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Abstract. Cur ren t theoret ical m e t h o d s of calculat ing the 
pair , in te ra tomic and averaged, potent ia ls of ion inter­
action with the a t o m s of solids are discussed. A long with 
the t rad i t iona l static approx imat ions , nons t a t iona ry and 
quas i -s ta t ionary models are considered. In the other case, 
modif icat ion of the electron gas approx ima t ion tak ing 
account of the relative velocity of a t o m s vx is investigated. 
F u r t h e r m o r e , the effect of ion ionisat ion and dynamic 
screening of potent ia ls by the electron gas is t aken into 
account . Theoret ical models are compared with each other 
and with the exper imental da ta . The energy losses and the 
ion ranges in solids, angular dis t r ibut ions due to mult iple 
scattering, b remss t rah lung losses of heavy ions in the 
process of a p lanar channell ing, channell ing rad ia t ion lines 
of the relativistic electrons and pos i t rons , and other effects 
are considered. 

1. Introduction 
W h e n we use a t o m - a t o m ( i o n - a t o m ) potent ia ls of 
interact ion (IP), we can, in the first approx ima t ion and 
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independent ly of the p rob lem considered, exclude the 
details of the electron s t ructure of mat ter . Therefore the 
in terpre ta t ion of the basic p h e n o m e n a connected with the 
t r anspor t of part icles in the med ium is directly or indirectly 
based u p o n the concept of IP . It is c o m m o n pract ice to 
distinguish between shor t - range and long-range in te ra tomic 
forces. In this work we concent ra te mainly on the shor t -
range forces because in the rad ia t ion physics of solids the 
part icle impact pa rame te r s with respect to the target a t o m s 
are relatively small. However , in some cases long-range 
forces m a y also p rove significant, as for example in the 
sliding interact ion of a part icle with the surface. The main 
theoret ical considera t ions determining the calculat ions of 
the static IP of the isolated neu t ra l part icles are developed 
in detail (for example, see Refs [1 -4 ] ) , bu t the p rob lem 
remains when we calculate the i o n - a t o m IP for an 
a rb i t ra ry degree of ionisat ion and for an a rb i t ra ry energy 
of the incident ions on the one h a n d and for the different 
combina t ions of the collision pa r tne r s on the other hand . It 
is also evident tha t a frequent assumpt ion concerning the 
addit ivi ty of the part icle in teract ions with the separate 
target a t o m s has only a relative validity, est imation of its 
accuracy being no t always s t ra ightforward. It is therefore 
desirable, based on the concept of IP , to t ake into account 
the dynamic and many-par t ic le effects, and also the specific 
proper t ies of a target . A good example of this is the 
p h e n o m e n o n of channell ing [5, 6], where a theoret ical 
descript ion has been m a d e after the in t roduct ion of the 
concept of a con t inuous po ten t ia l of the a tomic chain 
(plane) [7]. 
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Recently, a long with the t rad i t iona l appl icat ion of IP in 
solid state and rad ia t ion physics, interest in these subjects 
has also been st imulated by the predict ion and discovery of 
the rad ia t ion of the relativistic channell ing part icles [ 8 - 1 0 , 
3 0 5 - 3 0 9 , 319], the diagnost ic appl icat ion of this rad ia t ion 
[10, 11, 306], and the growing demand of nuclear mater ia l 
science [12]. Besides, informat ion concerning the repulsive 
IP is t radi t ional ly impor t an t for the p rob lems of physical 
kinetics [13, 14] and laser excitation of the electrons [15, 16]. 
In the latter case, it is necessary to have the poten t ia l curves 
for the region of the energy min imum, i.e. in the t ransi t ion 
region between the repulsive and long-range potent ia ls . 

Owing to the rapid development of these t rends it might 
be interest ing to review recent achievements in the appl ica­
t ion of theoret ical m e t h o d s for IP calculat ions, and their use 
for an explanat ion of different p h e n o m e n a tak ing place 
dur ing the t r anspor t of charged part icles in mat te r . M o s t of 
the aspects ment ioned above have no t received sufficient 
a t tent ion (or have not been considered at all) and therefore 
this review might be a t imely one. 

The choice of mater ia l is determined, on the one hand , 
by the a u t h o r ' s interests and, on the other hand , by the 
limited space of the article. Therefore, I have no t considered 
(or only briefly touched on) the results associated with the 
dechannel l ing and the or ienta t ion effects at high energies, 
sput ter ing of solids by ion b o m b a r d m e n t , the phase 
t r ans format ions due to i r radia t ion, and other effects. 
Those interested in this subject are referred to a number 
of review articles and m o n o g r a p h s [10, 12, 111, 145, 201, 
3 0 6 - 3 0 9 ] . 

Section 2 includes a review of the mos t impor t an t 
theoret ical m e t h o d s employed for calculat ing the pair 
potent ia ls in the molecular and i o n - a t o m systems. A m o n g 
them are the s ta t ionary quan tum-mechan ica l models , the 
T h o m a s - F e r m i and T h o m a s - F e r m i - D i r a c a p p r o x i m a ­
t ions, and an electron gas approx imat ion . A great 
number of analyt ical models are also considered. Sec­
t ions 2.6 and 2.7 deal with a nons t a t iona ry 
approx ima t ion and a quasi-stat ic general isat ion of the 
electron gas theory. In the latter case, the i o n - a t o m IP 
depends u p o n the energy (velocity) result ing from the 
s tr ipping of the electron shell and the varying effectiveness 
of the over lapping of the F e r m i spheres of the electrons in 
the impulse space. 

Section 3 conta ins an analysis of the classical effects of 
the interact ion between the ions and the light part icles with 
the solids, with their description being based on the 
in tera tomic IP or the averaged potent ia ls with respect to 
channell ing (single and mult iple scattering, s topping 
powers , and ranges) . In Section 3.4 the p rob lems of 
calculat ing the i o n - a t o m ( i o n - i o n ) IP in solids are 
considered, with an account of the effect of dynamic 
screening by the electron gas. Section 3.5 gives a detailed 
descript ion of the p rob lem of connect ion between different 
approx ima t ions for the con t inuous potent ia ls of the a tomic 
chains (planes) t ak ing into account (or ignoring) the 
external per iodic fields. In Section 3.6 some surface effects 
are briefly described, and Section 3.7 deals with the special 
features of the interact ions of part icles with solids at high 
energies. 

Section 4 conta ins compar i sons of the theoret ical 
models with some exper imental da ta . Special emphasis is 
placed on the effects of the Z j - , Z 2 -osc i l l a t ions of the cross 
sections of scat tering and s topping, and the ranges of the 

ions in semiconduct ing, metal , and gaseous targets (Section 
4.1); the effects of correlat ion of the energy losses with the 
ou tgoing angle from the thin film and the features of 
mult iple scattering of the par t ly ' s t r ipped ' ions (4.2); the 
quest ion of dependence of the value xl/l/2\/rE (where xl/l/2 is 
the angular half width of the inverse scat tering dur ing 
channell ing, and E is the ion energy) u p o n the energy is 
discussed (4.3). In Sections 4.4 and 4.5 the measurements of 
the trajectories and potent ia ls , as well as dependences of the 
b remss t rah lung losses of the heavy ions on the frequency of 
the oscillations in p lane channell ing condi t ions are a n a ­
lysed; in Section 4.6 theoret ical and exper imental da ta 
related to the characterist ic rad ia t ion of the channelled 
electrons and pos i t rons (in a p lane regime) are compared 
and the p rob lems related to a diagnost ic appl icat ion of this 
rad ia t ion are discussed. In the conclusions section some 
significant, and in the a u t h o r ' s opinion still unresolved, 
p rob lems and t rends in the development of the theory of 
interact ion potent ia ls and the rad ia t ion effects are m e n ­
t ioned. 

The list of references, a l though quite extensive, is far 
from being complete , no tab ly with respect to developments 
over the last two years. 

2. Theoretical discussion 
A m o n g the approx ima t ions most frequently used in 
rad ia t ion physics for the calculat ion of the pair and 
average potent ia ls , a tomic electron densities, form factors 
etc., a specific role is played by the s ta t ionary T h o m a s -
F e r m i and T h o m a s - F e r m i - D i r a c models and the related 
m e t h o d s of the electron gas and of the electron density 
functional [22, 176, 40, 86]. M o r e r igorous theoret ical 
schemes based on the Schrodinger equat ion [16, 21 , 324] 
have been used to a lesser extent because of their 
complexity and they are the last resort in appl icat ion to 
rad ia t ion physics. Nevertheless , con t inuous progress in the 
field makes it necessary to refine the theory constant ly in 
order to include m o r e detailed interact ions between the 
ions and a toms . T h u s a b roade r perspective is offered for 
the development and new appl icat ion of the nons t a t iona ry 
and quas is ta t ionary approx ima t ions in the theory of 
in tera tomic potent ia ls . At the same t ime, m a n y mode l 
analyt ical approx ima t ions retain their significance. C o m ­
bina t ion and analysis of the approx ima t ions ment ioned in a 
single section makes it possible to use the informat ion in it 
in a way tha t is a u t o n o m o u s with respect to other sections 
directly related to the interact ions in solids. 

2.1 Stationary quantum-mechanical models 
A n adiabat ic approx ima t ion of the Schrodinger equat ion 
forms the basis of the quan tum-mechan ica l calculat ions of 
the poten t ia l energy of the d ia tomic system. This enables us 
to separate the mot ion of the electrons from the mot ion of 
the nuclei. As a result of applying this approx imat ion , we 
have [17]: 

[H - U(R)] <P(R, r) = 0 , (2.1) 

where r designates the electron coordinates , R is the 
coord ina te of the relative mot ion of nuclei, the H a m i l t o n -
ian H includes the kinetic energy of the electrons and the 
poten t ia l energies of the m u t u a l and cross interact ions of 
nuclei and electrons. The function U(R), which is an 
eigenvalue of the opera to r H, defines the energy of the 
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system for a fixed distance R. W h e n R —> oo, we have 
U(R) —> Ei + E2, where £ 1 2 are the energies of the isolated 
a toms . In terac t ion poten t ia l in a typical in terpre ta t ion is 
defined as 

V(R) = U(R) - U(oo) (2.2) 

Solution of E q n (2.1) for the needs of rad ia t ion physics is 
still a remote possibility. Therefore m o r e simple c o m p u t a ­
t ional schemes are of interest, in par t icular the me thod of 
separat ing the cont r ibu t ions of the interact ions of the 
a tomic cores and of the valence electrons [16]: 

H = Hi + H2 + Hy + H12 , 

V(R) = Vc(R) + Vy(R) , 

$(R, r) = &i(R, r) $2(R, r) $y(R, r) 

(2.3) 

where Hx 2

 a r e the Hami l t on i ans of the cores, Hw is the 
Hami l t on i an of the valence electrons, Hu is the interact ion 
of the cores, 4*1 ) 2(/?, r) and <PV(/?, r) are the wave functions 
of the core and valence electrons. Assuming tha t 
U(oo) = Ei + E2 + EY9 subst i tut ing (2.3) into (2.1) and 
separat ing the variables, we get (for simplicity designat ions 
of the variables R and r are omit ted) : 

(Hi +H2)&i<P2 - Vc&i<P2 = (Ei +E2)&i<P2 

(2.4) 

Func t ions <P2, and <PV should, in addi t ion, satisfy the 
or thogona l i ty relat ions 

<*, |*v>=0, 1, 2 (2.5) 

If the over lapping of the ion cores is small, po ten t ia l VC(R) 
is calculated in the first order of the pe r tu rba t ion theory 
(assuming tha t wave functions of the ion cores are 
known) : 

Vc(R) = (0i02\Hu\0i02) . (2.6) 

Thus , the p rob lem of finding the IP reduces to the 
compu ta t ion of integral (2.6) and to the solution of the 
simpler (the second one) of the two equa t ions (2.4), where 
Hy conta ins only opera to r s of the kinetic energy of the 
valence electrons and of their in teract ions between 
themselves and with the cores. However , even in this 
case the p rob lem remains sufficiently complex and there ­
fore, in pract ice, the me thod of the mode l potent ia ls [ 1 8 -
21] is widely used. This m e t h o d involves representa t ion of 
the Hami l t on i an in the form of a sum HY = T + v m , where 
T is an opera to r of the kinetic energy of the electrons, and 
v m is a mode l potent ia l . Var ious forms of such potent ia ls 
can be found in Ref. [16]. The accuracy of the c o m p u t a ­
t ions of the IP by this me thod guaran tees agreement with 
the exper imental da ta related to the scattering of the 
molecular beams and to the spectroscopy in the range of 
5 - 1 0 % (at the m i n i m u m of the poten t ia l curves). The 
me thod of the electron density functional provides similar 
accuracy [86]. 

2.2 Thomas - Fermi and T h o m a s - F e r m i - D i r a c 
approximations 
W h e n we use the T h o m a s - F e r m i (TF) or T h o m a s -
F e r m i - D i r a c ( T F D ) theories, the energy of the two-centre 

system can be wri t ten in the form [22] (here and hereafter 
we use a tomic uni ts : e — Ti — me — \) 

•w-nr-KHf)*"' 
+ • 

P{r)p{r') 3 3 , 3 2 

\ V v | d ' d V + io ( 3 7 i 2 ) 2 / 3 | p ( r ) 5 / 3 d 3 r 

3 1 / 3 

4 (2.7) 

where p(r ) is the electron density at the poin t r of the 
coord ina te space, Z 1 2 are the charges of the nuclei, r 1 2 are 
the distances from the poin t r to the nuclei, and R is the 
internuclear distance. F o r m u l a (2.7) cor responds to the 
T F D theory and wi thout the last (exchange) term it 
cor responds to the TF theory. The p r o o f of the fact tha t 
the ex t remum of the functional U(R) with respect to p( r ) 
gives the m i n i m u m energy of the system for the TF 
approx ima t ion is obta ined in Ref. [23], and for the T F D 
approx ima t ion in Ref. [24]. In these two cases, when we 
minimise U(R) with respect to p ( r ) , we obta in the k n o w n 
relat ions between the density and the electric po ten t ia l 
Ve(r) of the system [22]: 

2 3 / 2 

PTF — 

PTFD 

3K2 
(Ve - V0) 

3/2 

2 3 / 2 

V o + T § ) 1 / 2 + T 0 ] 

(2.: 

(2.9) 

where V0 is the chemical potent ia l , and t 0 = \/y/2n. The 
poten t ia l Ve(R) satisfies the Poisson equat ion for the 
charge densities given by E q n s (2.8) and (2.9): 

AV e = 4np - 4K [Zxb(r -rx)+ Z2b(r - r2)] . (2.10) 

Subst i tut ing E q n s (2.8) and (2.9) into E q n (2.10), we obta in 
the s t andard equa t ions of the TF and T F D theories for the 
molecules. If we subst i tute in E q n (2.7) the app rox ima te 
values of the density p , it is evident tha t the value U(R) 
tha t we obta in is an upper limit of the energy. In the case 
of a neu t ra l d ia tomic molecule, in the TF approx imat ion , 
F i r sov [23] obta ined a maximising functional Ui(R). Us ing 
the latter for an improved est imat ion of energy of the 
system with an approx ima te density, we can take a half-
sum value [U(R) + Ui(R)]/2. So far as we know, no correct 
form of the maximis ing functional has been found in the 
T F D theory, and no correct form of the i o n - a t o m systems 
has been found in the TF theory . 

