

By eliminating pT
t�0 from (2.27) and (2.28), we can write

the integral law of momentum variation during transition
radiation (the form of the law remains unaltered even if
inertia of a moving object is taken into account):

p r � pP � pR ÿ pT : �2:30�

Thus, in transition radiation of elastic waves, the momentum
of the load's eigenfield is transferred to both the radiation and
the clamp (or to the inhomogeneity region, in the general case
of an arbitrarily inhomogeneous elastic system). Concur-
rently, an additional momentum is introduced into the elastic
system due to the force R which maintains the uniform
motion of the load.

The process of momentum transfer described by (2.30) is
similar to the process that occurs when an elastic ball strikes
a wall. Indeed, the integrated law of momentum variation
for such a collision may be written as (2.30) on the
assumption that a force R presses the ball against the wall
for some time during the contact between them. In this case,
the terms in (2.30) describe the following quantities:
pP � mV is the momentum of the ball before it strikes the
wall, pR is the momentum introduced into the ball ±wall
system by force R, pT � 2mV� x is the momentum trans-
ferred to the wall during the contact, p r � ÿmV� y is the
momentum of the reflected ball �x� y � pR�. Such an
analogy appears natural in the context of the wave-corpuscle
duality principle and allows the process of radiation to be
represented as the fall of a quasiparticle (deformation
eigenfield) onto a clamp followed by its bouncing (reflec-
tion). It is the reflected portion of the energy ±momentum
that represents transition radiation.

2.3 Transition radiation in a semibounded beam.
Loss of contact between the beam and a moving mass
The elastic system model (a spring-supported string)
described in Section 2.1 provided a valuable tool for a detailed

qualitative examination of specific features of transition
radiation in one-dimensional elastic systems. However, this
model does not take into account flexural rigidity which is
intrinsic, to a certain extent, in all elastic guides. Hence, the
problem of flexural rigidity effect on the radiation process
arises.

To solve this problem, let us consider the motion of a
mass along a semibounded spring-supported beam (Fig. 6).
In terms of the wave ± particle duality concept, flexural
rigidity does not interfere in this situation. Similar to the
case of mass moving along a string, a deformation eigenfield
travels together with the mass along such a beam and must
be reflected from the clamp, converting into transition
radiation. However, this transition radiation arises through
a mechanism that is qualitatively different from that under-
lying the mass ± string interaction. The difference is due to
the fact that the deformation eigenfield in a beam falls off
nonmonotonically with the distance from the moving mass,
in agreement with the expression describing this field [10]
(see also Fig. 7):

UP � ÿA exp
ÿÿs1jxj��cos s2x� s1

s2
sin s2jxj

�
; �2:31�

whereA � P=�8EIs1m2�; s1�
���������������������
m2 ÿ V 2n2

p
; s2 �

���������������������
m2 � V 2n2

p
;

x � xÿ Vt; 4m4 � k=EI; 4n2 � r=EI;EI and r are the flexural
rigidity and the linear density of the beam, respectively; k is
the stiffness of the elastic base; andV is themass velocity. This
non-monotonical process is responsible for vertical vibrations
of the mass as it moves near the clamp, which may cause the
loss of mass ± beam contact. Such loss of contact is likely to
occur also when a mass moves along a string, but only as it
crosses the clamp.

No-loss-of-contact vibrations of a uniformly �x � Vt�
moving mass m pressed by a vertical force P against an
Euler ±Bernoulli beam [11] fixed by a hinge at x � 0 are
described by the following system of equations [7]:

Uxxxx � 4n2Utt � 4m4U � ÿ 1

EI

ÿ
P�m �U0

�
d�xÿ Vt� ;

x4 0 ; t4 0 ;

U�Vt; t� � U0�t�; U�0; t� � Uxx�0; t� � 0 ;

U! 0 at xÿ Vt! ÿ1 ; �2:32�

where U�x; t�, U0�t� are the vertical displacements of the
beam and the mass, respectively.

The solution to the problem (2.32) at V < Vcr � m=n (Vcr

is the minimal phase velocity of flexural waves in the beam)
can be obtained by the method of images. Because the

U�x; t�

0 x

V � const

P

Figure 6.Uniform motion of a mass along a hinged semibounded beam.
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problem of a moving load �m �U05P� has in this case no
qualitatively new features, the solution may straightfor-
wardly be written with the allowance for mass inertia:

U�x; t� � ÿA exp
ÿÿs1jxj��cos s2x� s1

s2
sin s2jxj

�

� A exp s1Z
�
cos s2Zÿ s1

s2
sin s2Z

�

� m

2r

� t

ÿ1
�U0�t�R�x; t; t� dt ; x4 0 ; t4 0 ;

where x � xÿ Vt, Z � x� Vt, l �
������������������
k4 � 4m4

p
=2n, A is

defined in (2.31), and

R�x; t; t� �
�1
0

1

l
sin
�
l�tÿ t��

�
n
cos
�
k�x� Vt��ÿ cos

�
k�xÿ Vt��o dk :

By using the condition of continuous contact U�Vt; t� �
U0�t�, we obtain the following integro-differential equation
for the vertical mass displacement:

U0�t� � m

2r

� t

ÿ1
�U0�t�R�Vt; t; t� dt

ÿ A� A exp�2s1Vt�
�
cos 2s2Vtÿ s1

s2
sin 2s2Vt

�
: �2:33�

The result of numerical analysis of (2.33) is presented in Fig. 7
in the form of the �U0�t� dependence. It can be seen that
vertical mass oscillations occur near the clamp. Also, it is
evident that the condition �U0�t �� � ÿP=m can be fulfilled at a
time moment t � < 0, which means that the beam reaction for
the moving mass vanishes, i.e., the mass ± beam contact is lost
(the system of equations (2.32) and Eqn (2.33) are valid only
at t < t �). Fig. 8 shows the curve separating the qualitatively
different modes of the system's behavior on the plane of
parameters M � mm=r (dimensionless mass) and a � V=Vcr

(dimensionless velocity). The area above the curve corre-
sponds to the motion with loss of contact at t < 0.

Thus, upon the motion of an object along a nonuniform
elastic guide, loss of contact between the object and the guide

can occur during transition radiation. This feature of transi-
tion radiation in elastic systems has a very important practical
implication, since it is the loss of the object±guide contact that
is responsible for sparking in a current-collecting system or a
sharp rise in the level of vibrations of railroad trains.

3. Transition radiation in periodically
inhomogeneous one-dimensional elastic systems

A train catenary, a railroad track, and a guideway for a
magnetically levitated vehicles [12] may all be regarded as
periodically inhomogeneous elastic systems due to the effects
of contact ± line supports, crossties, and piers, respectively.
Investigations into the dynamics of periodically inhomoge-
neous elastic systems are, therefore, of crucial importance in
practical application [13]. Main research trends are also
dictated by practical considerations and include elucidation
of the mechanisms which underlie resonance effects and the
problem of instability of vibrations in a moving object±elastic
guide system. Transition radiation is the primary cause of
these undesirable phenomena. Specifically, resonance is due
to the discreteness of the radiation spectra in periodic systems
and occurs when the group velocity of an emitted harmonic
coincides with the load speed. The instability of vibrations
results from the reaction for the radiation of anomalous
Doppler waves [14 ± 17].

This section is concerned with three problems. First, we
will discuss the motion of a load along a periodically
inhomogeneous boundless elastic system and use the solution
of this problem to analyze the spectrum, the radiation
reaction averaged over the inhomogeneity period, and the
conditions for the development of resonance in an elastic
system [12, 18 ± 20]. Second, we will briefly consider the
motion of a load in a closed periodically inhomogeneous
elastic system (spoked wheel) [21]. The latter problem is of
special interest in the context of the noise abatement program
for the EEC railroad network, which envisions a new wheel
design for cars in the form of a steel spoked wheel rim (as
opposed to the currently used all-metal wheels). It appears
appropriate to discuss load-induced wheel vibrations in this
section because they result from transition radiation, with
special reference to resonance conditions. Third, we will
consider the problem of coupled vibrations of a moving
object and a periodically inhomogeneous guide [22]. It will
be demonstrated that the allowance for coupling leads to the
appearance of zones of vibration instability in an object±
guide system.

�U0

t

P=m

Figure 7. Time dependence of vertical mass acceleration. Note the loss of

mass ± beam contact at �U � ÿP=m.

Loss of
contact

0.2 0.4 0.6 a

M

4

2

0

Contact

Figure 8. The curve dividing the plane of parameters �a; M� into contact
and noncontact regions of mass and beam motion.
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3.1 Motion of constant load along a string resting on
equispaced discrete supports. Radiation spectrum and
resonance conditions
Let us consider the uniform motion �x � Vt� of a constant
vertical load P along a boundless string lying on equally
spaced discrete elastic inertial supports (Fig. 9). This model
satisfactorily describes vibrations of the current wire excited
by the current collector of a moving locomotive; also, it is
simple to analyze. Steady state oscillations of the string are
described in the linear approximation by the following system
of equations:

Utt ÿ c2Uxx � ÿP

r
d�xÿ Vt� ; c2 �

����
N

r

s
;

ÿ1 < x <1 ; ÿ1 < t <1 ;

U�nd; t� � U 0
n �t� ;

N
�
Ux�nd� 0; t� ÿUx�ndÿ 0; t�� � m �U 0

n � d _U 0
n � kU 0

n ;

�3:1�

where U�x; t� is the transverse displacement of the string; U 0
n

is the vertical displacement of mass of the nth support; N and
r are the tension and and the linear density of the string,
respectively (henceforth, we will assumeV < c � ���������

N=r
p

); d is
the distance between the neighboring supports;m, k, and d are
the mass, rigidity, and viscosity of a support respectively; and
n � 0;�1;�2; . . .

