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Abstract. Theoretical and experimental fundamentals of
the phenomenon of optical self-switching of unidirectional
distributively coupled waves are presented. These waves
represent a whole class of waves in optics: waves in tunnel-
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coupled optical waveguides, waves undergoing the Bragg
diffraction, waves with different polarisations in an
anisotropic (birefringent) waveguide or crystal, waves
with different frequencies in a quadratically nonlinear
medium, etc.

1. Introduction

In the last 20 years we have seen increasing and continuing
interest in ultrafast all-optical light switches. This is due to
a number of reasons. First, there is the ever-increasing
demand for ultrafast processing of large volumes of
information in combination with the need to transmit
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information along optical communication lines, and also
the drive to develop supercomputers. Second, the rapid
growth of integrated [1-7], fibre [8—10, 3] and non-
linear [11—-14, 6] optics is creating a demand for
fundamentally new ultrafast all-optical instruments and
devices (in particular, optical transistors); this growth also
is providing a technological base needed for such devices.
Third, the interest in optical switches arises from the
fundamental limits on the response time of electric and
electro-optical switches: the minimum switching time in
these switches is limited by the charge—discharge processes
in the electric circuit of a device (i.e. by the values of the
circuit capacitance, resistance, and inductance), which is
usually at least 0.1—1 ns [3].

The earliest work on optical switches by V N Lugovoi
[15], H Seidel [16], and A Szoke et al. [17] was all published
in 1969 and dealt with bistable Fabry—Perot cavities.
M A Duguay and J] W Hansen also published work in
1969 on Kerr switches [18]; there were also other commu-
nications [19—-21]. I would like to mention here the paper of
G A Askar’yan of 1968 [22] on self-reflection of light and
self-isolation of objects. Although Askar’yan considered a
slow nonlinearity, the analogy with the work of Kaplan [21]
is readily apparent: Askar’yan speaks of induced total
internal reflection [22] whereas later [21] Kaplan discusses
frustrated total internal reflection.

By 1982 the published work on optical switches became
voluminous and the optical bistable switches based on the
Fabry —Perot cavity [23, 24] and other systems with oppo-
sitely directed coupled waves [25—31] have become the best
known and popular. However, such switches suffer from a
number of shortcomings. First, their response time is
limited by the time needed to establish the field in a
cavity. Second, a powerful reflected wave forms at the
input to the system. Third, such switches are unsuitable for
inclusion in integrated optical circuits. Information on these
and other optical switches can be found in reviews [30, 31].

New extensive opportunities for the development of
promising optical switching devices and optical transistors
are provided, as I demonstrated for the first time in
Refs [32-34],1 by a different class of systems with unidir-
ectional distributively coupled waves. These devices were
investigated by our team [32—-34, 36-72] and by other
authors [35, 73—107]. The main flow of work in the West
on the same subject began in 1986 and in the last 5—6 years
the number of publications increased explosively and now
there are hundreds of them. Therefore, without aiming to
cover all the latest papers on this new topic, I shall try to
present the theoretical and experimental fundamentals from
a unified point of view.

Unidirectional distributively coupled waves (UDCW?’s)
play an important role particularly in integrated [1—7, 108],
fibre [8—10, 109], and nonlinear optics [11—14, 6], although
their linear theory was first developed for x rays [110, 111]
and microwaves [112]. We can divide UDCWs into two
groups: with the coupling coefficient independent of and
dependent on the wave amplitudes.}

FAlso in 1982 Jensen [35] put forward a similar switch based on one of
the forms of unidirectional distributively coupled waves, namely the
waves in tunnel-coupled optical waveguides (see below) in the special
case when light is coupled into one of the identical waveguides.

fThe coupling coefficient is the quantity defined by the set of
equations (2.5.1).

The first (larger) group of UDCWs with the coupling
coefficient independent of the wave amplitudes includes:
waves in tunnel-coupled optical waveguides (TCOWs),
i.e. in two parallel closely spaced (separated by a distance
~1-10 um) optical waveguides; waves with different
polarisations in the same birefringent waveguide or in a
birefringent crystal; transmitted and diffracted waves in a
periodic structure; two modes in an inhomogeneous optical
waveguide, etc. [1-7].

In the linear regime when the wave intensities are low
and the nonlinearity of the medium in which they are
travelling can be ignored, periodic (sinusoidal) exchange
of energy takes place between these waves as they propagate
(Fig. 1). For example, if one of the waves (we shall call it the
zeroth wave) is applied to the input of the system, then —at
some distance from the input—energy is transferred to
another wave (we shall call it the first wave); next, energy
returns to the zeroth wave, goes back to the first wave, etc.
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Figure 1. Dependence of the power (normalised to its initial value
T; =1I;/Iy, where j=0 or 1) of two UDCWs (0 and 1) on the
normalised coupling length L = 2nKI/Af in the linear regime; K is the
wave coupling coefficient, / is the length of the system, f = (8, + By)/2,
B; is the effective refractive index of the jth wave; &=0 (a),
E=af/K=1 (), E=2(c); a=p; — fy. One of the waves (zeroth) is
coupled into the system: Ioy # 0, 15 = 0.

If the waves are identical, i.e. if their effective refractive
indices are the same, the transfer is complete; if the waves are
not identical, i.e. if they have different effective refractive
indices, the transfer is incomplete (see Fig. 1). Therefore, the
power transfer coefficient of each wave depends on the
difference between the effective refractive indices of the
waves [1-7].

This suggests that in the nonlinear regime, when the
refractive index depends on the wave intensity, the power
transfer coefficient of each wave should depend on the
initial intensity, i.e. nonlinear power transfer or pumping over
is possible. These considerations stimulated my interest in
the study of the nonlinear interaction between such waves.
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We were able to detect a very interesting, hitherto
unknown, phenomenon which we called self-switching of
UDCWs. Under certain conditions a small change in the
input intensity of one of the UDCWs causes a major change
in the ratio of these waves at the output of the system. The
change in the power of each wave at the output could be
tens, hundreds, thousands, millions (!) or more times
greater than the change in the input power. On the basis
of this phenomenon, we proposed a novel class of optical
transistors [32, 33].

At the time we started our work, the nonlinear inter-
action between the UDCWs belonging to the first group
had been ignored almost completely. The exceptions were
the few investigations of the ‘nonlinear girotropy’ (Akh-
manov and Zharikov, reported in 1967 [113]), and some
earlier work of Maker, Terhune, and Savage published in
1964 and 1965 [114, 115], who noted the influence of the
cubic nonlinearity on the polarisation of the output waves.
Almost simultaneously with our work [33], Stolen, Boti-
neau, and Ashkin reported [116] nonlinear transfer between
waves with different polarisations in a birefringent fibre
waveguide and nonlinear power transfer in such a system;
however, abrupt switching of light between waves with
different polarisations and an optical transistor based on
this were not mentioned in Ref. [116], in contrast to our
work [32, 33].

Self-switching in the first group of UDCWs is dealt with
in the present review.

The second group of UDCW s includes waves with the
coupling coefficient dependent on the wave amplitudes. These
are primarily the waves with two or three different
frequencies in a medium with the quadratic nonlinearity;
in particular, these are the waves with frequencies w and
2w. This group includes also waves participating in
concurrent (parallel) stimulated Raman scattering. The
interaction of such waves is fundamentally nonlinear.
Investigations of such waves, which began over 25 years
ago, represent the birth of modern nonlinear
optics [11, 12]. However, even in this field of optics there
were some ‘blank spots’ at the time we began our work.
Numerous investigations have been reported of the depend-
ences of the wave intensities or of the frequency conversion
coefficient on the longitudinal coordinate or on the length
of a crystal. The aim of these investigations has been to
ensure the maximum conversion within the length of a
crystal. However, the changes in the ratio of the intensities
of the waves of different frequencies (for example, @ and
2w) at the output of a quadratically nonlinear medium, due
to a change in the input intensity of one of the waves, have
not been studied. The exception was the work of Jain and
Pratt [117] who proposed to construct an optical transistor
based on second-harmonic generation in a tellurium
crystal, but on the basis of a principle different than
that proposed in our papers relating to these top-
ics [49, 50, 52, 53]. Although the solutions of the
equations describing the interaction of waves at the fre-
quencies w and 2w in a quadratically nonlinear medium
(plane waves in a field which could vary) were given in
Bloembergen’s book [12], published back in 1965, these
solutions had not been investigated analytically for a
nonconstant field in the presence of both waves (@ and
2w) at the entry to the medium under the conditions of a
phase mismatch and an arbitrary relationship between the
wave phases at the input.

Our investigations made it possible to predict and
describe theoretically [49, 50, 52, 53] the hitherto unknown
phenomenon of self-switching of such UDCWs, similar to
self-switching of the waves belonging to the first group. On
this basis we were the first to propose [49, 50, 52] a class of
optical transistors and of all-optical light switches.

The phenomenon of self-switching of UDCWs is very
complex and it has a large number of facets. There are
various modes of this phenomenon, it can occur in a variety
of ways, it can have a range of depths and directions, and its
slope may vary by a factor of hundreds or thousands (for
the same length of a system), depending on the initial
conditions and on the parameters of the system. For
example, complete self-switching of nonidentical waves is
possible (although in the linear regime such complete
switching of these waves is, in principle, impossible!—
see Fig. 1); on the other hand, selfswitching of identical
waves may be incomplete (see Sections 3.6 and 3.11 below);
various operational modes are possible: optical transistor,
giant amplifier, double self-switch (Sections 2.3 and 3.4),
and so on. We found simple analytic formulas for the
description of self-switching: the conditions for the appear-
ance of this phenomenon, its slope, depth, characteristic
points, etc. The construction of any specific device (optical
transistor, amplifier, limiter, multivibrator, logic element,
etc.) requires selection of a suitable (for this device) self-
switching mode. Self-switching of the UDCWs is accom-
panied by self-phase-matching. These and other topics are
discussed below.

The first section provides a brief derivation of the
equations for the three kinds of nonlinear systems involv-
ing the first group of UDCWs and the general form of
equations for such waves. The second section demonstrates
that self-switching of UDCWs is possible and this phenom-
enon is investigated for the case when one of the waves is
applied to the input. The third section deals with the self-
switching of UDCWs when both waves are delivered to the
input. The fourth section provides an account of switching
of a powerful pump by a signal whose frequency or
polarisation differs from the frequency or polarisation of
the pump. The fifth section describes optical multivibrators
based on this phenomenon. The sixth section is devoted to
the self-switching of three UDCWs.

2. Equations and integrals for the amplitudes of
single-frequency unidirectional distributively
coupled waves in a cubically nonlinear medium

The interaction of UDCWs in a cubically nonlinear
medium is described in Ref. [33] by the method of slowly
varying amplitudes, which has proved its worth in
nonlinear [11—13] and integrated optics [3—6], as well as
in the dynamic theory of x-ray diffraction [110, 111]. Let us
begin with the familiar equation

§O°E 1P,

V’E—= == ,
C2 atQ C2 at2

Q.1

where the cubically nonlinear polarisation is P, = 0:EEE
and 6(x, y) is the distribution of the cubic susceptibility
tensort over a transverse cross section of the system.

fThe factor 4m, missing from the right-hand side of Eqn (2.1), is
included in the components of the tensor 6.
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Under steady-state conditions, the field with a given
frequency is

E(x,y,z,t) = Ey(x,y,2) exp(iot) + Eg(x,y, 2) exp(—ior)

(2.2)
and, therefore, under steady-state conditions the equation
for the field at this frequency w is

2 2
V’E, + ~8E, =—— Py o (2.3)
-
and its nonlinear polarisation is
Py =0 (EyELE, +E ELE, + EELES) . (2.4)

2.1 Equations for the amplitudes of waves in tunnel-
coupled optical waveguides

In tunnel-coupled optical waveguides (Figs 5a and 5d) the
refractive index at each point is a linear function of the
intensity. The field E,, is in its turn a superposition of two
coupled (zeroth and first) waves propagating, respectively,
in the zeroth and first waveguides:

E,(x,y, ) = eoAo(2)Eo(x, y) exp (i ? 1130)

+e A (2)E (x, y)exp (i ? zﬁ]) , (2.1.1)

where A;(z) are the slowly varying (complex) wave
amplltudes e; are the polarisation unit vectors of these
waves, E;(x, y) are the distributions of the fields over
transverse cross sections of the waveguides (field profiles),
B; are the effective refractive indices of the waveguides, and
j=0 or 1 are the serial numbers of the waves.

It will be assumed that the amplitudes A;(z) have the
meaning and dimensions of electric fields (effectively
averaged over the cross section of the system with the
coordinate z), which leads to normalisation of the dimen-
sionless field profiles so that the quantities cﬁj|Aj|2/2n
correspond to the wave intensities, i.e. it is assumed that

cp; 2 2
2—1; A} JJ|Ej(X, y)| dxdy = P;

where P; is the optical power carried by the jth wave. If the
area of the effective cross section of the jth waveguide is S,
it follows from our normalisation that

JJ|E/-|2dxdy =S

The field prof'les satisfy the following system of equations:

(2.1.2)

ViE +2 ~ (n ~BE; =0, 2.1.3)

i.e. they are the eigenfunctions of these equations.

Substituting expression (2.1.1) into expression (2.4) and
bringing together similar terms, we obtain the general
expression for the nonlinear polarisation at the frequency
w:

a .
Py,=0: {3eoeoeo|E0|2E0|Ao|2Ao exp <1 " Z.Bo)
2 2 . @
=+ (808180 +eoeoe] +e|eoeo)2|E0| E] |A0| A] eXp (1 7 Zﬁ])

* * . (O]
+ (ege1e) +e1e0e, + e e160)ETEGATAG exp [1(131 +“)?Z]

* * . w
+ (e1epeq + epe g + egee )EGETATAT exp [1(ﬁ0 —a) = z]
2 2 . @
=+ (818180 +e|eoel +eoe|el)2|E1| EolA || Aoexp (1 7 Zﬁo)
(2.1.4)

o)
+3eie1e,|E\[E A, *A; exp (1 = Zﬁ])} )

where a = f;, — f,.
Let the distribution of the refractive indices in a
transverse section of each waveguide with a serial number

j=0or 1, over the transverse coordinate x directed along

the shortest distance joining the waveguide centres, be
described by

ny, x <0,
n%: n(z)(x’y)s OSX <t0’

ﬁ2, x>t0,

2.1.5

ﬁ2, x<d+t0, ( )
2
ny = n%(x,y), d+t0<x<d+t0+tl’

n?, x>d+ty+ty,

where n;(x, y) is the refractive index of the light-carrying
core or layer in the jth waveguide, ¢; is the size of this core
or layer along the x axis, n; and n, are, respectively, the
refractive indices of the material filling the space to the left
and right of the edges of the light-carrying cores of layers
in the zeroth and first waveguides, i is the refractive index
of the material filling the gap between the light-carrying
cores, and d is the size of this gap (along the x axis).

The square of the refractive index n2(x, y) of a system of
two tunnel-coupled optical waveguides can be represented
in the form [8]

n(x,y) = (n§ —a* —ni) + (n] — > — n})

+ a4 nd)=nh - )+ (] — ) + 7. (2.1.6)
Let us substitute expression (2.1.1) into expression (2.3),
drop the second derivatives of the amplitudes with respect
to z, and take into account the set of equations (2.1.3)—
(2.1.6). Let us multiply both sides of the resultant equation
by Eq(x, y) and E{(x, y) in turn, and integrate once over
the transverse cross section. If the quantities of the second
order of smallness are ignored, the result is [32, 33]

dA
2i ﬁ — —0+ Ko1Ayexp <i°‘ 2 Z) = —0o/A,[*A,
-
" @.1.7)
2ﬁi—]+K10A0€Xp<—ia%Z) = —0]|A]|2A| .
where = (B, + B,)/2; the coupling coefficients are
(eoer) | |(ng — @)Eq(x, Y)EG(x, y) dx dy
Kg = : ; )
J |Eo(x, y)|” dx dy
(eOel) (n% - ﬁ2)E0(x’ y)ET(x’ y) dx dy
Ky = = ; )
J |Eq(x, y)|” dx dy
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which is the form used in linear integrated optics [3, 4, 8];

[ [B1E I e ey

JJ|E,|2 dx dy

are the nonlinear coefficients of the waveguides and the
convolutions of the tensor 0 have the form Hj =¢ 0: ejeie;.
The tensor 0 can usually be assumed to have the value of
6 for an isotropic medlum [118] (see Appendix I); in this
case we obtain 0 =0V = 0y ’) = 0--2,.

Equations s1m11ar to the system of equations (2.1.7), but
more cumbersome and ignoring a possible nonidentity of
the waveguides, were derived by Jensen [35] simultanecously
with publication of our work [33] (as judged by the dates of
submission of the papers). Our priority in this matter was
confirmed by a USSR patent [32].

2.1.8)

2.2 Equations for a periodic structure
Let us derive equations for the wave amplitudes under the
Bragg diffraction conditions in a periodic structure (Figs Sc
and 5g). The linear and cubic-nonlinear susceptibilities will
be expanded as Fourier series in terms of the reciprocal
lattice vectors [110, 111]:

X=8—1= Z)fmh exp(imh-r) ,

m

6= Z@mh exp (imh-r)

(here, m =0, £ 1, £2, ...), and the total electric field near
the Bragg condition will be represented as the sum of the
transmitted and diffracted waves, propagating along the
directions ‘0’ and ‘h’:

E,(r) = eyAo(r) exp(iko-r) + e,A,(r) exp(iky,-r) , (2.2.2)

where Ag ,(r) are the slowly varying amplitudes of the
waves, ko = now/c, ng = \/1+Xq, k,, =ko+h, h =2n/d, d
is the structure period, and e, are the polarisation unit
vectors.

Let us now substitute expressions (2.2.1) and (2.2.2) into
expressions (2.3) and (2.4), and drop the second derivatives
of the amplitudes. When similar terms are collected, the
result is a general expression for the nonlinear polarisation
at a frequency w, which is identical with expression (2.1.4).
However, the profiles of the fields are now formally
assumed to be unity, and the subscripts 0 and 1 are
understood to mean 0 and h. If we drop the nonzero
Fourier components of 6, because they are quantities of the
second order of smallness, we obtain a system of reduced
equations for the amplitudes [38]:

2ing — P (cos Jy 66 + sin ¥, 654 >

2.2.1)

=X_A,+ (9(0) Aol + 9(0’/1)|A/1|2)A0 ,
o o, (22.3)
21]10 P (:l: Ccos ’l9h a—:F ’l9h ox >

=X;Ag —20A), + (0(()h)|Ah|2 + '95)/1’0)|A0|2)Ah ,

where the upper signs apply to the Laue case (h L n) and
the lower signs to the Bragg case (k|| r) [110, 111], n is the
normal to the surface of a sample, z = n-r, the parameter
o= (k;, —ko)c/w = ny(P — 9g) sin(29g)  represents  the
deviation from the Bragg condition, ¥y =ky-n, 9, =k

¥ = arcsin(hc/2wny) is the Bragg angle, and the convolu-

tions of the Fourier components of the tensors are
o (0) o - () oo
Xip =e€oXpen, 0y =eoby:eecey, 05" =enl:eqepe,

0(()0’}1) = 8095 (eheheo + epeney, + eoeheh) N (224)

(0) _ , 5 .
00 = ehGO . (eoeheo + epépéey, + eheoeo) .

The set of equations (2.2.3) represents a generalisation of
the Takagi equations [110, 111] to a nonlinear medium.

Let us consider the diffraction of a plane monochro-
matic wave in the symmetric Laue case: 0Ag ,/0x =0
and ¥,=1,=19. Let us also change the variables:
zw/c/cos¥ =z, A, = A exp(iozy).

An isotropic medium is encountered frequently in
practice (Appendix I) and we then have

o =6l =6, 0" =0l =011+,

(2.2.5)
X—h :X—th Xh

:)th )

where the factor in the above expression is C =ej-ey;
C =1 if the unit vectors e, and e, are perpendicular to the
plane of diffraction and C = cos24, if ¢, and e, lic in the
same plane; X, are the Fourier components of the
susceptibility X of the isotropic medium. Substitution of
expression (2.2.5) into expression (2.2.3) gives [38]

2ingA§ =X _,CA yexp(ioz.) + 0(|Ao* + (1 + C?)[A,[7)A,,
2ingA =X, CA g exp(—iozy ) + 0(JA, 1+ (1 + C)|Ao[)A,,
(2.2.6)

where the prime denotes the derivative with respect to z; .

2.3 Equations for unidirectional distributively coupled
waves with different polarisations

Waves with the orthogonal polarisations propagating in a
birefringent crystal or in an optical waveguide (in integrated
optics, it is usual to speak of TE and TM waves) represent
one of the examples of UDCWs (Figs 5b and 5f).

The coordinates in the principal system will be x’ and
y'. As usual, let us start with the wave equation which, for
the field with a given frequency @ under steady-state
conditions, has the form of Eqn (2.3) with its nonlinear
polarisation given by expression (2.4).

Let us consider this equation in a coordinate system x, y
rotated relative to the principal system x’ and y’ by an
angle @. The matrix & in expression (2.4) is described in the
rotated coordinate system by

N &1 0
8_(0 82)

and in the principal system it is represented with the aid of
the rotation matrix

23.1)

A= < cos@ S‘“q’) (2.3.2)
—sing cos@
(with the elements ;) in a familiar way: ¢; = a;;a;8;;1, i.e.
&1 =& coszqo+82 sinzq) R
1 .
&p = E (82 — 8]) sin (2(p) =& , (233)

&y = § sin? O +é cos? Q.

