Physics—Uspekhi 38(8) 911-921 (1995)

©1995 Jointly Uspekhi Fizicheskikh Nauk and Turpion Ltd

METHODOLOGICAL NOTES

PACS numbers: 79.60.Bm; 42.50.Ct; 07.60.D q; 85.60.Gz

Coulomb disintegration of weak electron fluxes and the photocounts

V P Bykov, A V Gerasimov, V O Turin

Contents
1. Introduction 911
2. Violation of causality in the theory of photocounts 913
3. Instability of an electron cloud at low densities 914
4. Spatial and temporal catastrophes of an inhomogeneous electron flux 915
4.1 Temporal catastrophes (overtaking); 4.2 Spatial catastrophes (focusing)
5. Transparent and nontransparent electron bunches 918
6. One-electron bunches 919
7. Conclusions 920
References 921
Abstract. Formation of clectron bunches in the inter- 1, Introduction

electrode space in vacuum detectors of optical radiation is
discussed. Such bunches give rise to pulses of the electric
current, usually interpreted as photocounts, in the external
circuit. It is shown that the traditional theory of
photocounts is inconsistent and, in particular, it violates
causality. Calculations based on the variational method are
used to show that a distributed low-density electron cloud
is unstable in the presence of the Coulomb forces and that
it splits into bunches. The electron bunches moving in the
interelectrode space experience peaking, which is easiest to
understand on the basis of the catastrophe theory. Spatial
(caustics) and temporal (overtaking) catastrophes may
occur in an electron flux. Numerical simulation is used
to consider spherical and linear expansion of electron
bunches under the action of the Coulomb forces. It is
shown that sharp electron density maxima are formed and
that their properties resemble those of point-like particles
capable of inducing electric current peaks (photocounts) in
the external circuit of a detector when they travel across the
interelectrode space. Circumstances leading to a higher
probability of formation of one-electron bunches are
pointed out. The analysis as a whole is intended to help
the understanding of the discrete nature of photocounts
when a photocathode is excited by a continuous high-
energy laser radiation train.
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The situation in the theory of photocounts seems to be
fully satisfactory. Experiments are carried out, they are
analysed theoretically, and there are no contradictions
between the theory and experiment. However, from the
logical point of view the existing ideas on photocounts are
far from perfect. We shall consider mainly the physical
processes that occur in vacuum photodetectors (photocells,
photomultipliers, image converters, etc.) and attempt to
analyse the logical contradictions inherent in the existing
theory of photocounts. We shall propose a physical
mechanism which can explain the appearance of discrete
photocounts when a photocathode is excited by a
continuous highly coherent laser radiation train.

The existing theory of photocounts is largely phenom-
enological, i.e. it is not a theory that follows from
fundamental equations of physics (Maxwell, Schrodinger,
or Dirac equations). For example, the discrete nature of
photocounts does not follow from the theory, but is
postulated: some theoretically continuous quantities are
interpreted as the average values of quantities describing
discrete fluxes and the concept of discrete photon and
electron fluxes dates back to the founders of quantum
theory. In the case of the photoelectric effect the discrete
nature is expressed in the postulate that the knocking out of
one electron from a photo-cathode requires one quantum of
light, i.e. a photon. Both an electron and a photon are
regarded as certain localised objects travelling in, respec-
tively, electron and electromagnetic radiation fluxes. In the
photoelectric effect one particle (photon) is absorbed and
another (electron) is emitted.

In the theory of quantised electromagnetic and electron
fields there is not even a hint of the existence of such
localised objects. The absence of these localised objects is
particularly clear in highly coherent laser radiation. A high-
quality laser source can emit a continuous train of laser
radiation lasting seconds, i.e. the length of a train is


mailto:VPB@Bykov.msk.ru

912

V P Bykov, A V Gerasimov, V O Turin

~3 x 10° km and it contains ~10'5 perfectly identical
waves. In this time a detector records a large number of
photocounts.

However, the concepts of localised photons and elec-
trons are used widely and in the laboratory jargon these
concepts are called the ‘theory of peas’, i.e. localised objects
resemble peas.

This point of view is particularly prominent in the
description of the shot noise (which is not typical of
photodetectors alone), put forward by Schottky [I1,2].
The photo-electric effect and the shot noise have by now
been investigated extensively and they continue to be
studied on the basis of this approach [3-5].

However, from the modern point of view, this approach
suffers from some inconsistency. For example, the process
of photon absorption and the appearance of photoelectrons
inside the cathode is considered quantum-mechanically. It is
usual to assume that a quantised plane optical wave
interacts with a quantised plane electron wave, which
belongs to the valence band. The result of this interaction
is a plane electron wave in the conduction band. This new
conduction-band wave is scattered by the interface between
the cathode material and the vacuum. The amplitude of the
electron wave which passes into the vacuum determines the
probability of the appearance of photoelectrons near the
cathode. The inconsistency of the theory lies in the
termination, at this stage, of the quantum-mechanical
description of the process. The subsequent evolution of
electrons is considered classically [6] and electrons are
regarded as particles and not waves.

