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Abstract. This survey is devoted to experimental and
theoretical results on interaction and self-action processes
of strongly distorted waves containing shock fronts. Such
sawtooth-shaped disturbances can be formed during the
propagation of the wave through media where the
nonlinearity predominates over competitive factors like
dispersion, diffraction and absorption. The specificity of
nonlinear processes for sawtooth-shaped waves is partic-
ularly emphasised. The recently observed phenomena such
as self-action of beams, self-refraction of shock pulses and
saturation of the signal in focus, as well as current applied
problems, are described.

1. Introduction

The sawtooth-shaped wave is an unconventional and
interesting subject of investigation which can be experi-
mentally observed in distributed systems of diverse physical
nature. A rich variety of experimental data on the
nonlinear dynamics of sawtooth-shaped waves has been
obtained in nonlinear acoustics. That is why it is
convenient to discuss most of the nonlinear phenomena
associated with the propagation and interaction of such
waves using the example of a high-intensity acoustic wave.
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Nonlinear acoustics is often referred to not only as the
modern division of acoustics, but also as a principal part of
nonlinear wave physics. The dispersion of sound velocity is
very weak in acoustic media, and wave interactions have
many distinctive properties under these conditions. It is
agreed that in many problems of nonlinear acoustics the
dispersion is absent altogether. In this situation, essentially
all virtual processes of energy exchange between different
harmonics are resonant. These processes are comparable to
one another in efficiency. As the result of this, the cascade-
like multiplication of spectral components goes on during the
wave propagation. In the space—time representation, the
nonlinear broadening of the spectra corresponds to forma-
tion of discontinuities in the wave profile or weak shock
waves with a front of finite width in a dissipative medium [1].

From the standpoint of nonlinear wave physics, the
intense disturbance with a sawtooth-shaped profile is
unique and therefore is the most interesting subject of
investigation in nonlinear acoustics.

One can define the sawtooth wave as a travelling
disturbance whose time profile contains both discontinu-
ities and smooth sections. Any periodic disturbance
propagating through a nondispersive medium transforms
its shape to a sawtooth one at large distances. In doing so in
quadratically nonlinear media the plane wave takes the
form of a ‘saw’ with triangular ‘teeth’. The dynamics of the
transformation of the periodic signal into a ‘saw’ are shown
in Fig. la. As the distance x increases, the fine details in the
initial wave profile disappear smoothly during the wave
propagation. The profile is the same for both a harmonic
initial disturbance (curve /) and a more complicated signal
(curve 2) at some distance from the source of the order of
several characteristic lengths (x =x, in Fig. 1).

A single time-limited disturbance transforms itself into
an N-wave (Fig. 1b) at large distances in quadratic non-
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Figure 1. Formation of sawtooth-like waves:
disturbance; (2) complicated signal.

(1) harmonic initial

linear media. The integral of the function describing the
wave profile tends to zero as x — oo as a result of
diffraction which is essential because real disturbances
are limited in space.

In cubically-nonlinear media the ‘teeth’ of the ‘saw’ have
a trapezoidal form (Fig. Ic). Each period contains two
shocks: compression and rarefaction.

The existence of sawtooth-shaped waves other than
those shown in Fig. 1 is possible in media with intricate
nonlinear, dissipative and dispersive properties. However,
the disturbances in Fig. 1 are most typical.

It is significant that the wave profiles mentioned above
are asymptotically general for the wide range of initial
disturbances. After its formation, the sawtooth wave
remains quasistable. Only certain of the parameters may
vary at later propagation. The peak pressure varies for
periodic ‘saws’, with single pulse changes both in the peak
pressure and the duration of the pulse. The wave profile is
relatively stable and varies insignificantly with superposi-
tion and nonlinear interaction of the ‘saws’, as well as with
the weak influence of complementary effects such as
diffraction, dispersion, low-frequency modulation, etc.

Consequently, the sawtooth wave is a widespread wave
type, whose stability is connected with the strong manifes-
tation of nonlinear properties of the medium.

In nonlinear wave physics another object having non-
linear properties which are strongly expressed is more
famous. That is the soliton, whose stability is provided
by the competition between dispersion and nonlinearity.
However, the soliton is stable only in ideal conservative
systems, in the strict sense, whereas quasistability of ‘saws’
takes place in real dissipative media.

While on the subject of interactions between ‘saws’ or
solitons, one can draw an analogy to the theories of
hydrodynamic turbulence. It is known that in wave physics
two kinds of nonlinear phenomena can be separated: those
attributable to weakly expressed nonlinear effects (an
example is phonon gas behaviour in solids with regard
to lattice nonlinearity) or, on the other hand, those
connected with the strong expression of nonlinear effects.

In a like manner there are two ways of looking at
turbulence: as on the ensemble of weakly interacting
quasiharmonic disturbances or, on the other hand, as on
the set of interacting vortex structures, where each vortex is
essentially a nonlinear object itself.

The second approach to turbulence is analogous to the
approach to the problem of the interaction of wave objects
with strongly expressed nonlinear properties such as
sawtooth-shaped waves or solitons.

But, whereas the interactions between solitons are
described in great detail in many reviews and mono-
graphs, sawtooth waves have received only a little
consideration.

A number of principal experimental works devoted to
sawtooth wave formation, as well as to nonlinear absorp-
tion and saturation effects, were completed at the end of the
1950s [2-6].

In recent years new phenomena were experimentally
observed and explained: namely, self-focusing of sawtooth
waves [7—13], self-refraction of pulses [14, 15], the existence
of a physical limit for the peak acoustic pressure in the focal
region [16] and some others. Furthermore, many of the
known phenomena like parametric interaction, signal
suppression and amplification, isolated wave collision,
etc., happen quite differently for sawtooth waves than
for quasiharmonic waves or solitons. These phenomena
were studied in detail recently, because of their specificity.
To describe the sawtooth wave, special mathematical
approaches were developed, which are distinct from the
common approaches used in other divisions of nonlinear
wave theory.

The interest in these phenomena is associated with the
numerous applications. Among the ‘hot’ problems one can
emphasise the nonlinear methods of nondestructive testing
and diagnostics in industry [17]; medical problems (disin-
tegration of kidney stones and other mineral objects of
biological origin [18, 19]); sonic boom and high-power
acoustic noise [20, 21] (the ecological impact of these
waves is under study now in connection with the design
of a new generation of supersonic passenger aircraft [22,
23]). The references to the works which illustrate the
connection between the discussed phenomena and the
topical applied problems will be given where appropriate
in later sections of this review.

2. Field and spectral approaches in nonlinear
wave theory

2.1 General remarks
It is known that nonlinear waves in weakly and strongly
dispersive media require different approaches for their
description. When the medium has weakly expressed
dispersive properties or dispersion is absent altogether,
that is, propagation velocities of different components of
the wave spectrum are close to or coincide with each other,
the collinear harmonics can interact resonantly and
exchange energy effectively in the process. This leads to
cascade-like multiplication of harmonics and to broadening
of the spectra. In other words, any virtual disturbance
whose production is allowed by the type of nonlinearity
can actually be created during the process of interaction
and has an impact on the energy exchange.

Two possibilities exist here. One can describe the wave
field using a temporal—spatial representation or by use of
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complex amplitudes for each spectral component, keeping
track of the space variation of these amplitudes. It is evident
that if the wave contains a great number of harmonics or
the wave spectrum is continuous, the second (spectral)
approach is inconvenient. When the analytical calculations
are carried out, this method is effective only for the strongly
dispersive media (for strictly specified frequency depend-
ences of phase velocity agreeing with the initial wave
spectrum) in the case of a small number of interacting
harmonics. Examples are provided by classic problems of
nonlinear optics [24]. To arrange the effective generation of
the second harmonic in a quadratic nonlinear medium, it is
necessary to use a birefringent crystal with ‘the direction of
synchronism’. Two harmonics at frequencies w and 2w
which are differently polarised as ordinary and extraordin-
ary waves, and are travelling in that direction, have
approximately equal phase velocity and can effectively
exchange energy. At the same time the virtual higher
harmonics 3w, 4o, ..., the creation of which is permissible
as a result of the series of cascade-like processes in the
quadratic nonlinear medium, have strongly different phase
velocities. These harmonics cannot grow in amplitude up to
the values which allow their participation in the redistribu-
tion of energy throughout the spectrum.

A correct line of the spectral approach to the problem of
wave interaction in dispersive media reduces to the
following procedure. Originally, the problem was posed,
for example, to arrange the resonant triplet w; = @; + w, to
transform the energy from the pump wave w; to the lower
frequencies w; and w,. Thereafter, the conditions must be
found for the continuation of this resonant process, and in
particular, a medium with the proper dispersive character-
istic. Finally, the simplified evolution equations for the
complex amplitudes A, A,, A3 of the resonant triplet must
be derived in accordance with the real problem that was set.

Of course, the inverse sequence of operations is possible.
Let a nonlinear medium with known dispersive properties
be available. Analysing the form of the dispersive character-
istics, one can decide easily which of the virtual interactions
will be resonant and whether they exist in this medium in
principle. Thereafter, the spectrum of the initial signal must
be determined and corresponding equations derived for the
amplitudes of the waves taking part in resonant inter-
actions.

However, in many papers authors limit the wave
spectrum or the number of interacting harmonics, without
regard for the dispersive properties of the medium. In doing
so, they impose on a nonlinear process artificial conditions
different from the real ones. Nonlinear equations for
spectral components derived in this case can be easily
solved, because they are much more simple in comparison
with the correct and more general equations governing the
wave field. The results obtained in this manner may be
interesting for mathematical theory, but physical results are
often in rather poor agreement with the real observational
data.

[t is important to recognise the possibilities of both
spectral and field approaches to solving the problems of
wave interaction for those situations where both
approaches can be used interchangeably: for acoustic
waves, surface disturbances on shallow water, waves in
plasma, in particle streams, etc. In addition, a demand arose
recently in nonlinear optics to use the field approach for the
description of broadband signals, namely, femtosecond

laser pulses [25]. It seems likely, on the other hand, that
acoustic analogies of nonlinear processes in optics call for
investigation by the spectral approach [26].

Clearly, an active exchange of ideas and methods
between different divisions of nonlinear wave physics
must be accompanied by the taking account of the peculiar
features of the considered phenomena.

In Sections 2.2—-2.4 examples of nonlinear processes are
given, described within the framework of the field and
spectral approaches. It is interesting to compare results
obtained by means of these two methods and to establish
their correspondence to experimental data.

2.2 Harmonics generation

The propagation of a plane wave in a nonlinear medium
without dispersion and dissipation can be described by the
Riemann wave equation [1]:

ou ¢ au_

— oy —=
ox & ot

0. (1)

Here u is the particle velocity, ¢, is the equilibrium velocity
of sound, ¢ is a parameter of nonlinearity, x is the distance
traversed by the wave, T =t — x/c. The field equation (1)
describes realistically the observed phenomena, namely, a
leading front steepening up to a discontinuity formation,
generation of harmonics and combination frequencies, etc.
In particular, if the harmonic signal u = u sin @t is given at
the input x =0, from Eqn (1) the Bessel —Fubini solution
for amplitudes of harmonics nw (n=1, 2, 3, ...) follows:

B () =12 st @

Z g

which is in close agreement with the measured results. In
solution (2) J,(z) are normal (at z < 1) or incomplete (at
z > 1) Bessel functions [27].

If the spectrum is restricted artificially by two first
harmonics and one seeks the solution of Eqn (1) in the form

u = B (x)sinwt + By(x) sin 201 ,

a pair of reduced equations can be obtained:

dB, 0} dB, ew ,
—=—— BB —=—B7. 3
dx 2¢3 172 dx  2¢ ! ®
The solution of Eqns (3),
Uy z €
B=————, B,=uytanh =, z=— 4
1 Cosh(z/z) 2 up tan ) Z (;% upx ( )

provides the correct result (2) at small distances z <€ 1 only.
But at z € 1 there is no sense in using reduced Eqns (3),
because the result can be obtained with the same accuracy
just from Eqn (1) by the successive approximation method,
when the first harmonic amplitude is taken as the constant:
B = ugy. Over the region z = 1 where the reduced Eqns (3)
could give the new information in principle, they describe
the wave interactions inexactly. The behaviour of the first
two harmonics is incorrect and higher harmonic generation
is ignored completely (see Fig. 2).

