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Abstract. The spin magnetic moment of an electron
moving in a homogeneous magnetic field is a source of
electromagnetic radiation. This radiation (spin light) shows
up at high energies and it is available for measurements in
contemporary electron accelerators. The spin light identi-
fication problem is considered when the spin radiation
proceeds against the background of powerful synchrotron
radiation, recoil effects, and other relativistic phenomena.
A relativistic neutron is considered to be a source of pure
spin radiation. The correspondence principle is formulated
for spin radiation with and without the spin flip.

1. Experimental observation of the spin
dependence of synchrotron radiation

As is known [1, 2], along with the electron-charge radiation
W., the synchrotron radiation (SI) an electron emits when
it moves in a magnetic field includes the spin magnetic
moment radiation W, of the particle. In the classical
formulation, the electron-charge radiation power is
specified by the following expression [1]:
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where E is the electron energy, R is the orbital radius in the
homogeneous magnetic field, m, is the rest mass, and
e = —eq is the electron charge; the radiation power of an
electron-spin magnetic dipole precessing in the outer
magnetic field at a frequency wp = eyHg/(moc) may be
evaluated by means of the familiar formula from the
classical theory [3],
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in the frame of reference in which the electron is at rest (the
‘classical spin model’).

In this expression, py = eofi/(2mgc) is the Bohr magne-
ton, {, is the component of the ‘classical’ spin vector
(= —pol) perpendicular to the magnetic field.

On conversion to the laboratory frame of reference and
bearing in mind that Hiz = yH in this case, it follows from
the preceding formula for W, that
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in the classical interpretation. Here the quantum parameter
£ has the form

7 @

where H* = mjc®/(egh) = 4.4 x 10" G is the Schwinger
magnetic field.

The magnetic dipole radiation power W, is proportional
to 2 and depends on quantum transitions accompamed by
the spin flip (see Refs [1, 2]). However, quantum correc-
tions to the classical expression for the synchrotron
radiation power (in the weak-field approximation £ < 1)
depend also on the linear expression in & [1, 2, 4]
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Figure 1. Results of observation of spin dependence of synchrotron radiation in the accumulator VEPP-4 (the experiment was performed in

Novosibirsk).

where { = £1 is the spin projection onto the magnetic field
vector (here only the linear term is retained in the
expansion in terms of the invariant £). As shown by one
of the authors [5], this value corresponds to the complex
radiation power, which may be described by the expression:

W =—WIE, (©6)

(see also Ref. [4]).

The cited classical interpretation of an essentially
quantum phenomenon of spin magnetic moment radiation
can be considered only as a qualitative one. It is significant
that, although the complex radiation makes a small
contribution to the overall synchrotron radiation power,
it is available for measurements in experiments. Let us now
proceed to the experiment.

In 1983 the first quantum spin-orientation-dependent
correction to the synchrotron radiation power was exper-
imentally identified at the Institute of Nuclear Physics,
Siberian Branch of the Academy of Sciences (Novosibirsk)
[6]. In this experiment, synchrotron radiation was for the
first time observed to be dependent on the spin orientation
of a free electron moving in a macroscopic magnetic field.

The procedure for experimental observation of spin
dependence of synchrotron radiation power was proposed
in 1977 [7], and the experiment?} itself was described in
detail in Ref. [8]. The source of synchrotron radiation was a
compensated tripolar wigglerf mounted on the rectilinear
space in an accumulator. The field was about 20 kG in the
central part of the wiggler, and its direction could be
changed without disturbing the beam in motion. A lead
filter 4 to 6 mm thick was employed to extract the hard part
of the spectrum, where the complex radiation dominates the

fThe authors are very grateful to A E Bondarenko and V N Zhilich,
scientists from the Novosibirsk Institute of Nuclear Physics, for the
exhaustive information on the experiment.

fA wiggler is an analogue of the magnetic undulator with a high
magnetic field [4].

synchrotron radiation. The mean photon energy recorded
was 200 —250 keV for the field of 16 to 18 kG in the wiggler
while the synchrotron radiation energy was 35 keV in the
accumulator. About 2 x 10° photons hit the detector per
pass of the cluster at the current of 0.5 mA in the beam.

In measurements the intensities of two electron clusters
rotating simultaneously in the beam, with equal currents
but with different degrees of polarisation, were compared.
A special selective depolariser was designed to attain this
goal. It enables an experimenter to depolarise only one of
the two clusters circulating in the accumulator. At first the
beams were adjusted by the rate of counting of the photons
4y =N;/N, — 1. The quantity 4, was ~ 107 when the
currents were equal at a level of 107>, Then, as the self-
polarisation process occurred in the beams, control meas-
urements were taken for stability of A4, =const over a
period of one hour. At ¢, (Fig. 1) the depolariser was
switched on so that one of the clusters was depolarised. In
this case, an abrupt change was registered in the ratio of
counting rates. The difference in counts remained
unchanged up to f, when the depolariser was switched
off. Then the quantity A4 = A(¢t) smoothly regained its
equilibrium value subject to the Sokolov—Ternov effect
[9]. The degree of equilibrium polarisation could be
determined by the time for which the polarisation came
to the equilibrium state over the period 7, — .. In experi-
ments, this value was measured to be 71%, i.e. it
corresponded to the theoretically predicted value for
such an accumulator. At 7, another cluster was depola-
rised. As a result, the quantity 4 changed its sign and
remained constant up to ¢; when both beams were
depolarised.