This lack of consistency of the theory is frequently
attributed to fundamental features of quantum-mechanical
measurements. A quantum-mechanical object is always
observed with the aid of a macroscopic instrument which
has the properties of a classical object. It is therefore
essential to draw a boundary between the observed object
and the instrument. After crossing this boundary in the
direction from the object to the instrument all the
phenomena should be considered from the classical point
of view. This is why a photoelectron knocked out from a
cathode and then moving towards an anode is usually
regarded as a classical point particle. In other words, the
boundary between the investigated object and the instru-
ment is then located on the cathode surface.

This approach cannot generally be objected to or
overturned logically, but its validity is not as wide as is
usually assumed. In fact, this approach can be used only if
the observed scenario is independent of the position of the
boundary between the quantum-mechanical (object) and
classical (instrument) parts of the whole observa-
tion —measurement system. This is an imaginary
boundary and the results of measurements should be
independent of its position! If we now go back to photo-
counts, we can — for example —ask whether the results of a
theoretical analysis of experiments on the photoelectric effect
will change if the boundary between the quantum-mechan-
ical and the classical parts of the system is drawn near the
anode and not near the cathode, contrary to the usual
approach. Therefore, an additional study is needed to
consider the problem of such interpretation of photocounts.

It would have been more consistent to continue to apply
quantum mechanics to the motion of electrons between the
cathode and anode and to find the field and the current
induced by an electron wave in the external circuit of a

photodetector. However, if this more consistent approach is
adopted, the theory does not predict photocount pulses, but
more or less smooth solutions for the fields and currents
induced in the circuit, depending on time to the same extent
as the amplitude of the incident optical wave. The absence
of short pulses in this theoretically more consistent
approach is of course in conflict with experimental
observations, i.e. with the existence of photocounts. This
conflict is particularly severe when we consider laser light
sources with longer coherence times, extending up to
seconds. Naturally, an electron flux in a photodetector
should also have a smooth amplitude over time intervals
comparable with the coherence time. However, the photo-
electric effect shows no special features when laser sources
are used. The random nature of light emitted by thermal and
luminescence sources, used before the advent of lasers, could
mask this conflict. Therefore, the existence of photocounts,
at least in the case of laser light, has to be explained.

Our purpose is to consider a physical mechanism for the
appearance of photocounts different from that presented in
the published literature in which a localised electron is
emitted by a cathode after the absorption of a localised
photon. The proposed mechanism is based on the idea that
an electron flux emitted by a cathode under the action of,
specifically, laser light is initially, i.e. immediately after
leaving the cathode, a plane wave or some entity close to a
plane wave (for example, an electron cloud). However, this
flux is unstable and it tends to disintegrate into bunches
under the action of the interelectrode Coulomb field. This
instability is readily understood if we bear in mind the well-
known Wigner crystallisation process, i.e. the decay of an
electron plasma in a solid into bunches when the plasma
density is low [7, 8]. Therefore, an electron flux emerging
from a cathode should split near the cathode into separate
bunches (‘electrons’) which are subsequently accelerated in
the interelectrode electric field and give rise to current
pulses in the electric circuit of the investigated detector.
These pulses are detected by instruments and by an observer
as photocounts.

The mechanism under discussion naturally obeys all the
main laws governing the photoelectric effect, including the
Einstein law with the prediction of the red edge of the effect,
because such laws act during the first stage when an
electron wave is formed in the conduction band.

We were the first to propose this mechanism [9]. The
mechanism leads to certain questions and some of them are
discussed below. The main questions are as follows: what
are the manifestations of an instability of an electron flux, is
there, and of what nature, a mechanism responsible for
peaking of electron bunches, what is the mechanism of
appearance of mainly one-electron bunches, and finally
what physical conclusions can be drawn from this approach
if it is confirmed experimentally? It is quite difficult to
answer these questions. We shall show that at this stage the
answers to these questions are not in conflict with the
proposed approach.

It should also be pointed out that the existing theory
suffers additionally from minor shortcomings. For example,
some of the photocount characteristics such as the photo-
count recording rate (number of photocounts per second)
do not satisfy the principle of causality [10—13], i.e. the
photocounts are not delayed in the expected manner.

We shall begin considering this problem with a brief
account of violation of causality. Then we shall use a
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quantum-mechanical calculation to show that at low
densities an electron cloud splits into bunches. Next, we
shall investigate the process of peaking of the bunches, based
on the appearance of temporal and spatial catastrophes in
an electron flux. We shall carry out this investigation using
classical language, outside the framework of quantum
mechanics, although later we shall propose a quantum-
mechanical generalisation. We shall also use the classical
language to introduce the concept of transparent and
nontransparent bunches. We shall conclude by considering
the reason for preferential formation and observation of
one-electron bunches. Here again we shall use a quantum-
mechanical approach, although in general this will be of
qualitative nature. Let us begin with violation of causality.

