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Abstract. F o r m a t i o n of electron bunches in the inter-
electrode space in vacuum detectors of opt ical rad ia t ion is 
discussed. Such bunches give rise to pulses of the electric 
current , usual ly interpreted as p h o t o c o u n t s , in the external 
circuit. It is shown tha t the t rad i t iona l theory of 
p h o t o c o u n t s is inconsistent and, in par t icular , it violates 
causality. Calcula t ions based on the var ia t ional me thod are 
used to show tha t a dis tr ibuted low-density electron cloud 
is uns tab le in the presence of the C o u l o m b forces and tha t 
it splits into bunches . The electron bunches moving in the 
interelectrode space experience peaking, which is easiest to 
unde r s t and on the basis of the ca tas t rophe theory. Spatial 
(caustics) and t empora l (overtaking) ca tas t rophes m a y 
occur in an electron flux. Numer i ca l s imulat ion is used 
to consider spherical and linear expansion of electron 
bunches under the act ion of the C o u l o m b forces. It is 
shown tha t sharp electron density max ima are formed and 
tha t their proper t ies resemble those of point- l ike part icles 
capable of inducing electric current peaks (pho tocoun ts ) in 
the external circuit of a detector when they travel across the 
interelectrode space. Ci rcumstances leading to a higher 
probabi l i ty of format ion of one-electron bunches are 
po in ted out . The analysis as a whole is in tended to help 
the unde r s t and ing of the discrete na tu re of p h o t o c o u n t s 
when a p h o t o c a t h o d e is excited by a con t inuous h igh-
energy laser rad ia t ion t ra in . 
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1. Introduction 

The si tuat ion in the theory of p h o t o c o u n t s seems to be 
fully satisfactory. Exper iments are carried out , they are 
analysed theoretically, and there are no cont radic t ions 
between the theory and experiment . However , from the 
logical po in t of view the existing ideas on p h o t o c o u n t s are 
far from perfect. W e shall consider mainly the physical 
processes tha t occur in vacuum pho tode tec to r s (photocells , 
photomul t ip l ie rs , image converters , etc.) and a t t empt to 
analyse the logical cont radic t ions inherent in the existing 
theory of p h o t o c o u n t s . W e shall p ropose a physical 
mechanism which can explain the appearance of discrete 
p h o t o c o u n t s when a p h o t o c a t h o d e is excited by a 
con t inuous highly coherent laser rad ia t ion t ra in . 

The existing theory of p h o t o c o u n t s is largely p h e n o m -
enological, i.e. it is no t a theory tha t follows from 
fundamenta l equa t ions of physics (Maxwell , Schrodinger, 
or D i r ac equat ions) . F o r example, the discrete na tu re of 
p h o t o c o u n t s does no t follow from the theory, bu t is 
pos tu la ted: some theoretical ly con t inuous quant i t ies are 
interpreted as the average values of quant i t ies describing 
discrete fluxes and the concept of discrete p h o t o n and 
electron fluxes dates back to the founders of q u a n t u m 
theory. In the case of the photoelectr ic effect the discrete 
na tu re is expressed in the pos tu la te tha t the knock ing out of 
one electron from a p h o t o - c a t h o d e requires one q u a n t u m of 
light, i.e. a p h o t o n . Both an electron and a p h o t o n are 
regarded as certain localised objects travell ing in, respec­
tively, electron and electromagnet ic rad ia t ion fluxes. In the 
photoelect r ic effect one part icle (pho ton) is absorbed and 
ano ther (electron) is emitted. 

In the theory of quant ised electromagnet ic and electron 
fields there is no t even a hint of the existence of such 
localised objects. The absence of these localised objects is 
par t icular ly clear in highly coherent laser rad ia t ion . A h igh-
qual i ty laser source can emit a con t inuous t ra in of laser 
rad ia t ion lasting seconds, i.e. the length of a t ra in is 
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&3 x 10 5 k m and it conta ins ?^10 1 5 perfectly identical 
waves. In this t ime a detector records a large number of 
p h o t o c o u n t s . 

However , the concepts of localised p h o t o n s and elec­
t rons are used widely and in the l abora to ry j a rgon these 
concepts are called the ' theory of peas ' , i.e. localised objects 
resemble peas . 

This po in t of view is par t icular ly p rominen t in the 
descript ion of the shot noise (which is no t typical of 
pho tode tec to r s alone), pu t forward by Schot tky [1,2]. 
The photo-electr ic effect and the shot noise have by n o w 
been investigated extensively and they cont inue to be 
studied on the basis of this app roach [ 3 - 5 ] . 

However , from the m o d e r n poin t of view, this app roach 
suffers from some inconsistency. F o r example, the process 
of p h o t o n absorp t ion and the appearance of pho toe lec t rons 
inside the ca thode is considered quantum-mechanica l ly . It is 
usua l to assume tha t a quant ised p lane optical wave 
interacts with a quant ised p lane electron wave, which 
belongs to the valence b a n d . The result of this interact ion 
is a p lane electron wave in the conduct ion band . This new 
conduc t ion-band wave is scattered by the interface between 
the ca thode mater ia l and the vacuum. The ampl i tude of the 
electron wave which passes into the vacuum determines the 
probabi l i ty of the appea rance of pho toe lec t rons near the 
ca thode . The inconsistency of the theory lies in the 
te rmina t ion , at this stage, of the quan tum-mechan ica l 
descript ion of the process . The subsequent evolut ion of 
electrons is considered classically [6] and electrons are 
regarded as part icles and no t waves. 

This lack of consistency of the theory is frequently 
a t t r ibuted to fundamenta l features of quan tum-mechan ica l 
measurements . A quan tum-mechan ica l object is always 
observed with the aid of a macroscopic ins t rument which 
has the proper t ies of a classical object. It is therefore 
essential to d r aw a b o u n d a r y between the observed object 
and the ins t rument . After crossing this b o u n d a r y in the 
direction from the object to the ins t rument all the 
p h e n o m e n a should be considered from the classical po in t 
of view. This is why a photoe lec t ron knocked out from a 
ca thode and then moving towards an anode is usual ly 
regarded as a classical poin t part icle. In other words , the 
b o u n d a r y between the investigated object and the ins t ru­
ment is then located on the ca thode surface. 