The field in the coordinate system of interest to us, x and y,
can be represented by a superposition of two orthogonally
polarised waves:
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Ew(x, y, Z) = exAx (Z)Ex (X, y) eXp <1ﬁx ? Z>

+e,A,(2)E, (x, y) exp (iﬁy ?z) . (234)

where A,(z) and A,(z) are the amplitudes of the waves
polarised along the x and y axes, and varying slowly along
the longitudinal coordinate z; e, and e, are the polarisation
unit vectors of these waves; E,(x, y) and E,(x, y) are the
field profiles satisfying, like Eqns (2.1) and (2.2), the
normalisation condition [ [|E,[*dxdy = [ [|E,[’dxdy =5
(where S is the area of the waveguide or beam cross section),
when A, and A, have the meaning and dimensions of
electric fields.

If we consider waves with the orthogonal polarisations
in an optical waveguide (TE and TM waves), then E,, E,,
and B, B, satisfy the following equations:

o
ViE, + 2 (en —BE, =0,
23.5)

2
VLE + (822 B}Q,)E) =0 N

i.e. they are eigenfunctions and the eigenvalues of these
equations. However, if the waves have the orthogonal
polarisations in a bulk anisotropic crystal, then
AE,=AE, =0 can be substituted in the set of
equations (2.3.5) and then

.2
B, =n, =& = \/s] cos? ¢ + & sin” @

! 2 ! a2
R ny COs” @ +n,sim” @,

. 2
By =n, =\fox; = \/81 sin® @ + &, cos @

I !
R Ny sm2q) +ny cos’ o,

(2.3.6)

where n, = VEL n =& are the refractlve indices of the
waves polarised along the x’ and y’ axes.

Let us now substitute expression (2.3.4) into Eqns (2.3)
and (2.4), and drop the second derivatives of the ampli-
tudes. In the case of the nonlinear polarisation P, we
obtain an expression which is fully identical with expres-
sion (2.1.4), if the subscripts in expression (2.1.4) are
modified: 0 is replaced with x and 1 with y.

Let us multiply both parts of the resultant equation in
turn by e, Ey(x, y) and e,Ej(x, y), integrate each time over
the transverse cross section, and use the system of equa-
tions (2.3.5). Moreover, let us bear in mind that in the case
of an isotropic medium the components of the tensor 6 with
three identical subscripts and one different subscript (8,yy,,
Oyxyy» Oxryx» €tc.) all vanish, but for a medium with a weak
anisotropy these components are quantities of the second
order of smallness (Appendix I). Ignoring quantities of the
second order of smallness, we then obtain

c dA ( )
ltx—Z

~ " )
=0, |AX |2Ax -0, |Ay|2Ax - nyAiAx exp (21oc — z> ,
-

o)

~ N .
=0, |A},|2Ay —0,,]A, |2Ay — H}WA)Z(A}, exp (—21oc < z> ,

xy

(2.3.7)

yx

where o = f,

then a = (\/&; — \/&1) cos(2¢);

coupling coefficients are

— B,, but if a sample is an anisotropic crystal,
B=(B.+B,)/2, and the

f‘:IZEy(x’ y)E;(x’ y) dx dy
K, =+ ,
£, (x, )P dx dy 038)
821Ex (X, y)E;(x’ y) dx dy
KyX == 9
| 1P axay

where &, =¢&,; are described by the set of expres-
sions (2.3.3); the nonlinear coefficients are [57]

3 [t ax ey

“|Ex|2dx dy

ZJJ(nyyx +0xyxy + u)y)lE | |E | dx dy

Xy — )
”|EX| dx dy

Jj(euyy + nyxy + exyyx )EIZE,% dx dy

Xy — B
JJ |E¢|” dx dy

The quantities 6, 6,,, 0” are obtained from the above
expressions by the simple substitution: x =y, y = x.

[t is usually permissible to ignore the dependences of the
components of the tensor # on the transverse coordinates.

The components of the tensor 0 are represented by the
set of expressions (2.3.9) in the coordinate system x, y.
When the principal coordinate system x’ and y’ is adopted,
these components are transformed in accordance with the
familiar formulas

0, =

, (23.9)

Hmnkl = Apm ' Apn' Ak ’all’em k'’ s

where m =x, y; n=x, y, and so on.

Since the anisotropy of the medium is assumed to be
weak, the corresponding components of the tensor 8 can be
regarded as the same in both systems; we then have
(Appendix I)

Hxx,n _ex’x’x’x’ =0,y =0

yyyy yyyy

=0,
Bxyyx + gxyxy + gxxyy = Uyxxy + Byxyx + 0)'):’(,\' =0.

Bearing in mind this weak anisotropy of the sample,
(ler2] < &1 =~ &), let us assume that rotation of the
coordinate axes does not alter (in the first order of
perturbation theory) the field profiles, i.e. the eigenfunc-
tions of the system of equations (2.3.5), and changes only
their eigenvalues.

In contrast to the case of TCOWSs, the system of
equations (2.3.7) generally contains a term with 0,,, which
contains the complex-conjugate phase. It should be stressed
that since K o ¢y, it follows that K/« o< tan(2¢).

[f the frequencies of the waves A, and A, are identical, it
follows from the set of expressions (2.3.9) that

0,=0,=0, 0,=0, :23—'9 . 0y =0, :g.

(2.3.10)
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In this case, if « = 0, it is convenient to adopt the circular
polarisations
A A AL —A
A, =t Ay A A (2.3.11)
V2 V2i
when, subject to the set of expressions (2.3.10), the system
of equations (2.3.7) becomes [78]

dA
2ﬁ° KA =P
(2.3.12)
¢ dA_ .
zlﬁad—z—lKXyA+:P,,
where
2 2 2
=204 QU +IAD),

2
P, = _§0A+(2|A—|2+ |A+|2) :

If a0, we must begin with the substitution [119]

A, —a, exp(%) A, :ayexp(—%> , (2.3.13)

and consider the amplitudes a, and a,, and then use the
amplitudes a, and a, to find the circular polarisations
described by expression (2.3.11). In this case, both A, and
A _ also correspond to the system of equations (2.3.12), but
instead of K,,, the first of them contains the complex
coupling coefficient K, +i«, and the second equation has
the Hermitian-conjugate coefficient K, — ia.

The term 6,, in the system of equations (2.3.7) can be
removed by employing fibre waveguides [84] in which the
optic axis undergoes rotational periodic oscillations with
increase in z. These oscillations occur along the longitudinal
axis of the fibre and their amplitude is small. The spatial
amplitude of the oscillations is B, > K. The coupling
coefficient then depends sinusoidally on z and the inequal-
ity || > K is obeyed. Substitution of the variables in
accordance with Ref. [84] (which means adoption of new
amplitudes a, and a,) leads to equations for a, and a, which
are fully identical with the system of equations (2.1.7) where
o is replaced with a.p = a — B (the role of this parameter is
described in Section 3.3) and the nonlinear coefficients are
now 6y = 6, = 6/3. Selection of the wavelength [84] ensures
the exact or at least approximate equality oy = a(4) — By
(physically this means that the difference between the wave
vectors of the waves is compensated by the reciprocal lattice
vector of the periodic structure).

2.4 Equations for coupled modes

The equations for the amplitudes of two unidirectional
coupled optical modes in a cubically nonlinear inhomo-
geneous single optical waveguide are also described by the
system of equations (2.1.7), but the coefficients in these
equations are calculated in accordance with somewhat
different formulas. The linear coupling is due to the
inhomogeneity of the waveguide which is the result of, for
example, corrugations, bending, or thickness variations.
The coupling coefficient is described by formulas given in
Refs [3, 4], which we shall not reproduce here. The
nonlinear coefficient is given by expression (2.1.8), but
now E;(x, y) is the profile of the jth optical mode in a
single waveguide. The cross coefficients 6, can usually be
ignored, as in the case of TCOWSs, since the overlap
integrals of the profiles of optical modes of different orders

are small compared with the overlap integrals of the
profiles of modes of the same order.

2.5 General form of the equations for the amplitudes and
their integrals, and the equation for the intensities

The system of equations for the amplitudes of UDCWs in a
cubically nonlinear medium when the coupling coefficient
K is constant can be represented in their gen-eral form
quite satisfactorily by the following approximation:

ioz2m

A dA ~ a5~ - 5~
113——0+KA1 xp( >:—90|A0|2A0—'901|A1|2A0,
2.5.1)

iaz2m =~~~ ~ 0
) = B = Ol

A dA
,B—d—+KA0 Xp(

where the nonlinear coefficients are determined by the
characteristics of the specific system: in the case of TCOWs
and coupled optical modes of different orders in the same
waveguide, we can assume that 6y = 6,, = 0; for UDCWs
in a periodic structure and the corresponding waves with
the circular polarisations these coefficients are given by
expressions (2.2.5), (2.3.12), and (2.3.10).

In either case, the simple substitution

i - 10y —0
00 BO_BOI» 0|=0|—0]0, a:a_(mz—BIO)’
i . (2.5.2)
: 0y, Iz ~ i0olzm
oo (5. = oo 255

where I= A, + A,
tions (2.5.1) to [33]:

reduces the system of equa-

A dA iz2m
ﬁ——0+KA1 XP( 7 )2—90|A0|2A0,

10z27
> ) =—0,]A]’A,,

(2.5.3)

dA
ﬁ——]—i-KAO xp(

which are fully identical with the system of equa-
tions (2.1.7) for tunnel-coupled optical waveguides.

[t therefore follows that the solution of the system of
equations (2.5.1) reduces in fact to the solution of equations
for TCOWSs. In other words, as stressed in Ref. [33] and in
our subsequent work [36, 38, 41], a slight difference between
the right-hand sides of Eqns (2.5.1) and (2.5.3) does not
affect the dependences of the output on the input intensities,
and the theory of UDCWs in a cubically nonlinear system,
usually applied in our work to the specific case of tunnel-
coupled waveguides, does in fact apply generally to
cubically nonlinear systems carrying UDCWs (naturally,
if K and 0 are independent of the wave amplitudes). We
shall therefore consider the systems of equations (2.5.3).

We shall introduce the moduli (p;) and phases (¢;) of
the amplltudes Aj=p; exp(l(p/) as well as the quantities
I; = p/ proportlonal to the wave intensities. Then, the
system of equations (2.5.3) becomes [34]

Blg = —K+\/I,I; siny ,
BI{ = K+\/I,I; siny ,

Iy—1
2 l_a :Ku
By ) il

041

(2.5.4)
cosy + (6,1 — oly) ,

where Y =az2n/A+ ¢, —@,; the prime denotes the
derivative with respect to 2mz/A.
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The systems of equations (2.5.3) and (2.5.4) have two
integrals [32, 33].

1:10+1] N (255)

which represent the law of conservation of energy in the
system; we also have
bolg | 01}

101] COSlp—(XBIO + —+4

G=K
4 4

(2.5.6)
We shall now use dimensionless ‘intensities’ J; = I; /Iy
obtained by normalisation of /; to what is known as the
critical (full self-switching) value Ig = 8K/|0y + 0|, the
meaning of which will be discussed in Section 2.
We shall denote the initial (at the input of the system)
and final (at the output) values of the quantities as follows:

1.
Li(z=0)=1Ip, Ji(z=0)= jfﬁ’ Y(=0)=1y,,
(2.5.7)
1.
L(z=1)=1, J_,(z=l)zf_,,zﬁ, Ve=0=y,

and we shall introduce the coefficient representing the
transfer of the optical power through the system by the jth
wave:

1 Jji

T, = = R
© I +Io Ro+R

if we define it as the fraction which is the ratio of the power
in the jth wave at the output of the system to the total
power introduced into the system. In calculations it is
useful to introduce the coefficients

_6,+0, _0,—6,
0, = 7 0, = >

The integrals defined by expressions (2.5.5) and (2.5.6) lead
to [62]

sign 6, .
cosy = v/ RyR sign 6, cos
l// m[ oft1 S1g K WOA
+2(J, —RI)(RO—E—J]>] , (2.5.9)

(2.5.8)

where

Azé—l—Z%(Ro—i—Rl) (2.5.10)

and ¢ = af/K sign 0,.
In turn, it follows from relationship (2.5.9) that
) ]'/2

siny =2m [—

2.5.11
Tol, ( )

where J =J;, m = £1, and the value of m is governed by
the sign of siny,,

y 2
)= _(J—Rl)z(Ro —§—J>
- —R|)<R0 —%—J)VROR] sign 6, cos

Ro(J —Rycos’yhy) (J—R1)J
+ 4 4

z—[(J—R])(RO_§_1> L VRoR, cosyy]*

2

L(Ro+ R —))J

7 =—J'4alP+bJ*+E+d, (25.12)

and
a:2R0+2R|—A N

1 4

++/RoR sign 6, cosy, ,
. Ry+R A4 A
({:¥+ R0+R|*— \/R] 2 RO__
4 2 2
X1/R; — /R sign 0‘\.cos¢0] ,
A 2
d:—RI |:(R0—§>\/R] —\/RO sign Gscoszlllo] .

Substitution of expression (2.5.11) into the last equation in
the system (2.5.4) and integration gives [51, 56, 62]

5 JuoqJ
L=m| ——,
L] NGO

where L = 2nKI/AB.

The problem of integration of Eqn (2.5.13) and, con-
sequently, of finding the solution of the initial system of
differential equations (2.5.3) thus reduces to determination
of the roots of the algebraic equation [54, 51, 62]:

) =0.

If we know the roots of this equation, we can use a
handbook of integrals etc. [120] to write down the solution.
We shall use J,, J,, J., J; to denote the roots of
Eqn (2.5.14), where J, and J,; are the real roots satisfying
J,>J, and the roots J, and J. are generally complex-
conjugate. Eqn f(J) = 0 has at least two real roots. One of
the roots lies in the interval from zero to R; and for
cos’ ¥y =1, this root is equal to R;.

(2.5.13)

(2.5.14)

2.6 Possible deviations of equations from the general form
The system of equations (2.5.1) can be regarded as general
subject only to the caution which applies to UDCWs with
the orthogonal polarisations when the system of equa-
tions (2.3.7) may contain terms 0,,A fAf and G}WAzA;, which
can sometimes be eliminated (Section 2.3). If this is not
possible, we can then employ the substitution described by
the set of expressions (2.3.13) and relationships (2.3.10) to
go over to the amplitudes with the circular polarisations
which can be described by the general system of equa-
tions (2.5.1). Then, having solved these equations, we can go
back to the amplitudes with the orthogonal polarisations.
However, this procedure, involving the subsequent going to
the intensities with the orthogonal polarisations, is not free
of problems, particularly those resulting from fairly
cumbersome transformations. A different approach [71]
will be put forward below: it involves direct solution of the
system of equations (2.3.7), which—on going over to the
intensities and phases—assume the following general form:

Bl = —K /1.1, sinyy — 01,1, sin(2y) ,

Bl = Ky/1.1, siny + 01,1, sin(2y) ,
2.6.1)

I, —1, ~
28" — o) = K === cosy + 0(I, — 1,,) cos(2y)
11,
+0,0, — 0.1, + 0,1, —0,,1

xyly »

where 0 = éxy = (Z)‘X
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The integrals of Eqns (2.3.7) and (2.6.1) are [71]

I=1,+1,, 2.6.2)
01,1, cos(2 0,11,
G=K,/II, cosyy —al, +—— (1/1)—1—'}'}
2 2
0,12 0,17
e = 2.6.3
T3t (2.6.3)

Wabnitz, Trillo, et al. [77, 80] describe the nonlinear
interaction of UDCWs in terms of the Stokes parameters. In
our opinion [71], it is preferable to use two normalised Stokes

parameters x= (I, —1,)/1, n=2cosy\/I,1,/] =

cosyV'1 — 5>, The system ofequatlons (2.6.1) then becomes

o = (K +0In)\/1—3*> — 72,

- (2.6.4)
;o [0+ 0)Ix >
n ——[f—l-a]\/l—% —n?,

where &—oc+10d/2 0,=0,+0,—-0,-0,,)/2, 0,=

(6,—0,+0,,—0,)/2. In terms of these variables, the
integral G becomes I' = I,,(¢* +1°) + 2ax + 2K7.

The initial and final values of the various quantities will
be designated as follows:

L(z=0)=1y. Iy(Z:O)E[yO’

Le=D=li =)=y, 063)
w(z=0)=ny, xz=0=x,

Hz=0)=n,, nlz=0)=n;

the normalised input intensities [see expressions (2.5.7)] are

|0]7:0 101150
= S =—, 2.6.6
=t Ry=eg (2:66)
and the transfer coefficients are
1 1 I, 1—
T, == ’;”’, T,=2= 2”’ (2.6.7)

The systems of equations (2.6.1) and (2.6.4) are analysed
in Ref. [71] and in Section 3.11 below. Sections 2 and 3 of
this review deal mainly with an analysis of the system of
equations (2.5.4), which is equivalent to the system (2.5.3).

3. Optical self-switching on arrival of one wave
at the input of a system

Let us consider a relatively simple case, when only one of
the waves is applied to the input of a system with single-
frequency UDCWSs propagating in a cubically nonlinear
medium. Let us assume that this is the zeroth wave: I # 0,
Ry #0, I,y =R; = 0. Our task is to find the values of ;
and J; in each transverse cross section of the system and at
its output (i.e. the values of I;; and J;) and to analyse the
resultant formulas.

3.1 Optical self-switching in a system with identical
unidirectional distributively coupled waves

Let us assume that the UDCWs are identical: o =0,
0y = 6, = 6. Then the roots of Eqn (2.5.14) are very simple:

Jd:()’ Ja:Ro,
3.1.1)
Ro+4/R2 — 1 Ry —4/R:—1
Jy=——""" Jo=——""F7—"
b D) 5 c 2 5

JU) =J(Ro -

and the critical intensity, described by the set of expressions
(2.5.7), is Iogy = 4K/|0] [34, 35].

The function (2.5.12) can be described in two different
ways. Depending on the way which is adopted, the integral
in Eqn (2.5.13) reduces to one of the tabulated integrals.
However, the resultant two forms of the solution can be
reduced to one by identity transformations [62]. For
brevity, we shall consider one solution method when
N[ —Ry/2)* — (R} —1)/4]. Calculation of
the integral in Eqn (2.5.13) by means of tables [120] gives

L =mF(u,r), (3.1.2)

where F(u,r) is an incomplete elliptic integral of the
first kind w1th the modulus r = R, an additional mod- ulus
=(1-m)""?=0=R)? and an amplitude
H = 2arctan [(Ro —J1)/J1]' .
Relationship (3.1.2) is equivalent to cosu=-cn(L, r).
Transformations yield [34, 35]

)/ en(L, r)] ,

where j = 0 or 1 is the serial number of the wave. Another
solution method is described in Ref. [34]. The solution
described by formula (3.1.3) is valid both for Iy, < Igy
(r=Ro<1)and for Iog=1Ipy (r=Re=1). If g=Ry' =
Tom /Igo < 1, this solution can be transformed conveniently

to
Jy= RZO [1 +(=1)dn (5, q)] .

This is the intensity of each wave at the output of the
system expressed in terms of the intensity of the input
(zeroth) wave. The intensity of light in an arbitrary cross
section of the system with a coordinate z can be found
simply by replacing [ and z in expressions (3.1.3) and
(3.1.4).

The solution described by expression (3.1.3) determines
also the coefficients representing the linear transfer of light
T; =1/l (To+T;=1), which are functions of two
quantities: L and R. Therefore, if K, I, 4, 6, and [, are
varied and the quantities L and R, remain unchanged, then
T; does not change either. The functions T;(R,) are not
altered for a given value of L and the functlons T,(L) for a
given value of R;,. We shall now analyse the solutlon given
by expression (3.1.3).

(1) Let us first consider the case when ” :R% =
15/16y <1 (i = 1). In this near-linear case the elliptic
functions can be expressed in terms of the trigonometric
functions [121], accurate apart from terms proportional to
##, which we find from expression (3.1.3) [34]

R
Jj,:7°[1 + (-1 (3.1.3)

(3.1.4)

L 1 1
Joi = Rycos®> = +— RyR2 [L ~3 sin(ZL)] sinL

28
(3.1.5)

. L 1 I . .
Jy = Ry sin’ 573 RoR} [L ~3 sm(2L)] sinL .

In the purely linear case (§ =0, r=0), we obtain the
familiar linear-theory solutions [1—10]:

L L
1”:100511'1 =,

> (3.1.6)

L
Ioy = Igp cos’ 5

where the parameter L /mt = 2IK/Af shows, roughly speak-
ing, how many times the waves exchange energy.
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(2) The range of values of the parameters where

r=R, =t _ 1, |dl=01-Rjl <1, expL > 1, (3.1.7)
Tom
is the most interesting. The elliptic functions are approxi-
mated by the hyperbolic functions [121]. The effect under
investigation can be described, as reported by us in
Ref. [34, 36, 37], by compact and fairly accurate—up to
within terms proportional to [% exp(L/16)]* —approxima-
tions for the elliptic functions en(L, r), dn(L, r), sn(L, r)
for this range. These approximations are given in
Appendix II. Application of these approximations modi-
fies the solution described by expression (3.1.3) to [34]

;R (=1Ysech L + [1 — (=1Y(/16) exp L]
L) 1 4 (r}/256) exp(2L)

Ry

z__(_])/'& (r%/8)expL
2

2 14 (r1/256) exp(2L)’

(3.1.8)

where 1§ =1 — R% ~ —q%, i.e. 1 in the above expression is
understood to be 1 —R(2). If Ry > 1 and if we make the
substitutions /i =1 —Rj = —¢i =1 —R{ and L = L/q =
LRy~ L, we can approximate expression (3.1.4) by a
formula obtained from expression (3.1.8) i.e. the result is
practically identical with that given by expression (3.1.8).
Therefore, the approximation represented by expres-
sion (3.1.8) is valid both for R, <1 (where r% =0,
q% <0), and for Ry = 1 (where r% <0, (ﬁ = 0).

