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Abstract. Irreversibility of physical systems is discussed by
considering the simplest example of a low-density gas,
either in isolation or in thermal equilbrium with the walls
of a container. Attention is concentrated on an analysis of
a logical scheme for a theoretical description of irrever-
sibility.

1. Introduction

Irreversibility is a universal principle of the Universe, which
applies not only to life, but also to many physical
phenomena in nature. It would not be an exaggeration
to say that we are immersed in an irreversible gradually
evolving Universe. However, the classical laws of mechan-
ics are reversible in time. The main equations of quantum
mechanics are also reversible. Therefore, the question of
how a description of irreversible processes can be derived
from the reversible equations of dynamics has been
discussed repeatedly and continues to be discussed in the
physics literature. I do not wish to comment here on all the
points of view on this topic. I shall set myself a simpler
task: I shall take as an example one of the simplest physical
systems with an inherent internal irreversibility and I shall
try to analyse more carefully the logical reasoning scheme
resulting in a theoretical description of irreversibility. I shall
select a low-density gas of weakly interacting atoms as the
simplest system. I shall assume that the gas is inside a closed
container and it may be in thermal equilibrium, including
equilibrium with uniformly heated container walls.

It is known that the behaviour of such a gas is described
by the Boltzmann kinetic (transport) equation for the
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particle distribution function F(r, v, t), where r is the
coordinate (a three-dimensional vector) and v is the
velocity of a particle. All the particles are assumed to be
characterised by the same distribution function, so that
F = nf(r, v, t), where n is the particle density and f(r, v, 1) is
the single-particle distribution function.

Boltzmann deduced his kinetic equation with the help of
just one perfectly natural assumption: the atoms in a gas are
assumed to be uncorrelated before their pair collisions.
Boltzmann called this the ‘molecular chaos’ hypothesis.
This hypothesis seems quite natural, although in no way
does it follow from molecular dynamics.

It has been proved that just this hypothesis is quite
sufficient to introduce physical irreversibility explicitly:
according to the famous H theorem, the kinetic equation
describes irreversible relaxation of a gas to thermodynamic
equilibrium accompanied by a monotonic increase of the
entropy with time. The question arises as to which physical
phenomenon underlies the hypothesis of molecular chaos
and how this phenomenon can be considered within the
framework of a more rigorous logical scheme. This is the
question which will be discussed here. I shall begin with a
gas of classical particles and discuss later a more rigorous
quantum description of the behaviour of atoms.

2. Classical irreversibility

In the approximation of classical particles we can regard
the atoms as tiny hard balls colliding elastically with one
another. If the diameter of these balls is d, the collisions
occur for impact parameters smaller than d. This means
that the scattering cross section is ¢ = nd® and the mean
free path is A =1/no, where n is the average density of
atoms. The gas is considered to be of low density if 1 > /7,
ie if n? < 1.

We shall assume first that the gas is inside a container of
volume V with ideally (specularly) reflecting walls. The total
number of atoms in the volume V, equal to N = nV, will be
regarded as very large: N > 1. We can easily see that such a
system of elastically interacting particles is fully reversible in
time. In fact, the potential of the interaction of the particles
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with one another and with the container walls depends only
on the coordinates. Therefore, Newton’s equations are not
affected by the replacement of ¢+ with —z. This means that
for any initial state + =0 a system of classical elastic
particles evolves up to a moment ¢ reaching such a state
that after time reversal the system exactly repeats its
evolution in the reverse order. Naturally, such a ‘reverse
cinema’ scenario can be realised also by instantaneous
transformation of the velocities v; — —v; for each ith
particle from the total set of N particles. Thus, molecular
mechanics of a gas is reversible in time, which is clearly in
conflict with the reality that we experience.

Figure 1. As a result of a small displacement of an atom A, its path
(dotted line) begins to deviate significantly from its initial path
(continuous line) after the very first few collisions with other atoms.

