
Abstract. Early formulations of the equivalence principle (EP)
[1 ± 3, 6] are discussed and a critical analysis of them is given. It
is shown that the main conclusions of papers [3, 5] are erro-
neous. The formulation of EP is presented as given by A Ein-
stein in 1933 [9]. It is this formulation of EP that underlies
GTR.

1. In accordance with Einstein's works published in 1907 and
1911 [1], the equivalence principle (EP) is typically formulated
in the following way [2]: ``A reference frame that is absolutely
static or undergoes inertial motion in a uniform gravitational
field of the strength g is physically equivalent to a reference
system moving translationally with acceleration j in the
absence of a gravitational field, provided g � ÿj ''. A variant
of this formulation has been suggested in Ref. [3]: ``According
to this principle (i.e. the equivalence principle), all physical
phenomena proceed similarly in the inertial reference frame
Kg having homogeneous gravitational field with acceleration
of gravity g and in the uniformly accelerated systemKa which
moves with acceleration ÿg relative to an inertial system
without gravitational field''. Based on this statement of EP,
the author of Ref. [3] arrives at the following conclusion: ``In
the presence of a homogeneous gravitational field, a free
charge is uniformly accelerated with respect to the inertial
reference frame and, in agreement with the aforesaid, emits
radiation. However, it is unlikely to radiate in the accelerated
systemKa since it is not accelerated with respect to the inertial
reference frame. Therefore, systems Kg and Ka appear to be
nonequivalent, and EP seems violated. Actually, a charge in
the system Ka radiates exactly as it does in the systemKg, that
is the equivalence principle is absolutely fulfilled''.

It is worthy of note that the above EP formulations [1 ± 3]
do not even mention locality (small space-time domains).
Radiation in Kg is known to be defined by the exact formula

J � 2

3

e2a2

c3
; �1�

where a is the strength of the gravitational field.
Formula (1) has been obtained for a uniform gravitational

field in the entire space. Actually, a uniform gravitational
field never extends to infinity, and such an extreme situation
should be regarded as an abstraction. However, it is not

electrodynamically forbidden and, besides, may be consid-
ered in the framework of the above EP formulations.

According to these formulations, a charge in system Ka

radiates precisely as it does in system Kg. However, this does
not mean that radiation in system Ka is defined by the same
formula (1). The problem of definition of radiation in system
Ka is directly related to the problem of charge propagation in
the framework of special rather than general relativity. In an
earlier paper [4], we have demonstrated that in the above
formulation EP is violated, and V L Ginzburg's conclusion
concerning charge radiation in system Ka is incorrect. A
charge at rest in an inertial system can not radiate, and this
assertion does not depend on the system of coordinates in
which the charge is considered. It is for this reason that the
charge emits no radiation in the system Ka either. This
problem is discussed at greater length in Ref. [4]. V L
Ginzburg and Yu N Eroshenko [5] seem to be of the same
opinion when they state that transition from the inertial
``reference frame K to the reference frame Ka can not give
rise to new particles: electrons, adrons, photons, etc''.

This apparently settles the question, and V L Ginzburg
agrees that a charge at rest in the inertial system K will not
radiate in systemKa. In other words, EP as formulated inRefs
[1 ± 3] is not fulfilled. However, the authors of Ref. [5] go on as
follows: ``It is now time to prove that a charge which does not
radiate in the inertial reference frameKwhere it is at rest does
radiate in the reference frame Ka ''.

We have to treat this problem in greater detail in order to
demonstrate that the main conclusions in Ref. [5] are
erroneous. Unlike the authors of Ref. [5], we have made
accurate calculations. It is generally known that the equation
of motion for the charge in an arbitrary system of coordinates
(including an accelerated one) of theMinkowski space has the
form

m
Dun

ds
� F n ; �2�

where un � dxn=ds is the 4-velocity and F n is the force 4-
vector. In the absence of force F n � 0, the motion is along the
geodesic line of the Minkowski space:

Dun

ds
� dun

ds
� Gnab u aub � 0 ; �3�

Gnab, the Kristoffel symbols of the Minkowski space, are

Gnab �
1

2
gns�qagbs � qbgas ÿ qsgab� ;

where gab is the metric tensor of the Minkowski space. The
motion along the geodesic line of theMinkowski space is free.
But in the case of free motion, there is no radiation in any
coordinate system, and the charge does not dissipate energy
to maintain radiation. This is easy to see if one passes to an
arbitrary (accelerated) system of coordinates or reads
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through paragraph 73 in ``The Field Theory'' by Landau and
Livshitz. Radiation is not fiction but a real physical phenom-
enon.