By applying to (3.1) the integral Fourier transformation
(2.11) with respect to time, we obtain

q2

qx2
Vo � o

2

c2
Vo � F

V
exp

iox
V

;

Vo�nd;o� � V 0
o n�o� ;

N
q
qx

�
Vo�nd� 0;o� ÿ Vo�ndÿ 0;o��
� �kÿ idoÿmo2�V 0

o n�o� ; �3:2�

whereV 0
o n�o� are the Fourier transforms of the displacement

of the nth mass, and F � P=rc2.
The system (3.2) can be solved using the periodicity

condition [20] related to the system's periodicity and the

uniformity of the load motion. The solution to the initial
system (3.1) has the form

U�x; t� � U

�
x� nd; t� nd

V

�
�3:3�

and means that the string in the steady-state regime periodi-
cally �T � d=V� reproduces its own shape although with a
spatial shift equal to the structure period d. In the transform
space, the condition (3.3) has the form

Vo�x� nd;o� � Vo�x;o� exp iond
V

: �3:4�

Writing the general solution (3.2) for x 2 �0; d�

Vo � A exp
iox
c
� B exp

�
ÿ iox

c

�
ÿ S exp

iox
V

;

S � FVc2�c2 ÿ V 2�
o2

�3:5�

and using the periodicity condition (3.4), we obtain the
following expressions for Vo and V

0
o n at arbitrary x and n:

Vo � exp
iond
V

�
A exp

io�xÿ nd�
c

�

� B exp

�
ÿ io�xÿ nd�

c

��
ÿ S exp

iox
V

;

V 0
on � C exp

iond
V

:

The joining of the solutions at x � 0 and x � d yields a system
of linear equations with respect to A; B, and C, whose
solution results in

A � DA

D
; B � DB

D
; C � DC

D
;

D � ÿ2b�p2 � 1ÿ p�gÿ � g�� ÿ Gp�gÿ � g���
� ÿ4bp

�
cos

od
V
ÿ cos

od
c
ÿ Gc

2o
sin

od
c

�
;

D1 � SGp�pÿ gÿ� ; D2 � SGp�g� ÿ p� ;

D3 � 2bS
�
p2 � 1ÿ p�gÿ � g���;

b � io
c
; g� � exp

�
� iod

c

�
; p � exp

iod
V

;

G � kÿmo2 ÿ ido
N

:

The application of the inverse Fourier transformation to (3.5)
brings about the exact solution at x 2 �0; d �:

U�x; t� � 1

2p

� 1
ÿ1

S

D

(
Gp

�
�pÿ gÿ� exp iox

c

� �g� ÿ p� exp
�
ÿ iox

c

��
ÿ D exp iox

V

)
exp�ÿiot� do :

�3:6�
The string displacements at x 62 �0; d � are estimated from the
periodicity condition (3.3).

U�x; t�
V � const

P

x

d

Figure 9. The motion of a constant load along a string resting on equally

spaced supports.
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The poles of the integrand in (3.6) that determine the
frequencies of harmonics produced by the load are roots of
the equation

cos
�

~k�o�d� � cos
od
V

; �3:7�

where

cos
�

~k�o�d� � cos
od
c
� Gc

2o
sin

od
c

is the dispersion equation for a string resting on equispaced
inertial viscoelastic supports. Figure 10 illustrates the graphi-
cal solution of Eqn (3.7) at d! 0 from which the real roots of
this equation can be inferred. Evidently, the radiation
spectrum is discrete. The frequencies of the emitted harmo-
nics are defined by intersections of the discontinuous curve
(dispersion dependence of the periodically inhomogeneous
system) and a family of monotonically sloping curves (kine-
matic invariants `monitoring' phase equality of the emitted
harmonics and the load in the contact point). The discrete
spectrum of the radiation is created in the following way. As
the load crosses a support, transition radiation with a
continuous spectrum is formed. The radiation fields excited
by the load on its passage across each support are phased at
certain frequencies due to the elastic-system is periodicity.
This accounts for the discrete radiation spectrum in the
steady-state regime with harmonic frequencies defined by
Eqn (3.7), which is essentially the `resonance' condition for
radiation fields (for this reason, transition radiation in a
periodically inhomogeneous medium is referred to as reso-
nance transition radiation [1]).

The discrete nature of the radiation spectrum makes
resonance possible in an elastic system when the group
velocity of an emitted harmonic coincides with the load
speed. Indeed, Fig. 10 shows that when one of the straight
lines touches the dispersion curve (the group velocity do=dk
coincides with load speed V), a real multiple root appears in
Eqn (3.7), which leads to the divergency of integral (3.6). The
possibility of resonance in an elastic periodically inhomoge-
neous system interacting with a moving load was first
reported in Ref. [18].

Because the number of resonance velocities of the load is
countable, this raises the problem of the effect of the support
viscosity on the system oscillations at resonance and of the

identification of resonances `essential' for practical purposes.
Figure 11 shows the string displacement in the contact point
versus the load speed (a � V=c; the displacement is depicted
at t � 0) for the parameters ~m � m=rd � 0:15,
~k � kd=rc2 � 10, and ~d � d=rc � 0:1. Figures near the main
resonance peaks denote frequencies of resonance harmonics
whose group velocity at d! 0 coincides with the load speed.
An analysis of this dependence reveals that (1) the lower the
resonance harmonic frequency, the weaker the effect of
viscous supports on the amplitude of the corresponding
resonance vibrations and the stronger the resonance, and (2)
if the resonance harmonic frequencies are nearly identical
(e.g., at a � 0:19 and at a � 0:34,ores � 2:25), then the higher
the speed of the load, the stronger the resonance. The first
`selection rule' for strong resonances rests on the enhance-
ment of the support viscosity effect with growing vibration
frequency, and the second one, on the rise in the transition
radiation power with increasing load speed (it should be
remembered that we consider the case of V < c).

The emitted waves exert a pressure on the moving load
(the horizontal component of the string reaction at the point
of contact is nonzero). According to [20], the horizontal
reaction of the string at the loading point (transition radia-
tion, in the case under consideration) averaged over the
spatial period is defined by the expression

Fr � ÿP

d

�d
0

�
Ux�Vt� 0; t� �Ux�Vtÿ 0; t��dx : �3:8�

The substitution of (3.6) into (3.8), calculation of the integral
with respect to x, and introduction of a new integration
variable ~o � oc=d lead to
Fr
PF
� ÿ

~da2

p�1ÿ a2�
�1
0

�
cos

~o
a
ÿ cos ~o

�
~oÿ2 d~o

�
"�

cos
~o
a
ÿ cos ~oÿ

~kÿ ~m~o2

2~o
sin ~o

�2

�
� ~d
2~o

sin ~o
�2
#ÿ1

;

�3:9�

where a � V=c, ~m � m=rd, ~k � kd=rc2, ~d � d=rc. It follows
from (3.9) that, on the average, the radiation reaction

~k

o

2pV=d

f

Figure 10. Graphical solution of the equation defining frequencies of

emitted harmonics; tanf � V.

0.1 0.3 0.5 0.7 a

6
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2

0

U=d

2.25

4.5

15.5

o � 2:25

Figure 11. Speed dependence of the string displacement under the action of

a moving load during its passage across the n � 0 support.
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decelerates the motion of the load. Figure 12 shows the
dependence of the mean radiation reaction on the dimension-
less viscosity of supports ~d at various load speeds ( ~m � 0;15,
~k � 10). It can be seen that at a high radiation power
(a � 0:34 corresponds to the resonance case, and a � 0:95,
to the load speed close to the wave propagation velocity in the
string), the low viscosity of supports decreases the resistance
to motion (radiation reaction). Otherwise �a � 0:4�, the
resistance to motion grows slowly with increasing viscosity.

To summarize, the transition radiation spectrum in a
periodically inhomogeneous system is discrete. When the
load speed and the group velocity of an emitted harmonic
coincide, there is a marked increase in the amplitude of
oscillations, i.e., resonance occurs. The radiation reaction is
on the average different from zero, i.e., the moving load is
subjected to a force of resistance to motion.

3.2 Motion of constant load along a closed periodically
inhomogeneous elastic system (spoked wheels). Resonance
conditions
An important example of a mechanical system in which a
moving load can excite elastic waves is an elastic wheel, which
is a standard element of most vehicles. If the wheel is non-
uniform with respect to the angular coordinate, i.e., contains
spokes, damps, disk brakes, etc., transition radiation is likely
to constitute one of the mechanisms of wave generation.
Elucidation of such a mechanism is interesting from both
theoretical and practical standpoints. Theoretically, specific
features of the radiation process associated with the closed
nature of an elastic system are of great interest, whereas the
practical importance of the problem is related to a new type of
railroad car wheels being currently designed (see above) and
the need for development of a theory explaining `shimming'
(angular wheel vibrations of landing airplanes) with due
regard for modern landing velocities.

A filament stretched by continuously distributed springs
may serve as a wheel model (Fig. 13). Elastic inertial
concentrated loads (`spokes') located equidistantly through-
out the wheel length represent inhomogeneities of the elastic
system. Let us assume that due to the interaction between the
wheel and the earth surface (rail), the wheel is being subjected
to a constant radial force P whose application point moves at
a constant angular velocityO � const. According toRef. [20],

the system of equations that describes small radial vibrations
of such a filament has the form

Utt ÿ c2Uss � h2U � ÿP

r
d
�
sÿ ROt� l

�
Ot
2p

��
;

04 s4 l ; 04 t41 ;�
U
�
s�nl=N � 0 ; U

�
nl

N
; t

�
� U 0

n ;

T
�
Us

�
s�nl=N � m �U 0

n � d _U 0
n � kU 0

n ; U�s� l; t� � U�s; t� :
�3:10�

Here, s � Rj is the angular coordinate; j is the angle; R, the
filament radius; l, the wheel length; N, the number of spokes;
14 n4N; U�s; t� and �U 0

n �t� are the radial displacements of
the string and the inertial element of the nth spoke, respec-
tively; r, the mass per unit length of the filament; c2 � T=r is
the radial wave velocity; T, the filament tension caused by the
springs (see Ref. [23] for more details); h2 � k0=r; k0, the
stiffness per unit length of the springs; m; d; k are the spoke
mass, viscosity, and stiffness, respectively (the length of the
unexcited elastic element in a spoke is coincident with R); fbg
is the integer part of b; and � f �s�b � f �b� 0� ÿ f �bÿ 0�.

The solution to (3.10) should be sought by the method of
images, that is, on the assumption that the elastic system is
boundless and subjected to additional fictitious loads in such
a way as to satisfy both the closeness condition U�s� l; t� �
U�s; t� and the boundary conditions at the point of contact.
Evidently, the field generated by loads P moving with speed
OR at equal distances from one another meets these require-
ments. Hence, the auxiliary problem, the solution of which
coincides with that of (3.10) at s 2 �0; l �, can be written as

Utt ÿ c2Uss � h2U � ÿP

r

X1
j�ÿ1

d�sÿ Vt� jnd� ;

ÿ14 s41 ; ÿ14 t41 ;�
U
�
s�nd � 0 ; U�nd; t� � U 0

n ;

T
�
Us

�
s�nd � m �U 0

n � d _U 0
n � kU 0

n ; U�s� l; t� � U�s; t� ;
�3:11�

where V � OR is the linear load speed and d � l=N is the
distance between the neighboring spokes at the wheel rim.

a � 0:4

a � 0:33

a � 0:95

0 0.1 0.2 0.3 d=rc

8

ÿ �Fr=PF

7

1

0.5

Figure 12.Dependence of the force of resistance to motion on the viscosity

of supports.