We can understand the origin of irreversibility by
considering in greater detail the dynamics of gas atoms.
Let us select a test particle A (Fig. 1). Such a particle travels
freely for a time. Its velocity then changes instantaneously
because of a collision with another atom B, and it flies on to
the next collision. The average length of such free-flight
segments is A, i.e. it is equal to the mean free path. The
average time between consecutive collisions is 7= 4/v,,
where v, is the average velocity of a particle. The path of a
specific test particle is very sensitive to the specific positions
and partners in pair collisions with the other particles.
Therefore, such a path is random and the corresponding
process is known as dynamic chaos. In our case, dynamic
chaos is related to the large number of partners that
participate in collisions. However, it is well known that
dynamic chaos occurs also in systems with few degrees of
freedom.

Dynamic chaos by itself cannot account for the
appearance of irreversibility. No matter how complex is
the evolution of a system from the past to the future, a
closed system of classical particles must follow in the
reverse order the same path in the phase space when ¢ is
replaced with —¢. Therefore, irreversibility is not a direct
consequence of chaos although it may be related indirectly
to chaos.

To proceed further, we must consider one other feature
of chaotic systems which is the divergence of the paths in
the phase space. Once again, let us consider a test particle
(Fig. 1) and examine not only its real path, but a possible
path lying close to it. For example, we can assume that the
test particle is displaced slightly by a very small distance &.
Then, after the first collision the scattering direction
changes by a small angle y, = &/a, where a =4/ is a
characteristic interaction length. A small deviation y alters
the impact parameter by yA in the second collision, so that
after the second scattering the direction of motion of the
test particles changes by y, ~ (£/a)-(4/a). After ¢ scattering
events, the angle becomes approximately y, = (¢/a)-(4/a)’.
Since A/a > 1, the value of the angle y, increases rapidly

with the number of scattering events. If y, ~ 1, the particle
path jumps to the next atom and the perturbed particle path
becomes quite different from the initial one. For example,
after g =1In(a/&)/In(4/a) scattering events a particle
follows a very different path. In other words, the initially
close paths begin to diverge exponentially. This divergence
of the paths results eventually in irreversibility. However,
we must also understand how this occurs.

As shown above, there is no irreversibility in a closed
system of classical particles. However, even negligible
external perturbations are sufficient for the appearance
of irreversibility. We can see that it is sufficient to displace
one of the colliding atoms by just & ~ a*/A = ¢/ to ensure
that after one or two collisions the particle paths become
completely different from the initial paths when € = 0. The
quantity & ~ /4 is negligible; for example, in atmospheric
air at normal pressure we have £~ 107 A~ 107" cm. If
we assume that the gas is in a larger or smaller container i.e.
if we take account of the feasibility of heat exchange with
the walls because of inelastic collisions, then displacements
on this scale are quite likely even far from the walls. Near a
wall the elastic collisions of atoms with it may result in
displacements of the order of 4 and then perturbations are
transferred into the gas interior either by diffusion or by
acoustic noise, which is generated near the walls because of
inelastic collisions. Such collisions contribute to the addi-
tional attenuation of acoustic waves and, according to the
fluctuation —dissipation theorem, the wall layers of a gas
can generate additional acoustic noise. This noise may
result in displacements of atoms within the gas and thus
transfer atoms from some unstable paths to others.

It is these external perturbations that create irrever-
sibility. They can be regarded as a certain type of chaotic
noise. Therefore, molecular dynamics can be considered as
a special ‘chaos amplifier’ with respect to the arrival of
external noise. The ‘amplifier’ has an enormous gain. The
number of collisions needed to displace paths depends only
logarithmically on the external noise intensity. Therefore,
even a very weak interaction with the environment radically
alters the behaviour of the gas atoms. All the long-range
correlations of atoms are destroyed very rapidly: this
happens over a period of just one or two typical pair
collision times. The behaviour of atoms with the same
initial velocities thus becomes monotypic: they move and
collide with other atoms in accordance with the same
statistical laws. Consequently, a many-particle distribution
function is transformed into a product of single-particle
distribution functions which obey the Boltzmann equation.

