
Abstract. A description is given of an electron model which
makes it possible to simulate pair correlation of random dichot-
omous signals of the Einstein ± Podolsky ±Rosen (EPR) type in
the Bohm variant. This model can be used to demonstrate that
Bell's inequality is satisfied in classical physics. Some features
of parametric rf oscillators are used in the model. An analysis of
the operation of the model helps one to understand the differ-
ence between quantum and classical correlations in EPR ex-
periments. A specific mechanism is suggested for `nonlocal'
control of EPR-type correlations between distant observers,
which applies to classical and quantum models. A controlled
correlation between two random telegraphic signals is ensured
by transmission, to two observers, of a sequence of pulses with
the same random phase. An elementary derivation of Bell's
inequality is given and an analysis is made of the logic of the
use of the popular term `quantum nonlocality' employed usually
in the description of the quantum variants of the investigated
experiment.

1. Introduction

The fundamental difference between the postulates of quan-
tum and classical physics is demonstrated in the starkest
contrast when we consider experiments demonstrating the
Einstein ± Podolsky ±Rosen (EPR) paradox [1] in the Bohm
variant [2], and failure to satisfy Bell's inequality [3 ± 5] (for
reviews, see Refs [6 ± 10] ). Numerous optical experiments of

this type, carried out in the last 25 years [6 ± 10], have
confirmed sufficiently reliably that the quantum models are
satisfactory.

In spite of the importance of this range of topics for
physics in general and numerous attempts to popularise them
[11 ± 14], the essence of the problem is not very well known.
This is partly due to the lack of clarity of the investigated
experimental schemes and the complex logic structure of the
relevant proofs.

It is desirable to distinguish two separate questions or
`paradoxes':

(1) the existence of `nonlocally' controlled correlations of
the EPR±Bohm type between the readings of distant instru-
ments;

(2) Bell's paradox, that is the violation of certain inequal-
ities which follow from these readings.

In 1935, Einstein, Podolsky, and Rosen [1] drew attention
to the existence of perfect (100%) controlled quantum
correlations between the observable properties of two distant
particles. On this basis they reached the conclusion that, by
measuring the properties of one particle, one could carry out
indirectly and without any perturbation, precision measure-
ments of noncommuting observables of the other particle,
which is in conflict with quantum theory. However, if the
possibility of measuring noncommuting observables is
admitted, then these observables should have definite values
also before measurement, i.e. a priori. Consequently, quan-
tum theory may be supplemented, i.e. the properties of both
particles and their correlations can be described by certain
`hidden' variables, for example in terms of classical statistical
physics, which would reduce quantum to classical physics.

Approximately 30 years later, Bell used very general
ideas to show that this EPR programme is possible only if
classical physics is supplemented by certain new long-range
interactions, i.e. by introducing nonlocality. Experimental
confirmation of failure to satisfy Bell's inequality (in exact
agreement with the predictions of quantum theory) has
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shown, in accordance with the widely used modern terminol-
ogy, the inapplicability of local realism. Two main alterna-
tives remain: to admit `nonlocal realism' or to accept
quantum theory in its Copenhagen (or different) interpreta-
tion. Some writers speak also (fairly inconsistently) of
nonlocality of quantum theory.

It should be stressed that the proof of Bell's inequality
does not depend simply on the existence of controlled
correlations or their value (the proof in fact relies on partial
correlations), but on a certain finer property of the correla-
tions. Therefore, we are faced with the natural question: are
controlled correlations of the EPR±Bohm type between the
readings of two instruments themselves essentially a quantum
phenomenon? A negative answer to this question has long
been known [3, 7, 11, 15, 16], but not very widely. It is
frequently assumed that the existence of these correlations is a
sufficient proof of nonlocality and that the EPR paradox
consists specifically in their existence.

Recently several quantum models with more than two
`observers' (i.e. more than two correlated spin-

1

2 particles or
photons), characterised by a greater difference between
quantum and classical predictions [17, 18], have been
considered. For example, a model with three observers is
proposed in Ref. [17] (see also Refs [9, 14, 16, 19] ) and the
results of quantum and classical calculations are shown to
differ in sign for a certain combination of observables. It is
remarkable that this property (like the violation of the
relevant modified Bell's inequality [19, 20] ) is associated
with perfect correlation of three observables, in contrast to
Bell's inequalities in the case of two observers. In somemodels
with N observers (N52), the ratio of the quantum and
classical limits for a certain observable SN increases as
2�Nÿ1�=2 [18] (see also Ref. [16] ). Once again there are
corresponding classical models with a perfect controlled
correlation between N signals [9, 16].

We shall describe a working classical radio-frequency
model which has much in common with quantum EPR
models. It demonstrates the first of the paradoxes listed
above, i.e. it simulates a controlled correlation or antic-
orrelation of the EPR±Bohm type, including a perfect
(100%) correlation. A brief description of the operation of
this model can be found in Refs [9, 16]. Its analysis reveals a
simple classical mechanism of the appearance of such
correlations and of the influence on them of distant
observers, and it thus lifts the aura of mystery surrounding
them. In this way the first paradox is stripped of its status as
the true quantum paradox, because it has a classical
analogue. (It should be pointed out that other classical
models are known and they demonstrate a perfect correla-
tion of the EPR±Bohm type [3, 7, 11, 15], but they are of
gedanken type.)

The second paradox, which is the violation of Bell's
inequality is a true paradox and it demonstrates the funda-
mental difference between quantum and classical repre-
sentations. In the experiments carried out so far, this paradox
is revealed only under partial correlation conditions and only
in the results of a statistical analysis of a sufficiently large
ensemble of experimental results. In our model, Bell's
inequality is naturally confirmed.

Section 2 describes a general scheme of both classical and
quantum experiments which demonstrate controlled correla-
tions. Section 3 deals with the procedure of measurements
that revealed Bell's paradox and gives the results of a
numerical experiment demonstrating the statistical nature of

this paradox. Section 4 provides a brief analysis of the
EPR±Bohm correlations in the case of three correlated
signals. A specific example is used in Section 5 to elucidate
the general principle of the appearance of `nonlocally'
controlled correlations and Section 6 describes specific
realisation of this principle in our model. A discussion of the
topics considered can be found in the Conclusions (Section 7).

The mathematical treatments are basically contained in
Appendices I and II. The first of them provides an elementary
derivation of Bell's inequality and explains the former logical
meaning of the popular term `nonlocality', whereas the
second discusses the statistics of double-valued (telegraphic)
signals that occur in experiments of the EPR±Bohm type,
and gives simple examples of the appearance of negative (see
Refs [7, 21 ± 23] ) and multivalued `probabilities' when an
attempt is made to describe quantum correlations in terms of
classical probabilities. Appendix III gives some technical
details of our rf experiment.

A transparent model described below and the related
discussion should help significantly in the understanding by
uninitiated readers of the essence of the EPR±Bohm correla-
tions and of Bell's inequality based on them. It would be
desirable to use similar models in practical work which is
carried out in the physics departments of higher educational
establishments.

2. Demonstration of EPR±Bohm correlations

Our model implements the experimental situation illustrated
in Fig. 1, which is frequently used to provide clear descrip-
tions of the EPR±Bohm type of experiment [14]. From time
to time a signal transmitter S sends simultaneous messages to
two distant addresses A and B. The messages contain
commands to switch on green or red lamps. Symbolically,
the four possible commands can be represented thus: (��),
(ÿ�), (�ÿ) or (ÿÿ); here the plus sign corresponds to the
green lamp and the minus sign represents the red lamp.

Each of the observersA andB has one signal armwhich he
controls and this arm has three distinct positions labelledÿp,
0 and �p.

The messages are repeated many times and the result of
each of these messages is random: either the green or the red
lamp is switched on with an equal probability ( 12 ) which is
independent of the arm positions a and b. In fact, in our
demonstration experiment the lamps are lit up approximately
every second and they are on for about half a second at a time.

A third observer C, who can see simultaneously both pairs
of lamps at A and B, notes that there is a definite correlation
between the colours of the simultaneously lit lamps, and the

0ÿp �p 0ÿp �p

A

S

B

�1

ÿ1

+1

± 1

Figure 1.General experimental setup used to demonstrate theEPR±Bohm

type of correlation and to reveal whether Bell's inequality is obeyed.
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degree of this correlation and its sign depend on the arm
positions. Three situations are the most typical and they are
listed below.

(1) If both hands stand, for example, at identical average 0
positions, then the colour of the lamps is every time the same,
i.e. only the results (��) and (ÿÿ) are observed. Therefore,
the colours are fully correlated. Such a perfect correlation is
observed also in the more general case on condition that the
sum of the coordinates of the signal arms g � a� b is 0.
(In practice, because of technical limitations, the correlation
is not perfect but only about 90%).

(2) If only one of the observers sets his signal arm at one of
the extreme positions so that g � �p, the result is then (�ÿ)
or (ÿ�), i.e. the colours become anticorrelated.

(3) Finally, if the signal arms stand at, for example, the
position 0 and p=2 (or, in general, are set so that g � �p=2),
there is no correlation at all between the colours of the lamps
at A and B.

A natural question to ask is: how can the position of the
arm at A influence the colour of the lamp which is lit as a
result of the next message at B? If the arms at A and B are in
the middle 0 position, the observer at A seeing the green light
is certain that the green lampwas lit at thismoment at B. If the
arm is then set in one of the extremal positions and he again
sees the green light, he can be certain that at this moment the
red lamp is lit at B. How do the lamps at B `learn' of the
position of the arm at A? It would seem that this is action at a
distance.

These three series of observations based on our model
reproduce exactly a quantum correlation, an anticorrelation,
or its absence in `real' EPR ±Bohm experiments. In the
quantum case the information carriers are pairs of photons
or spin-1

2
particles with correlated properties. Lighting of the

lamps corresponds to simultaneous detection of a pair of
particles in two out of four detectors. The positions of the
arms a and b in Fig. 1 correspond, in optical experiments, to
the lengths of optical paths or orientations of polarisation
prisms in intensity interferometers [9], whereas in experiments
on fermions they correspond to orientations of themagnets in
the Stern ±Gerlach experiments.