In addition, measurements were carried out when the
direction of the magnetic field in the wiggler was changed
after each measurement. In this case, the quantity A4
changed its sign every time.

Note that the problem of electron spin observability has
a long and intricate history. As Bohr showed, a direct
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measurement of free electron spin is impossible in experi-
ments like those of Stern and Gerlach, as the spin
observability condition comes into conflict with the
uncertainty relation and the wave nature of an electron
when the Lorentz force comes into play. A comprehensive
analysis of this problem may be found in the paper written
by Pauli in 1930 [10].

Since the direct method of measuring the spin (by Stern
and Gerlach) proved to be inconsistent, other methods were
proposed to produce and observe free polarised electrons.
Some of them were successfully realised [11, 12]. However,
it was still unclear how the spin could be observed in a
macroscopic magnetic field [13]. It is possible that the
Bohr—Pauli ‘taboo’ syndrome is responsible for the fact
that the cited experiment and its fundamental significance
were hardly noticed.

2. Synchrotron radiation and spin light

In the magnetic field of a synchrotron, the electrons are
naturally polarised because of the Sokolov—Ternov
radiative self-polarisation effect [9]. The well-known
explanation is as follows. The probabilities of quantum
transitions are different for the two possible orientations of
the spin in the magnetic field. As a result, electrons tend to
occupy a more stable state when the spin is oriented
opposite to the magnetic field. According to Ref. [9] (see
also Refs [14, 15]), the degree of polarisation of an electron
beam is 92.4% in ideal conditions. The spin relaxation time
depends on the electron energy and magnetic field
intensity. In particular, the relaxation time is about 1
hour for the typical parameters E =1 GeV and H = 10* G
in electron accelerators. Therefore, the effect is best
observed in electron storage rings (for details, see Section
6 and also Ref. [16]).

The magnetic dipole radiation, which accompanies spin
transitions, is negligible against the background of the
electron—charge synchrotron radiation. In its pure form,
the spin magnetic moment radiation (spin light) contributes
to the synchrotron radiation power as a small correction
proportional to s [17]. In the experiment performed in
Novosibirsk the radiation observed was proportional to the
first power of 7. It is shown below that this radiation is due
to the interference of charge radiation and the spin
magnetic moment radiation of the electron, and this gives
rise to the complex radiation proportional to 7.

The progress made in the quantum theory of synchro-
tron radiation [l1] based on the exact solutions to the
relativistic Dirac equation and the rigorous methods of
quantum electronics made it possible to describe the
spectral-angular distribution of synchrotron radiation
power with consideration for all quantum features, includ-
ing spin evolution [I, 14, 18]. However, the physical
interpretation of the quantum corrections to the classical
theory remained unclear since there was no simple way of
transition to the classical theory. It was established only
relatively recently that synchrotron radiation has a complex
structure depending on a number of fundamental phenom-
ena: the charge radiation itself (conventional synchrotron
radiation); recoil effects accompanying the radiation; inter-
ference of fields of charge radiation; the spin magnetic
moment radiation (complex radiation); the spin moment
radiation itself; and the radiation associated with the
anomalous magnetic moment of the electron [2, 5].

The interpretation of spin corrections to the synchro-
tron radiation power is not simple since spin corrections
have an equal competitor, namely, the recoil effects
accompanying the radiation. They also make contributions
to the synchrotron radiation power, proportional to % as
well as to h2, and, moreover, the recoil effects are essentially
different for an electron and a charged spinless particle
(boson) in the second order in %.

In this situation, the relativistic quasiclassical theoryt
proposed by Schwinger [19] and developed by Baier [20 —22]
proved to be a handy instrument for research. The basic
conclusions of the strict quantum theory [1, 14] were
replicated in the quasiclassical approach for high-energy
particles following macroscopic paths. In particular, the
quantum corrections to the classical formula for the
synchrotron radiation power, radiative polarisation effects
for electrons and positrons in storage rings, and quantum
widening of orbits of particles were established anew.
Certainly, this result was predictable, but the quasiclassical
approach also proved to be appropriate for the physical
interpretation of quantum effects [17, 25-27, 5].