It follows that, strictly speaking, molecular chaos in a
gas of classical particles is created by the external environ-
ment. Clearly the behaviour of such a gas becomes
irreversible: we could reverse the velocities of molecules
inside the container, but the external environment is outside
our control. Therefore, reversibility for + — —¢ can exist for
a period not greater than one or two mean collision times
and then the gas again forgets its initial state and its
evolution is exactly the same as at r >0 (but with the
reversed gas dynamic velocities).

We can therefore see that irreversibility can appear
without energy transfer to or removal from a gas. Paths
become chaotic simply because of small displacements of
atoms, i.e. due to a characteristic ‘dephasing’ in the pair
collision processes. Irreversibility is unrelated to energy
changes.
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We can understand better the nature of classical
irreversibility by considering an idealised thought experi-
ment. Let us consider a gas with the density of atoms nin a
spherical container of radius R with specularly reflecting
walls. Such a gas is clearly an ideal mechanical system with
motion fully reversible in time. Let us now assume that the
container walls are very thin and that outside the container
there is exactly the same gas with the same average velocity
of thermal motion of atoms and with the same density n.
Let both gases be on the average at rest. Let us assume that
the external gas is in a state of thermal equilibrium and that
its interaction with the external Universe is such that
molecular chaos is established inside the gas. We shall
assume that the mean free path A is much less than the
container radius R.

Let us assume that at the moment =0 the wall
separating the two gases disappears. An initial discontinuity
then separates the two gases: the external gas which is in
thermal equilibrium and the internal system of atoms which
is in complex but fully reversible motion. Clearly, the
random thermal motion of the external gas together
with the acoustic thermal noise should lead to chaotisation
of the paths of the atoms of the internal gas. One collision
of the chaotised gas is sufficient for dephasing of the path of
an internal-gas atom. An irreversible front therefore begins
to propagate inside the region with reversible motion of
atoms (Fig. 2). Ahead of this front the motion is still
reversible, but behind, it is irreversible. In other words,
a reversibility-destroying front propagates inside the gas.

L)

Figure 2. Irreversibility front of radius rg collapses towards the centre at
the velocity of sound after the disappearance of a shell of radius R
separating an internal reversible gas from an external irreversible
environment.

It is known that any travelling weak discontinuity in a
gas propagates at the velocity of sound, ¢, = (yT/m)I/Q,
where 7y is the adiabatic exponent, 7 is the absolute
temperature, and m is the mass of an atom. The radius
of a sphere r, with reversible motion inside it will
correspondingly contract in accordance with the law
re =R —ci. At t = R/c, the reversible region disappears.
An equilibrium gas with the usual random paths of atoms
and with destroyed long-range correlations between their
motions forms behind the moving front. The correlations in
the motions of atoms are destroyed in the front itself, the
width of which is of the order of 4. Ahead of the front we
have a classical mechanical system with a perfectly deter-
minate and, therefore, unique path in the phase front. The
replacement of #+ with — in this system simply reverses the
direction of motion of the system along a path. We should
therefore assume that there is no disordered motion inside
the sphere of radius r,. This means that the entropy of the

system of atoms inside the sphere of radius ry is zero.
Immediately after the passage of the front this equilibrium
gas acquires an entropy S (per unit volume), which can be
calculated in accordance with the familiar methods of
statistical physics.

The main physical process occurring at the moving front
thus involves entropy creation beginning from zero to the
value S per unit volume. The process of entropy creation is
irreversible and, therefore, the irreversibility front can move
only in one direction: towards the reversible mechanical
system of particles with zero entropy.

We shall now have to consider how and from what
entropy is created. We shall do this by applying the well-
known Boltzmann formula:

S=kInTl. (1

Here, I' is the number of possible microscopic states of a
system when its macroscopic parameters (for example, the
gas density and temperature) are fixed. The parameter k,
known as the Boltzmann constant, appears because the
absolute temperature is measured in kelvins and the energy
of an atom is measured in ergs or joules. If we agree to
measure the absolute temperature in the same energy units
as the energy of atoms, we can assume that k = 1. This
choice of units is more convenient, so that we shall
postulate that £ =1 in formula (1).