2. Violation of causality in the theory of
photocounts

We can demonstrate violation of causality [14] in the
theory of photocounts by considering a quantity usually
regarded as the photocount recording rate or, more

precisely, the probability of detection of photons at a
point r during a time interval from ¢ to ¢ + dt:

dR(r,t) = nG(r,t) dt, M

where G(r,t) is a correlation function described by the
relationship

G(r,)=Tr [pE S, ) E (r, t)] , )

p is the density matrix of the electromagnetic field,

2nhw 172
E(*)(r,t)ziZ( V”) oty exp [i(k,-r —w,t)]  (3)

is the negative frequency part of the electric field, and o, is
the cosine of the angle between the direction of the
polarisation of the mode field and the detector.

Let us assume that the field is in a coherent state
described by the system of equations

alb) = (75) . @
Then, it follows from expression (3) that
EOr0)ly) = W(r.0)ly) ®)
where
W(r,t) =iV~ (21‘Cﬁ)l/2z w)?0,Z  exp[i(k,-r — w,t)],
' ©

or, in terms of integrals

2i(2mn)'/? .
W(rt) = %J@ka(w)w”% (w)exp[i(k-r — wr)] . o

The above quantity is usually called an analytic signal. The
integral in the above expression contains a factor
exp(—iwt) which corresponds to w < 0. If ¢ is a complex
variable, t = t; — it,, then expression (7) contains the factor
exp(—wt,) and the function W(r,z) is thus an analytic
function in the lower half-plane of the complex variable ¢.
The imaginary and real parts of W(r, ) are then related by

ReW(r,t")
t—t'

Im W(r,t)z%ldt' , (®)

i.e. by the Hilbert transformation.

It follows from expressions (2) and (5) that, for a
coherent state of the field, we have

G(r,t) =W*(@r,t) W(r,1), )

Therefore, the photocount recording rate is
dR(r,t)
dr

=n[Re W)’ + (ImWw)?]. (10)
However, according to expressions (4) and (5), the average
field is

WIE@r, Yy =W*(r,t) + W(r,t) =2ReW(r,t). (1)

It follows from expression (5) that the function W satisfies
a homogeneous wave equation. Therefore, we shall
consider a plane wave travelling in the positive direction
on the z axis and characterised by an abrupt front:

ReW(r,t) =60(ct —z) F(z — ct), (12)

where 60 is the Heaviside step function. The average value
of the field itself (Y|E(r,f)|) and all of its powers
(Y|: E"(r,t): |¢) also have abrupt fronts; normal ordering
is used here to avoid an infinite contribution of the vacuum
fluctuations, which are independent of the state |y).

The investigated signal reaches a detector at the moment
t=z/c and it vanishes at f < z/c, but the probability of
recording photocounts, given by expression (10), does not
vanish up to the moment 7 = z/c, i.e. until the signal reaches
the detector. The nonzero photocount recording rate
follows from the second term in expression (10). In fact,
we can see from relationship (8) that Im W # 0 for all ¢,
even if ReW(r,1) =0 for t < z/c. By way of example, we
shall consider a wave

ReW(r,t) =0(ct — 2) 0(1 + z — ct) sin(kz — ot +¢) . (13)
According to relationship (8), we have
ImW (z,¢) =

{+K
¢

cos(c+xp)[5i(c+k1)—Si(c)]}, (=K —ct, (14

:%%m@+¢ﬂm

‘+Cmm—cmw+m|—

where

X

X ]_ )
Cinx:J dr —— 08T Six:J
0 t 0

e S (15)

t
The field (E) and the function Re W are nonzero only in
the interval ¢t — [ < z < c¢t, whereas Im W is nonzero also
outside this interval. Fig. 1 shows the dependence
dR({ = kz — wt)/ dt for the values kl =m, 4n and ¥ =0,
n/2. It is evident from Fig. 1 that the photocount recording
rate does not vanish outside the interval where the signal
field is concentrated. This virtual recording rate increases
on reduction in the pulse duration. In the case of
femtosecond pulses, which contain just a few waves, the
distortion of the true pattern due to an active precursor in
the photocount recording rate becomes significant.

Apart from relationship (8), there is a similar
relationship between the real part of W and its
imaginary part. Consequently, localisation of one part
of W makes the other part distributed over the whole of
space. Therefore, for a coherent state of the field the
correlation function described by expression (2) cannot
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Figure 1. Time dependence of the theorctical photocount recording
rate. The two upper curves represent signals without discontinuities
and the two lower curves correspond to signals with discontinuities at
{=0 and {=m, 4n. The nonzero photocount recording rate at
positive values of  represents a physically meaningless precursor.

be localised. Only the electric field (E) =2ReW and the
functions of this field can be localised.

Relationship (8) and its conjugate resemble the
Kramers—Kronig relationships. However, the meaning of
our relationships is different. The Kramers—Kronig rela-
tionships impose limits on the spectral properties of the
permittivity &(w) and these limits are the result of causality.
On the other hand, relationship (8) and its conjugate
indicate violation of causality, which is due to artificial
limits imposed on the spectrum of E® and EC).

This violation of causality by the correlation function
described by expression (2) requires modification of the
definition of the correlation functions as a whole and, in
particular, a change in the definition of the photocount
recording rate.