P

O � const

Figure 13. The uniform motion of a constant radial load along `a spoked

wheel'.
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Steady state filament vibrations can be found by applying
to (3.11) the integral Fourier transformation with respect to
time (2.11). This leads to

q2

qs2
Vo � 1

c2
�o2 ÿ h2�Vo � F

V
exp

ios
V

X1
j�ÿ1

exp

�
iodN
V

j

�
;

�
Vo
�
s�nd � 0 ; Vo�nd;o� � V 0

on�o� ;

T

�
q
qs

Vo

�
s�nd
� �kÿ idoÿmo2�V 0

o n�o� ; �3:12�

where Vo�s;o� and V 0
o n�o� are the Fourier transforms of

U�s; t� and U 0
n �t�, respectively; and F � P=rc2.

This problem is solved in the same way as described in
Section 3.1 using the periodicity condition (3.4). Proceeding
from the general condition at s 2 �0; d �, we have

Vo � A exp
is
����������������
o2 ÿ h2
p

c

� B exp

�
ÿ is

����������������
o2 ÿ h2
p

c

�
ÿ S exp

ios
V

;

S � FVc2

o2�c2 ÿ V 2� � h2V 2

X1
j�ÿ1

exp
iodNj
V

: �3:13�

The use of the periodicity condition leads to the expression for
Vo at arbitrary s

Vo � exp
ios
V

(
A exp

i�sÿ d�
����������������
o2 ÿ h2
p

c

� B exp

�
ÿ i�sÿ d�

����������������
o2 ÿ h2
p

c

�)
ÿ S exp

ios
V

: �3:14�

DeterminingA andB by substituting (3.14) into the boundary
conditions at s � 0 and s � d [see (2.12)] and applying the
inverse Fourier transformation to (3.13), we obtain the exact
solution of (3.10) that describes steady-state filament vibra-
tions at s 2 �0; d �

U�s; t� � 1

2p

� 1
ÿ1

S

D

(
Gp

�
�pÿ gÿ� exp is

����������������
o2 ÿ h2
p

c

� �g� ÿ p� exp
�
ÿ is

����������������
o2 ÿ h2
p

c

��
ÿ D exp iox

V

)
� exp�ÿiot� do ; �3:15�

where

D � ÿ 4ip
c

����������������
o2 ÿ h2
p �

cos
od
V
ÿ cos

�
d

c

����������������
o2 ÿ h2
p �

ÿ Gc

2
����������������
o2 ÿ h2
p sin

�
d

c

����������������
o2 ÿ h2
p ��

;

p � exp
iod
V

; g� � exp

�
� id

����������������
o2 ÿ h2
p

c

�
;

G � kÿ idoÿmo2

T
:

The filament displacements in the interval of s 2 �d;Nd � are
determined using the periodicity condition (3.3).

Similar to the case of motion along a boundless elastic
system (Section 3.1), the load induces in the wheel radiation

with a discrete spectrum whose components have frequencies
defined by Eqn (3.7) in which

cos
�

~k�o�d� � cos
d
����������������
o2 ÿ h2
p

c
� Gc

2
����������������
o2 ÿ h2
p sin

d
����������������
o2 ÿ h2
p

c
:

�3:16�

Eqn (3.16) is the dispersion equation for a spring-supported
string resting on periodical supports.

Let us now consider the resonance parameters of the
system responsible for a sharp rise in the wheel vibration
amplitude, which is of great practical importance. Without
the loss of generality, we first will find resonance conditions
by examining the amplitude of steady-state vibrations of a
spoke. For the sake of brevity, we will consider the spoke
n � 0 and calculate its displacement at t � 0 (the choice of
time is immaterial in resonance studies of steady-state
vibrations, provided the displacement is nonzero). According
to (3.15), the displacement of the inertial element of the
selected spoke at t � 0 is defined by the expression

U 0
0 �0� � ÿ

1

4p

� 1
ÿ1

S
cos�od=V� ÿ cos

ÿ
d
����������������
o2 ÿ h2
p

=c
�

cos�od=V� ÿ cos
�

~k�o�d� do ;

�3:17�
where cos

�
~k�o�� is defined by (3.16).

Calculating integral (3.17) by the residue calculus meth-
ods (see [22] for the detailed description of the calculations),
we obtain

U 0
0 �0� � ÿ

I1 � I2 � I3
4p

;

I1 � pi
X
m

res
Im�om�>0

�
Dÿ1�om�

�
�
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V
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�����������������
o2
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p
c

��
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X
l
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Im�ol�<0

�
Dÿ1�ol�

�
�
exp
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V
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����������������
o2
l ÿ h2

q
c

��

ÿ
� 1

ÿ1
Dÿ1 sinh

d
����������������
o2 ÿ h2
p

c
do ;

I2 � 2pi
X
m

exp�iomdN=V�
1ÿ exp�iomdN=V�
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Im�om�>0

�
Dÿ1�om�

�
exp

iomd

V
ÿ exp

id
�����������������
o2
m ÿ h2

p
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��
;

I3 � ÿ2pi
X
l

exp�ÿiol dN=V�
1ÿ exp�ÿiol dN=V�
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Im�ol�<0

�
Dÿ1�ol�

�
exp

iol d

V
ÿ exp

id
����������������
o2
l ÿ h2

q
c

��
;

D�o� �
�
cos

od
V
ÿ cos

�
~k�o�d��o2�c2 ÿ V 2� � h2V 2

FVc2
;

�3:18�
where om and ol are zeros of the D�o� function of the
complex variable o on the upper and lower half-planes,
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respectively, and res
�
f�ok�

	
is the residue of the function

f�o� at point o � ok. It follows from (3.18) that resonance
(i.e. the tending of the spoke displacement to infinity when its
viscosity d tends to zero) is likely to occur in the following two
cases: (a) Eqn D�o� � 0 at d! 0 has a multiple real root,
with the residue at this point tending toward infinity and (b)
the root of the equationD�o� � 0 at d! 0 coincides with one
of the roots of the equation 1ÿ exp��iodN=V� � 0, with
either I2 or I3 tending to zero.

Physically, case (a) means that the group velocity of one
of the harmonics radiated is coincident with the load speed.
In boundless systems, unlike bounded ones (see Section 3.1),
this condition is actually the single resonance condition.
However, this is not the case in closed systems unless the
emitted wave length is divisible by the wheel length. It was
shown in Ref. [22] that if condition (a) is met, each of the
summands in (3.18) diverges, but their summation gives a
finite result.

As for case (b), it actually defines the parameters of the
system that are responsible for resonance. Mathematically,
this is trivial, because U 0

0�0� here tends to infinity due to the
growth of one of the summands. From the physical point of
view, condition (b) is sufficiently transparent. Indeed, the real
roots of equation D�o� � 0, which can be rewritten (for real
roots) in the form

~k�o� � 2pm
d
� o
V
; m � 0;�1;�2; . . . ; �3:19�

define the frequencies of load-excited harmonics. The roots of
the equations 1ÿ exp��iodN=V� � 0, which are coincident
with the roots of the equation

sin
odN
2V
� sin

po
O
� 0 ;

correspond to wheel vibrations with frequencies o, which are
integer multiples of the frequency of the load rotation O

ol � lO ; l � 0;�1;�2; . . . �3:20�
Thus, resonance in a spoked wheel occurs when the

frequency of the load rotation is divisible by the frequency
of one of the emitted harmonics. The resonance condition can
also be written in another form. Substitution of (3.20) into
(3.19) yields

mlm � Nd ;

where lm � 2p=�~k� 2pm=d� is the wavelength of the mth
emitted harmonic. This indicates that resonance may occur
when the wheel length is divisible by the wavelength of one of
the emitted harmonics.

The graphical solution of the system (3.19), (3.20) is
presented in Fig. 14. The broken line is the dispersion curve
~k�o� of a periodically inhomogeneous system (a split repre-
sentation of the wheel rim). The intersections between a
family of monotonically sloping curves
om � ~k�o�V� 2pVm=d and the curve ~k�o� define the fre-
quencies of the load-induced harmonics. Resonance occurs
when om coincides with, or is a multiple of, the load rotation
frequency O (ol � lO is a family of horizontal straight lines).
Graphically, resonance takes place when the dispersion curve
intersects with two straight lines (one horizontal and one
sloping) at one point.

Figure 15 presents a family of curves on the plane of
dimensionless parameters �hd=c; V=c� characterizing the
possibility of resonance when the parameters of the system
fall onto these curves (calculations were made on the
assumption that kc=hT � 0:7, dc=T � 0, mhc=T � 0:3,
N � 2). In reality, the figure shows only part of the solutions
to the system (3.19), (3.20) (there is a countable number of
them), namely, the curves corresponding to frequencies that
are no more than 3 times the load's rotational frequency.
There is no sense in considering higher frequencies because
the corresponding resonances aremost likely to be suppressed
by dissipation inherent in all real wheels. At the intersections
between each curve and the straight line V=c � 1, double
indices �m; l� are given; the first figure shows howmany times
higher the resonance frequency is than the load rotation
frequency; the second figure corresponds to the order number
of the harmonic emitted. Also, Fig. 15 shows that the
`resonant' distance between the spokes increases with an
increase in load speed. Note that there are zones of concentra-
tion of resonance parameters of the system (for instance, at
V=c � 0:8 and hd=c � 1).

To select `strong' resonances, one should follow the same
rule as that for the motion along a boundless system (Section
3.1), that is, the lower the resonance frequency and the higher
the load speed, the stronger the resonance.

o

2pV=d

j

O

~k

Figure 14. Graphical solution of the system responsible for the resonance

parameters of a wheel; tanj � V.