In classical mechanics the numbers of states I' is not
defined rigorously. However, if following the uncertainty
principle AxAp =~ 7, we divide the whole phase space into
discrete cells of size Ax and Ap, so that AxAp = 7, the value
of I becomes fully determinate.

We shall agree to use the same discrete cellular space to
describe the mechanical motion of a system of classical
particles also. We then encounter immediately the concept
of information. Let us consider our mechanical system of
atoms at some fixed moment in time. At this moment the
phase point of this system is a unique one cell out of I'
possible cells. We can see that the probability of finding the
system in this cell is p = 1/I". If all the possible cells are
taken into account, the system of atoms can be regarded as
a memory with the information capacity

I=—Inp=InT. )

This is exactly the information carried by a classical system
of atoms at any moment in time. During evolution in time
the phase point moves along a very narrow (of width
amounting to one cell) filament in the phase space, so that
its information is conserved.

In the Shannon relationship (2), information is meas-
ured in ‘nats’ and not in bits, so that the link between this
relationship and the entropy given by formula (1) with
k =1 becomes obvious. If information is erased completely,
the system of atoms can be in any one of the possible cells,
the number of which is I'. Perfectly random thermal motion
is then established.

Thus, complete erasure of information and its conver-
sion into entropy occurs at the irreversibility front. Ahead
of the front we have a mechanical system with a fully
determinate behaviour in time, but behind the front we have
thermal motion chaos. We must stress once again that this
chaos is created by an infinitesimally weak noise from the
irreversible external environment. The dynamics of atoms in
the gas amplifies this chaos by a large factor and converts it
into the molecular chaos of thermal motion.
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We shall now consider some problems encountered in
various textbooks on thermodynamics and statistical
physics or simply in popular papers on physics. For
example, one of the frequently asked questions is as
follows: is there an instantaneous temperature? Paradox-
ically, for a gas of classical particles the answer should be
negative: there is no instantaneous temperature.

In fact, any instantaneous state of a system of classical
particles should be regarded as specified exactly, i.e. as
having zero entropy and total information / =1InI'. There-
fore, we cannot introduce the instantaneous temperature
concept (we can assume that this temperature is zero, but
this is not very significant). Only in the presence of weak
external perturbations, amplified by the pair collisions of
particles after a time interval of the order of the mean
collision time, do we encounter real molecular chaos with
the corresponding temperature which is a measure of the
chaotic thermal motion. Any initial information then
disappears and the entropy reaches its maximum value
S =InT. It is this process of the appearance of temperature
with simultaneous conversion of information into entropy
which occurs in the narrow layer of an irreversibility front
shown in Fig.2.

The second frequently asked question is: why is it
possible to use a statistical approach to the description
of the behaviour of a gas of classical particles? Various
answers have been given. It is sometimes said that a
statistical description is used because the exact initial
data are not known. One can also encounter the statement
that statistics is used because it is not possible to integrate
the equations of motion for an enormous number of
particles. It is easy to see that neither of these two answers
can be regarded as fully correct.

We shall begin with the second answer. In normal air
under atmospheric pressure in a volume of the order of PR
there are N = 1/a°n* ~ 10® particles. This is of course a
large, but not an enormous number. The entropy S =InT"
of N gas molecules at room temperature is approximately
SN x30=3x10. Consequently, the information car-
ried by the initial state is measured in gigabytes, which can
be dealt with quite readily by a modern computer. A
supercomputer can carry out calculations analysing the
evolution of gas molecules for a certain number of pair
collisions. If desirable or essential, it is possible to simulate
gas dynamics in the approximation of enlarged particles.