[t is sometimes said that violation of causality is
quantitatively slight and, consequently, it does not play
a major role. However, this is not true. First, the
quantitative criteria are inapplicable to such fundamental
concepts as the causality. There are only two possibilities:
either causality is violated and the theory is incorrect, or
causality is not violated and the theory may be correct.
Second, attempts have been made to improve the theory of
photocounts. These attempts have been partly successful
[14, 15], but the theory then predicts a photocount record-
ing rate which depends on the properties of a
photodetector, whereas the photocount recording rate is
a quantity which in principle represents only the properties

of the field and is independent of the detector parameters.
In fact, this independence of the photocount recording rate
from the detector parameters is an additional requirement
which the rate has to satisfy (in addition to causality). It is
not easy to satisfy both these requirements and it may even
be impossible.

Having thus recalled the causal shortcomings of the
traditional theory of photocounts, we shall return to the
approach described above and consider the problems in a
consistent manner.

3. Instability of an electron cloud at low
densities

Decay of an electron cloud in two bunches at low electron
densities [9] will now be illustrated by considering a simple
example: two electrons in a square potential well interact
with one another in accordance with the Coulomb law.
Changes in the parameters of the potential well make it
possible to control the electron density of such a system to
find the moment when an electron cloud begins to split into
bunches.

The electrons in this potential well are described by the
Hamiltonian

1

1 1
HI—EV%—EV%‘F“(P%‘FP%)_—a

P12

where V3 and V3 are the Laplace operators for the first and
second electrons, respectively; p,, p,, and p;, are, respec-
tively, distances from the two electrons to the origin of the
coordinate system and the distance between the electrons,
all expressed in terms of the Bohr radii; the parameter a of
a square potential well determines the field in this well,
which acts on the electrons. Calculations of the stationary
wave functions and of the corresponding energies have
been carried out [16, 17] by a basis-free variational method.
Fig. 2 gives the dependences of the energies of the
symmetric (which does not decay into bunches) and
asymmetric (which decays into two bunches) states on
the parameter a, i.e. effectively only on the forces which
confine these electrons. We can see that at values of the
parameter o < 0.82 the asymmetric state is preferable from

E
75 L
a S
50 |-
25 |
1 1 1
0 0.82 1 2 o

Figure 2. Energy E (in atomic units) of symmetric (s) and asym-
metric (a) states, plotted as a function of the parameter a of a
square potential well. In a wide potential well the asymmetric state
which decays into two bunches is preferred from the energy point of
view.
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Figure 3. Distribution of the charge along the z axis for an
asymmetric state, plotted for the following values of the parameter
a: (1)0.4; (2)0.25;, (3)0.2; (4) 0.15; (5) 0.1. The distance between
the bunches increases with the width of the potential well.

the energy point of view. The decay of an electron cloud
into bunches is shown in Fig. 3, where the charge density
of the asymmetric state is shown as a function of the
distance along the z axis. When the forces that confine the
electrons are strong, the Coulomb repulsion plays no
significant role and the symmetric state is energy-preferred.
As the compressive forces (i.e. the parameter «) decrease,
the relative contribution of the Coulomb energy increases
and, beginning from « = 0.82, the asymmetric state—
which splits into two bunches— becomes preferable.

As pointed out above, the photocount pulses can be
explained by what is known as the ‘pea theory’ which has
no mathematical basis. If the above approach is adopted,
there are no discrete objects in the field and there is no need
for these objects. Bunches in a low-density electron flux are
formed because of its Coulomb instability. However, these
bunches represent objects which are smeared out to a
considerable extent. Therefore, there should be some
mechanism that causes peaking of the bunches, so that
they can give rise to abrupt pulses of the current in the
external circuit of a detector.

4. Spatial and temporal catastrophes of an
inhomogeneous electron flux

We shall show later that catastrophes occur in an electron
flux and they should be considered in the same sense as in
the theory of catastrophes [18—20]. Catastrophes are of
interest in relation to our mechanism because as a result of
them the electron density becomes infinite at some points.
Thus, catastrophes are a natural mechanism that com-
presses electron bunches. Catastrophes can be spatial or
temporal. Spatial catastrophes are well known in geometric
optics. They are simply caustics and foci: they are the result
of focusing of rays. The intensity of light on the caustics
and at the foci tends to infinity in the geometric-optics
approximation. The situation in an electron flux is fully
analogous.

Temporal catastrophes represent overtaking of some
electron layers by others. The electron density again tends
to infinity.

4.1 Temporal catastrophes (overtaking)
We can gain an idea of how the charge density increases in
a time catastrophe, i.e. as a result of overtaking, by

considering two examples of expansion of electron bunches
under the action of Coulomb forces: spherically symmetric
and linear expansion. The spherically symmetric case is
convenient because the equation of motion of an electron
cloud is integrated over a time interval from the beginning
of motion to the beginning of overtaking; therefore, an
increase in the electron density can be investigated
analytically.

