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Abstract. Current theoretical methods of calculating the independently of the problem considered, exclude the

pair, interatomic and averaged, potentials of ion inter-
action with the atoms of solids are discussed. Along with
the traditional static approximations, nonstationary and
quasi-stationary models are considered. In the other case,
modification of the electron gas approximation taking
account of the relative velocity of atoms v; is investigated.
Furthermore, the effect of ion ionisation and dynamic
screening of potentials by the electron gas is taken into
account. Theoretical models are compared with each other
and with the experimental data. The energy losses and the
ion ranges in solids, angular distributions due to multiple
scattering, bremsstrahlung losses of heavy ions in the
process of a planar channelling, channelling radiation lines
of the relativistic electrons and positrons, and other effects
are considered.

1. Introduction

When we use atom—atom (ion—atom) potentials of
interaction (IP), we can, in the first approximation and
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details of the electron structure of matter. Therefore the
interpretation of the basic phenomena connected with the
transport of particles in the medium is directly or indirectly
based upon the concept of IP. It is common practice to
distinguish between short-range and long-range interatomic
forces. In this work we concentrate mainly on the short-
range forces because in the radiation physics of solids the
particle impact parameters with respect to the target atoms
are relatively small. However, in some cases long-range
forces may also prove significant, as for example in the
sliding interaction of a particle with the surface. The main
theoretical considerations determining the calculations of
the static IP of the isolated neutral particles are developed
in detail (for example, see Refs [1—-4]), but the problem
remains when we calculate the ion—atom I[P for an
arbitrary degree of ionisation and for an arbitrary energy
of the incident ions on the one hand and for the different
combinations of the collision partners on the other hand. It
is also evident that a frequent assumption concerning the
additivity of the particle interactions with the separate
target atoms has only a relative validity, estimation of its
accuracy being not always straightforward. It is therefore
desirable, based on the concept of IP, to take into account
the dynamic and many-particle effects, and also the specific
properties of a target. A good example of this is the
phenomenon of channelling [5, 6], where a theoretical
description has been made after the introduction of the
concept of a continuous potential of the atomic chain

(plane) [7].
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Recently, along with the traditional application of IP in
solid state and radiation physics, interest in these subjects
has also been stimulated by the prediction and discovery of
the radiation of the relativistic channelling particles [§—10,
305-309, 319], the diagnostic application of this radiation
[10, 11, 306], and the growing demand of nuclear material
science [12]. Besides, information concerning the repulsive
[P is traditionally important for the problems of physical
kinetics [13, 14] and laser excitation of the electrons [15, 16].
In the latter case, it is necessary to have the potential curves
for the region of the energy minimum, i.e. in the transition
region between the repulsive and long-range potentials.

Owing to the rapid development of these trends it might
be interesting to review recent achievements in the applica-
tion of theoretical methods for IP calculations, and their use
for an explanation of different phenomena taking place
during the transport of charged particles in matter. Most of
the aspects mentioned above have not received sufficient
attention (or have not been considered at all) and therefore
this review might be a timely one.

The choice of material is determined, on the one hand,
by the author’s interests and, on the other hand, by the
limited space of the article. Therefore, [ have not considered
(or only briefly touched on) the results associated with the
dechannelling and the orientation effects at high energies,
sputtering of solids by ion bombardment, the phase
transformations due to irradiation, and other effects.
Those interested in this subject are referred to a number
of review articles and monographs [10, 12, 111, 145, 201,
306-309].

Section 2 includes a review of the most important
theoretical methods employed for calculating the pair
potentials in the molecular and ion —atom systems. Among
them are the stationary quantum-mechanical models, the
Thomas—Fermi and Thomas—Fermi—Dirac approxima-
tions, and an electron gas approximation. A great
number of analytical models are also considered. Sec-
tions 2.6 and 27 deal with a nonstationary
approximation and a quasi-static generalisation of the
electron gas theory. In the latter case, the ion—atom IP
depends upon the energy (velocity) resulting from the
stripping of the electron shell and the varying effectiveness
of the overlapping of the Fermi spheres of the electrons in
the impulse space.

Section 3 contains an analysis of the classical effects of
the interaction between the ions and the light particles with
the solids, with their description being based on the
interatomic [P or the averaged potentials with respect to
channelling (single and multiple scattering, stopping
powers, and ranges). In Section 3.4 the problems of
calculating the ion—atom (ion—ion) IP in solids are
considered, with an account of the effect of dynamic
screening by the electron gas. Section 3.5 gives a detailed
description of the problem of connection between different
approximations for the continuous potentials of the atomic
chains (planes) taking into account (or ignoring) the
external periodic fields. In Section 3.6 some surface effects
are briefly described, and Section 3.7 deals with the special
features of the interactions of particles with solids at high
energies.

Section 4 contains comparisons of the theoretical
models with some experimental data. Special emphasis is
placed on the effects of the Z -, Z,-oscillations of the cross
sections of scattering and stopping, and the ranges of the

ions in semiconducting, metal, and gaseous targets (Section
4.1); the effects of correlation of the energy losses with the
outgoing angle from the thin film and the features of
multiple scattering of the partly ‘stripped’ ions (4.2); the
question of dependence of the value xp,ﬁ\/E (where 1//]/2 is
the angular half width of the inverse scattering during
channelling, and E is the ion energy) upon the energy is
discussed (4.3). In Sections 4.4 and 4.5 the measurements of
the trajectories and potentials, as well as dependences of the
bremsstrahlung losses of the heavy ions on the frequency of
the oscillations in plane channelling conditions are ana-
lysed; in Section 4.6 theoretical and experimental data
related to the characteristic radiation of the channelled
electrons and positrons (in a plane regime) are compared
and the problems related to a diagnostic application of this
radiation are discussed. In the conclusions section some
significant, and in the author’s opinion still unresolved,
problems and trends in the development of the theory of
interaction potentials and the radiation effects are men-
tioned.

The list of references, although quite extensive, is far
from being complete, notably with respect to developments
over the last two years.

2. Theoretical discussion

Among the approximations most frequently used in
radiation physics for the calculation of the pair and
average potentials, atomic electron densities, form factors
etc., a specific role is played by the stationary Thomas—
Fermi and Thomas—Fermi—Dirac models and the related
methods of the electron gas and of the electron density
functional [22, 176, 40, 86]. More rigorous theoretical
schemes based on the Schrodinger equation [16, 21, 324]
have been used to a lesser extent because of their
complexity and they are the last resort in application to
radiation physics. Nevertheless, continuous progress in the
field makes it necessary to refine the theory constantly in
order to include more detailed interactions between the
ions and atoms. Thus a broader perspective is offered for
the development and new application of the nonstationary
and quasistationary approximations in the theory of
interatomic potentials. At the same time, many model
analytical approximations retain their significance. Com-
bination and analysis of the approximations mentioned in a
single section makes it possible to use the information in it
in a way that is autonomous with respect to other sections
directly related to the interactions in solids.

2.1 Stationary quantum-mechanical models

An adiabatic approximation of the Schrodinger equation
forms the basis of the quantum-mechanical calculations of
the potential energy of the diatomic system. This enables us
to separate the motion of the electrons from the motion of
the nuclei. As a result of applying this approximation, we
have [17]:

[A—UR)| ®(R.r)=0, 2.1

where r designates the electron coordinates, R is the
coordinate of the relative motion of nuclei, the Hamilton-
ian A includes the kinetic energy of the electrons and the
potential energies of the mutual and cross interactions of
nuclei and electrons. The function U(R), which is an
eigenvalue of the operator H, defines the energy of the
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system for a fixed distance R. When R — oo, we have
U(R) — E| + E,, where E , are the energies of the isolated
atoms. Interaction potential in a typical interpretation is
defined as

V(R) = U(R) — U(co) . .2

Solution of Eqn (2.1) for the needs of radiation physics is
still a remote possibility. Therefore more simple computa-
tional schemes are of interest, in particular the method of
separating the contributions of the interactions of the
atomic cores and of the valence electrons [16]:

H=H +H,+H,+H,,

V(R) =V .(R)+ V,R), 2.3)

SR, r) =D (R, r)D,(R, 1) D, (R, F) ,

where 19],2 are the Hamiltonians of the cores, H, is the
Hamiltonian of the valence electrons, 1-?12 is the interaction
of the cores, @1 ,(R, r) and & (R, r) are the wave functions
of the core and valence electrons. Assuming that
U(oco) =E| + E, + E,, substituting (2.3) into (2.1) and
separating the variables, we get (for simplicity designations
of the variables R and r are omitted):

(Hi+H,)) 0,0, — V. 0,0, = (E, +E;) &, &, ,

(2.4)
H,®,—V,0, =E,&, .

Functions @, @,, and @, should, in addition, satisfy the
orthogonality relations

(®|D,)=0, i=12. 2.5)

If the overlapping of the ion cores is small, potential V (R)
is calculated in the first order of the perturbation theory
(assuming that wave functions @;, of the ion cores are
known):

Vo(R) = (0,0,]|H 5|, ®,) . (2.6)

Thus, the problem of finding the IP reduces to the
computation of integral (2.6) and to the solution of the
simpler (the second one) of the two equations (2.4), where
ﬁv contains only operators of the kinetic energy of the
valence electrons and of their interactions between
themselves and with the cores. However, even in this
case the problem remains sufficiently complex and there-
fore, in practice, the method of the model potentials [18 —
21] is widely used. This method involves representation of
the Hamiltonian in the form of a sum ﬁv =T+ Vm, Where
T is an operator of the kinetic energy of the electrons, and
vy, is a model potential. Various forms of such potentials
can be found in Ref. [16]. The accuracy of the computa-
tions of the IP by this method guarantees agreement with
the experimental data related to the scattering of the
molecular beams and to the spectroscopy in the range of
5-10% (at the minimum of the potential curves). The
method of the electron density functional provides similar
accuracy [86].

2.2 Thomas — Fermi and Thomas — Fermi — Dirac
approximations

When we use the Thomas—Fermi (TF) or Thomas-—
Fermi—Dirac (TFD) theories, the energy of the two-centre

system can be written in the form [22] (here and hereafter
we use atomic units: e=h=m, = 1)

YAVA) Z, Z, 3
UR) = - |—+— d
® =22 [(2+2) pry e

4 lJJP(")P('J) FENRES +i (3n2)2/3 Jp(r)S/S dr
2 |r—r| 10

1/3
) pre

where p(r) is the electron density at the point r of the
coordinate space, Z , are the charges of the nuclei, r; , are
the distances from the point r to the nuclei, and R is the
internuclear distance. Formula (2.7) corresponds to the
TFD theory and without the last (exchange) term it
corresponds to the TF theory. The proof of the fact that
the extremum of the functional U(R) with respect to p(r)
gives the minimum energy of the system for the TF
approximation is obtained in Ref. [23], and for the TFD
approximation in Ref. [24]. In these two cases, when we
minimise U(R) with respect to p(r), we obtain the known
relations between the density and the electric potential
V.(r) of the system [22]:

3/2

2.7

3/2
pre =57 (Ve = Vo), @8)
22 2\1/2 3
Prip =37 [(Ve=Vo+15) "+, 2.9

where V, is the chemical potential, and 7y = 1/v/2n. The
potential V (R) satisfies the Poisson equation for the
charge densities given by Eqns (2.8) and (2.9):

AVC:41tp—41t[Z|8(r—r|)+Z25(r—r2)] . (2.10)

Substituting Eqns (2.8) and (2.9) into Eqn (2.10), we obtain
the standard equations of the TF and TFD theories for the
molecules. If we substitute in Eqn (2.7) the approximate
values of the density p, it is evident that the value U(R)
that we obtain is an upper limit of the energy. In the case
of a neutral diatomic molecule, in the TF approximation,
Firsov [23] obtained a maximising functional U;(R). Using
the latter for an improved estimation of energy of the
system with an approximate density, we can take a half-
sum value [U(R) + U, (R)]/2. So far as we know, no correct
form of the maximising functional has been found in the
TFD theory, and no correct form of the ion—atom systems
has been found in the TF theory.

The authors of Ref. [325] considered a modification of
the TF equation by changing p5/3 in Eqn (2.7) to
a(N)p*/r, where N is the number of electrons. Firsov
[25] showed that within the accuracy bounds of the TFD
model one can expand the density [Eqn (2.9)] with respect
to the small parameter 1:(2) and restrict it to the first two
terms. Then, taking into account Eqns (2.9) and (2.10), a
modified equation of the TFD will be presented as

AV, =081V, + 1.2v?
—41t[Z|8(r—r|)+Z28(r—r2)] . (2.11)

Although Eqn (2.11) in the case of the neutral systems is
more convenient for computations than the standard TFD
equation (because it does not lead to a finite radius of the
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molecule), this advantage disappears when we turn to the
ion—atom system.

So far, few attempts have been made at numerical
integration of the general TF and TFD equations for
the molecules. For the homonuclear pairs the classic works
[26—28] which offer the solutions to the TF equation are
known. The systems of Ne—Ne, He— Ar and Mg—-0O were
considered in Ref. [29], and in Ref. [30] the TFD equation
was solved. Calculation of the [P of a homoatomic pair by
applying the maximal and minimal principles of the TF
model within the framework of the variational method was
made in Ref. [31].

From Eqn (2.7) it is evident that, if Z; =Z, and the
densities p are obtained from the solution to the TF
equation, the energy of the system can be represented in
a universal form

N o
U(Z,R):ZWJ[W-I-.)‘I(RZ]/)+Z BrRrz P

2.12)

where the last term represents the contribution of the
exchange energy calculated for p=prz as a small
perturbation, and f;(x) and f,(x) are the known functions.
In Ref. [32]it is shown that the addition to the functional
(2.7) of the Kirzhnits nonhomogeneity correction [33],

2
AUy :ij@ d’r, (2.13)

72
leads to a rise in the exchange energy in Eqn (2.12) by 2/9
of its previous value (in this case, AU is also treated as a
small adjustment). In fact, assuming that V,=0 in
Eqn (2.8) (for the neutral system of identical atoms),
and taking into account Eqns (2.8), (2.10), and Green’s
formula, we can transform Eqn (2.13) as follows:

V2 2 J v
24n? 3 ¢

1/3
e

which is QED. Thus, taking into account the nonhomo-
geneity of the electron gas reduces the energy of a diatomic
system, while in the case of a single atom the situation is
reversed. This conclusion is also evident from a direct
analysis of Eqn (2.13) if we take into account the fact that
within the space between the nuclei the electron density
gradient becomes smaller.

In Ref. [32] a correction to the energy is obtained, which
is similar to the known correction of Scott [34] for an atom,
and which takes account of the contribution of the strongly
bounded electrons:

AU,R,Z)=Z"f(RZ) .

AUK:

J(ch'/z) vV, dr = — 5

(2.14)

(2.15)

The function f3(x) varies within the limits from 1 to 2 and
is tabulated in Ref. [32]. Table 1 contains the comparative
figures of the IP for the N—N system calculated on the
basis of Ref. [32], results obtained by the Hartree-Fock
(HF) method [35], and those obtained by the variational
computation [31] for the half-sum of the upper and lower
energy estimates based on the TF theory. In the latter case,
a scaled version of the TF model and an interpolation of
the results of Ref. [31] for the values of R are used to
obtain the necessary values of R.

G V Dedkov

Table 1. N —N potential of interaction.

R/a.u. Z*/R V(R) a.u.

Ref. [31] Ref. [32] Ref. [35]

0.2 245 140 129.2 132.6

0.5 98 28 21.4 24.8

1.0 49 6.8 —0.8 4.1

1.5 32.7 2.25 —4.8 0.2

2.0 24.5 1.0 —6.0 —0.4

3.0 16.35 0.29 —6.65 —0.05

The figures in Table 1 show that taking into account the
corrections given by Eqns (2.14) and (2.15), calculated in a
nonselfconsistent way [32], will lead to considerably under-
estimated values of the [P for R > 1. On the contrary, the
potential [31] that corresponds to the TF theory decreases
too slowly if R increases. These conclusions are likely to be
valid for the case of the IP of a pair of identical positive
ions, where a universal function of N and N/Z (N is the
number of electrons) is obtained in Ref. [36]. On the whole,
it can be mentioned that so far the TFD theory in its
classical interpretation has not led to any essential results in
[P calculation .

2.3 Electron gas approximation

An essential improvement of the results in IP calculations
has been achieved by replacement of the electron density in
Eqn (2.7) by the sum of the densities of the electrons of
isolated atoms which have, however, been taken from the
calculation by the Hartree—Fock (HF) method [37-40, 51,
282]. Somewhat earlier, exactly the same calculations were
carried out with the TFD densities [41, 42]. In Refs [38 —40,
51] a contribution due to the correlation energy of the
electron gas was added to the energy functional. A
corresponding value per unit volume is approximated by
the expression [38]:

gCOI’ (p)

( [—0.048 — 0.017, + In r,(0.0311 + 0.0097,)| p .
re < 0.7,
0.07064 + 0.00633 In p) p,
_J( p)p 2.16)
0.7 <r, <10,
(—0.438r; ' +1.325r 25 —1.47r; 25— 041,

L7y > 10 .