2.3 Degenerate parametric interaction

Let us consider an interesting and beneficial example to
demonstrate the special features of nonlinear phenomena in
the sawtooth wave fields. The degenerate parametric
interaction is a process which has been much studied for
the waves in dispersive media.
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Figure 2. Amplitude of the harmonics calculated by the successive
approximation method (dashed curves) and on the basis of reduced
Eqns (3) (long-short dashed curves). Solid curves correspond to the
exact solution (2).

It is known that quasiharmonic signals with frequency
and wave vectors interrelated by the law of dispersion are
stable wave objects in strongly dispersive media. For some
specifically selected forms of dispersive characteristics one
can create conditions for effective energy exchange between
only two waves: the fundamental frequency w, and sub-
harmonic @y/2. Such conditions can be achieved, for
example, in nonlinear optical crystals for laser beams.
Resonant interaction between the intense pump wave ®,
and a weak signal wy/2 (Fig. 3a) is a phase-sensitive effect.
At optimum phase shift one can reach almost full
concentration of energy in the signal wave and achieve
by this means a large coefficient of parametric amplifica-
tion, K > 1 [1].

At first glance it would seem that in the solution of the
problem of interaction between waves @, and wy/2 one
should take account of pump energy losses through the
generation of its own higher harmonics. In fact, the ‘parasitic’

0 0.5 1.0 w/w,

0 0.5 1.0 1.5 2.0 2.5

Figure 3. Basic directions of energy flow at the interaction of pump
wave and subharmonic signal (a), taking into consideration the higher
harmonics of the pump wave (b) and higher subharmonics (c).

channel of energy rejection, wy— 2wy — 3wg...,
may depress the beneficial process, w, — wy/2 (Fig. 3b),
significantly. According to calculation [28], the amplifica-
tion factor K cannot be greater than K =I"!/2, Here
I’ = by /(2ecopoug) is the inverse acoustic Reynolds num-
ber (Goldberg number) which is equal to the ratio of
characteristic shock formation path length x, = ¢} /(swqu)
to the absorption length x, = 2c3p,/(bw3), where b is an
effective parameter of the dissipation. It follows that, for
example, at numbers I ~ 1072 which can easily be reached
in laboratory experiments, amplification may be significant:
K ~ 10.

However, this conclusion is incorrect. It was surprising
because an infinite number of interacting waves was taken
into account in the calculation [28], namely, all the multiple
harmonics nw, (n =1, 2, 3...) as well as the subharmonic
signal @y/2. It turned out that it was necessary to take into
consideration all the higher subharmonic components
3wy/2, 5wy/2, ..., to obtain the correct result. Each of
these subharmonics has very small amplitude, compared to
the pump harmonics nwy, and the losses due to their
generation are insignificant. However, higher subharmon-
ics open new channels for the transmission of energy from
the basic subharmonic (i.e. from the signal to be amplified)
up through the spectrum.

As a result of these processes, shown in Fig. 3¢ by
dashed lines, the amplification is not practicable and the
factor K = 4/m ~ 1.28 [29] barely exceeds unity. The result
is known for nonlinear waves in long electric circuits [30].

The pattern of interaction of the great number of
harmonics and subharmonics is too cumbersome because
the spectral approach is inconvenient for the description of
nonlinear waves in media without dispersion. [f one follows
the distortion of the time-profile during wave propagation,
it turns out that the pattern is very simple. In Fig. 4 curve /
illustrates the initial profile:

2 — i wot + 0.2 sin ((u_ot + E) , 5)
Up 2 2

which is the sum of the pump and the half-frequency
signal. The phase shift /2 is given, such that amplification
is optimal. Curves /—11 in Fig. 4 correspond to growing
distances z =x/x,: 0, 0.5, 1, 1.5, 2, 3, 4, 6, 10, 15, 30.
During wave propagation the accumulating nonlinear
distortion leads to shock front formation. Because initial
disturbance (5) has two nonsymmetric half-periods, this
leads to asymmetry of the fronts relative to the zero level.
Two neighbouring fronts move relative to each other,
collide as absolutely inelastic particles and stick together
[1]. In consequence of the collision of the fronts, the period
of the resulting wave (curve 7/ in Fig. 4) is doubled in
comparison with the pump wave period. So, one can
observe the parametric division of the frequency into two.

If required, these distorted profiles can be expanded into
Fourier series and the whole spectrum of the wave field can
be obtained (Fig. 5). It is clear that all the higher harmonics
are comparable in amplitude, but the basic signal w,/2 can
be amplified insignificantly above its initial value, and
amplification takes place only in a limited region of
distances.

It is not to be supposed from the above that one cannot
reach a marked amplification in nondispersive media at all.
Evidently, higher subharmonic generation is possible only
with the presence of the input signal wy/2. There is a great
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Figure 4. Wave profile for degenerate parametric interaction.
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Figure 5. Wave spectrum for degenerate parametric interaction.
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number of such subharmonics. Because of this, it is possible
to extract information about the signal from all the spectral
components by summing their contributions. Using special
methods of signal processing, one can achieve a consider-
able effect [32].

In Fig. 6 a possible experimental scheme is shown [31].
The pump wave w, propagates in insulated reference
channel 2, as well as in open receiving channel / where it
interacts with the signal wave @,/2. At the input of channel
2 the profile takes the form of symmetric ‘saw’ whose
spectrum contains only integer frequencies nw,. At the
input of channel 1 the ‘saw’ has asymmetric fronts arranged
in pairs; its spectrum contains both harmonic and sub-
harmonic components. Subtracting two ‘saws’ at the inputs
1 and 2, we have the difference signal in the form of two

peaks for each period, opposite in sign. The maximum
pressure in these peaks is comparable with amplitude of the
pump wave, that is, strong amplification is obtainable.

It was demonstrated with this example that the inter-
action pattern in dispersionless media is very specific and
inaccessible. It is difficult to understand it without resorting
to the analysis of the wave profile transformation, if
attention is restricted from the outset to consideration of
the spectra.

2.4 Inertialess self-focusing in cubically nonlinear
nondispersive media

This is an example of why the spectral approach prevents
the production of correct results for the sawtooth wave
beams.
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Figure 6. Experimental scheme which allows significant amplification of the signal in media without dispersion.

Space-limited beams exposed to diffraction and self-

action effects can be described by the equation [11, 12]
2

E[a_” u26_u_l_)6_u :c—OAlu. (6)

ot | ox 0t 2cip, o7 2
Here y is the coefficient of cubic nonlinearity, and the
Laplacian A, is taken with respect to the transverse
coordinates. To describe the shock front correctly, the
dissipative term in Eqn (6) is held proportional to b.
However, it is assumed that fronts are infinitesimally thin
and b — 0; there is a singular perturbation problem
containing the small parameter for the highest order
derivative [31].

Following the spectral approach formally one can seek a
solution of Eqn (6) as a harmonic wave,

u=A(x, ry) exp(ior) + c.c.

(M

For complex amplitude A the nonlinear equation of
Schrodinger type can be obtained [33, 34]:

oA
Ox

It is known that Eqn (8) describes the instability of the
initial plane wavefront in cases where its intensity exceeds a
critical value [34]. Then the amplitude of any spatial
perturbation harmonic (perturbation being an addition to
the plane nonlinear wave amplitude) grows exponentially
as a function of distance x. Thus, in a self-focusing medium
(y > 0) the plane wave is unstable; it breaks down into
separate focusing beams each carrying a power of the order
of the critical one [34].

On the other hand, one can seek a solution of Eqn (6) as
a plane wave:

iw—= %0 AA +y0’|A |2A . 6]

p=px, 1) . ©

The solution of Eqn (6) [35] corresponding to formula (9)
describes the transformation of the initial harmonic wave
into a sawtooth one (see Fig. 1c), each ‘saw’ of which has a
trapezoidal form. As a result of nonlinear absorption
within the thickness of the shock fronts the peak values of

the wave (amplitudes of the ‘saws’) decay with distance
according to the law [13, 35]

3-2In2

A(x) =Ao(1 4+ cywAdx)?, pp

(10)

In this way, two opposite processes (increase in
amplitude because of self-focusing and nonlinear absorp-
tion owing to shock front formation) are being described by
one, and only one nonlinear term in Eqn (6). Evidently, the
transition from (6) to (8) on the basis of assumption (7) is
incorrect; here adequate methods for analysis are required,
which take into consideration the special features in the
behaviour of the sawtooth-shaped waves.

Corresponding approaches and results are described in
Ref. [13]. In particular, at the stage where the developed
trapezoidal ‘saw’ does exist one can obtain, using the
nonlinear geometric acoustics approximation, the follow-
ing system for the intensity J = u® averaged over the period:

o/ @ 1 )
a-l—a(JV)—F;JV——awa , (11)
oV oV oJ

A TR e (12)

The second variable V = 0y /Or (where ¥ is an eikonal) is the
angle of inclination of the ray to the beam axis; a is the
constant determined by the structure of the profile of the
saw-tooth wave. It is interesting to note that the nonlinear
term (~7) in Eqn (6) caused the appearance of the right
sides in Eqns (11) and (12) simultaneously. The right side in
Eqn (12) is responsible for the nonlinear bending of rays and
the self-focusing effect, but the right side of Eqn (11) is
responsible for nonlinear absorption. The system (11), (12)
is analogous to the equations describing one-dimensional
flow of compressible liquid in the form used for the
description of aberration self-focusing of light [33]. How-
ever, in the optical problem the absorption can be absent and
right side of Eqn (11) is equal to zero. But in the case being
considered at y — 0 not only will the nonlinear absorption
disappear, but self-focusing as well.
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As the analysis [13] of both Eqn (6) and the system (11),
(12) has shown, the self-focusing process develops over
lengths well in excess of the shock formation scale. Here the
wave profile has a trapezoidal sawtooth shape. There is
competition between two processes, self-focusing and
damping, both generated by the same nonlinearity. As a
result, the width of the beam may be reduced substantially
while the amplitude of the ‘saw’ increases little.

In summary it may be said that there exist principal
distinctions between beam self-action processes in dispersive
and nondispersive media. This calls for different approaches
and description techniques.

3. Diffracting beams of sawtooth-shaped waves

The wave interactions were studied up to the beginning of
the 1970s on the basis of simple theoretical models. One-
dimensional waves were considered mainly —plane, spher-
ical, and cylindrical. But in real situations one has to deal
with beams, and diffraction effects must be taken into
account.

The peculiarities of the behaviour of nonlinear space-
limited beams were noted early in the experiments [2—5].
Systematic studies, however, were begun later [36, 37], after
adequate theory was developed to check it.

In Fig. 7 the profile of an initially harmonic signal is
shown measured [37] at different distances from the
ultrasonic source in water. A piezoceramic disk, 30 mm
in diameter, has been used as a radiator of | MHz resonant
frequency. The signal was received by a broadband hydro-
phone (piezoquartz plate, x—cut) of 10 mm diameter and
14.5 MHz resonant frequency. One can see that at small
distances the signal is similar to the harmonic one.
Furthermore, the front becomes more steep and there
appears an asymmetry in the distortion of both compres-
sion and rarefaction half-periods. At a distance of 25 cm
approximately, the shock is formed in the wave profile. This
leads to the appearance of oscillations behind the front
which are connected with resonant excitation of the
hydrophone. In the further propagation one can observe
nonlinear absorption of the wave, but its asymmetry is well-
marked as before: the negative half-period is smoothed and
expanded, but the positive one is shortened and sharped.

In a series of experiments (see, for example, Ref. [38])
‘smoothing’ of the transverse distribution of the acoustic
field in a beam has been observed. Near the axis the shock
wave forms earlier, and the intense absorption takes effect
in the paraxial region. At the same time, the shocks do not
yet exist in regions distant from the axis and wave
amplitude is constant. So, the stronger absorption near
the axis leads to broadening of the beam, and the wave
transforms into a plane wave of small amplitude—the
radial distribution becomes more homogeneous [39]. This
phenomenon is analogous to the process of nonlinear
‘smoothing’ of the directivity pattern of a high-power
acoustic radiator, which was considered in Ref. [40].

The processes of nonsymmetric distortion of diffracting
nonlinear waves were studied in detail in numerical
experiments [41] where the excess of positive peak pressure
over its initial value has also been observed.