8

hd=c

4

(3,1), (3,2)

(3,1), (3,2)

(2,1)

(3,0), (3,3)

(2,0), (2,2)

(1,0), (1,1)

0 0.4 0.8 V=c

Figure 15.A family of curves characterizing the possibility of resonance to

occur in a wheel when the system's parameters fall on them.
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3.3 Motion of mass along a string resting
on a periodically inhomogeneous elastic foundation.
Parametric instability of vibrations
If the perturbation source has its own degrees of freedom, the
radiation emitted may increase its internal energy [14]. This is
the case when the object emits anomalous Doppler waves.
Anomalous waves in elastic systems may generate unstable
vibrations of moving objects [15 ± 17]. Periodically inhomo-
geneous systems are known to have a decelerating effect.
Therefore, it is natural to expect that objects moving in such
systems will experience unstable oscillations even at `sub-
critical' speeds (lower than the maximum rate of energy
transfer). Another (`mechanical') line of reasoning is also
worthy of note. Imagine an object that uniformly moves
along an elastic guide resting on an elastic foundation, with
the stiffness of the foundation periodically changing in space.
The spring rigidity under the moving object also varies
periodically (in time) due to the uniformity of motion and
the periodicity of the guide parameters. Therefore, vibrations
of an object moving along the guide are equivalent to its
vibrations on a spring with periodically changing rigidity
(Fig. 16). Evidently, such a situation may lead to parametric
instability of the object vibrations.

It is this instability that is responsible for the `galloping' of
train wheels and sparking in the electric traction system.

In order to analyze conditions for the appearance of
parametric resonance, let us consider the uniform �x � Vt�
motion of mass m along a boundless string resting on an
elastic foundation (see Fig. 16) whose stiffness per unit length
is described by the expression

k�x� � k0

�
1� m cos 2px

d

�
;

where k0 is the mean stiffness, d is the inhomogeneity period,
and m5 1 is a dimensionless small parameter. For simplicity,
we assume that the system is not affected by external vertical
forces, because they do not interfere with its stability by virtue
of the problem's linearity. According toRef. [22], the problem
describing mass and string vibrations without loss of contact
may be written as follows:

Utt ÿ c2Uxx � h2�x�U � ÿm

r
�U0d�xÿ Vt� ;

U0�t� � U�Vt; t� ; ÿ1 < x; t <1 ; c2 � N

r
;

h2�x� � h20
r

�
1� m cos 2px

d

�
; h20 �

k0
r
; �3:21�

where U�x; t� and U0�t� are the vertical string and mass
displacements, respectively; r and N are the mass per unit
length and the tension of the string; and the velocity of the
mass is assumed to be subcritical, i.e., V < c.

The solution to (3.21) can be obtained based on the theory
of perturbations in the form

U � U �0� � mU �1� � . . . ; U0 � U
�0�
0 � mU �1�0 � . . . �3:22�

In the zero approximation �m � 0�, (3.21), (3.22) reduce to the
problem of mass motion along a string lying on a homo-
geneous elastic foundation with stiffness k0

U
�0�
tt ÿ c2U �0�xx � h20U

�0� � ÿm

r
d2

dt 2

h
U
�0�
0 �t�

i
d�xÿ Vt� ;

U
�0�
0 �t� � U �0��Vt; t� :

Using the fundamental solution for the operator

q2

qt 2
ÿ c2

q2

qx2
� h20 ;

in the form of

J0

�
h0
c

�������������������
c2t 2 ÿ x2
p �

Y
ÿ
ctÿ jxj�
2c

(J0 is the zero-order Bessel function, and Y is the unit
function), the expression for U �0��x; t�may be written as

U �0��x; t� � ÿ m

2rc

�t
0

d2

dt2

h
U
�0�
0 �t�

i
� J0

�
h0
c

���������������������������������������������
c2�tÿ t�2 ÿ �xÿ Vt�2

q �
Y
ÿ
tÿ tÿ jxÿ Vtj�dt :

Using now the no-loss-of-contact condition for mass and
string vibrations, we obtain an expression for describing
vertical mass vibrations on the string (note that V < c)

U
�0�
0 �t� �

m

2rc

�t
0

d2

dt2

h
U
�0�
0 �t�

i
J0

�
h0
c

����������������
c2 ÿ V 2
p

�tÿ t�
�
dt � 0 :

�3:23�

Seeking the solution to (3.23) in the form U
�0�
0 �t� � A exp ieOt

and tending t to1, we obtain an expression that defines the
vibration frequency of the mass moving along the string at
t!1

1ÿ MO 2

2
������������������������
1ÿ a2 ÿ O2
p � 0 ; M � mh0

rc
; O �

eO
h0
; a � V

c
;

from which we have

O � �
���
2
p

M

���������������������������������������������������
1�M 2�1ÿ a2��1=2 ÿ 1

q
: �3:24�

V

m

x

k�t�

U�x; t�; y�t�

d

Figure 16. The motion of a mass along a string resting on a periodically

inhomogeneous foundation. In the right-hand side of the figure, an

equivalent model is shown, i.e., a mass supported by a spring with rigidity

periodical in time.
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Therefore, vibrations of a mass uniformly moving along a
string resting on a homogeneous elastic foundation at t!1
are actually harmonic oscillations (O is real) described by the
equation

U
�0�
0 �t� � A exp iOt� B exp�ÿiOt� ;

t � h0t ; t!1 : �3:25�
The expression for string vibrations corresponding to mass
vibrations at t!1 can easily be derived in the form of
superposition of `plane' waves (t; z are the dimensionless time
and coordinate, respectively):

U �0� � C1 exp�iojtÿ ikjz� � C2 exp�ioj�2tÿ ikj�2z� ;

z � xh

c
; j � 1 ; z < at ;

2 ; z > at ;

�

k1;2 � aO� i
������������������������
1ÿ a2 ÿ O2
p�������������
1ÿ a2
p ; o1;2 � ak1;2 � O ;

k3;4 � ÿ aO� i
������������������������
1ÿ a2 ÿ O2
p�������������
1ÿ a2
p ; o3;4 � ak3;4 ÿ O ;

C1 � AO 2

2
������������������������
1ÿ a2 ÿ O2
p ; C2 � BO 2

2
������������������������
1ÿ a2 ÿ O2
p : �3:26�

Thus, a mass on a homogeneous string undergoes harmonic
vibrations. It is therefore natural to expect that taking into
account periodic inhomogeneity of the elastic foundation
leading to periodical-in-time (with a periodT � d=V) changes
of string rigidity under the moving mass may give rise to
parametric resonance with the first instability zone occurring
under the condition that

2O � aw� md ; �3:27�
where aw (a � V=c, w � 2pc=hd) is the dimensionless fre-
quency with which the stiffness of the elastic foundation
varies beneath the moving mass and d is the dimensionless
detuning.

It was demonstrated in Ref. [22] that parametric reso-
nance can occur in reality in the system under examination.
The paper provides a detailed description of the procedure
intended to seek out the boundaries of the first instability
zone by analogy with the standard method employed in the
analysis of parametric resonance in concentrated systems (see
Refs [24, 25]). Using this approach, the solution to (3.21) is
sought in the form of a series (3.22), but in the zero
approximation (3.25), (3.26), the amplitudes are assumed to
be slowly varying (because the system is continuous, the
amplitudes must change both in time and space), and a
small detuning is introduced in the phase:

U0�t� � A�mt� exp�it�O� md��
� B�mt� exp�ÿit�O� md��� mU �1�0 �t� � . . . ;

U�z; t� � C j
1�mz; mt� exp

�
it�oj � md� ÿ ikj z

�
� C j

2�mz; mt� exp
�
it�oj�2 � md� ÿ ikj�2z

�
�U �1��z; t� � . . . �3:28�

The equation for the boundaries of the zone of instability is
obtained from the condition that U

�1�
0 �t� and U �1��z; t� must

not grow in time [series (3.28) must be asymptotically

convergent], and has the form

awÿ 2O� m a2O�1ÿ a2�2
16�a2 � O2��1� 2=M 2O 2� � 0 : �3:29�

Note that the dimensionless quantities in (3.29) have the
following meaning: a is the mass velocity, w is the wave
number of inhomogeneity, M is the mass, and O is the
oscillation frequency of the mass moving along a string that
rests on a homogeneous foundation [defined by (3.24)].

Figure 17 shows instability zones for different w obtained
in accordance with (3.29). It is inferred from an analysis of
these graphs that (a) the smaller the inhomogeneity period
(the larger w), the lower the velocities at which the instability
occurs, (b) the mass necessary to induce the instability
decreases with an increase in velocity, (c) the instability zone
expands in awith an increase in mass and (or) inhomogeneity
period. It should be emphasized that the boundaries of the
instability zone (3.29) thus found are the boundaries of the
main instability zone obtained in the first approximation in
the small parameter m.

An important issue is the effect of small viscosity of the
elastic foundation on the solution of the problem in question.
With viscosity taken into consideration, the first equation in
(3.21) assumes the form (mn is the low viscosity of the
foundation)

Utt ÿ c2Uxx � 2mnUt � h2�x�U � ÿm

r
�U0d�xÿ Vt� ;

while the following inequality stands for the instability
condition:

M 2O 4�1ÿ a2�2
16�a2 � O 2�2�n2 � 16O 2=a4� ÿ d

2

�
M� 2

MO 2

�2

ÿ 4n2

M 2O 4
> 0 ; d � awÿ 2O

m
: �3:30�

Figure 18 depicts the instability zones obtained according
to (3.30) at n � 0:7. There is a region in the space of system's
parameters (the one below the dashed curve) where oscilla-
tions are stable at any inhomogeneity period. Interestingly,
the effect of elastic foundation viscosity grows as mass
velocity increases.

0.2 0.4 0.6 0.8 a

30

20

10

0

M
w � 1

w � 3

w � 0:5

Figure 17. The main zone of mass oscillation instability for different

inhomogeneity periods of a stiff foundation.
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In summary, the uniform motion of a mass (or an
arbitrary object) in a periodically inhomogeneous elastic
system is accompanied by parametric resonance which
appears as an exponential growth of the amplitude of mass
vibrations. It has already been mentioned that the work
necessary to increase the energy of mass vibrations is
performed by an external source that maintains the uniform
motion.

Mass vibrations were examined in an elastic system
without loss of contact. However, the wheels of a real train
can lose contact with the rails for a time and then regain
contact (`galloping'). The fact that the parameters of the
above problem belong to the stability region does not
necessarily suggest that the motion of an object occurs
without loss of contact. However, if these parameters fall
into the instability region, the loss of contact at t!1 is
unavoidable, i.e., it is a sufficient condition for `galloping'.