We can rewrite expression (3.1.8) also as follows [34]:

. (=1) sech L + [1 — (=1 (r3/16) exp L]*
) 1+ (r1/256) exp(2L) '

(3.1.8a)

Differentiation of expression (3.1.8) with respect to /o, and
the assumption that expL > 1 yield

Oy OJy _expL 1-— (r1/256) exp(2L)

dpw OR, —1)'R} . 3.1.9
oy R, 8 []+(r‘|‘/256)exp(2L)]2( )'RG . (3.1.9)

[t follows from expressions (3.1.8) and (3.1.9) that if

ﬁexpLZ(—l)'/, (3.1.10)

16
i.e. if the input intensity is [34]
Too = 1) = IgyRY) = Ioy [1 + (—1)"8 exp(~L)] ,(3.1.11)
the power of the jth wave at the output is maximal and
almost all the output radiation power is concentrated in the

Jth wave: Iy =~ Iy, J; = Ry, T; = 1. The power of the other
wave is then negligible:

sech L

Ry—Jym1-T;~ ~2exp(—L) < 1. (3.1.12

An analysis of the solution of the system of equa-
tions (2.5.3) thus reveals an unexpected and interesting
physical phenomenon. It is found that, irrespective of
the length of the system, near the ‘critical’ value (fgy)
of the input intensity a definite relationship is observed [34]:
if the radiation intensity at the input is slightly less than the
critical value, namely if I, = Il(\/ll) ~ Igy [l — 8exp(—L), then
almost all the radiation leaves the system in the form of the
first wave (Fig. 2a, point M) but if the input intensity is
slightly greater than the critical value, namely if
Too :1](\2) ~ Iom [l + 8exp(—L)], then almost all the radia-

Ty
1
1
2
0 I 1
M 2 Ry 3
cos(y)
1
b
0 |
1 2 3
Ry

Figure 2. Dependences of Ty =1Iy/ly (@) and cosy, (b) on Ry =
Ioo/Iom, plotted on the assumption that L =2nKI//Af = 1.6m:
(1) exact solution (3.1.3); (2) approximation (3.1.8). In the self-
switching region, curves 7 and 2 merge; . =0, 8, = 6, = 0.

tion leaves the system in the form of the zeroth wave
(Fig. 2a, point My). The change in the input intensity
sufficient to switch completely the output radiation from
one wave to the other,

AL =19 — 1) ~ 1614 exp(—L) < Ioy (3.1.13)

is very small compared to /.

This abrupt switching of the radiation was called by us
radiation or light self-switching, because it occurs as a result
of a change in the input radiation intensity. The phenom-
enon of self-switching can be defined as a major change in
the ratio of the wave intensities at the output of a system
with UDCWs caused by a small change in the intensity of
one of the input waves. Although in this section we shall
concentrate on the simplest self-switching case where only
one of the waves enters a system with identical UDCWs,
this definition is valid also (as shown later) as a general
definition of the phenomenon of radiation self-switching. It
can also be called the self-switching of unidirectional
distributively coupled waves.

We shall call the self-switching point M; (j =0 or 1) the
state of a system in which (under self-switching conditions)
the intensity of the jth wave is maximal at the output
(T; =max). In the case of identical UDCWs considered
here, this state is reached when the input intensity is given
by the set of expressions (3.1.11) when almost all the output
radiation is concentrated in the jth wave (T; =~ 1).

For a given value of R, the point M; corresponds to the

parameter
16 8
L~In|l—— ] ~In R (3.1.14)
1 —Rj} 1—-R,
and the point M, corresponds to
16R} 8
L~In(——2)~h . (3.1.15)
Ri—1 Ro—1
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If Iyjo=1Iy (r; =0), it follows from expression (3.1.8)
that [34]

_Ro j 2exp(=L)
i~ 2 [l+( D 1+ exp(—2L)| "’

i.e. the intensity of the zeroth wave is slightly higher and
that of the first wave slightly lower than half the wave
intensity at the input, but if exp L > 1, the wave intensities
become almost equal (Figs 2—4). More exactly, such
equalisation occurs at the value [34]

Too = Iy [l - 8exp(—2L)] ,

(3.1.16)

(3.1.17)

which is almost equal to Iy, for expL > 1.
For Iy so close to I, that [34]

(3.1.18)

292
T
[expL E] <1,

or, which is equivalent [34], if

[100 —Iom

2
] < 64exp(—2L) , (3.1.19)

Tom

we find from expression (2.1.16) that
I i1 i
Iy~ % [1 —(=1) 3 rrexpL +2(—1)expL| . (3.1.20)

The slope or steepness of self-switching in the direct
vicinity of 1oy to Ipy, i.e. when condition (3.1.19) is obeyed,
can be found from expression (3.1.9) or (3.1.10) in
accordance with the formula given in Ref. [34]:

k-:%:%m (_1)f exp L
J 6100 aRO 8

. (3.1.21)

This reveals another interesting result. Near a certain value
of the input intensity /oy = Igy (called the critical or self-
switching intensity) there is a linear section of the
characteristic 7;(lo) and the width of this section can be
estimated from condition (3.1.19) and the slope is given by
formula (3.1.21). The slope of this section can be very high
(k = |k;| > 1). In other words, if £ > 1, a small change in
the input power near the critical value produces a large (&
times larger) change in the output power. This effect can be
used to develop an optical small-signal amplifier or an
optical transistor [32, 33] (Figs 5a—5c). This can be done if
we inject, as one of the waves, radiation of constant
intensity I, & Ioy (which will be called the pump radiation)
and at the same time (in this case in the form of the same
wave) we also inject a weak alternating signal of intensity /
(in the case under discussion the signal has the same
frequencyt), which is incoherent with the pump. The
intensity (amplitude) of the signal lies within the limits of
the linear section of the characteristic we are discussing
here. The amplitude of the change in the power of each
wave [; at the output will then be |k,| greater than the
amplitude of the signal power and the nature of the time
dependence 7;(t), i.e. the profile of the amplified signal, will
be the same as the profile of the initial signal, implying that
the amplification will occur without distortions. The profile
Io;(t) repeats the profile of I(¢) and I,,(¢t) is an inverted
image of I,(¢) (Fig. 5h).

Formula (3.1.21) thus defines the gain of an optical
transistor and condition (3.1.19) determines the width of

FThe case when the signal frequency differs from the pump frequency
is discussed in Section 5.

the linear part of the transistor characteristic. The greater
the number of times that energy is switched between the
UCDWs in the length [ of the investigated system under
linear conditions, the more easy is the self-switching of the
radiation in the nonlinear regime and the greater the optical
transistor gain, which increases exponentially with increase
in L. For example, if in the linear regime the switching
occurs twice between the waves, we then have L = 2w and it
follows from formula (3.1.21) that |k,| ~ 67. If in the linear
regime the switching between the waves occurs three times,
i.e. if L = 3m, then |k | = 1550. Since in integrated optics we
usually have K ~ 1074-107%, 1~ 0.1—=1 cm, and A ~ 1 pm,
it follows from formula (3.1.21) that the optical transistor
gain can be very large.

We shall refer to the set of parameters of the system
corresponding to the condition r, =0 and r=1 as the
middle point M of radiation self-switching. In the present
case this condition is equivalent to Iy = Iy, and the point
M on the Ty(R,) curve (see Figs2a and 3) has the
coordinates Ry =1 and Ty = 1/2; at this point the slope
of the curve is maximal. The index M is selected to denote
the ‘middle’ point M and the intensity corresponding to M
is the critical intensity Iy (Fig. 2). In the present case we
have Iy = Igy = 4K/|0] [34, 35]. In general, I; may differ
from the specific value /g (Section 3.3).

(3) In the range ¢> =r 2 =Ry> =1Iy/ls <1 (¢t =~ —
r% ~ 1) the elliptic functions can again be approximated by
the trigonometric functions [121]. Substituting such approx-
imations into expression (3.1.4), we obtain [34]:

1 1
T, ~ W [sin®(LR o) + Ry cos*(LR )] =~ W sin”(LR ) ,

T,
Tozl—msm (LR ) .

(3.1.22)
The bulk of the radiation power is concentrated in the
zeroth wave and it oscillates weakly with variation of LR .
The period of the power oscillations along the L axis is
2n/R,, but along the R, axis it is 2m/L.
Evolution of the dependence T((R,) as a result of
changes in the parameter L is shown in Fig. 3 and

Ty
1.0

0.8 |-

2.0
Ry

Figure 3. Evolution of the dependence of T, on R, as a result of
changes in L: (1) L/n=0.75 (2)1, (3) 1.5 a=0,0,=6,=086.
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Ion/Ioo

2n 3n 4 L

Figure 4. Dependences of Ty on L for Ry < 1 (a) and Ry =1 (b): (1) Ry =0.1, (2) 0.9, (3) 0.99, (4) 0.999, (5) 1, (6) 1.001, (7) 1.01, (8) L.1;

a=0, 0, =0, =0 (figure taken from Ref. [34]).

evolution of the dependence T(L) as a result of changes in
the parameter R is demonstrated in Fig. 4. Analytic results
and physical conclusions stated above are confirmed and
illustrated by the results of a computer solution of the
system of equations (2.5.3), presented in these two figures.
It is interesting to see how the dependence T, = sin?(L /2),
well known from the linear theory [1—10], transforms as the
parameter R% = 1(2)M /1%0 gradually increases from a value <1
to 1 and 4 (Fig. 4). In the limit Iy — Iyy(Ry — 1), the
effective length of the energy beats along the L axis tends to
infinity and energy exchange between UDCWs ceases
(line 5 in Fig. 4).

This radiation self-switching can also be used to limit
the intensities of the pulses or to select pulses in accordance
with their intensity [34]. For example, for L =2m, a
rectangular pulse with Ry, = 0.985 appears at the output
as the first wave and a pulse with Ry = 1.015 emerges as the
zeroth wave [34].

We shall now consider a couple of examples of the
realisation of self-switching.

Example 1 (taken from Ref. [34]). Radiation enters one
of the coupled strip waveguides, fabricated by a familiar
method —of the kind described in Refs [1-10]—in a GaAs
crystal for which we have the experimental value
0~23x10 esu at A=1.06 pm [122]. Let us assume
that [=1cm, K=5x 1074 B=3.5 1In this case we
have Iy =4K|0| = 8.5 x 10* erg em™ and the pump
wave intensity is ~cfly/2n~ 140 MW em™2; if the
cross-sectional area of the waveguides is ~1077 cm2, the
pump power is P ~ 14 W. The power gain of an optical
transistor (Fig. 5a), given by expression (3.1.21) is then
0l /0l =~ 500; according to condition (3.1.19), the relative
width of the linear part of the characteristic is less than 1073

i.e. power differences (at the input of the zeroth waveguide)
smaller than 107> W can be amplified without distortion.

It is pointed out in Ref. [34] that in the case of InSb
waveguides (with 6 approximately four orders of magni-
tude greater than for GaAs), the values of Iy and of the
pump intensity can be considerably lower for the same
value of |0/, /0ly|. It was also mentioned in Ref. [34] that
Iy can be reduced by several orders of magnitude if use is
made of exciton resonances in III-V semiconductors (and,
according to Ref. [123] there should be an increase in 6).

Attention was drawn in Ref. [36] that such self-switches
can be made relatively readily from fibre waveguides. Their
relatively weak nonlinearity may be compensated by a
considerable length and also by a relatively low refractive
index and selection of a short radiation wavelength
A~ 0.5 pm. This can reduce K and thus the self-switching
intensity Iy and yet retain a high gain in an optical
transistor, because this gain is governed by the parameter
L. Moreover, high-intensity radiation can be injected into
an optical fibre and the maximum value of this intensity is
usually limited by breakdown at the fibre end.

Example 2 (taken from Ref. [36]). In this case light with
A =0.53 pm is injected through the input of one of two
tunnel-coupled optical waveguides which form a dual-core
fibre. It is assumed that 6 ~ 107'% esu, f = 1.46, and the
distance in which light is transferred from one core to the
other under linear conditions is [, =1m, i.e.
K = pA/2l, ~ 3.6 x 1077, In this case the critical intensity
is cfly/2n ~ 10° W ¢cm ™ and for a core of cross-sectional
area S ~ 1077 cm?, the switching power is Py ~ 100 W. If
the length of the tunnel-coupled waveguide system is
l=3l, =3 m, the relevant parameter is L =3n and an
increase in the input power near the value of P, by
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Figure 5. Examples of optical transistor, switch, and amplifier
configura-tions based on nonlinear systems with UDCWs:
(a, d, e) tunnel-coupled optical waveguides; (b, f) waveguides with
UDCWs of different polaris-ations; (c, g) periodic  structures;
(h) operating principle of the con-figurations shown in Figs Sa—
Sc [36]. Here, I, and I are the pump and signal intensities, such that
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I, > I (the figure is taken from Refs [32, 33]). In the configurations a—
d and g, and in the configuration f with the circular polarisations, the
pump intensity is I, & Iy, where Iy is the critical intensity; in the case
of the configuration e, the pump intensity is I, >Iy/2; for the
configuration f with the TE and TM polarisations and with K =0, the
pump intensity is 7, > 3|a|/|0].

8P ~ 25 (10 — 1)) ~ 16Py exp(—L) ~ 02 W results in
complete self-switching of light (from waveguide 1 to
waveguide 0) at the output. Within the linear section of
the characteristic (8P < 0.1 W) the gain, described by
expression (3.1.21) is 8l,/0l,, =~ 1600.

3.2 Self-phase-matching of waves
Let us see what happens to the phases of the waves in the
course of their self-switching. Let us consider specifically
the phases of UDCWs described by the system of
equations (2.5.3), for example waves in TCOWSs; the
phases of other such waves are found by making the
substitutions described by the set of expressions (2.5.2).
As in Section 2.1, we shall assume that UDCWs are
identical (¢ =0, 0, =0, =0). It follows from expres-

sion (2.5.9) that [34, 37]
cosy = 2sign 0+/JoJ; = 2sign+/(Ry —J)J .

Hence, we find directly that if Ry > 1 (i.e. if Iyg > Igy),
then

1
J0>Jb:§(R0+\/R(2)—1>,
1 [p2
J] <J(:§ RO_ RO_] N

ie. if Iy > Iy there is a range of forbidden radiation
intensities for each wave [34]!

(3.2.1)

(3.2.2)
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Substitution of the solution described by expression
(3.1.3) into expression (3.2.1) gives cosy in a cross section

of the system whose coordinate is z =/ [37]:
cosy, =signOr|sn(L,r)| . (3.2.3)

If r=Ry=gq ' >1, ie. if Iy > Iy, then formula (3.2.3)
can be rewritten as follows [37]:

(59
sn|{—,q]|.
q

Let us now analyse formulas (3.2.3) and (3.2.4).
(1) In the near-linear regime when P = R% < 1, we find
that

cosy,; =sign 6 (3.2.4)

2 .
2L
cosy,; ~signfr d [L—w

inL —— L
sin ) 2 ]cos

~ signfr|sinL| . (3.2.5)

In the purely linear case characterised by r =R, =0 we
have cosy; =0 and ¥, =m7/2, ie. the wave phases are
shifted by /2.

(2) In the radiation self-switching region (r =R, ~ 1
and expL > 1), if we adopt the approximation for the
function sn(L, r), derived in Appendix II and described by
expression (I1.3), we find that [37]

1 — (r1/256) exp(2L)
1+ (r}/256) exp(2L)

whereas in Section 3.1, we have r% =1 —R(Q).

Approximations to formula (3.2.4) yield results which
are almost fully identical with formula (3.2.6). In other
words, the approximation represented by formula (3.2.6) is
valid in the radiation self-switching region both for
r=Ry<1 (where ¥ = —¢} =1—R}>0) as well as for
r=Ry>1 (where 1 = —¢7 =1 —R} <0).

In the immediate vicinity of the point M, where inequal-
ity (3.1.19) is obeyed, we obtain cosy, = sign 6R,tanh L
and, sufficiently far from the input (expL > 1, tanh L = 1),
we have cosy, =~ Rysign6, ie. if 8 >0 and Iy =1y the
zeroth and first waves are in phase (Fig. 2b)!

As pointed out earlier, we are speaking here of the
phases of the waves described by the system of equa-
tions (2.5.3). In the case of the waves described by the
system (2.5.1), the phases are found by the simple substitu-
tion described by the set of expressions (2.5.2). Thus, for
identical UDCWs and the Bragg diffraction in an isotropic
periodic structure we have 8, = 0, 0y, = 0,y = 20; therefore,
we have 00 = 00 — 00] = —0, 0] = 0] — 9]0 =—0 and, if
0 >0, we obtain cosy;=—1, ¥ =m, ie. the waves at
the middle point M are in antiphase. In any case, we
can speak here of automatic phase matching at some
specific input intensity equal to the critical value.

This automatic phase matching of the waves at the
middle point M (Fig. 2b) will be called self-phase-match-
ing [37]. It should be stressed that self-phase-matching of
waves occurs already at a very short distance beyond the
input (where exp L > 1) and continues over the rest of the
length of the system. At the middle point M the sign of
M sin y, is reversed. At distances from the input much less
than the linear transfer length (L < 1, tanh L < 1) it follows
from formula (3.2.6) that the phases of the waves not yet
equalised become opposite even for oy =1y (Rg =1) and
we have cosy, ~ 0. If 0< (r]/256)exp2L < 1, then an

cosy,; ~ sign 6 tanh L , (3.2.6)

increase in the deviation of Iy, from Iy (for a fixed value
of L) or with increase in L (for a fixed R), we find that
| cosy,| decreases from R, to zero. The values R, and L at
which we have cosy;, =0 can be found from expres-
sion (3.1.11) and they correspond to the self-switching
points M.

It follows from formula (3.2.6) that as I,y approaches Iy
(i.e. on approach to the middle point M), there is an
increase in the length of the part of the system where the
phases of the waves are matched and where the degree of
their matching increases.

(3) At high intensities ((12:R62 <1), we find from
formula (3.2.4) that [37]

cosy,

~ sign 0

1 in(2LR
sm(LR 0) — m |:LR 0 M] COS(LR 0)
0

~ sign 0 [sin(LR )| . (3.2.7)
The cosine of the phase difference oscillates along the L axis
with a period nly; /Iy, and along the R, axis with a period
n/L, and also along the coordinate z of the system with a
period 284/|0|Ip. The zeroth and first waves are in phase
(for 8 > 0) or in antiphase (for 8 < 0) only over short parts
of the system near the values z =1= (2m + 1)BA/|0|1y,
m=0,1,2, ...

Fig. 2b shows the dependence of the cosine of the
difference between the wave phases on R, for L = 1.6m.
This dependence for other parameters L and also the
dependence of cosy; on L for different R, are all given
in Ref. [37].

The results of this section supplement those given in
Section 3.1. We can see that the radiation self-switching
effect is related organically to self-phase-matching of the
waves and to an abrupt change in the wave phases from
zero to /2 (or from T to ©/2) as a result of a small change
in the input intensity near its critical value.

3.3 Optical self-switching in a system with nonidentical
unidirectional distributively coupled waves

We shall now consider the case of nonidentical UDCWs:
o #£0, 0, # 6,. We shall assume, as before, that radiation is
coupled into the system in the form of just one wave:
Ry #0, R, =0. Then, one of the roots of Eqn (2.5.14) is
J4 =0 and the solution is [41]

_7 1 —cn(s, r)
“(p/a+1)+(p/qg—1)en(s, r)

Ju » Ju=Ro—Ji,

(3.3.1)

where s =2L\/pq, p* = (Ju —Jp)(Ju —Jo), @ =Jpdo 1 =
V2= (p—a)l/(4pg). ri=1-r=[(p+4q)° —J]/(4pq).
We can easily show that p2 >0, q2 > 0.

It follows from the solution described by expres-
sion (3.3.1) that the maximum value of J; is
Jiy=J, <Ry In other words, if J, <R, energy is not
transferred completely from the zeroth to the first wave and
the ratio J,/Ry = (AT),,,, determines the depth of possible
energy transfer of the self-switching. This depth of transfer
in self-switching is understood to be the difference between
the maximum and minimum  values of T
(AT)pax = Tjmax — Tjmins 0 < (AT),., < L.

max J,max max
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3.3.1 Complete transfer and complete self-switching. It
really follows from expression (3.3.1) that if

_ b0
= 4ﬁ

then 4 =0, I, = Iy, (AT), . = L. i.e. complete transfer of
energy from the zeroth to the first wave is possible [41]. In
this case we have p=¢ =14 and Iy =Ioy = 8K/|0, + 6, ];
expression (3.3.1) then reduces to the solution described by
expression (3.1.3) obtained for identical UDCWs. Conse-
quently, in this case we can use the results of an analysis
given in Section 3.1 and in Ref. [34], i.e. we can use
formulas (3.1.11) and (3.1.21) if we bear in mind that the
value of the critical intensity I,y now generally differs from
the value Iy = 4K/|6| which applies in the case of identical
UDCWs.

o

100 =0 , (332)

3.3.2 Incomplete self-switching when a= ay+ Aa. A
deviation of o from o should obviously reduce the
value of I, and, consequently, the self-switching depth
(Fig. 6). If Aa is small (JAx| < K), then [41]

(AT) o = 1 — (AE) +4(A8)° (3.3.3)
where A¢ = (Aa)sign(f, + 0,)B/K. Therefore, in the first
approximation in Aa/K, the self-switching remains com-

plete (Fig. 6a) and the solution described by expression
(3.3.1) becomes [41]

I 4 12
I~ % [1+ (1) en(s, )] + (=1) %(Aé) sn’(s,r)
(3.3.4)

where raRo[1 —Ro(AE)], s~ L[1+Ry(Af)] and, as
usual, j=0 or 1.