The theoretical investigations of nonlinear effects taking
diffraction into consideration were begun after Khokhlov
suggested supplementing the slowly varying profile method
[42] with the quasi-optic approximation, the ideas of which

xfem

Figure 7. Nonlinear distortion of the wave form on the axis of a beam
with increase in distance x from the source. I =0.9 W cm_z; N =2.5;
graduation on horizontal scale 0.2 ps, on vertical: (a, b) 2.8 atm,
(c—e) 1.1 atm.

originate from the works by Leontovich and Fok on
radiowave propagation along the Earth’s surface. After
the simplification, the system of equations of mechanics of
compressible media was reduced to the single equation [43]

6(6_;7_ & ap):c_OAlp

= —pL 1
\ox p, o) T2 (13)
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which we proposed to name the Khokhlov—Zabolotskaya
equation (KZ). At the present time this name has come
into common use. In Eqn (13) p is acoustic pressure, and
other notations are the same as in Eqns (1) and (6).

The modified forms of this equation were suggested
later.

In Ref. [44] the dissipative term which is posed inside
brackets in formula (13) is taken into consideration
(containing the second derivative of the field)—just the
same as in Eqn (6). In Ref. [45] the dispersive term with the
third derivative is taken into account, giving the opportun-
ity to describe the space-limited solitons. In Ref. [46] the
integral term is added, the kernel of which can be
reconstructed for any frequency-dependent absorption
and dispersion [47, 48].

More than 100 works are known to date which are
devoted to calculation on the basis of the KZ equation or its
modified forms. These are mainly numerical results [41] or
data on harmonics and combination frequencies for weakly
expressed nonlinearity [49—51]. The last works are of great
applied importance for the calculation of parametric
underwater devices [49, 52].

However, the present review is devoted to sawtooth
waves, in beams of which nonlinear effects are expressed
strongly. There are only a few works on this problem
because of mathematical difficulties in their analytical and
numerical treatment.

In Ref. [53] the approximate method was used for KZ
Eqn (13) analysis, based on the power-series expansion of
the solution in the small parameter, which is a ratio between
the current value of radial coordinate r and the initial width
a of the beam:

2 4

r r
p(x, 7, 1) = po(x, ) + 5 pa(x,7) + 5 palx, T) + ... .(14)
2a 4a

Such an approach is similar to the aberration-free
approach used in the theory of laser self-focusing [53].
As distinct from the optical case, here the system of
ordinary differential equations cannot be obtained, but the
infinite chain of coupled partial nonlinear equations can.
Restricting consideration to the first two equations of this
chain (py =p¢ =...=0), one can obtain the canonical
system

R )0)- () 7

(here p = py(x,t) is the field on the axis) containing the
nonlinear operator with the same principal part [54], which
can be solved exactly. The function g(x) in formula (15) is
determined from the conservation of linear momentum of
the wave, N is the number (the only similarity criterion in
the KZ equation) equal to the ratio of shock formation
length to the diffraction length [39]:

<o/ (eopo)

x‘\‘
xq  wd®[(2c) (16)
In dimensionless notation,
v= =X 9g—wr, rR=IL, (17)
Po Xs a
the KZ equation takes the form
o (v O\ _N 62v+1av (18)
90 \ 3z 00) 4\0R> ROR)’

Figure 8. Influence of diffraction phase shift on the change in
behaviour of the wave in the beam (solid curves) in comparison with
the plane wave (dashed curves) at N = 0.4.

In Fig. 8 results are presented of graphical analysis of
the solution of the system (15) on the beam axis at number
N = 0.4. The curve I shows the wave profile at z = 0. In the
case that the wave is plane, the nonlinear effects lead to the
profile distortion shown by curves 2’ (z = 1) and 3’ (z = 2).
In the presence of diffraction the wave behaviour is
different: the positive half-period decreases in duration,
but the negative increases. Since the areas must be equal for
both half-periods, the excess of positive pressure over the
initial value (curve 2, z = 1) takes place in some region of
distance x near x,. The excess pointed out will be ‘cut off” in
the shock existence region x > x, by the moving front, but
the distinction from the plane wave (curves 3 and 3')
manifests itself more significantly.

These phenomena are not connected with the self-action
[33] or with the more intense generation of harmonics in
the beam [55] than in the plane wave. These phenomena can
be explained easily on the basis of the distinctions in
diffractional phase shifts or propagation velocities between
fundamental and higher harmonics [48]. In the case of open
resonators, for example, the analogous shifts will cause the
splitting of frequencies of different transverse modes [48].

However, the direct expansion of the sound field in series
(14) in the transverse coordinate with only two terms (15)
taken into account sets a strong restriction on the feasibility
of the results obtained. It turns out that the solutions
describe the processes precisely near the axis, but at small
distances only, in comparison with the length of diffraction.

To eliminate this difficulty, in Ref. [56] the method [53]
was modified in the following way. The solution of Eqn (18)
was sought in the form

V=V[z, R, T=0-y(R)], (19)

where ¥ is an unknown function describing the curvature
of the wave front. In place of the KZ equation, the
following system has been obtained:

o [oVv oV N oV oy N oV
a—r[a—z‘va—ﬁz(“ﬂ” aTeaTe)‘Zﬁ ]
N

oz 4
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Here Q is an arbitrary function. Choosing Q from
considerations of simplicity (as in the linear quasi-optic
diffraction theory, for example) and using the paraxial
expansion (14) for both functions V and y, one can obtain
the solution on the beam axis in the parametric form
V=V(Ty), T=T(Ty):

(22)

V=g sin(myen) o [ s0)sin - )y

1M
T =To—g | 10)sin(ro+3) 0y

] " Y !/ . I !
v, F00ar | 70 sint =) ey

Here T, is the parameter, f= (cosn)”', n = arctan Nz.

The sawtooth wave formation process calculated from
formula (22) is similar to the process shown in Fig. 8. The
comparison shows [56] that the wave form (22) as well as
the spatial harmonics distribution correspond closely to the
numerical results at any distance from the source.

However, in the case where it is necessary to know the
beam structure outside the paraxial region, the approaches
of Refs [53, 56] are inapplicable. A simple asymptotic
theory [57] was developed taking into account the influence
of diffraction and nonlinearity on the Gaussian beams.
Here the transition was used to the implicit ‘Riemann
variable’ T = 0 + zV which contains the unknown function
V. Thereafter the nonlinear equations obtained were solved
by the perturbation method for the diffracting beams. It
turned out that both limiting cases (linear beams or
nonlinear waves without diffraction) can be described
exactly by this method even in the first approximation.
In the intermediate region (for numbers N ~ 1) errors can
appear at the distances where the shock formation process
is accompanied by the transformation of the plane wave
into a spherically diverging one.

In subsequent works the method [57] was refined with
consideration for higher approximations [58]. A theory for
non-Gaussian transverse profiles [59] was developed similar
to the uniform or polynomial one. As distinct from
Ref. [57], the perturbation method was used here along
with the renormalisation procedure not only with respect to
the time variable, but also to the transverse coordinates. A
high accuracy was reached in Ref. [60] where the renorma-
lisation procedure, which makes it possible to describe the
sawtooth waves, was performed on the basis of three first
approximations to quasilinear perturbation theory.

In conclusion to this section, Refs [60, 61] can be noted,
where the region of applicability was analysed for the
approach based on the KZ equation. This approach was
shown to be correct for the description of results obtained
during laboratory experiments. Recall that for nonlinear
effects which are weakly expressed and where there are no
shocks in the wave profile, the accuracy of the KZ equation
is confirmed by underwater experiments as well as by
calculation of real parametric devices [52].

Several tens of published works are devoted each year to
the KZ equation and to diverse modifications of such field
equations. Therefore, it is interesting to note that along with
the line of investigation described above, which has its origin
in classical works on wave theory, there exists probably a
second independent line. It originates from the works by
Prandtl on hydrodynamics (see, for example, Ref. [63]). In

fact, the ideas used in the derivation of the boundary-layer
equations (1904) are identical with the ideas of quasi-optical
approximation. Their development provided the foundation
in mechanics for the works, closely connected, in fact, with
the works on nonlinear wave theory, but having essentially
no influence on it. So, as early as 1948, the equation was
derived [64] coincident with the KZ equation in this form, but
the problem definition and the physical sense of the variables
are different in these two cases. Instead of the wave profile
and the transverse beam form at the source, in the ‘flow
around’ problem one must specify the body’s shape and the
normal component of the stream velocity, which equals zero
at the surface. In Ref. [65] a similar approach was used to
calculate the transonic flow around the wing. Some
reflection on the results [64] is presented in a book
[63, p. 655] where the stationary version of the KZ-type
equation is used in the derivation of the Karman near-sonic
similarity law.

However, the continuation of the ‘mechanical line’ of
investigation brought into existence the ‘pure wave’ works
in which the KZ equation was derived once again. There are
works on weak shock wave theory devoted to their focusing
[66] and instability under transverse spatial modulation [67]
(see also [63, p. 493]). It would be well to have an
acquaintance with all of these works, because many of
them contain important mathematical results or physical
conclusions which can be extended to other subjects of
investigation.

4. Waves in inhomogeneous media and
nonlinear geometric acoustics

The tendencies today in fundamental research and
applications of the theory of sawtooth waves put in the
forefront the problems devoted to intense wave propaga-
tion through inhomogeneous media. The propagation of
sonic boom pulses generated by supersonic passenger
aircraft [68, 69], explosive waves in the atmosphere and
in the ocean [70], continuous acoustic radiation from
powerful sound transducers, etc., can provide examples of
such problems.

All the problems arising here can be divided conven-
tionally into three groups. There are problems connected
with information transmission (an example—explosive
waves in an underwater sound channel), and with intense
wave action and environment protection from it (sonic
boom), as well as inverse problems on nonlinear non-
destructive testing and diagnostics (reconstruction of the
parameters of the source, scatterers and medium through
which the signal propagates).

To describe the sawtooth wave it is necessary to
determine correctly the position and form of the shock
front, as well as differentials in parameters across the front.
For this purpose the gas dynamic methods used are
simplified with regard to the small acoustic Mach numbers
[71-73]. However, there is a little sense in having data for
the wave front only. The wave has to be considered as a
signal of complex spectral composition carrying informa-
tion about the source and the medium. For example, during
propagation in the atmosphere, ocean or ground the wave
interacts with inhomogeneities acting as scatterers, natural
waveguides, lenses, filters and having marked frequency-
selective properties. It is necessary therefore to follow the
distortion of the wave spectrum. To follow that for the
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spatial —temporal characteristics of the disturbance, one has
to describe the evolution of the smooth section in the wave
profile in parallel with the shock front, as well as their
interaction with each other. This complex problem can be
solved effectively only on the basis of nonlinear acoustic
approximation with the use of results obtained in the linear
theory of wave propagation through inhomogeneous media
[74—76] and the theory of nonlinear nondispersive waves
[1, 71-73].

Approximations of nonlinear geometrical acoustics type
were developed and applied to the waves in smoothly-
inhomogeneous media (see, for example, Refs [77—79]). In
Refs [80—82] evolution equations of KZ-type were derived
for inhomogeneous media that make it possible to take into
account the diffraction of beams. However, these problems
remain difficult in spite of simplification, and therein lies
the explanation why the concrete results obtained here are
few in number.

[t is appropriate now to indicate the two methods for
the simplification of the initial equations, which made it
possible to solve nonlinear problems. The first method is
based on the nonlinear geometric acoustics approximation;
it is applicable to beams with a large ray divergence.
However, it is not valid in aberration areas, where the
rays intersect each other. The second approach is applicable
only to beams with a narrow angular spectrum, but in
return it gives a field in the vicinity of focuses and caustics.