Let us now consider the first answer. Strictly speaking,
the fact that we do not know the initial data does not give
us any right to employ a probabilistic description. After all,
such a description should be applied not to many repeated
measurements but to one natural system. This system is
closed and evolves along a single path in the phase space.
The replacement of such a system with an ensemble of
systems with somewhat different initial data is not only
logically unjustified, but leads to certain logical difficulties.

In fact, the uncertainty about the initial data can be
allowed for by the creation at t =0 of a ‘drop’ of the
distribution function in the phase space. During the
subsequent evolution of a closed system each point of
such a drop moves along a unique rigorously defined path.
The paths diverge, so that very soon a ‘cotton wool’ or
‘spider’s web’ is formed and it is filled with points of the
initial distribution function. It is usual to carry out ‘coarse-
grained averaging’ in order to simplify the description of
this cotton wool. However, this averaging operation is not

justified in any way: it is artificial and imposed from
outside. Only a real disturbance of the paths by an external
noise creates conditions justifying such averaging.

We thus can draw once again the conclusion that
irreversibility of a gas of classical particles and the justifica-
tion for its statistical description are determined by a very
weak interaction of the investigated system with an irrever-
sible external environment. Collisions of particles greatly
amplify the external chaotic perturbations and destroy the
long-range correlations in the motion of particles. As a
result, this motion becomes monotypic: every particle
behaves similarly and can be characterised by a single-
particle probabilistic distribution function. The Boltzmann
equation is formulated precisely for this function.

The macroscopic characteristics of a gas can behave
similarly in a closed system and in a system which is in
contact with the external world. However, the hypothesis of
molecular chaos is logically justified only if we assume that
the gas in question is characterised by a very weak inter-
action with the irreversible external world. Closed and open
systems differ greatly from the logical point of view.

3. Quantum irreversibility

Quantum irreversibility differs greatly from classical
irreversibility, but the reasoning used in the preceding
section can help here as well.

Let us again assume that we are dealing with a closed
system of atoms in a container with specularly reflecting
walls. We shall assume that the gas temperature is
considerably higher than the degeneracy temperature, so
that the behaviour of atoms can be near-classical. We can
readily see that in a closed system we again have full
reversibility. In fact, the behaviour of this system is
described by the Schrodinger equation

-
i = HY. 3)

Here, 7 is the Planck constant, H is the Hamiltonian,
and Y is the wave function which is symmetric in N
variables ry...ry.

It follows from Eqn (3) that the wave function Y(r, ¢),
where r is the set of variables r;, can be found from its initial
value Y(r, 0) by the operation

w@a=pr€§wnw @

The matrix U(t) = exp(—iHt/h) is unitary, so that
U~'(t) = exp(iHt/h). We have therefore the correspond-
ing relationship

an=u'mwn0=mpC%>wna ©

In other words, the function ¥(r, 0) can be found from a
given function Y(r, ) by means of relationship (4) but with
reversed time: t — —t. It therefore follows that relation-
ships (4) and (5) correspond to the statement that a closed
quantum system is fully reversible.

Consequently, the irreversibility can appear only as a
result of a weak interaction of the investigated system with
an irreversible external environment.

[t is convenient to begin by considering a certain
thought experiment in a closed system in order to
understand how the irreversibility appears in a gas of
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quantum particles. Let us assume that at some initial
moment t =0 the wave function of N particles has the
general form (r, 0), where r is a set of N coordinates
of the 7, type. We shall select a test particle, for
example, one with the coordinate »;. We shall avoid
complications associated with the identity of the particles
by postulating that the test particle (atom) has an
isomeric nucleus, i.e. there is no complete identity
between this atom and others, although the masses of
all the atoms are the same. We shall now represent the
function Y(r, 0) by a super-position

Y(r, 0) = ¥;(n)C;. ©)

Here, each of the functions () is selected in the form of
a wave packet labelled by a certain number j and the
coefficients C; represent the wave functions of all the
remaining atoms in the selected state with the wave
function y,(r,)of the first atom.