The self-switching or critical intensity /y; (correspond-
ing to the middle point M), is defined, in accordance with
Ref. [41] and Section 3.1, on the basis of the condition
r=1:

Iy ~ I (1 +AS)

where Igy = Iy (a2 =0)=8K/|0, + 0,].
If expL =~ exps > 1, then for

(3.3.5)

Too = 1) ~ Iy {1 + (=1)/ 8exp [-L(1 + AE)] + A¢} (3.3.6)

the output radiation is concentrated entirely in the jth
wave [41], represented by points M; of the system, in
accordance with expression (3.1.11). We can see that
characteristic switching self-switching points M and M;
may shift, depending on the sign of A¢, to the right or left
relative to the points corresponding to the case when o = ay
(Fig. 6).

At the middle point M (i.e. when Iy, = Iy), we have [41]

o, 1—A
ﬁz (=1)/ < éexp [L(1+A8)] . (3.3.7)
1_,,&«,%[1 +(-1)/(Ag)] . (3.3.8)

It is evident from expression (3.3.7) that the gain of an
optical transistor depends on A¢: it increases for A > 0
and decreases for A¢ < 0 (see Fig. 6). The changes in the
gain can be very considerable. For example, doubling of
the gain corresponds to Aé=1n2/(1+L).

o @

.90 0.95 1.00 1.05 1.10 Ry

Ry

M'I

| L 1 1 |
1.810 2.484 2486 2.488 2490 Ry

0
1.800

1.805

Figure 6. Dependences of Ty =1y/lyy on the normalised input
intensity Ry = |0|Ip/4K of the zeroth wave, plotted for 6y =0, =0,
L =2nKI/Af=2m, and the following values of &  (I) —0.04,
(1')0.04, (2)-0.1, (2')0.1, (3)-0.25 (3")0.25 (4)-0.5,
(4')0.5, (5) =1, (5') 1, (6) =2, (6")2. The middle self-switching
points arc labelled M and the crosses are used to identify the points
with the maximum slope (figure taken from Ref. [41]).

3.3.3 Equal nonlinear coefficients. When the nonlinear
coefficients are equal (6, =6,=0, a#0) we have
o =0, Au=a and A¢=¢ = (af/K)signf. This impor-
tant and most frequent case is realised, for example, in the
case of tunnel-coupled optical waveguides made of the
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same material in which the mismatch is due to the different
waveguide thicknesses. Then, |6, —0|log ~ a0y is a
quantity of the second order of smallness and can be
ignored, since in the derivation of the system of
equations (2.5.3) only quantities of the order of K, a,
and 0/ (i.e. of the first order of smallness) are included.

3.3.4 Complete self-switching when a = ay. Relation-
ship (3.3.2) implies that for each instantaneous value of
the total intensity 7y, there is a corresponding value o = o.
This requirement is difficult to satisfy, but—in principle —
this is possible. In the case of tunnel-coupled optical
waveguides made of electro-optical materials it is necessary
to apply an electric voltage proportional to Iy, selected in
such a way as to satisfy relationship (3.3.2). True, we can no
longer speak of self-switching of the radiation, because in
this case there is a contribution of the electro-optical effect.
The case when « is fixed is of greater practical interest.
The condition for radiation self-switching is Iyy = Iy.
Therefore, complete self-switching can occur at a fixed
value of o, selected in advance, if this parameter is [41]

6o — 0, 2K(6, — 61)
oy = = 3.39
M= ™ T e, o 32
The parameter ¢ then becomes
_ 50 -0
& =2 10, (3.3.10)

If &€ =&y is selected, then complete radiation self-switch-
ing, corresponding to (AT), . ~1, can be expected
(Fig. 7a) when I, is varied near the critical value Iy,
which is true even in the case of nonidentical tunnel-
coupled optical waveguides or a system with other
nonidentical UDCWSs! Therefore, we shall call Iy, the
‘critical complete self- switching intensity’ or simply the
‘complete self-switching intensity’ [41].

However, selection of a = oy leads to a deviation of the
solution from the form given by expression (3.1.3), which is
valid only if « = « and, in spite of proximity of the values
of Iy and Iy (and, consequently, of ay; and o), the nature
of self-switching may change considerably compared with
the case when o« = . The slope and direction (sign) of such
complete self-switching is given by a formula taken from
Ref. [41]:

61_,, ~ (=1 ‘300—0| expL

et APS JZ270 - P , 3.3.11
5100 0()"‘0] 8 ( )
and if
RO~ 1+ (—1)is 0 or (3.3.12)
360, — 0,

the radiation emerges from the system entirely in the form
of the jth wave (corresponding to the points M)).

It follows from formulas (3.3.11) and (3.3.12) that if
30y — 0,)/(0y + 6;) >0, an increase in Iy near the value
Iy switches the radiation at the output from the first to the
zeroth wave, but if (36, — 6,)/(6y + 6,) < 0, the switching is
in the opposite direction. The slope of the characteristic
described by expression (3.3.11) depends on the relationship
between 6, and 6,. For example, if 0, = 0 # 0, 6, =0, the
slope is three times as high as for the case of identical
UDCWs (0y = 0, = 0) with the same value of L, and if
0, =0, 6, =0+ 0, it has exactly the same absolute value as
in the case when 6, = 0, = 6, but the sign is now opposite

1.95 2.00 2.05 R,

Ty

1.0 |- 4

0.5

0 1 1
22 23 24 R,

Figure 7. Dependences of Ty on Ry = Opayloo/4K, plotted for 6 # 0,
and L =2m (1)0,=0, 0,=0#0 (0,4, =0.5), ¢=¢& =-2;
(2)0p=0#0, 0,=0 (04 =-05), &{=Cu=2 (3)0, =030,
(O = 0.35), AE=0.01; (4)0,=0,/3 (04 =1/3), A =0.1. Here,
04, = (0; — 6) sign(0y + 61) /260, is the normalised difference between
the nonlinear coefficients; O, = max(|6y|, |0,]) (figure taken from
Ref. [41]).

(Fig. 7a). If 8, =360, and a = ay;, self-switching does not
ocecur; 01;/0ly =0 and the points Rgy; move away from
unity to infinity.

3.3.5 Incomplete self-switching when a = avy+ Aa.In
practice, in view of the technological difficulties encoun-
tered in the fabrication of tunnel-coupled optical
waveguides and of other systems in which UDCWs are
used, it is unavoidable that there may be a deviation
(though small) of the value of « from oy, which reduces the
self-switching depth (Fig. 7c) [41]:

0, + 0, ? 2
= (555) @0

% [1 _ 2(590 —0,)(0 +6,)
(360 — 6,)°

where A& = (Aa)fsign(0y + 6,)/K =& — &y, Aa=a— oy,
|A¢] < 1. If (56y —60;)Ao >0, then an increase in |Ac|
reduces the self-switching depth much more than for
(56) — 6,)Aa < 0. If 6, = 6, expression (3.3.13) reduces to
expression (3.3.3).

(AT)

Q

_ 1L
max — 1_
M

(Af)] . (33.13)
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The self-switching slope corresponding to a = ay + A
is [41]

ol i[360— 0, 76, — 56, exp s

o~V 8,50, 30,8 A9 5 G319
where

. 00+0|

swr (14 gt tag).

If 6, = 0,, expression (3.3.14) reduces to expression (3.3.7).
The shift of the points M, M, and M along the R axis,
due to the mismatch A¢, is described by formulas given in
Ref. [41].
At the moment of radiation self-switching (Iyg = Iy), it
follows from expression (3.3.1) that

Ry 1
Jurd, —2exp(—s)(J, —3J,) = J, < 70:5, (3.3.15)

and the equality sign in the above expression is satisfied in
the case of complete self-switching (A€ = 0, Iy = Igy), and
at the moment of partial self-switching (A # 0, J, < Ro/2)
less than half of the input radiation is switched to the first
wave.

3.3.6 Self-switching in the case of arbitrary values of a and
0, . For arbitrary values of a and 6, the critical value of R
can be found from the condition 0 < J, =J, < J, (which is
equivalent to the condition r=1). This condition means
that if J = J, = J, then the f(J) curve touches the abscissa,
i.e. we have simultaneously both f(J,) =0, in accordance
with expression (2.5.14), and f'(J,) = 0; eliminating J,, we
obtain the following equation:

Ryt — 1 +24Ry (4RYy — 5) — 24%(6RYy + 1)

+64°Ry —4* =0, (3.3.16)
which gives the exact value Ry = Ry = Iy /Ioum at the point
M (only the values characterised by 0<J, <J, are
physically meaningful). At low values of 4],
Eqn (3.3.16) reduces to Eqn (3.3.5).

At the point M the value of T is governed by the root J,:

TOM ~

o +A3 —64°Ry + A(12RYy + 1) — Ry (8Ry — 7)
(4> = 24Ry; + 4R} — 3)2Ry '

(3.3.17)
The self-switching depth is described by

1
AT) s = —5
( )mdx 4‘,3

A* —24Ry; + 4R} =3 2
A —64*Ry + A(12R} + 1) — Ry (8R3, — 7)

(3.3.18)

’

where Ry, is found from Eqn (3.3.16).

Eqns (3.3.16) and (3.3.18) provide useful information on
Iy and on (AT),.,,, presented in Fig. 8.

If edn :% [Hdn = (01 - 00) Sigl'l (00 + 01)/20max9 where
Omax = max (|6, 161])], the tangent to the Iy (&) curve is
vertical at the point of complete self-switching. If 6,, > %,
there is a range of values of & where one value of ¢
corresponds to two values of Iy and (AT),,,,. i.c. there are
two values of the total intensity (Fig. 8) near which we can

expect radiation self-switching. Therefore, if 6,, > %, then

| | | |
-5 -4 -3 -2

Figure 8. Normalised intensity Oy,c/y /4K (a) and depth (AT),.. (b)
of radiation self-switching, plotted as a function of & for different
values of 0,,: (1) —0.6, (2)—0.3, (3)0, (4)0.1, (5)0.2, (6) 0.25,
(7)0.3, (8)1/3, (9)0.35, (10)0.4, (11)0.45, (12)0.5, (13) 0.55,
(14) 0.6 (figure taken from Ref. [41]).

for specific values of o and K we can speak of double
radiation self-switching (Fig. 7b). The depths of self-switch-
ing events are usually different, but in the range 0,, > % (for
example, if 6, =0.35) the (AT),,(f) curve in Fig. 8
intersects itself. This means that both self-switching depths
are the same (Fig. 7b).

Eqns (3.3.16)—(3.3.18) give Ry, Toy, and (AT),,,, even
for large values of |4| and |&]. For example, if 6, =0,
A =¢=1, wereadily find Ry, = 1.8054, Toy = 0.6983, and
(AT),,., =0.8427 (Fig. 6e); if 4=¢=2, we find that
Ry =2.4864, Tgy =0.7634, and (AT),,, =0.7225. For
A =& < —0.1909, there is no Ry.

At high values of £ the point M (Figs 6d and 6e) lies
above the point identified by a cross (x), where the slope
has its maximum. At the point M (i.e. for Ry = Ry and
To=Tom), we have cosyy; =1 and the sign of siny, is
reversed as a result of variation of R [41], i.e. the process is
similar to self-phase-matching of identical UDCWs
(Section 3.2).

The results of numerical solutions of the system of
equations (2.5.3) [41] are in agreement with formu-
las (3.3.3)—(3.3.18) and are illustrated in Figs 6 and 7.
In the case of low values of |¢| we indeed observe an almost
complete transfer of energy from one wave to another, but
at high values of |£|, as demonstrated by the general
solution described by expression (3.3.1) the transfer of
energy is incomplete. However, for negative values of &
and for ||~ 1 (Fig. 6c) the transferred power does not
reach even half of the input power, but for positive values of
¢ (Figs 6d and 6e) up to £=1 we can still speak of
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radiation self-switching. For example, if £ = 1, then ~84%
of the input power is transferred to the first wave. It should
be stressed that an increase in £ increases considerably the
gain. On the other hand, in the case of identical UDCWs
(¢ = 0) when L = 27 at the point M we have, in accordance
with expression (3.1.21), the slope 01y;/0ly, =~ 67; for non-
identical UDCWs if £ =1 and the value of L is as before,
the maximum slope is 0/, /0ly, ~ 1136. It follows that the
selection of & =1 increases the slope by more than one
order of magnitude and at the same time increases the
critical intensity by 80% and reduces the switching depth by
16% (curve 5 in Fig. 6e).

Fig. 7a illustrates formulas (3.3.11) and (3.3.12); if
0, =0, 0, #0 an increase in Iy near Iy, switches
completely the radiation at the output, and not from the
first to the zeroth wave (as in the case of identical UDCWs)
but vice versa.

Fig. 7b demonstrates double self-switching. The first
occurs at Iy ~ 5.6K/0,,,, and its slope is in agreement with
formula (3.3.16). The second self-switching occurs at I; ~
7.9K /0.« and it is much steeper than the first. When I is
increased, the first self-switching takes place from the zeroth
to the first wave and the second in the opposite direction.

Fig. 7c shows that radiation self-switching occurs also
for 6, = 6,/3, but only if (Af) # 0 [41].

It follows that nonidentity of tunnel-coupled optical
waveguides may not only reduce the self-switching slope
and thus reduce also the critical intensity, but it can also
increase considerably (by one or two orders of magnitude)
the self-switching slope and at the same time increase, but to
a much lesser degree, the value of Iy;. This nonidentity
reduces also the self-switching depth, but this can be seen
only in the second approximation. The influence of the sign
of A€ on the self-switching slope appears already in the first
order in A&, but the self-switching depth is affected by this
sign only in the third order in A&.

It is known (Fig. 1) that complete energy exchange is
not possible for nonidentical waves in the linear regime.
However, in the nonlinear regime, complete radiation self-
switching is possible even if the refractive indices of the
waves are far from identical. It appears when condi-
tion (3.3.9) is satisfied: the meaning of this condition is
that the nonidentity of the refractive indices is compensated
by the nonidentity of the nonlinear coefficients. The slope
and direction of such complete self-switching are given by
formula (3.3.11).

Double radiation self-switching can occur for certain
values of the parameters, i.e. switching may be observed
near two values of the input intensity, each a critical value.

Trillo and Wabnitz published a paper [80] on the same
subject, soon after Ref. [41], but they did not investigate
analytically the solution described by expression (3.3.1).

Double radiation self-switching is possible not only in
the case of nonidentical but also in the case of identical
tunnel-coupled optical waveguides if two waves are injected
(Sections 3.4 and 4.3) or even if one wave is injected,
provided the nonlinearity saturation is considerable [98].

3.4 Influence of optical losses on optical self-switching

It is desirable to consider the influence of the optical losses
on radiation self-switching because many systems with
UDCWs not based on optical fibres may suffer from
considerable losses. For example, in the case of GaAs
tunnel-coupled optical waveguides the losses are usually up

0.9 1.0 1.1 1.2 13 14
Ry

Figure 9. Radiation self-switching effect plotted for different losses in
the distance equal to the coupling length [ of UDCWs; the nth curve
corresponds to the losses amounting to ndB; L =21 oa=0;
0, = 6, = 0 (figure taken from Ref. [42]).

to 5 dB cm™! [3—5]. Moreover, it is important to take the
optical losses into account also because it is then possible
to estimate, in the first approximation, the influence of
secondary nonlinear effects (such as stimulated Raman
scattering, stimulated Brillouin scattering, and generation
of the second and higher harmonics) on radiation self-
switching.

When the losses are taken into account, the system of
equations (2.5.3) corrected for the losses becomes [42]

A dA 21z A
92 S kn o (-5 i £ i =

2
—0olAo|" Ay,

AdA 1027z A
ﬁ——I+KA0 p( 7 Z) +i Eﬁé’lAl =—0,]A,]’A,,
(3.4.1)
where §; is the loss factor.

The system of equations (3.4.1) can only be solved
numerically. The results of numerical experiments carried
out for a system with identical UDCWs (¢ =0, 8, = 6, = 0,
8y = 6{ = J) when only one wave (R, = 0) is injected into
the system demonstrate (Fig. 9) that the losses of 1-5 dB in
a distance equal to the wave coupling length / do not
destroy radiation self-switching, although they weaken this
effect: the self-switching depth and slope decrease. The
larger the parameter L, the higher the level of losses at
which radiation self-switching is still possible.

3.5 Influence of the phase of a signal on its amplification
If a signal and a pump, coherent with the signal, are
applied to the input of one (for example, zeroth) tunnel-
coupled optical waveguide or, more exactly, if a signal and
a pump reach the input of a mixer in front of the
waveguide, then the two waves interfere before entering the
waveguide. Let the signal amplitude at the input to the
mixer be Ay = /Ty exp(ipy,) and the pump amplitude be
Apo = /Too exp(i@,). Let us also assume that I, & Iy and
that the power transfer coefficients of the mixer are T and
R for the pump and signal, respectively [33]. Then the
intensity at the mixer output of the radiation entering the
zeroth waveguide is Io = Rl + Tl + ZW,/Ipolsox
cos(ppo — @) and, according to expression (3.1.21) the
small-signal gain is [66]

_Oly 0y [ /= signBcosy, ex p
S_aISO_ alsON TR VRSO +R (35])
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(Where Ry = I/Iom» Yo = @po — Pg)> Which is similar to
formula (4.4.13).

If Ry — 0, we find that |k,| — oo, i.e. a small signal
experiences giant amplification (this is discussed in Ref. [36]
and in Section 4.4) when a signal and a pump are applied to
the inputs of different waveguides.

An optical transistor with an enhanced gain, discussed
in Section 4.5 and in Refs [51, 54 —56, 62] for the case when
a signal and a pump reach the inputs of different
waveguides, can also operate when a signal and a pump
are applied to the input of one waveguide [66]. This is a
consequence of formula (3.1.21) and of interference of the
signal and pump at the input. This transistor is described by
the same formulas as in the case when the signal and pump
are injected into the inputs of different waveguides
(Section 4.5). In particular, the signal gain in such an
optical transistor is given by formula (4.5.3). Such opera-
tion of an optical transistor is possible when in the absence
of a signal the system is at one of the points M, or My, i.e.
when the pump intensity satisfies formulas (3.1.11) and
(3.3.6).

A strong influence of the interference of the phase
difference at the input has both positive and negative
consequences.

On the one hand, it makes it possible to increase greatly
the signal gain, compared with the pump gain, and to
control the distribution of the output wave intensities by
altering the input phase of the signal. Another important
factor is that the strong dependence of the small signal gain
k, on the difference between the signal and pump phases has
the effect that the signal characterised by a certain (close to
zero or to m) phase shift relative to the pump should be
amplified more strongly than the noise. Moreover, since the
noise phase varies at random with time, time averaging of
cosy, in formula (3.5.1) causes it to vanish, i.e. there is no
giant amplification of the noise. Therefore, the giant
amplification effect can be used to increase the signal/
noise ratio.

On the other hand, in the development of optical
computers it is usual to postulate the requirement that
the phase of the signal arriving at a switching element
should not influence the output power or the signal gain of
this element. This requirement is quite natural and it arises
from the desire that the transmission characteristics of the
elements should be stable and independent of the optical
path of the signal between the output of one element to the
input of another. This phase independence of the output
characteristics of the input signal is desirable also in the
development of optical multivibrators, described in Sec-
tion 6 and in Refs [56, 66]. Naturally, this influence of the
signal phase can be avoided in a trivial manner by making
the signal and pump incoherent relative to one another.
However, this is not the optimal method. Other methods
are discussed in Section 5.4.

4. Optical self-switching in the presence of two
waves at the input

The presence of a second wave at the input of a cubically
nonlinear system with UDCWs complicates the process of
interaction of these waves and introduces qualitatively new
features. An analysis of this interaction shows that the
radiation self-switching effect is not only possible, but it is
more abrupt and more complex and appears in a much

greater variety of ways than when only one wave reaches
the input. Let us therefore assume that both waves, R # 0,
R, #0, reach the input of a nonlinear system with two
UDCWs. The task is to find /; and  at the output of the
system, i.e. the values of I;l, J;, and y,.

4.1 Solution of the equations for identical unidirectional
distributively coupled waves
If UDCWs are identical,

ﬁozﬁlzﬁ, (XZO, 00:0|:0, 00]:0|0, (4]])
then the roots of Eqn (2.5.14) are
R R
Ju,d:%i D+ >
4.1.2)
R R
where
1 [44/RyR sign 0 —1+£vD
Di:Z[ oR | sign CZOS% \/_+(R0—R1)2]
1 1 VD)
= 4o+ rop - L2

D:16RORl—8 RoRISigHHCOSl//0+] .

The function described by expression (2.5.12) can be
written in two different ways. Depending on the method
used to write it down, the integral in expression (2.5.13)
can be reduced to two different tabulated integrals.
However, the two forms of the solution obtained in this
way reduce to one another by identity transformations [62].
We then obtain [36]

Ro+R i

5y =R Ry Ben(s. .
where S = s+ F(u, )m, * =D,/(D, —D_)=4D,/V/D,
s=L(D)"*, B=1-r=-D_J(D,—D_)=—4D_/\/D,
u=arccos[(Ry — R,)/2\/D].

The solution represented by expression (4.1.3) is valid
for all real values of ». However, it is convenient to analyse
this solution only in the range r<1, ie. for D_<0.
However in the range r = 1, i.e. for D_ > 0, this solution
can be represented conveniently by a suitable transforma-
tion [120] in the form

Ry +R i S
le :%+(—1)'/\/D+dn(;, (]> N

where S =s+mF(u', q9)q. S/q=2L/Di+mF(u', q),
p' = arcsin(rsin p) = arcsin(g ™" sin p).

The solution described by expression (4.1.3) was
obtained later by Winful [78] for the special case when
Ry =R, =R (Section 4.10).