The evolution equation was derived in Ref. [21] by
means of the second approach:

0% _ P08\ -2,
as 205 YT G, e

1 - 2 62[) pP C
——|@v ] P Py (Svip). @3
202 [(f 1)7e =002 2 't P 1P (23)
To describe the acoustic pressure field p in the vicinity of
an arbitrarily selected ray, the curvilinear coordinates are

used here. The distance s is measured along the ray from

some fixed point, and the coordinates &= (,7) are
assigned in a special way in the cross section: the basis
of this system is turned relative to the Frenet trihedral
through an angle defined by the curvilinear integral of the
ray torsion [21]. Parameters of the medium, i.e. sound
velocity ¢, density p, and nonlinearity ¢ in Eqn (23) depend
on space coordinates. It should be mentioned that the
approach [21] makes it possible to generalise Eqn (23)
for dissipative, relaxing and other media with arbitrary
frequency dependences of their linear properties (in the same
manner as was done in Ref. [46] for homogeneous media).
One can obtain for a periodic wave with a strongly
distorted profile, in the nonlinear geometric acoustics
approximation, the following equations:
2
(V) =5=n". (24)
VUV 2 Aup L vinpvy - L, Py 25
YVp+5 AYp =5 VinpVy P =" (25)
where p =p(t =t —y(r)/co, r). Interestingly, the eikonal
equation (24) has here the same form as in a linear
problem. The validity of this agreement is evident for
periodic signals. In fact, if the diffraction is negligible for
the fundamental frequency wave, it has to be valid for its
higher harmonics. The situation is different for modulated
signals, where nonlinear propagation gives rise to low-
frequency spectral components, and for intense acoustic
pulses that already contain low frequencies at the input of
the nonlinear medium. Sometimes it is convenient to
modify the eikonal equation by including nonlinear terms.
Such is the case when allowing for the self-action effects in
a cubic nonlinear dispersionless medium [13] and for the
movement of a shock front in the accompanying
coordinate system [14—16].
Let us consider, for example, the two-dimensional
problem, taking the eikonal ¥ and the parameter o
‘numbering’ rays on the straight line x = 0, as independent

—05 0 25 35
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Figure 9. Rays and lines of equal levels of peak pressure for pulse signal (a) and periodic ‘saw’ (b).
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variables (Fig. 9). In this case the system of Eqns (24), (25)
can be reduced to the equation [83]

a_p+gg[z)<a,w)]_ e op_
o 204 | pc? co2p’ Ot
where D = 0(x,z)/0(a, ) is a Jacobian of the transforma-
tion of the Cartesian coordinates x,z into the ray
coordinates o,. For a stratified medium in which
parameters are dependent only on coordinate z, the
solution of the eikonal Eqn (24) can be written in a
convenient parametric form:

0, (26)

4 n2
Y(o,z) = o) + LW , (27
< d
x(oz,z) :(X-i-a(a) Jom, (28)
where the function
ala) = (%)z_o =ngcosfy = % =ncosf = const(a) (29)

describes the inclination of the a-numbered ray to the x-
axis; 6 is the angle between direction x and the tangent to
the ray. One can fix the angle of departure for each ray
after the function a(a) (29) is specified. The arbitrary wave
front can be prescribed at the ‘fan’ of the constructed ray
set. In this case the Jacobian is given by [83]

PR =@, daff w(y)dy
b= n*(z) {] * dOt.[o [2(y) _a2(a)]3/2}'(30)

We call attention now to the transport Eqns (25), (26).
As distinct from the linear case they contain an additional
time variable 7. This variable can be eliminated in linear
problems by the transition from p to the complex amplitude
A: p=A(r)exp(—iwt). However, Eqns (25), (26) can
describe an essentially nonharmonic wave with a wide
spectrum of interacting Fourier components; it is impos-
sible, in general, to eliminate 7 for such a wave.

Nevertheless, in the most interesting case, when non-
linear effects are expressed strongly and the wave profile has
the sawtooth-shaped form (see Fig. la), one can put

p(z. 1) = ~2ftA(r) @D

and go from Eqns (25), (26) to the equations for the peak
values A of the field p:

2enf

A A

VYVA += Ay —=VinpVy + == A* =0, (32)
2 2 Sp

oA 0 D 2f

4 A—1In/= —AT=0. 33

w5 "\ T e 33)

Formula (31) describes the straight line section of the
periodic ‘saw’ profile; f is fundamental frequency. Shock
fronts are placed at 2ft, =n(2n+ 1), n =0, £1, £2, ...,
and they cannot be displaced from the points 7, during the
wave propagation. Eqns (32), (33) can be linearised by the
substitution A =B~' and can be easily solved.

For a bipolar N-pulse (see Fig. 1b) one can also use
Eqns (32), (33). But in this case the variable A (31) has a
sense of inclination of straight line sections of the wave
profile, and both fronts will be shifted during the propaga-
tion to the positions t = =T (). To take into account these
differences, we use the conservation of linear momentum [it

follows from Eqn (26) evidently] and the connection
between ‘amplitudes’ of N-wave (Ay) and ‘saw’ (A,) [the
last follows from Eqn (31)]:

D \\/2
(P) AyT(Y) =const, Ay =2TA,. (34

Solving (33) for A =A, and using conditions (34), we
obtain an analogous result for Ay.

For the planar layered medium whose properties depend
only upon z, these solutions have the form [83]

Ay n(a 2) _Ao(®) <%>1/2

n \Dp

z 2 6 1/2 m
x{l +le(O¢)J [Dopos n ] dzl} . 35)

lx Po 0 Dp8(2) n2 —Ll2(0() 7=z
In formula (35) m = —1 corresponds to a periodic ‘saw’,
but m = —1/2 to an N-wave. The characteristic nonlinear

length (or shock formation distance) is I, = c3po/(2f&opo):
for the bipolar N-pulse it is convenient to put here

f=(2T,)~", where Ty, is the initial duration of compression

(or rarefaction) phase.

In Ref. [83] solution (35) was used for the acoustic field
calculation in an atmosphere stratified with respect to the
density and sound velocity:

PR =poexp = c=col+k) .

The plane z = 0 is located at a height of 10 km, the z-axis is
directed downward along the vertical; H =8 km,
k=13x10"72km™, ¢ =300ms™", p,=037kgm™.
At 7 =0 the curved phase front was specified as well as
the nonuniform amplitude distribution:

Ve 2\ 12
n//O(x:oc):h(l—f—h—Q) , Ao(oc):p()(l—kﬁ) ,(36)
where 4 is the height (over the plane z = 0) at which lies the
focus of a cylindrical diverging wave (h < 0 corresponds to
the converging wave), and « is the current abscissa value
fixing the point of ray departure. The shock formation
length was set at [, = 2.3 km corresponding, for example,
to the N-pulse with characteristic duration 7y = 0.05 s and
peak pressure p, = 180 Pa.

In Fig. 9 is shown the ray pattern (28) for the diverging
beam (h =21.3 km) as well as lines of equal levels of the
peak pressure for a single pulse (Fig. 9a) and for a periodic
‘saw’ (Fig. 9b). As the distance traversed by the wave
increases, the acoustic pressure decreases because of non-
linear absorption and divergence of rays.

Thereafter the wave penetrates into more dense atmos-
pheric layers and the pressure is built up. As a result, the
spatial distributions of peak pressure have a ‘saddle’ point;
it is located for the pulse at a height of 5 km approximately,
but for the periodic saw (which decays more strongly) at the
distance 1 km from the Earth’s surface.

The amplitude behaviour is determined by the joint
action of refraction, the change in parameters of the
medium along each ray, as well as by the nonlinear
absorption. To select the influence of nonlinear absorp-
tion, let us consider the converging wave in a homogeneous
medium, where Eqns (30) and (28) in terms of the first
formula (36) take the form

7 aZ -1/2 z

37
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The obvious point follows from Eqn (37) that the decrease
in ray tube cross section that is proportional to D happens
in homogeneous media only because of the divergence of
the initial ray beam. The rays x(z) remain straight lines in
this process. On-axis peak pressure decreases at first
because of nonlinear absorption, but thereafter it grows
indefinitely as it approaches the focus. In contrast, the
beam width increases because of strong absorption in the
paraxial region. However, at the point z = A the beams
collapse and their width goes to zero.

The simplest phenomena described above have a
primary effect on the complex pattern of the sawtooth
wave field in an inhomogeneous medium.

5. Focusing of shock waves

To create strong wave fields, focusing devices can be used
which have a wide application in many ultrasonic
technologies and in medical instruments. A concentration
of the wave energy occurs during the focusing, and the
importance of nonlinear effects increases significantly. In
addition, the linear dissipative properties of the medium
are essential, but in the focal region the diffraction is of
basic importance.

Let us consider, at first, the role of each of the indicated
phenomena by itself. The solution of the linearised KZ
equation (13) for Gaussian beams at the axis (r = 0) has the
form [48, 52]

= J sin(wt + ) p‘)(‘;’) d“’2 7. G®)
—oo [(1 = x/x0)” +x?/x]]
= arctan ﬂ—f— nO(x — x¢)
$= 1 —x/x o

Here x, = wa®/2¢, is the diffraction length (16), @ is the
Heaviside step-function, p is the initial wave spectrum. At
the geometric focus x = x the solution (38) takes the form

o0 b
p:J ﬂﬁosin(a)‘c—k—)da)
—o00 X0 2

2
0 (™ . .
= 2;:))50 &J Po(w) sinwtdw .

(39)
—00

Consequently, the profile at the focus is the time derivative
of the initial (at x = 0) signal.

If the signal is a harmonic one, the maximum of its
amplitude is achieved at the point x.,, <x, (Which is
located between source and geometric focus) and the
maximum amplification factor is large, K > 1 (for weak
influence of diffraction). According to Eqn (38) these
quantities are

X0 thl 172
=0 g=(14+%4) .
A A O

In Ref. [84] the distortion process is described for a
unipolar pulse signal p = pyexp(—|t|/Ty). During the
propagation a negative ‘tail’ appears owing to the diffrac-
tion. As the wave tends to the focus, the ‘amplitude’
increases for both compression and rarefaction phases,
and the signal becomes differentiated with respect to
time. Behind the focus these maxima decrease because of
diffraction; the pulse profile tends to the form inverted
relative to the initial one.

(40)

0 1 2 3m 0

Figure 10. Distortion of the half-period of a spherical wave at its
convergence to the focus. Number I' = 0.1. The dimensionless distance
z =x/x, from the current position of the front to the focus is indicated
for the curves.

Let us neglect the diffraction now and consider the
behaviour of a nonlinear spherically converging wave. The
corresponding solution of Eqn (18) with an added dissipa-
tive term (or the modified Burgers’ equation for converging
waves [85]) written in dimensionless variables (17) has the
form [31]

1% :A(z){—0+ntanh [m(z) 0]} ,

2r
z 2\
A:’—0<l+zoln'—0> .

< <

(41)

(42)

The solution (41) describes, at small numbers I' = x,/x,,
one period (—m < @ < m) of the sawtooth wave. It was
obtained for the signal harmonic at the source (at x = x or
7 =x¢/x; =29). The signal propagates to the centre
(x =z=0) and the normalised distance decreases from
20 to 0.

In Fig. 10 [31] one half-period is shown of the wave for
7o = 10, in the case where the distance between the initial
spherical surface and the focus exceeds the shock formation
length significantly. In these conditions an interesting
phenomenon can be observed —the double formation of
the shock front [85, 31]. Fig. 10 shows the distortion of an
initially (z = zo = 10) harmonic wave during propagation to
the focus. In the curve z = 8.2 the steep leading front is
clearly defined. Thereafter, the maximum disturbance
decreases in the wave and its front expands—up to the
curve z = 4.5. The shock front width reaches its maximum
value at a point z,,, = zgexp(l/zo — 1); in its vicinity the
process of nonlinear absorption of the ‘saw’ is attenuated.
However, at further approach closer to the focus, the
disturbance starts to grow again (the convergence dom-
inates over dissipation), and the front becomes steep again.

Evidently, nonlinear absorption of the ‘saw’ leads to a
decrease in the amplification factor at the focus [5].
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Figure 11. Change in linear (/) and nonlinear (2) amplification
factors and their ratio (3) during the wave propagation from source
(z = 10) to focus (z = 0): solid curves I' = 0.1; dashed ones I' = 0.

According to solution (41) the ratio between nonlinear Ky
and linear K; amplification factors is equal to

Ky 2I' 7
K, = 7 2 PG —2)]

2
x[y]/z(y—l)]ﬁ—arccosh (y'/z)], y:n;;r, (43)
where A is given by formula (42). The dependences of the
amplification factors Ky, K; , and their ratio (43) on z are
presented in Fig. 11 (curves I, 2, 3, respectively). The
dashed curves correspond to the vanishingly small
dissipation, I' — 0, and solid curves to I'=0.1. The
nonlinear amplification factor Ky has a minimum between
the source and the focal point, where the wave front
broadens (see Fig. 10). At the approach to the focus both
factors Ky, K; increase, but their ratio tends to zero
(curves 3 in Fig. 11).