This app roach cannot generally be objected to or 
over turned logically, bu t its validity is not as wide as is 
usual ly assumed. In fact, this app roach can be used only if 
the observed scenario is independent of the posi t ion of the 
b o u n d a r y between the quan tum-mechan ica l (object) and 
classical ( ins t rument) pa r t s of the whole observa­
t i o n - m e a s u r e m e n t system. This is an imaginary 
b o u n d a r y and the results of measurements should be 
independent of its posi t ion! If we n o w go back to p h o t o ­
counts , we can — for example — ask whether the results of a 
theoret ical analysis of experiments on the photoelect r ic effect 
will change if the b o u n d a r y between the q u a n t u m - m e c h a n ­
ical and the classical pa r t s of the system is d rawn near the 
a n o d e and no t near the ca thode , con t ra ry to the usua l 
app roach . Therefore, an addi t iona l s tudy is needed to 
consider the p rob lem of such in terpre ta t ion of p h o t o c o u n t s . 

It would have been m o r e consistent to cont inue to apply 
q u a n t u m mechanics to the mo t ion of electrons between the 
ca thode and anode and to find the field and the current 
induced by an electron wave in the external circuit of a 

pho tode tec to r . However , if this m o r e consistent app roach is 
adop ted , the theory does not predict p h o t o c o u n t pulses, bu t 
m o r e or less smooth solut ions for the fields and currents 
induced in the circuit, depending on t ime to the same extent 
as the ampl i tude of the incident opt ical wave. The absence 
of short pulses in this theoretically m o r e consistent 
app roach is of course in conflict with exper imental 
observat ions , i.e. with the existence of p h o t o c o u n t s . This 
conflict is par t icular ly severe when we consider laser light 
sources with longer coherence t imes, extending up to 
seconds. Na tu ra l ly , an electron flux in a pho tode tec to r 
should also have a smooth ampl i tude over t ime intervals 
comparab le with the coherence t ime. However , the p h o t o ­
electric effect shows no special features when laser sources 
are used. The r a n d o m na tu re of light emitted by the rma l and 
luminescence sources, used before the advent of lasers, could 
mask this conflict. Therefore, the existence of pho tocoun t s , 
at least in the case of laser light, has to be explained. 

Our pu rpose is to consider a physical mechanism for the 
appearance of p h o t o c o u n t s different from tha t presented in 
the publ ished l i terature in which a localised electron is 
emitted by a ca thode after the absorp t ion of a localised 
p h o t o n . The p roposed mechanism is based on the idea tha t 
an electron flux emitted by a ca thode under the act ion of, 
specifically, laser light is initially, i.e. immediate ly after 
leaving the ca thode , a p lane wave or some entity close to a 
p lane wave (for example, an electron cloud). However , this 
flux is uns tab le and it tends to disintegrate into bunches 
under the action of the interelectrode C o u l o m b field. This 
instabili ty is readily unde r s tood if we bear in mind the well-
k n o w n Wigner crystallisation process, i.e. the decay of an 
electron p lasma in a solid into bunches when the p lasma 
density is low [7, 8]. Therefore, an electron flux emerging 
from a ca thode should split near the ca thode into separate 
bunches ( 'e lectrons ' ) which are subsequent ly accelerated in 
the interelectrode electric field and give rise to current 
pulses in the electric circuit of the investigated detector . 
These pulses are detected by ins t ruments and by an observer 
as p h o t o c o u n t s . 

The mechanism under discussion na tura l ly obeys all the 
main laws governing the photoelect r ic effect, including the 
Einstein law with the predict ion of the red edge of the effect, 
because such laws act dur ing the first stage when an 
electron wave is formed in the conduct ion b a n d . 

W e were the first to p ropose this mechanism [9]. The 
mechanism leads to certain quest ions and some of them are 
discussed below. The main quest ions are as follows: wha t 
are the manifes ta t ions of an instabili ty of an electron flux, is 
there, and of wha t na tu re , a mechanism responsible for 
peak ing of electron bunches , wha t is the mechanism of 
appearance of mainly one-electron bunches , and finally 
wha t physical conclusions can be d rawn from this app roach 
if it is confirmed experimental ly? It is quite difficult to 
answer these quest ions . W e shall show tha t at this stage the 
answers to these quest ions are no t in conflict with the 
p roposed app roach . 

It should also be poin ted out tha t the existing theory 
suffers addi t ional ly from minor shor tcomings . F o r example, 
some of the p h o t o c o u n t characterist ics such as the p h o t o -
count recording ra te (number of p h o t o c o u n t s per second) 
do no t satisfy the principle of causali ty [ 1 0 - 1 3 ] , i.e. the 
p h o t o c o u n t s are no t delayed in the expected manner . 

W e shall begin considering this p rob lem with a brief 
account of violat ion of causality. Then we shall use a 
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quan tum-mechan ica l calculat ion to show tha t at low 
densities an electron cloud splits into bunches . Next , we 
shall investigate the process of peak ing of the bunches , based 
on the appea rance of t empora l and spatial ca tas t rophes in 
an electron flux. W e shall carry out this investigation using 
classical language, outs ide the f ramework of q u a n t u m 
mechanics , a l though later we shall p ropose a q u a n t u m -
mechanica l general isat ion. W e shall also use the classical 
language to in t roduce the concept of t r ansparen t and 
non t r anspa ren t bunches . W e shall conclude by considering 
the reason for preferential format ion and observat ion of 
one-electron bunches . H e r e again we shall use a q u a n t u m -
mechanica l approach , a l though in general this will be of 
quali tat ive na tu re . Let us begin with violat ion of causality. 

2. Violation of causality in the theory of 
photocounts 
W e can demons t ra t e violat ion of causali ty [14] in the 
theory of p h o t o c o u n t s by considering a quan t i ty usually 
regarded as the p h o t o c o u n t recording ra te or, m o r e 
precisely, the probabi l i ty of detection of p h o t o n s at a 
po in t r dur ing a t ime interval from t to t + dt: 

dR(r,t) =rjG(r,t) dt, (1) 

where G(r, t) is a correlat ion function described by the 
relat ionship 

G(r,t)=Tr[pE^(r,t)E^(r,t)\, (2) 

(3) 

p is the density mat r ix of the electromagnet ic field, 

E H ( r , t ) = i ^ 2 ( ^ ^ ^ j ocnan exp [i(kn-r - cont)] 

is the negative frequency par t of the electric field, and an is 
the cosine of the angle between the direction of the 
polar isa t ion of the m o d e field and the detector . 