4. Transition radiation in randomly
inhomogeneous one-dimensional elastic systems

The assumption of regular properties of real elastic guides is a
controversial issue. Indeed, the crossties on which a railroad
track is laid are not strictly periodical, the distance between
wire clamps is variable (up to a few percent), and the track
ballast is a random structure. It is therefore necessary to
answer the question of whether the allowance for spatial
fluctuations of the parameters of the elastic systems under
consideration can lead to qualitative changes in their dynamic
behavior (during transition radiation, in particular) or not.
There are many reasons for giving a positive answer. For
instance, transition radiation in randomly inhomogeneous
guides is incoherent, unlike that in periodic systems. A more
essential question, however, is appropriate: whether real
structures must be strictly periodic or small fluctuations are
conducive to the attenuation of dynamic stress. These
questions are discussed below.

The discussion is of a twofold nature. Let us first suppose
that a load moves along a randomly inhomogeneous system
and examine resonance vibrations of this system during
transition radiation, which are crucial for practical reasons.
Then, we consider inertia of amoving object and demonstrate
the possibility of stochastic parametric resonance in a
randomly inhomogeneous elastic system subjected to such
an object. These problems are not classical in the field of

transition radiation studies, but our objective is to focus on
specific features of transition radiation in mechanical systems
and avoid reiterating electrodynamic and acoustic results
[1, 5].

4.1 Motion of constant load along a string resting
on a randomly inhomogeneous elastic foundation.
Limitations on the amplitude of resonance oscillations,
average radiation reaction
If a randomly inhomogeneous guide is subjected to a moving
load, the waves emitted at each inhomogeneity are unable to
interfere in a resonance manner because the inhomogeneities
are irregular. As a result, the radiation is localized near the
moving load, which makes radiation in a randomly inhomo-
geneous medium similar to the process of wave formation in a
dissipative medium, where the emitted waves are attenuated.
Interestingly, classical effects that can arise due to dissipation
in a moving load ± elastic guide system, such as limitation on
the resonance oscillation amplitude and the resistance to load
motion [26], are also observed when the load moves along a
randomly inhomogeneous guide. This is natural, since
emitted waves are equivalent to dissipation from the load's
`point of view', for they take away energy from the load and
the radiation reaction hinders its motion due to the `recoil
effect'.

To illustrate the above reasoning, let us consider the
uniform motion of a vertical load P exp iOt along a string
resting on an elastic foundation with rigidity per unit length

k�x� � k0 � 1

2
mk1�x� ; �4:1�

where k0 � const, m5 1 is the dimensionless small parameter,
k1�x� is the random coordinate function, and



k1�x�

� � 0.
Angular brackets h. . .i indicate statistical averaging. The load
is assumed to be oscillating, in order to demonstrate the effect
of limitation on resonance oscillations at subcritical velo-
cities. The load being constant, the first `resonance velocity' is
wave velocity in the string and the motion at this speed is a
separate complex problem that lies beyond the scope of this
paper.

The vertical string displacement caused by the load is
described by the following system of equations:

Utt ÿ c2Uxx � h2�x�U � ÿP

r
exp iOt d�xÿ Vt� ;

ÿ1 < x; t <1 ; c2 � N

r
;

h2�x� � h20 � mh1�x� ; h20 �
k0
r
; h1�x� � k1�x�

r
; �4:2�

where U�x; t� is the vertical displacement of the string; N and
r are its tension and the mass per unit length, respectively; the
motion of the load is assumed to be subcritical, i.e., V < c.

The problem (4.2) can be analyzed using the mean field
method [27, 28]. A disadvantage of this method lies in the loss
of information about the oscillation phase, but it is immater-
ial for our purpose (analysis of the vibration amplitude at
resonance and estimation of the average radiation reaction).

The application to (4.2) of the integral Fourier transfor-
mation with respect to time (2.11) yields

q2

qx2
Vo � 1

c2
�
o2 ÿ h2�x��Vo � F

V
exp

�
i
o� O
V

�
;
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M
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w � 3

w � 0:5

Figure 18. The main instability zone, with the viscosity of the string

foundation taken into account.
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F � P

rc2
: �4:3�

According to the mean field method, we must seek the
solution to (4.3) as the sum of the mean field hVoi and a
fluctuation field V 1

o for which hV 1
oi � 0:

Vo � hVoi � mV 1
o : �4:4�

The substitution of (4.4) into (4.3) yields the following
equation:

q2

qx2
ÿhVoi � mV 1

o

�� 1

c2
�
o2 ÿ h20 ÿ mh1�x�

�ÿhVoi � mV 1
o

�
� F

V
exp

�
i
o� O
V

�
; �4:5�

which is converted to the equation for the mean field of string
vibrations by statistical averaging

q2

qx2
hVoi � 1

c2
�o2 ÿ h20�hVoi ÿ m2

1

c2


h1�x�V 1

o

�
� F

V
exp

�
i
o� O
V

�
: �4:6�

The equation for the fluctuation field is obtained by subtract-
ing (4.6) from (4.5) and using only the m-order terms:

q2

qx2
V 1
o �

1

c2
�o2 ÿ h20�V 1

o �
1

c2
hVoih1�x� : �4:7�

The Green's function of Eqn (4.7) has the form [26, 29]

j
ÿjxj;o� � 1

2ia�o� exp
�
ia�o�jxj� ;

a�o� � 1

c

�
����������������
o2 ÿ h20

q
; o > h0 ;

i
����������������
h20 ÿ o2

q
; joj < h0 ;

ÿ
����������������
o2 ÿ h20

q
; o < ÿh0 :

8>>>><>>>>:
Hence, the fluctuation field is related to the mean field in the
following way:

V 1
o�x;o� �

1

c2

� 1
ÿ1



Vo�x;o�

�
h1�x�j

ÿjxÿ xj;o� dx : �4:8�
The substitution of relation (4.8) into (4.6) leads to a closed
equation for the mean field of string displacements (in
Fourier images):

q2

qx2
hVoi � 1

c2
�o2 ÿ h20�hVoi

ÿ m2 1
c2

� 1
ÿ1



Vo�x;o�

�
K�x; x�jÿjxÿ xj;o�dx

� F

V
exp

�
i
o� O
V

�
; �4:9�

where K�x; x� � 
h1�x�h1�x�i is the inhomogeneity correla-
tion function.

Henceforth, we will consider the fluctuations to be uni-
form, i.e., K�x; x� � K

ÿjxÿ xj�. This assumption allows for
the introduction of an effective stiffness of an elastic founda-
tion (analog of effective permittivity [27]). Indeed, applying
the integral Fourier transformation with respect to the
coordinate to (4.9)


Wo; k�k;o�
� � � 1

ÿ1



Vo�x;o�

�
exp�ÿiwx� dx ;

we obtain

hWo; ki � 2pF
V

d
�
o� O
V
ÿ w
�

� 1

ÿw2 � �o2 ÿ h20�=c2 ÿ m2H�o; w�
; �4:10�

where

H�o; w� � 2

�1
0

K�x�j�x� cos wx dx

is the effective stiffness of the elastic foundation of the string.
Similar to frequency-dependent dissipation, the effective

stiffness of an elastic foundation is non-invariant with respect
to the substitution o! ÿo [due to the non-invariance of
j�x;o�] and accounts for the absence of (simultaneously)
both real o and real w converting the dispersion equation

ÿw2 � o
2 ÿ h20
c2

ÿ m2H�o; w� � 0

to the identity. These properties of effective stiffness are
responsible for the limited string displacement upon reso-
nance and the resistance to motion. Indeed, the application to
(4.10) of the inverse Fourier transformations with respect to
time and coordinate yields


U�x; t�� � F

2pV

� 1
ÿ1

exp
�
ix�o� O�=Vÿ iot

�
�
�
ÿ�o� O�

2

V 2
� o

2 ÿ h20
c2

ÿ m2H
�
o;
o� O
V

��ÿ1
do :

�4:11�

Because no real frequency and wave number (the roots of the
dispersion equation) are present simultaneously, the denomi-
nator in (4.11) does not vanish on a set of real o and the
integral is convergent at all system parameters. Were the
elastic foundation homogeneous �m � 0�, the denominator in
(4.11) would have a realmultiple root, provided the resonance
condition V � c�1ÿ O 2=h20�1=2, O < h0 is met.

As regards the statistically mean force of resistance to
motion F r, it differs from zero even at O � 0. This follows
from the expression for hF ri (see below), which is obtained
using (4.11) and the general expression for the horizontal
component of the string reaction for the load being examined
�O � 0�:
F r � ÿP exp iOt�Ux�Vtÿ 0; t� �Ux�Vt� 0; t��:
hF ri

� ÿ F

2pV

� 1
ÿ1

io
�
exp
�
io� �ÿ0��� exp

�
io� ��0��	

ÿo2 � V 2�o2 ÿ h20�=c2 ÿ m2V 2H�o;o=V� do :

October, 1996 Transition radiation in mechanics 999



hF ri can be calculated by contour integration. The first and
second terms of the integrand [the exponent of the argument
is multiplied by �ÿ0�] must be integrated over the lower and
upper half-planes of the complex variableo, respectively. The
integration of these terms leads to different results because the
denominator of the integrand is non-invariant with respect to
the substitutiono! ÿo. Hence, hF ri 6� 0. Specifically, if the
inhomogeneity is delta-correlated

�
K�x� � d�x��, then hF ri is

described by the following expression:

hF ri � ÿm2 V 2P 2

4rc3
����������������
c2 ÿ V 2
p :

Thus, a random inhomogeneity of the guide restricts the
amplitude of its resonance oscillations excited by the moving
object. Therefore, it is tempting to infer that an irregular
structure of the guide is always preferable (to reduce vibra-
tions) than periodic inhomogeneity because it introduces
additional effective dissipation in the system. However, this
conclusion is incorrect, as becomes evident when we take into
consideration coupled vibrations of the moving object and
the elastic system. It will be shown in the next section that the
regions of unstable vibrations of an object moving along a
randomly inhomogeneous guide may be much broader than
they are when the same object moves in a periodic elastic
system. Therefore, the parameters of random inhomogene-
ities must be selected very carefully to avoid radiation-
induced vertical `swinging' of the object.