However, the nonlinear effects cannot only decrease the
amplification factor, but increase it as well because of
stronger focusing of higher harmonics generated by the
intense wave [86, 73]. Such an inverse effect is possible in
that case if nonlinear absorption cannot lead to marked
energy losses in the whole path from the source to focal
region, i. e. even though the ‘saw’ is formed, it happens in
the immediate vicinity of the focus. The corresponding
calculation is performed in Ref. [87] by the use of a step-by-
step approach.

The wave was supposed, at the first stage of propagation
in the region xy >x > x,, to exhibit nonlinear distortion
only, like a symmetric spherically converging wave [31]:

ﬂzﬂsm(mum _) .
X Po Xs X

The stage boundary x, can be chosen from compromise
considerations. It must be small in comparison with the
focal distance (x < x) but large with respect to the size of

(44)

the focal region (x,> x%/xd). At the second stage
x, >x >0 the wave was supposed to exhibit only the
diffraction transformation; here nonlinear distortion
cannot be cumulative (because of the small size of the
focal region), despite the large peak pressures and steepness
of the shock front.

Using Eqn (44) as a boundary condition (at x = x,) for
the solution of the diffraction problem (39):

_ (% —at
x=0 ZC'OX* ot Y —=x ’ * X0
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(_p) = cop())2 (l — 0 ﬂ) ,
6‘5 max Xx Xy Xx

one can calculate the nonlinear amplification factor

-1
ﬁ:(l_x_olnﬂ> .
K; Xy X4

As can be seen, the greater the excess of Ky over K;, the
stronger is the nonlinearity (or smaller nonlinear length x,);
the dependence on the indefinite boundary x, of this stage
is weak. In experiments [88, 89] the increase of the focal
field in comparison with the linear case was indicated.
However, the principal question about the maximum
possible ratio Ky/K; is not yet understood. This is
connected with difficulties in simultaneous consideration
of the diffraction and dissipation phenomena under ‘sharp’
focusing conditions.

It has been possible to obtain the solution of the KZ
equation only for small angles of wave front convergence
[56], which can describe the nonlinear and diffraction
evolution of the profile. This solution can be written in
parametric form (21), where

f_ NZ()
7 sing + Nzgcosn’

p

(45)

n =m0O(z — z,) + arctan (46)

f4
1 — Z/Zo '
Here the normalised distance z = x/x, varies through a
range from z = 0 (the source) to increasing values of z. The
geometric focus is located at z = zg = xo/x;.

The profiles constructed in accordance with solution
(21), (46) are shown in Fig. 12. The increase in amplitude as
well as leading front steepening were observed during
propagation to the focus. Moreover, zero front level points
of the wave profile are shifted in a forward direction,
because of diffraction. The profile becomes asymmetric in
geometric focus as a result of diffraction dephasing of
harmonics; the positive pressure area is amplified more
strongly. Just behind the focus (the curve for x/xy = 1.2 in
Fig. 12) the profile takes a form similar to the derivative
from the profile ahead of the focus (the curve for
x/xqg =0.8). The ratio between nonlinear and linear
amplification factors for the positive peak pressure in
accordance with this solution is equal to

K 2)y —1
Ky _y %0 oy ) o_(a/2s=iny
K; 2x, X4

142
Formula (47) is somewhat different from the result (45) of
step-by-step analysis, but it shows the same qualitative
dependence on xg/x;.

(47)



978

O V Rudenko
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Figure 12. Distortion of the profile of an initially harmonic signal
passing through the focus. Numbers at curves denote the dimensionless
distance x/x, measured in units of focal length x,. Diffraction
(x4 = 10x¢) and nonlinearity (x; = 3.3x,) are significant.

Let us discuss now the phenomena which appear in the
focusing process of nonlinear pulse signals containing shock
fronts. Investigation of these problems in recent years was
stimulated by medical applications and, most of all, by
shock wave extracorporeal lithotripsy [18, 19]. Its purpose is
the noncontact removal of kidney and gall stones from the
human body. High-power acoustic pulses are generated
outside the patient’s body, then they become incident after
focusing on the target calculus for fragmentation; the small
fragments can be removed by natural processes. A sig-
nificant number of papers at the recent international
symposia on nonlinear acoustics, acoustical congresses
and seminars was devoted (see, for example, Refs [16,
90-94]) to physical problems of power pulse generation,
focusing, as well to the calculus disruption mechanism.

Three types of sources are used at present for the
generation of intense pulses: electrohydraulic, electromag-
netic and piezoelectric [19, 91]. Alternative sources are
developed to improve the acoustic radiation characteristics
and to diminish harmful side effects, for example, the
detonation of very small explosive charges [94]. Optoa-
coustic generators [95] in which high-power pulses can be
excited by absorption of modulated laser radiation [96 —99],
give considerable possibilities of controlling the pulse
duration and time profile, as well as the directivity pattern.

There is no clear understanding of the causes of calculi
fragmentation by such pulses. There exist experimental
indications that the front surface of the target can be
destroyed in the main by cavitation—because of high
pressures developing at gas bubble collapse or by cumu-
lative jets arising at the nonsymmetric compression of the
bubble [92]. The rear surface can be destroyed by negative
pressure caused by the reflection of the pulse front from the
free surface into the sample (the spallation phenomenon)
[100].

During the design of commercial lithotripters and
measurements of the high-power focused pulse fields
generated by lithotripters, interesting nonlinear phenom-
ena were observed: self-refraction, saturation of the peak
pressure in focus, growth in the size of the focal region, the
shift of the constriction away from the source, and some
others [101 —103]. It was necessary to understand the nature
of these phenomena and to develop a corresponding
mathematical description. These purposes have stimulated
new experimental and theoretical research.

Fig. 13 demonstrates the self-refraction process of the
shock front. For comparison the spherical fronts are shown
by dashed lines, corresponding to linear focusing; the finite
size of the constriction is determined here by the diffraction,
which is different for various components of the broadband
spectrum of the signal.

Figure 13. Seclf-refraction of a shock front leading to shift and
broadening of the focal region.

Because the velocity of the weak shock wave
c=¢ [l + sA/(Zc%pO)] depends on the pressure differential
across the front, the transfer of the points lying in the front
surface (marked by arrows) is greater near the axis than at a
distance from it. There is simultaneously the process of
nonlinear absorption, and the distribution of A over the
front becomes more homogeneous (see Section 3). That
slows down the self-refraction process. As shown in Fig. 13,
the processes described above shift the nonlinear focus xy
with reference to the linear one x; the size of the nonlinear
constriction is increased in this case.

These phenomena were observed in experiments [15,
104] as well, in which, moreover, the peak pulse pressures
were measured at different distances from the source. A
pulsed neodymium-glass laser was used for acoustic wave
excitation. The laser was Q-switched and generated pulses of
duration 30 ns at a wavelength 1.06 pm with energies 5—
10 J. An optoacoustic converting cell of special design [95]
was used which made it possible to generate acoustic pulses
of 0.1—1 ps duration, peak pressure up to 1000 atm, and to
form converging beams with diameter 50 mm and focal
length 15—200 mm. The broadband receiving hydrophone
on a base of piezoelectric film (PVDF) was calibrated and
had a time resolution of order 10 ns, and space resolution of
about 1 mm.

In Fig. 14a the dependences are presented of normalised
pressure ‘amplitude’ A /p, on the distance x along the beam
axis at different values of initial peak pressure py, equal to
9 atm (curves 7), 100 atm (2) and 500 atm (3). Initial beam
radius ¢ = 8 mm. Dashed lines pass through experimental
points.

One can see that marked amplification can be observed
at small py only (curve ). For the focusing of more power
pulses the amplification was insignificant (curve 2) or
absent altogether (curve 3). All the experimental points
in the focal region lie below the solid curve I, which was
calculated on the basis of linear theory; this indicates the
marked effect of nonlinear phenomena. Theoretical depend-
ences 2 and 3 (solid curves) were calculated with regard for
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Figure 14. On-axis dependences of peak pressure at focusing of pulsed
beams with different initial pressure (a) and different angles of
convergence (b).

absorption and self-refraction [14, 105] to describe the
experimental (dashed) curves 2 and 3. In the theory the
ratio x/xy = 2x¢coTo/a’ between the focal length and the
diffraction length was equal to 0.3, but the ratio of x, to the
shock formation length x,/x, = exopo/(cipoTo) for the
curves /, 2, and 3 was 0, 3.2, or 16 respectively.

In Fig. 14b on-axis dependences of the peak pressure A
are given for different angles of convergence ¢ =
2 arcsin(a/xg) equal to 32°, 22° and 12° for the
curves /, 2, and 3. The initial amplitude p, = 140 atm
(xo/x;, =4.5) was constant. The following values of the
parameters a and x,/x, correspond to the curves /-3: 14
mm and 0.1, 10 mm and 0.18, and 5 mm and 0.75. By
analogy with Fig. 14a, the peak pressure increase can be
observed near the focus, but not in all cases. The effect is
more clearly defined at larger angles ¢: in curves I, 2 the
value of A exceeds py significantly. In dependence 3 the
pressure decreases with increase in x because of nonlinear
absorption and self-refraction, and a local maximum
appears only near the focus and is weakly expressed. So,
one cannot reach marked amplification at small angles ¢ of
wave front convergence.

To overcome the injurious effect of nonlinear processes
it would be appropriate to use, firstly, pulses with a very

gentle leading slope to inhibit shock-wave formation (from
this time on, nonlinear absorption is in operation);
secondly, it is necessary to use a strongly concave non-
spherical transducer to compensate for refractional
straightening of the wave front.

During our consideration of power focusing we have not
yet addressed the transformation of the time profile of the
signal passing through the focal region. These problems are
extremely complicated and their solution can be obtained at
present by numerical methods only [106, 107], even though
the simplified model—the KZ equation—is used. The
problem can be simplified radically in the special case
that the strongly expressed self-refraction suppresses the
diffraction distortions in the focal region (see Fig. 13).
These cases are of great practical importance and can be
analysed by modified methods (like nonlinear geometric
acoustics), which use the different transport and eikonal
equations for the description of smooth profile sections
and, on the other hand, shock fronts [14, 105].

6. Nonlinear absorption and saturation

Nonlinear absorption which depends on the power of the
disturbance (on amplitude, peak pressure and other
parameters of this kind) is an important phenomenon of
sawtooth wave physics whose significance was repeatedly
underlined above. This phenomenon was studied inten-
sively in the first works on nonlinear acoustics of
condensed media (see reviews [3—5]), but recently here
new results were obtained as well.

The peak values A(x)/A, in the plane waves shown in
Fig. la—c decrease with the distance x according to the
laws:

- —1/2
(l —ki2 a)on) , (l +2LA0x> , (1 +cywA%x)_'/2.
Cy c;To
(48)

The absorptions (48) are different from the exponential
one, typical for linear dissipative media, and depend on A,
for quadratic nonlinear media [two first formulas (48)] or
on A} for the media with cubic nonlinearity [the last
formula (48) and (10)].

The absorption of sawtooth waves with an infinitely
steep front does not depend on linear dissipative constants.
[t can easily be shown by means of Burgers’ equation [1],
which differs from Eqn (1) by the presence on its right side
of the dissipative term (b/2¢}p,) 0*u/d7%; it has just the
same form as in Eqn (6). Let us consider for definiteness the
periodic ‘saw’ in a quadratic nonlinear medium. Multi-
plying Burgers’ equation by u and averaging over the period
one can obtain

a’__ b (o’
o clpy \0t)

As can be seen from this equation, the decrease of mean
intensity I = cypou®/2 with distance occurs more quickly
for the presence of fronts having large values of the
derivative Ou/0tr. For linear absorption of the harmonic
wave u = A (x) sin wt, where there are no steep sections in
the profile, from Eqn (49) follows the usual law
A(x) =Agexp(—ax) with the absorption coefficient
o« = bw’/(2cip,). For the sawtooth wave containing
shocks of moderate width one can use the asymptotic

(49)
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(at I' — 0) solution (41) where A(z) is given by the first
formula (48). In this case the derivative squared in the right
side of Eqn (49), (Qu/0t)* ~b~2, is large for weakly
absorbing media with small dissipation b. The shock
front region with width ~ b makes the dominant
contribution to the integral which is to be calculated in
averaging (49). Therefore, the dependence on b becomes
weak and (49) takes the form
2 2
O _ _2M D 5y Lo~ T .