Let us assume tha t the field is in a coherent state 
described by the system of equa t ions 

MM- (4) 

(5) 

(6) 

Then , it follows from expression (3) tha t 

E{-\r,t)\xjj) = W{r,t)\xjj) 

where 

W(r, t) = W-\2K%)l,2^(D)J2unZn exp [i(kn-r - cont)] 
N 

or, in t e rms of integrals 

W(r, t) = 2 l ( 2 7 l H ) 3 / 2 f d3koc(co)col/2Z(co) exp [i(k-r - cot)] . 
(2tzH) J 

(7) 

The above quant i ty is usual ly called an analyt ic signal. The 
integral in the above expression conta ins a factor 
exp(—icot) which cor responds to co < 0. If t is a complex 
variable, t = t\ — it2, then expression (7) conta ins the factor 
exp(—cot2) and the function W(r,t) is thus an analyt ic 
function in the lower half-plane of the complex variable t. 
The imaginary and real pa r t s of W(r, t) are then related by 

I m W M - l U ' * 6 ^ , (8) 
71J t - t ' 

i.e. by the Hi lber t t rans format ion . 

It follows from expressions (2) and (5) tha t , for a 
coherent state of the field, we have 

G(r, t) = W*(r,t)W(r,t)9 

Therefore, the p h o t o c o u n t recording ra te is 

^ ^ l = n[(ReW)2 + (lmW)2]. 

(9) 

(10) 

However , according to expressions (4) and (5), the average 
field is 

(\l/\E(r,t)\\l/) = W*(r,t) + W(r,t) =2ReW(r,t). (11) 

It follows from expression (5) tha t the function W satisfies 
a homogeneous wave equat ion . Therefore, we shall 
consider a p lane wave travell ing in the posit ive direction 
on the z axis and characterised by an ab rup t front: 

R e W ( r , f ) =0(ct-z)F(z-ct), (12) 

where 9 is the Heavis ide step function. The average value 
of the field itself (\l/\E(r,t)\\l/) and all of its powers 

En(r,t): also have abrup t fronts; n o r m a l order ing 
is used here to avoid an infinite cont r ibu t ion of the vacuum 
fluctuations, which are independent of the state 

The investigated signal reaches a detector at the m o m e n t 
t = z/c and it vanishes at t <z/c, bu t the probabi l i ty of 
recording p h o t o c o u n t s , given by expression (10), does no t 
vanish up to the m o m e n t t = z/c, i.e. unt i l the signal reaches 
the detector . The nonzero p h o t o c o u n t recording ra te 
follows from the second term in expression (10). In fact, 
we can see from relat ionship (8) tha t Im W ^ 0 for all t, 
even if R e ^ ( r ^ ) = 0 for t < z/c. By way of example, we 
shall consider a wave 

R e W(r, t) = B{ct -z)0(l + z - ct) sin(£z - cot +</>). (13) 

Accord ing to relat ionship (8), we have 

Im W (z , t) = 

sin(C + 0 ) In + Cin|C| - C i n | C + £/ 

s(C + iA) [Si(C + * / ) - S i ( 0 ] J , £ = kl-ct, (14) 

where 

C i n x = dt • cost S i x 
Jo t 

(15) 

The field (E) and the function R e W are nonzero only in 
the interval ct — I < z < ct, whereas Im W is nonzero also 
outs ide this interval. Fig . 1 shows the dependence 
dR(C = kz — cot)/dt for the values kl = n, An and ifr = 0, 

% / 2 . It is evident from Fig. 1 tha t the p h o t o c o u n t recording 
ra te does no t vanish outs ide the interval where the signal 
field is concentra ted . This vir tual recording ra te increases 
on reduct ion in the pulse dura t ion . In the case of 
femtosecond pulses, which contain jus t a few waves, the 
dis tor t ion of the t rue pa t t e rn due to an active precursor in 
the p h o t o c o u n t recording ra te becomes significant. 

A p a r t from relat ionship (8), there is a similar 
relat ionship between the real pa r t of W and its 
imaginary par t . Consequent ly , localisation of one pa r t 
of W makes the other pa r t dis tr ibuted over the whole of 
space. Therefore, for a coherent state of the field the 
correlat ion function described by expression (2) cannot 
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-5TC -4n -3n -2n 

Figure 1. Time dependence of the theoretical photocount recording 
rate. The two upper curves represent signals without discontinuities 
and the two lower curves correspond to signals with discontinuities at 
C = 0 and C = ft, 4TL The nonzero photocount recording rate at 
positive values of £ represents a physically meaningless precursor. 

be localised. Only the electric field (E) =2RQW and the 
functions of this field can be localised. 

Rela t ionship (8) and its conjugate resemble the 
K r a m e r s - K r o n i g relat ionships. However , the mean ing of 
our re la t ionships is different. The K r a m e r s - K r o n i g rela­
t ionships impose limits on the spectral proper t ies of the 
permit t ivi ty s(co) and these limits are the result of causality. 
On the other hand , relat ionship (8) and its conjugate 
indicate violat ion of causality, which is due to artificial 
limits imposed on the spectrum of E^ and E^~\ 

This violat ion of causali ty by the correlat ion function 
described by expression (2) requires modif icat ion of the 
definition of the correlat ion functions as a whole and, in 
par t icular , a change in the definition of the p h o t o c o u n t 
recording ra te . 