True, in quantum experiments the moments of transmis-
sion of the next `message' (i.e. the moments of detection of
particle pairs) are random, whereas in our model they are
regular. However, the latter can be readily made randomwith
a random number generator. Quantum stochasticity of the
intervals between messages are of no importance in the topics
under discussion.

The answer to the question asked above is often, in the
context of quantum experiments, as follows: this is a
manifestation of quantum nonlocality. This implies some
mysterious influence, travelling at a superluminal velocity,
of the apparatus at A on the events at B (or vice versa).
Sometimes it is said that quantum mechanics predicts
stronger correlations than those permitted by local classical
theories or local realism. The term locality is understood here
to be the absence of action at a distance implemented by some
unknown interactions between apparatus at A and B.
(However, the term nonlocality is used most frequently in
connection with violation of Bell's inequality in quantum
models and experiments of the kind described below; the
formal logic for the use of this term in such situations is
demonstrated in Appendix I.) Another popular term is the
inseparability of quantum objects. In this context this means
the requirement to describe simultaneously pairs of correlated

particles, even if they fly apart to large distances, as well as
impossibility of separate individual descriptions (in this sense
the pairs of electric signals in our experiments can also be
regarded as inseparable).

A more specific and rigorous answer is that the positions
of the signal arms influence only their `own' lamps and that
this is quite sufficient for the change in the degree and sign of
the correlations between distant signals. This statement is
obviously not quite trivial and the model under discussion
should help to overcome the existing prejudices. In ourmodel,
as well as in `genuine' quantum EPRmodels, use is made of a
general principle of `remote' control of pair correlations. This
control is performed by selection of specific subsets from the
overall information set at A andB. This will be explained later
by a simple specific example (see Figs 5 and 6). The difference
between the classical and quantum models is only in the
method describing this general a priori set. In the classical
case this can be done by joint probabilities of all possible
`messages', whereas in the quantum case this can be done only
with the aid of the wave function of the information carrier,
which can be a pair of fermions or a two-photon four-mode
electromagnetic field (for details, see Ref. [9] ).

It follows that the effect of distant observers on their
mutual correlations does not imply, as one might expect, any
mysterious action at a distance: it is fully local. It should be
noted that observation of a correlation requires information
transfer (it requires protocols of tests in which the serial
numbers of the transmissions are fixed) from A to B to the
third observer (C) by the usual channels; however, A and B
themselves do not see any visible influence of the positions of
the arms (their own signal arm or that of the other observer)
on the nature of the observed light flashes. This exclude the
frequently discussed possibility of superluminal exchange of
information between A and B with the aid of the EPR
correlation.

3. Verification of Bell's inequality

The fundamental difference between the classical and quan-
tum experiments with two observers of the EPR±Bohm type
can be seen only for certain intermediate positions of the
signal arms, different from those discussed above and causing
partial correlations. This difference can be revealed if at least
four series of measurements, with four positions of the arms a
and b, are carried out and four correlation coefficients are
calculated. Therefore, this difference can only be of statistical
nature.

We shall now introduce the following parametrisation
of the experimental results obtained by means of the setup
shown in Fig. 1. When the green or red lamp is lit by the
observer on the left, we shall assign, respectively, the
values a � �1 or ÿ1 to a discrete random quantity A
(we shall use capitals to denote a random quantity and
lower-case letters for the values assumed by this quantity).
Similarly, a dichotomous (double-valued) random quantity
B with the values b � �1 represents the light of the lamps
lit by the receiver on the right. Let us assume that the
variables a and b have values in the range (7p, p) and
denote the positions of the controlled signal arms which
influence in some way the combined statistics of A and B,
and the variable g � a� b is their sum. There are thus two
`telegraphic' random processes ai (a) and bi (b), and the
correlation between them depends on two controlled
parameters a and b ( i is the serial number of the test).
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It is convenient to describe the degree of correlation by the
average value of the product of the observed random
numbers: M �g� � hA�a�B �b�i. Therefore, M � �1 and
M � ÿ1 represent full correlation and anticorrelation,
respectively, andM � 0 represents the absence of correlation.
In this connection we shall call the parameter M simply the
correlation.

Fig. 2 shows three types of the dependence:M �g�: (a) the
dependence described in Appendix II and representing the
classical theory of our model

Mc�g� � 1ÿ 2jgj
p

�ÿp4g4 � p� �1a�
(b) the dependence in accordance with the quantum theory of
`genuine' experiments of the EPR type, which is (see Ref. [9] )

Mq�g� � cos g; �1b�

and (c), which represents the results of experiments in our rf
model. The rhombs represent the points of intersection of the
quantum and classical dependences discussed above, whereas
the circles and squares are the points usually employed in the
formulation and verification of Bell's inequality (this is
discussed below). The well-known classical EPR model, in
which there are two particles with correlated angular
momenta [7, 11], also leads to the dependence described by
expression (1a).

It follows that the observed difference between the specific
models under discussion reduces to the difference between the
nature of the dependence of the correlationM�g� � hABi on
the sum of the coordinates of the signal arms g � a� b, which
is a cosinusoidal curve or a broken straight line. The absolute
value of the excess of the quantum above the classical

correlation (in the case of our specific models) reaches 41%
for g � �p=4,�3p=4 (see Fig. 2). Therefore, if we exclude the
shared points 0, �p=2, the quantum correlations in our
models are indeed somewhat stronger than the classical
correlations, but this by itself is not very surprising. We shall
show later that the cosinusoidal dependence M�g� is incom-
patible with any classical probabilistic models.

It is quite easy to show, as demonstrated by expression
(II.2), that the average value M � hABi determines also the
joint distribution of the probabilities P �a; b� for the random
quantities A and B described by formula P�a; b� �
�1� abM�=4 (here, a, b � �1). In accordance with (1), this
distribution has the following forms in the classical and
quantum models:

P���� � P�ÿÿ� � 1

2
ÿ jgj
2p
;

P��ÿ� � P�ÿ�� � jgj
2p
; �2a�

P���� � P�ÿÿ� � 1

2
cos2

g
2
;

P��ÿ� � P�ÿ�� � 1

2
sin2

g
2
: �2b�

Here, for example, P��ÿ� is the relative frequency of the
event (�ÿ) when the number of tests is made sufficiently
large. The usual definition of the average value gives the
inverse transformation

M �
X
a; b

abP�a; b� � P���� � P�ÿÿ�

ÿ P�ÿ�� ÿ P��ÿ� � 4P���� ÿ 1 :

It is natural to assume that we can construct some more
sophisticated classical model which would reproduce the
quantum dependences M�g� and P�a; b; g� for all the values
of g. However, Bell's inequality (see Appendix I) excludes this
possibility, irrespective of the nature of the model devices
which are constructed. This universality of Bell's approach,
which excludes the possibility of carrying out a whole class of
experiments, is the remarkable property which distinguishes it
from the other more specific criteria of classical behaviour [9].

The protocol for a series of tests with fixed values of a and
b can be written in the form of a table of the following type:

The last column lists the products mi � aibi representing,
after averaging, the correlation between the colours of the
lamps. A statistical analysis of such products, obtained for
different pairs of a and b, is presented in Fig. 2 (curve c). The
average value M � hmii depends, in accordance with the
theoretical dependence given by expression (1a), only on the
sum g of the coordinates of the controlled arms.

+1

±1

+1

±1

0

0

0

0 p

pÿp

ÿp

g

g

M�g�

M�g�

a

b

c

Figure 2. Dependence of the correlationM � hABi of the colours of the lit
lamps (see Fig. 1) on the sum of the coordinates of the controlled arms

g � a� b: (a) according to the classical theory; (b) according to the

quantum theory; (c ) according to the experiment described in the text.

Table 1.

i ai, a � p=2 bi, b � p=4 mi � aibi, g � 3p=4

1
2
3
4
5

�1
ÿ1
ÿ1
�1
�1

ÿ1
ÿ1
�1
ÿ1
�1

ÿ1
�1
ÿ1
ÿ1
�1

86 N V Evdokimov, D N Klyshko, V P Komolov, V A Yarochkin Physics ±Uspekhi 39 (1)



We shall now assume that four series of tests (withN tests
in each series) are carried out successively and they involve the
following four sets of parameters:

�a; b� �
�
0; ÿ p

4

�
;

�
p
2
; ÿ p

4

�
;

�
0;
p
4

�
;

�
p
2
;
p
4

�
:

We then have g1 � a� b � ÿp=4, g2 � a0 � b � p=4,
g3 � a� b 0 � p=4, g4 � a 0 � b 0 � 3p=4, (Fig. 2). We shall
introduce the notation a � a�0�, a0 � a�p=2�, b � b�ÿp=4�,
b 0 � b�p=4� and form N numbers

sk � 1

2
�ak bk � a0N�k bN�k � a2N�k b02N�k ÿ a03N�k b

0
3N�k� :
�3�

These numbers assume, with certain probabilities (Appendix
II), the values 0, �1, �2, i.e. they realise a certain random
quantity S.

It should be stressed that a single realisation sk of this
quantity is calculated from the results of four different tests
with four sets (a; b) given above.

Averaging of the resultant numbers sk for a sufficiently
large value ofN shows that hSiexp � 1. This result follows also
from expression (1a) or from the graph a in Fig. 2:

hSi � 1

2

ÿhABi � hA0Bi � hAB0i ÿ hA0B0i�
� 1

2

�
M

�
ÿ p
4

�
�M

�
p
4

�
�M

�
p
4

�
ÿM

�
3p
4

��
� 1

2

�
1

2
� 1

2
� 1

2
� 1

2

�
� 1 :

It is shown in Appendix I that this value of hSi is the
maximum for any classical model, since these models should
satisfy the following Bell's inequality [3 ± 5]:

jhSicj4 1: �4a�

On the other hand, the corresponding quantum models
are subject to a weaker inequality:

jhSiqj4
���
2
p

: �4b�

This limiting value is in fact given by function (1b):

hSiq �
1

2

�
cos

�
ÿ p
4

�
� cos

�
p
4

�
� cos

�
p
4

�
ÿ cos

�
3p
4

��
�

���
2
p

:

The resultant difference of 41% between the quantum
and classical values of hSi is the largest for the models under
consideration; it will be smaller for any other set of the
parameters a and b. Let us assume that, for example, the
first series of tests establishes certain phases a, b, the
second gives the phases a0, b, and the third and the fourth
give the phases, a, b0 and a0, b0, respectively; here,
a 0 � a� p=2, b 0 � b� p=2. According to expression (1b),
the parameter hSi depends only on the combined phase
g1 � a� b, established in the first series of tests: hSiq ����
2
p

cos�g1�p=4�. Consequently, Bell's inequality (4a)
is violated everywhere in the interval ÿp=2 < g1 < 0
(Fig. 3). Let us now assume that g1 � ÿe, 0 < e5 1. We
then find that, in the four series, the combined phases are

successively ÿe, p=2ÿ e, p=2ÿ e and pÿ e, which yield an
almost complete (anti)-correlation and almost complete
absence of correlation (Fig. 3). We have here hSic � 1 and
hSiq � 1� e.