3. Relativistic semiclassical radiation theory

The computational technique and scope of the relativistic
semiclassical theory are presented in the excellent work of
Jackson [24]. In this theory all features of motion of a
relativistic electron are considered to be classical along the
trajectory and the quantum processes associated with
radiation are accounted for by the replacement of the
electron velocity with the transition matrix element:

B — (fl&li) , @)

where f=u/c is the dimensionless velocity of an elec-
tron, & = a(z) are the well-known Dirac matrices in the
Heisenberg representation, [i) is the ket-vector of the initial
state, and (f| is the bra-vector of the final state. The
noninertiality of motion of an electron is not essential for
quantum transitions in the range of temperatures typical of
synchrotron radiation, and the matrix element in Eqn (7) is
calculated for the wave functions of a free electron
(quantum kinematics) with the ket-vector:

St
I 2

Y s
m(a'ﬁ)

(O ®)

where y = (1 — %)% is the relativistic Lorentz factor, & is
the Pauli matrix, and the spin states in projection onto an
arbitrary direction { = (sinvcosA, sinvsini, cosv) are
given by the spin ket-vector

1 {1+ Lcosy
IO=7§ ;

V1 —="{cosv exp(id)
where A and v are the direction angles of the spin
projection. The normalisation is chosen so that

(ilafiy =B, (Ll6l)=¢.

(=41, &)

(10)

FThe full mathematical justification of the quasiclassical approach is
given in Ref. [23]. Here we use a simplified semiclassical version of this
theory which we used earlier in Refs [17, 25-27].
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Inhomogeneities in the leading magnetic field are assumed
to have no effect on the electron polarisation process [28, 29].

The Fourier transform of the radiation field is specified
in the same way as in classical electrodynamics:

Bj=—i_- J((ﬂal ') exp{lw [t ——] } dr,

where n' are the basis vectors of the linear radiation
polarisation (s = g, 7), n is the unit vector from the charge
towards the point of observation, @ is the radiation
frequency, and all the other symbols are conventional
notation.

In the ultrarelativistic approximation, all variables are
expanded into series in terms of small parameters yil, ct/p,
and Y, where p is the orbital radius of an electron in the
homogeneous magnetic field, and ¥ is the angle between the
vector n and the orbital plane (the projection of n onto the
orbital plane is parallel to f). We have

B= <1—L—¢—2—lg)n %n —yn"

:(09 ]a 0) ’

(11)

(12)

n" = (—W, 0, l—%2> .

correct to the second order of smallness (e <0, the
magnetic field is parallel to the z axis).

The matrix element of Eqn (7) should be calculated with
the laws of conservation of energy and momentum:

yB=7y'B"+ han. (13)
The spectral-angular distribution of the radiation is
specified by the usual expression [1]:

mocty = moc®y’ + hd,

W' R?

——== E5| . (14)

dodQ ~ 8n’p p
4. Recoil effects and complex radiation
We introduce the recoil parameter & = 7@/ (moc’y’). Then
instead of Eqn (13) we have

’ Y ’

= = (1 —&n. 1
V=i B =(1+e)f—en (1s)

In the linear approximation in 7, the matrix element of
Eqn (7) is calculated to be:

(el = (1+5)p-010) —i 5| €lot0)- (n-255) ]
(16)

In this formula, the first term with B describes the
radiation of a charge and the recoil effects associated with g,
whereas the second term with the Pauli matrices is
responsible for the spin magnetic moment radiation [the
Bohr magneton g, = epli/(2mgc)].

By substituting the matrix element [Eqn (16)] into
Eqn (11) we find

By = %{ (1 +§> {'us +§(C’|&ZIC>U?

wal@lu+ o] b an

where

s 2 r 2
Us :7_(1 +1)Kos(x), UF = _§X(1 +X2)]/2K1/3(x) ’

Uy =— \/—(1+X) 2K1/3(x)» ur=o0,
U3s :TX(] +X2)I/2K1/3(x) )
Ufs = \/—(1+x )P [K1s@) F (14 2) Ko ()] L (18)
and, in addition,
x:%grf, nz%(l—kxz)]/z, w:;()o_]jy’ X=.

The McDonald functions K /3(x) and K,/3(x) appear as
a result of expansion of the pre-exponential factor in
Eqn (11) with retention of the linear terms in y~', ct/p,
and Y. Generally, the time dependences of the &(¢)
operators should be considered. These operators are
solutions to the Heisenberg spin precession equation for
a homogeneous magnetic field (u < 0):

6.(t) = opexp(tior), 6.(1)=o,,

(19)

where o4 = (0, £i0,)/2. However, it suffices to consider
the principal term in the expansion exp(ziwt) =~ 1 L ict/p
because all the other terms in (f|f]i)-n’ are of the first order
of smallness. This correlation will be considered in more
detail for the ‘true’ magnetic moment of an electron (see
Section 7).

If we then use the standard procedure of classical
electrodynamics one obtains, according to Eqns (14) and
(17), the spectral-angular radiation distribution in the form:

d2Wx (32&32 g , . €, ) 2
dodQ ~ 8miy’ { <1 +§> <C |C>Uo +§<C lo. 10U,

+£2‘<C'|o+|C>U5 +{'|le_10)U3 2} . (20

Here we account for the fact that the terms like the
products UsU3% and U{Uj% are odd functions of x and
vanish upon integration with respect to angles.