It is sometimes said tha t violat ion of causali ty is 
quant i ta t ively slight and, consequently, it does no t play 
a major role. However , this is no t t rue . Firs t , the 
quant i ta t ive criteria are inappl icable to such fundamenta l 
concepts as the causality. There are only two possibilities: 
either causali ty is violated and the theory is incorrect , or 
causali ty is no t violated and the theory m a y be correct. 
Second, a t t empts have been m a d e to improve the theory of 
p h o t o c o u n t s . These a t t empts have been par t ly successful 
[14, 15], bu t the theory then predicts a p h o t o c o u n t record­
ing ra te which depends on the proper t ies of a 
pho tode tec to r , whereas the p h o t o c o u n t recording ra te is 
a quan t i ty which in principle represents only the proper t ies 

of the field and is independent of the detector pa ramete r s . 
In fact, this independence of the p h o t o c o u n t recording ra te 
from the detector pa rame te r s is an addi t iona l requi rement 
which the ra te has to satisfy (in addi t ion to causality). It is 
no t easy to satisfy b o t h these requi rements and it m a y even 
be impossible. 

H av i n g thus recalled the causal shor tcomings of the 
t rad i t iona l theory of pho tocoun t s , we shall re tu rn to the 
app roach described above and consider the p rob lems in a 
consistent manner . 

3. Instability of an electron cloud at low 
densities 
Decay of an electron cloud in two bunches at low electron 
densities [9] will n o w be i l lustrated by considering a simple 
example: two electrons in a square poten t ia l well interact 
with one ano ther in accordance with the C o u l o m b law. 
Changes in the pa rame te r s of the poten t ia l well m a k e it 
possible to cont ro l the electron density of such a system to 
find the m o m e n t when an electron cloud begins to split into 
bunches . 

The electrons in this potent ia l well are described by the 
Hami l ton i an 

H = - \ V\ - \ V\ + a(pi + p\) - —, 
z z p 1 2 

where V? and V 2 are the Laplace opera to r s for the first and 
second electrons, respectively; pl9 p 2 , and p 1 2 are, respec­
tively, distances from the two electrons to the origin of the 
coord ina te system and the distance between the electrons, 
all expressed in te rms of the Bohr radii ; the pa ramete r a of 
a square poten t ia l well determines the field in this well, 
which acts on the electrons. Calcula t ions of the s ta t ionary 
wave functions and of the cor responding energies have 
been carried out [16, 17] by a basis-free var ia t ional me thod . 
Fig. 2 gives the dependences of the energies of the 
symmetr ic (which does no t decay into bunches) and 
asymmetr ic (which decays into two bunches) states on 
the pa rame te r a, i.e. effectively only on the forces which 
confine these electrons. W e can see tha t at values of the 
pa ramete r a < 0.82 the asymmetr ic state is preferable from 

Figure 2. Energy E (in atomic units) of symmetric (s) and asym­
metric (a) states, plotted as a function of the parameter a of a 
square potential well. In a wide potential well the asymmetric state 
which decays into two bunches is preferred from the energy point of 
view. 
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0 1 

Figure 3. Distribution of the charge along the z axis for an 
asymmetric state, plotted for the following values of the parameter 
a : ( 7 ) 0.4; ( 2 ) 0.25; (3) 0.2; (4) 0.15; ( 5 ) 0.1. The distance between 
the bunches increases with the width of the potential well. 

considering two examples of expansion of electron bunches 
under the act ion of C o u l o m b forces: spherically symmetr ic 
and linear expansion. The spherically symmetr ic case is 
convenient because the equat ion of mo t ion of an electron 
cloud is integrated over a t ime interval from the beginning 
of mo t ion to the beginning of over taking; therefore, an 
increase in the electron density can be investigated 
analytically. 

4.1.1 Spherically symmetric expansion of an electron bunch. 
Let us assume tha t initially we have a spherically 
symmetr ic d is t r ibut ion of the charge density cr(r) and 
tha t a b u n c h is at rest, i.e. the velocities at all po in t s in the 
bunch are zero. Then , the electric field E(R) on a sphere of 
r ad ius R is 

E(R) Q{R) (16) 

the energy poin t of view. The decay of an electron cloud 
into bunches is shown in Fig. 3, where the charge density 
of the asymmetr ic state is shown as a function of the 
distance a long the z axis. W h e n the forces tha t confine the 
electrons are s t rong, the C o u l o m b repulsion plays no 
significant role and the symmetr ic state is energy-preferred. 
As the compressive forces (i.e. the pa ramete r a) decrease, 
the relative cont r ibut ion of the C o u l o m b energy increases 
and, beginning from a = 0.82, the asymmetr ic state — 
which splits into two b u n c h e s — becomes preferable. 

As poin ted out above, the p h o t o c o u n t pulses can be 
explained by wha t is k n o w n as the 'pea theo ry ' which has 
no ma themat ica l basis. If the above app roach is adop ted , 
there are no discrete objects in the field and there is no need 
for these objects. Bunches in a low-density electron flux are 
formed because of its C o u l o m b instability. However , these 
bunches represent objects which are smeared out to a 
considerable extent. Therefore, there should be some 
mechanism tha t causes peak ing of the bunches , so tha t 
they can give rise to ab rup t pulses of the current in the 
external circuit of a detector . 

4. Spatial and temporal catastrophes of an 
inhomogeneous electron flux 
W e shall show later tha t ca tas t rophes occur in an electron 
flux and they should be considered in the same sense as in 
the theory of ca tas t rophes [ 1 8 - 2 0 ] . Ca ta s t rophes are of 
interest in relat ion to our mechanism because as a result of 
them the electron density becomes infinite at some poin ts . 
Thus , ca tas t rophes are a na tu ra l mechanism tha t com­
presses electron bunches . Ca ta s t rophes can be spatial or 
t empora l . Spatial ca tas t rophes are well k n o w n in geometr ic 
optics. They are simply caustics and foci: they are the result 
of focusing of rays . The intensity of light on the caustics 
and at the foci tends to infinity in the geometr ic-opt ics 
approx imat ion . The si tuat ion in an electron flux is fully 
ana logous . 

T e m p o r a l ca tas t rophes represent over taking of some 
electron layers by others . The electron density again tends 
to infinity. 