The au tho r s of Ref. [325] considered a modif icat ion of 
the TF equat ion by changing p 5 ^ 3 in E q n (2.7) to 
a(Af)p 4 / 3 / r , where N is the n u m b e r of electrons. F i r sov 
[25] showed tha t within the accuracy b o u n d s of the T F D 
mode l one can expand the density [Eqn (2.9)] with respect 
to the small pa ramete r Tq and restrict it to the first two 
terms. Then, t ak ing into account E q n s (2.9) and (2.10), a 
modified equat ion of the T F D will be presented as 

/ 2 AV e = 0.81V e + 1.2Ve' 

- 4 7 c [ Z 1 8 ( r - r 1 ) + Z 2 8 ( r - r 2 ) ] (2.11) 

Al though E q n (2.11) in the case of the neut ra l systems is 
m o r e convenient for compu ta t ions t han the s tandard T F D 
equat ion (because it does no t lead to a finite rad ius of the 
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molecule), this advan tage d isappears when we tu rn to the 
i o n - a t o m system. 

So far, few a t t empts have been m a d e at numer ica l 
in tegrat ion of the general TF and T F D equa t ions for 
the molecules. F o r the homonuc lea r pa i rs the classic works 
[ 2 6 - 2 8 ] which offer the solut ions to the TF equat ion are 
k n o w n . The systems of N e - N e , H e - A r and M g - 0 were 
considered in Ref. [29], and in Ref. [30] the T F D equat ion 
was solved. Calcula t ion of the IP of a h o m o a t o m i c pair by 
applying the max imal and min imal principles of the TF 
mode l within the f ramework of the var ia t ional me thod was 
m a d e in Ref. [31]. 

F r o m E q n (2.7) it is evident tha t , if Zx = Z2 and the 
densities p are obta ined from the solution to the TF 
equat ion , the energy of the system can be represented in 
a universal form 

Table 1. N - N potential of interaction. 

U(Z, R)=Z 7/3 1 
RZ1/3 

+f\[RZ l^)+Z-z/'f2(RZ[/') 2/3 , 

(2.12) 

where the last te rm represents the cont r ibut ion of the 
exchange energy calculated for p = p T F as a small 
pe r tu rba t ion , and f\(x) a n d / 2 ( * ) a r e the k n o w n functions. 

In Ref. [32] it is shown tha t the addi t ion to the functional 
(2.7) of the Kirzhni t s nonhomogene i ty correct ion [33], 

i f(vp) 2 

7 2 . o 
A t / K d 3 r . (2.13) 

leads to a rise in the exchange energy in E q n (2.12) by 2/9 
of its previous value (in this case, AUK is also t rea ted as a 
small adjustment) . In fact, assuming tha t V0 = 0 in 
E q n (2.8) (for the neut ra l system of identical a toms) , 
and tak ing into account E q n s (2.8), (2.10), and G r e e n ' s 
formula, we can t ransform Eqn (2.13) as follows: 

A t / K = ^ | | ( v y e 1 / 2 ) v y e d 3 r = - 2 
9 7 ? 

Vl d 3 r 

2 3 
"9 4 

1/3 J ' > 4 / 3 d 3 r (2.14) 

which is Q E D . Thus , t ak ing into account the n o n h o m o ­
geneity of the electron gas reduces the energy of a d ia tomic 
system, while in the case of a single a tom the si tuat ion is 
reversed. This conclusion is also evident from a direct 
analysis of E q n (2.13) if we t ake into account the fact tha t 
within the space between the nuclei the electron density 
gradient becomes smaller. 

In Ref. [32] a correct ion to the energy is obta ined, which 
is similar to the k n o w n correct ion of Scott [34] for an a tom, 
and which takes account of the cont r ibut ion of the strongly 
b o u n d e d electrons: 

AUq(R,Z)=Z2f3(RZ) (2.15) 

The f u n c t i o n / 3 ( x ) varies within the limits from 1 to 2 and 
is tabula ted in Ref. [32]. Table 1 conta ins the compara t ive 
figures of the IP for the N - N system calculated on the 
basis of Ref. [32], results obta ined by the Har t r ee -Fock 
( H F ) me thod [35], and those obta ined by the var ia t ional 
compu ta t ion [31] for the half-sum of the upper and lower 
energy est imates based on the TF theory. In the latter case, 
a scaled version of the TF mode l and an in terpola t ion of 
the results of Ref. [31] for the values of R are used to 
obta in the necessary values of R. 

R/a.u. Z2/R V(R)/a.u. 

Ref. [31] Ref. [32] Ref. [35] 

0.2 245 140 129.2 132.6 
0.5 98 28 21.4 24.8 
1.0 49 6.8 - 0 . 8 4.1 
1.5 32.7 2.25 - 4 . 8 0.2 
2.0 24.5 1.0 - 6 . 0 - 0 . 4 

3.0 16.35 0.29 -6 .65 -0 .05 

The figures in Table 1 show tha t t ak ing into account the 
correct ions given by E q n s (2.14) and (2.15), calculated in a 
nonselfconsistent way [32], will lead to considerably unde r ­
est imated values of the IP for R > 1. On the contrary , the 
poten t ia l [31] tha t cor responds to the TF theory decreases 
too slowly if R increases. These conclusions are likely to be 
valid for the case of the IP of a pair of identical posit ive 
ions, where a universal function of N and N/Z (N is the 
number of electrons) is obta ined in Ref. [36]. On the whole, 
it can be ment ioned tha t so far the T F D theory in its 
classical in terpre ta t ion has no t led to any essential results in 
IP calculat ion . 

2.3 Electron gas approximation 
A n essential improvement of the results in IP calculat ions 
has been achieved by replacement of the electron density in 
E q n (2.7) by the sum of the densities of the electrons of 
isolated a t o m s which have, however , been taken from the 
calculat ion by the H a r t r e e - F o c k ( H F ) me thod [ 3 7 - 4 0 , 51, 
282]. Somewhat earlier, exactly the same calculat ions were 
carried out with the T F D densities [41, 42]. In Refs [ 3 8 - 4 0 , 
51] a cont r ibut ion due to the correlat ion energy of the 
electron gas was added to the energy functional. A 
cor responding value per uni t vo lume is approx imated by 
the expression [38]: 

(2.16) 

rip) 

' [ -0 .048 - 0 . 0 1 rs + In r,(0.0311 + 0.009r,)]p. 

rs<0J, 

(0.07064 + 0.00633 In p) p, 

0.7 ^ rs ^ 10, 

( - 0 . 4 3 8 r 7 1 + 1.325r; 3 / 2

1 y - 1 . 4 7 r ; 2 s - 0 . 4 r ; 5 / 2 ) p , 

rx > 10 . 

In addi t ion to the assumpt ion concerning additivity, the 
electron a tomic densities are assumed to be spherically 
symmetric , which enables us to carry out the integrat ion 
with respect to all angular variables in E q n (2.7). F o r 
convenience, the result ing IP can be decomposed into 
several te rms: 

V(R) = VC(R) + Vkm(R) + Vexch(R) + Vcor(R) , (2.17) 

where separate te rms cor respond to the cont r ibu t ions of 
the C o u l o m b , kinetic, exchange, and correlat ion energies. 
It is appropr i a t e to write the formula for VC(R) in the form 
tha t takes into account a rb i t ra ry degrees of ionisat ion of 
the interact ing particles [22, 43] (qt = 1 — Nt/Zh i = 1, 2): 
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qxq2Z\Z2 1 - s , s 
+ -Zl(\+q1)G2{R) 

+ \z2(l+q2)Gl(R)-1-

+ G2(r2)Pl(ri)] dV,(2.18) 
where the function G,(r ;) is linked with the electrical 
po ten t ia l of the electrons Ve,-(r,-) by the following relat ion: 

G,-(r) (2.19) 

In the case of a spherical symmetry of P;(r), the potent ia ls 
Vei(r) reduce to single integrals: 

P,(r') 
V | 

dV 

4it 
r 

poo 

J r / 2 p / ( r / ) d r / - 4 7 i j r ' p ( r ' ) d r ' . (2.20) 

F o r m u l a s (2 .18) - (2 .20) are especially convenient when 
integrat ion in E q n (2.20) can be carried out analytically. 
W h e n we subst i tute numer ica l densities for VC(R), it is 
app ropr i a t e to employ a formula tha t combines all the 
cont r ibu t ions in one double integral [38]: 

VC(R) = (4nf r\ &rx r2

2dr2px(rx)p2(r2)l(R, ru r2) , 

(2.21) 

where the function I(R, rx, r2) is calculated separately for 
the h o m o a t o m i c , he te roa tomic , and ion pairs . In pa r t i c ­
ular , in the he te roa tomic case we have [38]: 

I(R, rl9 r2) 1 2 

R \R-rx\+R+rx 

2 
\R-r2\+R+r2 

F(R, rl9 r2) 

•n\+R + r i

 9 

R 

+ F(R,rl9r2), (2.22) 

r2<\R-rx\ 

i n n 

2 Vri r2j 4 r i r 2 ARrxr2 (2.23) 

1 

r2 ' 

•rx\<r2<R+rx, 

r2 >R+rx. 

In its analyt ical form, the integral (2.21) can be calculated 
for a class of the G a u s s or Slater orbi tals , with all the other 
t e rms in E q n (2.17) being computed numerical ly. All of 
them are presented in a single-type form, 

J = J M P i + Pi) ~ S t (P i ) " §t(Pi)] d3r , (2.24) 

and are calculated with respect to an ellipsoidal coord ina te 
system. Here g t ( p ) is the density of the cor responding 
energy of the electron gas. In Ref. [43] it is shown tha t for 
the power form of g t ( p ) a i l the cont r ibu t ions to the 
poten t ia l are calculated in e lementary functions if the 
electron density is approx imated in a piecewise-exponential 
form [44]: 

N 
p(r) = Y, At exp(-«,- r) [B(r - r^) - 9(r - r,)] , (2.25) 

Figure 1. Radial distribution of the Ar atom electron density 
D(r) =47U^p(r): Har t ree-Fock ( 1 ) ; formula (2.25) ( 2 ) ; TFD (3). 

where At and at are pa ramete r s , rt_u rt are radi i of the 
'subshells ' , 9(x) is a uni ty step function, and N is the 
number of 'subshells ' . In Ref. [44] it is established tha t the 
logar i thm of the a tomic electron density tha t cor responds 
to the H F me thod , inside the shells, varies a lmost linearly 
and therefore in its simplest form the sum given by 
E q n (2.25) m a y consist of several te rms. Such a mode l was 
constructed in Refs [45, 46], and in Ref. [47] where tables 
of the pa rame te r s for the a t o m s and ions with 2 < Z ^ 54 
are cited. In calculat ions, the values for the occupat ion 
n u m b e r s and the ' subshel l ' radi i calculated by the H F 
me thod were t aken into account . In Fig . 1 the radia l 
density of the electrons in the Ar a tom, which cor responds 
to E q n (2.25) for Af = 3 [47], as well as the T F D and the 
H a r t r e e - F o c k dis t r ibut ions are shown. It follows from the 
figure tha t even for small N the shell s t ructure can be 
approx imated sufficiently well. If necessary, the accuracy 
can be increased by adjusting E q n (2.25) for the nodes of 
the tabu la ted densities. In solids it is app ropr i a t e to t ake 
into account the influence of the chemical b o n d s on the 
electron dis t r ibut ions. F o r m o r e details on this aspect see 
Ref. [326]. 

Eva lua t ion of the integral (2.24) in Ref. [43] is carried 
out by the division of the space into doma ins px > p2 and 
p 2 > Pi, with a subsequent series expansion of in tegrands . 
The formulas for the IP tha t were obta ined are cited in 
Refs [43, 46] and have a form sufficiently compact for 
calculat ions. This enables us to reduce considerably the t ime 
of compu ta t ion of the poten t ia l and eliminates the need for 
in terpola t ing tabu la ted densities. In addi t ion, the tables 
given in Ref. [47] can be used for calculat ing the potent ia ls 
in the i o n - a t o m systems, for which there are no q u a n t u m -
mechanica l electron densities. 

The IP in Ref. [48] is expressed by a derivative of the 
screening function: 

d<2> 
~d> : 

• z k i l r V { r ) ] 

(2.26) 

Tak ing into account E q n s (2.18) and (2.24), the function 
&\r) is reduced to a single integral [48], and the IP is 
calculated with the formula: 

V(R) 1 + 
Jo 

(2.27) 
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Calcula t ions of the potent ia ls based on the me thod given 
by Ref. [38] for a great number of a t o m - a t o m pai rs were 
carried out in Refs [49, 50]. To facilitate subsequent 
appl icat ions , these results were approx imated by a universal 
screening function obta ined by averaging all the calculated 
potent ia ls [49]: 

3 

(2.28) * ( f ) = E ^ ( - ^ f ) ' 
<2 = 0 .8853(Z | 1/2 •2/3 (2.29) 

In Ref. [50] an approx ima t ion of $(x) was obta ined by 
four exponents , and the screening pa ramete r was modified 
to the form 

a = 0.8853(ZrJ + ) • (2.30) 
The cont r ibut ion of the exchange-correlat ion energy in 
Ref. [50a] was calculated separately and presented by the 
formula Z = m a x ( Z l 9 Z 2 ) 

2 / 3 e x p ( - 0 . 2 3 5 x " 2 

exch-cor -0.07Z" 

-0.0738x + 0 . 0 1 7 8 x 2 ) . (2.31) 

In Table 2 a compar i son is m a d e between the potent ia ls 
A r - A r calculated with the formulas (2 .28) - (2 .31) and the 
cor responding es t imat ions in Refs [38, 44]. As expected, the 
potent ia ls [38, 44] are in sufficient agreement with each 
other , bu t differ not iceably from the ' average ' IP [49, 50] 
which features considerable dispersion. Still greater devia­
t ions are obta ined for an i o n - a t o m system (see Fig. 2 for 
the L i + - N e potent ia l ) . It should be noted tha t est imation 
of the exchange energy by means of the screening function 
[Eqn (2.31)] for the A r - A r poten t ia l gives very p o o r results 
and even for R = 3 the potent ia l becomes negative. A n 
electron gas mode l is also helpful for predict ing the 
behav iour of the poten t ia l curves near the min imum. 
This is confirmed by the da ta in Table 3. 