R 50)

At vanishingly small dissipation (b — 0) the right side of
Eqn (50) retains only the nonlinear term.

In Fig. 15 are shown by long-short dashed lines the
dependences of normalised mean intensity on the distance
for an initially harmonic signal in a quadratic nonlinear
medium. Each curve is denoted by the corresponding value
of the number I' = x,/x, ~ b. At I' = 0.01 the dissipation is
weak and considerable attenuation occurs over the region
z=x/x,>1 only, after the steep front formation. With
increase in I' the fronts become more gentle and the relative
contribution of linear absorption increases.

The excess nonlinear absorption calculated on the basis
of curves for mean intensity,

1 0

OCN—OC _2
= Y-
o ara; T

(1)

is shown by solid curves in Fig. 15. It is maximum at small
I' over that space region where steep fronts exist.

The partial absorption coefficients are often measured
in experiments for different harmonics. For their calcula-
tion one has to use the spectral expansions of solutions (41)
describing sawtooth waves, such as the Fay expansion [1].
In particular, for the first harmonic the expression [5]

“Na— % — exp[~I(1 +2)] sinh ™' [-I(1 4 2)] (52)

Figure 15. Dependences on distance of normalised mean intensity
(long-short dashed lines) and excess nonlinear absorption (solid lines)
at different numbers I'. The excess absorption of the first harmonic is
shown by dashed lines.

can be obtained. It is valid in the region x > 3x,. At smaller
distances (0 < x < 2x,) the numerical data [31] are used for
the construction of dashed curves in Fig. 15 (I' = 0.1, 0.15,
and 0.3). These curves indicate also that the most intensive
absorption occurs in the small region of the front of the
‘saw’.

In order to take into account not only the losses, but
also energy injection into the wave, let us consider the
inhomogeneous Burgers’ equation [108]:

u & u b Fu_

ox o “or 2c3p, 07F

Q. (53)

The field Q of external sources can be created, for example,
by heating the surface by moving a ‘spot’ of electro-
magnetic radiation [96] or by striction caused by two
intersecting laser beams [109]. Let us take for definiteness
that Q = O(BT '/2)/dt, created by thermoelastic stress
p =k poBT ', where B is the thermal expansion coefficient,
T’ is the deviation of temperature. If 7' varies with time
accord- ing to the harmonic law, Q = (pyw/2c§ p,) sin wr.
It is convenient to write Eqn (53) in this case in
dimensionless form:

ou oUu dU

= _ —— =Asinf, 54
o 0 o sin (54)
where
0= awr. Z:i:b:;ix, :2860/)0”,
Xq  2c3po bw
_ 2epocopy @ ﬁ (55)

2.2 9. :
b w 2¢y X

At small distances z traversed by the wave, its time profile
U = zA sin 0 copies the profile of external sources. Non-
linear distortion may be amplified with increase in
amplitude, and leads to the appearance of a shock front
at each period of the wave. At z — oo the stationary profile
can be established [108]:

56
%0 (56)
where cey is the Matiew function. At A > 1 the stationary
wave takes the form of a ‘saw’ with finite width of the
front:

0 0
UZZ—IHCC()(E,A), _n<0<ns

U:Z\/X[cosg—i—tanh(A 1/20)—1], 0<f<m. (57

Consequently, the nonstationary process goes on in the
following way. The energy is introduced by sources into the
whole region —m < 0 < 7 of the period to be considered.
Because of nonlinear distortion of the profile it tends to
concentrate in the vicinity of § = 0, where the shock front
exists. The stationary propagation regime is reached at the
instant when the energy contribution from the source will
be compensated by growing losses at the front. Mean
intensity can be described by the equation

) 2
aL: _2<6_U> +2AUsin @ .

58
0z o0 (58)
It can easily be shown with the use of solution (57) that
both terms in the right side of Eqn (58) are equal to
(8/3m)A%? but have different sign. So, there exists an
energy balance. As this takes place, U? = 2A = const.
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Nonlinear absorption of sawtooth waves leads to the
appearance of a saturation effect, in some cases. One can
see from the first formula (48) that after several nonlinear
distances x; = ¢3/(ewA ) travelled by a wave in a quadratic
medium, the peak particle velocity does not depend on its
initial value Ag: Ay = ¢§/(swx). It means that in parallel
with A, the nonlinear absorption increases as well, which
weakens the dependence A(A,) at definite distance x. At
A, — oo the disturbance A no longer depends on A, and
reaches its limiting value Ay;,.

Similarly, the trapezoidal ‘saw’ saturates in a cubic
nonlinear medium [the third formula (48)]. In contrast to
this, the unipolar pulse [the second formula (48)] does not
saturate; at x > x, a slower (square root-like) dependence
A(Ag) takes over: A = (c3ToAo/ex)'*. So, by means of
amplification of the initial pulse signal A,, one can reach
an amplification of the disturbance A (x) in the medium as
large as desired.

However, limiting values Ay, can be determined not
only by nonlinear constants, but by dissipative properties of
the medium as well. If at the input the harmonic signal is
given and the inverse acoustic Reynolds number is I' <€ 1, at
distances x =~ 2x, the sawtooth wave can be formed and the
saturation effect described above can be observed over the
region where the ‘saw’ exists. At larger distances (x ~ 2x,),
because of the joint action of nonlinear absorption and
dissipative smoothening, the wave transforms again to a
harmonic wave, the amplitude of which does not depend on
its initial value Ay [1]. So, the limiting fields can be
described within one period (—n < wt < ) by formulas

2
C, .
Upiy = ﬁ [0t +msign (07)], 2%, <x <x,,

2b
Wi = il exp (—i> sinot, x> 2x,. (59)

&Py X4

It can easily be shown using (59) that even in water, which
is a weakly dissipative medium, the intensity of an
ultrasonic wave with the frequency 4 MHz at the distance
1 m cannot exceed 0.2 W cm™> and at the distance 5 m,
1073 W em™.

It is impossible to transport the high densities of
ultrasonic energies through large distances into dispersion-
less media. This fact sets the restrictions on the possibilities
of force and energy action of such waves through a
distance.

One way to decrease nonlinear losses connected with
shock front formation was suggested in Ref. [110]. This
method is based on the following idea. The steep front is
formed by higher harmonics resulting from cascade-like
nonlinear processes which take place with the obligatory
participation of the second harmonic. If the spectrum is free
from the frequency 2w, the channel of energy flow will be
closed in the direction of high frequencies
(0 — 20w — 3w —...). To remove the harmonic 2w from
the coherent component of the wave field, it is possible to
introduce into the medium selectively absorbing or scatter-
ing objects (like one-size gas bubbles, narrow band filters,
etc.). But we have no prior knowledge of the influence of
this action on the fundamental frequency wave w: will it
decay more slowly or will the new channel of energy losses
(0w — 2w and then to heat or to the scattered field) replace
the previous energy stream upward over the spectrum?

To calculate the wave profile in the nonlinear medium
containing elements selectively absorbing the frequency 2w,
it is necessary to solve the integrodifferential equation [110]:

2
ov ov ov_ —DB,(z)sin 20,

= Ve T

(60)

T
B, = 2 J V(z, 6)sin26d0 .
T Jo
Here D is the coefficient of additional absorption caused by
selectively absorbing elements, and B, is the second
harmonic amplitude. In the form (60), normalised
variables (17) are used.

The dependences of the amplitudes of harmonics w and
2w on the distance [111] show that with increase in selective
absorption D the second harmonic is generated less
effectively. In addition, the first harmonic amplitude
decrease occurs more slowly with increase in z, than in
the absence of absorption at the frequency 2w (D = 0).
Even at D > 4 the profile remains smooth over a length of
several x;. The shock fronts do not appear and nonlinear
absorption is damped.

This phenomenon was studied experimentally [112]. At
one end of the open acoustic resonator an ultrasonic source
was placed, the resonant frequency of which could be varied
in the vicinity of 1 MHz. The mirror placed at the other end
could be totally reflecting or could partially transmit the
wave with frequency 2w (up to 40% in amplitude). Losses
for the second harmonic frequency were created artificially
by means of a selectively transmitting mirror. It turned out
that the Q-factor increased more than two times if the
nonlinear resonator had selective losses. So, calculations
and experiments [110—112] showed a surprising, at first
sight, fact: the insertion of dissipative elements into the
medium leads to the reduction of losses.

The discussion up till now has been based upon plane
sawtooth waves, formed as a result of nonlinear distortion
of a signal, harmonic at the input to the medium. For one-
dimensional converging or diverging waves (spherical and
cylindrical) the saturation will be observed as before but the
rate of the nonlinear processes will be different [31].

The radically new behaviour can be demonstrated by a
unipolar pulse propagating as a focused beam. As was
mentioned above the peak pulse disturbance [second
formula (48)] does not saturate. However, it was shown
in Section 5 that self-refraction and nonlinear absorption
lead to the decrease of the amplification factor during
focusing, as well as to broadening of the focal region (see
Figs 13 and 14). These are precisely the effects which limit
the maximum pressure that can be obtained in the focus of
high-power pulse concentrators. The limiting pressure is
defined by the characteristic internal pressure of the
medium p, :cépO/Zs as well as by the angle of conver-
gence f§ =a/x, at the focus. For Gaussian beams with an
initially spherical front a theoretical evaluation [14, 100]
was obtained:

Pim ~ 1.5p.B% . (61)

For water and angles of convergence f = n/6 the limiting
pressure in accordance with (61) is approximately equal to
1300 atm. This value is near to experimental data [102]
obtained in the process of measurements performed in the
field of commercial lithotripters. The limiting pressure
depends, of course, on the shape of the focusing surface as
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well as on the initial field distribution over it. These
reasons will influence the coefficient in formula (61).

7. Kinetics of sawtooth-shaped waves

It is helpful to use the analogy between an ensemble of
weak shock waves (Fig. 16) and a gas of perfectly inelastic
particles. Let us consider a single ‘step’ with finite width of
the front. Its evolution in a dissipative quadratically-
nonlinear medium is described by the solution of Burgers’
equation [1, 113]:

Uiy Uy
2

Uip1 — U ECoPy Uit — Ui
tanh
T [ b 2 (T

& Lti+]+Lti
- .(62
gt @

Here u; and u;,, are particle velocity values just before and
behind the shock front. We associate the height of each
‘step’ (w41 — u;) with the mass m; of a particle correlated
with the step, and we associate the rate of displacement of
the front in the accompanying coordinate system
(t=1t—x/cy) with the velocity v; of that particle.
According to formula (62), the motion of the front obeys
the law:
dr;

vi=——= —iz(“m +u;) -
dx 2¢;

(63)

Velocity (63) increases with increase in number i. There-
fore, the succeeding front (i+ 1) will overtake the
preceding one (i). They merge together, and the mass

Uiyd

Uiyl

m;

My

Figure 16. Merging of two weak shock waves together (a) and the
analogy with inelastic collision of particles (b).

and momentum of the associated particles are conserved in
the collision:

! 1.7
mi =nm;+myy, MV =Myt M Vg . (64)

The wave—particle analogy will be more illuminating if we
consider the wave of acceleration instead of the wave of
velocity:

Ou &cop, 1/2
— = Dcosh™> [(—0 D) (t +xv,~)] ) (65)

ot b
The expression (65) resembles the soliton solution of the
Korteveg—de Vriese equation (Fig. 16b). As for a soliton,
the duration of this pulse disturbance decreases with
increase in its ‘amplitude’ D = (ecopy/4b)(uisy — u;)’
according to D', But the velocity v; (63) does not
depend on D; in accordance with solution (62) it is
determined not by the ‘jump’ differential (u;.; — u;), but by
the mean value of the disturbance (u;, +u;)/2 at the
front. And, finally, there exists a principal distinction: the
solitons collide with one another like perfectly elastic
particles (see, for example, [48]), but single pulses (65)
collide like absolutely inelastic ones.