It is equally well-known that field invariants Fmn � F mn,
F �mn � F mn for electromagnetic radiation are equal to zero. In
the case under examination, when the charge is at rest in the
inertial reference frame, invariant Fmn � F mn differs from zero.
Hence, it can not be turned into zero by any transformation of
coordinates. It appears appropriate to dwell at greater length
on the notion of radiation in order to elucidate the question.
In classical electrodynamics, it is feasible to speak of radiation
only if components of the stress-energy tensor, which
determine the energy flow and are expressed through retarded
potentials, fall at infinity as 1=r2. Only in this case, the
Poynting vector is indicative of the loss of energy by the
moving charge due to radiation. The radiation is physical
reality in the form of a weak electromagnetic field, and this
provides the basis for the statement of the Sommerfeld
radiation condition.

If the field behaviour at the infinity does not satisfy this
requirement, the surface integral of energy flow components
has nothing to do with the presence of radiation.

2. Let us now consider the problem of a charge which is
acceleratedwith respect to systemKa but remains at rest in the
inertial reference frame K in the point with coordinates
x � y � z � 0. We have solved this problem in a previous
paper [4], but V L Ginzburg and Yu N Eroshenko [5] make
calculations in the MoÈ ller reference frame and insist (without
any good reason) that it is this system that is necessary to
confirm EP as formulated in Refs [1±3]. However, validity of
a physical principle does not depend on the choice of reference
frame. Were it otherwise, we should have to do with
mysticism rather than physics. Now, we shall demonstrate
that even in the MoÈ ller system, which is referred to as system
Ka in Ref. [5], a charge at rest in the inertial systemK does not
radiate.

In the inertial system K, the field of a static charge is a
purely Coulomb field. For this reason, the stress-energy
tensor of the field of the charge at rest in a point with
coordinates

x � y � z � 0 ; �4�

has the form

T 0 00 � 1

8p
e2

r40
;

T 0 01 � T 0 02 � T 0 03 � T 0 10 � T 0 20 � T 030 � 0 ;

T 0 12 � T 0 21 � ÿ e2

4pr60
xy ; T 0 13 � T 0 31 � ÿ e2

4pr60
xz ;

T 0 23 � T 0 32 � ÿ e2

4pr60
yz ; T 0 11 � ÿ e2

4pr40

�
x2

r20
ÿ 1

2

�
;

T 0 22 � ÿ e2

4pr40

�
y2

r20
ÿ 1

2

�
; T 0 33 � ÿ e2

4pr40

�
z2

r20
ÿ 1

2

�
:

�5�

Now, let us introduce the MoÈ ller coordinates

t � 1� ar
a

sinh�aZ� ; x � x ; y � w ;

z � 1� ar
a

cosh�aZ� ÿ 1

a
: �6�

The charge at rest in the point with coordinates (4) of the
inertial system is accelerated in the noninertial system with
coordinates Z; x; w; r along the trajectory

x � w � 0 ; r � 1

a cosh�aZ� ÿ
1

a
: �7�

With a change Z in region ÿ14Z41, the charge in the
noninertial reference frame travels from point r � ÿ1=a
towards point r � 0 and backwards.

The interval in variables Z; x; w; r has the form:

ds2 � dt 2 ÿ dx2 ÿ dy2 ÿ dz2

� �1� ar�2 dZ2 ÿ dx2 ÿ dw2 ÿ dr2 : �8�
For the metric in the noninertial system of coordinates, only
Kristoffel's symbols

G 0
03 �

a

1� ar
; G 3

00 � a�1� ar� �9�

will be different from zero. From transformation formulas
(6), it is easy to find that

qZ
qt
� cosh�aZ�

1� ar
;

qZ
qz
� ÿ sinh�aZ�

1� ar
;

qr
qt
� ÿsinh�aZ� ; qr

qz
� cosh�aZ� : �10�

Hence, the Jacobian of transformation D:

D � �1� ar�ÿ1 : �11�

Therefore, transformation (6) has no sense at

r � ÿ 1
a

�12�

and produces an event horizon.
Let us now find components of the stress-energy tensor in

coordinates Z; x; w; r using transformation

T mn � qy
m

qxa
qyn

qxb
T 0 ab : �13�

Here

xm � �t; x; y; z� ; ym � �Z; x; w; r� :