Table 2. A r -Ar potential of interaction. 

R/a.u. V(R)/a.u. 

U(R) 

\0Z -

101 -

K T 1 -

io-2 -

0.5 1.5 R/a.u. 

Figure 2. L i + - N e interaction potentials: Ref. [38] (solid line); Ref. [43] 
(dashed line); Ref. [49] (dotted line). 

Ref. [38] Ref. [43] Ref. [50a] Ref. [49] Ref. [50b] 

Table 3. The parameters of diatomic molecules. 

Molecule Energy of Equilibrium distance/A 
coupling/10 ~ 14 e r g 

1 2 1 2 

N e - N e 0.56 0.63 2.99 3.03 
A r - A r 1.75 1.95 3.63 3.70 
K r - K r 2.48 2.73 3.89 3.95 
N e - A r 0.785 0.93 3.42 3.51 
A r - K r 2.03 2.37 3.78 3.80 
N a + - C l " 852 896 2.34 2.36 
K + - C 1 798 800 2.56 2.66 
H g - H g 5.58 12.2 4.12 4.19 

24.6 24.7 
2.30 2.35 
0.395 0.39 
0.0758 0.076 

25.5 
2.91 
0.69 
0.206 

17.5 
1.85 
0.351 
0.088 

20.1 
1.84 
0.345 
0.0638 

Note : 1 — the calculations of Ref. [38]; 2 — the experimental data that 
are cited in Ref. [38]; *the data for H g - H g are taken from Ref. [52] 
(in this case 1 and 2 are the computations in the nonrelativistic and 
relativistic approximations). 

Note : The contribution of the exchange energy [Eqn (2.31)] is not 
taken into account in data estimation for the columns 4 - 6 . 

In Ref. [52] the relativistic correct ions associated with 
the var iance of the a tomic electron densities and a 
modif icat ion of the expression for the kinetic energy (for 
the case of a H g - H g system) were taken into account . The 
da ta are presented in Table 3. These results show tha t 
t ak ing account of the relativistic correct ions becomes 
necessary in the case of heavy a toms . In this connect ion, 
no te tha t calculat ions of the poten t ia l which were described 
in Ref. [50c], wi thout t ak ing into account these factors, are 
no t correct. It is no t clear in this case what kind of electron 
wave functions of the U a tom were used by the au tho r s in 

the me thod in Ref. [38]. Reference to the calculat ion of the 
poten t ia l in Ref. [38] is not correct because it has not been 
carried out there. 

It follows from the da ta in Table 3 tha t for the light 
systems the coupl ing energy of the inert gas molecules is 
underes t imated by 1 0 % - 1 5 % with respect to the experi­
men ta l values. In this connect ion, one can th ink abou t the 
possibili ty of ' improvement ' of the IP compu ta t ion results 
by in t roducing the Ki rzhni t s correct ion [Eqn (2.13)] into 
functional (2.7). However , its in t roduct ion leads to a 
d ramat i c deter iora t ion of the potent ia ls because, as can 
be seen from Section 2.2, a correct ion due to the n o n -
homogene i ty is approximate ly ( 2 / 9 ) U e x c h , whereas its value 
and sign are close to U c o r . Tak ing into account a similar 
correct ion of the fourth order provides a negative con-
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t r ibut ion as well. As a result, the values for the b inding 
energy will increase by a factor of 1.5 to 3 and will 
considerably exceed the exper imental values. Some qua l ­
itative justification of this result follows from the decreased 
degree of nonhomogene i ty of the electron gas in the 
molecular system. Therefore, the cor responding correc­
t ions are not as essential as in the case of a toms , where 
due account for them has led to a conformity of the 
computed energies with the H F me thod to within a 
fraction of a percent [53, 54]. 

2.4 Rules for combination of potentials 
The search for combina t iona l re lat ions for the potent ia ls is 
suppor ted by the idea tha t , if we find them, we could 
dispense with the need for calculat ing the potent ia ls in 
he te roa tomic pairs , t hus dramat ica l ly cut t ing the c o m p u t a ­
t ion t ime. Similar combina t iona l re lat ions have a l ready 
been considered in the early works dedicated to a 
systematic s tudy of the potent ia ls [55]. The simplest of 
these are the rules of ar i thmet ic and geometr ic averaging: 

VAB(R)=-[VAA(R) + VBB(R)] 

VAB(R) = v ^ A A M W * ) 

(2.32) 

(2.33) 

where VAA(R), VBB(R), and VAQ(R) are the cor responding 
IP for the h o m o a t o m i c and he te roa tomic combina t ions . 
Verification of the relat ions (2.32) and (2.33), which m a d e 
use of k n o w n theoret ical and exper imental potent ia ls , is 
provided in Refs [56, 57]. The rules for combining the long-
range potent ia ls were discussed in Refs [58, 59, 76, 77], while 
those for combining the sum of the shor t - and long-range 
potent ia ls were considered in Refs [ 6 0 - 6 2 ] . In Ref. [57] the 
formula (2.32) was modernised by tak ing into account the 
difference in the size of the interact ing part icles: 

VAB(R) = \ {VAA(2rA) + V B B [2(R - rA)] } , (2.34) 

where the rad ius of the a tom A is determined by searching 
for an ex t remum: 

drA 

: 0 (2.35) 

Calcula t ions tha t have been carried out in Ref. [57], with 
the use of formula (2.34) and the H a r t r e e - F o c k poten t ia l 
for the inert gases, have shown tha t the results obta ined 
agree with the exact values of the IP bet ter t han the results 
obta ined with relat ions (2.32) and (2.33). A m o r e detailed 
analysis of these dependences is carried out in Ref. [63], in 
which one m o r e combina t iona l rule is p roposed : 

VAB(R) = 
2rAR 

rA + rQ 

B B 
2rBR) 

rA + rQ 

(2.36) 

where r A ; B are the a tom radi i according to Paul ing [64]. 
The compar i son of the combina t ion formulas (2 .32) - (2 .36) 
was m a d e th rough uti l isation of the IP calculated by the 
electron gas me thod [63]. Fig . 3 shows the results of such a 
calculat ion for the N a + - C l ~ system, and these results 
show us tha t Eqn (2.36) is preferable. R o u g h l y the same 
results were also obta ined for the other ion pai rs with 
widely varying values of the radi i [63]. On the cont rary , if 
rA w r B all the combina t iona l relat ions give similar results. 

R / a .u . 

Figure 3. The N a + - C P IP calculated by applying the combinational 
rules: exact calculation with the electron gas model (solid line); 
Eqn (2.33) (curve 7) ; Eqn (2.34) (curve 2) ; Eqn 2.32 (curve 3); Eqn 
(2.36) ( cu rved) . 

The me thod for the separate combina t ion of the 
separate pa r t s of the poten t ia l [Eqn (2.17)] with constant 
signs is wor th considering, since even in the existing form 
the combina t ion rules are applicable bo th in the region of 
repulsion , and (to a greater extent) in the region of 
a t t rac t ion . It is evident then tha t the first te rm [see 
E q n (2.18)] does no t require the combina t ion , bu t the 
subsequent terms, as well as the potent ia ls Vkin(R), 
Vexch(R), Vcor(R) in Eqn (2.17) can be considered sepa­
rately as having different signs. A m o n g recent works , 
Refs [77] and [103] where some new heurist ic re lat ions 
are p roposed above all are wor th ment ioning , connect ing 
the IP with the electron densities of the interact ing a toms 
[77], and with the repulsive forces [103]. In Ref. [334] a 
universal relat ion for the repulsive pa r t of the IP of the form 
V(R) = r0V*(R/p) is p roposed , where V*(x) is a universal 
function, and v 0 and p are pa rame te r s tha t cor respond to a 
given a tomic pair . In the paper cited, extensive informat ion 
was used concerning the IP , obta ined from the measu re ­
ment s of mobili t ies of the a t o m s and ions in gases (see also 
Refs [297] and the relevant l i terature). On the whole, in 
spite of the steady interest in the p rob lem, the p rob lem of 
justifying the combina t iona l rules suitable for a wide range 
of in tera tomic distances and for a rb i t ra ry a tomic combina ­
t ions is far from being settled. 
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2.5 Analytical approximations 
In calculat ions concerning rad ia t ion physics, repulsive 
potent ia ls of the form p roposed for the first t ime by 
F i r sov [65] are mos t frequently used : 

V(R) Z1Z2 
R 

R 
(2.37) 

where $(x) is a screening function, and the pa rame te r 
(screening length) a is determined by E q n (2.29). Based on 
the bi lateral var ia t ional principles of the TF theory (see 
Section 2.2), F i r sov showed tha t , within the accuracy range 
of the TF model , the function &(x) coincides with the 
solut ion to the TF equat ion for an isolated a tom. Because 
of the slow decrease of &(x) for a large R, the poten t ia l 
given by Eqn (2.37) is suitable only if R < 2 a.u. A m o r e 
precise descript ion of the potent ia l curve for R > 2 a.u. is 
achieved by means of an exponent ia l approx ima t ion of the 
type given by Eqn (2.28). Mol iere [66] was the first to 
calculate coefficients of this approx imat ion , and the 
cor responding poten t ia l [Eqn (2.37)] was called the 
F i r s o v - M o l i e r e potent ia l . Ano the r expression, originally 
p roposed by L indha rd [67], is also frequently employed in 
calculat ions for the screening pa ramete r : 

a = 0 . 8 8 5 3 ( Z 2 / 3 + Z 2 / 3 ) - 0 - 5 . (2.38) 

Approx ima t ions similar to E q n (2.28) and based on the 
var ia t ional solution to the TF equat ion are obta ined in 
Refs [68, 69], where the function $(x) is represented in the 
form: 

<P(x) = [aexp(—ax) + Z?exp(—fix) + cexp(—yx)] 2 .(2.39) 

F o r m u l a (2.39) is suitable for compu ta t ion of the half-
integer powers < p n + 1 / 2 . Pa rame te r s for formulas (2.28) and 
(2.39), which present results of the different au tho r s [49, 50, 
6 8 - 7 0 ] , are summarised in Table 4. 

Two-exponent ia l approx ima t ion pa rame te r s [72], the 
au tho r s claim, are suitable for light a toms with Z < 18. 
Calcula t ions of the IP of the a t o m s of inert gases based on 
E q n s (2.37) and (2.39) have shown [69] tha t the app rox ima­
t ion (2.39) with c = 0 for Z < 18 is in bet ter agreement with 
the values of the poten t ia l obta ined experimentally, whereas 
the complete formula (2.39) is preferable for Z < 18. This 
result, a long with similar conclusions reached in Ref. [72], 
demons t ra tes tha t a l though the average screening functions 
given in Refs [49] and [50] are obta ined on the basis of a 
large number of reliable IPs they are no t very accurate for 
calculat ions of the potent ia ls for a rb i t ra ry a tomic pai rs 
(also see the da ta in Table 2). 

Some of the other frequently used approx ima t ions 
include the following: the L e n t z - J e n s e n formula [22], 

0(x) = (1 + 3 . 1 1 x 1 / 2 + 3 . 2 4 x 

+ 1 . 4 6 x 3 / 2 + 0 . 2 4 8 x 2 ) e x p ( - 3 . 1 l V x ) ; (2.40) 

the L indha rd formula [70], 

0(x) = l - l + 
3 

the Tietz formula [71], 

1 

-1/2 

(1 + 0 . 5 3 6 5 x ) z 

the F i r sov formula [25], 

(2.41) 

(2.42) 

4>{x) 
s inh 2 (j8c) 

s inh 2 [ j3 (c+jc) ] 

)S2 = 0 . 1 6 Z " 2 / 3 . 

c= 1.76(1 - 1.5j52) , 

(2.43) 

F o r m u l a (2.43) presents an approx ima te solut ion to the 
T F D equat ion (2.11) for a neu t ra l a tom. In Ref. [73] on the 
basis of E q n (2.37) and the H a r t r e e - F o c k - S l a t e r a tomic 
potent ia ls , an IP screening function for the h o m o a t o m i c 
pai rs was obta ined in the form of 

<2>(r) ={4xP(a£H+ 1}1 
(2.44) 

where H = (4Z — \)0Ars, a = 1 for Z ^ 10 and a = 1.13 for 
Z > 10, pa rame te r s rs are t abu la ted as functions of Z . F o r 
the he te roa tomic pa i rs in Ref. [74], modif icat ions of the 
pa rame te r s / / , rs of the following form were p roposed : 

H = (VzT+yẑ 2 0.4 

/ rs(Zl)+rs(Z2) 
(2.45) 

where the pa rame te r s rs(Zx 2) cor respond to individual 
a toms . F o r m u l a s (2.44) essentially pos tu la te new combina ­
t ional rules, and their validity calls for justif ication. There ­
fore, even t hough Eqn (2.45) takes account of the effects of 
the shells in an approx ima te way, it is no t likely to be 
helpful as a universal descript ion of the potent ia ls and, in 
par t icular , of the effects of the Zi-osci l la t ions for the 
s topping powers (see Section 3.2 and Ref. [75]). It should 
also be noted tha t the mode l potent ia ls [73] have been 
criticised for giving an incorrect idea of the asymptot ic 
behav iour for r —> oo [29]. 

Table 4. Approximation parameters of the screening function. 

