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The Hawking effect in the sudden gravitational collapse model
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Abstract. The Hawking effect is studied on the basis of
the sudden gravitational collapse model. Virtual particle—
antiparticle pairs are shown to be pulled apart by the tidal
forces of the black hole, in full accord with the current
viewpoint.

1. Introduction

When studying the Hawking effect [1] for the quantum
radiation of a black hole, and particularly when explaining
it to students, one is prompted to find the simplest
gravitational collapse model revealing all the important
features of the phenomenon. Following Ref. [3] we have
chosen the two-dimensional spacetime model, in which
there are the time ¢ and the radial coordinate » only.
Unfortunately, the mathematical calculation is cumber-
some and not straightforward even in this approximation.
Therefore, it is only natural to try to find simpler models.
One of them—the sudden gravitational collapse
model —is considered in this paper. However, it turns
out that such an approximation is too rough —the sudden
gravitational collapse model leads to an interesting para-
dox. The resolution of the paradox, which is the subject of
this paper, helps one to understand the physical nature of
the Hawking effect.

A collapsed star of mass M emits a steady thermal
radiation flux with temperature T, = 1/(4nr,), where
rg =2M is the gravitational radius (from here on
h=c=G=1)[l]. In the literature there are two opinions
on the nature of this fundamental effect (we shall call them
Mechanisms 1 and 2). According to Mechanism 1 [3, 4], the
crucial role belongs to the initial stage of collapse, during
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which the gravitational field is not static. Other authors [5—
11], as well as Hawking himself, think that there is an analogy
between the productions of particles in a black hole and a
homogeneous electric field (M echanism 2). In the static but
inhomogeneous field of a black hole a virtual pair appears.
The constituent particles fall in with different accelerations
because of the tidal forces, the effect of which is significant
since the characteristic size of the pair is 7,. As a result a real
particle appears and goes to infinity while the other particle
drops into the singularity. Clearly, the spectrum and
intensity of the radiation do not depend on the peculiarities
of the collapse in Mechanism 2. Mechanism 2 is more
attractive because in the first case an infinite amount of
energy must of necessity be concentrated in a finite spacetime
region [8, 10]. Mechanism 2 is supported by calculations of
the renormalised mean value of the energy —momentum
tensor (see, for example, Ref. [2], Sec. 8.2), which show that
the energy flux coincides at infinity with the result of
Hawking in the steady state. These calculations also
show that a negative energy of pure quantum origin falls
upon the horizon of a black hole and exactly balances the
positive energy going to infinity. The last fact conforms to
the covariant conservation (0[7,,[0) _ .

In Section 2 the sudden collapse model is formulated and
the intensity and spectrum of the Hawking effect are
calculated by the Bogolyubov transformation method [2,
11, 13] in the two-dimensional space-time approximation.
Theradiation temperature turns out to be equal to 27 and it
seems at first sight that this corroborates Mechanism 1 rather
than Mechanism 2. To delve into the situation the energy —
momentum tensor is studied in Section 3. It turns out that
the ‘odd’ energy appears when the metric changes suddenly
and is then emitted with constant intensity and superimposes
upon the common Hawking radiation. Thus, Mechanism 2
is corroborated in the sudden collapse model too.

2. Temperature of a black hole in the sudden
collapse model

We shall calculate the number of particles in the massless
scalar Hermitian field, produced in the two-dimensional
spacetime with the metric
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ds* = h(r,r) dt? dr, %))

)
where

1, t<0,
r>0, kit =91 ;50
r

This model describes an initially quiescent nonrelativistic
star (of radius R: r, K R — 00) collapsing with infinite
velocity at #=0. Although this geometry is physically
unrealisable, the consideration of the sudden collapse
model is prompted by the following fact. In Mechanism
2, quanta— which come to an observer at the point
r = const > r, at t — +oo (its world line is straight line / in
the figure)— are produced near the event horizon (line
ABC). The trajectory of such a quantum is the upper
section of line 2. Since in the sudden collapse model the
gravitational field does not differ for + > 0 from the field of
a black hole born in a real collapse, in accordance with
Mechanism 2 the utter coincidence should be expected with
the result of Hawking in the limit of + — +o00. However, as
is shown in this section, these expectations are not realised.

m e |

We introduce the null coordinate in region I (see the
figure)

u=t—rdr), @

where

dr r
o fetreen()

Then in regions I and I, u = F(¢ — r), where the function F
is determined from the sewing conditions for Eqn (2) on
the line BD (i.e. t =0),

—t+r—rg .