Individual realisations sk and their average values found
for a finite N can exceed, in the absolute sense, the limits set by
inequalities (4a) and (4b), i.e. these inequalities are only of
statistical nature. Fig. 4 gives the results of a numerical
experiment which demonstrates this aspect in the classical
case. In this partial realisation the average values hSiN exceed,
in the first fewN tests, even the quantum limit

���
2
p

and after the
next approximately 20 tests they still exceed the classical limit
1. The quantity S behaves similarly in the quantum model,
but the values s � 2 are countered 68% more frequently,

hSi

±2

2

1

0

±1

g1
0 pp/2±p ±p/2

Figure 3. Dependence of hSi on the sum phase g1, established in the first
series of tests, in accordance with the quantum (continuous curve) and

classical (dashed curve) models. It is assumed that the conditions

g2 � g3 � g1 � p=2, g4 � g1 � p are satisfied.

0

2

1

2

±2

100

10020 60 80

20 40 60 80

0

0 N

k

sk

hsiN

40

Figure 4. Statistical nature of Bell's inequality. The top part of the figure

shows a sequence of 100 values of the variable sk, deduced from expres-

sions (3) and (11) with the aid of a random number generator. The lower

part of the figure gives the averages of the firstN values of sk , shown in the

upper part of the figure, as a function of N. The horizontal lines identify

the maximum classical (1) and quantum (
���
2
p

) levels.
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wheres the remaining values, 1, 0, 71, 72 are found some-
what less frequently (Appendix II).

It should be stressed that the inequalities (4a) and (4b) do
not limit the actual value of the correlation M(g) of the
observablesA andB, but only the average of a certain bilinear
combination of these observables corresponding to different
values of a and b, i.e. the inequalities in question limit a
certain functional S(a, b, a0, b0) ofM(a, b).

Possible logical consequences of violation of Bell's
inequality (4a) in quantum models and experiments are
discussed in the Conclusions. Here, we shall mention simply
that Bell's inequality is proved in Appendix I starting only
from the concept of joint `four-dimensional' probabilities for
all four observables P (a, b, a', b' ), which determineÐ in
accordance with the probability theoryÐall the other
statistical characteristics of the experiments under discussion.
Violation of this inequality can be explained in a natural
manner by the fact that the concept of the joint probability
P (a, b, a0,b0 ) is invalid in accordance with of the principle of
complementarity.

If someone prefers to retain this concept, nevertheless, it is
then necessary either to admit the possibility of negative
probabilities [8, 21 ± 23] or to introduce `nonlocality', that is,
the interaction of distant instruments as a result of some
unknown superluminal forces (see Appendix I).

4. EPR±Bohm correlations in the case of three
observers

The proof that the hidden variables cannot be used to describe
some predictions of quantum models is sometimes called
Bell's theorem. Violation of Bell's inequality (4a) in the
EPR±Bohm model, discussed above, is a partial form of
this theorem. An interesting new form of Bell's theorem was
proposed by Greenberger, Horne, Shimony, and Zeilinger
(GHSZ) [17] (see also Refs [9, 14 (1990), 16, 19] ). This new
form is also based on the EPR±Bohm model, but with the
addition of one more particle and, consequently, a third
observer. The transmitter in Fig. 1 then sends messages not
to two but to three receivers, and each of them can again
operate in two regimes, depending on the signal arm position.
Therefore, each test now involves measurement of three
quantities, for example A, B, C, or A0, B, C, and so on (the
prime means that the arm is set in a different position:
a! a 0 ), and three lamps are lit.

According to quantum theory, we can define a state of
three particles, which are information carriers (three spin-1

2
fermions or three photons, each characterised by two modes)
with the following observable properties::

hA0BCi � ÿ1; hAB0Ci � ÿ1;

hABC 0i � ÿ1; hA0B0C 0i � 1 : �5�

All the first and second moments vanish: hAi � hAA0i �
hABi � hACi � . . . � 0. Formulas (5) describe full correla-
tion or anticorrelation between sets of three readings. This
means that, for example, an observable A0BC does not
fluctuate, i.e. in each test with the corresponding position of
the signal arms the product of three numbers a0bc is always
ÿ1. When tests are repeated with the same position of the
arms, only an even number of the green lamps is lit, i.e. the
following four sets of three readings are observed with equal
probabilities: �a0bc� � �� � ÿ�, �� ÿ ��, �ÿ � ��, �ÿ ÿ ÿ�.

This also applies to the tests in which A; B0; C, and A, B, C0

are observed. When three quantities identified with a prime
are observed, the number of the green lamps is always odd:
�a0b0c 0� � �ÿ ÿ ��, �ÿ � ÿ�, �� ÿ ÿ�, �� � ��.

We shall try to describe these experiments (which are still
speculative) from the `common sense' point of view, i.e.
within the framework of the classical probabilities. We shall
do this by considering six operators A, A0, . . . in the set of
expressions (5) as classical random quantities with the values
a � �1, a0 � �1, . . . . We shall take the symbol h. . .i as
representing classical averaging over some six-dimensional
distribution of probabilities P�a; b; c; a0; b0; c 0�. [It should be
pointed out straight away that these `probabilities' are
defined fully by the properties of the set of expressions (5)
and that some of them are negative (Appendix II).]

In classical theory in each test a transmitter sends full
information which is a set of six numbers �1. All six
quantities a; b ; c; a0; b0; c 0 have certain definite values �1 or
ÿ1, irrespective of whether they are observed or not. (This can
be called the postulate of the a priori existence of observa-
bles.) In each test these six numbers should satisfy quantum
predictions described by the set of expressions (5) of perfect
(anti)correlation of the sets of three observables (since the
positions of the signal arms can be selected in an arbitrary
manner after sending of a message, when it is still on its way;
this is known as the delayed choice experiment, proposed by
John Wheeler in 1978). Therefore, the transmitted signals
should every time satisfy the following system of equations:

a0bc � ÿ1; ab0c � ÿ1; abc 0 � ÿ1; a0b0c 0 � 1 �6a�

Here, the averaging symbols h. . .i are omitted, because the
products a0bc, . . . do not fluctuate (although a0, b, c are
random numbers).

We can easily show that inequalities (6a) are incompa-
tible. Let us assume that, for example, �a,b,c,a0,b0,c 0� �
�� � �ÿÿÿ�. Then the first three equalities in expression
(6a) are satisfied, but not the last one. We can consider the
general case by multiplying all four equalities. Then, on the
left-hand side each factor is encountered twice:

a0bcab0cabc 0a0b0c 0 � �abca0b0c 0�2 � �1: �7a�

On the other hand, the product of the right-hand sides
of equalities (6a) gives �ÿ1�3��1� � ÿ1. This is the GHSZ
paradox of the�1 � ÿ1 type and it proves Bell's theorem: the
postulate of the a priori existence of the observables as invalid
or, if one prefers, the existence of `nonlocality'.

In principle, in classical models one can improve the
apparatus and eliminate the switches in Fig. 1 so that all six
quantities a; a0; b; b0; c; c0 are measured in one test and four
products a0bc, ab0c, abc 0 and a0b0c 0 can be formed directly as a
result of such a test. These products cannot have the signs
(ÿÿÿ�), predicted by quantum theory and described by
expression (6a), but only the signs of the (ÿÿ��) or
(ÿÿÿÿ) type and so on, which are such that they satisfy
equality (7a). This model with perfectly controlled correla-
tions between three signals can be implemented by means of
parametric oscillators [9, 16].

How can one solve the GHSZ paradox within the frame-
work of the orthodox quantum theory? The problem is that,
according to quantum mechanics, the four predictions of
measurements described by expression (5) apply to four
different positions of the signal arms in Fig. 1. This can be
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taken into account by rewriting expression (6a) as follows:

a01 b1 c1 � ÿ1; a2 b
0
2 c2 � ÿ1;

a3 b3 c
0
3 � ÿ1; a04 b

0
4 c
0
4 � 1: �6b�

In the above expression the subscripts identify the number of
the experiment. Now, expression (7a) becomes

a2 a3 a
0
1 a
0
4 b1 b3 b

0
2 b
0
4 c1 c2 c

0
3 c
0
4 � �1: �7b�

This expression is no longer a quadratic form and,
therefore, it may be equal to ÿ1. In other words, all four
equalities in expression (6b) are compatible, in contrast to the
case represented by expression (6a). For example, in the first
experiment, when the three observables A0, B, and C are
acquired, the remaining quantitiesA,B0,C0 do not haveÐac-
cording to quantum mechanicsÐdefinite values (here the
quantities with and without primes can represent, respec-
tively, the x and z spatial components of the particle spin
vectors).

We can rewrite equalities (5) in the operator form [9]

A0BC � ÿI; AB0C � ÿI; ABC 0 � ÿI; A0B0C 0 � I;

�8�

where I is the operator unity. The transition to expression
(6a) can be considered also from a different point of view,
namely as a replacement of the operators A, A', . . . , I in the
operator identities (8) with their eigenvalues a, a0, . . ., 1. The
incompatibility of the equalities (6a) obtained in this way
shows that this replacement is not permissible. A similar
conclusion has also been demonstrated for an arbitrary state
of three spin-1

2
particles and also for one spin-1 particle; this

is called the Kochen ± Specker theorem [24] (see also Refs [9,
25] ).