Hence:

T 00 � e2

8pr60

1

�1� ar�2
�
�x2 � w2��cosh2�aZ� � sinh2�aZ��

� 1

a2
�
au cosh�aZ� � sinh2�aZ��2� ; �14�

T 01 � e2x
4pr60

1

1� ar

�
au cosh�aZ� � sinh2�aZ�� sinh�aZ�

a
; �15�

T 02 � e2w
4pr60

1

1� ar

�
au cosh�aZ� � sinh2�aZ�� sinh�aZ�

a
; �16�

T 03 � ÿ e2

4pr60

1

1� ar
�x2 � w2� sinh�aZ� cosh�aZ� : �17�
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Here

r20 � x2 � w2 �
1

a2
��1� ar� cosh�aZ� ÿ 1

�2
;

au � 1� arÿ cosh�aZ� : �18�

Kristoffel's symbols in the MoÈ ller coordinates (6) being non-
zero, the general form of the law of conservation of the stress-
energy tensor is:

HmT mn � 1������ÿgp qm
ÿ ������ÿgp

T mn�� GnabT ab � 0 : �19�

Hence, we have for the case in question:

qm
ÿ ������ÿgp

T m0�� 2aT 03 � 0 ; �20�

or

qmT m0 � 3a

1� ar
T 03 � 0 : �20a�

Let us now find the surface of the constant phase of
electromagnetic field using the geodesic line equation:

d2y m

ds2
� Gmab

dya

ds
dy b

ds
� 0 : �21�

It follows from expression (9) that

d2Z
ds2
� 2a

1� ar
dZ
ds

dr
ds
� 0 ; �22�

d2x
ds2
� 0 ;

d2w
ds2
� 0 ; �23�

d2r
ds2
� a�1� ar�

�
dZ
ds

�2

� 0 : �24�

Eqns (23) yield

x � A1s� B1 ; w � A2s� B2 ; �25�

where A1; A2; B1; B2 are integration constants.
Eqn (22) may be rewritten as

d

ds

�
ln

dZ
ds

�
� d

ds

�
ln�1� ar�ÿ2� : �26�

Hence:

dZ
ds
� A0�1� ar�ÿ2 ; A0 > 0 : �27�

Substitution of (27) into Eqn (24) gives

d2r
ds2
� aA2

0�1� ar�ÿ3 � 0 : �28�

The solution of Eqn (28) has the form:

r � 1

a

�
a2A2

0

A2
3

ÿ �A3s� B3�2
�1=2
ÿ 1

a
; �29�

where A3 and B3 are integration constants.

The function under the root sign in expression (29) must
be positive. Therefore:

a2A2
0

A2
3

ÿ �A3s� B3�2 � A2
3�s� ÿ s��sÿ sÿ� > 0 ; �30�

where

s� � aA0

A2
3

ÿ B3

A3
; sÿ � ÿ

�
aA0

A2
3

� B3

A3

�
: �31�

It follows from (31) that sÿ < s < s�. Thus:

r � jA3j
�������������������������������������s� ÿ s��sÿ sÿ�

p
a

ÿ 1

a
: �32�

Let us now find function Z�s� by substituting Eqn (32) into
Eqn (27):

dZ
ds
� A0

A2
3

1

�s� ÿ s��sÿ sÿ� �
1

2a

�
1

sÿ sÿ �
1

s� ÿ s
�
: �33�

Integration of Eqn (33) yields

2a�Zÿ B0� � ln
sÿ sÿ
s� ÿ s ; �34�

where B0 is an integration constant.
Taking into account Eqns (31) results in

s � aA0

A2
3

tanh
�
a�Zÿ B0�

�ÿ B3

A3
; �35�

where variable Z may acquire any value from ÿ1 to �1,
with quantities s� and sÿ having limiting values:

s� � s�1� ; sÿ � s�ÿ1� : �36�
Let us write equations for the geodesic line (25) and (32) ,
taking into consideration expressions (35), in the following
form:

x � a1 � ab1 tanh
�
a�Zÿ B0�

�
; �37a�

w � a2 � ab2 tanh
�
a�Zÿ B0�

�
; �37b�

r � b3
cosh

�
a�Zÿ B0�

�ÿ 1

a
; �37c�

where

a1 � B1 ÿ A1B3

A3
; a2 � B2 ÿ A2B3

A3
;

b1 �
A0A1

A2
3

; b2 �
A0A2

A2
3

; b3 �
A0

jA3j : �38�

Since we are interested in isotropic lines, curves (37) must
satisfy the equation

ds2 �
"
�1� ar�2 ÿ

�
dx
dZ

�2

ÿ
�
dw
dZ

�2

ÿ
�
dr
dZ

�2
#
dZ2 � 0 :