If we restrict ourselves to the linear approximation in g,
then only the charge radiation, spinless recoil effects, and
complex radiation of the ‘charge 4+ electron’ spin magnetic
moment’ system remain in expression (20):

W' S 1+cg

150~ sy [(1 +&)|Us|* + LcosveUsUT] . (21)
To deduce the last formula we used the relationships
1+
ey =—F—=0dr. (22)
1 .
<C/|U:,|C> =3 [(l + &8N cosy — (1 —¢¢')sin v] )

Here v is the spin orientation angle given by Eqn (9).

If we then integrate Eqn (21) with respect to the
spectrum and angles in the usual way, we obtain the
overall polarised radiation power:

1+CC £,

W‘\. = WSR (23)
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where
2 e2cy4
SR — 3 ,02

is the synchrotron radiation power and the function f°(&)
specifies the polarisation of the linear radiation:

£o(8) = z-—%ilf:¢ & cosv,

e =1-e,

where &= 3%y’ /(2mgcp) is the well-known dimensionless
invariant in the quantum theory of synchrotron radiation
(sometimes another parameter, y = 2£/3, is used instead of
&, see Ref. [19]). The presence of the coefficient (1 +¢({’)/2
in Eqn (21) and others indicates that this radiation is not
related to the spin flip since Eqn (21) equals zero for
{'=—C

Summation over s = g, 7 yields

24

where

ﬂ@-l+53cc & cosv .

Eqns (23) and (24) are obtained on the assumption
that & < 1. In the real situation, this condition is satisfied
for contemporary accelerators. There is no principal
difficulty in extending the result to &> 1 (see, for exam-
ple, Ref. [16]).

The quantum corrections in Eqn (24) were calculated
earlier by methods adopted in quantum electrodynamics.
The first quantum correction —(55v/3/24)¢ was determined
in Ref. [30] (later this result was replicated in Ref. [19]).
Another quantum correction —{&, which depends on spin
orientation, was obtained in Ref. [18] (see also Ref. [31]).
However, the physical meaning of these corrections
remained unexplained for a long time. Today we know
that the first describes the recoil effects and the second is the
complex radiation [17], the interpretation of which is not,
however, so simple as it may seem at first (see Section 5).

Let us consider the features of complex radiation in
more detail. It follows from the common formulas for the
radiation power [Eqns (23) and (24)] that this radiation is
due to quantum transitions without the spin flip. The
complex radiation is completely linearly polarised in the
orbital plane (6 component). Electrons polarised along the
magnetic field yield the largest contribution to the radiation
when v=0. The complex radiation power increases
smoothly with the degree of polarisation of the electron
beam [6]. The complex radiation disappears for nonpola-
rised electrons when v = 7t/2; it is also absent for electrons
polarised along the velocity or orbital radius [32].

The angular complex radiation distribution is, in
contrast to synchrotron radiation, more pointed (Fig. 2).
The peak radiation frequency wg,™ is perceptibly shifted
towards high frequencies in comparison with wg®* (Fig. 3).

Unfortunately, only a qualitative spin dependence of
synchrotron radiation was recorded in the experiment
performed in Novosibirsk. It is desirable to perform a
more detailed study of the cited features of the complex
radiation.

Figure2. Angular distribution: synchrotron radiation XJ(x)=
3/4(1 +x2)%* (1)and complex radiation X g,(x) = 35/32(1 + x*)°/ (2).
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Figure 3. Spectral distribution: synchrotron radiation
= (9v/3/14m)y U:’o Ksy3(x) dx +K2/3(y)] (1) and complex radiation
Y& = (OV3/8m)y’K 1 5(y) (2).

5. Interpretation of complex radiation

The recoil effects may be demonstrated clearly and
convincingly by the example of the radiation of a spinless
particle (boson). In this case, the radiation associated with
the spin is absent and quantum corrections proportional to
%i and 7 are reduced to the recoil effects.

The matrix element Eqn (7) is calculated for a boson
with the same semiclassical method for spin functions with
the ket-vector

i) =—.
The boson norming is chosen so that (see Ref. [1])
(il»Bli) =8 .

The formal difference from the first condition given by
Eqn (10) is that & is changed for yf. It is easy to see that

(fyBliy =v1+ep . (25)



1042

V A Bordovitsyn, I M Ternov, V G Bagrov

In the linear approximation in ¢ or in 7, this expression
coincides with the spinless term in Eqn (16), which is not
zero for { = ¢’ according to Eqn (22). The recoil effects for
an electron and a boson are different only for the terms
proportional to . This fact is also known in the exact
quantum theory [32] (see also Section 6).