Ty

u=t—r—ryln

©)

Another null coordinate (v) is chosen such that
v=t+r “)

in regions I and II.

There is a critical incident ray v =vy, = —r, (line 3),
which reaches the centre of the star and moves along the
event horizon ABC upon reflection. This reflection of the
ray in the two-dimensional model in question may be
understood by taking into account the fact that such
rays represent the motion of spherically symmetric wave
packets in the real four-dimensional space.

The ray v < vy (curve 2) goes upon reflection to infinity
along the trajectory u =f(v). The function f(v) can readily
be found from sewing the rays (3) and (4) on the line r = 0:

f)=v—ryIn o ¥ %)

Ty
where vy = —7,.

Now we shall calculate the Bogolyubov coefficients
(see, for example, Ref. [2]) for a massless scalar field. In
the null coordinates, metric (1) takes the form

ds* = C(u,v) dudv, (6)

and the wave equation 8°¥/dudv = 0. Its general solution
is ¥ = F(v) + F,(u). The wave function of the in-basis, the
boundary condition for which is imposed at t — —oo, is
specified by the expression

1 . .
P, = m{exp [—ikp (u)] — exp [—1kv]} , )

where p(u) =f7'(u), k > 0. The physical meaning of ¥,
can be understood by considering the wave packet

00
dizj dk C, Y, . ®)
0

When t — —o0, it is concentrated near the point r+¢ =0
and consists of undistorted incident waves exp(—ikv) =
exp[—ik(r+1)]. The contribution of the first term in
Eqn (7), which describes reflected distorted waves, vanishes
as t — —oo.

On the line =0 (which is represented by the curve
u=f(v) in terms of the null coordinates), the function ¥
satisfies the boundary condition ¥, =0, which naturally
arises when one goes from the four-dimensional world to
the two-dimensional model. Similarly, if we consider the
propagation of s-waves described by the equation
(8% /or* — V) = 0 and substitute ¥ = y/r, then we arrive
at the ‘two-dimensional’ equation (8°/0* —?/dr’)y =0
and the boundary condition (¢, =0) =0.

In contrast to the in-basis ¥ the complete set of
quantum numbers for wave functions of the out-basis ¥
is the union ¢ = (k,4), where k is the momentum and
A ==1isanew quantum number — ‘observability’ [2]. The
reason why the out-solutions of the wave equation are
decomposed into two orthogonal classes can readily be
understood from the figure. The boundary conditions for
the wave functions of the out-basis ¥ are imposed at
t — +oo. If a wave packet of the type given by Eqn (8)
is composed of ¥ (in essence these are the rays considered
above), then it will move away from the star, fall into the
singularity for a finite lapse of the affine parameter, or be a
coherent admixture of these two states. In the first case the
packet is registered by inertial detectors at infinity (let them
be numbered by A= +1). In the second case (A= —1)
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detectors are located under the event horizon and fall into
the singularity. Since the detectors A = +1 and A = —1 are
not causally related, the third case is physically meaningless.
The figure shows the paths which these packets follow.
Packets with 4 = +1 fall onto the star along trajectories
v < v, and packets with A= —1 do so along trajectories
v > v,. It follows then that the incident wave is nonzero for
v < v, only when 4 = +1. It may be seen in the figure that
the reflected wave F,(u) is nonzero outside the event
horizon, i.e. on the right of the line ABC (for A= —1
the case is just the reverse). If the wave function of the out-
basis with 4 = +1 satisfies the zero boundary condition at
r=0, i.e. on the line u = f(v), then it takes the form

P, = ﬁ {exp (—ike) — exp [—ikf (v)]0(vy — v)} O

A wave packet of the form given by Eqn (8), composed
of ¥, goes from the black hole as # — +oo and consists of
undistorted diverging waves exp (—iku) =
exp[—ikt—i—ikr*(r)]; while the second term in Eqn (9)
makes a negligible contribution to @. The logarithmic
dependence of the phase in exp (—iku) on r is explained by
the longrange character of the gravitational field of the
star and is fully analogous to the Coulomb phase in
quantum mechanics.