In addition to the assumption concerning additivity, the
electron atomic densities are assumed to be spherically
symmetric, which enables us to carry out the integration
with respect to all angular variables in Eqn (2.7). For
convenience, the resulting [P can be decomposed into
several terms:

V(R) = VC (R) + Vkin(R) + chch (R) + Vcor(R) > (2]7)
where separate terms correspond to the contributions of
the Coulomb, kinetic, exchange, and correlation energies.
It is appropriate to write the formula for V¢ (R) in the form
that takes into account arbitrary degrees of ionisation of
the interacting particles [22, 43] (¢;=1—N,/Z;, i=1, 2):
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VK(R):T
1 1

+ 522(1 +¢2) Gi(R) —EJ[GI(VI)Pz(Vz)

+Gy(r)pi ()] d°r, (2.18)
where the function Gj(r;) is linked with the electrical
potential of the electrons V(r;) by the following relation:

1
+§ZI(] +¢1) G2(R)

N,

G,»(r) = + Vci(r) . (2]9)
r

In the case of a spherical symmetry of p;(r), the potentials

V.(r) reduce to single integrals:

Veai(r) = _J pilr)

d3 !/
r—r

L ey
r Jo

r

(2.20)

Formulas (2.18)—(2.20) are especially convenient when
integration in Eqn (2.20) can be carried out analytically.
When we substitute numerical densities for V(R), it is
appropriate to employ a formula that combines all the
contributions in one double integral [38]:

Ve(R) = (4n)’ j Adr, j Bdrapy(r) pa() IR 1. 1) .
@2.21)

where the function I(R, ry, r;) is calculated separately for
the homoatomic, heteroatomic, and ion pairs. In partic-
ular, in the heteroatomic case we have [38]:

1 2
IR, ri,n)=—7—"—""——
R |R—r1|+R+r|
2
- 4 FR,r, ), (222
|R—r2|+R+r2 ( 1 2) ( )
F(R’ r, r2)
( 2
—_—, n<|R-nl,
|R—rl|+R+r| 2 | Il
1(1 +1> R (n—n)
— 2 r ry 4r| ry 4Rr]r2 (223)

|R—ri|<rn<R+r,

1
—, rn>R+r.
\ 12

In its analytical form, the integral (2.21) can be calculated
for a class of the Gauss or Slater orbitals, with all the other
terms in Eqn (2.17) being computed numerically. All of
them are presented in a single-type form,

7= [lsnor +p2) = o) ~ o) & (224)
and are calculated with respect to an ellipsoidal coordinate
system. Here g,(p) is the density of the corresponding
energy of the electron gas. In Ref. [43] it is shown that for
the power form of g(p) all the contributions to the
potential are calculated in elementary functions if the

electron density is approximated in a piecewise-exponential
form [44]:

p(r) = Z Ajexp(—a;r)[0(r—r,_y) —0(r—r)] . (2.25)

1 1 1
1 2 3 4

0

Figure 1. Radial distribution of the Ar atom electron density
D(l‘)=4n12p(r): Hartree-Fock (7); formula (2.25) (2); TFD (3).

where A; and a; are parameters, r;_j, r; are radii of the
‘subshells’, 6(x) is a unity step function, and N is the
number of ‘subshells’. In Ref. [44] it is established that the
logarithm of the atomic electron density that corresponds
to the HF method, inside the shells, varies almost linearly
and therefore in its simplest form the sum given by
Eqn (2.25) may consist of several terms. Such a model was
constructed in Refs [45, 46], and in Ref. [47] where tables
of the parameters for the atoms and ions with 2 < Z < 54
are cited. In calculations, the values for the occupation
numbers and the ‘subshell’ radii calculated by the HF
method were taken into account. In Fig. 1 the radial
density of the electrons in the Ar atom, which corresponds
to Eqn (2.25) for N =3 [47], as well as the TFD and the
Hartree—Fock distributions are shown. It follows from the
figure that even for small N the shell structure can be
approximated sufficiently well. If necessary, the accuracy
can be increased by adjusting Eqn (2.25) for the nodes of
the tabulated densities. In solids it is appropriate to take
into account the influence of the chemical bonds on the
electron distributions. For more details on this aspect see
Ref. [326].

Evaluation of the integral (2.24) in Ref. [43] is carried
out by the division of the space into domains p; > p, and
p, > p;, with a subsequent series expansion of integrands.
The formulas for the IP that were obtained are cited in
Refs [43, 46] and have a form sufficiently compact for
calculations. This enables us to reduce considerably the time
of computation of the potential and eliminates the need for
interpolating tabulated densities. In addition, the tables
given in Ref. [47] can be used for calculating the potentials
in the ion—atom systems, for which there are no quantum-
mechanical electron densities.

The IP in Ref. [48] is expressed by a derivative of the

screening function:
do 1 d
dr o Z]Z2 dr

rV(r)] .

Taking into account Eqns (2.18) and (2.24), the function
@'(r) is reduced to a single integral [48], and the IP is
calculated with the formula:

V(R) = 2122 [1 +J: @ (r) dr] .

(2.26)

2 (2.27)
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Calculations of the potentials based on the method given
by Ref. [38] for a great number of atom—atom pairs were
carried out in Refs [49, 50]. To facilitate subsequent
applications, these results were approximated by a universal
screening function obtained by averaging all the calculated
potentials [49]:

R 3 R
Q(Z) = ; ¢; exp <—b,~ Z) ,

a=08853(z)* + 2%

(2.28)

(2.29)

In Ref. [50] an approximation of @(x) was obtained by
four exponents, and the screening parameter was modified
to the form

a=0.8853(z%% +23%) . (2.30)

The contribution of the exchange-correlation energy in
Ref. [SO0a] was calculated separately and presented by the
formula Z =max (Zy, Z,)

Benor (¥) = —0.07Z 723 exp (—0.235x

—0.0738x + 0.0178x7%) . (2.31)

In Table 2 a comparison is made between the potentials
Ar—Ar calculated with the formulas (2.28)—(2.31) and the
corresponding estimations in Refs [38, 44]. As expected, the
potentials [38, 44] are in sufficient agreement with each
other, but differ noticeably from the ‘average’ IP [49, 50]
which features considerable dispersion. Still greater devia-
tions are obtained for an ion—atom system (see Fig. 2 for

1072 |

| 1
0.5 1.5

R/a.u.

Figure 2. Li*—Ne interaction potentials: Ref. [38] (solid line); Ref. [43]
(dashed line); Ref. [49] (dotted line).

Table 3. The parameters of diatomic molecules.

the Lit —Ne potential). It should be noted that estimation  Molecule Energy of Equilibrium distance/A
of the exchange energy by means of the screening function coupling/10~'# erg
[Eqn (2.31)] for the Ar— Ar potential gives very poor results
and even for R =3 the potential becomes negative. An ] 2 ] 2
electron gas model is also helpful for predicting the
behaviour of the potential curves near the minimum. Ne-Ne 0.56 0.63 2.99 3.03
This is confirmed by the data in Table 3. Ar—Ar 1.75 1.95 3.63 3.70
. .. . Kr—-Kr 2.48 2.73 3.89 3.95
Table 2. Ar—Ar potential of interaction. Ne— Ar 0.785 0.93 34 351
Ar—Kr 2.03 2.37 3.78 3.80
Rfaw. VR)a.u. Nat-ClI™ 852 896 2.34 2.36
KT™-CI 798 800 2.56 2.66
Ref. [38] Ref. [43] Ref. [S0a] Ref. [49] Ref [S0b]  pg pg 558 122 A 419
1 24.6 24.7 25.5 17.5 20.1 Note: /—the calculations of Ref. [38]; 2—the experimental data that
2 2.30 235 291 1.85 1.84 are cited in Ref. [38]; *the data for Hg—Hg are taken from Ref. [52]
3 0.395 0.39 0.69 0.351 0.345 (in this case / and 2 are the computations in the nonrelativistic and
4 0.0758 0.076 0.206 0.088 0.0638 relativistic approximations).

Note: The contribution of the exchange energy [Eqn (2.31)] is not
taken into account in data estimation for the columns 4—6.

In Ref. [52] the relativistic corrections associated with
the variance of the atomic electron densities and a
modification of the expression for the kinetic energy (for
the case of a Hg—Hg system) were taken into account. The
data are presented in Table 3. These results show that
taking account of the relativistic corrections becomes
necessary in the case of heavy atoms. In this connection,
note that calculations of the potential which were described
in Ref. [50c], without taking into account these factors, are
not correct. It is not clear in this case what kind of electron
wave functions of the U atom were used by the authors in

the method in Ref. [38]. Reference to the calculation of the
potential in Ref. [38] is not correct because it has not been
carried out there.

It follows from the data in Table 3 that for the light
systems the coupling energy of the inert gas molecules is
underestimated by 10% —15% with respect to the experi-
mental values. In this connection, one can think about the
possibility of ‘improvement’ of the IP computation results
by introducing the Kirzhnits correction [Eqn (2.13)] into
functional (2.7). However, its introduction leads to a
dramatic deterioration of the potentials because, as can
be seen from Section 2.2, a correction due to the non-
homogeneity is approximately (2/9)U ., Whereas its value
and sign are close to U,,,. Taking into account a similar
correction of the fourth order provides a negative con-
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tribution as well. As a result, the values for the binding
energy will increase by a factor of 1.5 to 3 and will
considerably exceed the experimental values. Some qual-
itative justification of this result follows from the decreased
degree of nonhomogeneity of the electron gas in the
molecular system. Therefore, the corresponding correc-
tions are not as essential as in the case of atoms, where
due account for them has led to a conformity of the
computed energies with the HF method to within a
fraction of a percent [53, 54].

2.4 Rules for combination of potentials

The search for combinational relations for the potentials is
supported by the idea that, if we find them, we could
dispense with the need for calculating the potentials in
heteroatomic pairs, thus dramatically cutting the computa-
tion time. Similar combinational relations have already
been considered in the early works dedicated to a
systematic study of the potentials [55]. The simplest of
these are the rules of arithmetic and geometric averaging:

Van(R) = 3 [Vas(R) + Vi (R)] . 232)
Vas(R) = V/Vaa(R)Via(R) , (2.33)

where Vaa(R), Veg(R), and V,g(R) are the corresponding
[P for the homoatomic and heteroatomic combinations.
Verification of the relations (2.32) and (2.33), which made
use of known theoretical and experimental potentials, is
provided in Refs [56, 57]. The rules for combining the long-
range potentials were discussed in Refs [58, 59, 76, 77], while
those for combining the sum of the short- and long-range
potentials were considered in Refs [60—62]. In Ref. [57] the
formula (2.32) was modernised by taking into account the
difference in the size of the interacting particles:

Van(R) = 3 {Van(2r) + Vin 2R )]} @34
where the radius of the atom A is determined by searching
for an extremum:

OV g(ra, R)

=0.
Ory

(2.35)
Calculations that have been carried out in Ref. [57], with
the use of formula (2.34) and the Hartree—Fock potential
for the inert gases, have shown that the results obtained
agree with the exact values of the IP better than the results
obtained with relations (2.32) and (2.33). A more detailed
analysis of these dependences is carried out in Ref. [63], in
which one more combinational rule is proposed:

Vas(R) :% [VAA ( 2raR > + Vg <2rBR) )] . (2.36)

ra+ 1B ra+rg

where r5, p are the atom radii according to Pauling [64].
The comparison of the combination formulas (2.32)—(2.36)
was made through utilisation of the IP calculated by the
electron gas method [63]. Fig. 3 shows the results of such a
calculation for the Nat—Cl~ system, and these results
show us that Eqn (2.36) is preferable. Roughly the same
results were also obtained for the other ion pairs with
widely varying values of the radii [63]. On the contrary, if
ra =~ rg all the combinational relations give similar results.

1 1 1
2.0 2.5 3.0 35

R/a.u.
Figure 3. The Na* —C1™ IP calculated by applying the combinational
rules: exact calculation with the electron gas model (solid line);
Eqn (2.33) (curve 7); Eqn (2.34) (curve 2); Eqn 2.32 (curve 3); Eqn
(2.36) (curve 4).

The method for the separate combination of the
separate parts of the potential [Eqn (2.17)] with constant
signs is worth considering, since even in the existing form
the combination rules are applicable both in the region of
repulsion , and (to a greater extent) in the region of
attraction. It is evident then that the first term [see
Eqn (2.18)] does not require the combination, but the
subsequent terms, as well as the potentials Vi, (R),
Veeh(R), Veor(R) in Eqn (2.17) can be considered sepa-
rately as having different signs. Among recent works,
Refs [77] and [103] where some new heuristic relations
are proposed above all are worth mentioning, connecting
the IP with the electron densities of the interacting atoms
[77], and with the repulsive forces [103]. In Ref. [334] a
universal relation for the repulsive part of the I[P of the form
V(R) =ryV*(R/p) is proposed, where V*(x) is a universal
function, and v, and p are parameters that correspond to a
given atomic pair. In the paper cited, extensive information
was used concerning the IP, obtained from the measure-
ments of mobilities of the atoms and ions in gases (see also
Refs [297] and the relevant literature). On the whole, in
spite of the steady interest in the problem, the problem of
justifying the combinational rules suitable for a wide range
of interatomic distances and for arbitrary atomic combina-
tions is far from being settled.
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2.5 Analytical approximations

In calculations concerning radiation physics, repulsive
potentials of the form proposed for the first time by
Firsov [65] are most frequently used :

V(R) :Z‘RZ2 @ <5> :

a

(2.37)

where ®(x) is a screening function, and the parameter
(screening length) a is determined by Eqn (2.29). Based on
the bilateral variational principles of the TF theory (see
Section 2.2), Firsov showed that, within the accuracy range
of the TF model, the function @(x) coincides with the
solution to the TF equation for an isolated atom. Because
of the slow decrease of @(x) for a large R, the potential
given by Eqn (2.37) is suitable only if R <2 a.u. A more
precise description of the potential curve for R > 2 a.u. is
achieved by means of an exponential approximation of the
type given by Eqn (2.28). Moliere [66] was the first to
calculate coefficients of this approximation, and the
corresponding potential [Eqn (2.37)] was called the
Firsov—Moliere potential. Another expression, originally
proposed by Lindhard [67], is also frequently employed in
calculations for the screening parameter:

a=0.8853(z2° 4 223)705 (2.38)

Approximations similar to Eqn (2.28) and based on the
variational solution to the TF equation are obtained in
Refs [68, 69], where the function @(x) is represented in the
form:

®(x) = [aexp(—ax) + bexp(—px) + cexp(—yx)]2 .(2.39)

Formula (2.39) is suitable for computation of the half-
integer powers @"+'/2 Parameters for formulas (2.28) and
(2.39), which present results of the different authors [49, 50,
68 —70], are summarised in Table 4.

Two-exponential approximation parameters [72], the
authors claim, are suitable for light atoms with Z < 18.
Calculations of the IP of the atoms of inert gases based on
Eqns (2.37) and (2.39) have shown [69] that the approxima-
tion (2.39) with ¢ = 0 for Z < 18 is in better agreement with
the values of the potential obtained experimentally, whereas
the complete formula (2.39) is preferable for Z < 18. This
result, along with similar conclusions reached in Ref. [72],
demonstrates that although the average screening functions
given in Refs [49] and [50] are obtained on the basis of a
large number of reliable IPs they are not very accurate for
calculations of the potentials for arbitrary atomic pairs
(also see the data in Table 2).

Table 4. Approximation parameters of the screening function.

Some of the other frequently used approximations
include the following: the Lentz—Jensen formula [22],

®(x) = (1 +3.11x "/ +3.24x

+1.46x7% +0.248x%) exp (=3.113/x ) 5 (2.40)
the Lindhard formula [70],
3\ /2
O(x)=1- (1 +—2> ; (2.41)
X
the Tietz formula [71],
1
Px)=— 2.42
) (140.5365x) S
the Firsov formula [25],
. h2 .
o(x) :M, c=176(1 — 1.56%) ,
sinh” [B(c + x)]
B =0.1627%3 . (2.43)

Formula (2.43) presents an approximate solution to the
TFD equation (2.11) for a neutral atom. In Ref. [73] on the
basis of Eqn (2.37) and the Hartree—Fock —Slater atomic
potentials, an IP screening function for the homoatomic
pairs was obtained in the form of

®(r) = {H[exp (oz ri> - 1] - 1}_] :

where H = (4Z — 1)0‘4;(\., a=1forZ <10 and a = 1.13 for
Z > 10, parameters r, are tabulated as functions of Z. For
the heteroatomic pairs in Ref. [74], modifications of the
parameters H, r, of the following form were proposed:

n=[(vaevz)y -1 .

rl _ nv(Zl) + nv(Z2)

s 2 9
where the parameters }(\.(Z]’Q) correspond to individual
atoms. Formulas (2.44) essentially postulate new combina-
tional rules, and their validity calls for justification. There-
fore, even though Eqn (2.45) takes account of the effects of
the shells in an approximate way, it is not likely to be
helpful as a universal description of the potentials and, in
particular, of the effects of the Z,-oscillations for the
stopping powers (see Section 3.2 and Ref. [75]). It should
also be noted that the model potentials [73] have been
criticised for giving an incorrect idea of the asymptotic
behaviour for r — oo [29].

(2.44)

(2.45)

Ref. [66] Ref. [68]* Ref, [69]* Ref. [72] Ref. [49] Ref. [50a] Ref. [50b] Ref. [216]
¢ 0.1 0.72183 0.52495 13 0.0069 0.09 0.18175 0.4841
¢ 0.55 0.27817 0.43505 23 0.1669 0.61 0.50986 0.2829
¢ 0.35 — 0.04 — 0.8262 0.30 0.2802 0.1589
¢ — — — — — — 0.02817 0.0741
by 6.0 0.17826 0.12062 0.854 0.1318 0.19 3.20 0.6573
by 12 1.75934 0.84795 0.492 0.3079 0.57 0.942 1.6224
by 0.30 - 6.7469 - 0.9168 2.0 0.429 0.2994
b - - — - - — 0.2016 4.4049

*Parameters ¢; and b; (i =1, 2, 3) correspond to a, b, ¢ and a, B, y in Eqn (2.39).
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Useful expressions for the screening function and the
electron density of an ion with an arbitrary ionisation
degree were obtained by preserving the coefficients of the
exponential approximation of the function (2.28) and by
modifying the screening parameter [107]:

S
a, = 08853 N/ (ﬁ) ,
7

where s is an unknown variational parameter, and N is the
number of electrons. The screening function of an ion,
taking into account Eqn (2.46), is written in the form

Pi(r)=q+(1-9q) q)(f) .