An experimental demonstration of the GHSZ paradox in
the ideal case should consist, say, of 40 tests: 10 tests for each
signal arm position. If in each test the equalities of expression
(6a) are confirmed, it becomes obvious that it is meaningless
to speak of hidden variables in such a test: they do not have
definite values. Such an experiment would evidently be the
most direct proof of the main quantum theory paradox,
which is the principle of complementarity.

This experiment with three observers can also be used to
demonstrate the validity of Bell's theorem in its usual
form, i.e. by violation of some classical inequality [20].
In this case, the following combinations are derived by
analogy with expression (3): S � �A0BC� AB0C�
ABC 0 ÿ A0B0C 0�=2. It follows from expression (5) that in
this specific quantum model we have hSiq � ÿ2, whereas in
an arbitrary classical model we always have hSic4 1 (Appen-
dix II).

It should be pointed out that the GHSZ paradox cannot
be resolved formally by means of negative probabilities,
which is in contrast to violation of Bell's inequalities.

5. Control of correlations at a distance

We shall first consider a simple method for the generation,
from one continuous random process, of two dichotomous
random signals with a controlled degree of mutual correla-
tion. Letf�t� be a stationary randomprocess characterised by
hfi � 0, and governing a random phase distributed
uniformly in the reduced interval 0 ± 2p. We shall form a

random telegraphic signal from this process by means of the
algorithm

a�a; t� � sign
�
cos
�
f�t� � a�	 ; �9�

where a is an arbitrary parameter. It follows from this
definition that ha �a�i � 0 and a �a� p� � ÿa �a�, i.e. that
the signals a �a� and a �a� p� are anticorrelated. On the other
hand, a � a �a� and

a0 � a

�
a� p

2

�
� �sign�sin�f�t� � a�	 �9a�

are uncorrelated signals (since cos x and sin x are orthogonal
functions, see Fig. 5). The correlation between the signals a�a�
and a �a� Da� can readily be found from expression (9)
(Appendix II):

M �Da� � ha �a� a �a� Da�i
� 1ÿ 2

jDaj
p

�ÿp4Da4p�: �10�

In this way we can form, from one random process f�t�,
two ormore random dichotomous signals a�a� and a �a� Da�
with an arbitrary degree of mutual correlation M�Da�, lying
betweenÿ1 and+1. Consequently, if the same processf�t� is
transmitted, for example as an rf signal, to several observers,
each of them can influence `at a distance', by his `own' local
parameter an, a mutual pair correlation between the obser-
vables (Fig. 6). This is the classical analogue of the EPR± -
Bohm correlation. However, the nature of the dependence of
this correlation on the parameters is now different (Fig. 2). In
`genuine' EPR experiments the telegraphic nature of the
signals is due to the dichotomous spectrum of the observed
operators: the number of spin-1

2
projections along a selected

direction and the number of types of polarisation of a photon
is 2. The dichotomous nature of the spectrum is responsible
for the double-valued function sign (x).

f
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a0

t

t
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0

1
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1
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180

ÿ90
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Figure 5. Formation of two independent telegraphic signals a (t) and a'(t)
from one random process f(t) in accordance with rule (9).
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The procedure described can be implemented bymodulat-
ing, with a random signalf�t�, the phase of a monochromatic
`carrier' oscillation X(t) of frequency oa: X�t� �
cos
�
oat� f�t�

�
[ it is assumed that the correlation time tf

of the process f�t� is much longer than the oscillation period
2p=oa]. The next stage is introduction, into the oscillation
X(t), of a controlled phase shift a and mixing of this
oscillation with a `homodyne' oscillation cos (oat) which has
a stable phase. The result is a superposition

Z�t� � cos
�
oat� f�t��a

�� cos �oat�

and this superposition is subjected to a detection procedure.
The output from a square-law detector (after filtering off
the hf component of frequency 2oa) is in the form of an
lf signal

ÿ
Z�t��2 � 2� 2 cos

�
f�t� � a�. Hence, nonlinear

amplification subject to limits makes it possible to form
readily the required signal a�a; t� of the type described by
expression (9).

Let us now consider the effects ofmodulation, by the same
random process f�t�, of two oscillations (with possibly
different average frequencies oa 6� ob), which can be trans-
mitted along wires or by radio links to two addressees A and
B, where homodyne phase detectors can be used to transform
these oscillations, by the method described above, into two
telegraphic signals a�a; t� and b�b; t� (here, a and b are the
phases added at the receiver positions A and B).We then have
hai � hbi � 0 irrespective of the values of a and b, but an
observer C which receives realisations of both processes
detects the correlation described above [cf. (10)] and this
correlation depends on the phase difference:

M �a, b� � habi � 1ÿ 2
jaÿ bj
p

: �10a�
It is important to note that the correlation depends on

both parameters a and b, i.e. each of the observers A and B
can alter its magnitude and sign, but these observers will not
detect any changes. For example, a change in b results in
generation, from the initial general processf�t�, of a different
signal b �b� ! b �b� Db�, which is anticorrelated with the
initial signal if Db � p (Fig. 6).

This example demonstrates clearly that it is possible to
influence the correlation of two stochastic processes at distant
regions by altering only one of them. Consequently, also in
the context of quantum EPR experiments, there is no need to
speak of some mysterious `nonlocal influence' of measure-
ments at detectors distant from one another in order to
explain the dependence of the correlations on the positions
of controlled signal arms shown in Fig. 1.

We should mention the possibility of transmission to A
and B of a random process f�t� directly (by telephone)
without the use of `carrier' oscillations, which may be
followed by the subsequent processing at the receiver posi-
tions, and also possible variants with a controlled correlation
ha1 a2 . . . aNi between N receivers [9, 16].

6. Parametric oscillations and controlled
correlations

In our model experiment a classical rf analogue of the EPR
correlation is obtained in double-loop parametric oscillators
operating in the megahertz range [27].

In the nondegenerate (two-frequency) case such oscilla-
tors have two special features: the phases f�t� and f0�t� of
each of the two oscillations with average frequencies oa and
ob fluctuate freely (for technical reasons), but there is full
anticorrelation between them: f�t� � f0�t� � f0. Here,
f0 � const is the phase of the pump oscillator (with the
average frequency o0 � oa � ob), which for the sake of
simplicity is assumed to be stable and equal to zero, so that
f0�t� � ÿf�t�. In other words, the instantaneous frequencies
oa�t� � oa � df= dt and ob�t� � ob � df0= dt of the two
oscillations at the oscillator output always drift in opposite
directions: if the signal frequency increases, then the idler
frequency decreases, and vice versa.

As a result of these operations, the output oscillations
are X�t� � cos

�
oat� f�t�

�
and Y�t� � cos

�
obt� f0�t�

� �
cos
�
obtÿ f�t�

�
. Therefore, the same random process f�t�

phase-modulates both output oscillations. Both of them are
transmitted (for simplicity, along wires) to two receivers A
and B. The difference between the signs off andf0, typical of
parametric oscillators, has the effect that the correla-tion
depends on the sum of the parameters g � a� b and not on
their difference, in contrast to expression (10a).

In the proposed scheme the stable local homodyne
oscillations with frequenciesoa andob are replaced by signals
from a second identical parametric oscillator, excited by the
same pump signal [9]. Thus, the observer A receives two
oscillations X1�t� � cos

�
oat� f1�t�

�
and X2�t� �

cos
�
oat� f2�t�

�
, where f1�t� and f2�t� are independent

random phases of the two parametric oscillators.
A controlled phase a is added to one of these oscillations
and the result is the sum and the difference: X� � X1 � X2.
Two square-law detectors produce lf signals proportional to
jX�j2 � 2� 2 cos

�
f�t� � a�, where f�t� � f1�t� ÿ f2�t�. Sub-

f
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t
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ÿ90
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Figure 6. Mechanism of the `nonlocal' influence on the correlations

between the readings of two distant instruments A and B. At the moment

t0 the observer at B switches the controlling phase: b � 0! b � p. The
random dichotomous process b(t) observed at B shows a sign reversal in

accordance with expression (11): b(t)! ÿb(t). Consequently, an antic-

orrelation, instead of correlation, occurs in the next observation. The

circles identify the values which determine the colour of the lamps

obtained as a result of interrogation when the phase switching is taken

into account; the squares represent the values obtained ignoring such

switching.
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traction of the signals yields, after restriction to the function
of the required type described by Eqn (9), the following result

a �a; t� � sign
�
cos
�
f�t� � a�	 : �11a�

Similarly, a second random telegraphic signal is formed at
the receiver B:

b �b; t� � sign
�
cos
�ÿf�t� � b�	 : �11b�

A property fk � f0k � f0 of parametric oscillators (f0 is the
pump phase) is used here and it leads to f� f0 �
f1 ÿ f2 � f01 ÿ f02 � 0.

The actual analysis of signals was carried out by a digital
method. A description of this analysis and some technical
details are given in Appendix III.

In our model the hidden variables l (see Appendix I) are
represented by the full set of variables which describe the
instantaneous state of the whole system, including the power
sources. Evolution of these variables is manifested by
fluctuations of the phases of parametric oscillators
fk

ÿ
l�t��with a characteristic time tf, which in turn leadÐ in

accordance with the set of expressions (11)Ð to fluctuations
of the signs of the signals ai and bi. These signs are observed
at certain moments ti separated by an interval much greater
than tf.

The characteristic time tf of the `natural' reversal of the
signs of the signals a and b, related to the coherence time of
parametric oscillators, is of the order of 10ÿ4 s. The moments
at which changes of the sign occur in a and b are not always
identical (Fig. 5). Consequently, in visual observation of the
correlation in accordance with the colours of the lamps one
should use a clock-signal generator operating at a frequency
of about 1 Hz which sets the periodicity of sampling of the
state of the output stages of the detectors and of the
corresponding switching between the lamps. In automatic
measurement of the correlation M one would use a higher
sampling frequency.

An even closer analogy with quantum experiments would
be achieved if oscillations with a random phase were
transmitted by radio links at random moments in the form
of short pulses of duration shorter than the phase coherence
time.