The number of new particles with momentum k is
specified by the expression (the detailed calculation is
summarised in Ref. [2])

Ny = Z 1B,
kl

The particles are observed when r — +oo (i.e. with the
quantum numbers A = +1). The inner product B (the
Bogolyubov transformation coefficient) is the integral over
a space-like surface X and does not depend on the choice of
2. We shall use this fact to calculate f on the hyperplane
t = const — —oo, where the space is Euclidean and the
expression for f has a simple form:

N ov;, 0P
ﬁ:].[o dr (Wk] atk — akl qlk!>.

In this case t — r — —oo and, therefore, the summand with
the logarithm in Eqn (3) may be omitted. The wave
functions are then written in the form

ﬁ: (q]klyqllt’)- (10)

an

Y, = 2\/_{exp[ 1kt—r]—exp[—ik(t+r)]}
| (12)
=7 sin (kr) exp (—ikz ),
P,.=Y + G(v), (13)
where
G(v) = \/_ exp 1kv —exp [—ikf(u)]G(VO — v)} (14)

The first term in Eqn (13) makes zero contribution to
Eqn (11) because it is orthogonal to ¥}/; therefore, ¥, can
be replaced with G(v). The function G(v) tends to zero as
one moves away from the line v = v,; therefore, the lower
limit in Eqn (11) can be substituted with —oo. Considering
0G(v)/0r = 0G(v)/or we have upon integration that

Y AL STl 2%
ﬁ—lj_ooer < o + 6r>

00
= k’J dv G*(v) exp(ik'v) . (15)
—00
From here on we omit unessential constant phase
coefficients. The contribution of the first term in Eqn
(14) to B is proportional to §(k +k’) and is zero since
k >0, k' > 0. Ultimately we get the expression for f in the
two equivalent forms:

| . . .
B= 5 zj_w dvexp [ik'v + ikf(v)] ; (16)
=L e ik + i 1
B = 3 ijoo uexp[l u+i pu)]. (17)

To transform Eqn (16) into Eqn (17) we used the change of
the variable of integration u=f(v) and performed
integration by parts. Expressions (16) and (17) are
analogous to those obtained in Ref. [2], where the
radiation of an accelerating mirror was studied. Note
that expression (16) obtained in Ref. [2] as a result of a
series of assumptions is actually exact.

Using the substitution x = (vy —v)/r, we obtain from
Eqns (5) and (16)

1 k[ st —ikrg
ﬁ:irg 7, dx exp [i(k" + k)ryx]x ™.

It is necessary for this integral to be convergent as x — 400
to make the change k + k' — k + k' —id and to consider it
as the limit when 6 — +0. Then,

1 k' . ikry— ;

(18)
5 ‘n:k'rg
=—=—ng(k),
B = sy i )
where
X -1
ng(k) = [exp (—> — l] , (19)
T
! =2T (20)
- 2nr, e
It follows from Eqns (9) and (18) that
1
Ne =D |81 =5 rma (k)7 @n
kl
where
00 / /
7 :J k" dk i
0 (k)

and the rule of replacement of a sum with an integral,
>w — [ dk’/m, has been applied. The integral J is
divergent at the upper limit since radiation of constant
intensity is established in the collapse; therefore, an infinite
number of particles will be emitted for a finite time.

To understand the nature of the integral J we shall
follow Ref. [2] in employing a simple, though not strict,
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method (there is another calculation in Ref. [2]—more
strict but physically less meaningful). The Bogolyubov
coefficient f (10) can be interpreted as the amplitude of
transition of a particle with a momentum k' into a particle
with a momentum k, which comes to the detector along the
straight line / (see the figure) (for a nonhermitian field, f is
the amplitude of transition of an antiparticle with an
impulse k' into a particle with an impulse k). Let two
photons be sent from the detector hanging at the point
r =ry towards the black hole at ¢, and 7y + 4¢, along the
trajectories v=-const and v+A4v= const, where
v=to+ry<vy and v+ Adv=ty+ Adtg+ ry<v,. Upon
reflection from the centre of the star these momenta are
directed away from it along the trajectories
u=u; =f(v) = const, u=u; + Au = f(v+ 4v) = const.
They arrive at the point r=rq at t; and ¢; + 4t;, where
At; = Au = f'(v)4v = f'(v)4t,. Consequently,

Atl_AM_ .7 _ rg u t|
AtO_Av_f (v)—vo_vocexp Fo ocexp Ty )

Thus, reflected waves lag far behind as #; — oo; there-
fore, the frequency experiences a heavy red shift:

K _an const x exp (1
—=—= xp|— ] .
k Aty P Ty
Hence, it follows that dk'/k'= dt'/r,. Therefore,

J=t/r,, where t; is the total time of detection of
particles. Then, it follows from Eqn (21) that

=—ng(k).
dr, 2”3()

The total number of particles entering the detector per unit
time is

dN AN, [ dk
i O el L

The last expression shows that the radiation is thermal and
its temperature is 7 from Eqn (20).