Ref. [66] Ref. [68]* Ref. [69]* Ref. [72] Ref. [49] Ref. [50a] Ref. [50b] Ref. [216] 

C\ 0.1 0.72183 0.52495 1/3 0.0069 0.09 0.18175 0.4841 

Cl 0.55 0.27817 0.43505 2/3 0.1669 0.61 0.50986 0.2829 

C3 0.35 — 0.04 — 0.8262 0.30 0.2802 0.1589 
c — — — — — 0.02817 0.0741 

bx 6.0 0.17826 0.12062 0.854 0.1318 0.19 3.20 0.6573 
b2 1.2 1.75934 0.84795 0.492 0.3079 0.57 0.942 1.6224 
b3 0.30 — 6.7469 — 0.9168 2.0 0.429 0.2994 
b — — — — — — 0.2016 4.4049 

*Pammeters c{ and bt (i — 1, 2, 3) correspond to a, b, c and a, f$, y in Eqn (2.39). 
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Useful expressions for the screening function and the 
electron density of an ion with an a rb i t ra ry ionisat ion 
degree were obta ined by preserving the coefficients of the 
exponent ia l approx imat ion of the function (2.28) and by 
modifying the screening pa ramete r [107]: 

a . = 0.8853 A T 1 / 3 ( ^ \ , (2.46) 

where s is an u n k n o w n var ia t ional pa ramete r , and N is the 
number of electrons. The screening function of an ion, 
t ak ing into account E q n (2.46), is wri t ten in the form 

<P1(r)=q+(\-q)<I>(-) , (2.47) 

where q = 1 — N/Z is the degree of ionisat ion, and &(x) is 
defined by E q n (2.28). The electron density, if we t ake into 
account Eqn (2.47) and the Poisson equat ion , is given by 

4nra: a* 
(2.48) 

Subst i tut ing E q n (2.48) in the functional (2.7) ( ignoring the 
exchange term), we get a formula for the ion energy (here 
the coefficients BH CT cor respond to those given in 
Ref. [68]): 

Es(s) = -\A3VKN4/3 0.911 Z -

+ 0.345N 
N 

• 0.325N 
'N 

Minimis ing Es(s) with respect to the pa ramete r s, we get 

l n ( 1 . 1 6 7 Z / A f - 0.167) 

°= Hz IN) 1> Z = N - ( 2 ' 4 9 ) 

The dependence of s on N/Z is shown in Fig. 4. 

1.6 N/Z 

Figure 4. Dependence of s on N/Z. 

Some other analytical approx ima t ions of the IPs and 
screening functions of the neu t ra l a t o m s can be found in 
Refs [321, 3 2 8 - 3 3 2 ] . One of the works , rarely cited t oday 
[321], should be ment ioned here. This work conta ins 
sufficiently simple approx ima t ions of the H a r t r e e - F o c k 
electron densities of a t o m s for 1 < Z ^ 36. The IP [98] is 
ra ther useful in appl icat ions: 

V(R) = 0A5Z1Z2 

R2 

Using this IP , the au tho r s of Refs [316, 317] successfully 
described the characteris t ic rad ia t ion Xe ( M ) tha t was 
induced in the channell ing of Xe ions in copper , as well as 
the generat ion of defects due to this process . 

2.6 Nonstationary theories 
In the last few years progress in compute r science has 
m a d e possible the solut ion of the many-par t ic le p rob lems 
in a tomic collision physics, based on the solution of the 
nons t a t i ona ry equa t ions of Schrodinger and H a r t r e e -
F o c k [ 7 6 - 8 2 , 279, 289]. General ly, the systems under 
considerat ion conta ined a small number of electrons (1 or 
2), and all the calculat ions were based on an approx imat ion 
of the rectilinear trajectories of the moving particles. Wi th 
this app roach to the p rob lem, the calculat ion of the IP is 
irrelevant and the p rob lem focuses on the descript ion of 
t ime evolut ion of the electron subsystem. Systems with a 
larger n u m b e r of electrons were studied within the 
f ramework of the t ime-dependent T h o m a s - F e r m i theory 
(TTF) , the h y d ro d y n ami c version of which is well k n o w n 
[83, 84]. Thus , in Ref. [85] a numer ica l solution to the T T F 
equa t ions for the scat tering of p r o t o n s on a rgon a t o m s (for 
p r o t o n energies from 27.5 to 2.500 keV) has been obta ined. 
In these cases, the approx ima t ion of the rectilinear 
trajectories has also been used. This last poin t is, 
however , no t crucial. Accord ing to Refs [86, 87] the 
to ta l energy of the system can be wri t ten as: 

[p(r, t)p(r',t) 
E = ^(Vcp)2p(r,t)d3r+l-^f- dVdV 3 ' 

+ | V(r, t) p(r, t) d 3 r + J G[p(r, t)] d 3 r , (2.50) 

where V(r,t) is the poten t ia l of the nuclei and external 
fields, the functional G(p) includes the sum of the kinetic, 
exchange, and correlat ion energies of the electron gas, and 
(p(r,t) is the hydrodynamics poten t ia l of the electron 
velocities. H y d r o d y n a m i c s equa t ions are derived from 
E q n (2.50) in a s t andard m a n n e r and have the following 
form [86]: 

d t ^(V^>) 2 + V ( r , 0 + \r — r'\ bp 

dp 
= -V(pVq>) 

(2.51) 

(2.52) 

with the addi t iona l restrict ion dcp/dn = 0, where « is a 
n o r m a l to the surface tha t confines the system volume. If 
we apply E q n (2.50) to the case of a t o m - a t o m scattering, 
it is evident tha t , with k n o w n p(r,t) and (p(r,t) and after 
the subtrac t ion of the energy of the isolated particles, this 
formula can be viewed as being suitable for a definition of 
the dynamic in te ra tomic potent ia l . In pract ice the solution 
to the system of equa t ions (2 .51) - (2 .52) can be obta ined 
by splitting it into small t ime intervals, within each of 
which the part icle trajectories are rectilinear, and then, by 
calculat ing U(R,t) and solving dynamics equa t ions for the 
nuclei (on the same t ime intervals), with subsequent 
correct ion of their posi t ions and velocities before passing 
on to the next t ime step. A l though in this case the poten t ia l 
cannot be specified outs ide the trajectory, its calculat ion 
remains an impor t an t stage in the solution of the dynamics 
p rob lem and carries addi t iona l informat ion on the energy 
losses of the interact ing part icles. 
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2.7 Velocity (energy)-dependent interatomic potentials of 
interaction 
If the ion velocities are vx ^ Z 2 / 3 , which are the typical 
average velocities of electrons in a TF a tom, most of them 
are still sufficiently strongly b o u n d to the nucleus. On the 
other hand , it is no t difficult to show from E q n (2.50) tha t 
for small var ia t ions of the electron density (in the absence 
of external fields) energy correct ion will appear only in the 
second order of the pe r tu rba t ion theory. This is confirmed, 
for example, by calculat ions of the t ime evolut ion of the 
function p(r,t) in the system H - A r [85, 86]. This s ta tement 
allows for the supposi t ion tha t the main cont r ibut ion to IP 
in the dynamic regime can be calculated in a quasis tat ic 
approx ima t ion of the electron gas. The idea of such an 
app roach was first p roposed in Ref. [48], where cor re ­
sponding est imates of IP were worked out for the system 
H - H . The main idea consists in the isolation of the 
poten t ia l (and its modif icat ion) from the kinetic energy 
cont r ibut ion [the thi rd term in E q n (2.7)]. It is evident tha t , 
for the mo t ion of the a toms with relative velocity vu F e r m i 
spheres of the electrons shift a distance equal to 
p0 = mevi = vi (see Fig. 5), whereas in a static case they 
would be concentr ic . As a result, the var ia t ion of the 
kinetic energy will occur only for those electrons which 
happen to be in the over lapping pa r t of the F e r m i 
dis t r ibut ions. These electrons, because to the Paul i 
exclusion principle, will increase their energy by shifting 
to the free cells of the m o m e n t u m space. As a new quas i -
equil ibrium electron dis t r ibut ion, in Ref. [48] a F e r m i 
sphere with its centre located in the centre of mass of the 
system has been adop ted , and an approx ima te est imate of 
the cont r ibut ion of kinetic energy in IP has the form 

V k i n ( * « Vkm(R) exp( -0 .0048) , (2.53) 

where V k i n ( ^ ) is a static value, and s is the reduced energy 
defined by the relat ion 

e - £ ' a M 2 (254) 

ZlZ2(M1+M2)- ( Z ^ V 

In this formula, Ex is the energy of an incident a tom with 
mass Mi and a tomic n u m b e r Z\ (M2 and Z 2 cor respond to 
the target a tom) , and a is a screening pa ramete r given by 
E q n s (2.29) or (2.38). In Refs [ 8 8 - 9 2 ] this mode l is 
described in greater detail . It was ment ioned in par t icular 

Figure 5. Electron distribution in a volume element d R of the 
momentum space (according to Ref. [48]). On relaxation to the quasi-
equilibrium distribution with the centre 0 c . m . at the centre of mass, 
half the electrons that occupied region A pass to region B. 

tha t for the a t o m s with a large n u m b e r of electrons, only a 
few of them cont r ibu te to the format ion of the q u a s i m o -
lecular orbi ta ls localised at the centre of mass of the 
system, with the rest remain ing b o u n d to their respective 
nuclei. Therefore, some other way of calculat ing the kinetic 
energy var ia t ion should be found, where the centre of a 
new quasi-equi l ibr ium dis t r ibut ion will ma tch the centres 
of the initial ones. Let us consider this p rob lem in m o r e 
detail , following Refs [89, 91]. 

Let us assume tha t each a tom has a h o m o g e n e o u s 
dis t r ibut ion of electron density px 2 , and let us further 
assume for clarity tha t px > p2. Then under quasi-equi l ib­
r ium condi t ions the electron dis t r ibut ions in m o m e n t u m 
space are F e r m i spheres with radi i pt = (3K2pt)1^3, as in the 
TF theory pi=p3

i/3TZ2. F o r the p rob lems of rad ia t ion 
physics, one a tom can always be considered as being at 
rest, and the other as having a velocity of vx. If vx ^ 0, 
several cases of over lapping for the F e r m i dis t r ibut ions 
shown in Fig. 6 are possible. Even in Fig . 6, it is clear tha t 
for V ! = po > pi + p2 there are no var ia t ions of kinetic 
energy of the system (this is also t rue for the exchange 
and correlat ion energies), therefore the potent ia l will 
include only the C o u l o m b par t [see E q n (2.17)]. F o r 
Po < Pi + Pi the over lapping changes from par t ia l to 
to ta l . Ha l f the electrons tha t occupy the over lapping 
domain should occupy the cells with large values of 
m o m e n t a . The new quasi-equi l ibr ium dis t r ibut ions are 
shown by a dot ted line, and their centres coincide with 
the centre of the larger sphere because of the min imum 
energy principle. In cases (a) and (b), a new value for the 
'quas i -equi l ibr ium' rad ius can be determined according to 
the formula 

Pm = {p\ +Pl)1/3 , (2.56) 

which expresses the conservat ion of the vo lume of p-space . 
In the above examples it is no t difficult to find the 
var ia t ions of the kinetic and exchange energies. Assuming 
tha t the over lapping vo lume is equal to Q, the var ia t ion of 

Pi - P i <P0<P\ +P2 PO >Pl +P2 

Figure 6. The same as Fig. 5, but in accordance with Ref. [90]. The 
dotted lines correspond to quasi-equilibrium distributions of the 
electrons that were initially located in the shaded domain. 
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Figure 7. Coordinate system used in the evaluation of the integral 
(2.58). 

the kinetic energy of the electrons which have occupied the 
F e r m i sphere of rad ius pm, can be wri t ten as 

2Q 

(2nf 
4np dp 

f'l.4np2dp- f 
JO 1 JD(p2 dV , (2.57) 

where D(p2) is the vo lume of the domain of over lapping 
for the p-space . The first two integrals in Eqn (2.57) are 
elementary, and the thi rd one can be easily calculated in 
cylindrical coordina tes with the origin in the centre of the 
smaller sphere (see Fig. 7). F r o m Fig. 7 it can be seen tha t 
this integral in E q n (2.57) is presented in the form 

D(p2] 
d?P'=n r 

Jo dz r d r [ 2 r2 + (p,-zf 

21 _
 2lZ

 _ 2 , 3 

Subst i tut ing E q n (2.58) in E q n (2.57), we get 
- 5 PS „ 5 „ 2 ^ 

V kin Q 
I O j i 2 I O t t 2 I O t t 2 

POPI\ 
' 6n2 ) 

(2.58) 

(2.59) 

The first three te rms in E q n (2.59) cor respond to the static 
result, while the last one is equal to the kinetic energy of 
the relative mot ion of the electrons of the second a tom, 
which entered the domain Q since p2 — Pi/^2- Conver t ing 
Pi and p2 to the densities 
E q n (2.59) in the form 

px and p2> w e c a n wri te 

Vv 
3 x5/3 _ 5/3 

Pi 1 0 (3n2f3Q[(Pl+p2) 

0.5v 2 p 2 ] • 5/3 
-Pi (2.60) 

The first te rm in E q n (2.60) reflects addit ivi ty of the 
electron densities in the domain of over lapping, which is 
evidently a consequence of the Paul i exclusion principle 
and the min imum energy principle. 

W h e n we tu rn to n o n h o m o g e n e o u s electron dis t r ibu­
t ions in the a toms , E q n (2.60) is to be considered as a local 
relat ion in the vo lume d 3 r , where px > p2. The doma ins 
p2 > px are to be t aken into account in exactly the same 
way, with the subst i tut ion of px*±p2 in E q n (2.60). T h u s in 

the final form the cont r ibu t ion of kinetic energy to the 
poten t ia l will have the form 

^ 1 „ ( ^ , v 1 ) = ^ ( 3 7 r 2 ) 2 / 3 ( | { [ p 1 ( r 1 ) + p 2 ( r 2 ) ] 5 / 3 

- P i ( r i ) S / 3 - f t ( r i ) S / 3 - f ft(ri)} 

- P i ( r i ) * - f c t e ) * - | p . ( r i ) } 

x % 2 -Pi)d r 

(2.61) 

The exchange energy cont r ibut ion can be calculated in a 
similar way, considering tha t its density in uni t vo lume of 
the configurat ion space is —p/n. F inal ly for the cases (a) 
and (b) in Fig. 6 we get: 

4 4 T / 5 \ 

v o h = -a -p\ 
4n2 

1 (3 

1 
6 7 ? 