4.1 Temporal catastrophes (overtaking) 
W e can gain an idea of h o w the charge density increases in 
a t ime ca tas t rophe , i.e. as a result of over taking, by 

where Q(R) is the to ta l charge enclosed by this sphere: 

Q(R)=4n dr-r2a(r). (17) 

It should be poin ted out tha t , up to the m o m e n t when 
over taking begins, the quan t i ty Q(R) is a constant , i.e. 
Q(R) = Q(RQ), if RQ is the initial value of R . Therefore, 
the law of mo t ion of charges located on a sphere of 
rad ius R is 

niR ,eQ(R0) 
R2 

(18) 

W e shall also assume tha t initially the charge dis t r ibu­
t ion is Gauss ian : 

where G 0 is the to ta l charge in the dis t r ibut ion. Then, 
in tegrat ion of the above equat ion gives the dependence 

{ [ p ( P " P o ) ] 1 / 2 + Po l n 

1 /2 

where 

R R0 

P = -> Po= — 
r0 r0 

Po 

Po 
/ (Po) . 

(20) 

(21) 

mrl_ 
e Go 

1/2 
4 fP° o o 

^ o ) = ^ J o d p p 2 e x p ( - p 2 ) - (22) 

Let us n o w consider h o w the charge density g{R) varies 
with t ime. W e no te tha t up to the beginning of over taking 
the to ta l charge in a thin spherical layer of thickness dR is 
conserved with t ime. Therefore, we have 

(j(R)R2 dR = cr(R0)R2

0dR0 

or 

<t(R)=<t(R0) 
R2o dR0 

R2 dR 
(23) 

It follows from the above relat ionship tha t the charge 
density can become infinite only if the derivative dR0/dR 
becomes infinite or, which is equivalent , if the derivative 
dR/dRo vanishes. 
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n n n D a a a o n n n a D n a n n n n a °^y r 

2 3 

Initial layer radius RQ 

Figure 4. Spherical expansion of an electron bunch under the action of 
the Coulomb field. At the beginning of overtaking of some layers by 
others the derivative of the dependence of R on R0, considered at a fixed 
value of t, vanishes at the inflection point. 

W e can find the derivative dR/dR0 by differentiating 
dependence (20) with respect to R 0: 

, _ , - ^ < , _ 1 ) + ( ^ i ) 

} 

1/2 

1 ) V 2 + p l / 2 (24) 

The dependence of R on R0 was calculated on a 
compute r and the results of this calculat ion are p lo t ted 
in Fig. 4. It is qui te clear from this figure tha t at the poin t 
where dR/dR0 first vanishes, the dependence is an inflec­
t ion and, consequently, the dependence can be represented 
in the form 

R = B + s(R0-A)3 + . . . , (25) 

where A and B are certain cons tants . Then , R0 depends on 
R as follows: 

1/3 

Rn A + 
R -B 

(26) 

(27) 

The derivative dR/dR0 near this poin t is 

R = 3s(RQ — A)2 = 3sl/2(R - B)2/3. 

Therefore, the dependence of the charge density on R near 
the poin t where this density becomes infinite is of the form: 

a(R) = l- a(A)s-1/2 (R - B)~2^3, (28) 

It can be seen from Fig. 4 tha t initially the values of R and 
R0 are identical. A bunch then begins to expand and the 
charges on the slopes of the charge dis t r ibut ion have the 
highest velocities and, consequently, are displaced by the 
largest distances. Consequent ly , the following layers should 
over take the preceding layers. F o r example, displacements 

cor responding to R0 « 1.5 are considerably greater t han 
the displacements for R0 « 2.0. F o r t = 2.77 the values of 
R cor responding to 1.5 < R0 < 2.0 become equalised and 
this implies the beginning of over taking and an increase in 
the charge density unt i l it becomes infinite. Fig. 5 
demons t ra tes the format ion of a m a x i m u m in the charge 
density dis t r ibut ion and peak ing of this m a x i m u m with 
t ime near R w 3.65. F o r t = 2.77 the charge density at the 
m a x i m u m of the dis t r ibut ion is a lmost four orders of 
magn i tude higher than at the centre of the dis t r ibut ion. 

10z 

101 

4 3 

o-t = 0.00 
• -t = 1.00 
v-f = 2.00 
• - f = 2.50 
a-t = 2.77 

Layer radius R 

Figure 5. Format ion of an electron density maximum and its peaking 
with time under spherical expansion conditions. The density at the 
maximum is almost four orders of magnitude higher than the density at 
the centre of a distribution. 

Figure 6. Jump of the electric field intensity near an electron density 
maximum. 
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Fig. 6 shows the dependence of the electric field on the 
coord ina te R. W e can see tha t a discont inui ty of the electric 
field forms at the poin t where the charge density in the 
dis t r ibut ion becomes infinite, as expected in the region of a 
charged layer. Fig. 7 shows the dependence of the to ta l 
charge inside a certain sphere on its rad ius R. It follows 
from this dependence tha t at least 20% of the to ta l charge is 
concent ra ted in the charged layer (3.6 < R < 3.7). 

Sphere radius R 

Figure 7. Dependence of the total charge inside a sphere on its radius. 
The layer near the maximum contains between 20% and 50% of the 
total charge. 

4.1.2. Linear expansion of an electron bunch. Let us assume 
tha t a charge is confined by external fields acting near the z 
axis. The linear charge density is given by the dis t r ibut ion 
cr(z), which for the sake of simplicity we shall regard as 
symmetr ic relative to the origin of the coord ina te system. 
As before, it is assumed tha t initially the charge velocity is 
zero. The equa t ions of mo t ion of an element of charge are 

dz(zo,Q 
dt 

= V(z0,t), 
&V(zo,t) 

dt 
= a(z0, t), (29) 

where z is the coord ina te of the charge element located at 
the poin t z 0 ; V is the velocity of this element; 

<*(zo> t)= — E(z0, 0 m 
(30) 

is the acceleration of the charge; E is the intensity of the 
electric field act ing on the charge. 