3. The initial energy of the field

The calculation of the number of new particles performed
in the previous section was based on the Heisenberg
representation of states of a field when a state is considered
to be fixed and the time dependence is ‘transferred to’ the
field operators, through which the observed variables are
expressed in their turn.

In particular, if the field was in the vacuum state
|¢) =10,in) = |0) before the collapse, then the energy—
momentum tensor of the new particles is the state-averaged
operator of the energy—impulse tensor. Different
approaches to regularisation of the average yield the
same result. The situation is essentially more simple in
the two-dimensional model since any two-dimensional
metric g, is conformally flat: g,, = Cn,,. This fact enables
the expression for the renormaliseded average
energy —momentum tensor to be obtained without difficul-
ties (see Refs [6, 2]). In terms of null coordinates (u,v)
metric (1) has the form of Eqn (6). In this metric we have

_ 1
(T30 = (67 (T3 01)) 0 + 05 = 352 RE 2

b paa i
b = —5= C20CT2,
1
0, = ~ c'Pic 2, (23)
6,=0,=0.

uv vu

The first term in Eqn (22) vanishes for a specific choice
of coordinates (i, V), which coincide with the coordinates of
the plane spacetime i =t —r, V=1t 4 r in regions [ and Il
and are specified by the expressions

i=pu)=—r,' [-t+r0)],
24
b=v=r"[t+r()]

in region III. These coordinates correspond to the metric
(6) with

1 —ry/r
(1= rg/9)(1 +ry/i)’

and the positive-frequency wave function (7) takes the
simplest form.

Upon simple mathematical manipulations with the use
of formulas (22) and (23) we obtain

C(i, ) = (25)

_ e~ 2
<Tuu)rcn - m |:au InC 2 (au In C) :| 5

| 2 1 2
(T)ren = > [av InC 3 (8,InC) ] , (26)
RC
T = T = ——
< VM)TC'H < MV)TCH 96n >
where R = —ng/r3 is the curvature of the space (1).

It may seem that, because of the singularity of the metric
at t = 0, it is impossible to examine the energy —momentum
tensor near this surface. However, T, is a local object and
the renormalisation procedure does not violate this locality.
Therefore, expression (26) is true everywhere except the
points on the surface t = 0.

In the metrics (24) and (25) calculations yield the
following result:

~ N 1 3 rz’
Tiaa = (0Tal0)e = 57— |3 72
i < | uu| >rcn 241 [8 r4(1 + ’"g/”/i)2

2 2
Ty 3 Ty 2rg :|
9

23140 20t 4 /i) B+ ry i)’

Ts = (0|T5[0),, ~

i
24 |8 (1 + r, /0)’

Ty 3 ré 2r§
- - = + )
283141y /) 2041 +ry /9 (1 +ry/9)

Ty = <6|Tw|6>mn =Tu= <6|T\712|6>rcn

_ T (1 —ry/r)
48P (1 —ry /D) (1 +ry/id)
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Now we shall determine the radiation intensity of the
black hole and compare it with the results of calculations
performed in the second section.

In the limiting case of r=const > r,, t — +oo the
following expressions are true:

n t
uz—rg—rexp(——> ,
Ty
,
t%rgln —
u rg

1
482 (1 + ryfi))*

(28)

T

nn ~

Next, we pass to the null coordinate in the Schwarzschield
metric,

1
u=t—ry(r)=ryln (7—ﬁ —
g

> 4+ const,

for which the energy flux is written in the form

da\? r\ 1
T = _ T"": ] —E TM:—EI .
e (du> i ( + u) e

Here I; is the overall radiation intensity. This energy flux
corresponds to thermal radiation with the temperature

(29)

T:2T0:
 k dk nT?
k) = — .
JO o Bk =

Now we shall calculate the radiation which is produced
when the metric is ‘shaken up’.