4.13)

4.1.4)

4.2 General solution of the equations
We can represent expression (2.5.12) in the form

70) = =00 =2 (7 -2 ?J">2 - _4]")2] ’

4.2.1)
and thus reduce the integral in expression (2.5.13) to one
which is tabulated in Ref. [120]. Integration of expres-
sion (2.5.13) gives

s =2L~/PQ = {F(u,r) — F(u,r) }m , (4.2.2)
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where

B 0.~ )]
W = 2arctan [m] N

_ Q(Ja _Rl) 12
U =2arctan [m >
o Ua=d) —(P=0)

4PQ ’

py PO =,
] 4PQ 9

Q' =y —Jp)(a—J.) .
Transformations yield [51, 54 —56, 62]

_({Ja+J4P[O)+ (JP/Q —J,)en(S, 1)
T+ P/Q+(P/Q—en(S.r)

where S = s+ F(u, r)m.

According to expression (4.2.3), Jy; reduces its max-
imum value, equal to J,, when cn(S, r) = —1I; the value of
Jor is then maximal and equal to Ro+R;—J, If
en(S, r)=1, J;;=J,; is minimal and Jy=Ry+ R, —J,
is maximal. The quantity (AT),.. = (Jo—J4)/(Ro+R})
is the difference between the maximum and minimum
values of the power transfer coefficient of the first wave
and represents the depth of energy exchange between the
waves; 0 < (AT),,.x < L.

In the case of identical UDCWs the solution described by
expression (4.2.3) reduces to that given by expression (4.1.3)
and we then have (AT),.. =2,/D,/(Ro+R;). If Ry =0,
we find that J;, =0, P=p, 0 =¢q, u=0, F(pr,r) =0, S =5
and then the solution described by expression (4.2.3)
reduces to that described by expression (3.3.1). If 4 =0,
R, =0, the solution described by expression (4.2.3) is
reduced to that described by expression (3.1.3).

In the range » = 1 we can analyse expression (4.2.3) by
introducing usefully parameters ¢ = , q% =1—¢ and
applying the identity en(S,r) =dn(S/q,q), where S/q=
s/q+F(i,q)m, p' = arcsin(q™" sin p).

PP=(,— Iy, =),

4.2.3)

4.3 Condition for and characteristic points, depth, and
slope of optical self-switching

The radiation self-switching effect generally appears when,
first,

exp S > 1 4.3.1)
and, second,

rel, e nfP<l, 4.3.2)
or more exactly

Ir|?expS <16 . (4.3.3)

Inequality (4.3.3) gives the estimate of the boundary of the
self-switching region.

The middle self-switching point M will be defined as the
set of parameters (Ry, R, ¥,), which is found from the
condition r; =0 equivalent to J, =J_, i.e.

b s —J) _(a—J.—Js)’ d

- 7 7 =0.

‘Ia‘]d_

4.3.4)

If D_ <0, then the roots J, and J, are complex conjugate.
If D_ > 0, the roots J, and J, are real. Therefore, if the real

roots J, and J,; are known (and they exist always),
Eqn (4.3.4) gives the relationship between the parameters
Ry, Ry, Y,, and 4 at the middle point M. The condition
Jg<J,=J.<J, implies that two equalities are obeyed
simultaneously: f(J,) = 0, which is a form of Eqn (2.5.14),
and f'(J,) = 0. Elimination of J, from these three equalities
leads to an equation, similar to Eqn (3.3.16), which
describes the relationship between Ry, Ry, ¥, and 4 at
the point M. However, we shall not give this equation
because it is very cumbersome.

Near the middle point M, we have |/, —J > < |/, +J.|*
and

2
Jpy—=J ) —J
r% ~ —L/% ~ _[( b )( a d) , 4.3.5)
4(‘1a _J‘v)(‘lx _Jd)
where J, = (J, +J.)/2.
In the self-switching region, i.e. when condi-

tions (4.3.1)—(4.3.3) are obeyed, the solution described
by expression (4.2.3) can be approximated by means of
formulas given in Appendix II [54, 62]:

2 2
J],z{Jd[—sechS—k(1+;—'()exp5)]
P r% .
ll h 1 ——L
+JdQ[sec S+( mexpS)]}

2 2
x{—sechS—I— (l +% expS)

P r% )™
+ 0 [sechS + <1 T expS>]} ,
where Jo; = Ry + Ry —J;; and the values of sech S can be
ignored.

The approximation represented by expression (4.3.6)
can be used when r <1 and also when > 1. Since in
the self-switching region we have r% m—q%, S/lg=S, it
follows that in expression (4.3.6) we can replace r| with —q%
and vice versa. If r > 1, the quantity ry is imaginary and ¢,
is real.

The self-switching points M; are the sets of the para-
meters Ry, Ry, and y, for which the intensities J; are

maximal in the self-switching region. According to expres-
sion (4.3.6), if [S1, 54]

rexpS =16,

(4.3.6)

4.3.7)

then Jy;, =J, =max and Jy,=R¢y+ R, —J, =min. This
defines the point M. If [51, 54]

rexpS =—16, (4.3.8)

then J;, =J; =min and Jy, =Ry + R, —J;, = max. This is
the point M.

The difference between the maximum and minimum
values of J; is J,—J, and the quantity (AT),. =
(Ja—Ja)/(Ryg+R;) represents the relative depth of self-
switching of radiation.

At the middle point M we have J;;=(,0+
J4P)/(P+ Q) =J, =J. The quantity P at the point M
isdJ, —J, =J,—J,.and it represents the factor by which the
maximum J; is greater than the value of J,; at the point M.
The quantity Q at M is J, —J, =J, — J, and it represents
the factor by which Jy; at the point M is greater than the
minimum Jy;.
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In the direct vicinity of the point M when
riexp(28)/256 < 1 and |P/Q —1]/(P/Q +1) <1 (the lat-
ter inequality is obeyed in almost all the cases of practical
interest, as discussed above), the slope or steepness of self-
switching can be estimated from [62]

Oy, ¥y Ja—(P/Q)a B
or,~ ToRr,~ 8(1+PjQ) Bk, P
JaJa o expS > 1. 4.3.9)

16 aR

It should be pointed out that if [P/Q —1|/(P/Q +1) <1,

the approximation represented by expression (4.3.6) sim-

plifies somewhat and becomes [62]

Jo=Js__ (r1/8)exps

2 2 + (r}/256) exp(2S)
In the case of identical UDCWs the self-switching

conditions (4.3.1)—(4.3.3) become [36]

(4.3.10)

exp(24/Dy L) ~exp(VDL) > 1, (4.3.11)
1++vD
ID_| <D, ie. +2‘/_z2(R0+R1), 43.12)

and the limits of the self-switching region can be estimated
from

D
| _|exp(2 D, L)< 16, (43.13)
D,

where /D, and D are described by the set of

formulas (4.1.2) from which it follows, subject to condi-
tion (4.3.12), that in the self-switching region we have
D, ~ (Ry+R;)/2—1/4. In the case of the self-switching
region of identical UDCWSs, we can obtain the following
approximation from expression (4.3.6) or (4.3.10) [36, 54]

—(r1/8)exp S + sech §

g 14 (r4/256) exp(2S) ’

R +R
1~ 0 ]+(_1)/\/D+

(4.3.14)
where r% ~—-D_/D,, S=s+F(urm, m==l,
Ry — R,
= arccos| ——] ,
# 2,/D;
s=2y/D, —D_L~2/D,L~~DL
2Ro+R)—1,
i.e.
R +R, 1 2U
To~05—(Ro+R;)" 1+ % (4.3.14a)

2 41402

where U = (7/16) exp S.
The extrema of J; occur under the conditions described
by expressions (4.3.7) and (4.3.8), which correspond to the

points M; (J;;=max) and M, (Jo =max). The self-
switching depth is
2Dy /2(Ry+R;)—1
(AT)max = = . 4.3.15)
RO +R] RO + R]
Therefore, complete  self-switching occurs  when
Ry+ R, =1, and if Ry+ R, deviates from 1, the self-

switching depth decreases even in the case of identical
UDCWs (4 =0)! This is the interesting feature of the
situation when both waves are applied to the input.

Near the middle self-switching point M (which corre-
sponds to the condition D_ =0), namely when
r exp(25) < 256, the self-switching slope can be estimated
(for Ry #R,) from

3y &y (@D- /aR)

m aR 3 expS>1.

(4.3.16)

It follows from expressions (4.3.16) and (4.3.14) that an
increase in the slope (steepness) of self-switching corre-
sponding to a given value of L occurs if the self-switching
condition is satisfied at higher values of Ry + R, and that
with increase in Ry + R, the self-switching slope increases

strongly.
We shall estimate the self-switching slope for the case
when L =1.2n, Ry =3, Ry =1, cosyyy =0, 4 =0. It then

follows from expression (4.3.16) that

610[ 610[ . T
— — — f —_—
3oy ~ 3800, 6110 6330, i /N 7
610[ 610[ .
R L

These results are in good agreement with a computer
solution of the initial system of equations (2.5.3).

4.4 Switching of a pump by a weak signal. Giant and
linear signal amplification

We shall now consider a situation which is of interest in
practice when one of the waves (for example, zeroth)
reaching the input of the system represents a relatively
powerful radiation (pump) and the other (first) wave is a
weak control signal. (Figs 5d and S5g, and Fig. 5f with the
circular polarisations): Ry > Ry < 1. If we assume that the
nonidentity of UDCWs is small, 4| < 1, the self-switching
condition (4.3.2) means that R, ~ 1, i.e. the parameter
0 =1—R, is also small: |4] < I. Under these assumptions,
we have

" 2(5+A —24/R sign 0, cosy, + 3R, — 2R, cos’ Wo) ,
4.4.1)

IR
S~ L\/2(R, +Ro) — 1 + 2siny, R—'
0

mL(R0+R|)+21/—smxp0 ,(4.4.2)
- +R 2U
TOzO.Sf(RO—i—R,)H/ ‘2 0 41+U2

U

~05——, 443
1+ U? (4.4.3)
where
U o+4— 2\/Résign 0, cosy, exp
~ 1 —Ry+ 4 —2+/Rysign b cosy, expL | @4.4)

8

The radiation self-switching is almost complete since

Ro — Ry cos(2y,)

(AT) o =g L SR (4.4.5)
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The middle self-switching point M is defined by the
condition

R, (3 —2cos”y) — 2sign B, cos Yg\/R| + 0+ 4 =0 .(4.4.6)

In the immediate vicinity of the point M, i.e. when
condition (4.3.3) is obeyed, the gain representing the
change in the signal intensity can be estimated from [70]

Ol ol 0Jy . Ry
ki=—=—r—"-"n~R_—=~ 0, — —3R
ST a0, T Tl TR, |en Oscosvoy 7= 3R
exp S

+ (16R% 4+ 1)R; + 2R cos® wo]

and the gain representing the change in the pump intensity is

By @y oS

(4.4.8)

If |8], Ry, and |4| are sufficiently small, rough estimates
of ky and k, can be obtained by assuming that § ~ L and
ignoring the third term in the square brackets in expres-
sion (4.4.7). We then obtain [36]

ol ign 6 L
_ 0y _ (mgn ’COS¢°—3+2Roc0s21//O> ex;8> (44.9)

STl van
exp L
ky & o (4.4.10)
where in practice the last term in parentheses in
expression (4.4.9) can also be ignored both for

|cosyy| < 1 and for |cosyy| = 1.

It follows from expression (4.4.9) that if |cosy,| =~ 1
and the value of L is given, the gain of a coherent signal is
approximately (Igy /110)]/2 > 1 times higher than the gain
of an incoherent signal in the case (Section 3.1) when the
pump and signal reach the input of the investigated system
in the form of the same wave [this should be compared with
expression (3.1.21)]. If cosyy, # 0 and R; — 0 [and at the
same time Ry — 14+ 4 in accordance with expres-
sion (4.4.6)], then |k — oo. This situation (represented
by curves I and 2 in Fig. 10a) is called ‘giant amplifica-
tion’ of the change of a small signal [36]. Therefore, if
|cos | = 1, the gain representing the change in the signal
intensity is (IOM/I]0)1/2 > 1 times greater than the gain
representing the change in the pump intensity, i.e. the
system is much more sensitive to the changes in the signal
than those in the pump. This property of the system, in
combination with the extremely high gain experienced by a
weak alternating signal, is an important practical advantage
of the giant amplification regime.

A shortcoming of this regime is nonlinearity of gain, i.e.
the signal gain depends on the signal itself. Consequently,
the process of signal amplification may distort the signal
profile. Therefore, in this regime the system operates as an
amplifier with a very high gain and not as an optical
transistor. It should be pointed out that the change of the
intensity at the output is finite. Let us assume that
|cosy| = 1 and that the signal intensity increases from
1o = 0 by a very small amount Al,y, and that R, increases
correspondingly from R; = 0to Ry = AR,. Then the change
in the radiation intensity at the output is, according to
expression (4.4.9):

Ioy exp L [A%1 dR,  Igy exp L/AR,
|Aly| ~ ~ , (4.4.11)
8 o VR 4

so that for ARy — 0, we have |Aly| — 0.

Ty

0 6x107°

6 ® 8 R 0

F i .g G o e f1. f0 i c i [ n

w  By=ly/(lhetd) )5 Ju/Ro+R)p 1 o t t e
s i g Ry =8 [Igl § Rg=nhyr/lpt ce R |,nk = 2T,
0,=00,%0 . I n IF 28 & r 1 O =
p a rRy=209 m $,e06 (1), and R, =15005:y,=m(2).

Lines 3-8 correspond to relationship (4.5.6) with the following param-
cters: j=1, Yo =0 (3,4); j=0, Yyy=n(56); j=1,¥y=m(7);
J=0,Y;=0(8)e=0(3,7),e=0.001 (4, 5);6=0.002 (6,8):j=0
or 1 is the number of the point M; at which the system is for Ry = 0. In
Fig. 10b, curves 9—712 correspond to the following parameters:
Yo=m/2(9-10), -m/2(11), =/2—-0.5(12), Ry=1.03 (9),
1.06 (10, 11), 0.95 (12); 4 =0; curve 12 illustrates double switching
(points M are given on this curve and a cross identifies the point with
the maximum slope).

If the phases of the waves are shifted by 7t/2 at the input,
the small-signal gain is independent of the signal intensity
when the system ‘operates’ as an optical transistor, but with
the gain about three times as high [|k,| &~ (3expL)/8] as in
the case when a small signal and a pump are applied to the
input in the form of one wave.

Although for cosyy =0 and Ry < Ry~ | the system
operates as an optical transistor [36], we shall show in
Section 4.5 that an optical transistor operating in another
regime (when cosy, # 0) can also be constructed and it has
a much larger gain than in the cosy, =0 case.

According to expressions (4.3.7), (4.3.8), and (4.4.1), if
[36, 54, 62]

A48 —24/RoR; sign O,cosy + R, (3 — 2cos” ¥,)

= (—=1)""8exp(-S) . (4.4.12)
almost all the output radiation is concentrated in the
zeroth (j =0 point, M) or first (j= 1, point M;) wave.
The self-switching points M; (corresponding to a given
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value of R;) correspond to the signal R, :R(I{gl. If we
assume that | cosy,| > (3/2)y/R;, we obtain [51, 54—56]

VR = [(—l)j4exp(—S) +5—|2_A
(4.4.13)

If the right-hand side of the above expression is greater
than zero only for one of the values j = 0 or 1, there is only
one point M; (My or M;), but if it exceeds zero for both
values of j, then both points M; exist. In the last case the
: () : :
corresponding value of R}y can be estimated from
2

. . o0+ 4 -
RY = [(—])]4exp(—5)+T cos ™ Yq

cos™ ", sign 6, .

(4.4.14)

and in the above case the difference between the input
intensities of the signal ensuring complete switching of the
radiation at the output from one wave to the other can be
estimated from

Rm —Rﬂ& ~ 8exp(—S)(d+ 4) cos™> Y, . (4.4.15)

In the case of very small values of | cos | < (3/2)\/R1,
particularly when ¥, = £n/2, it follows from expression
(4.4.12) that

8 o+ 4
Rm N-3 exp(—S)—T,
o 8 54 (4.4.16)
RlegeXp(_S)_—3 )

and the difference between the input signal intensities
causing complete switching of the output radiation from
one wave to the other is

16
RO — R~ exp(s)

(4.4.17)
i.e. it is approximately one third of that for one wave input
[compare with expression (3.1.13)].

A rough estimate of R}}; in formulas used in this section
can be obtained by substituting S ~ L.

Eqn (4.4.6) has, for a specific ratio of the parameters,
two roots R, satisfying the condition |R;| < 1; this implies
double self-switching [70], i.e. switching near two values of
R, (Fig. 10b), similar to that described in Section 3.3.

4.5 Optical transistor with an enhanced gain,

stable against pump intensity instabilities

Analysis of expression (4.3.10) subject to definition (4.4.1)
shows that under somewhat different conditions the
systems shown in Figs 5d, 5g, and 5f ‘operate’ as optical
transistors with an even greater gain than that predicted by
formula (4.4.9) for the case when cosy, = 0. In this case
the following relationship should be satisfied [S1, 54]:

A+8=(=1)""8exp(~L), (45.1)

which is equivalent to RS{& =0, ie. if Ry =0, we have
Ioo = Iy [compare with expression 3.3.6)]. The meaning of
this condition is that, in the absence of a signal, the system
is at one of the points My or M, (Fig. 2a and Fig. 11).
Then, if cosy, = (—1)"+I, a weak signal characterised by
[51, 54 -56]

Ry~ R, ~0.15(4+6)" ~ [3exp(—L)]" < 1 (4.5.2)

(where R, is found from the condition 8°J,/0R? = 0)
should be amplified almost linearly without distortions

0.95 M,

Figure 11. Dependence of 7| on the pump intensity R, plotted for
different levels of the signal R;. Curves / and 2 correspond to
A=¢E=—16exp(—L); R, =0 for curve I, and R, =R; =3.25 x 107°
for curve 2; Yo=m Curves3 and 4 correspond to 4=0:
Ry =R, =29%x107°, ¢, =0 for curve 3, and R; =0, 4=0 for
curve 4 [at the point M, d=1—Ry=0.015=8exp(—L)]. L =2m,
e=0,0,=0,0,>0.

(curves 3 and 5 in Fig. 10) and by the very large gaint
[51, 54-56, 62]:

2L
os? y, SPCL)

ol ;
ky==—2r~(-1)"¢c 25

T (4.5.3)
Thus, if L = 2=, cos’ Yo =1, it follows from expression
(4.5.3) that |k| ~ 10%, whereas according to expres-
sion (3.1.21) we have only |k~ 67 and according to
expression (4.4.4) when cosy, = 0, we obtain |ky| ~ 200. It
is also important to note that in this regime the gain
representing the change in the pump [51, 54]

ol L |R
ky = 2% 202 2L (4.5.4)
is approximately
|k expL [R,
ﬁ ~ cos® Y, = & > 1 (4.5.5)

times less than the signal gain kg [51, 54] (this can be seen
by comparing Figs 10a and 11). Consequently, the
requirement of stability of the pump intensity is relaxed
by the same factor as in the case of an optical transistor
with k; =k, (see Section 3.1). For example, if L =2mr,
cos’ Yo ~ 1, Ry ~ R;, we find that |k|/k, ~ exp L/3 > 180.

In the limit R; — 0, the system approaches the point M,
where k, = 0 (curve 2 in Fig. 11) and becomes insensitive to
a small change in the pump, but the linearity of the signal
amplification for Ry € R; is less than for R =~ R,.

It therefore follows that it should be possible not only to
construct an optical transistor with an extremely high gain,
but —which is equally important—such an optical tran-
sistor should be much more stable in the presence of pump
intensity instabilities than optical transistors discussed in
Sections 3.1 and 4.4.

TThis optical transistor regime with an enhanced gain can also appear
when a pump and a weak coherent signal are applied in the form of one
wave to a mixer before this wave enters the system (see Figs 5a—S5c,
Section 2.5, and Ref. [66]).
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An analysis of numerical data [51, 54—56] shows that
the set of parameters ensuring that [S1, 54 —56]
A+6=(—1)""[8exp(~L) —¢](4.5.6)
[where |e| < 8exp(—L)] corresponds, for & >0 and small
values of Ry (R; < R)), to a larger gain (curves 4 and 6 in
Fig. 10a) than in the ¢ =0 case (curves 3 and 5), and the
gain can be estimated roughly from [51, 62]

ko ~ (=1)"" cos? wOR%)% VRo) 4.5.7)

The maximum of |k| then shifts to lower and the minimum
of the same quantity shifts towards higher values of R;
compared with the case when ¢ =0, i.e. the values of R;
and T at the extrema of |k;| come closer together and the
signal amplification linearity improves. If ¢ <0, we have
the opposite case when |k| is less than for &=0.
Condition (4.5.6) is also equivalent to Rs& =0, but at a
value of 0 greater than that given by expression (4.5.1).
Selection of 8, €, L, and 4 can ensure that the linear part of
the investigated characteristic becomes very wide. For
example, if 6 =0.025, ¢ =0.001, L =2m, and 4 =0, it is
found that in the range from R; =0.5x10"° to
R, =2.1x10"" and, correspondingly, from T, = 0.067
to Tg=0.236, the value of k, changed from 10170 to
10237, i.e. the deviation from the average value k, = 10204
does not exceed 0.3%. _

If condition (4.5.1) is obeyed, but cosy, = (—1)’, then
for Ry ~R;, we find from expression (4.3.10) that k=~
(=1)7" exp(2L) /200 (curves 7 and 10 in Fig. 10a) [54, 56].

It is obvious that the list of examples of optical
transistors (see Fig. 5) can be continued. Similar optical
transistors can be based on coupled modes in an inhomoge-
neous waveguide and on other UDCWs [3-6].

Optical transistors can readily be used to construct
optical logic elements. The selection of the relationship
between the magnitude of the signals and the width of the
amplification region of an optical transistor determines the
type of logic element, which may be AND or OR. Since the
output intensities of the waves 0 or 1 are inversion of one
another, a suitable selection of the output wave can readily
be used to construct a logic element NOT.