7. Conclusions

(1) It should be stressed that the classical simulator of
quantum effects with two double-loop parametric oscillators
described above is in many respects similar to `genuine' EPR
systems. Three main types of such systems are known:
systems based on beams of spin-1

2
fermions and optical

systems utilising either conventional or polarisation intensity
interferometers.

Optical parametric oscillators have been used recently in
optical EPR experiments, but this has been done in an
amplification regime (below the self-excitation threshold)
when the emitted light represents the intrinsic quantum
noise of an optical parametric amplifier ( parametric scatter-
ing of light [9] ). In the variant of anEPR experiment described
in Ref. [9], use is made, as in our case, of two two-mode
parametric amplifiers. The operators of the observables
A � A�0�, A0 � A�p=2� can then be interpreted as noncom-
muting operators Cos �f� and Sin �f�, where f is the
difference between the phases of the two oscillations (Fig. 5).
Phase detection in optics is performed by beam splitters. In
classical and quantum-optical models the whole information

transmitted in the ith message to observers is encoded in the
random phase fi, which enables the observers to form
double-valued telegraphic signals with a controlled degree of
correlation.

Formal descriptions of the other two types of EPR
experiments (optical and spin polarisation) also have much
in common with the model considered in Ref. [9]. In the
polarisation experiments the role of the shared random
phase is played by the linear polarisation angle and
information selection control is performed by a polarising
prism. In experiments on fermions the role of a random
phase is played by the angle between the spin and the
Stern ±Gerlach magnetic field.

The fundamental distinction of quantum experiments,
which leads to the possibility of violation of Bell's inequal-
ities, reduces to `just' the inability to measure simul-
taneously, in one test, both Ai�a� Ai�a 0� when a 6� a 0, since
in each receiving channel in each test there is only one photon
or one fermion.

It therefore clearly follows from the working classical
model described above that the correlation effect of the
EPR±Bohm type controlled at a distance has a close classical
analogue and the effect itself is no evidence of any mysterious
superluminal effects.

(2) All the classical models which are at least minimally
reasonable should however satisfy Bell's inequality and
violation of this inequality in quantum models is a true
paradox. It is clear from the discussion following expressions
(1) and (2) that three possible `explanations' of violation of
Bell's inequality can be put forward: one can reject either the
concept of joint probabilities or the positive nature of these
probabilities or the locality.

We are thus faced with three possibilities:
(a) rejection of joint probabilities;
(b) acceptance of joint probabilities and the possibility of

their negative value;
(c) acceptance of joint positive probabilities and unknown

superluminal forces.
[Introduction of hidden variables, which ensure classical

determinism, impliesÐ in accordance with expression
(I.6)Ð the existence of joint probabilities and is therefore a
special case of the second or third possibility.]

In fact, violation of Bell's inequality which is a feature of
quantum theory could, if desired, be explained also on the
basis of classical joint probabilities, but only at the price of
introduction of unknown long-range forces between measur-
ing instruments or rejection of a probability non-negativity
[see expression (I.2)]. Hence it is frequently concluded (in
conflict even with the rules of formal logic) that quantum
theory and quantum phenomena are nonlocal. It is sometimes
also said that violation of Bell's inequalities is evidence of
invalidity of local realism, i.e. realism is equated with the
validity of the concept of joint probabilities and a priori
properties.

In addition to general considerations, there is also a
specific objection to such a `nonlocal' explanation of Bell's
paradox: after all, the interaction between distant instruments
should not simply lift the restriction jhSij4 1, but should
ensure the exact quantum value hSi � ���

2
p

, irrespective of the
detailed structure of the measuring apparatus.

Introduction of negative probabilities is a purely formal
hypothesis which has no operational meaning.

It therefore follows that out of these three possibilities the
first is the least objectionable and it represents a rejection
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both of the concept of joint probabilities and of the possibility
of attributing quantum objects certain a priori properties
(corresponding to noncommuting operators). This conclu-
sion is related directly to the principle of complementarity, i.e.
it belongs to the current paradigm of quantum physics and,
therefore, it is natural to regard violation of Bell's inequalities
as onemore (perhaps themost direct) proof of the principle of
complementarity and not a proof of the existence of ad hoc
assumed unknown interactions or of physically meaningless
negative probabilities.

The conclusion that the concept of joint probabilities is
unacceptable can also be made independently of the inequal-
ity jhSij4 1, simply starting from formal expressions for the
average values of products of noncommuting operators,
leading to negative and multivalued `probabilities' (see
Appendix II). Therefore, quantum EPR models differ in
respect of two significant properties from classical models:
in the case of quantum models the inequality jhSij4 1 is not
obeyed and joint `probabilities' are negative for noncommut-
ing observables. The first difference can be detected directly in
experiments. Rejection of the concept of joint probabilities
resolves both contradictions.

We are still left with the `eternal' general problem of
interpretation of quantum formalism. Its Copenhagen form,
accepted explicitly or implicitly by the majority of physicists,
simply forbids asking `unnecessary' questions of nature, i.e. it
is of positivistic and pragmatic nature. In the context of the
EPR experiments, this problem obviously becomes more
acute: it is necessary to face the circumstance that although
before measurement some real properties are only potentially
existing, nevertheless there is a correlation between them.
Taking into account the simple classical analogue described
above, Bell's paradox seems to be not more or less mysterious
than, for example, the inability of simultaneous exact
measurement of the coordinate and momentum of a particle.

(3) Selection of an interpretation is largely a matter of
personal taste. The only experimental statistical fact in the
case of quantummodels is the cosinusoidal dependence of the
correlation function M�g�, with extremal values �1, on the
sum of the coordinates of the controlled arms, which is
plotted in Fig. 2 (curve b ). This is precisely the dependence
observed in experiments on the intensity interference of light
when sources of `nonclassical' (two-photon) light are used
[9, 26]. If a classical source of light is employed, the same
apparatus can give the same cosinusoidal dependence, but the
extremal values are now �1=2 [9], which makes the value of
jhSij half as large and, therefore, does not violate Bell's
inequality.

If experiments of this type are described in the Heisenberg
representation, it becomes obvious that the difference
between quantum and classical experiments is not the effect
of the characteristic features of one or another specific optical
system for the transformation and detection of signals, but of
the specifics of the initial quantum state of an electromagnetic
field entering an optical system, which has no classical
statistical equivalent [9, 26]. This general Heisenberg
approach to optical EPR experiments makes it possible to
draw clear classical parallels and it is convenient for the
classification of different variants of such experiments.
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8. Appendices

I. Proof of Bell's inequality
In the experiment shown schematically in Fig. 1, the results
of repeated tests on the same apparatus under constant
macroscopic conditions are averaged. It is natural to assume
that in a theoretical description, the process of time
averaging can be replaced with ensemble averaging with
the aid of a probability distribution PABA0B0 �a; b; a0; b0� �
P�a; b; a0; b0� for all four observable random quantities
A � A�a�, A0 � A�a0�, B � B�b�, B0 � B�b0�. Here,
P�a; b; a0; b0�5 0,

P
P�a; b; a0; b0� � 1, and the variables

a; a0; b; b0 assume the values �1; a and b are arbitrary
parameters which affect the statistics atA andB. The function
P �a; b; a0; b0� is defined for a set of 24 � 16 possible results of
one `complete' test and it determines the elementary or
primary probabilities in our probabilistic model. For example,
P�1; 1; 1;ÿ1� is the probability of observation of the event
fa � �1, b � �1, a0 � �1; b0 � ÿ1g.

Although according to Fig. 1 each test involves measure-
ments not of four but of two quantities (for example,A andB,
or A0 and B), there would seem to be no obstacle to the use in
each receiver of two parallel instruments controlled by one
shared signal from an information transmitter and recording
simultaneously two observables, for example,A andA0. There
would then be no need for the controlled arms in Fig. 1 and
each receiver would have four indicator lights. (Moreover, we
could obviously measure A also for more than two values of
the argument a, a0; a00; . . .) Since the parameters a and b vary
arbitrarily at the points of signal reception, it is natural to
assume the elementary probabilities P�a; b; a0; b0� of all
possible results to be a priori given properties of the signal
source, irrespective of which quantities are measured and
which are not.

The elementary probabilities and the rule of addition of
the probabilities of independent events can be used to find
the probabilities of all other events. For example, the
probability that two green lamps are lit in the system
shown in Fig. 1, i.e. the probability of the event
fa � �1; b � �1g, is determined by the following sum of
four elementary probabilities:

PAB��;�� �
X

a0 ; b0��1
PABA0B0 ��;�; a0; b0� :

The moments of the distribution are also defined in terms
of the elementary probabilities, for example,

M � hABi �
X

a; b; a0; b0
abPABA0B0 �a; b; a0; b0�

�
X
a; b

abPAB�a; b�:

We can also solve the inverse problem, i.e. we can
express the elementary probabilities P in terms of the set
of moments M (Appendix II). In our classical model, the
moments are readily calculated by means of expressions (11)
on the assumption that the phase distribution is uniform,
ensuring stationary situation; there is no difficulty either in
calculation of the moments in the case of quantum EPR
models [9].
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We shall express the average value of a random quantity
S, defined by expression (3), directly in terms of the
elementary probabilities:

hSic �
X

a; b; a0; b0��1
P�a; b; a0; b0� s �a; b; a0; b0� : �I:1�

Here, s �a; b; a0; b0� � �ab� a0b� ab0 ÿ a0b0�=2, in accor-
dance with the postulate of ergodicity and with the experi-
mental procedure [see expression (3)]. The above function
contains only four different factors and, therefore, it assumes
only two values�1 (in contrast to eight factors and five values
0,�1, � 2 in the case of the experimental quantity s ; see Fig.
4). In fact, we can group the terms as follows: s � �a�b� b0��
a0�bÿ b0��=2; if, for example, b � b0, then s � ab � �1;
however, if b � ÿb0, then s � a0b � �1.