The sequence of several ‘steps’, shown in Fig. 16, can be
achieved, for example, in experiments using shock tubes.
But there exists a more typical disturbance having the form
of a sawtooth wave with different and randomly disposed
shocks. Such a wave is interesting for the description of
characteristics of one-dimensional acoustic turbulence
[114-116]; it forms during the evolution of the profile
of broadband noise waves travelling through nonlinear
weakly dissipative media. As distinct from ‘steps’
(Fig. 16), there is a decrease of ‘tecth’ (during time
intervals between collisions) because of nonlinear dissipa-
tion of energy at fronts. This decrease can be considered as
‘evaporation’ of particles. Thus, the propagation of a
random sawtooth wave can be regarded as a one-dimen-
sional flow of ‘evaporating’ particles, which move with
random velocities relative to the flow (its velocity is equal to
¢o) and collide perfectly inelastically with one other.

Both types of statistical ensembles— ‘steps’ (Fig. 16)
and ‘teeth’—can be described by kinetic equations. Let us
introduce the distribution function g(x,#,m), which is the
density function of the probability that time ¢ has elapsed
between two neighbouring discontinuities and that the
height of the second one is equal to m. The evolution of
the function g is a result of the free motion of the
discontinuities in accordance with Eqn (63) and as result
of their pair collisions.

The kinetic equation (of the Boltzmann equation type)
for the ensemble of ‘steps’ has the form [117]

O0g ¢ Og ¢ "

g (m+<m>)a_§:2_c(2)[mj glx, t, &)

& 23 .
Xg(x’ 0’ m— é) di - (m - <m))gJ0 g(x’ Oa é) dé:| . (66)

The quadratically-nonlinear right-hand side of Eqn (66) is
responsible for the inelastic pair collisions.

An analogous equation for the ensemble of ‘teeth’ [118]
takes into account the nonlinear absorption of shocks (or
‘evaporation’ of particles), as well as the change in the slope
of smoothed sections of the profile. It differs from Eqn (66)
in the presence of additional terms in the left part of the
kinetic equation which describe the probability of transport
without collisions.
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The normalisation condition obviously holds for a
distribution function g that satisfies Eqn (66). If the
function g is known, statistical averaging can be performed
by the usual technique:

00
(P) = JJ &(x, t, m)g(x, t, m)dtdm . (67)
0

In Ref. [117] exact and approximate solutions for the
kinetic Eqn (66) were obtained and first integrals were
derived. One of the exact solutions corresponds to the
Poisson process. Introducing the new function f(x,m) and
its Laplace transform f(x,s) according to the formulas

g :l exp (— ! = m)f, .f: Joof eXp(_sm)dm 4

ty g Céto 0
(68)
we obtain an equation of the Riemann-wave type,
of & 0O
—+—-—f==0. 69
ot cito f Os )

The solution of Eqn (69) is given by the implicit
function whose form is determined by the initial (at
x = 0) distribution:

f= d’(s - 2& f) , @(s) = rof(x =0, m)exp(—sm)dm .
(‘OtO 0
(70)

In an analogous way the kinetic equation describing the
ensemble of ‘teeth’ of a random sawtooth-shaped wave
[118] can be solved.

In Fig. 17 the typical processes are shown —the trans-
formation of exponential (a) and delta-shaped (b) initial
distributions of masses g(x,m). The normalised distance
z = &(m)x /(c}t,) traversed by the wave is indicated for each
curve. As is seen from Fig. 17b the collisions of disconti-
nuities lead to the formation of fronts with double (n = 2),
triple (n = 3) or higher multiples of amplitude. They are
represented by line segments of appropriate height, the tops
of which for n equal to 1, 2 and 3 at the given z are joined by
dashed curves. Simultaneously, the amplitude of each front
decreases by the factor (1+2z)"' as a result of nonlinear
absorption.

The main trends in the transformation of the distribu-
tion functions (Fig. 17) are an increase of the probability
density function for large and small values of pu=m/(m)
and a decrease of the probability in the middle part of the
distribution. The increase in the probability of small p is
attributable to nonlinear energy losses at the discontinuities.
The main contribution here is from the segments of the case
where the field decreases in the mean, and collisions are
infrequent. The growth of the density function g at large
values of u is attributable to the merging of discontinuities
and the formation of cumulative-amplitude fronts. The
competition of these two trends leads to the appearance
of the self-similar asymptotic, which for the Poisson process
has the form

g x 271/2u73/2 exp (_ﬁ) .
4z

In this case the mean (u) remains constant but the variance
(u2) increases linearly with the distance travelled by the
wave.

The spectral characteristics of one-dimensional acoustic
turbulence can also be calculated with the use of the
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Figure 17. Transformation of probability distributions of ‘jumps’ of
disturbance across discontinuities in a travelling sawtooth wave for
exponential (a) and delta-shaped (b) distributions of lincar sections of
the profile of a sawtooth wave.

distribution function g and a solution of (62) type taking
into account the finite width of the shock front. In
particular, for the intensity spectrum of the Poisson
process the following formula [118] can be obtained:

'’ J‘” glz, wdu
1+2z )o sinh*(nloty/p)’

G(o) (71)

where I' = gcopy{m)ty/b. To illustrate the peculiarities in
the behaviour of the spectrum let us discuss the result
obtained by averaging formula (71) where g is a self-similar
distribution. It is readily shown that two characteristic
intervals are discernible in the spectrum. In the frequency
range oty < (r)”', as in the case of regular waves, the
universal relation G o< w™? is associated with the discon-
tinuous parts of the profile. In the range wty > (nl?fl the
asymptotic form is G o exp [—(wz)]/z]z%ﬁaf 2.t
decreases with the growth of frequency more slowly than
for a regular sawtooth wave (see Ref. [119] also) where
G x exp(—2lwtyz) [1].

The behaviour of spectra of nonlinear nondispersive
waves (not only the sawtooth-shaped ones) was studied
earlier without the use of the kinetic approach described
above; the corresponding results are discussed in detail in
works [20, 120] on statistical nonlinear acoustics.
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8. On the interaction and self-action of waves
containing shock fronts

A great quantity of investigation is devoted to the effects of
wave interactions in media without dispersion; they are
presented partly in monographs [1, 4, 6, 31, 52, 73, 120].
Over the years the interesting phenomena like self-
demodulation, scattering of sound by sound, the excess
absorption of the signal because of interaction with the
external (in particular, noise) field, and many others have
been observed and studied. Much attention was given to
the nonlinear generation of low (difference) frequencies in
the field of a modulated high-frequency pump wave. It is
known that low frequencies can be radiated by the same
space region where interaction occurs and they can
propagate as a directed weakly absorbing beam over
large distances; these features are used in parametric
hydroacoustic systems [52].

However, only a few of these works contain information
on sawtooth wave interaction. To study these processes,
computer methods have been increasingly used in recent
years. So, to solve diverse problems on weakly dispersive
wave interaction, the universal application package NACSI
[121] (Nonlinear Acoustics— Computer Simulation) was
created. With the help of it one can calculate profiles and
spectra of strongly distorted waves and wave beams, the
propagation of which is described by evolution equations
like the Burgers’, KZ, Whitham and their modified forms
for media with diverse dispersive and dissipative properties.
For the numerical solution of such equations the problem is
to reach high accuracy both for discontinuous regions
(shock waves and contact shocks) and for smoothed
sections of the profile. To do this one has to eliminate
the known imperfections of classical algorithms leading to
parasitic oscillations near fronts (without introduction of
significant viscosity), to nonlinear instabilities and errors in
calculation of smoothed parts caused by ‘numerical scatter-
ing’—the influence of high gradients of the field. To
eliminate the difficulties mentioned above the new ‘shock
trapping’ codes were worked out in recent years, so-called
‘high resolution’ numerical schemes. Their basic properties
are: the order of accuracy for calculation of the smooth part
of the solution must be lower than second, and there should
be a possibility to calculate shocks without fictitious
oscillations. In addition, contrary to classical algorithms
of second and higher order, they do not require artificial
viscosity to be set in advance.

By means of the package NACSI the problems of
interaction of plane, spherical and cylindrical (diverging
and converging) waves, of diffracting and focused beams, as
well as of disturbances propagating in a waveguide, horn,
concentrator and ray tube can be solved effectively if the
geometric acoustics approximation is used (see Section 4).

The initial profile can be a single pulse of arbitrary
shape or a sequence of several different pulses (if their
interaction is studied). The profile can be specified also as a
sum of several (up to ten) harmonics with arbitrary
amplitudes, phases and frequencies or can be given by
piece-linear approximation. To obtain the results shown,
for example, in Figs4, 5 or 10, one needs personal
computer operation time of the order of one minute.

Numerical methods for the study of sawtooth wave
interaction are now in progress based on the use of known
asymptotic formulas.

In solving complicated problems the computing time
can be reduced significantly if combined approaches are
used, comprising the direct integration of the equation by a
difference algorithm and fast calculation on the basis of
available asymptotics. There exists another way to improve
algorithms based on the more complete use of prior
knowledge of the wave process. So, the shocked wave
calculation using the spectral approach necessitates solu-
tion of the system of coupled equations written for complex
amplitudes of harmonic components of order 10*—10°.
However, it is known in advance, that the high-frequency
wing of the spectrum is formed by synchronised harmonics
whose amplitudes decrease according to the law @ '.
Therefore the amplitudes and phases of higher harmonics
can be calculated on the basis of simple algebraic formulas
connecting these quantities with numerical data obtained
for the several first (10') order spectral components [122].
In this case the calculation time can be reduced by 1-2
orders.

Consequently, the sawtooth wave interactions are
diverse, but results obtained there are basically numer-
ical. As a consequence, only the principal or general
properties of such phenomena will be discussed below.

Let us consider first the interaction between weak
disturbances with both smooth and shocked parts of the
sawtooth profiles. Let V, be a form of plane ‘saw’ and its
disturbance V;. Then from the homogeneous Burgers’

equation [see Eqn (60), D =0] the following can be
obtained:
v, o’v,
——=(VyVy) =T . 72
az ae( 0 l) 602 ( )

For the sections of ‘saw’ linear in time Vy = (8y — 0)/(zo + 2)
and the solution takes the form

2\
v, = [4nrz<1 +;>]
20

o0 14+z/z0 ( 0— 06, 2
X J_Oo exp AT (] Ty t) | Vo(r)dr (73)

In Fig. 18 one-half period of the ‘saw’ V,=
(r—0)/(1+z), 0<f<m is shown by dashed straight
lines. The peak value for the shock which is placed at
the point 8 = 0 decreases with increase of distance z equal
to 0, 0.3, 0.8, 1.5. The behaviour of the harmonic initial
disturbance V (0, 8) = msin60, m <1 is calculated in
accordance with formula (73) for the same distances z in
the absence of dissipation (I'=0). It is seen that both
amplitude and frequency decrease as (1 + z)fl. The inverse
process is possible also: signal amplification and increase in
frequency at the steepening leading front [123, 20] appear-
ing in the ‘saw’ formation (in Fig. 18 it is not shown); it
corresponds to values z, < 0 in solution (73). The varying
of the signal frequency during interaction with sections of
the ‘saw’ which were linear in time was observed experi-
mentally [124, 125].

So, the transformation of the profile of the intense ‘saw’
is responsible for the harmonic disturbance ‘flowing’ to the
front from both sides of it (see Fig. 18) and disappearing on
the front because of nonlinear absorption (see Section 6).

To investigate the behaviour of disturbances in the
vicinity of the shock, let us put in Eqn (72)
V, =tanh(0/2I'). This function describes the internal
structure of the weak shock front. It is convenient to
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Figure 18. Evolution of harmonic disturbance of linear sections of the
profile of a sawtooth wave.

write the solution of the resulting equation in terms of
displacement S, where the velocity can be expressed as
vV, =0S5/00:
_exp(=z/4D)
(4nl'7)'/? cosh(6/2I)
0 0 — 1)’ t
XJ eXp [—%] cosh (ﬁ)SO(l‘) dr .

—00

(74)

As the result (74) suggests, the initial disturbance (see
Fig. 18) will be concentrated near the front and absorbed
on it.

The evolution pattern of the interaction between dis-
turbances and sawtooth waves, which isillustrated by Fig. 18
and solution (74), can be broken down with increase in the
wave intensity. The self-reflection effect can be observed [1]:
the wave ceases to be a wave travelling in one direction, after
the shocks appear. The entropy undergoes a small jump in
the transition through the shock front [63]. That jump is a
weak inhomogeneity in the wave profile. The smooth
portions of the profile, incident on the discontinuity,
interact with it. This interaction leads to the appearance
of reflected waves which propagate in the opposite (relative
to the initial wave) direction. In the periodic ‘saw’ each
discontinuity can be regarded as a ‘generator’ of reflected
signals. Therefore, an overall effect caused by the summa-
tion of these signals can be significant and can lead, for
example, to the appearance of acoustic wind [1].