The fact that the term with the Pauli matrices in
Eqn (16) is related to the spin magnetic moment radiation
may be shown by considering the features of the spin
precession for a Dirac particle in electromagnetic fields. We
shall present the interaction between the electron’s spin
magnetic moment and the field in the form:

Hli‘m _ _121_; ﬁ:lgfl—[aﬁ _ _% (C.ﬁ(.):ff) ) (26)
where HS ﬁ is some effective radiation field, M is the
dimensionless spm tensor (uol'[“ =u * is Frenkel’ tensor
[33]), ¢ and H [ are, respectively, the unit spin vector and
the effective magnetic field in the system of an electron at
rest. The field HCft may be determined from the Frenkel’—
BMT (Bargmann—Michel—Telegdi) spin precession equa-
tion [34, 35]. Here we rewrite this equation in the form

G = (") en
where
H(fff:y{(a—f—%)H—(a—f—%)(ﬁxE)
m)
=5 o—i—y—(BxEo)
o ={H - @ xm) - T )
Ey =v{E+ (8 1) ——lﬁ(B-E)} @8)

are fields in the rest system of an electron, and the quantity
a=(g—2)/2 characterises the anomalous magnetic
moment of the electron p, = ppa. The presence of the
Lorentz factor in the denominator of Eqn (27) may be
explained by the way in which the variation of { with time ¢
is determined in the laboratory frame of reference.

If we neglect the anomalous magnetic moment of the
electron in Eqn (27) and assume that g =2, then

H“‘f—H——(/f E). (29)
In the nonrelativistic approximation,
i~ H 3 (BXE) (30)
whereas
—(BxE). (3D

In contrast to Hy, the field H" includes the coefficient
1/2 known as ‘Thomas’s half’. The reason that H{" is
different from H|, is that the spin precession is the sum of
the Larmor and Thomas precessions (see also Ref. [1]).
Correspondingly, the field H§™ can be presented in the form

HS"=H; +H" , (32)

where
gy =8, H"=—"_(BxE). (33)
2 y+1
Only in the ultimate nonrelativistic case when the
Thomas precession can be neglected does Eqn (27) coin-
cide with the equation for the magnetic moment precession
in classical electrodynamics:

dC ge
dr 2m c (Ex Hy) .

(34)

It could be said that in this case the spin magnetic
moment of an electron exhibits the properties of the ‘true’
magnetic moment (see the papers by Tamm [36] and
Ginzburg [37]).

The ‘true’ character of the magnetic moment of an
electron manifests itself also in the hypothetical caset g > 1
when the entire magnetic moment is anomalous and
Eqn (27) takes the form

df  ge
dr 2mgcy (& Ho) .

(33)

In fact Eqn (35) describes the spin precession for a
neutron, the magnetic moment of which is entirely anom-
alous. This equation may also be used in the case of the
uniform rectilinear motion of an electron in Wien-filter-type
fields when the Thomas precession disappears [38—40]. It is
very interesting that the situation with the ‘true’ magnetic
moment is the same in radiation theory (see Section 7).

However, it is time to return to the real electron. If
g =2, the effective interaction between the spin magnetic
moment of an electron and the radiation field is specified,
according to Eqns (26) and (29), by the expression

_%(c{ﬁ—%[ﬁxE]D,

and the overall interaction of the charge and magnetic
moment of the electron with the radiation field has the form

B int :H;m +H;i4m _ _e(ﬁgf)f% <{{ﬁ—% [ﬁ XE]})

37

H"j" = (36)

With regard for
E=—ikA,

H=nxE, (38)

where k¥ =®/c is the wave number, Eqn (37) can be

rewritten in the form:

Hint — —e(ﬁCff-X) , (39)
where
eff . hx Y
N e [C<n_v+lﬁ>] ' 0

Clearly, Eqn (40) corresponds to the matrix element
[Eqn (16)]in the relativistic semiclassical theory of radiation
but without recoil effects which we have not considered in
the above purely classical analysis. It is remarkable that

TWe do not discuss here the issues of the complicated functional
dependence of the anomalous magnetic moment of an clectron on the
outer magnetic field intensity and the energy level number [39, 1] since
we assume that p, = const and the Dirac—Pauli spin equation, from
which the Frenkel’BMT equation follows [2], remains valid for a > 1.
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{l|o|¢) = ¢ for radiation without a spin flip and expressions
(40) and (16) coincide one-to-one when the recoil effect is
not taken into account; thus the origin of the complex
radiation becomes clear.

6. Structure of quantum corrections to the
synchrotron radiation power

Let us now study the synchrotron radiation with regard for
the quantum corrections of the second order in %. The
recoil effects and complex radiation are also present here.
However, there is a new specific type of radiation due to
the natural magnetic moment of an electron (spin light).
The 7A-quadratic radiation is accompanied by transitions
both with and without a spin flip and it has a very complex
nature. In this approximation the radiation from the
anomalous magnetic moment of an electron becomes
perceptible and it is, as we shall see, principally different
from the spin magnetic moment radiation (Bohr magneton).
In the quantum theory of radiation which is based on the
Dirac—Pauli equation, the anomalous magnetic moment is
taken into account through the following change [41]:

#a

(psl6 x n] + p,0) . (41)
Conversion to the semiclassical theory of radiation
yields

B N <fl&cff|l>
instead of Eqn (7).