2popl+0-4-)o(p0-P2) 

-^[^P2+P2P0 •OApt 

PoJ 

6{P2 -Po) . (2.62) 

W h e n we convert from Eqn (2.62) to the vo lume integral, 
as in (2.61), this formula should be supplemented with the 
symmetr ic t e rms with the subst i tut ion px*±pl9 since 
E q n (2.62) per ta ins only to the doma in px > p2. 

With a par t ia l over lapping of the F e r m i spheres, the 
cor responding formulas are also elementary, a l though m o r e 
awkward [89, 91]. The radius pm can also be found from a 
m o r e complex algebraic equat ion . Since in the TF mode l the 
average electron velocity is 1 .2Z 2 / 3 , the condi t ion for the IP 
to become a C o u l o m b poten t ia l can be wri t ten in the form: 

Ex > Ecx = 0 . 0 3 6 A ! ( Z 2 / 3 + Z 2 / 3 ) 2 M e V (2.63) 

Figure 8. Energy dependence of the screening function of the Ar -Ar IP 
[90b]: E = oo (curve 1); E = 10 MeV (curve 2 ) ; E = 1 MeV (curve 3); 
E = 0.l MeV (curve 4); E = 0 (curve 5 ) . 
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where A\ is the mass n u m b e r of the incident a tom. F o r 
instance, for A r - A r collisions we will get E = 290 MeV. In 
Fig. 8 the results of calculat ions of the screening function of 
the A r - A r poten t ia l are shown. These calculat ions were 
conducted for different energy values E. Electron and 
a tomic densities cor responded to those of the TF mode l in 
the approx ima t ion [68]. The kinetic energy was calculated in 
accordance with E q n (2.61). Fig. 8 shows us tha t the 
dynamic effect appears even at Ex = 1 M e V and manifests 
itself in the region of med ium and large in tera tomic 
distances. Let us no te tha t E q n (2.61) somewhat over­
est imates the value of V k i n because it cor responds to the to ta l 
over lapping of the F e r m i spheres. I ts correct ion can be 
achieved by mult iplying those te rms in E q n s (2.59) and 
(2.56) tha t depend u p o n p2 by the coefficient 1/2 [the same 
is t rue with respect to E q n (2.62)]. 

Var ia t ion in the cont r ibu t ion of exchange energy in the 
to ta l po ten t ia l is no t very not iceable and, as one can see from 
the numer ica l results, consists of an extra rise in IP . Wi th p0 

not too small, the second te rm in Eqn (2.62) is mos t 
impor tan t , while with small p 0 and large internuclear 
spacings the main role will be played by the first and thi rd 
terms. 

The theory considered above refers to the case of a weak 
ionisat ion of the first part icle. Wi th the a tom moving in the 
med ium at velocities of ~ Z 2 / 3 , a significant pa r t of its shell is 
s tr ipped even at small depths , so the ac tual degree of 
ionisat ion which tends to g row with the growth of velocity 
should be t aken into account in the IP calculat ion. This 
factor was taken into account in Ref. [91]. A n assumpt ion 
was also m a d e there tha t the degree of ionisat ion cor responds 
to the equil ibrium charge tha t an ion obta ins in a med ium. 
In Fig. 9 the results of calculat ing the IP for the h o m o -
nuclear pai rs at different velocities are shown. The da ta on 
cont r ibut ion of the kinetic and C o u l o m b energies (Figs 9a 
and 9b) and the to ta l po ten t ia l are presented separately 
(Fig. 9c). Tak ing into account E q n (2.28), the degree of 
ionisat ion is equal to 

N 1 f^1 

q = l - - = l - - j 4nr2

Pl(ri)dr 

3 

= c«(! + bixo) e x p ( - ^ o ) , (2-64) 
1=1 

where x0 = and R} is found from the equat ion 

pl(R,)=^. (2.65) 

F o r m u l a s (2.64) and (2.65) cor respond to the k n o w n Bohr 
s tr ipping criterion, and the factors ct and bt are taken from 
Ref. [68]. F r o m Fig. 9 it follows tha t a dynamic decrease of 
the IP occurs at any R if x 0 > 3, which cor responds to 
q < 2 / 3 . The effect is mos t p r o n o u n c e d at x > 6. G r o w t h 
of the poten t ia l at x < 6 is due to complete deplet ion of the 
electron shell of an ion and an increase of the C o u l o m b 
interact ion. C o m p a r i s o n with the IP calculat ion for the 
neu t ra l a toms (Fig. 8) shows tha t in the latter case the 
effect of diminishing of the poten t ia l is m o r e evident and 
takes place at any value of R. If R —> 0, dynamic effects are 
insignificant, because all the potent ia ls are close to 
Z{Z2jR. F o r R >2RX formula (2.61) can be wri t ten in 
a simpler form, 

Vkm(R9vx) = V k ! ( R ) - 0 .5v 2 N 2 , (2.66) 

Ue(x,vx)Z - 7 / 3 

I I I I I 

2 6 10 14 x 

Figure 9. The universal i o n - a t o m IP of the homonuclear pairs in the 
quasistatic TF approximation taking into account a degree of 
ionisation [90c]. Ion 'reduced radius ' x0 is linked with its velocity of 
movement by relation (2.65): (a) the electrostatic interaction 
contribution; (b) the kinetic energy contribution; (c) the total IP 
(x = 1.13Z1/ 3/?); x0 — oo (curve 7) ; x0 — 5 (curve 2) ; 
x0 = 3.5 (curve 3); x0 —2 (curve 4). 

where V k i n is a static value of the potent ia l , and N2 is the 
number of electrons of the target a t om tha t exist in the 
electron cloud of an ion (of rad ius Rx). Thus , in tha t case a 
dynamic correct ion is p ropo r t i ona l to the kinetic energy of 
the part icle. This result is no t unexpected: a correct ion, 
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p r o p o r t i o n a l to the energy, to the long-range poten t ia l of 
interact ion of an electron with a hydrogen a tom, was 
obta ined in [93], and still earlier a similar result was found 
by G o m b a s [22] within the f ramework of the statistical 
electron theory and is, in principle, at the foundat ion of the 
pseudo-poten t ia l theory. T h u s E q n (2.66) m a y be regarded 
as a general isat ion of these results to an i o n - a t o m 
potent ia l . 

In Refs [89, 90] the au tho r s used the te rminology of the 
'veloci ty-dependent ' in te ra tomic potent ia ls . In tha t case, a 
r igorous solution of a two-body p rob lem could be obta ined 
with s tandard m e t h o d s of classical mechanics . As can be 
deduced from the results of this Section, however , the 
effects ment ioned here become significant at velocities of 
the order of Z 2 / 3 and are best evident for in termedia te and 
large internuclear distances. In this case, the processes of 
s topping and scattering at large angles are no t sensitive to 
var ia t ions of the potent ia l , as they are defined by its 
C o u l o m b asymptot ics . Therefore for the pract ical use of 
such potent ia ls , the processes of scat tering at small angles 
and channel l ing might be most suitable when the part icle 
energy (and velocity) is cons tant in the first approx imat ion . 
U n d e r these circumstances it is m o r e appropr i a t e to talk 
abou t potent ia ls tha t are pa ramet r i c energy (velocity) 
dependent . 

3. Interaction of charged particles with solids 
The quest ion of the impact of the proper t ies of a solid on 
the a tomic collision processes is a very complicated one. 
This is in spite of the significant progress m a d e in this area 
recently. Of p r imary impor tance for the subject mat te r of 
this review are the classical characterist ics of part icle 
mot ion , when their calculation relies on the appl icat ion of 
in tera tomic and averaged potent ia ls . Some related ques­
t ions tha t are beyond the scope of these approx ima t ions are 
considered m o r e briefly. 

3.1 Differential cross sections of the i o n - a t o m scattering 
F o r most of the i o n - a t o m interact ions in mat te r (except 
the scat tering of H on H 2 , He) , q u a n t u m effects are 
insignificant, and hence a classical descript ion can be used. 
In this case, basic relat ions of the theory and their links 
with the exper imental values are well k n o w n [ 9 5 - 9 7 ] . 
Therefore let us consider some pract ical m e t h o d s of 
calculat ion of the angles and cross sections which are 
used in rad ia t ion physics. 

A s tandard classical expression for the scat tering angle 
in the centre-of-mass system (CMS) has the form [95]: 

.„ of0 0 b2/r2 

l m [1 -b2/^ -V(r)/E}1/2 

dr , (3.1) 

where b is the impact pa ramete r , E is a relative energy of 
collision, r m is the distance of max imal app roach tha t can 
be determined from the equat ion 

In order to eliminate divergence of the in tegrand in 
E q n (3.1), the t rans format ion given in Ref. [98] is used: 

Z\Z2 b rm rm p = , P = - 9 cos (X = — , H = — 
E p r p 

(3.2) 

Tak ing it into account , we can t ransform E q n (3.1) to the 
form 

2P r / 2 IP r 
1 = K 

Hit 

sin a da 

o [ 1 - (P/H)2 cos2 oc-cos oc<P(Hp/cos oc)/H] 1/2' 

(3.3) 

where $(x) =rV(r)/ZiZ2 is the screening function of an 
IP . Typically the angle 0 is small, therefore subt rac t ion of 
two similar quant i t ies in E q n (3.3) causes large errors . To 
eliminate them, the t rans format ion given in Ref. [99] is 
offered: 

2P 
~H 

• 2 arccot 

>n/2 
yo 

2P 
_0(Hb)_ 

NN/z 

(a) d a - [v 0 (a) - v ( a ) ] da 

2P f71/2 

+ Jf\o | > o ( « ) - ? ( « ) ] d a , (3.4) where 

Jo(a) = 
sin a 

[1 - (P/H)2 cos2 oc-cosoc<P(Hb)/H] 
1/2 

and v(a) coincides with the in tegrand in E q n (3.3). A n 
integral in E q n (3.4) is easy to calculate with the Simpson 
formula. F o r 0 <̂  1 a small-angle approx ima t ion [95] is also 
used: 

b 
E 

dV 1 
dr ^-Tyl 

dr . (3.5) 

it is advisable to calculate this integral us ing the G a u s s -
Christoffel q u a d r a t u r e formula [100]: 

1 4^ « * y > , ) , 
- i V r ^ 3 ? « t i 

(3.6) 

where f(x) is a function wi thout singularities. Tak ing into 
account E q n s (3.5) and (3.6), we have 

0E- - Vr-
2n 

dV 
d r cos - h - ~ 

(3.7) 

Usual ly even with ?z = 2 0 - 3 0 , Eqn (3.7) guaran tees high 
precision. L indha rd and coau thor s [101] p roposed a 
modif icat ion of E q n (3.5) for large angles, using the 
representa t ion of V(r) by means of a TF screening 
function. Then , t ak ing into account E q n s (2.37), (2.54), 
and (3.5), we get 

sO 

F(x) = 
_d_ dy 

(3.8) 

(3.9) 

Ex t rapo la t ion of Eqn (3.8) to large angles consists in 
subst i tut ion of 9 by 2 s i n ( 0 / 2 ) . Nex t we in t roduce a 
dimensionless scattering pa rame te r — es in (0 /2 ) , and 
obta in 

V? = 0.5F (3.10) 
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Solution of Eqn (3.10) with respect to b/a will give us a f(y/i), f(y/i,e 
universal relat ion, 

b = aW(y/i) , (3.11) 

where W(y/i) is the function tha t is inverse with respect to 
F(z). Tak ing into account E q n (3.11), we present the 
scattering cross section as 

der = 2nb db = na 
dt 

na2f(y/i) 
2 t3/2 

dt , (3.12) 

where f(y/t) is a universal scattering function [101] which 
depends u p o n the poten t ia l t h rough F o r the TF 
potent ia l , the function f(y/t) is approx ima ted in the form 
[102a]: 

f(y/t) =k°-5-m[\ + (2hl-m)qyl,q , (3.13) 

where 1 = 1.309, q = 2 / 3 , m = 1/3. F o r other screening 
functions, similar pa rame te r s are cited in Ref. [102b]. If the 
cross section is calculated based on an exact formula 
describing the scattering angle, then, setting E q n (3.12) 
equal to 2nbdb and tak ing into account the relat ion 
t = e 2 s i n 2 ( 0 / 2 ) , we get the scattering function in a general 
form [103]: 

48 
f(Vt, s)=-b[6(t)] 

db 9 . 0 
d 0 t a n 2 S m 2 

(3.14) 
Kt) 

T h u s in the general case / depends no t only u p o n the 
universal pa ramete r t, bu t also u p o n the energy 8 , where 8 
enters also f(y/i, s) t h rough b [104]. In Ref. [105] a 'magic ' 
formula for 6(b) is p roposed . This formula is convenient 
for s imulat ion of ion t r anspor t in the med ium with an error 
of abou t 1%. The cor responding code called T R I M 
(Transpor t of Ions in M a t t e r ) is widely used in rad ia t ion 
physics. 

C o m p a r i s o n of some theoret ical approx ima t ions for the 
scattering functions calculated with var ious potent ia ls 
(screening functions) with and wi thout a large angle 
approx ima t ion had been carried out in Ref. [104, 107]. 
In Fig. 10 the results of the compu ta t ion are shown [104]. 
Curve 3 co r responds to E q n (3.13), i.e. to the TF potent ia l ; 
curve 2 approx imates the exper imental results for the 
ranges [142]; curve 1 cor responds to the compu ta t ion in 
the wide angle approx ima t ion for an average poten t ia l [49]; 
and the dashed curves to the exact compu ta t ions with 
E q n (3.14) for the same case. The poin ts of the cut-off of 
the curves at the large t end correspond to the values of s 
under considerat ion. As follows from Fig. 10, the form of 
the potent ia ls used influences mainly the scattering function 
(compare curves 1 and 3). A large angle approx imat ion 
leads to 5 % - 1 0 % deviat ions off(tl/2,e) with respect to 
f(tll2) when 8 > 10~ 2 . The scattering functions for the 
energy-dependent potent ia ls were calculated in Refs [106, 
107]. In Fig. 11 the results of the computa t ion [106] carried 
out by means of the wide angle approx ima t ion are shown. 
Curve 1 was plot ted for the static potent ia l , curve 2 for the 
' ba re ' electrostatic one, and curve 3 for the velocity 
V! = 0 . 2 4 Z 2 / 3 (a case of a h o m o a t o m i c pair t ak ing into 
account ionisat ion of a moving ion was under considerat ion) . 
The pa rame te r s of the screening function (2.28) cor re­
sponded to those in Ref. [72]. Fig . 11 shows us tha t 
t ak ing into account the energy dependence of an IP 
dramat ica l ly decreases the scattering cross sections at 
y/t < 1, i.e. at middle to large internuclear distances. 