4.2 Motion of mass along a string resting
on a randomly inhomogeneous elastic foundation.
Stochastic parametric resonance
It was shown in Section 3.3 that oscillations of a mass moving
uniformly along a periodically inhomogeneous elastic system
are equivalent to vibrations of the samemass on a spring with
rigidity periodically changing in time. It is clear that amass on
a spring whose rigidity randomly changes in timemay serve as
an equivalent model describing vibrations of a mass moving
along a randomly inhomogeneous guide. It is known [30, 31]
that mass vibrations at such a spring may be unstable because
of stochastic parametric resonance. Hence, instability zones
must also exit in the space of the parameters of the moving
mass ± randomly inhomogeneous guide system.

To verify the above proposition, we will analyze (Fig. 19)
the uniform �x � Vt�motion of a mass m along a string with
mass per unit length r and tension N that lies on a randomly
inhomogeneous elastic foundation with stiffness per unit
length k�x� � k0 � mk1�x�=2 [see expression (4.1)]. Let us

introduce the following dimensionless variables and para-
meters: z � xh0=c, t � h0t (c2 � N=r, h20 � k0=r) for the
coordinate and the time; a � V=c �a < 1� for the mass
speed; and M � mh0=rc for the mass; h1�z� � k1�z�=k0r is
represented as

h1�z� �
� 1
ÿ1

Q�w� exp iwz dw �
� 1
ÿ1

Q ��w1� exp�ÿiw1z� dw1 ;

Q�w�� � 
Q ��w1�� � 0 : �4:12�

Now, we assume again that the fluctuations are uniform, i.e.,

h1�z�h1�z1�

� � K
ÿjzÿ z1j

�, 

Q�w�Q ��w1�

�
� S�w�d�wÿ w1� ;

where K�z� and S�w� are the correlation function and its
spectrum interrelated via Wiener ±Khintchine relations.

The equations formass and string vibrations that cause no
loss of contact will be written in a moving coordinate system
x � zÿ at, bearing in mind (4.12) (see Ref. [32] for more
details):

Utt ÿ 2aUtx ÿ �1ÿ a2�Uxx � 2mn�Ut ÿ aUx��

�U 1� m
� 1
ÿ1

Q�w� exp�iw�x� at��dw� �
� ÿMd�x�Utt :

�4:13�
Here, U�z; t� is the vertical displacement of the string, 2mn is
the dimensionless low viscosity of the elastic foundation of
the string, and ÿMd�x�Utt is the vertical force of inertia that
affects the mass in the moving coordinate system.

The solution to (4.13) can be found by the mean field
method according to which the string displacement should be
represented as a sum of the mean field and a small fluctuation
field U � hUi � mU 1. Substituting this representation into
(4.13) and performing operations described in the previous
Section, we obtain the following expressions for themean and
fluctuation fields:

hUitt ÿ 2ahUitx ÿ �1ÿ a2�hUixx � 2mn
ÿhUit ÿ ahUix�

� hUi � m2 U 1

� 1
ÿ1

Q�w� exp�iw�x� at�� dw� �
� ÿMd�x�hUitt ; �4:14�

U 1
tt ÿ 2aU 1

tx ÿ �1ÿ a2�U 1
xx �U 1

� ÿhUi
� 1
ÿ1

Q ��w1� exp
�ÿiw1�x� at�� dw

ÿMd�x�U 1
tt : �4:15�

Application of the integral Fourier transformations with
respect to time and coordinate (4.14), (4.15)n


Vo�o; x�
�
;V 1

o�o; x�
o

�
� 1
ÿ1

n

U�x; t��;U 1�x; t�

o
exp iot dt ;

n

Wo; k�o; k�

�
;W 1

o; k�o; k�
o

�
� 1
ÿ1

n

Vo�o; x�

�
;V 1

o�o; x�
o
exp�ÿikx� dx ;

V

m

x

k�t�

U�x; t�

Figure 19. The motion of a mass along a string on a randomly inhomo-

geneous foundation. The equivalent model: a mass supported by a string

with rigidity randomly varying in time.
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yields equations for themean and fluctuation fields in Fourier
transforms:�

A�o; k� ÿ 2imn�o� ak�

� m2
� 1
ÿ1



Q�w�W 1

o; k�o� ak; kÿ w�
�
dw
�

W 0
o; k�o; k�

�
�Mo2



Vo�o; 0�

�
; �4:16�

A�o; k�W 1
o; k�o; k� �Mo2V 1

o�o; 0�

ÿ
� 1
ÿ1

Q ��w1�


Wo; k�oÿ aw1; k� w1�

�
dw1 ; �4:17�

where

A�o; k� � ÿo2 ÿ 2aok� �1ÿ a2�k2 � 1 :

Our purpose is to obtain the following equation which
describes mass vibrations on the average:

Vo�o; 0�

�
Z�o� � 0, and to use it for the estimation of the

frequencies of mass oscillations [by making Z�o� equal to
zero]. The derivation procedure for this equation is described
in detail in Ref. [32]. Therefore, we pass straight to the
expression for Z�o�

Z�o� � 1ÿMo2F
�

1

A�o; k�
�
ÿ 2imnF

�
o� ak
A�o; k�

�

ÿ m2M
� 1
ÿ1

S�w�
"
F
�

1

A2�o; k�A�o� aw; kÿ w�
�

� o
2�o� aw�2F2

�
1=
�
A�o; k� w�A�o� aw; k��	

1ÿM�o� aw�2F�1=A�o� aw; k�	
#
dw ;

�4:18�
where the notation

F
�
f �o; k�� � 1

2p

� 1
ÿ1

f �o; k� dk

is used.
The roots of the equation Z�o� � 0 determine mass

vibration stability. If at least one root has a positive imaginary
part, mass vibrations are unstable on the average.

In the zero approximation �m � 0�, the roots of the
equation Z�o� � 0 are defined by the following expression
(the integral F

�
1=A�o; k�� needs to be calculated and the

resulting equation needs to be solved to find the roots):

O � �
���
2
p

M

���������������������������������������������������
1�M 2�1ÿ a2��1=2 ÿ 1

q
; �4:19�

which, naturally, coincides with (3.24). Expression (4.19)
indicates that when a mass moves along a string resting on a
homogeneous elastic foundation, it undergoes vertical har-
monic oscillations at t!1.

Now, let us find a correction for the mass oscillation
frequency introduced by small viscosity and random inho-
mogeneity of the foundation. For this, the roots of the
equation Z�o� � 0 at m 6� 0 must be sought in the form

o � O� md : �4:20�

We are interested in the imaginary part of d, because it is this
part that determines the stability of mass vibrations. The
substitution of (4.20) into (4.18) (assuming that o � O in the
terms at m and m2) and calculation of integrals in (4.18) (see
Ref. [32] for more details]) leads to

Im�d� � ÿ nM 2O 2

�1ÿ a2��2�M 2O 2� ÿ
mM 4�1ÿ a2�O 2

�2�MO 2��2�M 2O 2�

�
�
S�0� 1

aM 4O 4
ÿ S

�
2O
a

�
a3

�4� a2M 2O 2�2
�
:

Therefore, the vibrations of a mass moving uniformly along a
string resting on a randomly inhomogeneous viscoelastic
foundation are, on the average, unstable provided the
following condition [equivalent to Im�d� > 0] is met:

S

�
2O
a

�
a3

�4� a2M 2O 2�2 ÿ S�0� 1

aM 4O 4
>

2n�2�MO 2�
mM 2�1ÿ a2�3 :

�4:21�
Hence, the system may lose stability if the random function
h1�z� has hidden periodicity [i.e., S�w� has the form shown in
Fig. 20] and the characteristic wave number w0 is close to
2O=a.

The instability zones for S�w�, which is described by the
expression

S�w� � 2s2

p
Rw20

�w2 ÿ w20�2 � 4R 2w2

where s2 is the dispersion of the process and R is the
correlation radius, are illustrated in Fig. 21 for various
characteristic inhomogeneity periods w0 �n � 0�. The zones
for each w0 are shown at R � 0:2 and R � 0:25 (they become
smaller with an increase in R). It can be seen that zones of
unstable mass vibrations for a string on a randomly inhomo-
geneous foundation are much broader than they are in the
case of periodically inhomogeneous foundation (see Figs 20
and 17). However, when the elastic foundation parameters
undergo random changes, the size of instability zones exhibits
strong dependence on the correlation radius of the inhomo-
geneity. Moreover, there is a critical correlation radius
R � � w0=

���
2
p

for each w0 beyond which there can be no
instability whatever.

w0 w

S

Figure 20. The correlation function spectrum for a process with hidden

periodicity.
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In summary, the uniform motion of a mass along a string
resting on a randomly inhomogeneous foundation whose
stiffness has hidden periodicity may cause instability, on the
average, of vertical vibrations of the mass. Instability occurs
when the characteristic frequency of stiffness alterations in
the elastic foundation beneath the moving mass, aw0, approx-
imates the doubled frequency of the eigenvibrations of the
mass moving along a string that rests on a homogeneous
(unperturbed) elastic foundation. The instability zones are
relatively large as compared with those of a periodically
inhomogeneous string foundation, but decrease substantially
and finally disappear as the inhomogeneity correlation radius
increases.

To conclude, the instability condition for mass oscilla-
tions (4.21) is similar to that in a system described by the
stochastic analog of the Mathieu equation:

�x� 2n _x� o2
0x
�
1� mC�t�� � 0 ;

where C�t� is a stationary process; for such a system the `on-
the-average instability' condition has the form [30, 31]

m2
�
SC�2o0� ÿ SC�0�

�
>

2n
po2

0

;

and SC�o� is the spectrum of the correlation function. This
analogy suggests that vibrations of the mass on a string may
be unstable not only on the average, but also when character-
ized by higher-order moments [33].

5. Transition radiation in two-dimensional elastic
systems

Analysis of transition radiation of elastic waves in the
previous Sections was carried out with reference to one-
dimensional guides. In our opinion, this is the simplest way
to reveal key properties of radiation in mechanical systems,
formulate problems of practical importance related to the
transition radiation of elastic waves, and concurrently
describe the behaviour of real structures (overhead contact
wires and their supporting elements, rails, etc.). However, it
should be emphasized that certain fundamental questions
cannot be answered unless two-dimensional (three-dimen-
sional) elastic systems are explored. For example, as a train
moves into a tunnel in rocks, it does not necessarily traverse a
boundary between the soft ground and the rock bed in the
perpendicular direction. What is the angle at which radiation
is emitted under these conditions? What should be the force

necessary in this case to maintain the uniform motion of the
train? How does the loss of contact between the wheels and
the rails depend on the angle at which the train enters the
tunnel? All these questions are of practical importance and
not easy to answer. Moreover, the passage of a moving object
across an inhomogeneity region is not the sole source of
radiation in non-one-dimensional systems; it is just as likely
to arise when the object passes near this region. Such
radiation is considered to be a `subspecies' of transition
radiation and is referred to as diffraction radiation [34].
Diffraction radiation of elastic waves occurs, for example,
when a train passes settlements, stations, etc. and its deforma-
tion field affects the foundations of nearby buildings. This
radiation is especially intense in the case of reciprocal
diffraction of the deformation fields generated by two trains
moving in opposite directions.