In a t ransverse direction the dis t r ibut ion is assumed to 
be uni form inside a circle of rad ius r, i.e. the whole 
dis t r ibut ion is inside a cylinder of rad ius r and the cylinder 
axis coincides with the z axis. The hypothes is of an infinitely 
thin dis t r ibut ion in a t ransverse direction leads to diverging 
expressions for the fields. The intensity of the electric field 
on the axis of a cylindrical charged disk is 

2np 
( / 2 + r 2 ) 1/2 d z , (31) 

where r is the disk rad ius ; p is the charge density in the 
disk; / is the distance, a long the disk axis, from the disk to 
a poin t in the field; dz is the disk thickness. Summat ion of 
the above expression over all values of / gives the field of 
the charge dis t r ibut ion at the poin t z: 

E(z) = 2TI dz'p(z') 1 -l 
-£°V P ( Z " ) ( i 

[{z-z'f+r2} 
1/2 

z - z 
1/2 (32) 

W e shall find it convenient to consider the to ta l charge to 
the left of the poin t z. This charge is 

Q(z)=nr2^ dzfp(zf); Q(z = +°c) = Q0. 

The relat ionship 

dQ = nr2p(z) dz 

yields 

(33) 

(34) 

E(z) = 
•Q 

r2
 • J O 

rGo 

Je 

dQ' 

dQ" 

1 -
z(Q)-z(Q') 

[r2 + (z(Q)-z(Q'))2]1/2 

z(Q")-z(Q) 

[r2 + {z{Q")-z{Q)) 
2-i 1/2 .(35) 

The equa t ions of mo t ion (29) and (30) can n o w be 
wri t ten in the form 

At At 

a(Q,t)=^ f °dQ"W(Q,Q'), 
mrz Jo 

z(Q)-z(Q') 

(36) 

(37) 

where 

W(Q,Q') = 1 

and 

W(Q,Qf) = 

{ r 2 + [ z ( G ) - z ( G 0 ] 2 } 1 / 2 

z{Q')-z{Q) 

f o r g ' < G , (38) 

{ r 2 + [ z ( G ) - z ( G / ) ] 2 } 
2 , 1 / 2 1 for Q ' > Q , ( 3 9 ) 

where the dependence z(Q) is given by relat ionship (33). 
Before the onset of over taking, the charge located 

between two sections of the dis t r ibut ion is conserved. 
Therefore, the relat ionship 

p(z, t)dz\t =p(z 0 >0)dzoLo 

p(z, t)=p(z0,0) 
dz 
dz ( 0 / ?=const 

(40) 

is obeyed. The charge density m a y thus become infinite if 
the derivative ( d z / d z 0 ) ? = c o n s t vanishes. 

The results of calculat ions of the charge density are 
plo t ted in Fig. 8. As in the spherical case, an infinite 
m a x i m u m of the charge dis t r ibut ion forms with t ime. 
However , we can n o w investigate the dependence of the 
pa t t e rn of format ion of bunches on the diameter of the 
charge dis t r ibut ion (2r). Fig. 9 shows such pa t t e rns for 
r = 0.05, 0.15, and 0.5. W e can easily see tha t the 
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Figure 8. Format ion of an electron density maximum and its peaking 
under linear expansion conditions. 
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Fig. 9. Format ion of electron density maxima shown for different 
dimensions of the transverse distribution. 

format ion of bunches occurs earlier for th inner dis t r ibu­
t ions in a t ransverse direction, i.e. for higher charge 
densities in the dis t r ibut ion. This enhances the impor tance 
of spatial focusing discussed above. 

4.2. Spatial catastrophes (focusing) 
The spatial ca tas t rophes associated with focusing are well 
k n o w n from, for example, geometr ic optics [21]. W e shall 
therefore discuss only quali tat ively the role of focusing in 
compress ion of electron bunches . 

As a rule, the mo t ion of an electron cloud in the 
c a t h o d e - a n o d e space occurs in a focusing static field. 
The C o u l o m b field of the electron dis t r ibut ion itself can 
also be sometimes focusing. Focus ing can give rise to spatial 
ca tas t rophes of two types: foci and caustics. At the foci the 
density of the charge dis t r ibut ion (considered ignoring the 
wave na tu re of electrons) increases as \/R2 and on the 
caustics it increases as \/R. However , in contras t to a 
caustic, a focus is no t a ca tas t rophe of general form. In 
other words , the radi i of curva ture of the electron wavefront 
are only exceptionally identical, which would have been 
necessary for the sphericity of this front and the format ion 
of a focus. However , the differences between these radi i are 
no t too large, and certainly they do no t a m o u n t to orders of 
magni tude . Therefore, an increase in the charge density 
near a caustic most p robab ly obeys the law \/Rn, where 
1 < n < 2. 

A reduct ion in the diameter of the dis t r ibut ion (discussed 
in the preceding section) induces a t empora l ca tas t rophe 
earlier. This means tha t the over tak ing processes become 
m o r e likely on app roach of an electron bunch to a caustic, 
and consequently, on increase in the charge density. In other 
words , there is a high probabi l i ty tha t t empora l and spatial 
ca tas t rophes occur close to one another . A n increase in the 
charge density then approaches the dependence l/R2, i.e. an 
electron bunch becomes non t r anspa ren t . 

5. Transparent and nontransparent electron 
bunches 
As shown above, the ca tas t rophes tha t occur in an electron 
flux increase the charge density to infinity at some po in t s 
and the charge bunches near these po in t s behave like poin t 
part icles. Such bunches can obviously be of two types: 
t r ansparen t and non t r anspa ren t . N o n t r a n s p a r e n t bunches 
are very similar to po in t part icles, because such bunches 
are m o r e stable. Consequent ly , they are m o r e impor t an t in 
our discussion. W e shall explain this by considering the 
example of spherically symmetr ic bunches . 

W e shall analyse the law which should be obeyed by the 
charge density in the spherically symmetr ic bunch so as to 
ensure tha t the poten t ia l at the centre of the bunch tends to 
infinity. U n d e r this condi t ion, electron bunches incident 
from outside the bunch in quest ion cannot pene t ra te to its 
centre, i.e. in this case the bunch is non t r anspa ren t . 

Let us assume tha t the charge density in a bunch is 
described by the dis t r ibut ion 

( \ G (41) 

The to ta l charge in a bunch Q(R) in its central pa r t (in a 
sphere of small rad ius R ) should be finite: 

Q(R)=4n drr2a(r) = 4nG drr 
3 - / i 

(42) 
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This is possible only if 

n < 3 . 