�39�
Substitution of expressions

dx
dZ
� b1a

2

cosh2
�
a�Zÿ B0�

� ; dw
dZ
� b2a

2

cosh2
�
a�Zÿ B0�

� ;
dr
dZ
� ÿ b3a sinh

�
a�Zÿ B0�

�
cosh2

�
a�Zÿ B0�

� �40�
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into Eqn (39) yields the relation between integration con-
stants

b23 � a2�b21 � b22� : �41�

Let a charge produce the field at time Z0 � 0. Then, in
accordance with (7), it must be in the point with coordinates

x � w � r � 0 : �42�
Let us now require that isotropic geodesics (37) should pass
through the point with coordinates (42). This can be achieved
by the choice of integration constants

a1 � b1a tanh�aB0� ; a2 � b2a tanh�aB0� ;

b3 �
1

a
cosh�aB0� : �43�

Thus, for the isotropic lines passing through the point with
coordinates (42), we obtain the following expressions:

x � b1a
sinh�aZ�

cosh�aB0� cosh
�
a�Zÿ B0�

� ;
w � b2a

sinh�aZ�
cosh�aB0� cosh

�
a�Zÿ B0�

� ;
1� ar � cosh�aB0�

cosh
�
a�Zÿ B0�

� �44�

with constants b1; b2; b3 satisfying condition (41). It is
worthwhile to note that constant B0 is expressed in terms of
b3, in accordance with formula (43). Now, let us find the front
of the constant phase. To this effect, let us express constants
b1; b2; b3 through variables x; w; r; Z. Taking into account
expression for b3 from formula (43), one can obtain from the
last equality (44)

b3 �
1

a

�1� ar� sinh�aZ������������������������������������������������������������������������
2�1� ar� cosh�aZ� ÿ �1� ar�2 ÿ 1

q ; �45�

b1 and b2 can be found in a similar way:

b1 �
x�1� ar� sinh�aZ�

a
�
2�1� ar� cosh�aZ� ÿ �1� ar�2 ÿ 1

� ;
b2 �

w�1� ar� sinh�aZ�
a
�
2�1� ar� cosh�aZ� ÿ �1� ar�2 ÿ 1

� : �46�

Substitution of these expressions into relation (41) allows the
front of the constant phase to be found

x2 � w2 � �1� arÿ cosh�aZ��2 1
a2
� 1

a2
sinh2�aZ� : �47�

It is quite clear that this expression satisfies the Hamilton±
Jacobi equation

1

�1� ar�2 �qZS�
2 ÿ �qxS�2 ÿ �qwS�2 ÿ �qrS�2 � 0 : �48�

We may now turn to calculating the Poynting vector for the
constant phase surface. For this, we may use variable

u � 1

a

�
1� arÿ cosh�aZ�� : �49�

The surface (47) takes the form

x2 � w2 � u2 � 1

a2
sinh2�aZ� : �50�

Here and hereafter, Z > 0. Let us denote the volume bounded
by the surface of the constant phase (47) as V. Then, in
conformity with (20), integration over volume V gives�

V

qZ
��1� ar�T 00

�
dx dw du� 2a

�
V

dx dw duT 03 � ÿI ;
�51�

where

I �
�
V

qi
ÿ ������ÿgp

T 0i
�
dx dw du :

Let us introduce spherical coordinates

x � r sin y cosj ; 04 r4
1

a
sinh�aZ� ;

w � r sin y sinj ; 04y4p ;

u � r cos y ; 04j4 2p : �52�
Then, the use of the Gauss ±Ostrogradski�� formula leads to