At t = 40 the metric has the form

1

ds® = hdt? - dr’ = do* — dx?,
where dt =+vh dt, dx = dr/\/ﬁ. In terms of the coor-
dinates (t,x) of a quiescent observer at a point r > r,, the
energy of the cloud of quanta produced at + = 0 within the
interval (x,x + dx) is

dE, =T dx.

To calculate this expression we shall employ the formulas:

or\’ 1
T, = a Tn:ETrw

The component T, is expressed through the components of
the energy-momentum tensor in terms of coordinates (i, v)
[see Eqn (27)] by means of the common transformation
formulas for a tensor. The desired expression on the
surface t+ = +0, where the relationships 0i1/0r = 0v/0r = h
are valid, has the form

Ty = (Taa+ Ty +2T4) .

One half of the energy dE, will fall to the hole and the
other half will go to infinity. (Note that the energy flux, i.e.
T.., should be calculated from the start if we wish to be
more consistent.) Since the quantity \/}_szp is preserved
when the cloud moves in the gravitational field of the hole,

the energy that has gone to infinity is equal to

1
dE = Eh(TIZIZ + T‘;‘; + 2Tﬂ‘;) d}" .

A quantum moves from a point r to the detector at point
r=ry in the time

i.e. the energy dE goes through the detector in the time
dt = dr/h. Hence, the intensity of radiation produced in
‘shaking up’ is

1
I, = 3 W (Tga + T 4 2T a) - (30)

Here all the quantities are taken at r = 40. It follows from
Eqn (27) that

r

w=—t (14 2), r=_TE_.
Y 16mrh 4rh)’ A8k
When ¢ — +oo the radiation comes from r ~ r,. Using
this fact we can conclude from Eqns (30) and (31) that
quanta produced in ‘shaking up’ make a constant con-
tribution to the intensity at r — +o0o, which is
I = 1
Coedn?

Tyu=T

@31

(32)

As one would expect, the difference between I, and I
coincides with the intensity of the true Hawking radiation:
I nT%

li=1,= 192172~ 12

The results may be summarised as follows.

1. An infinite amount of energy is used to ‘shake up’ the
metrics (this fact alone shows that the sudden collapse
model is physically unrealisable).

2. The ‘wrong’ energy released in the shaking of the
metric is emitted and superimposes on the regular Hawking
spectrum. Thus, we have verified that the details of a
collapse are not important in the sense that the energy flux
is the sum of two parts: pure Hawking and nonphysical.
The latter is due to the sudden change in the metric. The
only important feature for the Hawking component is the
presence of the horizon while the radiation itself is formed
by Mechanism 2.

In conclusion, the authors want to express their
gratitude to E L Surkov and P O Fedichev for helpful
discussions on this paper.
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Appendix

In this section we give a strict proof of the above results.
The expression for the energy flux registered by a detector
following an arbitrary trajectory with a 4-velocity U¥ has
the form

1 ={0|T,|0), U*n", (33)

ren

I

where n¥n, = —1, U”n” = 0. In terms of coordinates (24)

we have for the detector with a trajectory » = const that

Then the energy flux is

2 2
[t :% |:<6|T1212|6>rcn <1 +%) - <0|T\7\7|0>rcn <] - %) :| '

Note that the energy flux (33) that the detector measures
consists of two terms of distinct physical nature: a term due
to the polarisation of vacuum (it is zero for the trajectory
r=-const) and a term related to the radiation going to
infinity. If we consider only the second term, then the
components (0|7,|0),., in Eqn (33) should be replaced
with (0|7 ,5|0),c,— (0|T4p|0),.,» Where the second term is
calculated similarly to the first one (see Section 3) but with
the use of other coordinates corresponding to the out-
vacuum |0):

u=t—r,(r)=—r,(-i),

v=rt ()] = 7.

Simple manipulations yield the result of Eqn (29).
The energy which is emitted when the metric is shaken
up can be calculated by means of the formula
dE = (0|T |0}, &*d2”,
where ¢ is a time-like Killing vector present in the region
t>0, r>r & =141, /i, & =1—r1,/7,
v

Ox
dZ'” = —gﬁﬂvg dr

is an elemental area of the surface t = const [11], and g, is
the skew-symmetric tensor in the two-dimensional space.
Simple calculations (see Section 3) yield the results of
Eqn (32).