Let us select the width A of a wave packet ¥;(r|) in such
a way that this packet does not broaden very significantly in
the time T = 1/v,, where 4 is the mean free path and v, is the
average ‘thermal’ velocity of the atoms. It follows from the
uncertainty principle,

ApAx ~Ti, %)

that the velocity uncertainty in a packet of width Ax ~ A is
Av ~ li/mA, where m is the mass of an atom. Our condition
T7-Av = A thus leads to the approximate relationship:

A=Ay, ®)

where Ag is the de Broglie wavelength: Az = fi/mv,.

We shall now consider the evolution of the wave packet
¥;(ry, t) with time. In a low-density gas this packet travels
freely most of the time and is scattered weakly by other
atoms. In the time t =A/v, the initial packet is almost
completely converted into scattered waves. These waves
undergo secondary scattering and then tertiary scattering,
and so on. Let us now ‘reverse the time’ again, i.e. let us
replace + with —¢. Then all the scattered diverging waves
transform into converging waves and the whole wave
evolution occurs in the reverse order, until these waves
coalesce into the initial wave packet ¥,(r;, 0). Hence, it
follows that in a reversible system of quantum particles we
should encounter in equal measure both diverging (scat-
tered) waves and converging waves. The wave function of
such a system is a very complex and fine construct of
perfectly correlated converging and diverging waves.

Let us now assume that the gas under investigation
interacts weakly with an irreversible external environment.
The first and main effect of this interaction is to destroy the
exact phase relationships between the converging and
diverging waves. This is called dephasing. Clearly, such
dephasing has an influence primarily on the disappearance
of the converging waves, similar to the emission waves in
ordinary classical electrodynamics.

The converging waves can be excluded mathematically
by postulating weak attenuation of the scattered waves at
large distances from the scattering point. An approach of
this kind is employed in quantum mechanics when the
optical model of a nucleus is considered: a nucleus is
regarded simply as a ball of gray matter when a neutron
is scattered. The hypothesis underlying this approach is that
the wave function of a neutron which becomes ‘entangled’

Figure 3. Wave packet A is scattered by another atom in region B
and then one of the scattered waves is scattered in region C by a
third atom. It is assumed that a single ‘extended collapse’ occurs in
region D. Then, returning back in time to point A, we can reproduce
the motion of the wave packet and its subsequent collisions.

in the nucleus cannot be superimposed on the incoming
wave function of a free neutron.

For a gas of quantum particles it is also natural to
assume that the initial wave function ;(r) gradually
disappears over a distance ~A and is converted into
scattered waves. However, this is insufficient. A quantum
particle cannot become manifest simultaneously in many
parts of space under conditions such that the coherence
between these parts is destroyed completely. It is therefore
essential to adopt as an axiom the statement that, after a
certain time interval, which is of the order of several
scattering times, the wave function of a particle can differ
from zero only in a certain limited region of space. This
region is identified by a letter D in Fig. 3. The effect which
occurs can be called the wave function ‘collapse’. However,
it should be stressed that we are dealing mainly here not
with ‘contraction’ of the wave function into region D, but
with ‘annihilation’ of the wave function outside a certain
wide region D.

In the course of the ‘collapse process’ the wave function
of a particle is distorted and it would seem that it is
distorted very strongly: after all, it is destroyed over a large
part of space. However, the dynamic perturbation of the
system can still be very small. The wave function is after all
constructed in such a way that not the function itself but the
operators with weight |y|> are the physical quantities.
Consequently, a wave function should be regarded as
information rather than as a dynamic quantity. There-
fore, introduction into a wave function of a localisation
form factor which is extended in space may not greatly
influence the dynamic properties (for example, energy).
However, it can very strongly affect the information
characteristics of the wave field.