4.6 Self-switching of waves with similar input intensities
If Ry~R; =R =+/RyR,, self-switching occurs if 4R > 1
[36] and ¥, is close to zero. The effect is then as follows. If
we select R and alter (for example, increase) the value of
R, near R, (Fig. Se), the output radiation may be switched
from the first to the zeroth wave (Fig. 12).

The depth of such self-switching is [54]

VAR =1

AT) . =—F7F .
( )IﬂdX R0+Rl

4.6.1)

Therefore, complete self-switching [(AT),,,, = 1] occurs for
Ry~ R;~0.5 and, as R deviates from 0.5, the self-
switching depth decreases even in the case of identical
waves (Fig. 12b)!

At the middle point M, corresponding to [36, 54]

2R siny, 2R

- + 4,
VAR —1 4R —1

Ry =R,

(4.6.2)

0.898 0.9 0.902
Ry
Figure 12. Dependence of 7y = 1 — T > on Ry, plotted for Ry ® R| =

0.6(a), 0.9(b); L = 2m; € =0(1,3,5), —=0.01 (2),0.01 (2"), —0.002 (4),
0.002 (4'); Yy =0 (1-4,2",4"), /200 (5); 0,=0, 6, > 0.

the self-switching slope is [36, 54]

ol oJ; ; Y| L4R — 1
2 (1) |1 - exp( ) (463)
ol OR, (4R —1) 4
where 4 =0 for identical UDCWs.

If

R — R('/) ~R + 2R sin l//o 2R A

O IM TR AR —1 4R — |
+4v4R — 1 exp(—LV4R — 1) , (4.6.4)

the wave intensities at the output of the system reach
extrema (points belonging to the system M;) [36, 54]. With
increase in the input intensity R, the self-switching slope
increases rapidly and the self-switching region rapidly
becomes narrower [36]. A shift of the points M and M;
along the R axis, due to nonidentity of UDCWs (4 # 0),
may be compen-sated by a suitable deviation of glo from
zero when A = (4R — 1)"*sinyy ~ —y(4R — 1)'/°.

4.7 Nonidentical unidirectional distributively coupled
waves with 4 = 0
Under certain conditions, namely when [54]

[7)
5:—20—"(R0+R1), 4.7.1)
i.e. when
Y (01 — 60) (oo +110) 4.7.2)

4B

the ‘linear’ and ‘nonlinear’ components 4 compensate each
other exactly and we have 4 =0. Such compensation is



Optical self-switching of unidirectional distributively coupled waves

1015

accompanied by radiation self-switching without the use of
the electro-optical effect if Ry and R, in expression (4.7.1)
correspond to the point M when o =6, =0.

For example, if Ry &~ R = const, ¥, = 0 and we select
Ry =R, £=—4(0,/6,)R,, the result is [54]

i1 [00(1 — 8R) + 0] exp(LV4R — 1)
4(00 +0,)(4R — 1)

Ol

ol (=1)

.(4.7.3)

If 6, =(8R —1)6, no self-switching occurs; for 6, = 0,
formula (4.7.3) reduces to formula (4.6.3). It is evident
from formula (4.7.3) that the self-switching direction and
slope depend on the ratio of the nonlinear coefficients 6,
and 6,. Such wave self-switching is illustrated in
Refs [54, 62].

If Ry = 0 and condition (4.7.2) is fulfilled, complete self-
switching occurs, as discussed in Section 3.3 and described
by expression (3.3.11).

4.8 Self-phase-matching of waves and limits of changes in
the intensities

Wave self-phase-matching occurs at the moment of
radiation self-switching (more exactly at the middle point
M) also in the general case when both waves are injected
into the system. This can be demonstrated quite readily. If
we use the second equation from the system of equa-
tions (2.5.4), we find that

1 dJy

, 48.1)
Joy 4L

siny;, =

and it follows from expression (4.3.6) for J,; that in the
direct vicinity of the middle self-switching point M [i.e.
when r{exp(25) < 16], the result is

(Ju = J)(r1/8) exp(5)2/PO
2[1 + P exp(25)/256]

Since r; =0 at the middle point M and since r% changes
sign, it follows that at this point we have siny; =0
(Fig. 13).

Let us consider the change in the difference between the
wave phases in the self-switching region and not only in the
direct vicinity of the point M. For simplicity, let us consider
the case of identical waves. If we use the approximations for
the elliptic functions in the switching region (Appendix II),
we obtain

siny; ~ (4.8.2)

1 — (r}/256) exp S L 2exp(=S5) + (11/8)exp S

SN T 256)exp S ¢ 1+ (4/256) exp (25)

y 2D,
[(Ro+R,)/2— D, cn2(S, r)]'/?"

4.8.3)

We can see that sin {; vanishes not only for r; = 0, but also
for r% exp § = %16, i.e. it vanishes at the points M; and at
these points we have cosy, = —1, i.e. the phases are
opposite (Fig. 13).

Some relationships governing the interaction of
UDCWs are revealed by an analysis of integrals described
by expressions (2.5.5) and (2.5.6) without complete analytic
solution of the system of equations (2.5.3). The same
integrals yield an expression (2.5.9) and values of cosy
along the system. It follows from formula (2.5.9) and the
condition |cosy| < 1 that for certain relationships between
Ry, R, Y, and 4, the UDCW intensities may vary not over

Ty
coswy | M Ro
b
0 ! I
0.6 0.65
Ry
1L
siny; 1
m c
M
0 ]
0.6 0.65
Ry
L \J U

Figure 13. Dependences of T (a), cosy, (b), and siny; (c) on R, for
Ry~R,=0.6, L =2m, y, = —n/100.

the whole range 0 <Jo; < Ro+ R;, but only in certain

‘allowed’ intervals. In the case of identical UDCWs,
formula (2.5.9) becomes
cosy = 2sign 04/JyJ
RORI( .
cosyy —2sign 0/RoR ) . (4.8.4)

JoJy

It follows directly from formula (4.8.4) that if radiation is
coupled into the system in the form of both waves, i.e. if
RoR| # 0 and 24/RyR # sign O cosy,, then JoJ; # O [in the
opposite case the second term in formula (4.8.4) would have
become infinite]. We then have J; <Jy; <J, and if D < 1
[i.e. if 2(R0Rl)]/2 < sign Bcosy,], then for extremal values
of the intensity which are J,;, = (Ry+R,)/2+ /D, the
waves 0 and 1 are in phase, but if D>1 [ie. if
2(R0R|)'/2 <signBcosiy], then for Jo, =J,, the waves
are in antiphase. If the input radiation is in the form of one
wave (RgR| = 0), then cosy = sign 62(J,J, )]/2 (Section 3.2)
and for JoJ; = 0 the wave phases are shifted by n/2.

If D_>0, ie if 2(Rg+R,)=1++D, then
Jy <Jg<Ro+R; and 0<J; <J. (it is assumed that
R0>Rl), and for JO,IZJh,L':(RO—'_R])/z:I:\/E the
waves 0 and 1 are in phase.

When the inequalities RoR| # 0 (D # 0) and D_ > 0 are
satisfied simultaneously, we find that J, <J, <J, and

Jg<Ji <J., and the range of variation of [; is

Cco
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/Dy —/D_. If signfcosy, =1 and 4\/RoR; =1, then
D=0,D,=D_,Jy=J.=J,=Ry,J =J,=J, =Ry, iec.
the wave powers do not vary along the waveguides and are
equal to their initial values.

These ideas are illustrated in Ref. [36] by computer
calculations.

4.9 Dependence of the intensities on the input phase
difference

It is evident from formula (4.4.3) that near the middle
switching point M the output characteristics depend
strongly not only on Ry, and R;, but also on the input
phase difference ¥, (Fig. 14).

Ty
1

0.5

0 T 2n 3n /N

Figure 14. Dependences of Ty on the initial phase difference y,:
(1) solution of the system of equations (2.5.3); (2) approximation by
formula (4.4.3); Ry =0.99, R| =0.005;4=0,0,=0,0, >0; L =1.6m.

From the point of view of mathematics the essential fact
is that at » = 1 the output characteristics depend strongly on
r and that r in turn depends on both R, and R, as well as on
cosy,, i.e. the dependence on Y, is periodic and near a
certain value of cosy,, found from the condition r =1 and
for 4 =0 equal to

cosy _A4RR| —(Ry+R)(Rg+R, — 1)
0 2+4/RoR sign 6 ’

4.9.1)

this dependence on ¥ is strong: optical switching of waves
takes place. If 4 =0, then near the switching point M, we
have

oy _(RO + R)V/RoR; siny,sign 6 exp S
o 2(Ro+Ry) — 1] 8

(4.9.2)

This formula can be used to estimate the sensitivity of the
system to changes in ¥,, which for points |siny,| ~ 1 is
very high (Fig. 14).

It is evident that the strong dependence of J; on
creates favourable conditions for the control of the output
power because of a change in ¥,. The possibility of such
control was pointed out in Ref. [82]. However, in some
cases it is desirable to ecliminate this dependence (Sec-
tions 3.5 and 5.4).

4.10 Comparison with Winful’s results

It is shown in Section 4.6 and in Refs [36, 54] that self-
switching takes place when Ry~ R; provided ¥, ~0.
However, if Y, =m/2, as in Winful’s work [78], there is
no self-switching in the sense understood here. We recall

that Winful [78] considered the situation when two
identical (a=0) circularly polarised waves of equal
intensity, Ry =R; =R, are injected into a birefringent
waveguide or crystal. The situation corresponds to the
arrival at the input of a linearly polarised wave with the
vector E which makes an angle ¥, = n/4 with the optic
axis. However, in this case it is found that
Vo =29,=mn/2[78] and in the solution described by
expression (4.1.3) we have r* =1(1 — IVI6R? + 1), i.e. 7
varies from zero to % and nowhere does it even approach
unity. Therefore, in the sense understood here, there was
no self-switching in the case discussed by Winful [78]. This
evidently accounts for the relatively smooth changes in the
output intensity caused by changes in the input intensity,
which are predicted in Ref. [78] even in the case when
L/m> 1, when—according to expression (4.6.3)—the
changes in the output intensity and the self-switching
slope should be fantastically high. Therefore, from the
standpoint adopted here, the case discussed by Winful [78]
represents ‘nonlinear radiation transfer’ or ‘nonlinear
pumping over’, but not ‘self-switching’ of light.

It is worth pointing out also a fundamental difference
between our approach [33, 36, 54] and that of Winful [78].
In our case the input intensity of one (for example, R) of
the UDCWs is varied and the input intensity of the other
wave (R1) is fixed. In Winful’s work [78] the total intensity
of waves at the input (i.e. the quantity 2R) is varied;
naturally, there are simultaneous and identical changes in
the input intensities of both waves, i.e. Rp =R; =R. The
normalised total intensity, which in our notation is 2R, is
increased in Ref. [78] passing through the values 1, 2, 3, 4, 5,
etc. (Y, = m/2). The ratio of the output intensities (‘output
ellipticity’) changes smoothly, i.e. there is no self-switching.

4.11 Special features of self-switching of unidirectional
distributively coupled waves with orthogonal polarisations
As pointed out in Sections 2.3 and 2.6, self-switching of
UDCWs with orthogonal polarisations has certain specific
features associated with the presence of an additional term
in the system of equations (2.6.4). It is appropriate to
consider the special features of such switching in this
section, because effective self-switching of these waves
requires the presence of both waves at the input (Fig. 5f
with the TE and TM polarisations at the input).

Let us consider the system of equations (2.6.4) in a
coordinate system with its axes rotated relative to the x and
y axes by an angle ¢:

®=%,C08Q —N,8inQ, n==ux,sinp+n,cose, (4.11.1)

and let us select such an angle ¢ that sing =K/y,
cos@ = a/y [71], where y= (d +K2)'/2. Let us also use
the set of expressions (2.3.10) which give the relationships
between the nonlinear coefficients 6, =0, =0, 6,, =0,, =
20/3, 6=0/3; these relationships are conserved after
rotation. The system of equations (2.6.4) expressed in
terms of the variables %, and #, then simplify to [71]

s = (L )A/ 1 — 2 — 13

where I, = 01/3. The analytic solution of the above system
of equations can be found easily.

4.11.2)
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If we go back to the ‘old’ variables, we find that the
solution is [71]
2
=% — % Py [sn?(S, r) — sn*(sg. 7)]

+; — r[sn r)dn(S, r) — sn(sy, r) dn(so, )] ,
4.11.3
N =Hy——— ,2[Sn (S, r)— snz(so, r)] ( )
_% == r[sn(S, r)dn(S, r) —sn(so, r) dn(so, )]

where S = s+ F(uy, r) = s+ 3¢, s =+/p/yL, L =2muly/B,

2(Kxny — o
Lo = arcsin (Ko o) s

(1 —up) (g — o)

u, =L +p), w=1"0-p),

%y =x(z =0),

o = + 1., no=n(z=0),

p = (Lo + o) + (L +K) =y +1,I

=9’ +21,L(K0081//m/1 — % +om0)
+ 1,/ (cos® Yo + 25 sin® Y) 5

I' =2Kny + 2axy + 1,uy is the integral in the system of
equations (2.6.4), and
o li==p’ | . _Gtp’-I
4py S 4y
Self-switching of UDCWs occurs near the middle self-

switching point M, which is defined by condition (4.3.4):
r=1orr;, =0, i.e. in this case we have the relationship [71]

Ytp =1L, (4.11.5)

which leads to the equation for the determination of s, at
the point M

(4.11.4)

R sin® ¥, (1 4 )

:g v/ (1 = 5,) sign B cos

+%%0sign9+l, 4.11.6)

where R = |0|1,0/3y = 4R, /3.

The behaviour of the solution described by the set of
expressions (4.11.3) is governed by two key terms which can
be approximated as follows in the self-switching region
(Appendix II):

sn(S, r)dn(S, r) = %, (4.11.7a)
1 — U2 2
sn’(S, r) ~ (W) , (4.11.7b)

where U = r{ exp S/16.

Let us now consider two important limiting cases of self-
switching.

(D) K> |af.
sion (4.11.3) is

The solution described by expres-
dominated by the term given by

formula (4.11.7a), which reaches its extremal values 0.5

for U=%(1£v2). If U=U,=v2-1, then
sn(S, r)dn(S, r) = 0.5 and
TR 3
T, =T nin=1= =" 4.11.8
X X, min 2 | n| 8(R —|—R ) ( a)
If U= U, =—(v/2— 1), then sn(S, r)dn(S, r) = —0.5 and
Yoy 3
T,=Timax=1—=1l] =1————=. (4.11.8b
X X, max 2 | I1| 8(RX +Ry) ( )
The switching depth
Y 3
AT =T max —Txmn=1—-7—=1——Fr——
( )Iﬂ‘dX X, max X, min |1n| 4(R/‘ +Ry)
(4.11.8c)

increases with increase in [, i.e. with increase in R, + R, If
1| >y~K, ie if R,+R,»3/4 we find that
(AT),..x = 1, ic. at sufficiently high pump intensities the
process of self-switching becomes almost complete.

A characteristic feature of such switching in the case

when K > |a| (compared with that described in Section 4.6)

is the presence of two additional extrema: if

Jo = (V2+1), then sn(S )dn(S r)=-05 and
T = max =Ty mas f U=U,= —(v241), then
sn(S r)dn(S, r) =0.5 and T, = min = Ty min- The same

values given by the set of expressions (4. 11. 8) apply for
Ty min» Ty max» and (AT),.. as for U=U, ,, but in the
former case these values are reached for larger deviations
from the middle switching point M. Thus, near one point M
there are two points M, (U = U,) and M, (U = U, ), where
T, =T, may there are also two points M (U U,) and M
(U= Uy), where Ty =T, .« (Fig. lSa).

TX
1.0 ~

1.46 1.47 1.48 1.49 1.50 1.51 R,
1 ~
b
4
3 5
M
M | | | |
0 107 2x107 3x1077 4x1077 5x107 R

Figure 15. Dependences of T, =1,/(I,0+1,0) on R, =1,[0]/4y:

(@) R, R, =1|0l4y =15, a=0, Yyy=mn (1), Yyy=n—0.001(2)
b)R, <R, =3; K/a=0(3,4), 0.0005 (5%, cotyfy =0 (3, 5),
—1J(R — 1)V (4). L = 2mpl)3B = L6m, 7 = (o + K2)\2, R = 4R, 3.
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Self-switching occurs for [%g| < 1 (i.e. for R, = R,) and
|siny,| < 1. If we assume that |2R — 1| > |%g| and |o|/K,
||, we find that

5 R? o ? 2
P=—"" (% —= sienf] —sin 2R —-1)|,
(4.11.9a)
exps R a . Ay
=74 ﬁ(”‘)‘Es‘g“"_s‘""“ ZR_‘)
(4.11.9b)

Expression (4.11.9b) and the values of U,, U,, U,, and ﬁy
given above readily yield the values of R, at which T,
reaches extremal values.

The point M is then described by the formula

Xop :% sign @ — sin Yy (2R — 1)/ | (4.11.10)
If o =siny, =0, the point M is reached at xgp; =0, i.c.
at R, =R, and the pump R, can have any value not
exceeding 3/4 (i.e. R > 0.5 and I,y > 1.5K/|0]). If « # 0 and
siny, #0, the point M shifts along the scale R, in
accordance with expression (4.11.10) (Fig. 15a). If a/K =
V2R — 1sign Osin ¢, the shift caused by a compensates the
shift caused by siny, # 0 and the point M is reached at
R, =R,.

The gain corresponding to a small change in the
intensity at the point M can be calculated from [71]

ol, exps

— ~ 4.11.11

a]XO 4 ’ ( )
where

M

\%L\/ZR(]-’-&)M)—]%L %—]

_ 4(Rx +Ry)

= —5 -

and L =2nKI/AB; this is almost identical with expres-
sion (4.6.3).

(2) |¢| > K. In expression (4.11.3) the dominant term
is (4.11.7b), which has the extremal values 0 and 1 for
U?=1and U=0, respectively. Self- sw1tching occurs for
R, < R,. The assumption that (R —1)* > K’/o’, R,/R,,
and (K/|oc|)|cost//0| R, /R, leads to

e — ﬁ (R [sm VoVR — (cosy + Q)]
X [sin l//o\/R — 14 (cosyy + Q)] , (4.11.12a)
2 R?  exp(2s) R,
T(R-17? 16 R,
[sin YoVR — 1 — (cosyyy+ @)]°,  (4.11.12b)
where = [K/Qu)](R,/R)A  s~LR-1)"=
L(4R,/3 — )]/2, L =2mla|l/A, Ry =1,|0]/(4|e])=3R/4,

R, =1,ol6)/(3al). R =1,0/6]/(3]s]) = 4R,/3. The gain
resulting from a small change in the intensity near the
point M is

T, _ Oly _ exp(2s) /.
R, R0l 3R - 1) (sinyy VR — 1 —cosyyy — Q)

X (sinyy VR — 1 —cos i) .

4.11.13)

The point M is reached at

R R Ry (4.11.14)
UM T g2 (VR — 1 sin gy — cos )’ o
and at this point we have T,=min=0, U=0,

0T, /OR, = 0. Therefore, the point M coincides with the
point M, (which is an analogue of the point M discussed
in Section 4.3)! This is one of the special features of the
self-switching process considered here. If

| sinyyv/R — 1 — cosy, ,
T 1 K 2) IR,
or, _ Oy exp(2s) [Ry (4.11.15)
oR, “R,0,  2a(R—1) 3 R,

and we are dealing with giant amplification (Section 4.4):
in the limit R, — 0, we obtain 8T, /OR, — oo (curve 5 in
Fig. 15b).

If |sinyy VR — 1 —cosyy| > |Q|, then
OT, _ exp(2s) 2
3R, ~ 3R-1) (sinyy VR — 1 —cos i)

_ (VR —1—cot Wo)® exp(2s)

T (R=1(1+cot?y,) 3
and the amplification in linear. If the optimal initial phase,
defined by coty,=—1/vR — 1, is selected the gain is
maximal and its value is

ol ~R R exp(2s)

o, "*R-1 3

(4.11.16)

4.11.17)

(curve 4 in Fig. 15b). The closest approach to linearity
occurs in the same phase because then the influence of the
term proportional to @ is smallest.

If cosy, =0, expression (4.11.16) reduces to [17]

ol exp(2s)
~R,
a]xo : 3

(curve 3 in Fig. 15b). If K = 0, then expressions (4.11.16) —
(4.11.18) give the best approximation and, according to
formula (4.11.14), the point M is reached at I, =R, =0
(for an infinitesimally small signal) even if cosy, # 0. At
the point M we have g = —sign 0signa, fgpy = 0.

Self-switching occurs for any (sufficiently strong) pump
such that R > 1, i.e. R, > 3/4 or I, > 3|a/6|; if K =0, the
point M is still reached at I,y =R, =0 as the pump is
increased..

The extremal values of 7, and the switching depth

@.11.18)

(AT),,.x are described by the formulas
Y 3
Tx,min = 0, (AT)max = Tx,max =1 _m =1 _m
@11.19)

The switching depth increases with increase in R,. If
R, > 3/4, ie. if |I,| >y = ||, we have (AT),,, ~1; self-
switching becomes almost complete at sufficiently high
pump intensities.

Formula (4.11.16) predicts a much higher gain than does
formula (4.11.11). The gain becomes extremely high even at
relatively low values of L. For example, if L ==, R, =5,
and Y, =n/2, we have 8l,,/0l,, ~ 10°R, and (AT)m‘}lx ~
0.85; if L=16m R,=3, we obtam 0l /0l ~ 12X
10"R ~ 36 x 10° and (AT)mdx ~ 0.75. These results are

in good agreement with the numerical solutions of the
initial system of equations (2.3.7) (curve 3 in Fig. 15b).
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One of the most interesting features of such self-
switching is that it occurs even for K =0 and that in
this case the amplification is closest to linearity! The results
reported in Ref. [71] and those given above contradict the
hypothesis [83] that if || > K, we can ignore the term with 0
in the system of equations (2.3.7). The situation is just the
opposite: this term plays a key and positive role.