I �
�
V

qi
ÿ ������ÿgp

T 0i
�
dx dw du �

�
qV

������ÿgp
T 0ili r

2 dO ; �53�

where vector l has components

li � �sin y cosj; sin y sinj; cos y� : �54�

At the surface (50), we obtain�
qV

������ÿgp
T 0ili r

2 dO

� 1

a2
sinh2�aZ�

�2p
0

dj
�1
ÿ1

������ÿgp
T 0il1 d cos y : �55�

Here, we assume that r � �1=a� sinh�aZ�, with Z > 0. Simple
calculations yield

T 0ili � e2a4�1ÿ cos2 y�
4p sinh9�aZ��cos y� coth�aZ��7 ; Z > 0 ;

r20 �
1

a2
sinh4�aZ��cos y� coth�aZ��2 : �56�

In themeantime, it should be noted that the approximation in
Ref. [5] is not quite correct. Instead of the exact expression
(56), the authors of Ref. [5] obtained formula

T 0ili � e2Z
4pra2r60

sinh�aZ��cosh�aZ� ÿ 1
��1ÿ cos2 y�:�56a�

Comparison of formulas (56) and (56a) in the range of small Z
shows that our expression (56) leads to

T 0ili � e2a2

4pZ2
�1ÿ cos2 y� ; �56b�

whereas expression (56a) gives

T 0ili � e2a2

8pZ2
�1ÿ cos2 y� ; �56c�
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which is two times smaller than (56b). If the authors of Ref. [5]
had notmade amistake, they would have obtained coefficient
1/3 instead of 2/3 in their formula (23).

Substitution of expression (56) into (55) and integration
over angles y and j yields�2p

0

dj
�1
ÿ1

r2
������ÿgp

T 0ili d cos y � 2

3

e2a2

c3

�
1� 6

5
sinh2

aZ
c

�
:

�57�

Here and below, we restore dependence on the velocity of
light c in the resultant expressions for the flow. Taking into
account expression (57), the relation (51) may be written in
the form�

V

qZ
� ������ÿgp

T 00
�
dx dw du� 2a

�
V

dx dw duT 03 � ÿI ;

I � 2

3

e2a2

c3

�
1� 6

5
sinh2

aZ
c

�
; Z > 0 : �58�

The authors of Ref. [5] integrate expression (20) over the
volume. This leads to the relation�

V

qZT 00 dx dw du� 3a

�
V

dx dw du
au� cosh�aZ� T

03 � ÿP : �51a�

They perform an approximate calculation of the surface
integral on the right-hand side of relation (51a) but do not
report the procedure because it is `cumbersome'. Meanwhile,
integral P can easily be calculated exactly and is as follows:

P �
�
qV
r2T 0ili dO

� 2

3

e2a2

c3
cosh

aZ
c

�
1� 8

5
sinh2

aZ
c

�
; Z > 0 : �57a�

In the first place, it should be emphasised that formula (1)
obtained in system Kg does not coincide with the exact
expression (57a) obtained in system Ka. Therefore, V L
Ginzburg's statement [3] that ``a charge in system Ka radiates
exactly as it does in system Kg '' [3] is utterly wrong even from
the formal standpoint. It follows from expression (57a) or
(57) that the surface integral infinitely grows with increasing
distance which suggests the growth of volume integrals in
(51a) and (58). Therefore, there can be no wave zone in this
problem, hence no radiation. It is clear that the surface
integral of the Poynting vector P (formula (57a)) for the
given problem does not satisfy radiation condition which
requires that with increasing distance, that is with the growth
of Z, P should tend to a constant non-zero value independent
of Z. It is for this reason that a charge which is not accelerated
in the inertial system K does not radiate in system Ka either.
Therefore, the inference of the authors of Refs [3, 5] that ``a
charge which does not radiate in the inertial reference frameK
where it is at rest does radiate in the reference frame Ka '' is
simply erroneous.

Relations (51a) and (58) express energy balance and
nothing else. Expressions (51a) and (58) are valid only if
Z > 0 because components T 0i have singularity in point
Z � 0. The authors of Ref. [5] write: ``It will be shown below
by means of direct calculation that a charge in the reference
frame Ka emits energy provided transition from the reference
frame K to the frame Ka was correct; moreover, the energy
emitted is exactly (2)''. What they really mean is formula (1)
from our work. Setting aside the essence of the radiation

problem, even formal comparison of formulas (1) and (57a)
shows that the above inference is also wrong since these
formulas have actually nothing in common, and the latter
one is the result of exact calculation rather than approxima-
tion.