The modulus of the sum does not exceed the sum of the
moduli, so that expression (I.1) and the conditions

s � �1, P5 0, SP � 1

lead us directly to Bell's inequality (4a):

jhSicj4
X
jsPj �

X
jsjP �

X
P � 1: �I:2�

Why does the same elementary conclusion cease to be
valid in a quantum description? Introduction of joint prob-
abilities P�a; b; a0; b0�was made on the basis of an implicit but
natural assumption: the a priori existence and the possibility
of measuring in one test of all four observables A0, A, B, and
B0. This assumption is not always justified in quantum
probabilistic models in which information carried by, for
example, a one-photon state of the optical field cannot be
branched (`cloned') and it cannot control two recording
instruments. For example, one photon cannot be absorbed
in two detectors. In experiments on fermions, the observables
A and A0 describe the projections of the spin along different
directions and these projections are measured for different
orientations of the magnets. As a result,A andA0 cannot, like
B and B0, be measured in one test. This paradoxical property
of quantum models is related to the principle of complemen-
tarity.

In quantum theory the inability to measure simulta-
neously some observables is formally related to the non-
commuting properties of the relevant operators, which in this
case are A and A0, B and B0. Since these operators do not
commute, they cannot be attributed any a priori values,
including the eigenvalues �1. Consequently, the equality
s � �1 is meaningless in quantum theory. Moreover, the
elementary probabilities P�a; b; a0; b0� are also meaningless. It
is shown in Appendix II that the formally defined quantum
moments hABA0i, hABA0B0i, . . . lead to negative and multi-
valued elementary probabilities.

How can one therefore remove the restriction jhSij4 1,
and yet remain within the framework of classical ideas on the
a priori probabilities, i.e. how can one use expression (I.1)?
According to expression (I.2), there are two obvious (and
equally unacceptable) formal possibilities: we can either drop
the condition that the probabilities should be non-negative,
P5 0, or we can reject the equality s � �1. This equality is
violated if we postulate the existence of some interaction
between instruments. In accordance with the widely used
interpretation of the EPR correlations (Section 1), we shall
assume that the parameter a of the apparatus at A influences
by some unknown `nonlocal' manner the readings of the
apparatus at B, and b influences the readings of the apparatus

at A. It is then necessary to replace a �a� everywhere with
a �a; b� and b �b�with b �a; b�. As a result, s depends no longer
on four but on eight different factors, like s in expression (3):

s � 1

2

�
a �a; b� b �a; b� � a �a0; b� b �a0; b�

� a �a; b0� b �a; b0� ÿ a �a0b0� b �a0; b0��: �I:3�

As a result, the quantity s may, like s, assume the values
0, � 1, � 2 and expression (I.1) should contain other elemen-
tary probabilities which describe the statistics of all eight
factors.

However it is now meaningless to define S in terms of the
elementary probabilities and it is clear that all four terms in
expression (I.3) can be statistically independent. Since
hSi � hAB� A0B0 � A00B00 ÿ A000B000i=2, it follows that the
universal model-independent restriction jhSij4 1 no longer
applies and, in the absence of any additional conditions, the
value of hSi is constrained only by the natural limits �2.

Frequently in a discussion of Bell's inequalities the
elementary probabilities are not P �a; b; a0; b0� but are of the
P �l� type, where l � fl1; l2; . . .g is a set of hidden variables
which govern in a causal manner (for example, in accordance
with the laws of classical dynamics and electrodynamics) all
the properties of the transmitted messages. Consequently,
there are some single-valued functional dependences of the
a � a �l; a� and b � b �l; b� types (in the absence of nonlo-
cality). The essence of the proof given above does not change.
The averaging procedure becomes [compare with expression
(I.1)]

hSic �
�
dlP �l� s �l� ; �I:4�

where

s �l� � 1

2

�
a �l; a� b �l; b� � a �l; a0� b �l; b�

� a �l; a� b �l; b0� ÿ a �l; a0� b �l; b0�� �I:5�

and the quantity s(l) is defined again in terms of four
variables such that s �l� � �1. Hence, since � dlP�l� � 1,
P�l�5 0, we again obtainjhSij4 1.

Once more, we can avoid this restriction by the hypothesis
of nonlocality which violates the condition s �l� � �1.

It should be noted that the assumption of the existence of
a distribution density of the hidden variables P(l) and single-
valued causal links a �l,a�, b �l,b� implies also the existence of
the joint distribution PABA0B0 �a; b; a0; b0�:

PABA0B0 �a; b; a0; b0� �
�
L�a;b;a0;b0�

dlP �l� : �I:6�

Here, L�a; b; a0; b0� is one of the 24 � 16 nonintersecting
subsets of the whole set of hidden variables L � flg, which
lead in a causal manner to a specific combination of the signs
of a, b, a0, and b0.

It therefore follows that both the above derivations of
the inequality jhSij4 1 postulate the possibility of describ-
ing the observed effects in terms of the elementary prob-
abilities PABA0B0 �a; b; a0; b0�, and violation of this inequality
in quantum models can be explained logically by the fact
that such probabilities cannot be used in the quantum case.
It is shown in Appendix II that the same conclusion follows
also from the appearance of negative and multivalued
probabilities, which can be calculated from expression
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(II.2) with the aid of quantum averages of the products of
noncommuting operators.

II. Statistics of telegraphic signals and negative
`probabilities'
Let us assume that there are N double-valued (ai � �1)
random quantities A1, . . . ,AN defined by a set of 2N

elementary probabilities P �a1; a2; . . . ; aN�. The moments of
this distribution of probabilities can be calculated, by
definition, in accordance with the following rule:

Mij... � hAiAj...i �
X
a1...aN

�ai aj...�P �a1; a2; . . . ; aN�

�14 i < j; . . . ; 4N� �II:1�

(it is assumed here that all the indices i, j, . . . are different).
Therefore, these moments are invariant under all transposi-
tions of their indices:M12 �M21, . . . .

If equalities in the above rule (II.1) are regarded as a
system of equations for the probabilities P, we can find the
inverse transformations:

P �a1; a2; . . . ; aN� � 2ÿN
�
1�

XN
i�1

ai Mi �
X
i<j

ai aj Mi j

�
X
i<j<k

ai aj ak Mi j k � . . .� �a1a2 . . . aN�M12...N

�
: �II:2�

Here,
P

i<j is the sum of C2
N terms with all possible

combinations of the indices i and j,
P

i<j<k is the sum of C3
N

terms, etc.
For example, if N � 2, A1 � A, A2 � B, and

hAi � hBi � 0, we find that P �a; b� � �1� ab hABi�=4. This
relationship has been used in the system of equations (2). We
can easily check that consistency conditions of theP

ai��1 PN � PNÿ1 type are satisfied and that the substitution
of expression (II.2) into the rule described by (II.1)
leads to identities of the M �M types (one should then use
equalities

P
ai
ai ak � 2dik,

P
a1...aN

1 � 2N).
In this way we can describe the statistics of telegraphic

signalsAn not in terms of the elementary probabilitiesP but in
terms of their moments M whichÐaccording to expression
(II.2)Ðdetermine the probabilities. However, these
moments cannot be selected arbitrarily, since both expression
(II.2) and the condition 04P �a1, a2, . . . , aN� impose certain
constraints: with all sets {a} the inequality

ÿ 14
XN
i�1

ai Mi �
X
i<j

ai aj Mi j

�
X
i<j<k

ai aj ak Mi j k � . . .� �a1a2 . . . aN�M12...N �II:2a�

should be satisfied.
These conditions are not always satisfied by the moments

calculated with the aid of quantum models, which indicates
that the description in terms of the elementary probabilities is
invalid in such cases. If quantum calculations are confirmed
by measurements of some of the moments, it is possible to
demonstrate experimentally this `forbiddenness' of the con-
cept of the elementary (joint) probabilities. This is one
possible view on the meaning of the experiments demonstrat-
ing violation of Bell's inequalities.

It should also be mentioned that in quantum theory the
moments generally change as a result of transposition of the

operators, i.e. we have to distinguish between M12 and M21,
between M123 and M132, and so on. This asymmetry is not
reflected in expressions (II.1) and (II.2).

Let us now consider, by way of example, first the classical
probabilistic model based on the set of expressions (11) and
implemented by our rf system. For symmetry, we shall
introduce the notation A1 � A, A2 � B, A3 � A0, A4 � B0,
a1 � a, a2 � ÿb, a3 � a0, a4 � ÿb0, etc. In the case of
stationary processes the phase is distributed uniformly and
the odd moments are zero. The moment of the N-th order is
given by the formula

M �a1; . . . ; aN� � 1

2p

�p
ÿp

� df sign
�
cos�f� a1� . . . cos�f� aN�

	
: �II:3�

Hence it follows that the functionM �a1 ; . . . , aN� is invariant
under all N! transpositions of its arguments faig and under
simultaneous reversal of the signs of these arguments. A shift
of one of the arguments by �p reverses the sign of the
function M �a1, . . . , aN�. In view of such a high symmetry it
is sufficient to findM �a1, . . . , aN� only under the conditions
04a14a24a34a44 p. A calculation of the above inte-
gral reduces then to determination of the relative fractions of
the sections along thef axis where the products of the cosines
is positive. As a result, the even moments become

M �a1; . . . ; aN� � 1ÿ 2g
p
; g � a2 ÿ a1 � . . .� aN ÿ aNÿ1

�II:4a�
(here, g also belongs to the interval [0, p] ).