One must bear in mind when calculating the matrix
element that p,k/e =¢ey’a/2 ~ ¢ in the range of velocities
typical of synchrotron radiation. Therefore, the matrix
element may be calculated without taking into account
the recoil effects (8’ = B) in the linear approximation in e.
Otherwise we will follow the method described in Section 4
and obtain

(e = (145) 80y~ 15 @ ete)- (n -2 )]
i3 v [€el0- - B - 2 (€t xm |
@)

(42)

Tl

In comparison with Eqn (16) there are additional terms
with the anomalous part of the magnetic moment of the
electron. In the classical interpretation (see Section 5), the
energy of interaction of the magnetic moment and field is
now presented in the form:

H" = —po [{C [ﬁ_Ll(ﬁ * E)]}

—va<{C[ (B E)]} - V1<c-ﬁ)(ﬁ-ﬁ)>]-<44)

As in Section 5, it then follows that

g _ (1 +§>B_1_([Cx (n—HLlB)]

wrad [0 (= ) =2 A )}) @)

This formula is an extension of Eqn (40) and an
analogue of Eqn (16).

If the terms in the Fourier transform of the field are
grouped by the same criterion as in Eqn (17), then spectral-
angular radiation distribution does not formally differ from
that given by Eqn (20). However, the functions U}
(i=1, 2, 3) have more complex forms:

U = 20+ 2) 0~ K a(e)

V3

. 2
U, :7?:%(1 —|—x2)aK2/3(x) )

Uss =% w1+ )"
x{(1+a)K1 3 (x) F 2a(1 + 1) Koy () }
Uy = i\%{[l +2a(1 + )] Ky 3(x)

FO+20)(1+ )" PKo s (x)} (46)

The functions U; remain unchanged. In addition to
Eqn (22) there is the relationship:

wloatty =3 ()

x[1F (£~ ') cosv — ¢ cos*v]'"* exp (i) . (47)

Further manipulations are performed in an ordinary
fashion. Omitting insignificant details we present the final
expressions for the linearly polarised radiation power in the
linear approximation in « (in which the Dirac—Pauli
equation is also true)

. 144" /7 25V3 325
W _WSR{ 2 <§_ o ¢t é
—ccosv[c—ms‘[c ) 1 <€_245f >]

— 1+2

—i—coszv5 aC2—sin2vcos2lﬂ€2
9 18

1-¢' /5—a

+ 2 <9

35

ﬁa 62 9

216

W":WSR{]—ZC{ <§_ié é

14 2a
18

sin?v + (cos® v 4 sin® vsin® 1)

+{cosv

(48)

245+/3 62>

1
—aCcosv(gé— ey

S+2a o, 13
A
[ 9 ST

3 (1 + 4a) cos’ l] sin’ v€2>

(cos® v + sin? vcos? 1)

1=¢¢ /54 22a
F (T

13
—8(1 + 4a)(cos® v + sin” vcos® A)

+{cosv 354\8/§ (l +% a>>§2} .

(49)
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The overall radiation power is

W:WSR{HZQ <1_552f 1756

62

os? l) C2>

(cos® v+ sin? vcos® 4)

3 +cos™ v

_Ccosv(6—245\/§f2> ? S;a

22 2
-+ sin2v<5 +9 4 sir12)»—|-7+9 Ta c

/
+l 4 <5 a 5+ 22a

2 g SVt

74 27a
9

s ()}

In these equations the spin orientation may be averaged
over the azimuthal angle 4

!
2 b

: 2 .2 T3
vsin? A = cos? v + sin® vcos? A

(cos® v+ sin? v cos? A)

(50)

sin? 1 =cos? A =

cos’ v + sin?

:%(l+cos2v), (51)
and they then coincide with the results given in Ref. [26]
(see also Ref. [42]). If instead of averaging over 4, we
consider the spin to be oriented along the velocity of the
electron (v=mn/2, A=0) or along the orbital radius
(perpendicularly to the magnetic field) (v=mn/2,
A=m/2), then Eqns (48)—(50) go for a=0 into the
results true in quantum electrodynamics [43].

In the most interesting case of transversely polarised
electrons (v = 0), Eqns (48)—(50) are simplified and upon
averaging over A take the form:

W= Wg f(&),
FrE) =HE[F]| -BR+ R E | L(e - 2550
FHO =2 [} | -3+ Re-

(1) 2) (3)
H(E-2H00) 38| H38] + 50 [%
(¢ -2 R0

(5) ©

+e(1+5P2

)¢,
+2(48 + 190 8%3)) 2.
()

The overall radiation power is specified by the expres-
sion:

(52)

W=W'+W"=Wgf), (53)
fO =] -8B 12 —C(é—%@)—‘

(1) (2) (3)

—58 | +38) + [+ B8] +4 (49 - ¢1BE)) 2

) Q) (5)

The vertical lines separate the charge radiation (1) from
the recoil effects (2), complex radiation (3), spin magnetic
moment radiation (4), and the radiation associated with the
anomalous magnetic moment (5).