4.1.1 Spherically symmetric expansion of an electron bunch.
Let us assume that initially we have a spherically
symmetric distribution of the charge density o(r) and
that a bunch is at rest, i.e. the velocities at all points in the
bunch are zero. Then, the electric field E(R) on a sphere of
radius R is

O(R)

E(R) = £

(16)
where Q(R) is the total charge enclosed by this sphere:
R

O(R) :41cJ

0

dr-ria(r). (17)
It should be pointed out that, up to the moment when
overtaking begins, the quantity Q(R) is a constant, i.e.
Q(R) = Q(Ry), if R is the initial value of R. Therefore,
the law of motion of charges located on a sphere of
radius R is
. eQ(R

mR = —152 o) (18)

We shall also assume that initially the charge distribu-
tion is Gaussian:

0O r’
O'(r) - n3/2r8 eXp r% s

where Q, is the total charge in the distribution. Then,
integration of the above equation gives the dependence

{[p(pfpo)]]/2+po In (p_p0)1/2+”]/2}<1(’p°0)>]/2 =1,

(19)

p1/2
° (20)
where
R R, t
. =2o. = 21
P Py Po Py T o (21

3

1/2 P
m 4 0
to = (— —0) b e = =5 JO dpp’ exp(—p?). (22)

Let us now consider how the charge density o(R) varies
with time. We note that up to the beginning of overtaking
the total charge in a thin spherical layer of thickness dR is
conserved with time. Therefore, we have

o(R)R*dR = a(R,)R §dR,

or
Ry dR,
R)=0Ry) = —. 23
It follows from the above relationship that the charge
density can become infinite only if the derivative dR,/dR
becomes infinite or, which is equivalent, if the derivative

dR/dR vanishes.
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Figure 4. Spherical cxpansion of an electron bunch under the action of
the Coulomb ficld. At the beginning of overtaking of somce layers by
others the derivative of the dependence of R on R, considered at a fixed
value of ¢, vanishes at the inflection point.

We can find the derivative dR/dR, by differentiating
dependence (20) with respect to R:

oot (59

x In [(p -1~ —I—p]/z]} 3= RoQ _SOQ.

The dependence of R on R, was calculated on a
computer and the results of this calculation are plotted
in Fig.4. It is quite clear from this figure that at the point
where dR/dR, first vanishes, the dependence is an inflec-
tion and, consequently, the dependence can be represented
in the form

R=B+eRy—A)Y +...,

24)

(25)

where A and B are certain constants. Then, R, depends on
R as follows:

R _ B\ /3
R0=A—|—( . ) . (26)
The derivative dR/dR, near this point is
R =3e(Ro—A) =3¢/*(R —B)*. 27)

Therefore, the dependence of the charge density on R near
the point where this density becomes infinite is of the form:

o(R) = 2 a(4)e™/? (‘l>2(1e _ )y,

3 B @8

It can be seen from Fig. 4 that initially the values of R and
R, are identical. A bunch then begins to expand and the
charges on the slopes of the charge distribution have the
highest velocities and, consequently, are displaced by the
largest distances. Consequently, the following layers should
overtake the preceding layers. For example, displacements

corresponding to Ry = 1.5 are considerably greater than
the displacements for Ry = 2.0. For r = 2.77 the values of
R corresponding to 1.5 < Ry < 2.0 become equalised and
this implies the beginning of overtaking and an increase in
the charge density until it becomes infinite. Fig.5
demonstrates the formation of a maximum in the charge
density distribution and peaking of this maximum with
time near R =~ 3.65. For t = 2.77 the charge density at the
maximum of the distribution is almost four orders of
magnitude higher than at the centre of the distribution.

10?
o—t=10.00 g
g o 1=100
(=} _
g oL vt =200
E’J v—r =250
%s a-t=277
10° | g
107!
1072
1073

Layer radius R

Figure 5. Formation of an clectron density maximum and its peaking
with time undcr spherical expansion conditions. The density at the
maximum is almost four orders of magnitude higher than the density at
the centre of a distribution.
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Figure 6. Jump of thc clectric field intensity ncar an clectron density
maximum,
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Fig. 6 shows the dependence of the electric field on the
coordinate R. We can see that a discontinuity of the electric
field forms at the point where the charge density in the
distribution becomes infinite, as expected in the region of a
charged layer. Fig.7 shows the dependence of the total
charge inside a certain sphere on its radius R. It follows
from this dependence that at least 20% of the total charge is
concentrated in the charged layer (3.6 < R < 3.7).

—_
=l

Chargeinside sphere
e
fo )

o
o)

0.4

0.2

o 1 2 3 4
Sphere radius R
Figure 7. Dependence of the total charge inside a sphere on its radius.

The layer near the maximum contains between 20% and 50% of the
total charge.

4.1.2. Linear expansion of an electron bunch. Let us assume
that a charge is confined by external fields acting near the z
axis. The linear charge density is given by the distribution
6(z), which for the sake of simplicity we shall regard as
symmetric relative to the origin of the coordinate system.
As before, it is assumed that initially the charge velocity is
zero. The equations of motion of an element of charge are

dz(zg, 1) dV(zp,1)

— = ="V(z1), u

s 29)

a(zg, 1),

where z is the coordinate of the charge element located at

the point zo; V is the velocity of this element;
e

a(zo. 1) = — E(z0, ) (30)

m

is the acceleration of the charge; E is the intensity of the

electric field acting on the charge.