*

(2.46)

(2.47)

where ¢ = 1 — N/Z is the degree of ionisation, and ®(x) is
defined by Eqn (2.28). The electron density, if we take into
account Eqn (2.47) and the Poisson equation, is given by

N < b,
5 c,b,2 exp (— l) .
Anra, 4= a,

Substituting Eqn (2.48) in the functional (2.7) (ignoring the
exchange term), we get a formula for the ion energy (here
the coefficients b;, ¢; correspond to those given in
Ref. [68]):

E(s) = —1.13y/aN*? [0.9” (z ~ %> (g)—

N —2s N —s
+ 0.345N (2) —0.325N (2> ] .

Minimising E,(s) with respect to the parameter s, we get
In(1.167Z /N — 0.167)
S =

pi(r) = (2.48)

, Z=N. 2.49
n(Z/N) (249
The dependence of s on N/Z is shown in Fig. 4.
s

1.2

1.1

1.0 | | 1

0.4 1.0 1.6 N/z

Figure 4. Dependence of s on N/Z.

Some other analytical approximations of the IPs and
screening functions of the neutral atoms can be found in
Refs [321, 328 —-332]. One of the works, rarely cited today
[321], should be mentioned here. This work contains
sufficiently simple approximations of the Hartree—Fock
electron densities of atoms for 1 < Z < 36. The IP [98] is
rather useful in applications:

V(R) = 0.45Z,Z, %.

Using this IP, the authors of Refs [316, 317] successfully
described the characteristic radiation Xe (M ) that was
induced in the channelling of Xe ions in copper, as well as
the generation of defects due to this process.

2.6 Nonstationary theories

In the last few years progress in computer science has
made possible the solution of the many-particle problems
in atomic collision physics, based on the solution of the
nonstationary equations of Schrodinger and Hartree—
Fock [76—82, 279, 289]. Generally, the systems under
consideration contained a small number of electrons (1 or
2), and all the calculations were based on an approximation
of the rectilinear trajectories of the moving particles. With
this approach to the problem, the calculation of the IP is
irrelevant and the problem focuses on the description of
time evolution of the electron subsystem. Systems with a
larger number of electrons were studied within the
framework of the time-dependent Thomas—Fermi theory
(TTF), the hydrodynamic version of which is well known
[83, 84]. Thus, in Ref. [85] a numerical solution to the TTF
equations for the scattering of protons on argon atoms (for
proton energies from 27.5 to 2.500 keV) has been obtained.
In these cases, the approximation of the rectilinear
trajectories has also been used. This last point is,
however, not crucial. According to Refs [86, 87] the
total energy of the system can be written as:

E :%J(V(pr(r, 1) d3r+%“—p(r’ NP0 g3y oy

[r—=r'|

—l—JV(r, 1) p(r, 1) d&r + J G[p(r, t)] d’r, (2.50)
where V(r,t) is the potential of the nuclei and external
fields, the functional G(p) includes the sum of the kinetic,
exchange, and correlation energies of the electron gas, and
o(r,t) is the hydrodynamics potential of the electron
velocities. Hydrodynamics equations are derived from
Eqn (2.50) in a standard manner and have the following
form [86]:

dp 1 2 p(r',t) 5, G

3 =7 (Vo)™ + V(r,t)—i—J PPy &r + 5p (2.51)
3

== —V(Vo) , 2.52)

with the additional restriction O¢/0n =0, where n is a
normal to the surface that confines the system volume. If
we apply Eqn (2.50) to the case of atom —atom scattering,
it is evident that, with known p(r,t) and ¢(r,t) and after
the subtraction of the energy of the isolated particles, this
formula can be viewed as being suitable for a definition of
the dynamic interatomic potential. In practice the solution
to the system of equations (2.51)—(2.52) can be obtained
by splitting it into small time intervals, within each of
which the particle trajectories are rectilinear, and then, by
calculating U(R,¢) and solving dynamics equations for the
nuclei (on the same time intervals), with subsequent
correction of their positions and velocities before passing
on to the next time step. Although in this case the potential
cannot be specified outside the trajectory, its calculation
remains an important stage in the solution of the dynamics
problem and carries additional information on the energy
losses of the interacting particles.
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2.7 Velocity (energy)-dependent interatomic potentials of
interaction
If the ion velocities are v, < 7?73, which are the typical
average velocities of electrons in a TF atom, most of them
are still sufficiently strongly bound to the nucleus. On the
other hand, it is not difficult to show from Eqn (2.50) that
for small variations of the electron density (in the absence
of external fields) energy correction will appear only in the
second order of the perturbation theory. This is confirmed,
for example, by calculations of the time evolution of the
function p(r,t) in the system H — Ar [85, 86]. This statement
allows for the supposition that the main contribution to IP
in the dynamic regime can be calculated in a quasistatic
approximation of the electron gas. The idea of such an
approach was first proposed in Ref. [48], where corre-
sponding estimates of [P were worked out for the system
H-H. The main idea consists in the isolation of the
potential (and its modification) from the kinetic energy
contribution [the third term in Eqn (2.7)]. It is evident that,
for the motion of the atoms with relative velocity v, Fermi
spheres of the -electrons shift a distance equal to
po = mgvy =v; (see Fig. 5), whereas in a static case they
would be concentric. As a result, the variation of the
kinetic energy will occur only for those electrons which
happen to be in the overlapping part of the Fermi
distributions. These electrons, because to the Pauli
exclusion principle, will increase their energy by shifting
to the free cells of the momentum space. As a new quasi-
equilibrium electron distribution, in Ref. [48] a Fermi
sphere with its centre located in the centre of mass of the
system has been adopted, and an approximate estimate of
the contribution of kinetic energy in IP has the form
Viin(R,E}) = Viin(R) exp(—0.004¢) , (2.53)
where Vi, (R) is a static value, and ¢ is the reduced energy
defined by the relation

E]aM2

g=— 12
Z\Zy(M | +M,)

(2.54)

In this formula, E; is the energy of an incident atom with
mass M and atomic number Z; (M, and Z, correspond to
the target atom), and «a is a screening parameter given by
Eqns (2.29) or (2.38). In Refs [88—92] this model is
described in greater detail. It was mentioned in particular

Figure 5. Electron distribution in a volume element d’R of the
momentum space (according to Ref. [48]). On relaxation to the quasi-
cquilibrium distribution with the centre O, at the centre of mass,
half the clectrons that occupied region A pass to region B.

that for the atoms with a large number of electrons, only a
few of them contribute to the formation of the quasimo-
lecular orbitals localised at the centre of mass of the
system, with the rest remaining bound to their respective
nuclei. Therefore, some other way of calculating the kinetic
energy variation should be found, where the centre of a
new quasi-equilibrium distribution will match the centres
of the initial ones. Let us consider this problem in more
detail, following Refs [89, 91].

Let us assume that each atom has a homogeneous
distribution of electron density p;,, and let us further
assume for clarity that p; > p,. Then under quasi-equilib-
rium conditions the electron distributions in momentum
space are Fermi spheres with radii p; = (311:2;),»)'/3, as in the
TF theory p,-:p?/3‘n:2. For the problems of radiation
physics, one atom can always be considered as being at
rest, and the other as having a velocity of v,. If v; #0,
several cases of overlapping for the Fermi distributions
shown in Fig. 6 are possible. Even in Fig. 6, it is clear that
for vy =py > p; +p, there are no variations of kinetic
energy of the system (this is also true for the exchange
and correlation energies), therefore the potential will
include only the Coulomb part [see Eqn (2.17)]. For
po < p1 +p> the overlapping changes from partial to
total. Half the electrons that occupy the overlapping
domain should occupy the cells with large values of
momenta. The new quasi-equilibrium distributions are
shown by a dotted line, and their centres coincide with
the centre of the larger sphere because of the minimum
energy principle. In cases (a) and (b), a new value for the
‘quasi-equilibrium’ radius can be determined according to
the formula

Pe = (P} +p3)'?, (2.56)

which expresses the conservation of the volume of p-space.
In the above examples it is not difficult to find the
variations of the kinetic and exchange energies. Assuming
that the overlapping volume is equal to €, the variation of

0<py<pi—p2

Po>P1t P2

Pr—=P2<po<pi+p

Figure 6. The same as Fig. 5, but in accordance with Ref. [90]. The
dotted lines correspond to quasi-equilibrium distributions of the
electrons that were initially located in the shaded domain.
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Figure 7. Coordinate system used in the evaluation of the integral
(2.58).

the kinetic energy of the electrons which have occupied the
Fermi sphere of radius p,,, can be written as

20 m p2 5
n = — Z 4mp’d
kin (zn)J JO 2 p ap
P p2 p'2
—J —41tp2dp—J a3 |, 257
0 2 D(py) 2

where D(p,) is the volume of the domain of overlapping
for the p-space. The first two integrals in Eqn (2.57) are
elementary, and the third one can be easily calculated in
cylindrical coordinates with the origin in the centre of the
smaller sphere (see Fig. 7). From Fig. 7 it can be seen that
this integral in Eqn (2.57) is presented in the form

p/2 ) D> =22
J &y = nj dzJ rdr[27 + (py — z)?
D 0

() 2 0

27

+(po+2)’] = pira (2.58)
Substituting Eqn (2.58) in Eqn (2.57), we get

5 5 5 23

Pm 14 P2 Pob2
Viim = @ — — ——1. 2.59
kin <10n2 102 1072 6n2) (2.59)

The first three terms in Eqn (2.59) correspond to the static
result, while the last one is equal to the kinetic energy of
the relative motion of the electrons of the second atom,
which entered the domain  since p, = p§/311:2. Converting
p; and p, to the densities p; and p,, we can write
Eqn (2.59) in the form

3 3
Viin = 10 (3752)2/39[(/’1 + P2)5/3 - P?/

03> —0.5vp,] . (2.60)
The first term in Eqn (2.60) reflects additivity of the
electron densities in the domain of overlapping, which is
evidently a consequence of the Pauli exclusion principle
and the minimum energy principle.

When we turn to nonhomogeneous electron distribu-
tions in the atoms, Eqn (2.60) is to be considered as a local
relation in the volume d°r, where p, > p,. The domains
p, > p; are to be taken into account in exactly the same
way, with the substitution of p;2p, in Eqn (2.60). Thus in

the final form the contribution of kinetic energy to the
potential will have the form

Vin(R, ) =5 (3" (j{ (1) + pa()]
” v2
2 =) = )
<800, = p2) &'+ [{ [9101) + 2]
p ) =) =5 i)

x 0(py — py) d3r> . (2.61)

The exchange energy contribution can be calculated in a
similar way, considering that its density in unit volume of
the configuration space is —p/m. Finally for the cases (a)
and (b) in Fig. 6 we get:

m

4 5
Pm—pP1 |1 3 P
Ve = —Q|F2 L (2 0.4 22)0(py —
ob [ i o (POP2+ Po) (Po — p2)

1 3
o (5 ps +prps — 0~1Pg) 0(p> —Po)] (2.62)

When we convert from Eqn (2.62) to the volume integral,
as in (2.61), this formula should be supplemented with the
symmetric terms with the substitution p;2p,, since
Eqn (2.62) pertains only to the domain p, > p,.

With a partial overlapping of the Fermi spheres, the
corresponding formulas are also elementary, although more
awkward [89, 91]. The radius p,, can also be found from a
more complex algebraic equation. Since in the TF model the
average electron velocity is 1.2Z*?, the condition for the IP
to become a Coulomb potential can be written in the form:

E; > E, =0.0364,(2° + 22 MeVv , (2.63)

R/a.u.

Figure 8. Energy dependence of the screening function of the Ar—Ar IP
[90b]: E = 0o (curve 1); E =10 MeV (curve 2); E=1 MeV (curve 3);
E =0.1 MeV (curve 4); E =0 (curve 5).
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where A is the mass number of the incident atom. For
instance, for Ar—Ar collisions we will get £ =290 MeV. In
Fig. 8 the results of calculations of the screening function of
the Ar—Ar potential are shown. These calculations were
conducted for different energy values E. Electron and
atomic densities corresponded to those of the TF model in
the approximation [68]. The kinetic energy was calculated in
accordance with Eqn (2.61). Fig. 8 shows us that the
dynamic effect appears even at E; = 1 MeV and manifests
itself in the region of medium and large interatomic
distances. Let us note that Eqn (2.61) somewhat over-
estimates the value of V;, because it corresponds to the total
overlapping of the Fermi spheres. Its correction can be
achieved by multiplying those terms in Eqns (2.59) and
(2.56) that depend upon p, by the coefficient 1/2 [the same
is true with respect to Eqn (2.62)].

Variation in the contribution of exchange energy in the
total potential is not very noticeable and, as one can see from
the numerical results, consists of an extra rise in IP. With p,
not too small, the second term in Eqn (2.62) is most
important, while with small p, and large internuclear
spacings the main role will be played by the first and third
terms.

The theory considered above refers to the case of a weak
ionisation of the first particle. With the atom moving in the
medium at velocities of ~ Z2/3, a significant part of'its shell is
stripped even at small depths, so the actual degree of
ionisation which tends to grow with the growth of velocity
should be taken into account in the IP calculation. This
factor was taken into account in Ref. [91]. An assumption
was also made there that the degree of ionisation corresponds
to the equilibrium charge that an ion obtains in a medium.
In Fig. 9 the results of calculating the IP for the homo-
nuclear pairs at different velocities are shown. The data on
contribution of the kinetic and Coulomb energies (Figs 9a
and 9b) and the total potential are presented separately
(Fig. 9¢). Taking into account Eqn (2.28), the degree of
ionisation is equal to

N Ri
qg=1 7= _ZJO 4nrip, (r)) dr
3
=" (14 bixo) exp(—bixo) , (2.64)
=
where xg = 1.13R|Z2/3, and R, is found from the equation
3
%
pi(R1) =32 (2.65)

Formulas (2.64) and (2.65) correspond to the known Bohr
stripping criterion, and the factors ¢; and b; are taken from
Ref. [68]. From Fig. 9 it follows that a dynamic decrease of
the IP occurs at any R if x, > 3, which corresponds to
q < 2/3. The effect is most pronounced at x > 6. Growth
of the potential at x < 6 is due to complete depletion of the
electron shell of an ion and an increase of the Coulomb
interaction. Comparison with the IP calculation for the
neutral atoms (Fig. 8) shows that in the latter case the
effect of diminishing of the potential is more evident and
takes place at any value of R. [f R — 0, dynamic effects are
insignificant, because all the potentials are close to
Z,Z,/R. For R >2R, formula (2.61) can be written in
a simpler form,

Viin(R, v) = Vi (R) — 0.5 N, , (2.66)

Ux,v)z P

1 1 1 1
2 6 10 14 X

Figure 9. The universal ion—atom IP of the homonuclear pairs in the
quasistatic TF approximation taking into account a degree of
ionisation [90c]. Ton ‘reduced radius’ x( is linked with its velocity of
movement by relation (2.65): (a)the electrostatic interaction
contribution; (b) the kinetic energy contribution; (c) the total IP
(x = 1.132'/3R); Xg =00 (curve 1); xo =35 (curve 2);
xo = 3.5 (curve 3); xo =2 (curve 4).

where Vi is a static value of the potential, and 1\72 is the
number of electrons of the target atom that exist in the
electron cloud of an ion (of radius R ). Thus, in that case a
dynamic correction is proportional to the kinetic energy of
the particle. This result is not unexpected: a correction,
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proportional to the energy, to the long-range potential of
interaction of an electron with a hydrogen atom, was
obtained in [93], and still earlier a similar result was found
by Gombas [22] within the framework of the statistical
electron theory and is, in principle, at the foundation of the
pseudo-potential theory. Thus Eqn (2.66) may be regarded
as a generalisation of these results to an ion—atom
potential.

In Refs [89, 90] the authors used the terminology of the
‘velocity-dependent’ interatomic potentials. In that case, a
rigorous solution of a two-body problem could be obtained
with standard methods of classical mechanics. As can be
deduced from the results of this Section, however, the
effects mentioned here become significant at velocities of
the order of Z** and are best evident for intermediate and
large internuclear distances. In this case, the processes of
stopping and scattering at large angles are not sensitive to
variations of the potential, as they are defined by its
Coulomb asymptotics. Therefore for the practical use of
such potentials, the processes of scattering at small angles
and channelling might be most suitable when the particle
energy (and velocity) is constant in the first approximation.
Under these circumstances it is more appropriate to talk
about potentials that are parametric energy (velocity)
dependent.

3. Interaction of charged particles with solids

The question of the impact of the properties of a solid on
the atomic collision processes is a very complicated one.
This is in spite of the significant progress made in this area
recently. Of primary importance for the subject matter of
this review are the classical characteristics of particle
motion, when their calculation relies on the application of
interatomic and averaged potentials. Some related ques-
tions that are beyond the scope of these approximations are
considered more briefly.