The charge is then given by 

3 — n 

The electric field intensity is 

y ' R2 3-n 

T h e cor responding expression for the poten t ia l is 

U(R) = f°° dR'E(R') = — f°° dR'R'^ 
Jr 3 - n J R 

R«2-»)r 
( 2 - « ) ( 3 - « ) | K 

(43) 

(44) 

(45) 

The behaviour of the poten t ia l at the upper limit is 
u n i m p o r t a n t for the purposes of our further discussion 
because far from a singularity of the dis t r ibut ion described 
by expression (41) the charge density m a y decrease faster. 
The main poin t is the behaviour of the poten t ia l in the core 
of a bunch . The core poten t ia l tends to infinity if n > 2. A 
bunch therefore becomes non t r anspa ren t if the charge 
dis t r ibut ion inside it obeys the law given by expression (41) 
when 2 < n < 3. In reality, n cannot exceed 2, since the 
energy needed to in t roduce new charges into the central 
pa r t of the investigated bunch tends to infinity for n —> 2. 

6. One-electron bunches 
One of the m o r e difficult quest ions relat ing to the p roposed 
mechanism of the appearance of discrete p h o t o c o u n t s is the 
need to explain the one-electron na tu re of the bunches . It is 
generally accepted in the l i terature tha t one p h o t o c o u n t 
cor responds to one localised electron knocked out by 
p h o t o n s from a ca thode . However , we found no experi­
men ta l conf i rmat ion of this view in the publ ished work . 
Moreover , we did no t find even the p r o o f tha t the pulses 
cor responding to p h o t o c o u n t s are identical. Nevertheless , 
the generally accepted view is close to the t ru th . Therefore, 
in developing the app roach p roposed above we mus t 
identify the reasons why the observat ion of one-electron 
bunches is the preferred mechanism. 

In investigation of the state of a two-electron system in a 
square poten t ia l well we have shown tha t a low-density 
cloud splits into two bunches . Let us assume tha t this is not 
accidental and tha t three-electron, four-electron, and so on, 
up to ^-electron clouds will split into three, four, and n 
bunches . 

This s ta tement can be justified as follows. It is k n o w n 
tha t the Hami l t on i an which takes account of the C o u l o m b 
interact ion 

(46) 
n,l 

does not include the self-interaction, i.e. the act ion of the 
C o u l o m b field of one or other electron on itself; in 
expression (46), the first te rm sums the kinetic energies of 
electrons and the second sums the m u t u a l C o u l o m b 
energies of electron pairs . There is no specific te rm 

represent ing the self-interaction. Consequent ly , if a n a r r o w 
wave packet consisting of one electron is formed in some 
way, there will be no C o u l o m b repulsion in the packet ; it 
will spread out nearly in the same way as a neu t ra l wave 
packet , i.e. relatively slowly. Therefore, one-electron wave 
packe ts will be relatively longer-lived than the packets 
conta in ing m o r e electrons; in actual observat ions , one -
electron packe ts will be encountered most frequently. 

However , the p rob lem under discussion is fundamen­
tally of the many-elec t ron type and a many-elect ron wave 
function is k n o w n to have certain symmetry proper t ies 
under t ranspos i t ion opera t ions (for example, the coord ina te 
wave functions, i.e. a wave packet , should be completely 
ant isymmetr ic under the opera t ion of t ranspos i t ion of 
electrons if their spins are directed in the same way) . In 
this sense all the electron wave packe ts are of many-elec t ron 
na tu re and at first sight it seems tha t it is fundamental ly 
impossible to form a one-electron wave packet . 

Nevertheless , a m o n g many-elec t ron configurat ions with 
the appropr i a t e t ranspos i t ion symmetry there are some 
which are equivalent to one-electron configurat ions. Let 
us assume tha t i/f(r) describes a lumped electron wave 
packet , for example a Gauss ian one. Then , the wave 
function 

i/f(rl9 r2) = 2 - 1 / 2 [ i A ( r 1 ) i A ( r 2 -a) - i/ffaWfa -a)] (47) 

describes a two-electron system concent ra ted in two 
packets : one at the origin of the coord ina te system and 
the other at a poin t with the rad ius vector a. One can show 
tha t there is a lmost no C o u l o m b interact ion inside each 
packet or at least this is t rue if the distance \a\ between the 
packe ts is much greater than their width (for simplicity all 
the spins are assumed to be identically oriented and the 
s p i n - s p i n and s p i n - o r b i t in teract ions are negligible). In 
fact, the average value of the C o u l o m b energy in a state 
described by the function W(ri, r2) is 

(tfcoul) dri dr2\i//(ru r2)\-

d r ^ O ^ r , ) ! 2 ! ^ - * ) ! 2 

+ h K r 2 ) | 2 | # - 1 - « ) | 2 

- * > I ) # - i - « ) # - 2 ) * * ( r 2 - « 0 

-H'lWiri -a)r(r2)Hr2 - « ) ] k i -r2\ 
- 1 

(48) 

The first two te rms in the above expression represent the 
C o u l o m b energy of the interact ion of two electrons located 
at, respectively, the origin of the coord ina te system and the 
poin t with the rad ius vector a. This pa r t of the C o u l o m b 
energy is approximate ly 

<£/cou,)' = ŷ, (49) 

since the factor l/\ri — r2\ can be regarded as practically 
constant within the limits of the dis t r ibut ions \xl/(ri)\2 and 
\i//(r2— a ) | 2 , and equal to l/\a\. 

The last two terms in expression (48) are k n o w n as 
integrals of over lapping, which under the condi t ions 
considered here can be only very small. In fact, these 
integrals contain the combina t ions 

**(ri) * ( ! • ! - « ) , HriW*^-a) 
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and conjugates of them. However , these combina t ions are 
necessarily small because if the width of a Gauss ian packet 
is much less t han \a\, then the function \jj(r2 — a) is very 
small if the function ij/*(ri) is close to its m a x i m u m value 
and vice versa. 

It follows tha t a l though the probabi l i ty of finding bo th 
electrons in either of the two wave packets is the same, there 
is no C o u l o m b interact ion inside the packets . The si tuat ion 
is the same as if each electron had been in its own packet . 
These considera t ions are easily generalised to the case of 
several electrons: it is sufficient to replace the function 
described by expression (47) with the Slater de te rminant . W e 
can easily see tha t these considerat ions are identical with 
those used to justify ignoring the existence of electrons far 
outs ide an a tom of interest (for example, in ano ther a tom) . 