This section deals with two problems. First, the motion of
a mass along a semibounded plate lying on an elastic
foundation and fixed at its edge is considered in order to
analyze the phenomenon of transition radiation in two-
dimensional elastic systems. Another objective is to demon-
strate conditions for the production of diffraction radiation
of elastic waves and analyze its direction diagram using the
model of a load moving along a spring-supported membrane
fixed along a half-line.

5.1 Transition radiation in a semibounded plate. Spectral
angular density of radiation energy, radiation reaction, the
loss of contact between the plate and moving mass
In electrodynamics and acoustics, the radiation field far from
a source is of primary interest for the analysis of transition
radiation, whereas the problem of divergence at the source
location associated with the jump of dimensionality (point
source, three-dimensional medium) is of minor importance.
The situation is different in mechanics, where information
about dynamic processes in the vicinity of the source is
crucial. Therefore, for an elastic system ±moving object
model to be of practical importance, it must provide a finite
deformation field near the object. There are two ways to meet
this requirement when analyzing two-dimensional systems:
(1) to regard the moving object to be non-pointlike (the
common approach in physics) and (2) to take into account
flexural rigidity of the elastic system and describe its oscilla-
tions by fourth-order equations in spatial variables. We will
use the latter approach, which is natural for mechanics
because flexural rigidity is to a certain degree inherent in all
elastic guides.

Let us consider uniform and rectilinear motion r � Vt
(V � fVx;Vyg, r � fx; yg) of a point mass m subjected to a
constant vertical force P on a hinged �x � 0� spring-sup-
ported semibounded plate of the Kirchhoff model [35] (Fig.
22). In the linear approximation, mass and plate vibrations
that cause no loss of contact are described by the following
system of equations [7]:

rhUtt �DD2xyU� kU � ÿ�P�m �U0�d�xÿ Vxt�d�yÿ Vyt�;
x4 0; t4 0 ; ÿ1 < y <1 ;

U�0; y; t� � Uxx�0; y; t� � 0 ; U0�t� � U�V1t;V2t; t�; �5:1�
whereU�x; y; t� andU0�t� are the vertical displacements of the
plate and mass, respectively; r; h, and D are the density,
thickness, and flexural stiffness of the plate; k is the stiffness
of the elastic foundation per unit area; and D2xy � �q2=qx2�
q2=qy2�2 is the twice-taken two-dimensional Laplacian.

0 0.2 0.4 0.6 0.8 1 a

40

20

M

w0 � 3

w0 � 1

w0 � 0:5

Figure 21. The main zone of mass vibration instability for different

characteristic inhomogeneity periods and correlation radii.
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Since we are primarily interested in the pure effect of
transition radiation, we assume that the mass speed does not
exceed the lowest phase velocity of flexural waves in the plate,
i.e., jVj < ��������

2mn
p

, where m2 � k=rh and n2 � D=rh. In this
range of speeds and far from the clamp, the moving mass
carries its deformation eigenfield depicted qualitatively in
Fig. 23 and described by the following equation [36]:

UP�x; Z� � m�I1 � I2�
8p

;

I1 � ÿ2
�p=2
0

cos

�
p cosj
V

�
�Re

�
exp
ÿ
is1j pj=V

�
s1

ÿ exp
ÿ
is2jqj=V

�
s2

�
dj ;

I2 �
�1
0

cos
ÿ
p
�������������
z2 � 1
p ��������������
z2 � 1
p

�Re

�
exp
ÿÿis3jpj=V�

s3
ÿ exp

ÿÿis4jqj=V�
s4

�
dz ;

x � �xÿ Vxt�
���
m
n

r
; Z � �yÿ Vyt�

���
m
n

r
;

p � x cos y� Z sin y ; q � ÿx sin y� Z cos y ;

tan y � Vy

Vx
; V � jVj ; s1;2 �

��������������������������������������������
ÿ cos2 j� 2iV 2 sinj

p
;

Im�s1;2� > 0 ; s3;4 �
�����������������������������
z2 � 2V 2z� 1

p
: �5:2�

The angle y (the angle of incidence) is measured counter-
clockwise.

In analogy to the analysis of transition radiation in a
string (Section 2.1), we suppose that jm �U0j5P, i.e., the effect
of mass inertia is small. In the framework of this assumption,
the horizontal reaction of the plate for a moving object must
be found together with the angular spectral density of
radiation energy.

In order to determine the reaction of the plate, we must
find its displacement Uÿ�x; y; t� at t < 0. This can easily be
done using the method of images, in whichUÿ is described by
the expression

Uÿ�x; y; t� � UP�x; y; t� ÿUP�ÿx; y; t� : �5:3�

The substitution of (5.3) into the general expression for the
horizontal reaction of the plate

F r � ÿHxyU�x; y; t�x�Vxt; y�Vyt
;

leads to

F r � fFx;Fyg � ÿHxyU
ÿ�x; y; t�x�Vxt; y�Vyt

� HxyU
P�ÿx; y; t�x�Vxt; y�Vyt

: �5:4�
[UP�x; y; t� is symmetrical about the moving load and does
not contribute to the horizontal reaction of the plate]. The
qualitative picture of the force F r calculated from (5.4) is
shown in Fig. 24 for the case of the `oblique fall' of the load
onto the clamp. The function F r�t� (t is a parameter) is
defined parametrically. It can be seen that the horizontal
reaction of the plate alters in the course of the load'smotion in
terms of both the magnitude and the direction, which is not
typical of the electrodynamics and acoustics.

Thus, the uniform rectilinear motion of an object near a
clamp is maintained by the external force R variable in
strength and direction. Results of the analysis indicate that
this force must grow as the object approaches the fixed
support, whereas the rate of this change (both in magnitude
and direction) increases with decreasing the incidence angle y.

The angular spectral density of radiation energy So;j can
be calculated by the method given in Ref. [1]. A detailed
procedure is described in Ref. [36]. Here, we only cite the final

Z

x

Figure 23. The deformation eigenfield of a constant load in a plate resting

on an elastic foundation.

Fx

Fy

Figure 24. The plate's horizontal reaction for a moving load.

y

x

r

ÿj

VFr

Figure 22. Uniform and rectilinear motion of a mass on a hinged plate.

Top view.
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expression for So;j (j is the angle between the radiation wave
vector and the normal to the line of clamp, which is measured
counterclockwise):

So;j�o;j� � F 2a2

4p2 cos2 y
o cos2 j

�
(�
o� a sin y sinj�2o2 ÿ 1�1=4�2

cos2 y
ÿ a2 cos2 j

�����������������
2o2 ÿ 1
p )ÿ2

:

This expression contains parameters F � P 2=� ���2p rhm2n�,
o � ~o=m

���
2
p

(~o is the frequency), and a � V=
��������
2mn
p

is the
dimensionless load speed. In order to obtain the total
radiation energy W r, its angular spectral density So;j must
be integrated in the following way:

W r �
�1
1=
��
2
p

� p=2

ÿp=2
So;j�o;j� do dj :

The variation of the angular spectral density of radiation
energy as a function of the angle j �o � const� is depicted in
Fig. 25 for the `incidence angle' of the load onto the line of
clamp t � p=4. The three curves correspond to three different
load speeds. The radiation energy grows as the angle
approaches j � ÿy, and the `angle of incidence is equal to
the angle of reflection' rule is satisfied the better the closer the
load speed is to the critical value. Thus, at subcritical speeds
coupled to high radiation power, the energy is mainly emitted
in the direction which mirrors (with respect to the normal to
the line of clamp) the direction of the load. At low speeds, the
angular distribution of radiation energy is virtually uniform.

If the problem (5.1) is examined in its original formulation
(taking into account mass inertia), the vertical mass oscilla-
tions are described by the following integro-differential
equation (its derivation as described in Ref. [36] is similar to
that used in Section 2.3):

U0�T� � Uÿ�axT; ayT;T�

� 2M

�T
ÿ1

�U0�t�
n
G
�
ax�T� t�; ay�Tÿ t�;Tÿ t

�
ÿ G

�
ax�Tÿ t�; ay�Tÿ t�;Tÿ t

�o
dt ;

G�r;T� � 1

2
������
2p
p

�1
0

zJ0
ÿ
zjrj��������������

z4 � 1
p sin

�
T
�������������
z4 � 1
p ���

2
p

�
dz ; �5:5�

whereT � tm=
���
2
p

is dimensionless time, ax; y� Vx; y=
��������
2mn
p

are
the dimensionless projections of load speed, M � mm=nrh is
the dimensionless mass, t is the dimensionless integration
variable, Uÿ is defined by expression (5.3), and G is the zero-
order Bessel function.

Eqn (5.5) may be used to find the dependence �U0�t� and
determine [from the condition P�m �U0 � 0, see (4.1)] the
parameters of the problem responsible for the loss of contact
between the mass and the plate at t < 0. Figure 26 shows the
curves M �M ��a� dividing the plane of parameters �M; a�
into the regions of contact (under the curve) and noncontact
(above the curve) motion at different angles of load `inci-
dence' y. Evidently, the region of contact motion broadens
with increasing angle of incidence y. Therefore, the oblique
passage of an object across the line of clamp (in the general
case, an inhomogeneity region) entails a lower risk of loss of
contact than crossing in the perpendicular direction.

In summary, analysis of transition radiation in a two-
dimensional elastic system has demonstrated that (a) a
moving load is subjected to the horizontal reaction of the
elastic system which is variable in both the magnitude and
direction, (b) the maximum radiation energy at subcritical
load speeds is achieved at an angle which is mirrored in the
`angle of incidence', (c) the speed at which the object loses
contact with the elastic system decreases (other things being
equal) as the `incidence angle' increases.