If N � 2, then formulas (1a) and (2a) follow from
expressions (II.2) and (II.4a). If N � 3, we obtain

P �a; b; a0� � 1

8

ÿ
1� aa0hAA0i � ab hABi � a0b hA0Bi�

� 1

4

�
2�

�
aa0jaÿ a0j � abja� bj � a0bja0 � bj

p

��
: �II:5a�

The above expression is non-negative (the sums and differ-
ences of the phases should be reduced to the interval [0, p] ).
Let us assume that, as in the case of expression (3), we have
a � 0, b � ÿup=4, a0 � p=2; then

P�� � �� � P�ÿ ÿ ÿ� � 1

4
;

P�� ÿ �� � P�ÿ � ÿ� � 1

8
; �II:6a�

P�ÿ � �� � P�� ÿ ÿ� � P�� � ÿ� � P�ÿ ÿ �� � 1

16
:

If N � 4 then we can assume directly, in agreement
with expression (3), that a1 � a � 0, a2 � ÿb � p=4,
a3 � b0 � p � p=4, a4 � a0 � p=2. The fourth moment
hABA0B0i, as well as the moments hAA0i and hBB0i, all vanish.
Since hABi � hA0Bi � hAB0i � ÿhA0B0i � 1=2, we can find
from expressions (II.2) the elementary probabilities in the
form

P�a; b; a0; b0� � 1

16

ÿ
1� ab hABi

� a0b hA0Bi � ab0 hAB0i � a0b0 hA0B0i�
� 1

16
�1� s� ; �II:7a�
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where s � �ab� a0b� ab0 ÿ a0b0�=2. Hence, we obtain
P�� � ��� � P�� ÿ ÿ�� � P�ÿ � �ÿ� � P�ÿ ÿ ÿÿ�

� P�� � �ÿ� � P�� � ÿ�� � P�ÿ ÿ ÿ��
� P�ÿ ÿ �ÿ� � 1

8
;

P�� � ÿÿ� � P�ÿ ÿ ��� � P�� ÿ �ÿ� � P�ÿ � ÿ��
� P�ÿ � ��� � P�� ÿ ��� � P�� ÿ ÿÿ�
� P�ÿ � ÿÿ� � 0: �II:8a�

It follows from expression (II.7a) or (II.8a) that
hSi �PsP �P s�1� s�=16 � 1; here, all the terms in the
sum are positive since

P
P � 1 and P5 0. The equalityP

sP � 1 follows from the fact that, according to expression
(II.7a), the probabilities P�a; b; a0; b0� with the arguments
corresponding to s � ÿ1 all vanish. Consequently, the
distribution described by expression (II.8a) yields the dis-
tribution PS��� � 1, PS�ÿ� � 0 for the random quantity S
with the values s � �1, i.e. S is a deterministic quantity with
zero variance (S � s � 1). The vanishing of some of the
elementary probabilities in expression (II.8a) has a number
of consequences such as PABA0 �� ÿ �� � PABA0 �ÿ � ÿ� � 0
and PAB��ÿ� � PABA0 �� ÿ ÿ�, which originate from the
condition s � 1.

The quantity S observed in reality assumes, with certain
probabilities, the values s � 0, �1, �2 (see Fig. 3). Our
ergodic model ensures equality of only the average values of
two random quantities S and S.

Let us now consider the EPR±Bohm quantum model
described by (see Ref. [9] )

hAA0i � cos �aÿ a0�; hABi � cos �a� b�;
hABA0i � 0; hABA0B0i � cos �a� bÿ a0 ÿ b0�: �II:4b�

Instead of expression (II.5a), we now have

P�a; b; a0� � 1

8

�
1� aa0 cos �aÿ a0�

� ab cos �a� b� � a0b cos �a0 � b�� �II:5b�
� 1

8

�
1� aa0 cos �xÿ y� � ab cos �x� � a0b cos �y��;

where x � a� b, y � a0 � b. Two components P�a; b; a0� out
of eight are negative for nearly all values of x and y [the
exceptions are the subsets of the (x, 0), (0, y), and (x, x) types].
Since P�a; b; a0� � P�a; b; a0;�� � P�a; b; a0;ÿ�, it follows
that some of the components of the four-dimensional dis-
tribution P�a; b; a0; b0� are negative again for almost all the
values of the parameters a; b; a0; b0.

Let us now assume that a � 0, a0 � p=2, b � ÿp=4, in
accordance with expression (3). We then have

P�� � �� � P�ÿ ÿ ÿ� � 1

8
�1�

���
2
p
�;

P�ÿ � ÿ� � P�� ÿ �� � 1

8
�1ÿ

���
2
p
�; �II:6b�

P�ÿ � �� � P�� ÿ ÿ� � P�� � ÿ� � P�ÿ ÿ �� � 1

8
:

We shall now use the three-dimensional (quasi)-
probabilities PABA0 �a,b,a0� � P �a,b; a0� to form the following
combination of two-dimensional probabilities:
PAA0 ���� � PBA0 ��ÿ�ÿ PAB����. The probability addi-
tion rule shows that this combination is equal to

P�ÿ � ÿ� � P�� ÿ ��; according to expression (II.6b), this
quantity is negative for a � 0, a0 � p=2, b � ÿp=4.

If the phases are arbitrary, then

PAA0 ���� � PBA0 ��ÿ� ÿ PAB����

� 1

2

�
sin2

�
a� b
2

�
� sin2

�
a0 � b
2

�
ÿ sin2

�
aÿ a0
2

��
:

The above expression assumes the minimum value ÿ1=8 for
a� b � p=3, a0 � b � ÿp=3.

On the other hand, in classical theory we always have
P�ÿ � ÿ� � P�� ÿ ��5 0 and, therefore, PAA0 �����
PBA0 ��ÿ�5PAB����. One of the initial Bell's inequalities
is of similar form [3, 7, 12]. We can see that violation of this
inequality in quantum models is due to the negative nature of
the three-dimensional `probabilities' P�ÿ � ÿ�, P�� ÿ ��.

Similarly, in the case when N � 4, we find that, instead of
expression (II.7a), we now have

P �a; b; a0; b0� � 2ÿ4
�
1� aa0 cos �aÿ a0� � bb0 cos �bÿ b0�

� ab cos �a� b� � a0b cos �a0 � b� � ab0 cos �a� b0�
� a0b0 cos �a0 � b0� � aa0bb0 cos �a� bÿ a0 ÿ b0��: �II:7b�

Let us assume that a0 ÿ a � b0 ÿ b � p=2, a� b � g1. We
then obtain

P�a; b; a0; b0� � 1

16

�
1� �abÿ a0b0� cos g1

ÿ �a0b� ab0� sin g1 ÿ aba0b0
�
:

For some values of a, b, a0, and b0, the above expression has
negative values for all g1 (apart from 0 and p). Let us assume
that, for example, in accordance with expression (3), we have
g1 � ÿp=4. The result is then

P �a; b; a0; b0� � 1

16

�
1�

���
2
p

sÿ aa0bb0
�
;

where s � �ab� a0b� ab0 ÿ a0b0�=2. Some of the `probabil-
ities' are then negative:

P�� � ��� � P�� ÿ ÿ�� � P�ÿ � �ÿ�

� P�ÿ ÿ ÿÿ� �
���
2
p

16
;

P�� � ÿÿ� � P�ÿ ÿ ��� � P�� ÿ �ÿ�

� P�ÿ � ÿ�� � ÿ
���
2
p

16
;

P�� � �ÿ� � P�� � ÿ�� � P�ÿ ÿ ÿ��

� P�ÿ ÿ �ÿ� � 2� ���
2
p

16
;

P�ÿ � ��� � P�� ÿ ��� � P�� ÿ ÿÿ�

� P�ÿ � ÿÿ� � 2ÿ ���
2
p

16
: �II:8b�

The above expressions agree with the set of expres-
sions (II.6b): for example, P�� ÿ ��� � P�� ÿ �ÿ� �
P�� ÿ �� ��1ÿ ���

2
p �=8.

It follows from the set of expressions (II.8b) that
hSi �PsP �Ps �1� ���

2
p

sÿ aa0bb0�=16 � ���
2
p

, i.e. that
Bell's inequality jhSij4 1 is violated. Formally, this can be
regarded as the result that not all the elementary `probabil-
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ities' P in the sum
P
sP are positive; this is shown also in Ref.

[23] where formulas (II.5b) ± (II.8b) are obtained by a
different method. It should be pointed out that the reverse is
not true: the existence of the negative components
P �a; b; a0; b0� does not always lead to the inequality jhSij > 1.

We have ignored here the ambiguities in the selection of
the fourth moment associated with the noncommutative
nature of the operators and leading to a multivalued solution
of the inverse problem represented by expression (II.2). Let us
transpose A and A0 in the moment hABA0B0i. Then, cos �a�
bÿ a0 ÿ b0� in expressions (II.4b) and (II.7b) is replaced with
cos �a0 � bÿ aÿ b0�, and the probabilities change. For exam-
ple, if a � 0, b � ÿp=4, a0 � p=2, b0 � p=4 then
P�a; b; a0; b0� � 2ÿ4�1� ���

2
p

s� aa0bb0�. As a result, the first
and third expressions, as well as the second and fourth, are
interchanged on the right of the set (II.8b). One further set of
probabilities is obtained if symmetrised moments, analogous
to theWigner distribution, are used. However, this ambiguity
does not affect the average values observed in reality.

Therefore, although in quantum models the moments
such as hABA0i, hABA0B0i, . . ., composed of noncommuting
operators and therefore without operational meaning, can be
calculated formally, the correspondingÐaccording to classi-
cal formula (II.2)Ðelementary `probabilities' can be nega-
tive and unambiguously defined, so that they have no physical
meaning.

We shall now find the distribution of the probabilities
PS(s) for the composite random quantity S, which is
measured in the process of verification of Bell's inequalities
[the definition is given by expression (3) and illustrated in
Fig. 4]. In the classical case, this quantity is again defined fully
by the elementary probabilities P�a; b; a0; b0�. However, we at
once can take into account that this quantity is measured in
the course of independent repeated tests and, therefore, it can
be described by the binomial distribution. Let p be the
probability that in one test the product AB is positive and let
q be the probability thatAB is negative. It follows from the set
of expressions (2) that

p�g� � PAB���� � PAB�ÿÿ� � 1

2

�
1�M �jgj��;

q�g� � PAB��ÿ� � PAB�ÿ�� � 1

2

�
1ÿM �jgj��: �II:9�

According to expression (3), the parameter jgj � p=4 is
identical in three series of observations, but in one series it is
jgj � 3p=4. In the last case the product ab is taken with its sign
reversed and, therefore, the roles of p and q are interchanged.
Since, in accordance with the set of expressions (1), we have
M �3p=4� �M �p=4�, we can assume that in all four series of
observations the probability p � p �p=4� is the same. Conse-
quently, the quantity S assumes the values
s � �2,1,0,ÿ 1,ÿ 2� with the binomial probabilities

PS�s� � �p4; 4p3q; 6p2q2; 4pq3; q4�: �II:10�
According to expressions (1a) and (II.9), in the classical

model we have p � 0:75 and q � 0:25, which gives

PS�s� � �0:316; 0:422; 0:211; 0:047; 0:004�: �II:11�
These values are confirmed by the results of a numerical
experiment (see Fig. 4). Hence, we again find that

hSic �
X2
s�ÿ2

sPS�s� � 1:

In the quantum case, it follows from expressions (1b) and
(II.9) that p � cos2 �p=8� � 0:853, q � sin2 �p=8� � 0:146, so
that all the probabilities apart from PS(2) are smaller than the
corresponding classical values:

PS�s� � �0:531; 0:364; 0:093; 0:011; 0:0005�: �II:12�
Hence, we have hSiq �

���
2
p

.
Let us finally consider the case of three observers

(Section 4). The quantum model predicts the following
operator identities [9]:

F1 � A0BC � ÿI; F2 � AB0C � ÿI;
F3 � ABC 0 � ÿI; F4 � A0B0C 0 � I: �II:13�

Hence, we have

Z � F1F2F3F4 � ÿI: �II:14�

Here, A2 � A02 � I, AB � BA, F1F2 � F2F1, etc. Therefore,
the operator Z can be represented in the form
Z � AA0AA0B0BBB0CCC 0C 0 � I� �A;A0�AA0. If we now
ignore the noncommutative nature of the operators A and
A0, we find that Z � I, which is in accordance with classical
expectations. Therefore, the GHSZ paradox [17], like the
Kochen ± Specker paradox [24], is formally related to the
noncommutative nature of the algebra of observables (for
details, see Ref. [9] ).