This paradoxical situation occurs because in the linear
regime for the selected parameters there is no coupling
between the waves and no transfer of energy between them
(see Fig. 1). The coupling, which is purely nonlinear,
appears only in the nonlinear regime. Therefore, switching
in the regime under discussion is very similar to switching
from one frequency to another described in
Refs [50, 52, 53].

The regime in question is most interesting in practical
applications—such as optical transistors, logic elements,
and switching— for the following reasons. First, if K =0,
the middle self-switching point M is stable against changes
in Y, and changes in the pump intensity. In other words,
when the initial phase difference between the pump and
signal or the pump intensity is changed, the signal gain
maximum is still achieved for an infinitesimally small signal
simply by variation of the signal gain. Moreover, the signal
gain is extremely high. This case is of interest also for the
development of optical switches for lasers and for pulse
limiters.

We shall now give two specific examples of possible
realisations of such self-switching.

Example 1. A pump wave with the wavelength
A =0.51 pm, generated in an argon laser polarised along
the vertical y axis, is coupled into a fibre waveguide made of
fused quartz and characterised by a birefringence
An ~5x 10_8, a nonlinear coefficient 6 ~ 102 esu, and
a cross-sectional area of about 5 x 10™ ¢cm?. Let us assume
that the fibre orientation is such that K = 0 and a = An (so
that the optic axis in the fibre cross section coincides with
the y axis or is perpendicular to the latter). Then, the
threshold pump intensity (deduced from the condition
R > 1) is 3(cn/2m)(An/|6]) ~ 10° W cm™ and the corre-
sponding threshold power is ~5 W. Let us assume that the
fibre length is 12 m (L = 1.6m) and the input pump power is
10 W (R =2). A weak signal (of the same wavelength),
polarised along the horizontal x axis, is coupled into the
same fibre and the power of the signal is varied by about
0.1 mW. The power at the output in each polarisation
should then change to about 1.2 W, i.e. the differential gain
is ~12000.

Example 2. A pump wave with the wavelength
A= 0.9 um is generated in a semiconductor laser. It is
polarised along the vertical y axis and coupled into a fibre
waveguide in which the core is a layer structure of the
GaAs—GagsAly;As type (here, n = 3.5), which represents a
multiquantum-well structure with a nonlinear coefficient
6~ 10" esu and the difference between the refractive
indices for two  orthogonally polarised waves
An=3x10"" =q. The cross-sectional area of the core
is ~1077 cm?. Then, the threshold pump intensity is
2x 10* W em™ and the corresponding threshold power
is &2 mW. Let us assume that the fibre length is ~1.5 mm
(L = m) and that the pump intensity is 8 X 10* W em™?
(R =4), i.e. the input pump power is ~8 mW. Then, the
coupling into the same waveguide of a small signal (of the
same wavelength), polarised along the x horizontal axis,

and a change in the power of the signal by 0.01 pW alters
the output power in each polarisation by about 0.53 mW,
i.e. the differential gain is ~53 000.

The small coupling coefficient (K < |a|) results, on the
one hand, in a deviation from the amplification linearity
and, on the other, it increases even further the small-signal
gain which even for low values L =~ m can reach —according
to expression (4.11.15)—fantastically high values (~109).

Another interesting feature is that in the range of high
intensities where 1{2(y+p)2 < 1, an increase in I, may
generate output intensity beats with increasing amplitude.
This is physically due to the nonlinear coupling represented
by the term with 0, which (in contrast to the case of tunnel-
coupled optical waveguides), seems to increase with increase
in the input intensity.

Characteristic features of the self-switching of TE and
TM waves are due to the fact that, in accordance with the
classification given in the Introduction, if K # 0, they
belong to both the first and second groups of UDCWs;
if K =0, they belong only to the second group.

5. Optical switching in a cubically nonlinear
system with unidirectional distributively coupled
waves by a signal of different frequency or with
different polarisation

In Sections 2 and 3 it is shown that radiation self-switching
can occur in a cubically nonlinear system with single-
frequency UDCWSs. The question arises whether a major
transfer of high-power radiation (of a given frequency) can
take place, at the output of a nonlinear system with
UDCWs, from one wave to another as a result of a small
change in the power of weak radiation of different
frequency reaching the same system in one of two
waves. The results of a theoretical investigation [40],
presented in this section, give a positive answer to this
question. This makes it possible to transform and amplify
greatly the modulation of radiation from a low-power laser
into the modulation of strong radiation from a high-power
laser operating at a different frequency.

5.1 Equations for the wave amplitudes

We shall begin with Eqn (2.1). We shall consider a field
which is a sum of fields with two different frequencies @
and v. Under steady-state conditions the two fields can be
represented in the form

E(x,y, z, t) = Ey(x, y, z) exp(iot) + Eg(x, y, z) exp(—icwt)
+E,(x, y, z)exp(ivt) + E; (x, y, z) exp(—ivt) .(5.1.1)

Under such conditions the fields with the frequencies @ and
v obey the equations [13—14]

? 2 2 2

c

o () VoL
VzEw+ 2 EEw:_c_zpnl,w» V2Ev"'c_ngv: Pnl,v

(5.1.2)

(,'2

and their nonlinear polarisations are
Puo =01 (EyEE, + EoEyE, + EoEEl + EE,E,
+E,EyE,+EE,E, + E,E,E, + E,E.E; + E;E_E,)
(5.1.3)

(Py,y is obtained from P, , by the transposition of the
subscripts w = v, v = o).
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At each of these frequencies the field is in turn a
superposition of two coupled waves (zeroth with j=0
and first with j = 1)

@
E,(x,y,2) = Xj:eij w0i(2)Ewj(x, y) exp (; mﬁwj> .

, (5.1.4)
) = ;evjA yi(2)Ey;(x,y) exp (Z ziﬁvj) s

where A ,;(z), A,(z) are the slowly varying amplitudes of
the waves; e, ,. ; are the polarisation unit vectors of these
waves; E, ,;(x,y) are the field profiles; B, , ; are the
effective refractive indices for the waves with j =0 or 1.
The equations for the amplitudes of the waves with the
frequencies w and v propagating in cubically nonlinear
tunnel-coupled optical waveguides can be derived by
analogy with the system of equations (2.1.7) and are [40]

Ev(xs ys Z

dA
2Bi “’0+K3’|Aw| exp(iaw§z>
= —9w0|A w0|2A w0 — 20a)v0|A v0|2A 0 »
dA
Zpi “"+K Awoexp( ?z)
= _Gwl |A ol |2A wl — 2val |Avl |2A ol » (5.].5)
c dA v
21ﬁ v0 +K0]Av] exp( Z>
v dz c
2 2
= _gvolAv0| Ay _20vw0|Aw0| Ay
dA
2lﬁg vl +K]0Av0 eXp <—1a _Z>
= —0[An Ay = 20001 A ['A . (5.15)
where o, = By — Boos % =Byt — Buos B = (Boui + Buwot+

B, + By)/4. The coupling coefficient at the frequency
is [3—8]

(ewoewl)“(na,o—nw) Eon (. y)Efo(x. ) dr dy

[ [1Bunte. )P aray

(o
Ko =

and K{}, can be obtained from the above expression by the
subscript transpositions 0 = 1 and 1 = 0. The correspond-
ing coupling coefficients Kp), and K}, are obtained from K
and KY, by the subscript transition w = v, v= ®. The
nonlinear coefficients of the waveguides are

3 JJ@wj|Emj(x,y)|4 dx dy
JJ |ij|2 dx dy

[ [Bonea ey axay

JJ |ij|2 dx dy

(5.1.6)

Bwvj =

where convolutions of the tensor 6 are Ga,, = ea,,G €€
Q(OV/ - e(Oje (eV/e(D/er + €yj€yj€ 0 + e(OjeV/er) evn van 0\’/ and
0, are derived from the above expressions by the subscript
transposition w = v, v= o.

If the polarisations of all the waves are identical at the
input, then éa,vj = Hm,, = 300,, = 30vj

Usually, the anisotropy with the tensor 6 of the
waveguides can be ignored. It then follows from expres-

sion (I.2) in Appendix I that the convolutions are

B = 09 (@) = 09, () = 69 (o) ,
B, =09 (v) = 09, (v) =69 (v)

(5.1.7)
9va)j = eww = eru (CO, V)(] + 2COS2 1902/\‘7) ’

el(clk)kk (('07 V) = 01%71171171 ((,07 V) )
where 9, ,; are the angles between the unit vectors e, and
e,; and the subscripts k, m assume the values x, y, z.

It is evident from the set of expressions (5.1.7) that the
influence of the signal is maximal when the vectors of the
signal and pump fields are collinear: cos’ B,y = 1; this
influence is minimal when these vectors are orthogonal:
cos’ By vy = 0.

Since the waveguides support only a single mode at the
two frequencies, the field profiles E,;(x, y) and E,(x, y)
are the same dome shape, but they differ in the degree of
spreading. At the higher frequency, the profile spreads out
less and the energy concentration is greater. However, if
the wavelengths do not differ greatly, for example, if
A, = 1.06 pym and A, = 1.15 um, these differences in the
degree of energy concentration are not large. For example,
in the case of a fibre waveguide made of fused quartz with
the core a=1.97 pm in diameter when the difference
between the refractive indices of the core and cladding
is nwé—nw =0.01, we find that the parameter V, =
2ma(ng, —ﬁﬁ,)]ﬁ/la,, which represents the fraction of the
energy concentrated in the core, amounts to V,; =2 and
Vo =1.84 for A, =1.06 pm and A, =1.15 um, respec-
tively. It therefore follows from Ref. [124] that the
energy concentration in the core is 74% and 70% in
these two cases, i.e. the difference is small and we can
ignore the difference between the overlap integrals in the
set of expressions (5.1.6) if the wavelengths do not differ
too much. For similar wavelengths the cubic susceptibilities
of the waveguide materials are also similar. Therefore, in
the case of radiations with somewhat different wavelengths
propagating in identical tunnel-coupled optical waveguides
we can assume that in the set of expressions (5.1.5), we
have

1 +2cos’ B, vj
3 9

1+ 2cos? Dy, vj
3 b
(5.1.8)

Oy = 0,

Ha)vj ~ ij

where 0, ~ 0,;.
If the wave polarisations are also identical, then

0(00 ~ 00)] ~ gvl ~ 9\'0 ~ ngO ~ 9wv0 ~ Ba)vl ~ ngl =0.
(5.1.9)

The difference between the nonlinear coefficients does
not alter the nature of the dependences of the output wave
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intensities and of the phase differences between them on the
input intensity of the signal wave [40].

For an arbitrary cubically nonlinear system with
UDCWs the equations for the amplitudes of the waves
with the frequencies w and v may be written in the form

21ﬁ < dAwO + KA 1 exp <1oz Cco )
= —9w00|A~w0|2A~wo — 2645000/ oA oo
=001 |A~a)l A w0 — 2001 [A 1 Ao »
21B w0 EXP <—1oca, — Z>

= _Bwl 1 |A~wl |2A~wl - 20wvll |A~vl |2A~wl
NI - o~
_0w10|Aw0| Awl - 20wle|Av0| Awl >

dA .V
2ip i 2+ Ky A,y exp (l‘xv - Z)

(5.1.10)

dz

- - -5
= _BVOO |A v0| Ay — 20vw00 |A w0| Ay

—00) |A~"] |2A~V0 — 20,001 |A~wl |2A~v0 >

Zﬁg dAV]

v
+ K]()A vo €XPp (—llxv - Z)
~ 5~ -~ 5=
= _0V|]|Av|| Ay _20vwll|AwI| Ay
-~ 5~ ~ 9=
_0v10|Av0| Avl _29vaO|Aw0| Avl .

The system of equations (5.1.10) is put forward here for the
first time. Simple substitutions

~ 0
AwO :Awoexp |:l< il w+0w‘,0]1>2w:| N

2 cp
~ (0 %)
Aw] :Awl Xp |:]< “’]20 [ + GwVIO v> CB:| N
~ 0,011,
AVO :AvO exXp [l( ! +0vw011 > ZV:| 5

cp
~ 0 v
AV]:A‘,] eXp|:( V|20"+0vw]01 >¢ﬁ:| N
(5.1.11)

0(00 = 0(000 - 00)0] P 9wv0 = 9a)v00 - ga)vOI P
00)] = 00)]] - 0(0]0 P ngl = ga)vll - ga)vIO P

&w =, + (0w10 - 0«)01 )Iw/zﬁ"i_ (Bwvlo - BvaI )Iv ,

i = o+ (8410 — 0y01)1y/2 + (010 — Oyeoo1 )y

av - v B 9
where I, =1y, +1,, I,=1,+1,, make it possible to
transform the system of equations (5.1.10) to the system
(5.1.5). We shall therefore analyse specifically the system of
equations (5.1.5).

5.2 Integrals of equations

We shall introduce the moduli p,,;, p,; and phases @, @,
of the amplitudes A, = pw»exp(iqowj)z, A, = pyexp(ip,), as
well as quantities I, = py, I,; = py;, which are propor-
tional to the wave intensities. The initial conditions are
specified at the input (z = 0):

ij(Z:O):ijOa Ivj(ZZO):Iij»

(pwj(Z = 0) = (0(,,_,‘0 ’ ij(Z = 0) = q’ij .
We are interested in the intensities and phases at the output
z=1I

lpj(z=10)=1u;, Iz=0)=1y,

(pwj(Z = l) = q)a)jl’ (P‘{/‘(Z = l) = ¢vjl .

We can readily show that if K§ = K7 =K,,
Kb =K}y = K,, the energies of the waves at each fre-
quency are conserved along the longitudinal coordinate z
and in the linear case (6 # 0), we have

lyo+1y =1, =const, [,+1,=1,=const (52.1)
and we can introduce the coefficients representing power
transfer by each wave: Ty = Iy,/1,, Ty =1/,

If 0,,0 =040 and 6,, =0,,, then in addition to
expressions (5.2.1), it is possible to write down one further

integral of the system of equations (5.1.5):

Iy = Ko/ 1wolw cosy, + Ky\/Iol, cosy,
Ouolao | Owlo | Ounla
_“wﬁwolwo - OCvﬁVOIVO + w4w v4 : w4w
Bl 0,000l w0130 + Overt o1 1 522
+— 4 +vw0w0v0+ voltwlivl » ()

where Ww = OCwZCO/C + Pw1 — Pewos ‘pv = OCvZV/C‘ + Py1 — Pyo-

We can normalise the system of equations (5.1.5) by
introducing dimensionless variables [40]. For example, if we
assume that expressions (5.1.9) are valid, we can introduce
the variables R,; = |0|1,,0/(4K,), L, = K,lv/cp.

5.3 Numerical analysis of equations

Numerical analysis of the system of equations (5.1.5)
shows [40] that if a pump satisfies the self-switching
condition, described by expressions (4.3.1)—(4.3.3), then
the pump at the output can be switched by a small change
in the intensity of a weak signal even if the frequency of
this signal is not equal to the pump frequency. Such pump
switching is accompanied by self-phase-matching of the
zeroth and first pump waves at the point M and also by
switching of the signal and self-phase-matching of the
signal waves. The relationships between these mutually
coupled processes have been investigated [40] and some of
the results obtained are presented in Fig. 16. If the signal
and pump are fed in the form of one of the waves [in the
case of TCOWSs this means they are fed into the same
waveguide (Fig. 5a)], then the pump intensity needed for
switching should be slightly less than the critical value
(Fig. 16a). However, if the signal and pump reach the input
in the form of different waves, entering different
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Figure 16. Dependences of the coefficient representing the transfer of
the pump power by the zeroth wave Ty = I,/(l,0+1,) on the
normalised intensity of the control signal I,,|0|/4K,. The values of

the ratio K, /K, are given. L, =2.5T (a, b), 1.6m (c). (a) Ry =0.9,
Ry =0; (b) Rv0=1-la Ry =0; (C) RV0=0.55, Ry =0.6. /’lm/AVZ
1.15/1.06 (a, b), 0.85/1.06 (c, curve labelled 0.5); 1 (c, curve

labelled 7). The approximations described by expression (5.1.9) are
assumed to be satisfied; a, =oa, =0. At the points M, we have
cos(@,; — @yy) =1 and near the points M, the slope is
[07,01/01 40| = max.

waveguides in the case of a tunnel-coupled system of
waveguides (Fig. 5d), the switching pump intensity should
be slightly higher than the critical value (Fig. 16b).

The amplitude Al,q; of the change in the power I,q; of the
pump at the output can be tens, hundreds, or thousands of
times higher than the amplitude of the power change Al
of the control signal at the input. This gives rise to the
transistor effect. A rough estimate of the gain of an optical
transistor at the middle switching point can be made on the
basis of expression (3.1.21) where, however, one must
include a coefficient of the order of 0.1-1.5; the value
of this coefficient is given for different parameters K,,/K,,

R, R, in Ref. [40]. Examples of possible realisation of
different-frequency switching are given in Ref. [40] together
with estimates of the signal and pump intensities when a
fibre waveguide is pumped by radiation from a single-mode
Nd:YAG laser (A=1.06 um) and the signal represents
He—Ne laser radiation (4 =1.15 pm).

The switching efficiency (gain) decreases with reduction
in the signal coupling coefficient, more precisely, with
reduction in the ratio and K,/K, (see Fig. 16) [40, 65],
which means that this increase occurs when 4,/4, = v/
becomes smaller.

When the signal and pump are coupled into different
waveguides (Fig 16¢, K, /K, = 1), double switching of the
pump may take place. The second switching occurs at
higher values of the signal intensity and its slope is
considerably less than the slope of the first switch-
ing [65]. The signal intensity plotted along the abscissa
in various figures in this review is normalised to the critical
pump intensity, but in Ref. [40] it is normalised to the
critical signal intensity.

In Sections 3 and 4 we defined the middle self-switching
point M by the condition (4.3.2): r = 1. The question may
be asked: how to find the middle point M in a given situa-
tion when the solution and the expression for r are not
known? This can be done by applying two conditions:
(1) this is the point in the close vicinity of which the slope
(differential gain) reaches its maximum 0/, /01,0 = max;
(2) at this point the pump waves become phase-matched:
cosy, = 1. This definition is more general than that set by
the condition » = 1, although it is equivalent to the former
definition.

5.4 Elimination of the influence of the phase

of a signal on its amplification in tunnel-coupled

optical waveguides

It is shown in Sections 3 and 4, and in Refs [36, 54], that if
the signal and pump are coherent, the output character-
istics of the waves and the signal gain may all depend
strongly on the difference between the input phases of the
signal and pump. The positive and negative aspects of this
effect are considered in Section 3.5.

It is shown in Section 3.5 and in Ref. [66] that in some
cases it is desirable to eliminate the parasitic influence of the
input phase of the signal on the characteristics of a switch
or an optical transistor based on TCOWSs. This can be done
in a variety of ways [66].

One trivial way is to make the signal incoherent with the
pump. However, this is not always the optimal approach,
since it requires a fairly large difference between the signal
and pump paths (it requires greater coherence length),
which increases the delay time and enhances the influence
of various parasitic factors such as deformation of the
waveguide, losses, noise, etc. (See also Section 6.2).

Secondly, it can also be done by applying the pump at
one carrier frequency and the signal at another fre-
quency [40]. This approach is discussed in the preceding
sections (5.1-5.3).

The third way of tackling the same problem is to feed
the signal and pump with different circular polarisations (it
is assumed that TCOWSs are isotropic in a transverse
direction, and that the signal and pump can have the
same frequency). Then, the equations for the signal and
pump wave amplitudes are [66]
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A, dA i, z2m
:nlp Op p<
lﬁ; dZ +Kp €Xp <T>A]p
= _90p (|A0p|2 + 2|AOS|2)A0p 5

iapz2n
y Aoy

= _glp (lA lp|2 + 2|A ls|2)A Ip »

o As dAg it z2m
0 S ke ()

= _005(|AOS|2 + 2|A0p|2)AOS ,

LAy dA ioz2m
ip ;” dzls + K exp (— “A >AOs

S

A, dA
:n 1
is n dz

P + K, exp (—

(5.4.1)

=—0,,(]A sl +2/A lp|2)A Is »

where for the same frequencies (but different circular
polarisations) of the signal and pump we have 4, =4, = 4,
Ki=K,=K, 0y =0ps=10y, 0,,=0,=0,, oy =0, =0
and for the identical TCOWs, the parameters are
oy = ap = 0, BOP = glp = gp, 005 = 0]5 = 0\

It therefore follows that the system of equations (5.4.1)
is of the same form as the system of equations (5.1.5) and it
has the same integrals (5.2.2), apart from the notation. The
solution of the system of equations (5.4.1) for identical
signal and pump frequencies and identical TCOWs is
discussed in detail in Ref. [66]; the results do not differ
qualitatively from those plotted in Fig. 16.