Figure 10. The reduced scattering functions f(y/i) corresponding to the 
various approximations and IP [104]: dashed lines — calculation of 
f(y/i, e) by (3.14) for the IP [49] for different e (values of y/i = s at the 
curves' breaks correspond to the values of e under consideration); 1, 2, 
3 —calculation of f(y/t) in the large angle approximation [1 — the 
[49] IP, 2 — the experimental data [142], 3 — according to the 
Formula (3.13)]. 

Ayft) 

Figure 11. A scattering function for the velocity dependent IP of the 
homoatomic pairs [106]: the static IP (curve 1); the electrostatic IP 
(curve 2 ) ; for Vi = 0 . 2 4 Z j ^ 3 , the ionisation being taken into account 
(curve 3); according to Eqn (3.13) (curve 4). 

3.2 Elastic and inelastic energy losses and ion ranges in 
solids 
Energy loss mechanisms of nonrelat ivist ic ions in mat te r 
are most typically l inked with elastic and inelastic effects. 
F u n d a m e n t a l s topping pa rame te r s are s topping losses per 
uni t length and s topping cross sections S. F o r elastic 
scattering, by definition 

dE f 
" ~ (3.15) dz 

:NSn=N\ Tda , 
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where T = Tmax s i n 2 ( 0 / 2 ) is the energy transferred to a 
target a t om in a single collision, 

(Mx +M2y 

is the m a x i m u m transferred energy, 6 is the scattering angle 
in C M S , N is the density of the target a toms , and dcr is the 
differential scat tering cross section. The specific values of 
Sn are defined by the form of an interact ion potent ia l . 
After in t roduct ion of a dimensionless uni t of a range [101] 

M1M2 p = 4na Nz (3.16) 
( M 1 + M 2 ) z 

where z is the length of an ion range in mat te r (other 
variables have the usua l meaning) . Subst i tut ion of 
E q n (3.12) in E q n (3.15) and tak ing into account 
E q n (2.54) will give us 

dE 
~dz~ 

• = NT 
1 V ± r 

no2 1 

4%MxZxZ2aN 1 
(Mx+M2) 

i r 

dt 

dx (3.17) 

(3.1* 

or, t ak ing into account E q n (3.16), 

E q n (3.18) has a general character regardless of whether a 
large angle approx imat ion was used or not in order to 
define f(x). Recent ly in the calculat ion of ranges, the 
approx ima t ions of cross sections based on 'average 
po ten t ia l s ' have become widespread (see Refs [49, 50]): 

0.51n(l + e ) 
*n(s) = 8 + 0.14128° 

0.51n(l + 1.3838) 
8 + 0.013281 ,0.2123 + 0.1959481 ,0.5 

(3.19) 

(3.20) 

Both E q n s (3.19) and (3.20) satisfy the passage to the limit 
for e > 1, when a cross section becomes the Ru the r fo rd 
cross section. In this case, it is no t difficult to show tha t the 
exact result is sn = 0.51nfi/fi. 

A cross section of electron (inelastic) s topping Se is 
defined by 

dE 
~ ^ = N S e - ( 3 - 2 1 ) 

The theory of electron s topping power has no t yet taken its 
final form, despite a large number of existing a p p r o x ­
imat ions . N u m e r o u s reviews and m o n o g r a p h s have been 
wri t ten on the var ious aspects of the subject [75, 1 0 8 - 1 1 2 ] , 
therefore we shall restrict ourselves to the analysis of only 
some recent results. F o r the velocities vx > Z 2 v 0 , the basic 
approx ima t ion is the B e t h e - M e l l e r - B l o c h theory [22, 75], 
where Se oc vx

2. F o r vx < Z2/3v0, most ly Se oc v 1 ; bu t in the 
case v F < V ! < Z2/3v0, where v F is the F e r m i velocity, the 
domain of the quadra t i c dependence Se oc v\ also exists [110, 
111]. Se theory in the doma in of the m a x i m u m for the case of 
light part icles was considered in Ref. [211]. F o r Se oc vx two 
approaches are generally accepted: the F i r sov mode l [113] 
(which t reats s topping as a sequence of individual acts of 
the i o n - a t o m interact ions) , and the mode l of L indha rd 
with coau thor s [114-117] which is based on dielectric 

formalism. In their initial form b o t h models have predicted 
the m o n o t o n i c dependence of Se u p o n Zx and Z 2 . Their 
modif icat ion for the pu rpose of descript ion of the Zx and 
Z 2 oscillations ha s been e labora ted in several works . The 
main versions of the modernised F i r sov theory are 
presented in Refs [75, 1 1 8 - 1 2 2 ] . A l though on the whole 
this app roach gives an approx ima te descript ion of the 
oscillation effects, as has been ment ioned in Ref. [ I l l ] , 
general isat ions of the phenomenolog ica l theory [119] reveal 
a great deal of arbi t rar iness , especially where it is concerned 
with the definition of the locat ion of the F i rsov p lane and 
the flux of electrons t h rough it. A dielectric app roach did 
no t develop so actively, and was pr imari ly concerned with 
the description of the Z 2 oscillations [123-125] . I n t r o d u c ­
t ion in the dielectric theory of the Zx effect is achieved at a 
sacrifice of the mode l of a structureless part icle. In this case, 
s topping losses can be wri t ten in the form [126, 127] 

dE 
~dz~ 

= ^2 f IT I P n e W I 2 f dOJOjlm 
KV\ Jo k Jo 

1 
s(k, co) 

(3.22) 

where pne(k) is a form factor of the charge dis t r ibut ion of 
the part icle, and s(k,co) is a dielectric function. It is 
essential tha t from this formula we can get b o t h limit 
re lat ions for Se: Se oc vx for vx <̂  v F and Se oc vx

2 for 
vi > v F . 

It is believed [128, 129] tha t the linear dielectric theory 
[Eqn (3.22) has been derived within its f ramework] cannot 
be applied in the case of vx <̂  v F , this opinion being based 
on the absence of the Zx oscillations in calculat ions [127]. 
However , in the latter work a rough a tomic mode l was 
employed tha t does no t t ake into account the shell s t ructure 
of the a toms . In Ref. [130] identical calculat ions have been 
carried out with a piecewise-exponential approx ima t ion 
[Eqn (2.25)] for the a t o m s with Zx < 18, which have shown 
the presence of the Zx effect. Therefore there are reasons to 
expect tha t the results could be not iceably improved with 
the use of the m o r e exact form factors. Us ing Eqn (3.22), 
we can also derive the dependence of the energy transferred 
in one collision on the impact pa ramete r b: 

T x 0 f°° dE d r 
r e (b) = 2 — — , (3.23) L ^ {\-{b2/^)-[V(r)/E]}1'2' 

where the main pa rame te r of a dielectric function, namely 
p lasma frequency, depends on the density of the electrons 
of a target a tom, cop = y/4np2(r). In this case it is evident 
tha t the Z 2 effect is in t roduced into the theory t h rough the 
function cop. Calcula t ion based on E q n (3.23) has not , 
however , yet been done in this form. Q u a n t u m general­
isation of E q n (3.23) for the structureless part icles was 
m a d e in Ref. [75], bu t because of the awkwardness of the 
final formulas this app roach has no t been widely applied 
and has only been used to describe the s topping of the 
light, channelled part icles. To simulate i o n - a t o m collisions 
in solids, the calculat ion m e t h o d s tha t divide electrons into 
the strongly and weakly b o u n d e d ones [112, 1 3 1 - 1 3 3 ] are 
used as well. 

In Refs [128, 129, 134, 135] the nonl inear Se theory 
based on the k n o w n formula of Massey and B u r h o p was 
developed. The general isat ion of this formula can be wri t ten 
in the form 

4nn 
V l 2^(1 + 1 ) s i n 2 ( S , - S l + 1 ) , 

1=0 
(3.24) 
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where v F and n are the velocity and density of the F e r m i 
electron gas, and dt are the phase shifts of the electron 
scattering on a self-consistent ion potent ia l . The mos t 
accurate calculat ions have been carried out in Refs [128, 
129], where in order to determine an ion poten t ia l the 
me thod of the electron density functional was applied. The 
results of these calculat ions for Zx oscillations of the 
s topping cross sections are in good agreement with 
exper imental da ta (a l though only ions with Z j < 18 were 
considered). The semiempirical t rend of the theory of 
electron s topping is based on the concept of the Bohr 
effective charge [94, 137] 

Se(Zu Z 2 , = Z 2

e f f ( v 1 ) 5 e ( l , Z 2 , V!) (3.25) 

where S e ( l , Z 2 , vx) is the s topping cross section of a 
p r o t o n , and Z l e f f is an effective charge of the s topping 
p r o t o n . Several types of approx ima t ions for Z l e f f are cited 
in Refs [137, 138, 140, 141], a m o n g others — the analyt ic 
approx ima t ions describing the effects of oscillations of the 
cross sections are described in Refs [50, 140, 141]. 

The basic approx ima t ion used in the theory of ranges , 
beginning with the fundamenta l work [101], is based on the 
assumpt ion of independence of elastic and inelastic s top ­
ping mechanisms, with the result ing cross section 
s — + sG, the reduced range p(e), and the relative energy 
straggling given by [101]: 

p(s) 

(Ap 2 ) 

Jo S n ( s ' ) +Se(sf) 

P 2 J o 

W(sf) 

w 

(3.26) 

(3.27) 

(3.28) 

where y = AM,M2/(M, + M 2 ) 2 , a n d / ( V ^ ) is a scat tering 
function. Wi th s <̂  1, if the Zx and Z 2 effects are no t t aken 
into account , it is usual ly assumed tha t se = 0.15^/fi- M o s t 
p robab ly , all the values considered are eventually related to 
the scattering potent ia l . 

A compar i son of the ranges and the pa rame te r s of their 
d is t r ibut ions from the poin t of view of the IP role was 
carried out in Refs [49, 104, 143]. Depend ing on the 
potent ia ls used, p , ( A p 2 ) / p 2 , and the other pa rame te r s at 
8 < 0.1 in these studies differ significantly, by several t imes, 
when we pass to the higher m o m e n t s of dis t r ibut ion, which 
indicates clearly the dependence u p o n the poten t ia l being 
used. 

M o r e precise calculat ions of the profiles of the dis t r ibu­
t ion for the penet ra ted ions are carried out by the M o n t e 
Car lo m e t h o d s a long with the t r anspor t equa t ion m e t h o d s 
(see Refs [ 1 4 3 - 1 4 5 ] and references cited there) , bu t the 
main factors tha t determine the results of calculat ions 
remain unchanged . 

In Ref. [146] a modif icat ion of the T R I M code [105] is 
repor ted , with the approx ima t ion s = sn + se being sacri­
ficed. Inelastic losses are directly taken into account in the 
collision integral . This m a d e it possible to improve the 
agreement of the theoret ical and exper imental values of the 
ranges for s < 10~ 2 . A similar me thod within the b o u n d s of 
the small angle approx ima t ion was p roposed somewhat 
earlier in Ref. [147]. 

3.3 Multiple scattering 
The basic too l in the theory of mult iple scat tering is the 
me thod based on appl icat ion of the Bethe kinetic equat ion 
[148], a general solution to which, suitable for a rb i t ra ry 
i o n - t a r g e t combina t ions , has been found by K o m p a n e e t s 
[149]. Accord ing to these studies, a function of the angular 
dis t r ibut ion of the part icles after having penet ra ted a film 
of thickness / and a tomic density N is given by 

f(0) = ^ J uJ0(u6) dwexp j - M j d<j[l - J0(u6f)] j , 

(3.29) 

where dcr is a differential cross section, Jo(x) is the Bessel 
function. E q n (3.29) links the angular profile f(0) with the 
interact ion poten t ia l t h rough the cross section dcr. Meyer 
[150] presented the cross section in the form of Eqn (3.12), 
in t roduced the optical depth t = Nna2l and the reduced 
scattering angle rj = £0/2. Eqn (3.29) was then t ransformed 
into a dimensionless form (the angles 6 and Q are related to 
the l abora to ry coord ina te frame): 

POO 
f(6) dQ = r\ dri\ xJ0(x r\) exp [ - t A ( x ) ] dx , (3.30) 

Jo 

where the function A ( x ) is [fs(y) is a scattering function 
given in E q n (3.12)]: 

'L(y) A(X) = I 
o y 

[\-J0(xy)]dy (3.31) 

In actual fact, however, in such a t rans format ion the upper 
limit of the integrat ion in E q n (3.31) should be equal to s 
and thus t ake into account the asymptot ics of fs(y) for 
y 5> 1; this result is correct only for e > 1. In addi t ion, the 
scattering function fs(y) itself (see Section 3.1) depends 
u p o n 8 and therefore angular dis t r ibut ions, generally 
speaking, cannot be represented in a universal form even 
for the TF potent ia ls . Numer i ca l results for the angular 
dis t r ibut ions according to E q n s (3 .30) - (3 .31) are t abu la ted 
in Refs [150, 151] for the thickness ranges 
10~ 3 < t < 2 x 10 3 . In these calculat ions, the TF p o t e n ­
tials with different screenings as well as the power series 
ones were used. The results of Ref. [151] show tha t the use 
of different k inds of potent ia ls for t < 1 leads to a 
var ia t ion of several orders in the angular half-width of 
the dis t r ibut ion profile. On the cont rary , for t > 1 the 
results are similar because scattering is caused by the 
C o u l o m b pa r t of the potent ia l . 