We shall therefore assume that the influence of an
external environment results in the disappearance of
converging waves and leads to a situation in which a
wave packet of a test particle contracts sooner or later
in a certain region D in Fig. 3. We can now use the inverse
transformation in time to return to the initial region A.
Since we are left with just the scattered waves, it follows
that in region C of the preceding collision the wave function
is already compressed into a packet of size of the order of A
and this packet can be traced as it moves from point C to B
and from point B to A. It follows from the Einstein—
Podolsky—Rosen paradox [1] that a similar collapse occurs
also in the wave functions of the atoms on which the
scattering takes place. We can say that any extended
collapse in future is equivalent to the fact that at present
the evolution of the wave function ¥;(r,) can be regarded as
the result of free motion of the packet along rectilinear
segments with random collisions in regions B, C, etc. A
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quantum particle not only reveals features of classical
behaviour, but its behaviour is random in each scattering
event.

A statistical description of such quantum objects can be
provided in a natural manner by introducing the density
matrix for an ensemble of identical systems, i.e. initially for
similarly behaving atoms. The diagonal terms of the single-
particle density matrix, i.e. |t//j(r])|2, then play the role of
the distribution function and the ‘erasure’ of the off-
diagonal terms corresponds to the process of formation
of a packet. In this approach all the atoms behave in the
same way and any ‘instantaneous’ wave function y(r, t) of
many atoms can be regarded as a random set of wave
packets whose probabilistic characteristics are described by
the kinetic equation for the distribution function and by an
additional equation for the shape and dimensions of the
wave packets.

We can therefore draw the conclusion that even a weak
effect of an irreversible environment can greatly alter the
wave function of a system of quantum particles. Instead of
a complex coherent state with evolution reversible in time,
we have a set of single-particle wave packets with random
irreversible evolution. The irreversibility appears over time
intervals longer than the mean collision time and the actual
difference between the wave functions of closed and open
systems can have a much more complex space—time
structure.

This question can be understood better by returning to
Fig.2, but for the case of a gas of quantum particles. As in
the classical case, the encounter between a pure state and an
irreversible external environment creates an irreversibility
front which collapses at the velocity of sound. A reversible
pure state organised in a complex manner exists ahead of
this irreversibility front. Behind the front a set of random
single-particle wave packets is formed. Such a state can
naturally be called mixed, because the behaviour of each of
the packets is random and it obeys probabilistic laws. It is
natural to assume that the width of the irreversibility front
is characteristically of the order of the mean free path A,
although in general the situation may be somewhat complex
because more distant interatomic quantum correlations
may be destroyed ahead of the irreversibility front. The
localisation (collapse) of the wave function of any atom
corresponds to a ‘measurement’ of its coordinate and,
therefore, the wave function of a gas of the remaining
atoms can react instantaneously to such a measurement by
annihiliation of some of its components.

We can thus see that the wave functions of closed and
open systems are different. The wave function of an open
system behaves as a set of a large number of wave packets.
Such a set of packets cannot be regarded as a pure state of
the general type. Therefore, in the case of a quantum system
(in contrast to a classical system), we are fully justified in
speaking of an instantaneous temperature: the wave
function of a system in thermal equilibium is known to
differ strongly from any pure state. At any moment this
function can be regarded as a set of wave packets with
Maxwellian distribution of the momenta.

It is not possible to identify the exact moment of
collapse of the scattered waves. We, therefore, may assume
that the collapse represents a process extended in time
without fixed intermediate states. This approach differs
from the usual quantum mechanics formulated solely for
reversible systems.

4. Schrodinger’s cat paradox

An example of a characteristic quantum irreversibility is
Schrodinger’s famous thought experiment [2]. It is known
as the ‘Schrodinger’s cat paradox’. It is assumed in this
paradox that a Geiger counter, recording o particles
crossing it and originating from decay of radioactive
nuclei, is brought into contact with a device which is used
to break an ampoule containing potassium cyanide when a
particle is recorded. This device and a live cat are placed
under a glass dome. According to standard quantum
mechanics, we can image a superposition of two states of
the counter in which the flight of an a particle is recorded
or unrecorded. However, this results in a superposition of a
live cat with a dead one.