3.1 Differential cross sections of the ion—atom scattering
For most of the ion—atom interactions in matter (except
the scattering of H on H,, He), quantum effects are
insignificant, and hence a classical description can be used.
In this case, basic relations of the theory and their links
with the experimental values are well known [95-97].
Therefore let us consider some practical methods of
calculation of the angles and cross sections which are
used in radiation physics.

A standard classical expression for the scattering angle
in the centre-of-mass system (CMS) has the form [95]:

e 00 b2/r
b= zjm [1—b2/P —V(r)/E]'?

dr, 3.1

where b is the impact parameter, E is a relative energy of
collision, r,, is the distance of maximal approach that can
be determined from the equation

LD Vi)
2 E ‘

In order to eliminate divergence of the integrand in
Eqn (3.1), the transformation given in Ref. [98] is used:

YAV I/
:g, P:—), cosa:ﬁ, H:ﬁ, 3.2)
E p r p

Taking it into account, we can transform Eqn (3.1) to the
form

sinado
[1— (P/H)? cos? & — cos ad(Hp /cos a) /H]'/*
(3.3)

0=n— —

2P J"/z

where @(x) =rV(r)/Z,Z, is the screening function of an
IP. Typically the angle 0 is small, therefore subtraction of
two similar quantities in Eqn (3.3) causes large errors. To
eliminate them, the transformation given in Ref. [99] is

offered:
2P /2 /2
0=n—208 [ @ da— [ ol —5(@)] aa
0 0
2P 2p (M2
= 2 arccot [tb(Hl )] +— .[0 [vo(o) = y(o)] doc, (3.4
where
() sin o
Yol&) = >
[1 = (P/H)? cos® o — cos ad(Hb)/H| 12
and y(a) coincides with the integrand in Eqn (3.3). An

integral in Eqn (3.4) is easy to calculate with the Simpson
formula. For 8 < 1 a small-angle approximation [95] is also
used:

dv 1
i s 28 Y

it is advisable to calculate this integral using the Gauss—
Christoffel quadrature formula [100]:

J] f)dx Z)‘(x xi:cosE ([—%)] . (3.6)

V1—x2
where f(x) is a function without singularities. Taking into
account Eqns (3.5) and (3.6), we have

T dv (. 1\
BE:—%;}’,‘ <F>r=rl, ri:bcos[; <l—§>:H .

3.7)

Usually even with n =20-30, Eqn (3.7) guarantees high
precision. Lindhard and coauthors [101] proposed a
modification of Eqn (3.5) for large angles, using the
representation of V(r) by means of a TF screening
function. Then, taking into account Eqns (2.37), (2.54),
and (3.5), we get

e = F(b> (3.8)
a
© 4 [ d
Fx) = —x J = [%] \/yziy_—xz (3.9)

Extrapolation of Eqn (3.8) to large angles consists in
substitution of 6 by 2sin(6/2). Next we introduce a

dimensionless scattering parameter +/f = gsin(6/2), and
obtain
b
Vit =0.5F (3.10)
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Solution of Eqn (3.10) with respect to b/a will give us a
universal relation,

b :a'l’(\/;) R

where ¥(+/1) is the function that is inverse with respect to
F(z). Taking into account Eqn (3.11), we present the
scattering cross section as

(.11

_ o2 d _nd’ f(/1)
do =2mbdb =na” — [¥*(V1)] =5

dt, (3.12)
where f(\/f) is a universal scattering function [101] which
depends upon the potential through @(x). For the TF
potential, the function f(1/¢) is approximated in the form
[102a]:

f(\/;) — lt0'57m[1 + (211‘]7"1)‘1] -1/q )

where 4 =1.309, ¢=2/3, m =1/3. For other screening
functions, similar parameters are cited in Ref. [102b]. If the
cross section is calculated based on an exact formula
describing the scattering angle, then, setting Eqn (3.12)
equal to 2mbdb and taking into account the relation
t = &”sin’(0/2), we get the scattering function in a general
form [103]:

(3.13)

db

f(Vt, e) = 4—§ b[0(1)] [— tan 2 sin Q] : (3.14)
a 6=0(r)

do 2 2
Thus in the general case f depends not only upon the
universal parameter ¢, but also upon the energy &, where ¢
enters also f(v/f, €) through b [104]. In Ref. [105] a ‘magic’
formula for 6(b) is proposed. This formula is convenient
for simulation of ion transport in the medium with an error
of about 1%. The corresponding code called TRIM
(Transport of lons in Matter) is widely used in radiation
physics.

Comparison of some theoretical approximations for the
scattering functions calculated with various potentials
(screening functions) with and without a large angle
approximation had been carried out in Ref. [104, 107].
In Fig. 10 the results of the computation are shown [104].
Curve 3 corresponds to Eqn (3.13), i.e. to the TF potential;
curve 2 approximates the experimental results for the
ranges [142]; curve I corresponds to the computation in
the wide angle approximation for an average potential [49];
and the dashed curves to the exact computations with
Eqn (3.14) for the same case. The points of the cut-off of
the curves at the large ¢ end correspond to the values of ¢
under consideration. As follows from Fig. 10, the form of
the potentials used influences mainly the scattering function
(compare curves / and 3). A large angle approximation
leads to 5% —10% deviations of f(¢!/2,€) with respect to
f(t'/?) when &> 1072, The scattering functions for the
energy-dependent potentials were calculated in Refs [106,
107]. In Fig. 11 the results of the computation [106] carried
out by means of the wide angle approximation are shown.
Curve I was plotted for the static potential, curve 2 for the
‘bare’ electrostatic one, and curve 3 for the velocity
Vi :0.24Zf/3 (a case of a homoatomic pair taking into
account ionisation ofa moving ion was under consideration).
The parameters of the screening function (2.28) corre-
sponded to those in Ref. [72]. Fig. 11 shows us that
taking into account the energy dependence of an I[P
dramatically decreases the scattering cross sections at
Vt <1, ie. at middle to large internuclear distances.

T, f(Vi,e)

04

03

02 |-

0.1

| | | |
1072 107! 10° 10!
N

| |
107° 107 107

Figure 10. The reduced scattering functions f(v/f) corresponding to the
various approximations and IP [104]: dashed lines — calculation of

f(V1, €) by (3.14) for the IP [49] for different & (values of v/f = ¢ at the

curves’ breaks correspond to the values of ¢ under consideration); /1, 2,
3 —calculation of f(v/) in the large angle approximation [/ — the
[49] IP, 2 — the experimental data [142], 3 — according to the
Formula (3.13)].

TV

05

e . .

1073 107 10! Vi

Figure 11. A scattering function for the velocity dependent IP of the
homoatomic pairs [106]: the static IP (curve /); the clectrostatic IP
(curve 2); for v, =O.24Z%/3, the ionisation being taken into account
(curve 3); according to Eqn (3.13) (curve 4).

3.2 Elastic and inelastic energy losses and ion ranges in
solids
Energy loss mechanisms of nonrelativistic ions in matter
are most typically linked with elastic and inelastic effects.
Fundamental stopping parameters are stopping losses per
unit length and stopping cross sections S. For elastic
scattering, by definition

dE

—:NS,,:NJTda,

0 (3.15)
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where T = T, sin®(8/2) is the energy transferred to a
target atom in a single collision,

E
«=4M M,
T (M, +M,)

is the maximum transferred energy, 0 is the scattering angle
in CMS, N is the density of the target atoms, and do is the
differential scattering cross section. The specific values of
S, are defined by the form of an interaction potential.
After introduction of a dimensionless unit of a range [101]
MM,
(Ml +M,)°

where z is the length of an ion range in matter (other

p= 4ma’N: (3.16)

variables have the wusual meaning). Substitution of
Eqn (3.12) in Eqn (3.15) and taking into account
Eqn (2.54) will give us
E:NTmaxn_l f(\/;) dt
dz 2 &)y Vi
4nM ZZaN 1
= 1212207 2 J £(x) dx (3.17)
(M] +M ) &
or, taking into account Eqn (3.16),
d 1(°
5a(€) :—Ez—J F(x) dx . (3.18)
d € Jo

Eqn (3.18) has a general character regardless of whether a
large angle approximation was used or not in order to
define f(x). Recently in the calculation of ranges, the
approximations of cross sections based on ‘average
potentials’ have become widespread (see Refs [49, 50]):

. (6) = 0.5In(1 + &)

£+ 0.1412£04206 ° (319

0.5In(1 4 1.383¢)
&+ 0.0132602123 1 0.19594£05

s(e) = (3.20)
Both Eqns (3.19) and (3.20) satisfy the passage to the limit
for £> 1, when a cross section becomes the Rutherford
cross section. In this case, it is not difficult to show that the
exact result is s, =0.5In¢g/e.

A cross section of electron (inelastic) stopping S, is
defined by

dE

dz =5
The theory of electron stopping power has not yet taken its
final form, despite a large number of existing approx-
imations. Numerous reviews and monographs have been
written on the various aspects of the subject [75, 108 —112],
therefore we shall restrict ourselves to the analysis of only
some recent results. For the velocities v; > Z,v,, the basic
approximation is the Bethe—Meller —Bloch theory [22, 75],
where S, x v| For v < Z] 2/3 vp, mostly S, o vq, but in the
case vp < vy < Z vo, where vp is the Ferml velocity, the
domain ofthe quadratlc dependence S, v] also exists [110,
111]. S, theory in the domain of the maximum for the case of
light particles was considered in Ref. [211]. For S, ox v; two
approaches are generally accepted: the Firsov model [113]
(which treats stopping as a sequence of individual acts of
the ion—atom interactions), and the model of Lindhard
with coauthors [114—117] which is based on dielectric

(3.21)

formalism. In their initial form both models have predicted
the monotonic dependence of S, upon Z; and Z,. Their
modification for the purpose of description of the Z, and
Z, oscillations has been elaborated in several works. The
main versions of the modernised Firsov theory are
presented in Refs [75, 118—122]. Although on the whole
this approach gives an approximate description of the
oscillation effects, as has been mentioned in Ref. [111],
generalisations of the phenomenological theory [119] reveal
a great deal of arbitrariness, especially where it is concerned
with the definition of the location of the Firsov plane and
the flux of electrons through it. A dielectric approach did
not develop so actively, and was primarily concerned with
the description of the Z, oscillations [123 —125]. Introduc-
tion in the dielectric theory of the Z effect is achieved at a
sacrifice of the model of a structureless particle. In this case,
stopping losses can be written in the form [126, 127]

dE 2 dk o, |

dz w73 Jo

where p, (k) is a form factor of the charge distribution of
the particle, and g(k,w) is a dielectric function. It is
essential that from this formula we can get both limit
relations for S, S, oxv; for vy Kvg and S, x vl_2 for
V1 > Vf.

It is believed [128, 129] that the linear dielectric theory
[Eqn (3.22) has been derived within its framework] cannot
be applied in the case of v; < vg, this opinion being based
on the absence of the Z, oscillations in calculations [127].
However, in the latter work a rough atomic model was
employed that does not take into account the shell structure
of the atoms. In Ref. [130] identical calculations have been
carried out with a piecewise-exponential approximation
[Eqn (2.25)] for the atoms with Z; < 18, which have shown
the presence of the Z effect. Therefore there are reasons to
expect that the results could be noticeably improved with
the use of the more exact form factors. Using Eqn (3.22),
we can also derive the dependence of the energy transferred
in one collision on the impact parameter b:

> dE dr
T.(b) :zj dE ,

42 {1 = ?/P) = [V()/ET}
where the main parameter of a dielectric function, namely
plasma frequency, depends on the density of the electrons
of a target atom, @, = /4np,(r). In this case it is evident
that the Z, effect is introduced into the theory through the
function @,. Calculation based on Eqn (3.23) has not,
however, yet been done in this form. Quantum general-
isation of Eqn (3.23) for the structureless particles was
made in Ref. [75], but because of the awkwardness of the
final formulas this approach has not been widely applied
and has only been used to describe the stopping of the
light, channelled particles. To simulate ion —atom collisions
in solids, the calculation methods that divide electrons into
the strongly and weakly bounded ones [112, 131—133] are
used as well.

In Refs [128, 129, 134, 135] the nonlinear S, theory
based on the known formula of Massey and Burhop was
developed. The generalisation of this formula can be written
in the form

(3.23)

S zﬂv12(1+1 Sln (51 5l+|)’

VF

(3.24)
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where v and n are the velocity and density of the Fermi
electron gas, and J; are the phase shifts of the electron
scattering on a self-consistent ion potential. The most
accurate calculations have been carried out in Refs [128,
129], where in order to determine an ion potential the
method of the electron density functional was applied. The
results of these calculations for Z; oscillations of the
stopping cross sections are in good agreement with
experimental data (although only ions with Z; < 18 were
considered). The semiempirical trend of the theory of
electron stopping is based on the concept of the Bohr
effective charge [94, 137]

Se(Z 1. Zyy vi) = Ziep(v1) Se(1, 22, v1) (3.25)
where S.(1, Z,, v;) is the stopping cross section of a
proton, and Z . is an effective charge of the stopping
proton. Several types of approximations for Z . are cited
in Refs [137, 138, 140, 141], among others—the analytic
approximations describing the effects of oscillations of the
cross sections are described in Refs [50, 140, 141].

The basic approximation used in the theory of ranges,
beginning with the fundamental work [101], is based on the
assumption of independence of elastic and inelastic stop-
ping mechanisms, with the resulting cross section
§ =8, + ¢, the reduced range p(e), and the relative energy
straggling given by [101]:

ple) = .[0 s(s)d+(s) ’ (3.26)
@) [ WE)

p’ B P ,[0 [Sn (&) + SC(S’)]3 > 3.27)
W(e) = %J: FWE)VEde, (3.28)

where y =4M M, /(M + M,)*, and f(/7) is a scattering
function. With ¢ € 1, if the Z, and Z, effects are not taken
into account, it is usually assumed that s, = 0.154/e. Most
probably, all the values considered are eventually related to
the scattering potential.

A comparison of the ranges and the parameters of their
distributions from the point of view of the IP role was
carried out in Refs [49, 104, 143]. Depending on the
potentials used, p, (ApQ)/pQ, and the other parameters at
¢ < 0.1 in these studies differ significantly, by several times,
when we pass to the higher moments of distribution, which
indicates clearly the dependence upon the potential being
used.

More precise calculations of the profiles of the distribu-
tion for the penetrated ions are carried out by the Monte
Carlo methods along with the transport equation methods
(see Refs [143—-145] and references cited there), but the
main factors that determine the results of calculations
remain unchanged.

In Ref. [146] a modification of the TRIM code [105] is
reported, with the approximation s =s, + s, being sacri-
ficed. Inelastic losses are directly taken into account in the
collision integral. This made it possible to improve the
agreement of the theoretical and experimental values of the
ranges for & < 1072, A similar method within the bounds of
the small angle approximation was proposed somewhat
carlier in Ref. [147].

3.3 Multiple scattering

The basic tool in the theory of multiple scattering is the
method based on application of the Bethe kinetic equation
[148], a general solution to which, suitable for arbitrary
ion—target combinations, has been found by Kompaneets
[149]. According to these studies, a function of the angular
distribution of the particles after having penetrated a film
of thickness / and atomic density N is given by

76) = zl—n J:o 1o (u6) duexp{—NlJ do[l JO(MB')]} ,

(3.29)

where do is a differential cross section, Jo(x) is the Bessel
function. Eqn (3.29) links the angular profile f(6) with the
interaction potential through the cross section do. Meyer
[150] presented the cross section in the form of Eqn (3.12),
introduced the optical depth 7= Nmd’l and the reduced
scattering angle # = ¢6/2. Eqn (3.29) was then transformed
into a dimensionless form (the angles 8 and Q are related to
the laboratory coordinate frame):

f(0)dQ =ndny L

00

xJ o(x n) exp [—TA(x)] dx , (3.30)
where the function A(x) is [f,(y) is a scattering function
given in Eqn (3.12)]:

00 4
A(x) :J "(—f) [1—Jo(xy)]dy . (3.31)
oy

In actual fact, however, in such a transformation the upper
limit of the integration in Eqn (3.31) should be equal to ¢
and thus take into account the asymptotics of f,(y) for
y > 1; this result is correct only for ¢ > 1. In addition, the
scattering function f,(y) itself (see Section 3.1) depends
upon ¢ and therefore angular distributions, generally
speaking, cannot be represented in a universal form even
for the TF potentials. Numerical results for the angular
distributions according to Eqns (3.30)—(3.31) are tabulated
in Refs [150, 1511 for the thickness ranges
107 <7< 2x10°. In these calculations, the TF poten-
tials with different screenings as well as the power series
ones were used. The results of Ref. [151] show that the use
of different kinds of potentials for 7 <1 leads to a
variation of several orders in the angular half-width of
the distribution profile. On the contrary, for 7> 1 the
results are similar because scattering is caused by the
Coulomb part of the potential.