In Refs [152-154] the au tho r s assumed tha t part icles 
which penet ra ted the film at the angle close to 9 = 0 have 
unde rgone collisions only when the scat tering angles do no t 
exceed the angular half-width of the dis t r ibut ion for all the 
part icles penet ra ted , r\Xj2. T h u s the elastic energy losses of 
such part icles are supposed to be limited, while the value of 
the angle r\Xj2 is connected to the thickness t by the relat ion 

e *Amax (3.32) 

where i/f m a x is the m a x i m u m scattering angle in C M S , sn(s) 
is the reduced cross section of the slowing down losses, c is 
a numer ica l coefficient close to uni ty (in Refs [151 - 1 5 3 ] it 
was assumed tha t c = 1, and in Ref. [157] tha t c = 1.4). In 
Ref. [155], to develop these ideas it was shown that , under 
the assumpt ions made , a simpler dependence exists: 

1l/2 0.5s \j/n (3.33) 
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This result directly follows from the relat ions 

aM2Ei Exa6 
ZlZ2(Ml+M2) 9 n = 2ZXZ 

M7 

M i + AT 
(3.34) 

where 6 is a scattering angle in the l abora to ry system, \jj is a 
scattering angle in C M S , the rest of the designat ions being 
s tandard . Tak ing into account E q n s (3 .32) - (3 .33) for c = 1 
we have [155] 

( \ (3.35) 

E q n (3.35) was verified by means of s imulat ion with the 
T R I M code [105] with the Mol iere potent ia l . In the case of 
an analytical calculat ion, the cross sections sn(s) derived 
for this po ten t ia l were approx imated in the form (3.19), 
where the numer ica l coefficients in the denomina to r were 
subst i tuted for 0.052 and 0.32. In addi t ion, a similar 
approx ima t ion was used for the poten t ia l K r - C , calculated 
according to the electron gas mode l (with the coefficients of 
0.11 and 0.38). The results of the calculat ion of depend­
ences yi\/2(i) based on the p roposed formula and those 
obta ined by s imulat ion are compared in Fig. 12. As would 
be expected, the dependence obta ined with the s imulat ion 
agrees bet ter with Eqn (3.35) for the function sn(s) 
cor responding to the Mol iere potent ia l . In Ref. [155] the 
au tho r s see the significance of these results in the 
possibili ty of extract ing the elastic cont r ibu t ion from the 
to ta l energy losses, since a simple me thod of est imating the 
electron s topping does no t exist as yet. Let us no te tha t 
E q n (3.35) can be obta ined directly from E q n (3.29) if we 
limit the integrat ion in the exponent (3.29) by the value 
t = si [the cross section is expressed by means of a 

Figure 12. The reduced function of the angular width profile of the 
multiple scattering [155]: calculation according to Eqn (3.35) for the 
Moliere potential (curve 7 ) ; according to Ref. [150] (curve 2 ) ; the 
same as for curve 1 but for the K r - C potential (curve 3); according 
to Ref. [151] for the TF and Lentz-Jensen potentials (curve 4, 5 ) ; 
according to Ref. [153] (curve 6). 

scattering function from Eqn (3.12), with the subsequent 
considerat ion of the relat ion (3.18)] and if we further use for 
the Bessel function the expansion J0(u9f) w 1 — u26f2/4, 
and do a subst i tut ion of t = s26f2/4 for 6 \ bear ing in mind 
tha t 9f < 1. 

Based on direct summing up of the small angular 
deviat ions, the Mol iere theory [156] is also being used 
for the in terpre ta t ion of the experiments in mult iple 
scattering. It is less convenient for pract ical use as a 
specific potent ia l -or iented theory, since it tolerates only 
var ia t ion of the screening pa rame te r s and the effective 
part icle charges. A compar i son of the angular dis t r ibut ion 
of Mol iere [156] and Meyer [150] was carried out in 
Ref. [75] (see also the cor responding references), where it 
was shown tha t for x > 1 the results are close, and for t ^ 1 
the agreement is poor . 

As follows from Sections 3.1 and 3.2, differential cross 
sections are mos t sensitive to the form of a scattering 
poten t ia l when yft, s < 1. T h u s for a correct compar i son of 
the exper imental da ta with the IP we should calculate 
angular d is t r ibut ions according to E q n (3.30) wi thout 
further simplifications. The case with x < 1 is of par t icular 
interest. The use of E q n (3.35) gives us a possibili ty of 
investigating the potent ia l for x > 1 as well. 

In conclusion we would like to no te tha t in Refs [108, 
151, 109] the formulas tha t directly link angular dis t r ibut ion 
functions with the differential cross sections were obta ined 
bu t they have no t been widely used so far. 

3.4 Dynamic screening of potentials 
W h e n ions move in the p lasma of a solid, their electric field 
is further screened and thus the effectiveness of their 
interact ion with the a t o m s should decrease. The degree of 
screening should decrease with the increase of the ion 
velocity, and when V! > v F it approaches zero because the 
screening charges have no t ime 'to catch u p ' with the 
part icle. The impor tance of this effect was described in 
Ref. [158]. Genera l formulas for the poten t ia l of a ' ba re ' 
electric charge moving in p lasma with the velocity vx were 
obta ined in Refs [ 159 -165 ] within the scope of the linear 
dielectric theory . In Ref. [163] the formulas for the density 
f luctuat ions of the induced charge su r round ing an ion were 
also derived. Detai led presenta t ion of topics related to the 
mechanisms of forming the ionic charge states is given in 
the review Ref. [327]. In Refs [91, 107, 1 6 6 - 1 6 8 ] general 
expressions are obta ined for the shor t - range pa r t of the 
screened potent ia l ( taking into account its own electrons), 
and further on the potent ia ls of interact ion with the 
individual a t o m s of the solid. Fo l lowing Refs [91, 166, 
167], let us wri te a general expression for an ion poten t ia l 

1 
: 2 ^ 

exp [i(q*r — cot)] 

q2s(q, co) 
p(q) h(co — q'Vi) dco , 

(3.36) 

where p(q) is a form factor of the charge dis t r ibut ion and 
s(q, co) is the dielectric function. It is convenient to use an 
expression for p(q) tha t cor responds to an approx imat ion 
of the electron density with Eqn (2.48): 

Cijqajbi)2 

1 + (qajbt)2 
(3.37) 

In order to simplify E q n (3.36), one either integrates 
directly with respect to the frequencies [163, 164], or 
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in t roduces a cylindrical coord ina te system in the p-space 
with the z axis in the direction of the vector vx [160], and 
then integrates with respect to the angular variable and the 
z componen t of the vector. In this case we have [160]: 

1 
71 Vi 

J0(px)x dx 
exp [ico(z/vi - t)] p(q) 

s(q,co) (x2 + co2/v\) 
dco, 

(3.38) 

where q = x2 + co2/v2. W h e n we integrate E q n (3.38) with 
respect to the frequency, we apply analytical proper t ies of 
the function e(#,co). If p l a smon damping is absent , its poles 
are real, and integrat ion with respect to a complex con tour 
including the real axis, leads to the poten t ia l k n o w n as a 
'wake ' [159, 160, 163], which describes the polar isa t ion 
' t r ack ' of a part icle. This potent ia l and the possibili ty of 
format ion in it of the quas i -bounded states of the 'escort ' 
electrons have been discussed in detail in the cited works 
and are beyond the scope of this paper . N o t e tha t the space 
per iod of the 'wake ' po ten t ia l is equal to vi/cov and tha t it 
is localised behind the part icle. Tak ing into account the 
absorp t ion in the function e(#, co) leads to the diminishing 
of the oscillation ampl i tude with the moving away from the 
ion [163]. The short range pa r t of the ion field is due to the 
poles co = ±\xvi for a ' ba re ' charge and the poles of the 
form factor p(q) for the electron cont r ibu t ion [91, 167]. In 
the first case, a specific dependence of co) u p o n q is no t 
significant, because q = 0. Then (in the case of N\ = 0) we 
get [163, 167]: 

z i ^ w p f°° h{pyu>vh\) 

Jp 
2+z'2 

x exp 
con 

vi 

vi Jo \+y2 

where cop is the p lasma frequency, z1 

(3.39) 

— vit,p and z are 
the cylindrical coordina tes of a po in t with respect to the 
locat ion of an ion at the instant t. F r o m E q n (3.39) it 
follows tha t the correct ion to the C o u l o m b ion field at the 
poin t r = 0 is equal to 

A<P(0) 
2 ^ 

If we consider it as the first te rm of an expansion of the 
screened poten t ia l Zx exp(—ar) / r , it is evident tha t 
a = 7 I C O p / 2 v 1 . Actual ly, the integral in E q n (3.39) d imin­
ishes somewhat m o r e slowly. In Refs [91, 165] it is 
calculated in an analyt ical form and then represented by 
an expansion with respect to the Legendre po lynomia ls as 
the functions of cos 0, where 6 is an angle between r and 
The spherical pa r t of the expansion is nicely approx imated 
by the following equat ion [91, 168]: 

A 4 > 0 ( r ) « ^ 
r 

1 — exp 
con 

-1.064 -^r (3.40) 

An i so t ropy of the poten t ia l A(P due to the tak ing into 
account of the angular t e rms is no t too large; in the 
direction of the z axis the poten t ia l is somewhat larger t han 
in the perpendicular direction. These dependences are 
shown in Fig.13 for the potent ia l of H + in a luminum for 
V! = 3v 0 (cop = 0.56 a.u.). 

F o r the ions with par t ia l ionisat ion, the poten t ia l given 
by E q n (3.38) was calculated in Refs [107, 168]. The 

<2>(r) 
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Figure 13. Dynamic electric potential of the H + ion in aluminum at 
V l = 3 v 0 [168]: Eqn (3.40) (curve 7) ; Eqn (3.39) at p = 0 (along the 
direction of motion) (curve 2 ) ; similar to curve 2 at z' — O (in the 
perpendicular direction) (curve 3). 

dielectric function was taken in the form p roposed from 
Refs [127, 163]: 

2 

s(q, co) = 1 + - (3.41) 
coj + 0.6v2q2+ 0.25q4 -co2 ' 

where cog is the energy gap width. Subst i tut ion of 
E q n s (3.41) and (3.37) into Eqn (3.38) leads us to the 
following result 

*r '\ z i ~ N i N 

x exp bt )-k(Zl-Nl) 

>J0(kpy)exp(-k\z'\y) , , N^l ^ C i 

\+y2 

Ai + vlbj^/a2 
exp( -t\z'\ — J dt , (3.42) 

a* 

Al=CDi+^[v\-V2

v+-^) , (3.43) 

where k = (co2
 + C O G ) / C O P . It is evident tha t the first two 

te rms in Eqn (3.42) represent the static electric po ten t ia l of 
the ion at the poin t r = \ / p 2 + z / 2 , and the two last t e rms 
are connected with the screening effect. It is not difficult to 
show tha t the second integral is, as a rule, essentially 
smaller t han the first one. Major is ing them by the 
cor responding values at p = z' = 0 and assuming tha t ct 

and bt are equal to the Mol iere coefficients, we can wri te 
the rat io of the second integral to the first one as 

1.6 
Zx-Nx vx (3.44) 

Since usual ly cop ~ 0.5 a.u. and a* « 0.2—0.3, then for 
Vi > v0 and for Zx — Nx no t too small we have s 5> 1. The 
case Zi^Ni is no t really impor t an t because there the 
screening due to the electrons of the a t o m s p redomina tes . 
T h u s in cases impor t an t in pract ice the last te rm in 
E q n (3.42) can be ignored, and for the third term we can 
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use E q n (3.39) with the subst i tut ion of Zx for Zx — Nx. The 
sphere of applicabil i ty of E q n s (3 .39) - (3 .42) , as no ted in 
Ref. [167], is limited to the distances r < Vj/cOp, when the 
high-frequency ha rmonics of the poten t ia l are essential. 
This case can be considered as a limit for the weak 
screening, because the ion field at the poin t r varies rapidly 
dur ing the t ime of flight (in compar i son with the p lasma 
oscillation per iod) . On the contrary , for r > v 1 / c o p the 
var ia t ion of the field is small and screening is close to tha t 
in the static case. Then in the limit co —> 0 the dielectric 
function can be presented in the form [169, 170] 

/ \ 1 2\co 
qLDL 

(3.45) 

where D is the Debye radius . The poten t ia l of the ' ba r e ' 
charge Z l 9 which can be obta ined by subst i tut ing 
E q n (3.42) into Eqn (3.36), is equal to [91, 166, 167]: 

Zx 

D A \ D exp 

x exp r

D)+4ZlV

2D3 3 . 2 
• - sin I 
2 

: + - + - + — + — I exp(-x) , (3.46) 

E q n s (2.18) and (3.49) are of a general na tu re , irrespective 
of the mode l used for the calculat ion of p2(r0- The 
cont r ibu t ions to the IP which are linked with the electron 
density functional should be calculated in a convent ional 
way. Evidently, in such a case we do not t ake into account 
the influence of the screening u p o n the cor responding 
te rms of the potent ia l . F o r v\ = 0 this influence, as was 
shown in Refs [171, 172], is absent , i.e. the screening alters 
only the electrostatic interact ion of the part icles. F o r vx ^ 0 
the ana logous result has no t yet been established, bu t the 
general considerat ions (decrease of the screening role with 
the increase of velocity) al low us to assume tha t the 
var ia t ion of the IP is due only to the poten t ia l AU(R). In 
Ref. [107] calculat ions of AU(R) were carried out with 
respect to E q n (3.49) with the use of p2(r) m the 
approx ima t ion given by E q n (2.25). Moreover , in 
Refs [107, 168] an expression for an i o n - a t o m potent ia l 
is ob ta ined for the case of the light ions tha t retain 1 - 2 
electrons in a b o n d e d state. In Fig. 14 the results of the 
calculat ion of the poten t ia l H - A l for v\ = 1.2v0 are shown 
[168] with or wi thout t ak ing into account the b o n d e d 
electron. Fig. 14 shows us tha t the screening essentially 
alters the IP for R > 2 a.u. F o r heavy part icles influence of 
the dynamic screening is expressed to a lesser extent and 
manifests itself at larger internuclear distances. 

where 9 is an angle between the vectors rx and r — v\t, 
r=[\r- v ^ | 2 ] 1 / 2 , x = r/D. F r o m E q n (3.46) it follows tha t 
at large distances 

2 

r 3 

3 • 2 

2 

In the case of par t ia l ionisat ion of the part icle, if we apply 
the form factor [Eqn (3.37)] for <P(r, t), it is no t difficult to 
obta in an analyt ical formula, bu t it looks m o r e awkward . 
The potent ia l of interact ion of a ' ba re ' screened ion with a 
separate target a t om is equal to [91, 167]: 

U(R,t) = *(R,t)Z2 - J<!>(*,f)p(r')dV , (3.47) 

where p(r) is the density of the electrons of the target a t om 
which, generally speaking, should be taken wi thout 
considering the collective pa r t of the electrons (at least 
for metals) . Subst i tut ing E q n (3.40) into E q n (3.47) and 
tak ing account of p(r') in the form given by Eqn (2.48), we 
have 

U(R)=^±vqp(-aR)-
ZiN2 

R 
eh 

(aa*) 

exp 
btR \ , ~ x - — ) - Qxp(-aR) (3.48) 

where, as usual , R is the in tera tomic distance, and 
a= 1.064cop/vi. If an ion retains a pa r t of its shell, the 
main result for the static case [Eqn (2.18)] can be easily 
modified. If, as no ted above, we ignore the last t e rm in 
E q n (3.42), then, as follows from this equat ion , our tak ing 
into account the dynamic screening gives correct ions —A& 
to the potent ia l of a poin t charge Z l 9 and (N^/Z^A® to 
the poten t ia l of the electron cloud, where A& is determined 
by the second term in E q n (3.39) with the subst i tut ion 

(col + C 0 2 ) 1 / 2 . Thus , we must in t roduce a correct ion 
term in E q n (2.18): 

AU(R) A0(R) 1 p 2 ( / ) d V . (3.49) 

U(R) 

R / a .u . 