In a transverse direction the distribution is assumed to
be uniform inside a circle of radius r, i.e. the whole
distribution is inside a cylinder of radius r and the cylinder
axis coincides with the z axis. The hypothesis of an infinitely
thin distribution in a transverse direction leads to diverging
expressions for the fields. The intensity of the electric field
on the axis of a cylindrical charged disk is

l

E:21tp[l—7]dz, (31

>+ )"

where r is the disk radius; p is the charge density in the
disk; [ is the distance, along the disk axis, from the disk to
a point in the field; dz is the disk thickness. Summation of
the above expression over all values of / gives the field of
the charge distribution at the point z:

E(z) = 2“[[00 dz'p(z") (1 —[(_Z,)_—zirz]u/z>

+oo .
_L dz"p(z") (] _ [(Z - _*»2)2 " r2]1/2>:| . (32)

We shall find it convenient to consider the total charge to
the left of the point z. This charge is

0(z) =nr J_ dz'p(z");  Q(z = +o0) = Q. (33)
The relationship
dQ = np(z) dz (34
yields
2 [ 2(0) - 2(0) ]
E(z) == do’|1 - —
© =2 {.[0 [ [2 + (2(0) —2(0))]'"

2o " Z(Q”) - Z(Q) :| }
—| 0" |1- —| +.3%)
JQ [ [2+ (2(0") —2(0))]"

The equations of motion (29) and (30) can now be
written in the form

dz(Q.1) Coadv(o.n)
T - V(Q» t)’ dr - H(Q, t) 5 (36)
Qo
a(Q,1) =2—ij d0"W(0.0"), 37)
mr 0
where
, (0) —z(2") /
W(Q.,0)=1- = forQ'< Q, (38)
(P +[2(0) — 20}
and
W(0.0")=——QI=HO 505009

P+ [(0) — 20"}

where the dependence z(Q) is given by relationship (33).

Before the onset of overtaking, the charge located
between two sections of the distribution is conserved.
Therefore, the relationship

p(z, t)dz|, = p(z0,0)dzo] g

or

p(er 1) = plz0,0) (ﬂ) (40)

dz 0/ t=const

is obeyed. The charge density may thus become infinite if
the derivative (dz/dzg),_.ong Vanishes.

The results of calculations of the charge density are
plotted in Fig.8. As in the spherical case, an infinite
maximum of the charge distribution forms with time.
However, we can now investigate the dependence of the
pattern of formation of bunches on the diameter of the
charge distribution (2r). Fig.9 shows such patterns for
r=0.05, 0.15, and 0.5. We can easily see that the
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Figure 8. Formation of an clectron density maximum and its peaking
under linear expansion conditions.
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Fig. 9. Formation of eclectron density maxima shown for different
dimensions of the transverse distribution.

formation of bunches occurs earlier for thinner distribu-
tions in a transverse direction, i.e. for higher charge
densities in the distribution. This enhances the importance
of spatial focusing discussed above.

4.2. Spatial catastrophes (focusing)

The spatial catastrophes associated with focusing are well
known from, for example, geometric optics [21]. We shall
therefore discuss only qualitatively the role of focusing in
compression of electron bunches.

As a rule, the motion of an electron cloud in the
cathode—anode space occurs in a focusing static field.
The Coulomb field of the electron distribution itself can
also be sometimes focusing. Focusing can give rise to spatial
catastrophes of two types: foci and caustics. At the foci the
density of the charge distribution (considered ignoring the
wave nature of electrons) increases as 1/R> and on the
caustics it increases as 1/R. However, in contrast to a
caustic, a focus is not a catastrophe of general form. In
other words, the radii of curvature of the electron wavefront
are only exceptionally identical, which would have been
necessary for the sphericity of this front and the formation
of a focus. However, the differences between these radii are
not too large, and certainly they do not amount to orders of
magnitude. Therefore, an increase in the charge density
near a caustic most probably obeys the law 1/R", where
l<n<?2.

A reduction in the diameter of the distribution (discussed
in the preceding section) induces a temporal catastrophe
earlier. This means that the overtaking processes become
more likely on approach of an electron bunch to a caustic,
and consequently, on increase in the charge density. In other
words, there is a high probability that temporal and spatial
catastrophes occur close to one another. An increase in the
charge density then approaches the dependence 1/R?, i.e. an
electron bunch becomes nontransparent.

5. Transparent and nontransparent electron
bunches

As shown above, the catastrophes that occur in an electron
flux increase the charge density to infinity at some points
and the charge bunches near these points behave like point
particles. Such bunches can obviously be of two types:
transparent and nontransparent. Nontransparent bunches
are very similar to point particles, because such bunches
are more stable. Consequently, they are more important in
our discussion. We shall explain this by considering the
example of spherically symmetric bunches.

We shall analyse the law which should be obeyed by the
charge density in the spherically symmetric bunch so as to
ensure that the potential at the centre of the bunch tends to
infinity. Under this condition, electron bunches incident
from outside the bunch in question cannot penetrate to its
centre, i.e. in this case the bunch is nontransparent.