If we do not separate the structural elements of the
synchrotron radiation and neglect the anomalous magnetic
moment of the electron, then we arrive at the familiar
expression for the radiation power [see, for example,
Eqn (14)], where

55v/3

Mo =1-g- SV S (Ve

{—— (54)
A similar calculation for a spinless particle on the base
of the matrix element [Eqn (25)] yields

fo@) =1 —Ss—fé 2e

instead of f(£). This expression was first obtained in
Ref. [44] (see also Refs [32, 45, 46]). Note that the ‘role of
spin’ in synchrotron radiation was earlier limited to the
quantum correction (8/3)¢ [47]. Here it is obtained as the
averaged difference

—Z (&)

However, the structural role and physical meaning of this
and other quantum corrections have been revealed only
because of Eqn (50).

Certainly, the cited method enables the photon emission
probability to be calculated as well. Although there is little
sense in quoting these equations, we shall write down the
expression for the probability of radiation with a spin flip,
averaged over the azimuthal angle 4 and summed over
linear polarisations of photons [26]

1 1+37 2 13 \sin?v
YT, 9 9 992

(55)

—fo(8)] (56)

8 14
+{——=|14+—a|cosv|, 57
() o
where
8v3 w1 (HE\®
Tg=——- — = ¢ (58)
15 mgceg y

is the polarisation time in the Sokolov—Ternov effect [1].

This will be helpful in the analysis of the part of the
anomalous magnetic moment of an electron in the radiative
self-polarisation effect.

Since the magnetic field is about 10* G in a storage
ring (H < HE = mic’/(egh) = 4.4 x 10" G), the polarisa-
tion time takes a value, which is accessible for observation
of the polarisation effect only in the high-energy range. In
particular, this time is approximately equal to an hour for
an electron with the energy about 1 GeV.

According to Eqn (5§7) the spin-flip transitions do not
depend on the initial orientation of a spin for v = 1/2 when
the spin is oriented in the orbital plane, whereas the spin-
flip transitions depend essentially on the orientation of the
spin for v = 0 when the spin is oriented along the magnetic
field and, thus, self-polarisation of the electron beam occurs.
The spin relaxation time is specified by the expression

w=1)+wl=-1)]T=1. (59)
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It follows that (see also Ref. [28])

37\ 37
T:T0(1+?a) %To(l—?a>

Thus the anomalous magnetic moment contributes only
to ordering the spin orientation of the electron during
radiation.

(60)

7. ‘True’ magnetic moment radiation

We have seen (see Section 5) that the spin magnetic
moment of an electron exhibits the features of the ‘true’
magnetic moment only in the relativistic limit or during
uniform rectilinear motion when the Thomas precession
can be neglected. The case of uniform rectilinear motion
when the electron charge radiation and complex radiation
are absent may be obtained from Eqn (46) in the limit
p — oo. Although the method of the relativistic semiclass-
ical theory does not undergo any change in this case, the
functions U5 responsible for the ‘true’ magnetic moment
radiation are essentially changed. In what follows we do
not want to restrict ourselves by the assumption that the
anomalous magnetic moment is small and proceed to
consideration of an arbitrary a. Eqns (46) are no longer
applicable in this case. In a more general notation they are
written as [25]

Usy = ingy{(1 +a)A(zs) £ qa A (z2)}
UFs =3mg{[l + (1 + ¥’ *aq’)a]A(z) £ (1 +a)gA'(z2)}
(61)

where

142 2\
zx =z0taq, zp= 2 q= (a)p) Y-

The appearance of Airy functions A and their deriva-
tives is explained by the fact that the argument depends on
the anomalous magnetic moment and it is no longer
possible to employ the McDonald functions in U;; [24].
It may be shown that the previous equations for U5 in
Eqn (46) follow from Eqn (61) in the particular case of
a<l.

In the limit p — oo the functions U35 are simplified:

Uss = ingpaA(zy) ,

U3y = j:n:q(l + i% aq3> Aze) . (62)
Moreover, as p — oo, with regard for Eqn (19),
| [
Azy) — %Jﬂo dx exp(iz £ x)
o \3 0, _
_ < m) 5(] oy _%> , (63)

where @, = 2awy’, we have instead of Eqn (42) that

Uy;=0,

O, O,
Ua':~ de Sl 1 2 de ,
3 =Im—== X(‘HC —m)

[©))

B | o
UF =+n —‘”&3 S+ X2)8(1 +x - —a)) : (64)

[f the magnetic moment is anomalous (neutron), it can
be assumed that g = 2a, and then

~ _AplH _ 8

B === 7 ul =52 (65)

where y is the Bohr nuclear magneton. The frequency of
spin precession depends generally on the direction of
motion of the neutron in the magnetic field [48]:

2|pu|H
w, = 2HH

u = [1— B cos®o]'/?,

(66)
where a is the angle between f and H. In the case of
interest, the neutron (as the electron in Section 2) moves
along the X axis, the magnetic field is parallel to the Z axis
and therefore a =m/2 and @,y :2))2(1)”. According to
Eqn (64) the frequency @,,,, plays the part of the maximal
radiation frequency.