In Refs [152—154] the authors assumed that particles
which penetrated the film at the angle close to 8 = 0 have
undergone collisions only when the scattering angles do not
exceed the angular half-width of the distribution for all the
particles penetrated, #,/,. Thus the elastic energy losses of
such particles are supposed to be limited, while the value of
the angle 7,/ is connected to the thickness 7 by the relation

tpeusale) = ety o= Slme (3.32)
where ¥, is the maximum scattering angle in CMS, s, (¢)
is the reduced cross section of the slowing down losses, ¢ is
a numerical coefficient close to unity (in Refs [151 —153] it
was assumed that ¢ = 1, and in Ref. [157] that ¢ = 1.4). In
Ref. [155], to develop these ideas it was shown that, under
the assumptions made, a simpler dependence exists:

Nijpp =& = 0.5¢ l/Imax . (3.33)
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This result directly follows from the relations

6 — aMQE] . E]aG
CZ\Zy(My+My)° n_ZZlZZ’
M
o= M2 (3.34)
M,+M,

where 0 is a scattering angle in the laboratory system, y is a
scattering angle in CMS, the rest of the designations being
standard. Taking into account Eqns (3.32)—(3.33) forc =1
we have [155]

’11/2
T

sa(M12) = (3.35)
Eqn (3.35) was verified by means of simulation with the
TRIM code [105] with the Moliere potential. In the case of
an analytical calculation, the cross sections s,(¢) derived
for this potential were approximated in the form (3.19),
where the numerical coefficients in the denominator were
substituted for 0.052 and 0.32. In addition, a similar
approximation was used for the potential Kr—C, calculated
according to the electron gas model (with the coefficients of
0.11 and 0.38). The results of the calculation of depend-
ences 7;,(t) based on the proposed formula and those
obtained by simulation are compared in Fig. 12. As would
be expected, the dependence obtained with the simulation
agrees better with Eqn (3.35) for the function s,(s)
corresponding to the Moliere potential. In Ref. [155] the
authors see the significance of these results in the
possibility of extracting the elastic contribution from the
total energy losses, since a simple method of estimating the
electron stopping does not exist as yet. Let us note that
Eqn (3.35) can be obtained directly from Eqn (3.29) if we
limit the integration in the exponent (3.29) by the value
=g [the cross section is expressed by means of a

&(1)
10° |

10*3 | | |
107! 10° 10! T

Figure 12. The reduced function of the angular width profile of the
multiple scattering [155]: calculation according to Eqn (3.35) for the
Moliere potential (curve /); according to Ref. [150] (curve 2); the
same as for curve / but for the Kr—C potential (curve 3); according
to Ref. [151] for the TF and Lentz—Jensen potentials (curve 4, 5);
according to Ref. [153] (curve 6).

scattering function from Eqn (3.12), with the subsequent
consideration of the relation (3.18)]and if we further use for
the Bessel function the expansion Jo(uf') ~ 1 —u?0'?/4,
and do a substitution of r = £?6'%/4 for ', bearing in mind
that 6’ < 1.

Based on direct summing up of the small angular
deviations, the Moliere theory [156] is also being used
for the interpretation of the experiments in multiple
scattering. It is less convenient for practical use as a
specific potential-oriented theory, since it tolerates only
variation of the screening parameters and the effective
particle charges. A comparison of the angular distribution
of Moliere [156] and Meyer [150] was carried out in
Ref. [75] (see also the corresponding references), where it
was shown that for T > 1 the results are close, and for 7 < 1
the agreement is poor.

As follows from Sections 3.1 and 3.2, differential cross
sections are most sensitive to the form of a scattering
potential when +/f, ¢ < 1. Thus for a correct comparison of
the experimental data with the IP we should calculate
angular distributions according to Eqn (3.30) without
further simplifications. The case with t < 1 is of particular
interest. The use of Eqn (3.35) gives us a possibility of
investigating the potential for 7 > 1 as well.

In conclusion we would like to note that in Refs [108,
151, 109] the formulas that directly link angular distribution
functions with the differential cross sections were obtained
but they have not been widely used so far.

3.4 Dynamic screening of potentials

When ions move in the plasma of a solid, their electric field
is further screened and thus the effectiveness of their
interaction with the atoms should decrease. The degree of
screening should decrease with the increase of the ion
velocity, and when v; > vy it approaches zero because the
screening charges have no time ‘to catch up’ with the
particle. The importance of this effect was described in
Ref. [158]. General formulas for the potential of a ‘bare’
electric charge moving in plasma with the velocity v, were
obtained in Refs [159 —165] within the scope of the linear
dielectric theory. In Ref. [163] the formulas for the density
fluctuations of the induced charge surrounding an ion were
also derived. Detailed presentation of topics related to the
mechanisms of forming the ionic charge states is given in
the review Ref. [327]. In Refs [91, 107, 166 —168] general
expressions are obtained for the short-range part of the
screened potential (taking into account its own electrons),
and further on the potentials of interaction with the
individual atoms of the solid. Following Refs [91, 166,
167], let us write a general expression for an ion potential

LJ d3qJ exp [i(q-r — a)t)]

D(r,t) =
1) =52 q*e(q, )

p(g)d(w —g-v)dow ,
(3.36)

where p(q) is a form factor of the charge distribution and
&(q, w) is the dielectric function. It is convenient to use an
expression for p(q) that corresponds to an approximation
of the electron density with Eqn (2.48):

N+Z

In order to simplify Eqn (3.36), one ecither integrates
directly with respect to the frequencies [163, 164], or

_cilqa./b)” b,)?

3.37
1+ (qa,/b;)* @37

plg) =
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introduces a cylindrical coordinate system in the p-space
with the z axis in the direction of the vector v; [160], and
then integrates with respect to the angular variable and the
z component of the vector. In this case we have [160]:

Sl R I e )

£}

(3.38)

where q2 =x*+ a)z/v%. When we integrate Eqn (3.38) with
respect to the frequency, we apply analytical properties of
the function &(g, w). If plasmon damping is absent, its poles
are real, and integration with respect to a complex contour
including the real axis, leads to the potential known as a
‘wake’ [159, 160, 163], which describes the polarisation
‘track’ of a particle. This potential and the possibility of
formation in it of the quasi-bounded states of the ‘escort’
electrons have been discussed in detail in the cited works
and are beyond the scope of this paper. Note that the space
period of the ‘wake’ potential is equal to v;/w, and that it
is localised behind the particle. Taking into account the
absorption in the function &(gq,®) leads to the diminishing
of the oscillation amplitude with the moving away from the
ion [163]. The short range part of the ion field is due to the
poles w = +ixv; for a ‘bare’ charge and the poles of the
form factor p(g) for the electron contribution [91, 167]. In
the first case, a specific dependence of &(g, ) upon ¢ is not
significant, because ¢ = 0. Then (in the case of N; = 0) we
get [163, 167]:

B(r,1) = Z, y ro Jo(pyw, /vi)

—= ___z =2 L
Vo + 72 vi Jo I+y

[0))
X exp [——p IZ'Iy] dy ,
Vi

(3.39)

where w, is the plasma frequency, z' =z — v, p and z’ are
the cylindrical coordinates of a point with respect to the
location of an ion at the instant . From Eqn (3.39) it
follows that the correction to the Coulomb ion field at the
point r =0 is equal to
_ Wy

AP(0) = -Z, T
If we consider it as the first term of an expansion of the
screened potential Z;exp(—ar)/r, it is evident that
o = mw,/2v;. Actually, the integral in Eqn (3.39) dimin-
ishes somewhat more slowly. In Refs [91, 165] it is
calculated in an analytical form and then represented by
an expansion with respect to the Legendre polynomials as
the functions of cos 6, where 6 is an angle between r and v;.
The spherical part of the expansion is nicely approximated
by the following equation [91, 168]:

Ady(r) =~ % [l —exp <—1.064 ©e r)] . (3.40)

Vi

Anisotropy of the potential A@ due to the taking into
account of the angular terms is not too large; in the
direction of the z axis the potential is somewhat larger than
in the perpendicular direction. These dependences are
shown in Fig.13 for the potential of H' in aluminum for
vi =3y (@, =0.56 a.u.).

For the ions with partial ionisation, the potential given
by Eqn (3.38) was calculated in Refs [107, 168]. The

0.6

04 -

02 +

0 1 2 3 4

r/a.u.
Figure 13. Dynamic clectric potential of the HY ion in aluminum at
vi = 3vy [168]: Eqn (3.40) (curve 7); Eqn (3.39) at p =0 (along the
direction of motion) (curve 2); similar to curve 2 at /=0 (in the
perpendicular direction) (curve 3).

dielectric function was taken in the form proposed from
Refs [127, 163]:

(,02

b
i+ 0.6vi¢* +0.25¢* — o’

e(g,0) =1+ , (3.41)

where @, is the energy gap width. Substitution of
Eqns (3.41) and (3.37) into Eqn (3.38) leads us to the
following result

Z,—N N
4’(1),2’):\/] = — —> ¢

02 + 772 \/p2+zl2 -

/12 72
Xexp(—p——i_zl),) _k(Z] _NI)

*

> Jo(kpy) exp(—k|']y) Ny ¢
X dy + -

,[0 1 +y2 Y Ay z,: bi
y J°° Jo(pb V2 —1/a,)

1AV a2

exp (—t|z'| 5—) dr, (3.42)

A:w%+ﬁ v%—v%:—i—i , (3.43)
! & a2 4a2

where k = (a)g +w§)/wp. It is evident that the first two
terms in Eqn (3.42) represent the static electric potential of
the ion at the point r = 4/p* +z'2, and the two last terms
are connected with the screening effect. It is not difficult to
show that the second integral is, as a rule, essentially
smaller than the first one. Majorising them by the
corresponding values at p =z’ =0 and assuming that c;
and b; are equal to the Moliere coefficients, we can write
the ratio of the second integral to the first one as

Sz].()u Vi

N, o (3.44)
Since usually w, ~ 0.5 a.u. and a,~0.2—0.3, then for
vi > v, and for Z; — Ny not too small we have s > 1. The
case Z; ~ N, is not really important because there the
screening due to the electrons of the atoms predominates.
Thus in cases important in practice the last term in
Eqn (3.42) can be ignored, and for the third term we can
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use Eqn (3.39) with the substitution of Z; for Z; — N;. The
sphere of applicability of Eqns (3.39)—(3.42), as noted in
Ref. [167], is limited to the distances r < v;/w,, when the
high-frequency harmonics of the potential are essential.
This case can be considered as a limit for the weak
screening, because the ion field at the point r varies rapidly
during the time of flight (in comparison with the plasma
oscillation period). On the contrary, for r>v,/w, the
variation of the field is small and screening is close to that
in the static case. Then in the limit w — 0 the dielectric
function can be presented in the form [169, 170]

1 2iw
8(q7 w) =

m‘F?, q < 2kp ,

(3.45)
where D is the Debye radius. The potential of the ‘bare’
charge Z,;, which can be obtained by substituting
Eqn (3.42) into Eqn (3.36), is equal to [91, 166, 167]:

z Z,D*vi
®(r,1) ==L exp <—g>r—'Tvl si1120(1 +g)
r

r 3 3 .
X exp (_B) +4Z VD (l ~3 sin’ 9)
2 3 x 1 2 2
——|stst+t-+=+—= —x)|, (3.46
x[xJ (8+8+x+x2+x3>eXp( x)] (346)

where 0 is an angle between the vectors r; and r — v,
r=[lr— v]t|2]'/2, x =r/D. From Eqn (3.46) it follows that
at large distances

V% 3 .5
@(r,t)wﬁ l—zsmﬂ .

In the case of partial ionisation of the particle, if we apply
the form factor [Eqn (3.37)] for ®(r, 1), it is not difficult to
obtain an analytical formula, but it looks more awkward.
The potential of interaction of a ‘bare’ screened ion with a
separate target atom is equal to [91, 167]:

U(R,t) = D(R,1)Z, — Jcp(R, Np@) &, (3.47)
where p(r') is the density of the electrons of the target atom
which, generally speaking, should be taken without
considering the collective part of the electrons (at least
for metals). Substituting Eqn (3.40) into Eqn (3.47) and
taking account of p(r') in the form given by Eqn (2.48), we
have

Z]Z2 - Z|N2 Cib?
UR) = exp(—aR) —
0= e = D G

Jon (22 - )]

where, as usual, R is the interatomic distance, and
a@=1.064 w,/v,. If an ion retains a part of its shell, the
main result for the static case [Eqn (2.18)] can be easily
modified. If, as noted above, we ignore the last term in
Eqn (3.42), then, as follows from this equation, our taking
into account the dynamic screening gives corrections —A@
to the potential of a point charge Z,, and (N,/Z|)A® to
the potential of the electron cloud, where A® is determined
by the second term in Eqn (3.39) with the substitution
w, — (wp +mé)]/2. Thus, we must introduce a correction
term in Eqn (2.18):

(3.48)

AU(R) = —A® % + J AD(R) (1 - Z—]‘) po(F)dF . (3.49)

Eqns (2.18) and (3.49) are of a general nature, irrespective
of the model used for the calculation of p,(r'). The
contributions to the IP which are linked with the electron
density functional should be calculated in a conventional
way. Evidently, in such a case we do not take into account
the influence of the screening upon the corresponding
terms of the potential. For v; =0 this influence, as was
shown in Refs [171, 172], is absent, i.e. the screening alters
only the electrostatic interaction of the particles. For v, # 0
the analogous result has not yet been established, but the
general considerations (decrease of the screening role with
the increase of velocity) allow us to assume that the
variation of the IP is due only to the potential AU(R). In
Ref. [107] calculations of AU(R) were carried out with
respect to Eqn (3.49) with the use of p,(r) in the
approximation given by Eqn (2.25). Moreover, in
Refs [107, 168] an expression for an ion—atom potential
is obtained for the case of the light ions that retain 1-2
electrons in a bonded state. In Fig. 14 the results of the
calculation of the potential H — Al for v; = 1.2v, are shown
[168] with or without taking into account the bonded
electron. Fig. 14 shows us that the screening essentially
alters the IP for R > 2 a.u. For heavy particles influence of
the dynamic screening is expressed to a lesser extent and
manifests itself at larger internuclear distances.

U(R)

10° |

107!

3 R/au.

Figure 14. The H-Al IP at v, =1.2v, ignoring the screening
(curve 1); taking the screening into account (curve 2); taking into
account the screening and a bonded electron of H (curve 3).

3.5 Continuous potentials of atomic chains and planes

in channelling

In the theory of the orientation effects that are connected
with penetration of the charged particles through the
crystals in directions close to the crystallographic axes
(planes) directions, one of the basic concepts is the
continuous potential (CP), which was introduced for the
first time in Refs[173-175, 70]. This potential is
characteristic of the coherent small angle scattering of a
particle on a large number of atoms of a chain (plane) that
interact with it within a small segment of its trajectory. In
this case, the processes of scattering at large angles as well
as noncoherent multiple scattering tend to be suppressed,
and the characteristic angles of the particle velocities with
respect to the directions of the channels do not exceed the
critical values 6,. For the classical particles a CP
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approximation is valid beginning from the keV energy
range, if the ion impact parameters with respect to the
chain (plane) do not exceed the quantity (ul +a )]/2
(where u;, and a are correspondingly the thermal
oscillations amplitude and a screening parameter). In the
case of relativistic lepton channelling, a CP model is valid
beginning from the MeV energies, provided that at least
several levels are generated in the potential well formed by
the channel walls. The wave functions of the transverse
motion of these particles are obtained from the Schro-
dinger equation which contains a CP, and which is
modified here by replacement of the electron rest mass with
a relativistic one. In the case of the isolated atoms of the
chain and the plane, the CP is equal to

Uch(r)zéro V(VZ2+r)dz, (3.50)
Upl(x):21tnsjo V(P +x*) pdp, (3.51)

where V(r) is an atom—atom [P, d and ng are the distance
between the atoms of a chain and the surface concentration
of atoms of a plane, respectively, and r and x are the
coordinates that are perpendicular to a chain (a plane). It is
not difficult to show that these relations determine the zero
coefficients of the Fourier expansions of the sum of
interactions of a particle with all the atoms of a chain (a
plane). In initial studies on the calculation of channelling of
positive particles [173—178], the total potential acting on
an ion in the channel was chosen in the form of the CP
from a few neighboring chains (planes). The approxima-
tions used [Eqn (2.37)] contained the screening functions of
Lindhard [70] and Moliere [66] [see Eqns (2.41) and (2.28)].
The well-kknown expressions of the CP [176] follow from
Eqns (3.50)—(3.51).