The presence of the surface integral is by no means
indicative of radiation. V L Ginzburg and Yu N Eroshenko
[5] seem to agree with this when they write that ``identification
of energy P and energy of free electromagnetic radiation
(photon flow) is unsound''. But they immediately go on to
state: ``It follows from EP that electromagnetic fields in
reference frames Kg and Ka are similar which automatically
implies equality of the quadratic-in-field variables P in these
reference frames''. But this is utterly wrong since the reference
frame Kg exhibits radiation and hence contains free electro-
magnetic waves whereas a charge which rests in the inertial
system does not emit in system Ka even though it is
accelerated with respect to the uniformly accelerated system
of coordinates. It is quite clear from the comparison of the
field of a charge at rest in the inertial reference frame K and
the description of this field in the uniformly accelerated
reference frame Ka that the two fields differ only in that they
are written in different systems of coordinates, taking into
account the tensor transformation law. One must not
compare this field with that arising when the charge propa-
gates in systemKg. It is impossible not to see that formulas (1)
and (57a) are absolutely different. This difference is largely
due to the fact that a charge at rest in the inertial reference
frame K travels along the geodesic line of the Minkowski
space in the accelerated reference frameKa; for this reason, its
motion is free. A free charge in system Kg is forced to move
which precludes its motion along the geodesic line of the
Minkowski space. Therefore, physical equivalence of refer-
ence frames Ka and Kg is out of the question.

3. One may introduce a quantity the surface integral of
which will be exactly equal to expression (1). But even this will
not necessarily suggest radiation because it is associated with
the behaviour of the stress-energy tensor on infinity.

Let us introduce a quantity

T mn � �ÿg�3=2T mn : �59�

Then, expression (19) leads to

HmT mn � �ÿg�3=2HmT mn � qmT mn ÿ 3

2

1

g
qmg � T mn

� GmmlT ln � GnmlT ml � 0 :

Since

1

g
qmg � 2Glml ;

the following expression holds:

HmT mn � qmT mn ÿ 2GlmlT mn � GnmlT ml � 0 : �60�

Owing to Glml � d3mG 0
30, in the case n � 0 one has

HmT m0 � qmT m0 � 0 : �61�
Integration of this expression over domain V gives�
V

qZT 00 dx dw du � ÿ
�
V

�qxT 01 � qwT 02 � quT 03� dx dw du :
�62�
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The use of the Gauss±Ostrogradski�� formula allows us to
obtain�

V

�qxT 01 � qwT 02 � quT 03� dx dw du �
�
qV
T 0ili r

2 dO :

�63�
On the surface (50),�

qV
T 0ili r

2 dO � 1

a2
sinh2�aZ�

�2p
0

dj
�1
ÿ1
T 0ili d cos y : �64�

Simple calculations yield

T 0ili � e2a4

4p
1ÿ cos2 y

sinh6�aZ��cos y� coth�aZ��4 ; Z > 0: �65�

Substitution of this expression into (64) leads to�
qV
r2T 0ili dO � 2

3

e2a2

c3
; Z > 0 : �66�

The resultant equation has the form�
V�Z�

qZT 00 dx dw du � ÿ 2
3

e2a2

c3
; Z > 0 : �67�

Thus, we have obtained the surface integral for quantity T 0i

which is exactly equal to formula (1). However, this does not
mean anything because whether radiation occurs or not
depends only on the asymptotic behaviour of the components
of the stress-energy tensor which describe the energy flow.

To sum up the results of our accurate calculations, the EP
formulations in Refs [1 ± 3] are at variance with electrody-
namics. Therefore, our criticism of Ref. [3] as presented in
Ref. [4] holds true and was not refuted by our opponents in
Ref. [5].

4. Ref. [5] contains a few more incorrect inferences. It
being published in the Uspekhi Fizicheskikh Nauk (Physics-
Uspekhi), we have to treat them at greater length so that a
thoughtful reader may compare the opinions and decide
which is right and which is wrong. The authors of Ref. [5]
allude to the formulation of EP as proposed in a book by
V Pauli [6]. We cite here only one paragraph from this book:
``For an infinitely small four-dimensional world-region (i.e. a
world-region which is so small that the space-time variation of
gravity can be neglected in it), there always exists such a
coordinate frame K0�X1;X2;X3;X4� in which gravitation has
no influence either on themotion of amaterial point or any other
physical process''. This formulation is altogether different
from that in Refs [1 ± 3]. Moreover, it is equally incorrect.
Indeed, if one takes a particle with spin, the equation of
motion for such a particle will inevitably involve the
curvature tensor the action of which on the particle with
spin is impossible to eliminate by any transformation of
coordinates. A Eddington wrote about this in an even more
general form as far back as 1924 ``There are more complicated
events that obey equations containing components of the world
curvature. Terms with these components are absent in equations
which describe experiments performed in flat regions. But they
must be reintroduced if the transition to a general case is
needed. Evidently, there must exist events which allow for the
discrimination between the flat world and the curved one.
Otherwise, we should be ignorant about the curvature of the
world. The equivalence principle is inapplicable to such events''.