The full spectral-angular distribution of the ‘true’
magnetic moment radiation (of a neutron in our case) is
calculated by means of Eqns (14), (20), and (64). As a
result, we have

a*w 64p’H*?
dodQ ndlnt

X 8(&’) _ a)max2> .
14y

It then follows that the radiation proceeds at the
frequency

240 + (1 + 1)
(1+2)

[{¢"lo-15)]

(67)

asmax
1+
Further integration with respect to angles and frequency
yields, with respect to Eqn (47) for ({'|o_|{), the overall
radiation power
128 uH* , (14 cosv)(1 —¢ cosv)
3R 4 '

&v):

(68)

W =

(69)

In the quantum theory of radiation, spin transitions are
considered only for time-invariant spin projections. In our
case, adaption to such transitions corresponds to v=20
when the spin of a neutron is oriented along the field. At
v = 0 the spin transitions occur, according to Eqn (69), in
only one direction —opposite to the magnetic field when
{=1and {’=—1 (u<0). The overall power,

6174
w8

—_— 70
3R (70)

coincides entirely with the spin-flip radiation of a neutron,
calculated from the Dirac—Pauli equation [48]. At v=m/2
when the spin rotates in the plane perpendicular to the
magnetic field vector, the overall radiation power of the
neutron decreases by a factor of 4 but all the qualitative
features of the radiation are the same. This case is adequate
for the classical statement of the problem on the magnetic
moment radiation and it is described fully within the scope
of classical electrodynamics [47]. Note that the ‘true’
magnetic moment does not radiate at all in the classical
theory at v =0 when g = const. This radiation is associated
with spin-flip transitions and is purely quantum in nature.

In particular cases all the above results may be obtained
by the Lorentz transformations and direct calculations as
in Ref. [49] by quantum theory and by the classical theory in
Ref. [50].
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Let us consider in more detail the correspondence
principle for the ‘true’ magnetic moment radiation. In
classical field theory the magnetic moment radiation at a
relativistic point is specified by the expression (see details in
Ref. [49])

~ og H[“”npnv]

HY = _-"——
Rc npv”

(71)

Here I1"” = (@, IT) is the dimensionless spin tensor; v is
the four-dimensional velocity; n” = (1, n); and the square
brackets in superscripts imply antisymmetry with respect to
these superscripts.

The Fourier transform of the electromagnetic field
tensor [Eqn (71)] has the form

~2 oo
I R L T

where n#’ =TI /y = (¢, x). 1t follows then that

B = ’“g J: ([~ pymln’) exp{ia) [t _ ("C—’)] } dr

At the same time Ev,}, is specified, according to the
relativistic semiclassical theory of radiation, by means of
Eqn (11), in which the substitution

(i) 22 { [~ p )
(B FI) < 1}

(73)

e (74)

should be performed by taking Eqn (43) into account.
If we consider that the vector = is related to the unit
classical spin vector { by expression [51],

=== BBD) . (75)

then the semi-classical expression for E~(}, takes the form

~g,:’;—Tfﬁ([<n—ﬁ><ﬂﬁn>1n‘) ool 77 Jar
(76)

where @ is different from Eqn (75) as a result of the
substitution {— 6(¢). Eqns (73) and (74) present the
correspondence principle for the ‘true’ magnetic moment
radiation.

We can now readily follow all the problems that arise in
classical and semiclassical calculations. The classical expres-
sion for the radiation power, averaged over the period of
spin precession has the form (¢ = n/2)

(77)

In a similar form, the corresponding semiclassical
expression is, according to Eqn (69),

8 1 1-{
u w4y4( +{cosv)(1 —=¢ cosv).

W=37 o 7]

(78)

At v=0 we have the result of quantum theory for
radiation from a neutron [48] and at v =m/2 the classical
Eqn (77).

We have considered the particular case when the ‘true’
magnetic moment (neutron) moves perpendicular to the
magnetic field, but one may show that the correspondence
principle works in a similar way for any other orientation of

the velocity vector relative to the magnetic field vector.
Moreover, the classical [49] and quantum [51—53] theories
of radiation of a relativistic particle with the ‘true’ magnetic
moment are in full accord for an arbitrary configuration of
constant homogeneous electromagnetic fields.

Note in conclusion that these simple considerations may
seem trivial from the point of view of contemporary
theoretical physics but these issues will have to be resolved
sooner or later since a number of topics of electrodynamics,
associated with the spin magnetic moment, have not yet
been considered. There are some single papers in this line
([33, 54-56]) and others; for a more complete list see
Ref. [5], but note that the authors do not consider how their
results correlate with quantum theory. This area of electro-
dynamics has been a terra incognita without the
correspondence principle. Certainly, there are still some
issues which need to be clarified. For example, it is unclear
how the correspondence principle will work for inhomoge-
neous fields, what effect the radiation reaction will have on
the magnetic moment (for a nonrelativistic discussion of the
topic see Ref. [37]), etc. However, this does not exclude the
possibility that the spin light will show itself in the near
future. ‘‘Past experience, including very recent, shows that
much new and interesting material can be found even in
electrodynamics (including optics)...”” (V L Ginzburg [57]).

This is an area open wide for experimentalists. Precise
investigations of the features of spin light in contemporary
accumulators would be an excellent application of experi-
ment to the study of this new natural phenomenon.
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