We shall show that some of the probabilities correspon-
dingÐ inaccordancewith rule (II.2)Ð torelationships (II.13)
are negative. The set of expressions (II.13) yields themoments

hA0BCi � ÿ1; hAB0Ci � ÿ1;
hABC 0i � ÿ1; hA0B0C 0i � 1: �II:15�

Substitution of these values in expression (II.2) gives, by
analogy to expression (II.7b), the following quasiprobabil-
ities:

P �a; b; c; a0; b0; c 0� � 2ÿ6�1ÿ a0bcÿ ab0c

ÿ abc 0 � a0b0c 0� � 2ÿ6�1ÿ 2s�; �II:16�

where we now have s � �a0bc� ab0c� abc 0 ÿ a0b0c 0�=2.
We can readily show that s � �1, so that for all the
combinations of the numbers a,b,c,a0,b0,c 0 that give s � 1
and s � ÿ1, we have, respectively, P � ÿ1=64 and P � 3=64.
The number of these combinations is 32, so that

P
P � 1.

By analogy with expression (3), we shall now consider a
composite observable

S3 � 1

2
�A0BC� AB0C� ABC 0 ÿ A0B0C 0�: �II:17�

In the classical case the absolute average value of this
observable does not exceed 1 [compare with expression
(I.2) ]. The resultant inequality

jhS3icj �
1

2
hA0BC� AB0C� ABC 0 ÿ A0B0C 0i4 1 �II:18�

is an analogue of the usual Bell's inequality (4a) for three
observers [20]. It is remarkable that all four observations are
now carried out under the conditions of perfect (100%)
correlation or anticorrelation. In the quantum model the
above inequality is violated `by 100%': according to expres-
sions (II.15) or (II.16), we have jhS3iqj � 2. Further iteration
gives hSNiq � 2�Nÿ1�=2 [18] (see also Ref. [16] ).
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III. Description of the model of an EPR simulator
The EPR simulator, shown in Fig. 7, contains (like the
system in Fig. 1) a transmitter source S and two receivers A
and B with discretely controlled delay lines (DL) and LED
indicators (I) of the correlation between the signals, one of
which is red (R) and the other green (G). The transmitter
contains two double-loop parametric oscillators (PO1 and
PO2), operating in a nondegenerate manner with a shared
pump oscillator (PP) tuned to the frequency o0 � 3MHz.
The frequencies oa1;2 and ob1;2 of combination parametric
oscillations at the PO outputs are close to nonmultiple
frequencies of the order of 1 and 2 MHz (the letter
subscripts identify nonsynchronous signals with similar
frequencies and the number subscripts identify the para-
metric oscillators which generate the signals).

A continuous pump voltage free of randommodulation in
time is used. As pointed out already, this is not of funda-
mental importance in simulation of the EPR correlations,
because the stochasticity of the signals is determined by free
fluctuations of their phases. In fact, only the sumof the phases
of the combination oscillations is fixed. For each PO, this sum
is equal to the phase of pump oscillator:f1;2 � f01;2 � f0 � 0.
Therefore, instantaneous values of the difference between the
phases of two oscillations with similar frequencies are always
identical and opposite in sign: f0 � ÿf, i.e. they are antic-
orrelated (see, for example, Ref. [27] ). This is demonstrated in
Fig. 8 which shows clearly that a change in the phase of any of
the signals (f1;2, f

0
1;2, where the subscript identifies the

parametric oscillator) can be used to control their correla-
tions.

The input devices in the receivers D act as comparators
and transform harmonic signals into pulses of logic levels
with an off-duty factor 2, i.e. they transform them into a
symmetric telegraphic signal. This removes the undesirable
amplitudemodulation, but retains fully all the phase informa-
tion. The output signals obtained from each of the four
comparators have the same energy characteristics. If the
logic level 1 is attributed the value �1 and the logic level 0 is
attributed the value ÿ1, the transformation of the received
signals in the comparators can be represented in the following
form in the case of the receiver A:

X1;2�t� � cos �oa t� f1;2�t�� ! sign
�
X�t��

� sign
�
cos
�
oa t� f1;2�t�

�	
; �III:1a�

whereas for the receiver B, we have

Y1;2�t� � cos
�
ob tÿ f1;2�t�

�! sign
�
Y�t��

� sign
�
cos
�
ob tÿ f1;2�t�

�	
: �III:1b�

The use of logic level signals makes it possible to employ
discrete delay lines (DL) which are characterised by suffi-
ciently high precision and are based on digital logic elements.
This ensures uniformity of the discrete phase delay step. In
our case the step is 0.16 rad. The delay lines are connected to
the outputs of the signal comparators in each receiver in order
to introduce controlled phase shifts a and b into these signals.

Multiplication of the logic signals in the receivers is
carried out in sign correlators (C), which operate as antic-
oincidence (`exclusive-OR') circuits. The sum and difference
frequencies are obtained from the correlator outputs. In the
case of the receiver fa, the output is

sign
�
cos
ÿ
oa t� f1�t� � a

��� sign
�
cos
ÿ
oa t� f2�t�

��
� sign

�
cos
ÿ
oa t� f1�t� � a

�� cos
ÿ
oa t� f2�t�

��
� sign

�
cos �f1 ÿ f2 � a� � cos �2oa t� f1 � f2 � a�

�
� sign

�
cos
ÿ
f�t� � a�� cos �2oa t� f1 � f2 � a�

�
;

�III:2a�
and for the receiver B, it is

sign
�
cos
ÿ
ob tÿ f1�t� � b

��� sign
�
cos
ÿ
ob tÿ f2�t�

��
� sign

�
cos�f2 ÿ f1 � b� � cos �2ob tÿ f1 ÿ f2 � b�

�
� sign

�
cos
ÿÿf�t� � b� � cos �2ob tÿ f1 ÿ f2 � b�

�
:

�III:2b�

The signals of the difference frequencies are separated in
each receiver by low-frequency filters (F). The outputs from
the filters are sawtooth signals of the type


sign
�
cos �f� a� � cos �2oa t� f1 � f2 � a�

��
� 1ÿ 2

jf� aj
p

;



sign

�
cos �ÿf� b� � cos �2ob tÿ f1 ÿ f2 � b�

��
� 1ÿ 2

j ÿ f� bj
p

; �III:3�

where �f� a�, �ÿf� b� assumes the values from ÿp to �p .

t0

f1

f02

f

f0

t

f2

f01

0

ÿp

p

Figure 8. Free fluctuations of the phases of asynchronous signals from

parametric oscillators.
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Figure 7. Block diagram of a simulator of the EPR±Bohm correlation.
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In the LED indicator circuits (I) of each receiver, which is
controlled by a shared generator of clock pulses (GCP)
repeated at a frequency of 1 Hz, the signals described by the
set of expressions (III.3) are transformed into rectangular
signals at the 0 level and the results are similar to those
described by expressions (7a) and (7b):

sign

�
1ÿ 2

jf� aj
p

�
� sign

�
cos �f� a��

�

�1; ÿ p
2
< �f� a� < � p

2
,

0; �f� a� � � p
2
,

ÿ1; � p
2
< �f� a� < � 3p

2
;

8>>>><>>>>: �III:4a�

sign

�
1ÿ 2

j ÿ f� bj
p

�
� sign

�
cos �ÿf� b��

�

�1; ÿ p
2
< �ÿf� b� < � p

2
,

0; �ÿf� b� � � p
2
,

ÿ1; � p
2
< �ÿf� b� < � 3p

2
:

8>>>><>>>>: �III:4b�

The value �1 corresponds to illumination of the green
indicator and the value ÿ1 means that the red indicator is lit.
Therefore, in recording the instantaneous phase difference
between the signals in the interval �ÿp=2; �p=2�, a green
LED lights up in each of the receivers, but when the
instantaneous phase difference is in the interval
��p=2; �3p=2�, a red LED lights up.

The sign of the difference between the phases (or the
cosine of this difference) is determined from the front of a
clock pulse produced by the generator (GCP) simultaneously
in each receiver and this is done during a clock pulse in 0.5 s.

In statistical measurements the clock pulse frequency is
10 kHz. The size of the sample represented by one experi-
mental point is 104. The measurements are performed not by
visual detection of lighting up of the indicators, but with a
frequency meter of the Ch3-54 type. The experimental results
obtained in these measurements are plotted in Fig. 2. The
absence of 100% correlations is explained by natural
thermodynamic fluctuations, particularly fluctuations of
the reference voltages of the comparators, which cause
fluctuations at the fronts of the signals being compared. In
the case of statistical measurements of uncorrelated signals
the errors due to these fluctuations are averaged out and they
affect the results most in the case of perfect (100%)
correlation and anticorrelation. It is evident from Fig. 2
that in our experiments the maximum measurement error
associated with these fluctuations is 8% at the points of
perfect (anti)correlation.
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