Consequent ly , if a many-elec t ron bunch is formed 
initially, it decays rapidly under the act ion of the in t ra-
packet C o u l o m b interact ion and tends to form finally one -
electron bunches in the sense described above . Such 
one-electron bunches then spread out relatively slowly, 
in the same way as a neu t ra l wave packet spreads in free 
space. Therefore, one-electron bunches have a longer 
lifetime than many-elect ron bunches and, on the aver­
age, the observat ion of one-electron bunches is m o r e likely. 

7. Conclusions 
The discussion of the p rob lem given above is in no way 
exhaustive and does not provide a p r o o f of the validity of 
the adop ted approach . The reader u n d o u b t e d l y will be able 
to formulate quest ions which are no t answered in this note . 
It is however surprising h o w m a n y proofs can be cited in 
suppor t of the adop ted app roach and the range of k n o w n 
p h e n o m e n a with which this app roach is compat ib le is fairly 
wide. A m o n g the proofs in suppor t of the p roposed 
mechanism the main one is tha t an electron bunch forms in 
a na tu ra l physically justified manne r and no t as a result of 
some wonderful secret t r ans format ion of an electron wave 
into a part icle. Therefore, we decided to publish this no te 
so as to a t t ract , if possible, the a t tent ion of b o t h 
theoret ic ians and experimentalists . 

Even at this early stage the above analysis provides a 
quali tat ive pic ture of the appea rance of p h o t o c o u n t s when 
coherent (laser) rad ia t ion is detected. The electron system in 
a meta l or semiconductor ca thode is characterised by a high 
density and electrons are dis tr ibuted uniformly (apar t from 
fluctuations) over the ca thode volume. The act ion of 
coherent rad ia t ion excites this electron system, which 
remains m o r e or less uniformly distr ibuted, so tha t an 
electron cloud can escape th rough the ca thode surface into 
the vacuum space between the ca thode and anode . Outs ide 
the ca thode the density of this electron cloud falls 
considerably and this makes it likely tha t the cloud splits 
into separate bunches , possibly even consisting of one 
electron. However , calculat ions show tha t these bunches 
spread out quite readily, so tha t the distance between them 
becomes of the order of their width . Accelerat ion of the 
bunches by the static electric field in the c a t h o d e - a n o d e 
space focuses the bunches (spatial ca tas t rophe) , which 
increases the t ransverse density. The C o u l o m b field in 
the bunches gives rise to the p h e n o m e n o n of over taking 
( tempora l ca tas t rophe) and their density then increases in 
the longi tudinal direction to such an extent tha t their width 
becomes much less t han the distance between them. Such a 

dense bunch resembles essentially a point- l ike part icle and it 
flies across the c a t h o d e - a n o d e space giving rise to a sharp 
and intense current pulse in the external circuit of a 
detector . A n observer sees this pulse as a p h o t o c o u n t . 
The possibili ty of applying the theory of ca tas t rophes with 
its topological m e t h o d s to the p rob lem of compress ion of 
electron bunches indicates tha t the process is no t r a n d o m . It 
would be of interest to consider the appl icat ion of the 
theory of ca tas t rophes to the wave function in the 3N-
dimensional configurat ional space of N electrons. 

It follows from the p roposed app roach tha t the statistics 
of the current pulses in a pho tode tec to r , which is usual ly 
identified with the statistics of p h o t o n s , represents pr imari ly 
the statistical na tu re of the process of decay of an electron 
cloud into bunches and only secondari ly does it represent 
the proper t ies of light causing the photoelect r ic effect. 
Essentially, the p h o t o c o u n t s are the detection noise which 
strongly dis torts the real proper t ies of the light flux. 

F r o m the exper imental poin t of view the most inter­
esting consequence of the p roposed mechanism is the 
possibili ty tha t , in principle, a p h o t o c a t h o d e can opera te 
wi thout generat ing current pulses. This m a y be possible in 
sufficiently s t rong fields when an electron cloud does not 
decay in the available t ime into bunches . This should alter 
greatly the spectral composi t ion of the pho tocur ren t : the 
high-frequency componen t s , represent ing separate bunches , 
should disappear and only the low-frequency componen t s , 
represent ing the change in the ampl i tude of the optical 
signal, should remain . As a rule, amplifiers receiving a 
pho tode tec to r signal are less sensitive in the low-frequency 
range . This reduct ion in the sensitivity under the condi t ions 
when there are no current pulses should be corrected, 
because otherwise the d i sappearance of the pulses will be 
received as a reduct ion in the p h o t o c a t h o d e efficiency. 
Unfor tuna te ly , at this stage it is no t possible to consider 
quant i ta t ively the opera t ion wi thou t current pulses. 

On the one hand , the above analysis confirms the 
statistical na tu re of the appearance of p h o t o c o u n t s and, 
on the other , it shows tha t this statistical na tu re should not 
be regarded as a fundamenta l p h e n o m e n o n addi t iona l to 
q u a n t u m mechanics , bu t should be regarded as n o n f u n d a -
menta l and following from q u a n t u m mechanics . In this 
respect the p roposed app roach goes back to the old 
discussions on localisation and delocalisation of part icles 
(one should ment ion par t icular ly here the b o o k of de 
Broglie [22]). It m a y give us a chance to have a fresh 
look at the old quest ions (it is wor th no t ing here an 
interest ing paper by Klyshko [23]). 

It should also be poin ted out tha t the p h o t o c o u n t s 
regarded as e lementary events have no t been investigated 
thoroughly . To wha t extent does one p h o t o c o u n t cor re ­
spond exactly to the passage of one elementary charge 
t h rough the c a t h o d e - a n o d e space? W h a t is the spatial size 
of an electron wave packet creat ing a p h o t o c o u n t ? Are the 
current pulses in the device circuit cor responding to single 
p h o t o c o u n t s all identical? It would be desirable to inves­
t igate these quest ions no t under the condi t ions in a 
photomul t ip l ie r , which are complicated by side effects 
due to secondary electrons, bu t under 'pure r ' condi t ions . 
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