5.2 Motion of constant load over
a membrane clamped along a half-line (diffraction
radiation). Direction diagram of radiation
An analysis of transition radiation has demonstrated that it
results from the transformation of the deformation eigenfield
of a moving perturbation source. It is this field, rather than
the source itself, that is responsible for the generation of
transition radiation. It arises even when the field undergoes
restructuring caused by inhomogeneities (in mechanics:
supports, stiffeners, etc.) near the source's path even though
the medium properties directly on the trajectory remain
unaltered. This radiation is called diffraction radiation.

ÿp=2 ÿp=4 0 p=4 p=2 j

So;k

V1

V2

V3

Figure 25. Angular spectral density of radiation energy at a constant

frequency for different velocities of motion: V1 > V2 > V3, y � p=4.

0.3 0.5 0.7 a

M

8

4

0

Loss of
contact

12
3

Figure 26. Curves dividing the plane of parameters into regions of contact

and non-contact motion at different `incidence angles': (1) y � p=3; (2)
y � p=6; and (3) y � p=18.
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Studies of diffraction radiation of elastic waves have but a
short history [37]. Therefore, this review is confined to an
analysis of the simplest model which allows one to demon-
strate the radiation effect and analyze its direction diagram.

Let us consider a membrane resting on an elastic founda-
tion with stiffness k and fixed along a ray [half-line
�x� � fx > 0; y � 0g�]. Let us further assume that a constant
vertical load P moves rectilinearly and uniformly across the
membrane at speed V � fVx;Vyg (Fig. 27). In this case,
forced membrane vibrations are described by the following
system of equations:

Dx; yUÿ 1

c2
Utt ÿ m2U � F d�rÿ aÿVt� ;

ÿ1 < x; y; t <1 ;

U�x; y; t�
���
x�
� 0 ; c2 � N

r
; m2 � k

N
; �5:6�

where U�x; y; t� is the displacement of the membrane; Dx; y is
the two-dimensional Laplacian; r and N are the membrane
surface density and tension, respectively; F � P=N;
a � fax; ayg is the distance from the origin to the load path;
r � fx; yg is the radius vector; and the motion is assumed to
be subcritical, i.e., V � jVj < c.

The solution to (5.6) is sought as the sum of the eigenfield
of the load UP and the field U r generated due to the
interaction between the eigenfield and the clamp:

U � UP �U r : �5:7�

The eigenfieldUP is a steady-state field of displacements that
moves with the load over a boundless unclamped part of the
membrane lying on an elastic foundation. According to [37],
it is described by the expression

UP�r; t� � ÿ F

4pV

� 1
ÿ1

1

l�o�

� exp

"
io
�V; r�
V 2

ÿ l�o�
�����a; r�a

ÿ a

����
#
exp�ÿiot� do ;

l�o� �
���������������������������������
m2 � o

2�1ÿ a2�
V 2

r
; a � jaj ; a � V

c
: �5:8�

By substituting (5.7) into (5.6) and using the Fourier
transformation with respect to time and coordinate x, we
obtain a system of equations for the Fourier transform of the

field U r

q2

qy2
W r
o; k ÿ

�
k2 � m2 ÿ o

2

c2

�
W r
o; k � 0 ;

W r
o; k�o; k; y�

���
x�
� ÿWP

o; k�o; k; y�
���
x�
; �5:9�

where

WP; r
o; k�o; k; y� �

� 1
ÿ1

� 1
ÿ1

UP; r�x; y; t� exp�iotÿ ikx� dx dt :

Bearing in mind the constraint on themembrane displace-
ment at infinity (for the vibrations localized near the clamp)
and energy removal from the clamp (for waves), the solution
of (5.9) can be written in the form

W r
o; k � A�o; k� expÿÿgjyj� ; g � �kÿ b�1=2�k� b�1=2 ;

b �
�
o2

c2
ÿ m2

�
; Re �g� > 0 _ÿ k :

The unknown function A�o; k� is found by the Wiener ±
Hopf method [38], which leads to the system of integral
equations with respect to A�o; k�

1

2p

� 1
ÿ1

A�o; k� exp ikx dk

� F

2Vl�o� exp
�
ÿi ox

V
cos yÿ l�o��x sin y� a�

�
;

x > 0; y � 0 ; �5:10�
1

2p

� 1
ÿ1

A�o; k�g�o; k� exp ikx dk � 0 ; x < 0; y � 0 ;

�5:11�
where y is the angle between the load path and the axis x (see
Fig. 27). Eqn (5.10) is obtained by the inverse Fourier
transformation with respect to the coordinate x of the
boundary condition (5.10), whereas Eqn (5.11) reflects the
continuity of the normal derivative of the plate displacement
at fx < 0; y � 0g (the membrane is not fixed at this straight
half-line).

It follows from (5.11) that the functionA�o; k�g�o; k� has
no poles in the lower half-plane of the complex variable k;
therefore, A�o; k�must have the form

A�o; k� � C�o�L�o; k�
g�o; k� ; �5:12�

where L�o; k� has no poles in the lower half-plane of k. The
selection of the form of the function L�o; k� in such a way as
to satisfy Eqn (5.10) leads to

L�o; k� � �kÿ b�1=2
kÿ k0

; k0 � il�o� sin yÿ o
V
cos y : �5:13�

Determining C�o� by substituting (5.12), and (5.13) into
(5.10), we obtain the following final expression for A�o; k�:

A�o; k� � ÿ iF
�������������������������������������
k0c� �o2ÿ h2�1=2

q
exp
�ÿal�o��

2Vl�o��kÿ k0�
�����������������������������������
kc� �o2ÿ h2�1=2

q ;

h2 � m2c2 :

x

y

y x�
a

r

V
P

Figure 27. The motion of a load across a spring-supported membrane

clamped along a half-line. Top view.
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Therefore, the Fourier transform of the membrane displace-
ment field caused by the interaction between the eigenfield of
the load and the clamp has the form

W r
o; k � ÿ

iF

�������������������������������������
k0c� �o2 ÿ h2�1=2

q
exp
�ÿal�o��

2Vl�o��kÿ k0�
������������������������������������
kc� �o2 ÿ h2�1=2

q exp
ÿÿgjyj�:

In the wave zone, this field describes diffraction radiation of
elastic waves.

The radiation energy can most easily be estimated by the
method described in Refs [1, 14, 37] according to which the
problem reduces to a search for the emitted train of waves at
large times, after it has moved away from the clamp and is
unable to interfere with the eigenfield.

According to [37], the angular spectral density of radia-
tion energy thus obtained is described by the expression

So;j�o;j� � Bo
����������������
o2 ÿ h2
p ÿ

oÿ a
����������������
o2 ÿ h2
p

cos y
�

� sin2
j
2
exp
�ÿ2al�o��"�h2 � o2�1ÿ a2�

a2

�

�
�ÿ
o cos y� a

����������������
o2 ÿ h2
p

cosj
�2

� �o2 ÿ a2�o2 ÿ h2�� sin2 y�#ÿ1 ; �5:14�

whereB � rF 2c2=a,j is the angle between the radiationwave
vector and the positive direction of the x axis.

An analysis of Eqn (5.14) shows that radiation has a
dipole nature (Fig. 28a) at load speeds satisfying the inequal-
ity

a � V

c
< acr � o�2� cos y�����������������

o2 ÿ h2
p

�3� sin2 y� ;

whereas at a > acr the direction diagram displays twomaxima
(Fig. 28b) at angles

j � �arccos
�
1ÿ o� a

����������������
o2 ÿ h2
p

a
����������������
o2 ÿ h2
p cos y

�
:

At a! 1, o!1, the maxima are shifted to angles
j � ��pÿ y�, i.e., the energy is mainly emitted in the same
direction in which the load moves and which mirrors the
direction to the fixed half-line. The intensity of radiation falls
off exponentially with increasing distance between the load
path and the fixed half-line support.

6. Conclusion

Two kinds of reactions were encountered when the foregoing
material was presented at various workshops. Physicists
focused attention on important practical implications of the
effect, while showing no apparent interest in its specific
manifestations inmechanical systems and problems requiring
further study. On the contrary, mechanicians showed the
ability to appreciate the beauty of the analogy and perceive
the `general physical' nature of the effect, but wished the
reported results to be interpreted not only in terms of thewave
theory, but also in the context of classical mechanics. Some
bluntly advised putting an end to such alien terminology in
mechanics. Anticipating a similar reaction on the part of the
readers, we have tried to emphasize the following aspects: (1)
radiation-related resonance, unstable oscillations of pertur-
bation sources, and the loss of contact between a moving
source and a medium (elastic guide) are the most topical
problems (non-classical for electrodynamics and acoustics) in
the context of innovation in high-speed transportation as a
sphere of application of the theory of transition radiation of
elastic waves, (2) the variety of dispersion properties intrinsic
in real elastic systems is responsible for the `non-classical'
behaviour of classical radiation parameters (as exemplified by
the effect of radiation reaction for a load moving along a
plate), and (3) the language of the wave theory is adequate to
the processes whose characteristic velocity is comparable with
wave velocity and makes it possible to easily clarify the
physical mechanisms of such phenomena, `natural' for
mechanics, as resonance and unstable vibrations of an object
moving in an elastic system.

The scope of important practical problems related to
transition radiation of elastic waves is actually much broader
than that discussed in this review. The question at issue now
turns on supercritical velocities (velocities of surface waves) of
high-speed trains. Preliminary studies indicate that the
transition through the critical speed is easier to accomplish
by modulating railroad track parameters, without subjecting
passengers to acceleration overloads. Of special interest in
this context is the problem of transition radiation (and its
interference with Cherenkov radiation) generated when a
load crosses the inhomogeneity region and moves further at
a supercritical speed, i.e., a speed exceeding wave velocity.
Supercritical motion is fraught with the risk of instability due
to the emission of anomalous Doppler waves [15 ± 17] and
with the resonance effect of waves reflected from inhomo-
geneity regions (see Ref. [39] and references therein). Studies
of transition radiation in non-linear elastic systems are also of
great interest, because the ballast bed of railroads is normally
maintained in an elastic-plastic regime, and its conditions can
be estimated from radiation parameters. Qualitative evalua-
tion of this problem has until now been restricted to the
analysis of the load's eigenfield [40]. Finally, transition
radiation analysis is needed for three-dimensional systems
such as `a beam on an elastic half-space' [41 ± 43]. Such
models are currently provide the most complete description
of railroad track dynamics.
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