The experimental observation of the self-reflection
phenomenon [126] was performed in the radio-frequency
range using a model of a nonlinear dispersionless medium: a
long transmitting line of the low-pass filter type. A short
radio pulse was radiated, and shock fronts appeared in it at

the distance x,. From this time on, a backward wave was
beginning to be generated. That reflected wave was received
at the input of the line with a time delay 2x,/c (here ¢ is the
signal propagation velocity). In recent years there have
appeared new works [127, 128] devoted to the self-reflection
of sawtooth waves.

Let us pass now to the interactions of waves intersecting
each other at an angle. It is known [1] that out of the
intersection region of two intense beams with frequencies
; and m,, only the weak signal of the combination
frequency w; &+ @, can be measured. This is because it is
impossible to organise the synchronous interaction between
noncollinear waves in media without dispersion or, in other
words, with the absence of the effect of resonant scattering
of sound by sound. [129].

The solution of the problem obtained by successive
approximation methods shows that nonlinearity generates
two kinds of disturbances whose behaviour in space is
essentially different. Along the direction of propagation of
each beam harmonics are excited, the amplitudes of which
increase with increase in traversed distance. In contrast to
this, the harmonics observed in other directions oscillate in
space and remain weak in comparison with the initial
waves. Averaging the equations over the fast periodic
oscillations, it is possible to show [130] that the super-
position principle is valid approximately for signals periodic
in time. So, nonlinear waves undergo self-action and their
form can be distorted strongly, but intersection of such
waves does not give birth to the appearance of intense
scattered signals.

Nonsynchronous disturbances are small in comparison
with the amplitudes of synchronously excited waves, if the
angle of intersection is B> (eM)"/%, where ¢ is the non-
linearity of the medium, and M is the acoustic Mach
number. For typical conditions, for example, when ultra-
sonic waves with intensities 1—10 W cm ~' are interacting
in water, the amplitudes of nonresonant disturbances are
negligible for angles of intersection f > 4°.

The idea of the superposition of two strongly distorted
waves travelling in opposite directions was used in Ref.
[130] to represent standing waves in a resonator with rigid
walls. The discontinuous vibrations were shown to appear
in the resonator after the opposed waves took the sawtooth-
shaped form. The Q-factor decreases significantly in this
case because of nonlinear absorption. The field is no longer
a standing wave; a front of velocity disturbance appears
moving between two walls. There can be several fronts of
such a type (‘travelling nodes’) for higher vibration modes.
In Ref. [130] forced vibrations excited by the distributed
external force were analysed; they were represented as a
sum of two opposed waves described by the inhomogeneous
Burgers’ equation (53).

In Refs [131—-133] vibrations were considered in a
resonator excited at one end by a periodic force; here
the formation of a shocked field was also observed, which
can be presented as a superposition of opposed waves.

Further development of these ideas is given in Refs [134,
135]. It was found to be possible to take into account the
impedance character of boundaries and their movement
[135]. If these vary the wave form weakly over time intervals
of the order of the wave propagation time through the
resonator, the field can be presented as the sum of two
opposed travelling waves interacting with each other at the
boundaries only.
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Figure 19. Formation of a mode by superposition of nonlinear waves travelling at equal angles to the waveguide axis.

Let us pass now from resonators to waveguide systems.
It is known [48] that normal waves in a linear layer may be
represented as a segment of an interference pattern formed
by two harmonic waves of equal frequency propagating at
angles £f to the x axis (Fig. 19). Here in the nodal planes
(for example, y = %a) two absolutely rigid waveguide walls
may be placed without disrupting the motion pattern. The
width 2a of such a waveguide is associated with the
wavelength by the relationship 2asin § = nd/2. For intense
waves it is possible to use the analogous treatment of
normal nonlinear waves in a waveguide as a sum of two
plane nonlinear waves which are periodic in time and travel
at angles +f with respect to the waveguide axis [136].

In Fig. 19 the distributions are shown for longitudinal
u, (solid curves) and transverse u, (dashed curves) velocity
components in different cross-sections of a waveguide,
corresponding to the distances before (x = 0.9x,) and after
(x = 2x,) the formation of a ‘saw’. The curves are drawn for
the second mode (n =2) at regular time intervals (curves
0-4) Ar=T/8 within one-half of the period T. Large
gradients of the velocity u, appear near the axis of a
waveguide and at its walls; the space distribution over a
cross section has the ‘sawtooth’ form with two additional
‘travelling nodes’. The lines of equal stream function,
representing the pattern of particle velocities, become
discontinuous [136]; there occur zones where there is strong
nonlinear absorption.

The study of intense acoustic and shock waves prop-
agating in waveguides, tubes, jet flows, etc., is of great
practical importance [137]. When the wave is excited in a
volume bounded by walls, it is possible to avoid diffraction
losses and improve the observing conditions for nonlinear
effects. Therefore, gas-filled and liquid-filled tubes are used
often in experiments at high sound pressure levels [138—
141]. The mode structure of the field is insignificant in many
experiments, because long waves are used, as compared
with the size of the cross-section.

In Ref. [142] the propagation of a high-frequency
intense wave was studied in a round tube with rigid
walls. The system of equations was solved for the long-
itudinal and transverse components of the particle velocity.

That system was derived at the same approximation as the
KZ equation (18). The tube axis was coincident with the
axis of the beam. It turned out that unlike the case of an
unbounded medium, the wave intensity oscillated along the
axis with a space period of the order of the diffraction length
x4z (16). Such behaviour is connected with the multiple
reflections from the tube walls of the waves, forming the
beam. At distances equal to 3—5 times x, the intensity is
distributed uniformly over the cross section due to diffusion
‘smoothing’ and the influence of walls; on further propaga-
tion the wave behaves like a plane one.

The wave form shows interesting behaviour. In Fig. 20
the dependences are given of the longitudinal velocity
component on time (within one period) at three points
of the cross-section: at r/a =0 (on the axis), 0.5 and 0.9
(near the wall). The number N (16) was equal to unity. At a
distance x equal to half of the shock formation length x,
the nonlinear effects are expressed weakly and the profiles
are similar to the harmonic ones. However, the diffraction
influence is marked, and leads to phase shifts and to energy
diffusion from the central part of beam to its borders. At a
distance x = x, the shock has to be formed in the plane
wave. However, the phase discrepancy of the harmonics
slows down this process particularly in regions distant from
the axis. Stable shock front formation takes place
(x/x;="T) just after the uniform distribution in cross
section is reached for all wave characteristics, as result
of diffusion and reflection from walls.

Let us discuss now the principal effect of nonlinear wave
theory —the self-focusing of sawtooth wave beams. As
distinct from the inertialess self-focusing in cubically
nonlinear media described in Section 2.4, we deal here
with thermal self-action in a quadratic nonlinear medium.

The thermal self-focusing of beams, well known in
optics [33], comes about because of the dependence of
the wave velocity on the temperature and because of the
nonuniform heating of the medium by the beam. The
thermal self-focusing of a harmonic wave, predicted in
Ref. [143], has been observed in acoustic experiments in
highly viscous liquids [144, 145]. The peculiar features of
these experiments are connected with the breakdown of the
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Figure 20. Profiles of one period of a wave for of cross section r/a of the tube equal to 0, 0.5 and 0.9 at different distances x.

thermal lens by the acoustic wind, with the complicated
near-field structure of acoustic sources (where the concept
of beam boundary is meaningless), as well as with the ‘self-
clearing’ of a medium which is caused by the absorption
decreasing as the temperature rises [26]. If these difficulties
are minimised [147] the phenomenon will be similar to the
self-action of laser beams in media with a large coefficient
of sound absorption a; the effect disappears as a — 0. As
distinct from the optical analogue, the thermal self-action of
‘saws’ takes place even in ideal media with o = 0, because
nonlinear absorption of wave energy occurs, and the
medium is heated (see Section 6).

In Ref. [8] an experiment is described on the observation
of self-focusing of the sawtooth wave. A beam with power
20 W, width 30 mm and frequency 2 MHz was radiated
into water where the periodic ‘saw’ was formed during the
propagation. Then the ‘saw’ penetrated to an acetone-filled
cell. Acetone was used as the medium for thermal self-
focusing investigation, because it has a small coefficient o
and a negative temperature coefficient of sound velocity
5:cal(6c/6T)p, i.e. it is (in contrast to the water) the
focusing medium. A marked increase of the intensity on the
axis of the beam was observed.

The theory of this phenomenon is developed in Refs [7,
9]. The most simple model will be obtained if one can
neglect the diffraction and describe the beam using a
nonlinear geometric acoustics approximation:

W e b O Wy
o popae 2¢i py 09> Or or

1
+§PAL1// =0,(75)

oy 1\

a2 (a_> =T, (76)
oT X b o>
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Eqn (75) differs from the Burgers’ equation in the last two
terms, which take into account the change in the
inclination and in the cross section of the ray tubes;
here 0 =1t—x/cy —¥(x,r)/co, ¥ is the shift in the wave
front because of heating of the medium. The eikonal
Eqn (76) describes the bending of rays because of the
increase in the temperature of the medium 7. The right side
of the heat conduction Eqn (77) is responsible for the
transformation of acoustic energy into thermal energy; as
in Eqn (49), it takes into consideration two kinds of losses:
linear and nonlinear ones.

In considering a sawtooth wave, each period of which
can be described by the Khokhlov solution

0
p:A(x,r)[—%—i—tanh([EAG)], —nt<wi<m,
h
it is possible to eliminate the ‘fast time’ 8 and pass from the

field variable p(x,r,0) to the peak pressure A(x,r).
Eqns (75), (77) take the form

0A Oy oA 1 &w 5

T T L O AA Y = — A 78
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kA== A (79)
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The resultant set of Eqns (78), (79) and (76) describes the
thermal self-action of sawtooth wave beams. It is seen from
Eqn (78) that the absorption is purely nonlinear; in the
linear case, in place of the right side we would have the term
—oA. The right-hand side of Eqn (79) is also connected with
this feature: the heat release power is ~A3 (in the linear
case it would be proportional to A2).

The results of the solution of this system can describe
the following processes. At the beginning the beam expands
with increase in the distance because of isotropisation (see
Section 3), but the peak pressure decreases because of
nonlinear absorption. With the passage of time, the medium
heats up, and the strength of the thermal lens increases.
Self-focusing of the beam occurs, and the focus moves
toward the source. At t — oo the steady-state regime will be
established; as this takes place, there exists a distance
between the source and the nonlinear focus where the
beam width has a maximum, but the peak pressure has
a minimum value.

An interesting phenomenon can be observed for the
focusing of the beam into a self-defocusing medium (6 > 0),
the most important example of which is water at room
temperatures. The thermal self-action in this case hinders
the focusing and, as a result, nonlinear constriction of finite
dimensions does appear there [9]. For example, let the beam
of sawtooth waves in water have the following parameters:
initial radius of 3 ¢m, curvature radius of the initial wave
front 9.4 cm, peak pressure 1.3 atm and fundamental
frequency 4 MHz. The constriction radius is equal to
3.6 mm in this case, while in the absence of self-action
and with account of diffraction, it would be 0.36 mm. So,
the self-defocusing broadens the constriction by an order.
This phenomenon does not require extreme values of the
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wave amplitude; it appears to have been observed many
times during operation with medical instruments (used for
the imaging of internal structure of tissues, for ultrasonic
therapy and hyperthermy [148]).

9. Conclusions

An attempt was made in this review to describe only some
of the phenomena connected with the propagation of
sawtooth-shaped disturbances, which are interesting
(because of their specificity) for nonlinear wave physics.
The problems of giving complete information about these
waves seemed to be intractable from the beginning, because
almost all the questions mentioned here (state-of-the-art of
the sonic boom problem, shock wave lithotripsy, creation
of extremely strong fields at the focus, nonlinear
diagnostics, propagation of shocked waves through
media with complicated internal dynamics and structure,
and many others) merit individual generalisation. It would
be well to consider the mathematical model describing the
sawtooth waves in more detail as well as the asymptotic
and numerical methods of solution of corresponding
nonlinear equations. Perhaps it will be done later.
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