Let us assume that the charge density in a bunch is
described by the distribution

o(r) = rg @)
The total charge in a bunch Q(R) in its central part (in a
sphere of small radius R ) should be finite:

JR dr*™" = 4nG
0 3—n 0

L
L (42)

R
O(R) = 4nJ drPo(r) = 4nG
0



Coulomb disintegration of weak clectron fluxes and the photocounts

919

This is possible only if
n<3.

The charge is then given by

4nG  5_
R) = R, 43
oR) =5 “3)
The electric field intensity is
Q(R) AnG 1—n
E(R) = =—R"". 44
(R) R? 3—n “4)
The corresponding expression for the potential is
U(R) :J dR'E(R") = -~ J dR'R"0-")
R —JR
4AnG 1(2—n) *
=———— R (45)
2-n)(3—n) R

The behaviour of the potential at the upper limit is
unimportant for the purposes of our further discussion
because far from a singularity of the distribution described
by expression (41) the charge density may decrease faster.
The main point is the behaviour of the potential in the core
of a bunch. The core potential tends to infinity if n > 2. A
bunch therefore becomes nontransparent if the charge
distribution inside it obeys the law given by expression (41)
when 2 < n < 3. In reality, n cannot exceed 2, since the
energy needed to introduce new charges into the central
part of the investigated bunch tends to infinity for n — 2.

6. One-electron bunches

One of the more difficult questions relating to the proposed
mechanism of the appearance of discrete photocounts is the
need to explain the one-electron nature of the bunches. It is
generally accepted in the literature that one photocount
corresponds to one localised electron knocked out by
photons from a cathode. However, we found no experi-
mental confirmation of this view in the published work.
Moreover, we did not find even the proof that the pulses
corresponding to photocounts are identical. Nevertheless,
the generally accepted view is close to the truth. Therefore,
in developing the approach proposed above we must
identify the reasons why the observation of one-electron
bunches is the preferred mechanism.

In investigation of the state of a two-electron system in a
square potential well we have shown that a low-density
cloud splits into two bunches. Let us assume that this is not
accidental and that three-electron, four-clectron, and so on,
up to n-electron clouds will split into three, four, and n
bunches.

This statement can be justified as follows. It is known
that the Hamiltonian which takes account of the Coulomb
interaction

1 2
H:zn:%pi—i-z;e—,

(46)
R Tl

does not include the self-interaction, i.e. the action of the

Coulomb field of one or other electron on itself; in

expression (46), the first term sums the kinetic energies of

electrons and the second sums the mutual Coulomb

energies of electron pairs. There is no specific term

representing the self-interaction. Consequently, if a narrow
wave packet consisting of one electron is formed in some
way, there will be no Coulomb repulsion in the packet; it
will spread out nearly in the same way as a neutral wave
packet, i.e. relatively slowly. Therefore, one-electron wave
packets will be relatively longer-lived than the packets
containing more electrons; in actual observations, one-
electron packets will be encountered most frequently.

However, the problem under discussion is fundamen-
tally of the many-electron type and a many-electron wave
function is known to have certain symmetry properties
under transposition operations (for example, the coordinate
wave functions, i.e. a wave packet, should be completely
antisymmetric under the operation of transposition of
electrons if their spins are directed in the same way). In
this sense all the electron wave packets are of many-electron
nature and at first sight it seems that it is fundamentally
impossible to form a one-electron wave packet.

Nevertheless, among many-electron configurations with
the appropriate transposition symmetry there are some
which are equivalent to one-electron configurations. Let
us assume that Y(r) describes a lumped electron wave
packet, for example a Gaussian one. Then, the wave
function

(e, r) =27 Py (r )Y —a) — Y)Y —a)]  (47)

describes a two-electron system concentrated in two
packets: one at the origin of the coordinate system and
the other at a point with the radius vector a. One can show
that there is almost no Coulomb interaction inside each
packet or at least this is true if the distance |a| between the
packets is much greater than their width (for simplicity all
the spins are assumed to be identically oriented and the
spin —spin and spin—orbit interactions are negligible). In
fact, the average value of the Coulomb energy in a state
described by the function ¥(r, ry) is

(Ucow) = & “d ar (e, r)| Iy =l

=3¢ [ [ an ol Pwe: -or

) P —a)?
=Y (r)Y(r) —a)y(ry) Y*(r, —a)

=Y )W (r1 — ) (r2) Y (ry — a)]Iry -
(48)

The first two terms in the above expression represent the
Coulomb energy of the interaction of two electrons located
at, respectively, the origin of the coordinate system and the
point with the radius vector a. This part of the Coulomb
energy is approximately
&

la|”

since the factor 1/|r; —r,| can be regarded as practically
constant within the limits of the distributions [(r))[* and
W (r, —a)|, and equal to 1/|a].

The last two terms in expression (48) are known as
integrals of overlapping, which under the conditions
considered here can be only very small. In fact, these
integrals contain the combinations

Y)Y —a), Y)Y (r, —a)

(Ucow)' = (49)
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and conjugates of them. However, these combinations are
necessarily small because if the width of a Gaussian packet
is much less than l|a|, then the function Y(r, —a) is very
small if the function ¥ *(ry) is close to its maximum value
and vice versa.