(a) In the case of a chain:

22,2 34712
Uk (r) = (]1 2 In [1 +7] , (3.52)
_2z, z
UM (r) 2 Z ¢k, > . (3.53)
(b) In the case of a plane:
2 2
Upi(x) = 2rn,Z, Za (—2+ 3) ——} , (3.54)
a a
C; bx
UM (x) = 2nnleZ2a2i: [7 exp (—7) . (3.55)

Here a is a screening parameter and Ky(x) is a modified
Bessel function. In Refs [177, 178] the values of ‘thermal’
CPs within the bounds of the Debye approximation for the
displacements of the atoms from their positions of
equilibrium were obtained. In the absence of mutual
correlations, the probability distributions of the displace-
ments of the atoms for the axial and plane cases are equal

to [178]:
1 AP
f(8r) = 2 e (— E) : (3.56)
_ I Ax?
for(Ax) = NZTh exp <— m) ) (3.57)

where wu; and u; are one- and two-dimensional
(u, =+2u;) mean square amplitudes for the thermal
oscillations of the lattice atom, Ar and Ax are displace-
ments from the chain and plane. Taking into account
Eqns (3.56) and (3.57), we can present the ‘thermal’ CP in
the form:

0= [ araan [ dosuian

xUCh{[r2 + (Ar)? — 2rArcos 0]]/2 } , (3.58)

vne) = [ d@nn@ v -ax). 659

Averaging the plane potential [Eqn (3.55)] will give [177,

178]:
b; u]
242

Up(x) = nZ szz

ol i)
ron)onl ()]} o

erfe (¢) = % fo exp(—y?) dy

Similarly, for an axial CP determined by Moliere [179]:

Z]Z2 2 ! r2t (1,2 dt
UL(r) = c;iexp(qi J exp|l ——5——] —
ch() d 2’: i ( 1) 0 uzl t

where ¢; = bu, /2a. Formulas (3.60) and (3.61) and the
analogous formulas for the other potentials [187] are
inconvenient for numerical calculations that include a sum
of the CPs for a large number of planes (chains). Therefore,
in Ref. [183] for the resulting potential of a crystal, which
acts on a particle of charge Z; and moving in the
channelling regime, the following formula was proposed:

, (3.61)

Ulp) =" Z ve, oxp(ig1p1) S(g1) exp(=0.5¢1ul), (3.62)

where p, is a transverse coordinate, Ve, is a Fourier
transform of an atomic potential, S(g,) is a structure
factor, Q is a volume of an elementary cell, g, is a
transverse component of the inverse lattice vector, u; = u,
for a plane case, and u, = v2u, for an axial case. For a
monoatomic crystal, the ‘lattice’ has the simplest basis in
the transverse direction , and thus S(g,) = 1. In the case of
the crystals of a complex composition, Eqn (3.62) can
easily be generalised by introducing an additional summa-
tion with respect to the differing components [186].
Formula (3.62) seems evident for u; =0, i.e. in the case
of a static lattice. However, its identity in the case of
u; # 0 with a generalised potential expressed as a sum of
the individual CP of the type given by Eqns (3.60) and
(3.61) appears to need justification, because the Debye—
Waller factor is included in Eqn(3.62) by analogy with a
formula for an x-ray scattering amplitude. Let us first
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consider the planar case by rewriting Eqn (3.59) in the
form [187]:

Upilx) = \/2_%% j:o up.(z){eXp [_ (& 2+u ;2)]

(z _x)2]} dz . (3.63)

2ui

+exp[

Taking into account that the total potential acting upon a
particle due to all the planes is equal to

Ux) =Y Uh(x +ndy) (3.64)

where d, is the interplanar distance, and expanding
Eqn (3.64) into the Fourier series, we get (g, = 2nn/d,):

U(x) = U(g,) exp(igax) - (3.65)

The expansion coefficients U(g,),
Eqn (3.51), are equal to

taking into account

2
U(gn) = == Upi (84) exp(=0.5g,u7) (3.66)

P

On the other hand, if the atomic potential V(R) is
spherically symmetric, the corresponding form factor is
equal to

sin(gr)

v, =41 J
§ 0 8gr

Integrating Eqn (3.67) by parts, and taking into account
the asymptotics of V(R) and Eqn (3.51), we obtain:
2
Vg = l’l_ U(gn) .

S

V(r)rdr. (3.67)

(3.68)

Since in this case Q = d/n,, from Eqns (3.65)—(3.68) it can
be seen straightaway that Eqns (3.65) and (3.62) are
equivalent, because g, =g, = 2nn/dp and u; =u;. In
the axial case, analogously with Eqns (3.65) and (3.66),
the Fourier expansion coefficient is equal to

1 .
Ulg,) = 9—2 Jexp(—lgr p1) Uéh (L) d2l’l

1
=@ V(o) exp(—0.5¢1u7) (3.69)

00
Ua(gL) = 21cj U (r)rdo(gor)dr (3.70)
0
where Jo(x) is the Bessel function. On further transforma-
tion of the form factor, we obtain:

v, = J exp(—ig-r) V(r) d’r

= ZRdJ:o rUq(r) Jo(gr) dr =dUy(g) . (3.71)

Taking into account that @, = Q/d, we again return to
Eqn (3.62). However, the Debye—Waller factor, as in the
case of a plane potential, is equal to exp(—O.Sgiu%), as
opposed to the result obtained in Ref. [183]. Thus, in (3.62)
both in the plane and axial cases u; =u;. When we
calculate the potential for the channelling of heavy
particles, it is evident that, in Eqn (3.62), instead of Z,v,

we should substitute the Fourier transform of the ion-—
atom [P.

In Refs [180—182] in order to calculate the radiation
spectra of the relativistic channelled electrons and posi-
trons, the approximation of quantum-mechanical atomic
factors was used from the work of Doyle and Turner [184]:

4
ve =2mf(s) =21y a; exp(—b;s7) (3.72)
i=1

where g = 4mns, and q; and b; are the tabulated coefficients.
Inverting it, we obtain the Doyle—Turner atomic potential

053 (3) oo (-5)

where B; = lai/41t2. Eqns (3.73) and (3.74) are convenient,
because if we take into account Eqns (3.50), (3.51), (3.58)
and (3.59), they will provide us with the simple equations
for the ‘thermal’ CP of a chain [181, 185] and a plane [182]:

(3.73)

( ZZ] 24: r2 (3 74)
r — s .
Ush ‘' B, +M] B,-—i—u%
2
X
=2 z - .
Upi(x) = 2v/mng lZ(B o )1/2 ( Bi+2u$)
(3.75)

Note that although the potentials given by Eqns (3.74)—
(3.75) are usually considered to be quantum-mechanical
ones [180—182], such identification is not quite correct.
This follows from the fact that Eqn (3.73) does not
reproduce the asymptotics of the atomic potential for
r — 0. Moreover, the electron density that corresponds to
Eqn (3.73) does not describe the shell structure. In that
sense, the CP obtained on the basis of a piecewise
exponential model [Eqn (2.25)] and an analytical HF
model [321] are more justified. The corresponding
equations for the static and ‘thermal’ potentials are cited
in Refs [45, 187]. A comparison of the different approx-
imations for the CP based on analysis of the characteristic
radiation of the channelled particles is given in Section 4.6.

The potential given by Eqn (3.62) can be generalised
when a crystal consisting of several kinds of atoms (ions) of
type i is deformed by a field of a transverse ultrasonic
(electromagnetic) wave with a frequency w, (w,) [277]. If x;
is an amplitude of the atomic displacements that are
induced by this field, then the averaged (with respect to
the plane) particle—crystal potential will be

U(xt —222 :m‘IO(gm

i m=

+4 ZZ Z Cim JZp(&m i

i m=1p=1

x cos(2pQk) +4ZZZ Cim J2p—1(8m* 1)

i m=] p=1

l Cos(glﬂ )

)l Sl”l Cos(glﬂ )

X(=1)FS;, sin(g,x)sin[(2p — 1) Q] ,  (3.76)
where g, =2mm/d, is a vector of an inverse lattice,
Q = (¢/vs)w, for an ultrasonic wave, and Q = (n — 1)w, for
an electromagnetic wave (v, is the velocity of sound, c is the
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velocity of light in vacuum, and »n is an optical refraction
index); S;, depends on the channel type [in the case of
(100) and (110) NaCl, for example, S;, = 1, and for (111)
NaCl, S;, = (—=1)" I, J;(x) is the Bessel function of the kth
order; coefficients c;, are equal to

n»‘id i gl2n”tl2
Cim = : g [Zi_pi(gm)] exp<_T> .

3.77
T
In Eqn (3.77), ny; and d,; are the surface density and the
interplanar distance for the sublattice of the ions of type i;
pi(g,) is the form factor of the electron density; and u; are
the corresponding amplitudes of the thermal oscillations.
The problem of taking into account the dislocation
effects is similar to the problem of influence of an external
periodic field on a CP. The former is considered in
Refs [315, 316] with the model potentials.

3.6 Surface effects

When a charged particle moves near the surface of a solid,
the role of the plasma effects essentially increases. As is
shown in Refs [188, 189], in this case the stopping losses
are connected with excitation of the surface plasmons and,
in addition, a dynamic-induced surface potential appears,
similar to the potential in a volume [see Eqn (3.36)]. In the
conditions of a sliding interaction with a surface on a
section of the trajectory after reflection [245], the surface
‘wake’ potential attracts a positive ion, and this may give
rise to its spasmodic motion [190]. The other effect is
connected with the possibility of orientational influence of
the surface on the motion of a diatomic molecule or a
cluster, which causes a rotation of the line perpendicular to
the surface of the nuclei [112, 191]. In Ref. [192] the
influence of the ‘wake’ interactions on multiple scattering
was also considered. In particular, an emergence of the
coherence of the scattering for the small angles between the
direction of the velocity vector and the molecule axis was
mentioned.

There are two main approaches most often used in the
theory of dynamic surface potentials (and of the stopping
power): a dielectric method based on the model of a
specular reflection [193-199], and the method of an
effective Hamiltonian in the representation of surface
plasmons [188—190, 200]. The trajectory of a particle
before and after deflection is assumed to be rectilinear.
The most general equations for the induced dynamic
potential are obtained in Ref. [199]. In particular, when
a charge (having velocity components v and v, parallel and
normal to the surface) moves outside a solid, the induced
potential is equal to

@™ (1, 1) :Z—]zj d2kJ da 1 exp(;k|z|) klp —m

21 ((D—VH-k) +Vik? k10+1t

X exp[—i(k-v| —o)1] , (3.78)

where k = (k,, k), z is the distance from the surface, and
Iy is defined by the expression

; _J°° dk,
") @R ek, 0)

With regard to Eqn (3.78), the stopping losses per unit path
length are equal to

dE 1 dE Z, [ oo™
—_— == | - vi ).
dx vy dr v o !

(3.79)

(3.80)

Taking into account that, for the rectilinear motion r = vf,
we have

dE_ Z, (09™
dx v ot r:v]f-

In Ref. [199] the equations for calculations of dE/dx with
the different approximations of a dielectric function are
cited. The case of the ‘dressed’ ions has not been considered
so far. It is evident that sufficiently far away from the
surface Z,®™(r, 1) may be considered as a potential
resulting from the ion-—solid interaction. However, for
7z < 1.2 a.u. one should take into account pair interactions,
and so far it is not clear how this can be made compatible
with the dielectric approach. As a rougher alternative
model the use of a ‘continuous’ potential of the surface of
the form given below was proposed [202, 203]:

(3.81)

U(x) :Nro dzrozmv( Z2+r7)dr,

x 0

(3.82)

where N is the density of the target atoms, z is the distance
from the surface, V(R) is the pair IP of a particle with an
atom of the medium. In the computer simulation of the
sliding reflections, all the known codes, such as TRIM
[105], MARLOWE [204], and the like [205, 206] deal with
the usual IPs, with collisions being considered according to
a binary scheme.

In conclusion let us note that in a number of works the
dynamic effects due to interaction of the neutral particles
with surfaces have also been studied. In particular, in
Refs [207, 208] such effects have been considered for the
van der Waals interactions of neutral atoms with cylindri-
cal and plane surfaces. In Ref. [208] it was shown that, for
nonrelativistic motion of an atom that moves parallel to the
surface, apart from the attracting force, a stopping force of
a comparable value and, under some conditions, even an
accelerating force acting in the direction of motion of the
particle and caused by the energy exchange of the particle
with the surface plasmons may appear. Some other effects
related to the small angle reflection of ions from the surface
are considered in Ref. [245].

3.7 Characteristic features of interactions at high
energies

In this Section we shall discuss briefly a number of recent
results connected with taking into account the effects that
are beyond the scope of the standard approximations for
pair and averaged potentials. Thus, in radiation effects that
appear in the interaction of relativistic electrons and
positrons with the crystal lattice, a significant role is
played by the noncoherent processes of gamma radiation
generation with the simultaneous birth or absorption of
crystal excitations [304, 306, 307, 317]. Radiation transi-
tions accompanied by the transfer of the longitudinal
momenta of the order of 2mn/d to the lattice (d is an
interatomic distance in a chain) can be considered by
taking into account only the discreteness of the atomic
chains (and their potentials) in the longitudinal direction.
This mechanism is especially significant in the regime that
is transient from the plane to axial channelling. In the case
of motion of electrons with angular momenta that are
small with respect to the chains, it is necessary to take into
account the variation of their kinetic energy due to
longitudinal oscillations of period d/c, which is achieved
by adding an additional term to a CP associated with this
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energy [304]. The effect of a rainbow scattering of electrons
appears in thin crystals [313, 314] because of the coherent
addition of the amplitudes of scattering to the same angle
for the momenta of different particles with respect to a
single atomic chain. On the contrary, a similar effect in the
scattering of positive particles (protons) [310, 311] was
interpreted within the concept of the interference of the
contributions of scattering from several chains.

In review [309] the phenomenon of dynamic chaos due
to combined action of the crystal fields and noncoherent
effects upon the oriented motion of the particles was
considered. In particular, the idea of an atomic plane as
a system of crystal axes was developed.

In order to take into account scattering of the particles
by the field originating from the lattice polarisation, the
optical (complex) potentials for the electrons and heavy
particles are used [112, 318]. Within the scope of this
approach, the stopping power functions and coefficients
of ‘absorption’ of the heavy channelled ions were obtained.

In Refs [305, 319] the authors discussed induced-dis-
persion interaction of the particles with the lattice, which
consists in the fact that on the atom that is moving in
longitudinal-periodic field of a crystal lattice, an electric
(and in a magnetic lattice—a magnetic) moment p = oF is
induced, that interacts with the field generating that
moment, during the whole period of the particle’s flight.
This effect accompanies the known phenomenon of the
resonance excitation of the atom discovered by Okorokov
[320]. One more work [305] deals with the potentials of
magnetic interaction of neutrons with the magnetic field

1
H=—-v-E
¢

induced in their rest system, where v is the neutron velocity
and E is the electric field of the lattice.

4. Experimental results

I would like to point out that, owing to the limitations of
space and time, the analysis of the experimental results is
not in the least exhaustive. In the process of selection of
this material we put the emphasis on such topics, the
theoretical interpretation of which within the bounds of
description of the models still calls for elaboration.
Discussion of the characteristic radiation in channelling
is restricted to a plane case, where only those positions of
the lines of the detected radiation which are directly
connected with the potentials are considered. Other
subjects can be found in monographs and reviews [10,
11, 112, 306-310, 314].

4.1 Energy losses and ranges of the low-energy ions

Over the last 15 years, significant progress has been made
in describing the stopping of low-energy (¢ < 1) ions and
their ranges, when the main mechanism of energy losses is
nuclear stopping. The universal theoretical model of
Lindhard et al. [101] is at the base of these achieve-
ments. This model is based on application of the relations
(3.16)—(3.18) for the cross sections of elastic slowing down,
as well as the equation s, = 0.154/¢ for the inelastic ones
and the assumption of their independence. The result of the
development of this concept is justification of the universal
‘range —energy’ dependence [50b, 50c, 142, 209, 210], which
agrees with the experimental dependence pcxp(a) obtained

for the amorphous silicon targets with a deviation of
several percent (on the average). At a semi-empirical level,
the introduction of the effects of Z, and Z, oscillations for
the cross sections of slowing down was successfully
achieved [50b, 50c, 211]. It further encouraged the
successful development of the theoretical description of
the processes of sputtering of solids due to ion bombard-
ment [210-212]. Deviations from the universal dependence
for the metal [213] and ion—crystal targets [214, 215] have
been overcome by modification of the screening parameters
of [Ps [216] and by taking into account ion—ion
components of interaction of a particle with a target
[214, 215]. However, there is so far no adequate theoretical
description of the Z; and Z, dependences of the stopping
cross sections and variables related to them. This gap in the
theory was known already at the level of differential cross
sections of elastic scattering. Their oscillation, although
observed in experiments [217, 218], could not be described
even with the most precise interatomic IP calculated with
respect to the electron gas model (a detailed discussion of
these experiments and the results of calculations is given in
Refs [48, 75]). The situation became even more complicated
when a significant effect of the Z; oscillations of the ranges
in amorphous semiconducting targets and its absence in
metal targets was discovered [219-221]. Since at the
energies of the order of 1 keV amu.”, typical for these
experiments, the ratio of the elastic and inelastic losses is
about 10:1, the assumption was made that the range
oscillations were due to the elastic cross section oscillations,
and, finally, to the shell-effects of an IP. To this end,
calculations of the ranges were carried out on the basis of
application of the potentials that were calculated by means
of the electron gas model [222 —225], and which, as could
be expected, were not in agreement with the experimental
results. This can be seen from Fig. 15, where theoretical
[225] and experimental dependences p(g) for the ions of Au,
Yb, and Eu in amorphous silicon [220] are shown.
Oscillations of the stopping cross sections were also
observed on gaseous targets [218, 226]. In this work a
suggestion was made that the effect was due to the
oscillation of the cross section S, of electron stopping. In
that case, the corresponding amplitudes should be of the
order of 200% of the mean values of 0.154/6. Experimental
results of the measurements of electron stopping [227]
apparently disprove this conclusion, as they show that the
amplitude of the Z; effect in carbon does not exceed 20% .
Note that from the initial experiments concerning Z
oscillations it was known that their amplitudes in carbon
are especially large [228, 229]. Thus, this effect is probably
due to elastic stopping. Theoretical difficulties seem most
serious so far as gaseous targets are concerned since the
potentials of interaction of the free atomic particles in this
case are more adequate for the experiments. As an
alternative, factors responsible for the oscillations of
differential cross sections, an impact of inelastic effects
on the one hand [231] and generation of the quasi-
molecular states [48, 218] on the other, were suggested but
these ideas have not been developed to a proper extent.
The problem of the absence of Z; oscillations of the
ranges in metal targets remains unsolved as well. A working
hypothesis was proposed in Refs [220—225] that the
electron gas screening the ion ‘masks’ the details of the
shell structure. General considerations suggest, however,
that for a large ion size a screening electron cloud should
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Figure 15. Ion ranges in reduced units. Open circles denote the
experimental data [220], and solid circles the theoretical calculations
[225]. Solid lines are for the purpose of demonstration of the
dependence.

also be large enough, so the peripheral electron distribution
around an ion should be very close to the distribution that
corresponds to a neutral atom, and therefore the fact of
suppression of the Z, effect seems doubtful. On the whole,
these matters have still not been clearly understood.