Some authors believe it possible to neglect the influence of
second derivatives, i.e. the curvature. This is wrong because
neglect of the curvature means disregard of the gravitational
field. Moreover, the role of the space curvature is considered
in detail in a book by J L Synge [8]. According to this author:
``If we accept the idea that space-time is a Riemann four-
dimensional space (and if we are relativists, we must), then
surely our first task is to get the feel of it just as early navigators
had to get the feel of the spherical ocean. And the first thing we
have to comprehend is the Riemann tensor, for it is precisely the
gravitational field: if it vanishes, and only then, there is no field
at all. Yet, strangely enough, this most important fact has been
pushed into the background''. Syngewent on as follows: ``In the
Einstein theory, gravitational field is either absent or present
depending on whether the Riemann tensor is zero or other than
zero respectively. This is an absolute property, it is unrelated to
any observer's world line''. It is quite clear that neglect of the
curvature results in the loss of gravitational field. For this
reason, when the authors of Ref. [5] write that they `ignore
possible tidal effects', this means that they get rid of
gravitational field. In the absence of gravitational field, the
space-time is exactly the Minkowski space. This statement is
`important, but it can hardly be called Principle' [8]. The
authors of Ref. [5] also note: ``However, his views (those of
A Einstein)were never in conflict with the formulation of EP as
offered in Ref. [6]''. But this is not quite true because the
formulation of EP given by A Einstein in 1933 [9] has the
general form, and it is such EP that underlies the general
theory of relativity (GTR). A Einstein wrote in Ref. [9]:
``Mathematically, it means that the physical (four-dimensional)
space has the Riemann metric. Time-like extreme lines of this
metric determine the motion of a material point on which other
forces, excepting the force of gravity, have no effect. Coeffi-
cients �gmn� of this metric concomitantly describe the gravita-
tional field in relation to the selected coordinate frame. In this
way, the natural formulation of the equivalence principle by us
was found, and its application to arbitrary gravitational fields
seemed very natural ''. This EP formulation of A Einstein is
different from that in Refs [1 ± 3]. It also differs from the
formulation offered by Pauli in Ref. [6]. Is it possible that V L
Ginzburg and Yu N Eroshenko could take no notice of this?
Strangely enough, they make the following statement: ``In
fact, Logunov et al question the validity of EP or, to be more
precise, Einstein's EP ''. But this is also untrue. We do not
object to the EP formulation proposed by A Einstein in 1933
[9]. By the way, we specially wrote about this formulation in
our paper [4]. True, the formulation of EP in Einstein's early
works sometimes looks very much like that of Pauli. Our
criticism is not levelled at EP per se. What we really criticise
are its early formulations which are incorrect even though
they occur in the literature [1 ± 3, 6].

Points 3 and 4 in Ref. [5] contain a reference to a paper of
A Einstein [10] to which the authors apply in search of
arguments to get rid of the undesirable systems of coordi-
nates. Actually, there is limitation on the choice of coordinate
frame in the Minkowski space. In accordance with this
limitation, only those transformations of coordinates are
possible which map, in case of transition to an accelerated
coordinate frame, all space points in the inertial system with
the Jacobian of transformation other than zero. Only in this
case, it is possible to retain all objective information about
physical phenomena. Apropos of this, V L Ginzburg and
Yu N Eroshenko [5] write as follows: ``We consider this
statement to be totally incorrect because GTR does not
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invariably consider reference frames of the global (so to say)
character''. But the subject of the discussion has nothing to do
with GTR because it concerns the Minkowski space, i.e the
special theory of relativity (STR), calculations in system Ka