It follows that although the probability of finding both
electrons in either of the two wave packets is the same, there
is no Coulomb interaction inside the packets. The situation
is the same as if each electron had been in its own packet.
These considerations are easily generalised to the case of
several electrons: it is sufficient to replace the function
described by expression (47) with the Slater determinant. We
can easily see that these considerations are identical with
those used to justify ignoring the existence of electrons far
outside an atom of interest (for example, in another atom).

Consequently, if a many-electron bunch is formed
initially, it decays rapidly under the action of the intra-
packet Coulomb interaction and tends to form finally one-
electron bunches in the sense described above. Such
one-electron bunches then spread out relatively slowly,
in the same way as a neutral wave packet spreads in free
space. Therefore, one-clectron bunches have a longer
lifetime than many-electron bunches and, on the aver-
age, the observation of one-electron bunches is more likely.

7. Conclusions

The discussion of the problem given above is in no way
exhaustive and does not provide a proof of the validity of
the adopted approach. The reader undoubtedly will be able
to formulate questions which are not answered in this note.
It is however surprising how many proofs can be cited in
support of the adopted approach and the range of known
phenomena with which this approach is compatible is fairly
wide. Among the proofs in support of the proposed
mechanism the main one is that an electron bunch forms in
a natural physically justified manner and not as a result of
some wonderful secret transformation of an electron wave
into a particle. Therefore, we decided to publish this note
so as to attract, if possible, the attention of both
theoreticians and experimentalists.

Even at this early stage the above analysis provides a
qualitative picture of the appearance of photocounts when
coherent (laser) radiation is detected. The electron system in
a metal or semiconductor cathode is characterised by a high
density and electrons are distributed uniformly (apart from
fluctuations) over the cathode volume. The action of
coherent radiation excites this electron system, which
remains more or less uniformly distributed, so that an
electron cloud can escape through the cathode surface into
the vacuum space between the cathode and anode. Outside
the cathode the density of this electron cloud falls
considerably and this makes it likely that the cloud splits
into separate bunches, possibly even consisting of one
electron. However, calculations show that these bunches
spread out quite readily, so that the distance between them
becomes of the order of their width. Acceleration of the
bunches by the static electric field in the cathode—anode
space focuses the bunches (spatial catastrophe), which
increases the transverse density. The Coulomb field in
the bunches gives rise to the phenomenon of overtaking
(temporal catastrophe) and their density then increases in
the longitudinal direction to such an extent that their width
becomes much less than the distance between them. Such a

dense bunch resembles essentially a point-like particle and it
flies across the cathode—anode space giving rise to a sharp
and intense current pulse in the external circuit of a
detector. An observer sees this pulse as a photocount.
The possibility of applying the theory of catastrophes with
its topological methods to the problem of compression of
electron bunches indicates that the process is not random. It
would be of interest to consider the application of the
theory of catastrophes to the wave function in the 3N-
dimensional configurational space of N electrons.

It follows from the proposed approach that the statistics
of the current pulses in a photodetector, which is usually
identified with the statistics of photons, represents primarily
the statistical nature of the process of decay of an electron
cloud into bunches and only secondarily does it represent
the properties of light causing the photoelectric effect.
Essentially, the photocounts are the detection noise which
strongly distorts the real properties of the light flux.

From the experimental point of view the most inter-
esting consequence of the proposed mechanism is the
possibility that, in principle, a photocathode can operate
without generating current pulses. This may be possible in
sufficiently strong fields when an electron cloud does not
decay in the available time into bunches. This should alter
greatly the spectral composition of the photocurrent: the
high-frequency components, representing separate bunches,
should disappear and only the low-frequency components,
representing the change in the amplitude of the optical
signal, should remain. As a rule, amplifiers receiving a
photodetector signal are less sensitive in the low-frequency
range. This reduction in the sensitivity under the conditions
when there are no current pulses should be corrected,
because otherwise the disappearance of the pulses will be
received as a reduction in the photocathode efficiency.
Unfortunately, at this stage it is not possible to consider
quantitatively the operation without current pulses.

On the one hand, the above analysis confirms the
statistical nature of the appearance of photocounts and,
on the other, it shows that this statistical nature should not
be regarded as a fundamental phenomenon additional to
quantum mechanics, but should be regarded as nonfunda-
mental and following from quantum mechanics. In this
respect the proposed approach goes back to the old
discussions on localisation and delocalisation of particles
(one should mention particularly here the book of de
Broglie [22]). It may give us a chance to have a fresh
look at the old questions (it is worth noting here an
interesting paper by Klyshko [23]).

It should also be pointed out that the photocounts
regarded as elementary events have not been investigated
thoroughly. To what extent does one photocount corre-
spond exactly to the passage of one elementary charge
through the cathode—anode space? What is the spatial size
of an electron wave packet creating a photocount? Are the
current pulses in the device circuit corresponding to single
photocounts all identical? It would be desirable to inves-
tigate these questions not under the conditions in a
photomultiplier, which are complicated by side effects
due to secondary electrons, but under ‘purer’ conditions.
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