4.2 Multiple scattering

A detailed review of multiple scattering considering the
relation between theory and experiments up to 1980 is
given in Ref. [75], where the corresponding references are
cited. A number of recent results can be found in
Refs [233-239]. On the whole it can be said that, for
the large reduced target thicknesses (7 > 1, see Section
3.3), a good agreement between the theory and experiments
is evident. However, for ‘slow’ ions with energies between
3keV and 1 MeV, in a number of cases essential
divergences were noted [240-242]. In Ref. [241] Z,
oscillations of the angular half-width of the scattered
particle distribution were observed. In scattering on the
polycrystal targets with grain sizes over 100 A, the
experimental angular half-width is sometimes only 25%
of the theoretical half-width [243]. This difference was
attributed to the influence of channelling. Experimental
angular distributions (especially for thin targets) are, as a
rule, narrower that the theoretical ones, which indicates a
weaker scattering potential. However, in the interpretation

of the angular distributions of the Li ions scattered on V,
Cr, Fe, Co, and Ge targets [240], on the contrary, it was
necessary to decrease the screening parameter by 20% —
30% in order to improve the agreement with the
experimental results, i.e. the scattering potential was
higher than the theoretical one.

Recently, interest in multiple scattering had increased
because of the correlation that was discovered between the
energy losses and the angle of escape of a particle leaving
the film. For ions, this effect was noted in Refs [232 —234],
and for electrons in Refs [235—-236]. In these studies, an
increase in the stopping losses of particles with an increase
in the angle of the outgoing particle was observed with
subsequent saturation of dependence. Intensification of the
effect with the increase of Z, was noted. In the case of
penetration of the protons with energy 100 keV [234], the
effect was observed up to the outgoing angles of o = 15°.
The practical significance of these investigations is stipu-
lated by the necessity of increasing the accuracy of
measurements of the energy losses of proton beams used
for calibration in studies of the radiation stability of
materials (in particular, biological tissues). The interpreta-
tion of experiments [232—234] is not completely clear so far
(see, for example Refs [237, 238]). While at the energies of
E <1 MeV in the angular range 0°—3° one might expect
the influence of the channelling effect for a part of the beam
[234], for the angles of 10°—15° it is certainly not the case,
and therefore the experimental results cannot be explained
by this effect (although it diminishes energy losses). The
same can be said about experiments [232, 233], where the
proton energy was 7 MeV. The saturation of the depend-
ence was observed at the angles 3°—4°, which exceed the
critical angles of channelling by an order of magnitude. In
Ref. [237] it was noted that although the simulation results
[233] agreed with the experimental dependences, the
stopping powers that were used in calculations and that
depended upon an impact parameter, were three times the
stopping losses calculated in the local electron density
approximation, which was considered reliable enough at
these energies. Calculations of the slowing down made by
means of the semiclassical model [238] with separation of
the contributions of the inner and outer electrons led to still
lower values of the energy losses (for the impact parameters
close to zero).

The investigation of multiple scattering of the partially
‘stripped’ ions, with specific processes of charge exchange
and screening, or when there is E-dependence of an IP, is of
particular interest. For light ions with Z; < 10, the first two
effects are most important. In Ref. [239] angular distribu-
tions of the N and 'O ions with energies 30—
330 keV a.m.u.”! scattered on metal films were meas-
ured. The authors of Ref. [239] achieved a consistency
between the measured and theoretical (according to
Moliere) angular distributions, on the condition that the
effective ion charges responsible for multiple scattering are
1.5—1.8 times as high as the effective ‘stopping’ charges.
Hence, it was concluded that a multiple scattering process
occurs at smaller impact parameters than that of stopping.
This conclusion seems to contradict the idea of correlation
of energy losses with the scattering angle, which has been
discussed earlier. In order to clarify this point, in Ref. [107]
calculations of the angular distributions were made with
respect to the Moliere theory modified with an interaction
potential taking into account the experimental values of the
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Figure 16. Angular distributions of the %0 ions that penetrated an Al
film with the thickness /= 0.3pum; e and o—ecxperiment [239] for
E =1.25 and 1.77 correspondingly; / and 2—theoretical calculations
that ignore the dynamic screening [108]; 3 and 4—taking into account
the screening and degree of ionisation.

degree of ionisation and dynamic screening. The results of
computation of angular distributions of the ions scattered
on the aluminum films are compared with the experimental
ones in Fig. 16. The value of the plasma frequency is
assumed to be equal to 0.57 a.u. From Fig. 16, it follows
that the application of a more correct potential can explain
experimental dependences without additional assumptions
concerning ‘special’ impact parameters.

4.3 Critical angles of channelling

In the Lindhard model [70], a critical channelling angle 0,
is directly connected with the value of a scattering
potential. In the axial case, 6, can be found from the
equation

Ud (ecrd) =E Ggr P 4.1)

where Uy (r) is a continuous potential (CP) of the atomic
chain that is defined by Eqn (3.50), d is the distance
between the atoms of the chain, and E is the particle
energy. For a CP (3.52) from (4.1) the well known formulas
for 0. at high and low energies [176] follow

YAV £ 22125

dE ° a*
cr — (42)

37,Z,a*\"% E< 221222d’
&PE ’ ¢

where a is a screening parameter. The value of the energy,

2Z,\Zyd
E— 122 .
a

in the case of proton channelling in (110) Ge is 170 keV. In
experiments, the angular half-width of the backscattering
dip ¥/, proportional to 6 is measured rather than 0
itself [178, 244, 246]. The dependences ¥, x E~'? and

Vi o« E'/* that follow from Eqn (4.2) at high and low
energies are nicely verified in experiments, although the
low-energy range (E < 0.5 MeV am.u.”") is less studied
[247—-250] because the experiments are complicated by the
dependence of xp,/z on the scattering depth, by the necessity
of a detector with better energy resolution, and by other
factors. I would like to stress, however, that the depend-
ence ¥, ), E~%is good for any form of potential, where
a relation ¥, o« E71/* is specific only for the Lindhard
potential given by Eqn (3.52). In the general case, solution
of Eqn (4.1) leads us to function 6.(E) of a more
complicated form which has been noted for the first
time in Ref. [251], where the ‘fall’ of the dependence 0., (E)
(from the low-energy part) in channelling of the protons of
the keV energies in tungsten has been studied. Experi-
mental confirmation of this result was reported in
Ref. [252].

In the event of plane channelling at both low and high
energies, relation 6, = y/Ug/E is valid, where Uy is the
height of the potential barrier, and therefore the energy
dependence (if any) of the value of ¢|/2\/E unambiguously
indicates a variation in CP. This fact was noted for the first
time in Refs [91, 166, 167], where it was shown that an E
dependence of an IP or its variation due to influence of
dynamic screening and variation in the charge state could
induce an increase (decrease) of xp,/z in comparison with the
expected values by a factor of 10% —15% . A decrease in the
recorded angles of capture of Br and I ions in the plane
channels of an Au crystal with the increase of energy have
been noted in Ref. [253], where the channelling of ions with
the energies of 20—80 Mev has been studied. Unfortu-
nately, there are no other experimental data available. It
should also be noted that the form of a CP also influences
the angular profile of the backscattering dip [176]. How-
ever, this phenomenon did not attract the attention of those
who tried to find a more precise definition of a potential.

4.4 Measurement of the trajectories and potentials
in the planar channelling of heavy particles
The planar channelling of ions, in contrast to the axial type
(and also to the channelling of electrons and positrons), is
specified by a marked periodic motion of particles at small
depths (in this case the effects of multiple scattering are still
small). This effect results in oscillations of the back-
scattering yield and the secondary processes concurrently
with the approach of the particles to the atomic planes. The
stopping the moving ions generates energy ‘scanning’ of the
backscattering spectrum, its oscillations being due to the
reflection of particles at depths that are multiples of the
trajectory half-wave A/2. The distance between adjacent
maxima a and b of the energy spectrum is given by [254]
A cos 6

AEy ~ 3 S (K*Ey) F@:t—i_ kS (Eo)| »
where E, is the initial energy, k is a kinematic factor of the
backscattering, 6;, and 6,,, are the angles of incidence and
emergence from a crystal which are estimated from the
normal to the surface, S.(E) is the stopping power of a
nonoriented motion, y is the ratio of the stopping power of
the particles with a large oscillation amplitude, contributing
to the scattering, to S,. Measuring AE,, gives information
related to A and a potential, on the one hand, and to the
energy losses, on the other hand. In most known
experiments [255—263], such spectra have been measured

4.3)
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for different ratios of cos 8,/ cosf,,, (the so-called ‘cosine
method’ [254]), and the value of A has been determined
from Eqn (4.3) by means of the tabulated values of S,
[50b]. Barrett [264] proposed a ‘g-method’, where the ¥,
angle corresponding to the maximum of backscattering
could be found by scanning the angle of inclination of the
beam with respect to the planes. The value of ¥, is related
to A/2 by the expression
A

q= 5 ‘pmdp ’ (44)
where d;, is the interplanar distance, ¢ is a constant of the
order of unity, which is typical for the given energy and
plane. Eqn (4.4) is derived by computer simulation and has
a clear physical meaning: if a particle that starts moving
from the centre of a channel at the angle of {,, with respect
to a plane moves along a straight line, then it would
intersect the plane at the depth Az = A/4. In this case we
would have ¢ = 1. In reality, its trajectory is curvilinear,
which increases the values of A and ¢g. Ref. [254] shows in
particular that, for the He ions with the energies 1-2 MeV
which are channelling in a germanium crystal,
1.39 < ¢ < 1.43. The param-eters 4 and ¥, are connected
with a CP in an obvious way:

_ [Us
‘pm - EO H (45)
/2
=4 %J 4 4.6)
My o /Ug—U(x)

where x is counted from the middle of the channel,
Ug = U(d,/2) — U(0) is the barrier height of the potential,
M, is the mass of the particle. Comparison of the
theoretical [calculated with Eqns (4.5) and (4.6) and by
simulation] and experimental values of A and V,,
determined by the ‘cosines method’ and by the ‘¢-
method’, shows us [254] that there is an agreement
between them with a 3% —10% deviation, where the
He—Ge IP should be ‘weaker’ than the Moliere potential
having a screening parameter given by Eqn (2.29). This is
probably due to the influence of the screening with respect
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Figure 17. Relative yield of the backscattered helium ions with the
energy 2 MeV as a function of the depth while channelling in (110) Ge
[254]. The points correspond to the experimental values, and the solid
line to the simulation.

to a bonded He electron and the electron gas of the crystal.
In Fig. 17 the experimental and simulated spectra of the
yield of the backscattered particles are shown as a function
of the depth, the resolution with respect to the latter (in
experiment and in simulation) being 12—13 nm.

Another trend in the empirical evaluation of potentials
has been initiated by the works of Robinson [265]. It is
based on the application of empirical dependence of
stopping losses upon the frequency of oscillations of the
ions in a channel (¢ and f are empirical constants typical of
a given type of an ion and channel):

dE
S =4

=a+ fo, 4.7

E=E,

where @ is the frequency of oscillations which can be

determined by the formula (x,,c is an oscillation
amplitude)
_ Ymax dx
o '=2J 7 - (4.8)
0 [U(xmax) - U(x)]

Factor +/2M | in Eqn (4.8) is omitted, because it is included
in the coefficient f in Eqn (4.7). Robinson proposed a
model expression for the stopping power of the form

S(x,E) =S¢+ S;[o(x) —1], (4.9)

where x is an ion coordinate in a channel, S, and S,
depend on the energy, and ¢(0) = 1.

Assuming that an ion has made an integer number of
half-oscillations, after averaging Eqn (4.9) with respect to
the period of motion and taking into account Eqn (4.7), we
will get:

a:SO—S| N (4]0)
dx
B=28"00(x ,
‘ (Huwmo—uvnw
d
0<xmax<?. (4.11)

Solution to the integral equation (4.11) with respect to o(x)
has the form

dp
0<x< 2. 412

b ) - vy, :

O'(.x) :n—Sla

Taking into account the parity of U(x) and the condition
a(0) =1, from Eqn (4.12) it follows that

S — o)
U(0) = 2n2 S0 =4 (4.13)
ﬁ2
One more relation is obtained by averaging Eqn (4.9) with
respect to the coordinate x. Taking into account
Eqns (4.7)—(4.11) and Eqn (4.12), we get
2 d, /2
S.(E) = Sy 45, —J o(x) dx — 1
d, Jo
28 d 172
=a+— |U[Z)-U( ) 4.14
“vag [0(z) 00l s

The variables o, B, S,, and S,(E) are found directly from
experiment. Inner consistency of the model is verified by
the closeness of the wvalues of S.(E) obtained from
Eqn (4.14) for different channels by means of different
CP. When CP is specified in an appropriate parametric
form, Eqns (4.13)—(4.14) allow us to find approximation
parameters making use of the data for several channels. In
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Ref. [265] this method was used for estimating the [P of H,
He, O, and I ions with Si and Au atoms. In the case of H
and He ions, empirical potentials agreed well with the
Hartree—Fock IP but not very well with the Moliere IP.
For I ions the agreement was poor (in each case it was
assumed that an ion is a bare particle with an effective
charge corresponding to a given velocity).

In Ref [266], Eqns (4.9) and (4.12) were used for
calculating the energy losses of o particles in the plane
channels of Ta with different approximations of CP. A
weak dependence of the form of the resulting spectra from
CP was detected. In Ref. [267] functions S(x,E) were
calculated with Eqn (4.9) for a plane potential of the form

U(x) = 2nZ,Z,Nd ,V/3d*

1
4.1
+O.5dp+a+x>’ .15

% (O.Sdp +a—x
where standard designations were used. Parameters S, and
S, necessary for the calculations were taken from the
experiment [268]. The calculation results were compared
with the computational ones for S(x, E) which were carried
out with respect to the local electron density model [for a
particles in the channels of (100) and (110) Si]. The
agreement of the S(x, E) functions close to the channel
walls was interpreted as a proof of adequacy of the CP
[Eqn (4.15)] for the given case. In particular, an agreement
was observed of the experimental values,

Ooxp = (Sy — ) =

with the theoretical ones,

-2)-wo]"

within a deviation of 7% —8% (of, < 04yp). It is quite
obvious, however, that the temperature influence, ignored
in Eqn (4.15), will cause an additional decrease in the
height of a potential barrier of at least 10% . Thus the total
deviation of the value of U(d,/2)—U(0) from its
experimental value will be ~ 35 %, so that the advantage
of the potential [Eqn (4.15)] is dubious. One more method
of estimating the plane potentials was used in Ref. [270].
The basic relations are of the following form (x is a
coordinate, U is a CP):
dE |

1 U
x(U)=—— | An(E, U) —,
( ) (87tM]V])I/2J0 h( + ) U*EJ_

E, = Ey , (4.16)

where A, (E,U) is a ‘wavelength’ of particle oscillations
with transverse energy E |, V¥, is an initial ‘ingoing’ angle
with respect to the planes. In this case, the experimental
parameters are Ay, and ¥, [see Eqns (4.3) and (4.6)]. It is
pretty obvious that Eqn (4.16) is the inverse of Eqn (4.6)
and is a special case of the known equation of the
reconstruction of the potential by the period of motion in a
one-dimensional potential field [95].

4.5 Dependence of energy losses of heavy ions on the
frequency of oscillations in planar channelling

In Refs [91, 92] some essential details of experiments in
which the dependence of energy losses [Eqn (4.7)] was
studied are presented. This has not, however, attracted

X

Figure 18. A diagram of the ion motion in a plane channel for
different CPs. The turning points #,j and i’, j' correspond to the
oscillation frequencies @ and w + Aw.

sufficient attention. Moreover, the dependence given by
Eqn (4.7) itself was not given a thorough theoretical
explanation. Its main peculiarity is increase of the
coefficient f with the increase of the ionic energy.
Following Ref. [91], we will show that this fact is directly
connected with the decrease of the planar CP due to the
energy dependence of the interaction potential. This is
illustrated through Fig. 18, where the turning points i—i
and j—j of an ion having the same frequency of oscillations
w but moving in different potential wells are shown
schematically. Owing to the greater steepness of curve 2,
the points j—j are located further from the channel walls
than the points i—i. With an increase in the oscillation
frequency of Aw, the new turning points i’—i’ will be
displaced relative to the channel walls to a greater degree
than the points j'—j’ because the potential curves are less
steep. This suggests that, for ions having different energies
but the same stopping power, the energy losses of
the particles moving in a less steep CP will be higher
since the ions move in the domain of a higher density of
the electrons and nuclei of the crystal. Comparing this
supposition with the experimental dependence [Eqn (4.7)],
we can conclude that potential curve 2 in Fig. 18
corresponds to a lower energy. On the contrary, for a
CP which increases with an increase in energy, the
coefficient of inclination f would decrease. Quantitative
calculations confirming these conclusions were reported in
Refs [107, 333]. Fig. 19 presents experimental and compu-
tational dependences S(w) for the I ions with energies of 15
and 60 Mev for channelling in (111) Au. In the calculations
of an I—Au IP, an electrostatic interaction with respect to
Eqn (2.18) was taken into account as well as the
contribution of the kinetic energy of the electron gas
with respect to Eqn (2.61), and the densities of the Au and
[ electrons were obtained from Eqn (2.48) taking into
account the experimental values of an ionisation degree of
the I ions for the given energy (2, — N, =13 for E =15
Mev and Z, —N, =22 for E=60 MeV [272]). The
coefficients ¢; and b; in Eqn (2.48) corresponded to the
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Figure 19. Stopping powers of '>'I jons while channelling in (111) Au
as the functions of the oscillation frequencies and energy: solid lines
represent experimental values; dashed lines represent the values of
calculation in the quasistatic approximation [333]; dotted lines
represent the values of calculation for the potential given by
Eqn (4.17).

approximation in Ref. [68]. The IPs calculated in this way
were averaged by a standard method taking into account
the thermal oscillations. The resulting CPs are shown in
Fig. 20 along with the potentials of Moliere type for the
effective ion charges Z . = 13 and Z . = 22, respectively.
In the second case, the I—Au IP is

VANA R
V(R) :_'clgf 2o (Z) .