being performed only in the framework of special relativity.
Transformation of coordinates which maps only a part of the
space in the inertial system leads to the loss of physical
information. Such a transformation with reference to STR is
irrelevant and inconclusive because the Minkowski space is
essentially different from the Riemann space. Transforma-
tions with limitations are possible, but caution is necessary as
regards general physical conclusions. The special theory of
relativity containing no other limitations besides those
mentioned above, there is no doubt that the system of
coordinates used in our paper [4] is permissible. It may not
only `be assumed uniformly accelerated' as V LGinzburg and
Yu N Eroshenko put it Ð it is really such, being associated
with a uniformly accelerated charge travelling in the inertial
system (Galilean coordinates). Any general physical principle
including EP must not depend on the choice of a coordinate
frame as far as general physical conclusions are concerned.
Our transformation [4] maps the entire space of the inertial
coordinate frame into the accelerated system with the non-
zero Jacobian. Arguments of V L Ginzburg and Yu N
Eroshenko concerning the Lorentz contraction of length are
equally groundless for it may change any way, decreasing for
one kind of events and increasing or remaining unaltered for
others, depending on how it is measured (this is true even for
inertial reference frames). Turning now to A Einstein's ideas
dating back in1912 [10] and referred to by V L Ginzburg and
YuNEroshenko in Ref. [5], it should be emphasised that they
reflect the early period of A Einstein's work when he believed
that an accelerated reference system can not be used in the
framework of special relativity. He adhered to this opinion
for a quite long time. It is worthy of note that even in 1934, L I
Mandelstam [11] wrote: ``The special theory of relativity can
not explain how the accelerated clock ticks and why its rate
varies because it does not examine accelerated reference frames
at all ''. Some text-books and papers still approach the
problem from this standpoint although it is utterly wrong
and is tantamount to erroneously maintaining that Euclidean
geometry may use only Cartesian coordinates. Point 7 of
Ref. [5] discusses our formulas (29). The authors expand them
in powers of at=c and argue that such a transformation with
accuracy �at=c�2 eliminates relativistic effects of the order
�at=c�2 and hence radiation. However, this observation does
not apply to our paper [4] where calculations have been
accurately performed, without resorting to approximation.
Ref. [4] was intended to demonstrate that a charge at rest in an
inertial system does not radiate in an accelerated reference
frame obtained by means of coordinate transformations
which relates all points of the inertial system to the acceler-
ated one. The present study shows that radiation is equally
lacking in theMoÈ ller system used by V LGinzburg and YuN
Eroshenko [5] to prove that radiation does exist in the
reference frame Ka. Thus, the absence of radiation does not
depend on the choice of the reference frame, as expected. This
emphasises once again that the equivalence principle as stated
in [1 ± 3] is in conflict with electrodynamics, and the argu-
ments of V L Ginzburg to the contrary are invalid.

Also, these authors maintain [5] that ``Transition to EP
accomplished by A Einstein implies that all physical laws
including mechanical and electromagnetic ones hold true in a
falling elevator exactly as they do in the absence of gravita-

tion''. But this is absolutely wrong. Arguments to disprove
this erroneous statement have been given earlier. They can
also be found in the ``Field Theory'' by L D Landau and EM
Livshitz (7th revised edition, 1988, paragraph 91, Problem 2).
Problem 2 in this book gives evidence that the curvature
tensor explicitly enters equations of electrodynamics. This
was noted in a book of A S Eddington published in 1924 and
translated into Russian as far back as 1934 [7]. May be, this
will make the authors of Ref. [5] understand that their
statement is incorrect. Now, after the opinions have been
expressed, and it is up to the thoughtful reader to decide
which is right and which is wrong.

In conclusion, it is also noteworthy that V A Fock
deduced from his analysis of A Einstein's GTR [12] that it is
based on two principles: ``The first one ... is the integration of
space and time in a united four-dimensional manifold with an
indefinite metric''. ``The second principle is the unity ofmetric
and gravity which constitutes the essence of Einstein's theory
of gravitation. It is these two principles that underlay the
theory of gravitation, not the expansion of the notion of
relativity allegedly possible due to local equivalence of gravity
and acceleration''. V A Fock is quite correct here, but the EP
formulation later proposed by A Einstein [9] (in 1933)
contains both principles of which V A Fock wrote. First and
foremost, this confirms that the last definition of EP given by
A Einstein is deeper than EP formulations in [1 ± 3, 6] even
though many qualitative arguments of A Einstein (e.g.
Einstein's elevator) provided the basis for EP formulations
which frequently occur in the literature. GTR is based on the
EP as stated byAEinstein inRef. [9] as opposed to EP cited in
[1 ± 3, 6] and favoured by the authors of Ref. [5]. Unfortu-
nately, it takes certain physicists too long to grasp what A
Einstein made clear a number of decades ago.

The authors are grateful to S S Gershtein for helpful
discussions.
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