It is understood that without an a particle nobody could
think up such a strong superposition. The crux of the
matter is in a microparticle, which by definition should be
described by quantum mechanics. This particle interacts
with a more complex system, which is a Geiger counter, and
via this counter with an ampoule and then finally with a cat.
A natural approach to the description of the whole process
is to extend the system from the a particle to the counter,
etc. This involves a gradual increase in the number of the
dynamic variables and widens the Hilbertian space where
the wave function is defined. It seems that at each step one
should use the Schrodinger equation. The result is the
possibility of an absurd superposition of two irreversible
processes.

It is clear that the main conclusion from this discussion
is that the reversible Schrodinger equation is unsuitable for
the description of irreversible processes (it should be noted,
however, that this is not generally accepted). We have seen
above that a very weak interaction with an irreversible
external environment greatly influences the irreversible
evolution of a complex quantum system. Therefore, the
description of such a system differs from a simple
application of the Schrodinger equation.

In the case under discussion the Schrodinger equation
describes o decay of a nucleus and a spherically symmetric
wave function of an escaping o particle. If the radioactive
nucleus is in air, the Schrodinger equation for the extended
system describes the scattering of gas atoms by the o
particle and possible ionisation of these atoms. However,
reversible evolution of this system lasts only for a time of
the order of the free flight time of the gas atoms. This is
followed by the collapse of the wave packets of the gas
atoms, accompanied by the collapse of the wave function of
the o particle: from spherically symmetric, this wave
function is converted into a freely travelling localised
packet accompanied by a wake of scattered and ionised
atoms. This evidently irreversible process can be regarded as
a transition of a system from one Hilbertian space to
another, accompanied by complete disappearance of the
initial spherically symmetric wave function. If vacuum
separates the radioactive nucleus from the Geiger coun-
ter, then the collapse process occurs in the counter itself. It
is this process that finally results in the unavoidable sad fate
of the cat.

It thus follows that there can be no superposition of the
live and dead cats in a logically justified approach to the
description of irreversible processes: a process can follow
only one of several possible irreversible scenarios. One must
not apply literally the reversible form of the Schrodinger
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equation and one should introduce the collapse of wave
functions into the scenario of their evolution.

5. Conclusions

The irreversibility of the processes that occur in physical
systems, which may be classical or quantum, is continuing
to be the subject of discussion and various points of view
are being put forward even now. The question of
irreversibility at the interface between classical and
quantum systems is particularly topical, especially when
measurements of quantum systems are considered. There is
no generally accepted theory of quantum measurements
and the main difficulty encountered in developing it is the
theory of irreversible phenomena.

A low-density gas at a moderately low temperature is a
convenient object for discussing the irreversibility problems.
The irreversibility of a classical gas has been considered
from many points of view, beginning from the outstanding
work of Boltzmann. The irreversibility in a quantum gas
has been also the subject of fairly profound theoretical
analyses. The need to consider the irreversibility at the
microscopic level, i.e. in quantum processes, has been
stressed repeatedly by Prigogine and his colleagues
[3-5]. They have drawn special attention to the fact
that the classical limit of a low-density gas corresponds
to classical chaos with diverging paths in the phase space
without integrals of motion. Therefore, Prigogine and his
colleagues have tried to develop such a mathematical
approach for the description of this situation which would
lead automatically to the collapse of wave functions.

The problem of irreversibility at the level of a clear
description by means of thought experiments is discussed
above. The stress is on a logical way of developing the
relevant considerations. These considerations unavoidably
lead to the conclusion that the origin of irreversibility lies
outside a system of many atoms under discussion. It is
shown that a low-density gas is a very effective amplifier of
external noise. In a gas of classical particles such ‘chaos
amplification’ appears because of instability of the paths of
the atoms. In the quantum case the influence of the external
environment in the form of a ‘collapse seed’ in the future
leads to decay of the wave function into a set of wave
packets resembling ‘extended’ classical particles. The inter-
action of such packets with one another appears as a
random process of pair collisions, which can be described
by the kinetic equation for the single-particle distribution
function. It is to be hoped that a more rigorous quantum
theory of irreversible processes will be developed.
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