(4.17)

where a, = 0.885322_]/3 is a screening parameter of an Au
atom, and the function @(x) corresponds to that given in
Ref. [68]. Fig. 20 shows us that the dynamic decrease of the
potential is most dramatic in the middle part of a channel.

U/keV

0.250 0.375

x/dp

Figure 20. A CP for the I ions for channelling in (111) Au: curves 7, 2
represent an ‘cffective charge’ approximation [Eqn (4.17)]; curves 3, 4
represent a quasistatic approximation [107, 333].

On the contrary, Eqn (4.17) leads to an increase of CP
when the particle energy increases.

In order to find a theoretical dependence S(w), the
oscillation frequencies with respect to Eqn (4.8) were
calculated followed by elimination of the amplitudes
Xmax by means of the coordinate dependence of the
stopping losses averaged with respect to the period of
motion and taken in the form

S(x,E) = 0.034Z7.4(E) <1 +;—?x2> MeV um™' . (4.18)
P

Eqn (4.18) provides an approximation of the results of
theoretical calculation of the stopping losses [273] for He
and I ions in an Au crystal. As can be seen from Fig. 19,
the theoretical calculation (dotted curves) correctly shows
the main feature of the experiment: increase of the
steepness f with the increase of energy. Some over-
estimation of the oscillation frequencies of ions can be
accounted for by the errors in calculation of the potentials.
Analogous calculations for a CP [Eqn (4.17)] which are
shown by dotted and dashed lines show a decrease of
steepness of B with the energy increase. One more
consideration in support of this theory arises when the
stopping powers of I ions for a disoriented crystal are
compared. Thus, for the energies of 15 and 60 MeV, the
corresponding experimental values were 9 and 23.9
Mev umfl [274], i.e. they increased by a factor of 2.65.
At the same time, the square of the charge of the ions
increased by a factor of (22/13)* = 2.9. In accordance with
Eqn (4.14) this discrepancy can be related to the decrease
of the potential barrier height by 10—15% owing to the
energy dependence of the IP. This fact conforms with the
agreement between the theoretical and experimental
estimates of S, (E) which occurs with the energy increase
[265], since the theoretical values for the stopping losses
were estimated for the potential [Eqn (4.17)] which grows
with the energy. In this case, the rise in S, (E) in accordance
with Eqn (4.14) occurs more rapidly than in the dependence
x Z%cff, which follows from Eqn (4.18) and is averaged with
respect to the coordinate x; and thus the stopping ‘deficit’
observed at E = 15 MeV decreases at E = 60 MeV (see the
data of Table 3 in Ref. [265b]). Thus the dependence
S(w) =a+ Pw is defined, on the one hand, by dynamics of
the motion of ions in the channel which is determined by the
CP, and, on the other, by dependence of the stopping upon
the coordinate Eqn (4.18). Let us note that, for sufficiently
high energies, when an IP begins to rise (see Section 2.7), the
parameter  in Eqn (4.7) decreases down to its asymptotic
value which corresponds to the potential [Eqn (4.17)] for
Z1oii = Z,. Therefore estimates of B for different energies
could give valuable information for the more precise
definition of the energy dependence of an IP.

4.6 Characteristic radiation of the channelled electrons
and positrons

When the relativistic leptons are channelled, the wave
function of the bonded motion satisfies the Schrodinger
equation [275-277]:

_zLyAl‘P(r)l—i—[U(rl)—El] ¥(r,) =0, 4.19)

where y is the Lorentz factor,
CHCE

Al =—+—
+ 6x2+6y2’
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r(x, y) is a transverse projection of the radius vector to a
plane xy that is perpendicular to the direction of the
longitudinal motion, U(r ) is a continuous potential (in the
case of planar channelling, A, = dz/dxz). It is shown in
Refs [112, 275, 278] that for the electrons with energies
E < 50 MeV for planar channelling and E < 10 MeV for
the axial type the energy levels E, are discrete. The
radiation lines that correspond to the spontaneous
transitions between them, taking into account the rela-
tivistic transformation of the frequency, conform to the
energies

E,=2y’AE, . (4.20)

Nonequidistance of the E, levels leads to emergence of
some isolated peaks in the spectrum, which allows us to
estimate the spatial location of the radiating particles. The
spectrum of the transverse energies and gamma quanta is in
all probability determined only by the form of a CP.

Comparison of the experimental and theoretical values
of the energies E, that have been calculated for the specific
potentials allows us to assess their quality. On the other
hand, the experimental information can be used for various
purposes, i.e. diagnostics of the potentials, in the analysis of
the electron density in channels, in the measurement of
Debye temperatures, in the study of the anisotropy of the
thermal oscillation of the lattice atoms, etc. [11, 280, 281,
186, 306, 307].

Electron radiation in axial channelling in diamond and
silicon crystals was reviewed in Refs [283, 284], in planar
channelling in Refs [285, 287, 288], and for positrons in
Refs [288, 290, 291]. Radiation in a LiF crystal was
investigated in Refs [292, 293], and in some other crystals
of a complex type in Refs [285, 294, 295]. In the calculations
of spectral lines, potentials of the Doyle—Turner type were
most often used [Eqns (3.74)—(3.75)], and the Schrodinger
equation (4.19) was solved by the plane waves method. In
Refs [296, 187, 298] a quasiclassical approximation was
used, and for positrons the classical method was used,
because for energies £ > 50 MeV the number of levels of
coupled motion is sufficiently large. In these studies, a
planar potential that corresponds to the model given by
Eqn (2.25) was used. In Ref. [299] a variational method of
solving the Schrodinger equation with a Doyle—Turner
potential was used. The results of the theoretical calcula-
tions of the energies of the radiation peaks agree well with
each other and with the experimental data. In Refs [287,
296, 187], however, it was noted that the frequencies
corresponding to the maxima of the positron radiation
for the Doyle—Turner (DT) potential exceeded the exper-
imental values by approximately 7% —10% , whereas for the
electron deviations they exceeded the experimental values
by 1% —5%. In this respect, a CP for the piecewise
exponential model (PEM) given by Eqn (2.25) proves to
be more universal, which is confirmed by the data of Tables
5 and 6. Calculations with the Moliere potential have a
poorer agreement with the experimental data. Note that the
initial calculated values of a CP with the application of the
PEM were overestimated [187] [in Eqn (14) of this work the
last term must have a positive sign].

Data in Tables 5 and 6 show that the DT potential is
responsible for the higher energy values of the peak of
positron radiation and for the higher energies of the
separate lines for the electrons [especially in the case of
transition 1—-0 in (100) and (110) Si]. On the contrary, a

Table 5. Energies of the gamma quanta in the maximum of a radiation
peak of the channelled positrons. In columns 3-5, the results of
calculations corresponding to the PEM, the Moliere potential, and the
DT potential, respectively, are given.

Plane b Calculated Experimental
values values
Refs [296, 187] Ref. [187] Refs [290, Refs [290, 291]

291]

(110) Si 111 42 40 44.2 42.5

(110)si 1074 38 37 41.6 38.8

(100) Si 111 45 45 46-51 46.7

(110)C 1074 64 60 69.2 65.3

(110) Ge 1074 495 — 522 48.1

PEM approximation leads to smaller energies of the 1—-0
transition. These deviations cannot be related to the
inaccuracy of the quasi-classical approximation used in
Refs [296, 187], because it was shown [187] that the error of
this method in determining the levels of transverse motion
does not exceed 1% even for energies of 5—10 MeV. An
additional test of the potentials allows comparison of the
sums of energies for the separate transitions. Table 7 lists
the values corresponding to the potentials in Tables 5 and 6
and shows that eventually the sums of the PEM differ from
the experimental values by only 1% —2% . This fact is due to
a compensation of the energy ‘deficit’ for the transitions
from the lower levels by a corresponding ‘excess’ for the
higher levels. In the case of the DT potential, deviations are
somewhat larger and reach 2.5% —3%

These results make it possible to evaluate somewhat
differently an attempt to define more precisely the Debye
temperature of the silicon crystal in Ref. [285b], where in
order to achieve consistency between theoretical and
experimental values of the energies of quanta in the 1-0
line, the value of 495 K was taken instead of 543 K (the
commonly used value corresponding to the data of x-ray
diffraction [302, 303]). More precise calculations in
Ref. [312] resulted in the values of 6p =504 K for
T =298 K, and 0y =514 K for T =110 K. Note that a
deviation of O influences only the 1 -0 transition, and does
not influence the other levels. On the contrary, if we try to
achieve such an agreement for the PEM potential, 0y will
have to be increased to up to 575 K, which will result in a
noticeably poorer agreement between the theoretical and
experimental values of ) E,. Thus, the Debye temperature
values cannot be revised without the critical choice of a CP.

Similar remarks can be made in connection with the use
of the radiation spectra of the channelled particles for
determination of the electron densities in a channel [283]
based on the Poisson equation

pulri) = 2= ALV(r) @421)
The method used here consists in correcting the theoretical
values of the form factor of the potential in Eqn (3.62) to
attain conformity between the theoretical and experimental
spectra. This procedure is not quite correct mathematically,
because the Fourier transform of the atomic factor,
represented by a sum of Gaussian exponents
[Eqn (3.72)], does not present correctly the shell distribu-
tion of the potential and the electron density which would
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Table 6. Energies of the gamma quanta radiated by the channelled electrons in the ‘forward’ direction.

Plane Y Transition Calculated values* Experimental values
Refs [296, 187] Ref. [300] Refs [291, 180] Refs [291, 292]
(110) Si 110.6 1-0 1224 139.1 134 128
2-1 94.8 101.4 96 94
3-2 70.6 75.5 69 68
4-3 53.8 58.2 53 52
5-4 43.6 45.4 41 42
(110) Si 55.8 1-0 38.7 44.8 — 40
2-1 26.8 28.9 — 25
3-2 19.0 19.8 — 17
(100) Si 110.6 1-0 95.2 109.1 — 99
-1 66.3 72.3 — 64
3-2 453 50.3 — 39
(100) Si 55.8 1-0 29.5 34.3 — 31
2-1 17.6 17.3 — 21
(110) C 106.7 1-0 158.4 161* 163.8 161.8
1 104.3 100** 108.3 104.4
-2 78.2 72" 79.0 78.4
-3 56.3 49** 60.4 58
(100) C 106.7 1-0 116.9 117 120.6™* 120
2-1 65.1 57 65 65.4

*The results of calculations in columns 4—6 correspond to the same potentials as in Table 5 (columns 3-5).

**These values are taken from Ref. [276].
***These values are taken from Ref. [301].

Table 7. Total values of the gamma-quanta energies of the planar
channelling of the electrons.

Plane b Calculated values* Experimental
values
(O] ()] (3)
(110) Si 110.4 385.2 417.6 393 384
(110) Si 55.8 84.5 93.5 — 82
(100)Si 110.6 206.8 231.7 — 202
(1109) C 106.7 397.2 382 411.5 402.6
(100) C 106.7 182 174 185.6 186.3

*Data in the columns (1), (2), and (3) correspond to those of the
columns 4—6 in Table 6.

correspond to the Hartree—Fock distribution. In addition,
when we make a correction of the form factors by the value
of AV,, the corresponding function can be determined only
for a finite number of vectors. Therefore, the reciprocal
which is an inverse Fourier transform for the atomic
potential and electron density in a crystal, is not unique. As
a result, there is an entire class of functions of the electron
density distributions and Debye temperatures for which it
is possible to reach an agreement between the theoretical
and experimental data [306]. [ believe that a more
consistent approach would be to apply the analytical
Hartree—Fock approximations of the PEM type or the
Bonham—Strand model [321] rather than the DT model,
where a correction function AV, should ensure fulfillment

of the standard normalising conditions that are imposed
upon the atomic potential and electron density. The models
mentioned above provide correct initial approximations for
the solution of this problem.

In Refs [292, 293] a form factor correction was also used
in calculations of the radiation spectra in a LiF crystal,
where the amplitudes of the thermal oscillations of the Li™
and F~ ions corresponded to different values of Debye
temperatures. Thus, in Ref. [292] the ratio of the amplitudes
was equal to 1.28 instead of 1.65; this latter value followed
from the relation kg®p ~ Miuiz (M is an ion mass, kg is the
Boltzmann constant). This fact, together with the disagree-
ment of the values of @ used by different authors
(especially for the crystals and alloys of a complex
composition), makes the comparison and interpretation
of results rather difficult. Thus, the authors of Refs [285,
293] came to the conclusion that the amplitude of thermal
oscillations of a F~ ion in a LiF crystal is underestimated by
a factor of 2, and in a LiH crystal the amplitudes of H are
twice as high as those of D in LiD. It was noted (see also
Ref. [306]) that this conclusion is supported by Fig. 21,
where the experimental radiation spectra of the electrons
with the energy of 54.5 MeV in the (100) channel of the LiH
and LiD crystals are shown. The conclusion is based on the
apparent shift of the radiation lines into the lower frequency
domain for a LiH crystal. However, it follows from the
theory that variation of the Debye temperature (and in the
thermal oscillations amplitude as well) influences noticeably
only the frequency of the 1-0 transition, whereas in Fig.
21 one can see the shift of all the lines. Besides, at a higher
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Figure 21. Radiation spectra of the electrons of 54.5 MeV channelled
in the (100) plane of the LiH and LiD crystals [239, 295].

amplitude of the thermal oscillations the line width should
be greater for a LiH crystal (for example, the impact of the
temperature upon the spectra shown in Fig. 7 in Ref. [306]),
which also does not agree with the data given in Fig. 21.
Thus, we arrive at opposite conclusions.

It is shown in Ref [186] that comparison of the
intensities of the first maxima of the coherent bremsstrah-
lung radiation (CBR) can give us significant information on
the values of the ionic charges of the crystal atoms (in the
case of planar channels that consist of the planes with the
ions of different CBR signs [for example, (111) NaCl]. This
can be explained by the presence of harmonics with the
periods of dj, and 2d, in a CP (d, is the distance between the
planes with the ions of different signs), where the Fourier
harmonics of the larger period are proportional to the ionic
charges of the crystal atoms. In my opinion the possibilities
of diagnostic application of the CBR spectra have not yet
been fully understood, whereas the CBR peak amplitudes
are directly related to the separate Fourier harmonics of the
crystal potential, in contrast to the radiation spectra in
channelling which are formed by the total potential.

It is useful to note a number of works related to the
spectral characteristics of the radiation of channelled
particles taking into account the dislocation effects
[315—-316] and the influence of the external periodic fields
[277, 305, 307], as well as works dealing with direct
reconstruction of the potentials through their spectra
[322—-323]. The latter problem is a complicated one and
needs additional analysis.

In conclusion it may be said that although the theory is
successful in explaining the characteristic features of the
observed radiation spectra, application of these data in the
framework of a new diagnostic method will impose rigid
requirements concerning the quality of the potentials
required for the calculation models. At present, these
requirements are not fully satisfied.

5. Conclusions

[t can be seen from this review that the concept of
interatomic potentials is widely used in the study and

interpretation of numerous phenomena associated with the
penetration of beams of the charged particles in matter.
Many of these phenomena (such as sputtering, phase
transitions due to irradia-tion, interaction with surfaces,
energy losses in channelling, dechannelling, etc) were
considered only briefly, or completely omitted, here.
Progress in experimental techniques over the last 10—15
years enables one to carry out measurements of various
values pertaining to a particle beam with an accuracy of
several percent (including the values for energy losses and
ranges, angular and energy distributions, radiation spectral
lines in channelling, etc.). The experimental results
promoted the formation of the modern ideas concerning
the physical nature of the processes of stopping and
channelling of particles in matter, radiation in channelling,
and the yield in secondary processes. These achievements
have led to the creation of new experimental methods of
measurement of IPs and some other variables, the
information related to them being a powerful tool for
the probing of solids.

At the same time, there are still problems which, along
with the interpretation of experiments (they are, first of all,
Z, and Z, oscillations of the scattering cross sections,
stopping, and ranges), also involve the need for obtaining
the correct theoretical potential curves for a wide range of
internuclear distances both in a gaseous phase and in solids.
As can be seen from this review, one of the probable trends
of development in the theory of radiation effects is a
possibility of introducing the concept of a particle—solid
[P not only by way of summation of the separate
independent contributions, but also by taking into account
the ion charge states, the effects of dynamic screening,
correlation due to separate interactions in the small-angle
scattering and channelling, as well as the electron structure
of the target atoms. In the case of small-angle scattering and
channelling, the energy dependence of the potential that
produces changes in the stopping losses through the
trajectories of motion may become sufficiently great.
Thus, solid state effects can be taken into account at an
earlier stage by including them in the potentials. For the
successful development of this trend, additional experi-
ments are necessary on dynamic screening and energy
dependences of an IP for heavy ions.

Another theoretical topic that is only briefly discussed in
this review is the possibility of taking into account the
inelastic channels in the processes of elementary acts of
ion—atom interaction through their inclusion in the
potentials. Doing so within the framework of a model of
continuous slowing down will give fresh impetus to the
development of the theory.
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