There is another, fourth, way of eliminating the
influence of the input phase difference on the output
powers of a switch and of an optical transistor based on
tunnel-coupled optical waveguides: the polarisations of the
signal and pump should be orthogonal to one another. The
waveguide parameters should satisfy special conditions [66]
given below. The equations for the amplitudes of the
orthogonally polarised signal and pump amplitudes are [66]

A dA i, 7227
1/5’; Op—l-erxp(%)L >A]p

dz
== (0010 A Op |2 + 90p5|A Oslz)A Op
- . 200,022
_GOpsA (z)sA op €Xp (%) ’

A dA Y, i, z2m
1,3; i +erxp(— 7l Agp
= _(01p|A lp|2 + glpslA ls|2)A Ip
~ . 20,1227
_GlpsA %SA 1p exXp (%) 5
LA dAg i z2m
B o +K5"Xp( 7 >A“
= —(90s|A ol + Bosp 1A 0p |2)A 0s

~ . 20,0227
—0o5pA (z)pA 0s EXP (— %)

(5.4.2)

oA dA g i z2m

= _(BlslA ls|2 + glsplA Ip |2)A 1s

~ . 20,1227
_HlspA %pA 1s €Xp (_ %) 5

where Ogpj = ﬁsj - ﬁpj’ % = le - ﬁsO’ % = ﬁpl - ﬁpO’ ﬁ =
(Bso + Byi + Byo + By1)/4, and the nonlinear coefficients are

related approximately by 6, =0, 0, ~26/3, éj
[see the set of expressions (2.3.10)].

In this case the nonlinear parts of the equations
generally include one more term, which contains a com-
plex-conjugate amplitude. Its presence describes the
dependences of the output intensities of the waves on
the input difference between the phases, even in the case
of orthogonally polarised signal and pump waves in
TCOWs isotropic in the transverse direction, when the
linear coefficient of the coupling between the signal and
pump waves vanishes. However, we can select conditions
under which the influence of this term is negligible. This can
be done by employing waveguides which are transversely
anisotropic, have an elliptic distribution of the effective
refractive indices, and the polarisation unit vectors of the
pump and signal waves which are mutually perpendicular
and directed along the principal axes x and y. The optical
anisotropy should be sufficiently strong so that the differ-
ence between the effective refractive indices of the waves
polarised along the principal axes x and y (i.e. the quantity
Op;) is considerably greater than the coefficient K represent-
ing the linear coupling between the waveguides. It follows
from numerical calculations [66] that this term can defi-
nitely be ignored if |a,;| = 5K. The output intensities of the
waves are then almost completely independent of the input
phase difference.

The system of equations (5.4.2) had been derived and
investigated also in Ref. [87], but without a discussion of
the influence of the signal phase on the switching process.
Numerical calculations are used in Ref. [87] to draw the
conclusion that chaos appears in the system at large values
of L (L > 6m) and that the term with 6, has an important
influence. A similar conclusion about chaos in TCOWs
made of an isotropic nonlinear material, when the polarisa-
tion vector is tilted relative to the geometric axis of the
tunnel-coupled waveguides, is reached in Ref. [8§8] where
the values of L are assumed to be even larger than those
given in Ref. [87]. Moreover, Ref. [88] deals also with the
case when pump waves of similar intensities (one equal to
four critical values and the other close to four critical
values) are coupled into both waveguides. According to
expression (4.6.3) [36], this enhances strongly the gain and
makes it fantastically large.

The existence of chaos is deduced in Refs [87, 88] on the
basis of computer calculations. However, for the values of L
selected in Refs [87, 88] the values of the gain estimated on
the basis of expressions (3.1.21) and (4.6.3) are so high that
the computer is unable to ‘track’ the very abrupt changes of
the output intensities, and this may be the reason for the
appearance of random jump-like graphs representing the
output intensities [87, 88]. Therefore, the conclusion on the
chaos reached in Refs [87, 88] should, in our opinion, be
checked additionally and physically analysed.

~0/3

P

6. Optical multivibrators based on
unidirectional distributively coupled waves

6.1 Optical multivibrators unstable against a phase shift
in a feedback loop

The results presented in Sections 3—5 can be used to design
and forecast the characteristics of feedback devices based
on nonlinear systems with UDCWs, i.e. of devices in which
part of the radiation from the output of the system is fed to
the input [51, 56, 62]. We shall discuss one such device in
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Figure 17. Optical multivibrator configurations, which are unstable
(a—d) and stable (e, f) against a deviation of the phase in the feedback
loop from the calculated value; P is a device which transforms the
polarisation or frequency, and F is a polarisation filter which prevents
admission to the feedback channel of the radiation with the polarisation
other than the required one.

the specific case of TCOWs with feedback (Fig. 17).
Similar devices can be based also on other systems with
UDCWs.

Let us assume that, for example, a pump wave with a
constant normalised intensity R, reaches the input of the
zeroth waveguide without losses and that the radiation from
the output of the first waveguide is returned, by mirrors or a
feedback waveguide (completely or partly), to the input of
the same waveguide (Fig. 17a). The coefficient representing
energy transfer from the output of the first waveguide to its
input is ¢ (usually ¢ € 1), i.e. the boundary conditions for
the amplitudes are

Ayo(t) = Vo Ayt —1p) exp(ioy) ,
6.1.1)
Ago(t) = y/Roplom = const ,

where 7; is the time taken by radiation to travel along the
feedback channel, ¢ is an arbitrary moment in time, and @y
is the phase shift during the passage along the feedback
channel.

Let us select Rg, so that for R; =0 the radiation
emerges entirely from the first waveguide. The coefficient
o is  selected so that the signal entering the input of the
first waveguide is such that, for the selected value of R, all
the radiation emerges from the zeroth waveguide. Thls
selectlon of the parameters means that Rg, = RM R
o= IM/RM, oyt o= Eos)o—kmn and Ro, > Ry (ie.
6 <1); the values of R,/ and R calculated from
expressions (3.1.11), (3.3.6), and 4.4 14) o = [8exp(— L)]

[ ]

67 + St¢ t

Ty 279+ T¢ 41y + 31¢

3ty + 21¢ S5t +4t¢ Ttg + 67 ¢

Figure 18. Pulses at the output from tunnel-coupled optical waveguides
with feedback (see Fig. 17).

For this set of parameters a periodic process appears in
the system (Fig. 18). The radiation reaching the input of the
zeroth waveguide at the moment ¢t =0 passes through
TCOWs in the time 1, and reaches the output of the first
waveguide. Then, after a time 1 part of this radiation
begins to enter the first waveguide and, therefore, after a
further time 7,, i.e. at the moment 7 =2ty + 14, all the
radiation begins to emerge now from the zeroth waveguide.
Consequently, at the moment ¢t = 27) + 27; the radiation
ceases to enter the first waveguide and, therefore, at the
moment ¢t = 27; 4 37, all the radiation again emerges from
the first waveguide. The process is then repeated with the
period 2(t; + 7).

Similar multivibrators can be constructed in other ways
(Fig. 17) and the selection of the parameters is determined
by the characteristics of the system.

If the output of the first waveguide is coupled optically
to the input of the zeroth waveguide (Fig. 17b), then
R, —Ry(vl and o is selected so that for a given value of
R, after the passage ofI the signal along the feedback
channel we have Ry = Ry, at the waveguide input.

If the output of the zeroth waveguide is coupled
optically to the mput of the first waveguide (Fig. 17¢),
then Rg, = RY, o =R\ /RY.

If the output of the zeroth waveguide is coupled
optically to the input of the zeroth waveguide (Fig. 17d),
then Rg, = R,(\g) and o is selected so that after the passage of
the signal along the feedback channel we have R, = R[(\/l at
the waveguide input.

In all these cases two antiphase sequences of almost
rectangular pulses (Fig. 18) are formed at the waveguide
output. The duration of one pulse is 7y + 75. During the time
interval 7; 4 7 all the radiation emerges either from the first
or the zeroth waveguide. The system is therefore an optical
multivibrator operating in the self-oscillator regime.

6.2 Optical multivibrators stable against a signal phase
shift

Optical multivibrators have stable output characteristics if
these characteristics are independent of the input phase of
the signal. Let us consider this in detail. It is obvious that
in the course of the passage of a wave (signal) along the
feedback channel the change in the wave phase depends
strongly on the length of this channel and also on
inhomogeneities and fluctuations of the refractive index
(which in turn can appear and change under the influence
of various factors: temperature changes, deformations,
fields, etc.). The output intensities of the optical multi-
vibrators (based on TCOWs) described in Section 6.1
(Figs 17a—17d) depend strongly on the phase of the
signal arriving at the input (along the feedback channel)
and, consequently, on the phase shift in the feedback loop.
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This dependence is described in Sections 3.5 and 4.9 and in
Refs [36, 51, 54], and it can be explained —as mentioned
already —by the interference between the signal and pump
waves at the waveguide input. The parasitic influence of the
phase shift in the feedback loop leads to an instability of
the wave intensities at the output of an optical vibrator and
may stop its operation. Quantitative estimates of the
deviation of the signal phase shift in the feedback loop
from the calculated value at which an optical multivibrator
ceases to operate are given in Ref. [66]. For example, in the
case of the calculated (for Rg, =0.948, L = 1.6w, 4 =0)
signal phase (for a signal arriving at the input along the
feedback channel) equal to ¢, =0 it is found that if
@, > T/4, the optical multivibrator illustrated in Fig. 17b
ceases to operate completely.

In the design of optical multivibrators, unaffected by
instabilities of the wave phase in the feedback loop, one can
use the results derived in Section 5.4. Examples of such
multivibrators are shown in Figs 17e and 17f. Multivibra-
tors can be made sensitive to phase instabilities in one of the
following ways [63 —66].

(1) One can couple circularly polarised pump radiation
into the input of TCOWSs and place, in the feedback loop, a
device P which transforms one circular polarisation into the
opposite circular polarisation [63].

(2) Linearly polarised pump radiation can enter the
input of TCOWSs and, in the feedback loop, one can place
a device P which rotates the plane of polarisation by
90° [64].

(3) One can locate, in the feedback loop, a device P
which transforms the radiation frequency (w — v), i.e. the
pump reaching the input has the frequency w and the signal
reaching the input along the feedback channel has the
frequency v.

(4) The optical length of the feedback loop can be made
greater than the pump coherence length. Then, the signal
and pump are incoherent at the input and there is no
interference between them. However, this is not always the
optical method. In particular, in the case of optical
multivibrators one would then need a long feedback
loop (longer than the pump coherence length). This would
limit the minimum duration of the output pulses.

In cases (1) and (2) the TCOWs should satisfy the
requirements set out in Section 5.4 and in Ref. [66].

7. Optical self-switching in a system with three
unidirectional distributively coupled waves

7.1 Equations and integrals
A cubically nonlinear interaction of three UDCWs can be
described by the equations

c dA, 009z 70
2if — —"+ Ky e P( o >A1 +K026XP<L>A2
w dz c c

= _'90|A0| Ay — 901 |A1|2A0 - 902|A2|2A0 P
2i ﬁ — ‘|‘K10e p( _](z-zw>A0 + Ky exp (iaz]czw>A2
= -0, |A AL = 01]A’A| — 01]A5°A, (7.1.1)
2i C dA < a20Z(D>AO + K2] exp (_ ia2]Z(l))Al
. ¢

= _02|A2| A2 _020|A0|2A2 - 92I|AI|2A2 s

where a9 = B — By, 0o = By — By, 021 =B, — P, are the
differences between the refractive indices, and K, = K,
K> = Ky, Kyy =K, are the wave coupling coefficients.
We shall now consider the real amplitudes p; and the
phases ¢@;. We can ecasily show that the system of
equations (7.1.1) has two integrals when Ky = K,
K]2 :K2| and KO] = KIO [48, 67]
I=po+pi+p, (7.1.2)

G = Kq1pop) €08 ¥ + 010BpT + Ko2pop, 0S¥ + o2 B3

0, 0 0,0% 0, p2p°
K ppypa oSy + 0100+ 1P1+ 2fz+ 01/;01’1
0 2 2 0 2 2
+ 02P0P2+ 12P1P2 ) (7.1.2)
2 2
where ¥y = @) — @y +a0z0/c, Yy = @y — @y + axz0/c,
Vo =@y — @) +az00/c.

The equations for the wave amplitudes in three tunnel-
coupled waveguides are [48]

21 Xp (la]OZw>A] +K02 eXp <la2ozw>A2
(& (&
= —0ol4,/A¢
¢ dA o9z 052
2/3__'+1<]0e p( “z_ >A0+Kuexp( 2'0 >A2
=—0,|A{[A;,
dAll PA, (7.13)
c iogzw
ﬁ—d—‘|‘K20e p( 2(2_ >A0

oy z0
+K>; exp <— %)AI = —0,]4,°A; .

We shall now consider the case of three TCOWSs, which
are of interest for several reasons. First, out of all the systems
with three UDCWs it is the TCOWSs that are of the greatest
practical interest. Second, in the symmetric cases the
relationships between the ‘cross’ nonlinear coefficients are
0 = 6pp=0,=0. or 6,y =0, =0,., and because the
system of equations (7.1.1) reduces to the system of equa-
tions (7.1.3) by a simple replacement of the variables and
nonlinearities §; — 6, = 0,, which is similar to the substitu-
tion (2.5.2).

For the sake of simplicity, we shall consider just the case
of identical waveguides characterised by

00:0|:02:0

and we shall adopt the usual notation: R; = |0|1;/4K, I;y =
A’ Ty = 1i/ (oo + 1o+ 120) Ajo = A; (Z—O) J=0,12.

o =0y :0, (7]4)

7.2 Three identical tunnel-coupled optical waveguides
distributed in one plane

We shall consider three identical TCOWs located symmet-
rically in one plane (Fig. 19a):

Koy =Kig=Kyy=Kp=K, K;p=0. (7.2.1)

In view of the symmetry of these waveguides, we have
pr=pr=p. Y1 =Y,=Y=0, -9

We shall assume that the radlatlon is coupled only into
the central (‘zeroth’) waveguide:

Ro%o, R]=R2=0. (722)
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Figure 19. Transverse section across three tunnel-coupled optical
waveguides: (a) Kjg = Ky > Kp; (b) Kjg =Ky =K, =K.

It then follows from expressions (7.1.2) that [48]

2 31,
== (5, =
cosy ™ 10<0 2),
where gy = 4K/|0| (see Section 3.1).

We shall now turn to the numerical solution of the
system of equations (7.1.3) subject to the assumptions

(7.2.3)

T

1.0

Figure 20. Dependences of T; = I;;/Ipy (j =0, 1, or 2) on Ry = Ipg/Ipy,
plotted for K, =0, K19 = Ky = K; L =7 (a), 1.5n (b), 2w (¢), 2.57 (d),
37 (e), 3.57 (), 47 (g), 4.57 (h). The point at which 0T(/0R, = max is
identified by a cross. Radiation is coupled into the zeroth (central) of
three identical tunnel-coupled optical waveguides: 1,y = I,y = 0 (figure
taken from Ref. [48]).

described by expressions (7.2.1), (7.2.2), and (7.1.4). This
solution is partly presented in Fig. 20, which gives the
power transfer coefficients T, and T, as functions of R,.
The numerical solution was obtained for different values of
the parameter L = 2nKI/Af, introduced by analogy with the
case of two UDCWs; the value of this parameter increases
by m/2 between one part of Fig. 20 and the next.

The nature of the dependence T;(R,) is in this case
subtantially different than in the case of two UDCWs.

For L which is a multiple of 1.5 there is practically no
radiation self-switching (Figs 20b, 20e, and 20h). In these
cases the nature of the dependence 7;(R,) is the same and
energy exchange is considerably less than for other values of
L. An increase in L increases the frequency of the energy
beats caused by a change in Ry and, consequently, the slope
01y, /0l increases [48].

This cosine of the phase difference reaches its maximum
value of unity simultaneously with the attainment of a local
maximum value by the coefficients T,, and of the
corresponding local minimum of T ; it should be noted
that cosyy =0 when T,, =0 and T, =1 [48].

7.3 Coupling between all waveguides

In this section the system of equations (7.1.3) will be
investigated in a different case [67] when the coupling
between all the waveguides is material: K, #0,
Ko =K,y =K #0. This case is usually encountered
when all three waveguides are separated by the same
distance (Fig. 19b). As in Section 7.2, the waveguides are
assumed to be identical. The results of numerical
calculations [67] are presented partly in Fig. 21 (some of
them are also given in a table in Ref. [67]).

It follows from these calculations [67] that, in particular,
if Kg1 = Koy = K15 = K, the switching slope, i.e. the differ-
ential gain (610,/6100)nmx = (RO +R] +R2)(6T0/6R0)max’ is
higher (for L =2nKl/Af = 1.6m, the difference is approx-
imately a factor of 3), but the critical intensity /Iy is also
higher (by a factor of 1.5) than in the case of two TCOWs
(i.e. when Kyp=K;;,=0, Ky =K) when we have
Iy =Ipq =4K/|0]. As K|, increases, the switching slope
at the middle point M rises, but Iy also rises (Figs 20b and
21). The results of the numerical calculations indicate that
the switching slope depends exponentially on the effective
parameter L.z = 21K [/AB, which is proportional to the
effective coupling coefficient K.y, which increases with
increase in Ky, K¢y, and Kj,; we then have Iy o< Ki/|0).

The self-switching depth increases with increase in K,
(Figs 20b and 21) and for K, =~ 1.5K, the switching is
almost complete.

When radiation is injected into the inputs of two
waveguides (a pump into the zeroth waveguide and a
small signal into the first waveguide), it is found that in
the case of three TCOWs (as in the case of two such
waveguides discussed in Section 4.4) the small signal
experiences giant amplification and if K, =Ky =
K,y = K, the slope for three tunnel-coupled waveguides
is steeper than for two waveguides, but the amplification
appears at a higher pump intensity [67].

Finally, in the case of self-switching of waves with close
input intensities (Section 4.6) the configuration of three
tunnel-coupled optical waveguides is characterised by
higher values of the gain 0//0ly, than in the case of
two such waveguides. For example, if L =1.5m,
Ry~R, ~R,~0.8 and Ky =Ky =K, =K, we have
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Figure 21. Dependences of To=1y/lpy on Ry, plotted for

Ko =Ky =K;K;; =K/2 (a), K (b), 3K/2 (¢). L = 1.5m, I,y = I,y =0.
The point at which 0T(/0R, = max is identified by a cross (figure taken
from Ref. [67]).

(011/0140) ax =~ 352.6 for three waveguides [67], whereas
for two waveguides if L = 1.5t and Ry~ R, =~ 0.8, we
find from expression (4.6.2) that (01y/0ly),., = 272.
However, the total power entering three TCOWs is greater
than for two waveguides.

Investigations of the self-switching of light in three
tunnel-coupled optical waveguides are reported also in
Refs [99-103].

8. Conclusions

A theory of self-switching of unidirectional distributively
coupled waves with a linear coupling coefficient, discovered
by the present author, is presented. The results of
investigations reviewed above reveal interesting relation-
ships govern-ing such self-switching and demonstrate the
possibility of constructing a new class of optical devices on
the basis of this effect: these devices include optical
transistors, small-signal amplifiers, logic elements, inten-
sity limiters, multivibrators, etc.

The concluding part of this review, which should be
published soon, will contain a description of the experi-

mental observations of self-switching of unidirectional
distributively coupled waves omitted from this review:
self-switching of pulses, self-switching of different-fre-
quency waves with a nonlinear coupling coefficient in a
quadratically nonlinear medium, etc.
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Appendix 1

It follows from expression (2.4) that the mth component of
a cubically nonlinear polarisation of the medium (at a
given frequency) can be expressed in terms of the
components of the fields at this frequency:

Pnl,m = mnkl{E:EkEl +EnEltE1 +EnEkE7} ’ (Il)
where the subscripts m, n, k, and [ can assume the values 1,
2, 3, corresponding to the coordinates x, y, z.

As a rule, we can use the tensor of an anisotropic
medium for 6 because both a linear anisotropy (n. — n,) and
a cubically nonlinear polarisation (proportional to 76) of a
medium are quantities of the first order of smallness. For
example, |n, — n| of fibre waveguides ranges from 5 x 107
to 8 x 107* [125] and typical values are ~ 1076-107°.
Therefore, the anisotropy of a cubically nonlinear polarisa-
tion is a quantity of the second order of smallness even in
the case of an anisotropic medium and it can usually be
ignored.

The fourth-order cubic nonlinearity tensor of an
isotropic medium is [118]

Hmnkl = j'5mn 5](1 + ﬁémk 5nl + i(Smlénk s (12)
where 0,,, = 1, if m =n, and 6,,, =0, if m # n; =0, =
011 = 0333 = 03311 = 01133, B=0033 = 01313 = 03131 =
02121 = 03232, V=101 = 0y1p =033 = 03115 = 0133
Therefore, the nonlinear polarisation vector of an
isotropic medium can be expressed in terms of the field
vector as follows:

1
Pnzzsz[EE*(E-E)JrE(E'E*) ; -9
where
2
o nyhyC
X=A+p+V=0111 =0y =00 =033 = 0311? ’

and n, is_the coefficient in the familiar expression
n=ng+nyd (I is the intensity).

The nonlinear coefficient is 0 ~ 30, = ngnoc/m. It is
used to estimate Iy = 4K/|0| (Section 3.1). The intensity is

Iou = (eng/2m) oy .

Appendix 11

In our analysis of the radiation self-switching and of
optical switching in nonlinear systems with UDCWs we
have derived and used simple approximations [34, 36, 37]
for the elliptic functions when |ri| < 1 (where r{ =1 —#%)
and expL > 1. These elliptic functions are

__sechL — (r1/8)exp L
T+ (4/256) exp(2L)

en(L, r) (IL.1)
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sech L + (r1/8) exp L
1+ (}/256) exp(2L)

dn(L, r) = (I11.2)

— (r1/256) exp(2L) .

sn(L, r) = 1+(r‘1‘/256)exp(2L)

anh L . (11.3)

We find from expression (11.1) that

den(L, r)| _expL
or 4 7

r=1

where cn(L, 1) =~ sech L; cn(L r)~1 and (r}/16)expL =
—1 and en(L, )=~ —1 if (F/16)expL =1; rH=1—-7r~
2(1 —r) and, therefore, cn(L, r) = 1 if ra~ 1+ 8exp(—L)
and en(L, r) = —1 if ra 1 —8exp(—L).