Figure 14. The H - A l IP at Vj = 1.2v0: ignoring the screening 
(curve 1); taking the screening into account (curve 2 ) ; taking into 
account the screening and a bonded electron of H (curve 3). 

3.5 Continuous potentials of atomic chains and planes 
in channelling 
In the theory of the or ienta t ion effects tha t are connected 
with pene t ra t ion of the charged part icles t h rough the 
crystals in directions close to the crystal lographic axes 
(planes) directions, one of the basic concepts is the 
con t inuous potent ia l (CP), which was in t roduced for the 
first t ime in Refs [173 - 1 7 5 , 70]. This potent ia l is 
characterist ic of the coherent small angle scat tering of a 
part icle on a large number of a toms of a chain (plane) tha t 
interact with it within a small segment of its trajectory. In 
this case, the processes of scat tering at large angles as well 
as noncoheren t mult iple scat tering tend to be suppressed, 
and the characterist ic angles of the part icle velocities with 
respect to the direct ions of the channels do no t exceed the 
critical values 0 c r . F o r the classical part icles a CP 
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approx ima t ion is valid beginning from the keV energy 
range, if the ion impact pa rame te r s with respect to the 
chain (plane) do no t exceed the quant i ty (u\ + a2)1^2 

(where u± and a are correspondingly the the rmal 
oscillations ampl i tude and a screening pa ramete r ) . In the 
case of relativistic lepton channell ing, a CP mode l is valid 
beginning from the M e V energies, provided tha t at least 
several levels are generated in the poten t ia l well formed by 
the channel walls. The wave functions of the t ransverse 
mo t ion of these part icles are obta ined from the Schro­
dinger equat ion which conta ins a CP , and which is 
modified here by replacement of the electron rest mass with 
a relativistic one. In the case of the isolated a t o m s of the 
chain and the p lane , the CP is equal to 

1 TOO . 

U o M = - \ V(Vz2 + ?)dz, (3.50) 

where ux and u± are one - and two-d imens iona l 
(u± = y/lui) mean square ampl i tudes for the the rmal 
oscillations of the lattice a tom, Ar and Ax are displace­
ments from the chain and plane . Tak ing into account 
E q n s (3.56) and (3.57), we can present the ' t he rma l ' CP in 
the form: 

d 0 / c h ( A r ) I'OC 
U^r) = A r d ( A r ) 

J O J C 

x Uch { [ r 2 + (Ar) 2 - 2r Ar cos 6]1/2 } , 

I'OC 
U^x) = d ( A x ) / p l ( A x ) Upl(\x -Ax\) . 

J OC 

(3.58) 

(3.59) 

Averaging the p lane po ten t ia l [Eqn (3.55)] will give [177, 
178]: 

2N 

Upl(x) = 2nns JJ V(y/> + x2) pdp , (3.51) u^x) = i w ^ Z ^ E g e x p ( ^ f ) 

where V(r) is an a t o m - a t o m IP , d and ns are the distance 
between the a t o m s of a chain and the surface concent ra t ion 
of a t o m s of a plane, respectively, and r and x are the 
coordina tes tha t are perpendicular to a chain (a plane) . It is 
no t difficult to show tha t these relat ions determine the zero 
coefficients of the Four ie r expansions of the sum of 
in teract ions of a part icle with all the a t o m s of a chain (a 
plane) . In initial studies on the calculat ion of channell ing of 
posit ive part icles [173-178] , the to ta l po ten t ia l act ing on 
an ion in the channel was chosen in the form of the CP 
from a few ne ighbor ing chains (planes). The a p p r o x i m a ­
t ions used [Eqn (2.37)] conta ined the screening functions of 
L indha rd [70] and Mol iere [66] [see E q n s (2.41) and (2.28)]. 
The wel l -known expressions of the CP [176] follow from 
E q n s (3 .50) - (3 .51) . 
(a) In the case of a chain: 

U\{r) : 
2ZXZ 

In 1 + -
3a 

7 " 

1/2 

(3.52) 

(3.53) 

(b) In the case of a p lane: 

Up\(x) = 2nnsZiZ2a 
2 \ l / 2 X \ ' X 

+ 3 

U$(x) = 2nnsZlZ2a^2^ exp ^ . (3.55) 

Here a is a screening pa rame te r and K0(x) is a modified 
Bessel function. In Refs [177, 178] the values of ' t he rmal ' 
CPs within the b o u n d s of the D e b ye approx imat ion for the 
displacements of the a t o m s from their posi t ions of 
equil ibrium were obta ined. In the absence of m u t u a l 
correlat ions, the probabi l i ty dis t r ibut ions of the displace­
ments of the a t o m s for the axial and p lane cases are equal 
to [178]: 

1 ( Ar 2 

/ ch (Ar) = — exp( -

/pi (Ax) 
V27C UI 

exp 
A ^ 

2u\ 

(3.56) 

(3.57) 

J e x p f - ^ e r f c f - f ^ 1 - -
l \ A J L / 2 \ a ui 

(b;X . 
+ exp ( ] erfc 4 ? ( — + - ) ! } ' ( 3 ' 6 0 ) 

V 2 V a u\) \ J where 

2 f°° 
erfc {t) — exp(— y2)dy 

V 7 1 h 

Similarly, for an axial CP determined by Mol iere [179]: 

UIM=^rJ2c> e x p ( ^ ) { e x p ( - % - 7) f ' ( 3 - 6 1 ) 

where qt = biu_L/2a. F o r m u l a s (3.60) and (3.61) and the 
ana logous formulas for the other potent ia ls [187] are 
inconvenient for numer ica l calculat ions tha t include a sum 
of the CPs for a large number of planes (chains). Therefore, 
in Ref. [183] for the result ing poten t ia l of a crystal, which 
acts on a part icle of charge Zx and moving in the 
channell ing regime, the following formula was p roposed : 

(3.54) U(p±) = ^ v S i exp(ig±P±)S(g±)exp(-0.5g2

±ui), (3.62) 

where p± is a t ransverse coordina te , vg± is a Four ie r 
t ransform of an a tomic potent ia l , S(g±) is a s t ructure 
factor, Q is a vo lume of an elementary cell, g± is a 
t ransverse componen t of the inverse lattice vector, u± = u\ 
for a p lane case, and u± = \f2ux for an axial case. F o r a 
m o n o a t o m i c crystal, the ' lat t ice ' has the simplest basis in 
the t ransverse direction , and thus S(g±) = 1. In the case of 
the crystals of a complex composi t ion , E q n (3.62) can 
easily be generalised by in t roducing an addi t iona l s u m m a ­
tion with respect to the differing componen t s [186]. 
F o r m u l a (3.62) seems evident for u± = 0, i.e. in the case 
of a static lattice. However , its identi ty in the case of 
u± ^ 0 with a generalised poten t ia l expressed as a sum of 
the individual CP of the type given by E q n s (3.60) and 
(3.61) appears to need justification, because the D e b y e -
Waller factor is included in Eqn(3 .62) by ana logy with a 
formula for an x-ray scattering ampl i tude . Let us first 
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consider the p lanar case by rewri t ing E q n (3.59) in the 
form [187]: 

V2nui Jo I 2ui 

+ exp 
2u\ 

dz . (3.63) 

Tak ing into account tha t the to ta l potent ia l act ing u p o n a 
part icle due to all the p lanes is equal to 

U(x)= U;{(x+ndp) , (3.64) 

where dp is the in terplanar distance, and expanding 
E q n (3.64) into the Four ie r series, we get (gn = 2nn/dv): 

(3.65) 

The expansion coefficients U(gn), t ak ing into account 
E q n (3.51), are equal to 

U(gn) = - Upl (gn) exp(-0.5sX) . 
ap 

(3.66) 

On the other hand , if the a tomic poten t ia l V(R) is 
spherically symmetric , the cor responding form factor is 
equal to 

sin(gr) 
= 471 V(r) r d r . (3.67) 

In tegra t ing E q n (3.67) by par t s , and tak ing into account 
the asymptot ics of V(R) and Eqn (3.51), we obta in : 

vg=— U(gn) (3.68) 

Since in this case Q = d/ns, from E q n s (3 .65) - (3 .68) it can 
be seen s t ra ightaway tha t E q n s (3.65) and (3.62) are 
equivalent , because g± = gn = 2nn/dv and u± = u\. In 
the axial case, analogously with E q n s (3.65) and (3.66), 
the Four ie r expansion coefficient is equal to 

U(g±) = ^ Jexp(- ig_L-/>j_) Ulh(p±) d2p± 

Uch(gA_) e x p ( - 0 . 5 g i u \ ) , 
Q 

I'OC 

Uch (g±) = 2tc Uch (r) rJ0(g±r) d r , 
Jo 

(3.69) 

(3.70) 

where Jo(x) is the Bessel function. On further t r ans fo rma­
t ion of the form factor, we obta in : 

v„ = J e x p ( - i g - r ) V(r) d 3 r 

rUch(r) Jo(gr) d r = dUch(g) • 2nd (3.71) 

Tak ing into account tha t Q2 = Q/d, we again re turn to 
E q n (3.62). However , the D e b y e - Waller factor, as in the 
case of a p lane potent ia l , is equal to exp(—0.5gj_wi), as 
opposed to the result obta ined in Ref. [183]. Thus , in (3.62) 
b o t h in the p lane and axial cases w_L = w1. W h e n we 
calculate the poten t ia l for the channell ing of heavy 
particles, it is evident tha t , in E q n (3.62), instead of Z\vg 

we should subst i tute the Four ie r t ransform of the i o n -
a tom IP . 

In Refs [ 1 8 0 - 1 8 2 ] in order to calculate the rad ia t ion 
spectra of the relativistic channelled electrons and pos i ­
t rons , the approx ima t ion of quan tum-mechan ica l a tomic 
factors was used from the work of Doyle and Turner [184]: 

2nf(s) = 2tc^~^ at e x p ( — b t s 2 ) (3.72) 

where g = 4ns, and at and bt are the tabula ted coefficients. 
Inver t ing it, we obta in the D o y l e - T u r n e r a tomic poten t ia l 

3/2 
exp - (3.73) 

where Bt = bi/4%2. E q n s (3.73) and (3.74) are convenient , 
because if we take into account E q n s (3.50), (3.51), (3.58) 
and (3.59), they will p rov ide us with the simple equa t ions 
for the ' t he rmal ' CP of a chain [181, 185] and a p lane [182]: 

i=i 
— — 2 e X P Bj + ui 

(3.74) 

U^(x)=2^nsZlJ2 ( S , + 2 M

2 ) 1 / 2 e X P V B , + 2fu 

(3.75) 

N o t e tha t a l though the potent ia ls given by E q n s ( 3 . 7 4 ) -
(3.75) are usually considered to be quan tum-mechan ica l 
ones [180 -182] , such identification is not quite correct. 
This follows from the fact tha t Eqn (3.73) does no t 
r eproduce the asymptot ics of the a tomic potent ia l for 
r —> 0. Moreover , the electron density tha t cor responds to 
E q n (3.73) does no t describe the shell s t ructure. In tha t 
sense, the CP obta ined on the basis of a piecewise 
exponent ia l mode l [Eqn (2.25)] and an analyt ical H F 
mode l [321] are m o r e justified. The cor responding 
equa t ions for the static and ' t he rma l ' potent ia ls are cited 
in Refs [45, 187]. A compar i son of the different a p p r o x ­
imat ions for the CP based on analysis of the characteris t ic 
rad ia t ion of the channelled part icles is given in Section 4.6. 

The potent ia l given by Eqn (3.62) can be generalised 
when a crystal consisting of several k inds of a t o m s (ions) of 
type / is deformed by a field of a t ransverse u l t rasonic 
(electromagnetic) wave with a frequency cos (coe) [277]. If xt 

is an ampl i tude of the a tomic displacements tha t are 
induced by this field, then the averaged (with respect to 
the plane) p a r t i c l e - c r y s t a l po ten t ia l will be 

U(x,t) =2^2^2cimJ0(gmxi)cos(gmx) 
i m=l 

oo oo 

+ 4Y^^2^2Cim hpigmXi) (-l)PSim CO$(gmx) 
i m=l p=l 

oo oo 

x cos(2PQt) + ^ Y 1 ^ 2 ^ 2 C i m J l P ~ l ( g m X i ^ 
i m=l p=l 

x(-\ysimsm(gmx)sm[(2p-\)Qt] , (3.76) 

where gm=2%m/dpi is a vector of an inverse lattice, 
Q = (c/vs)cos for an u l t rasonic wave, and Q = (n — \)coe for 
an electromagnet ic wave (vs is the velocity of sound, c is the 



898 G V Dedkov 

velocity of light in vacuum, and n is an optical refraction 
index); Sim depends on the channel type [in the case of 
(100) and (110) N a C l , for example, Sim = 1, and for (111) 
N a C l , Sim = ( - l ) m ]; Jk(x) is the Bessel function of the £th 
order ; coefficients cim are equal to 

^si dpi 

Km' 
1 [Zi-Pi(gm)] e x p ^ -

2 2 
gmUi (3.77) 

In E q n (3.77), nsi and dpi are the surface density and the 
in terplanar distance for the sublatt ice of the ions of type / ; 
PiiSm) is the form factor of the electron density; and ut are 
the cor responding ampl i tudes of the the rmal oscillations. 

The p rob lem of tak ing into account the dislocation 
effects is similar to the p rob lem of influence of an external 
per iodic field on a CP . The former is considered in 
Refs [315, 316] with the mode l potent ia ls . 

3.6 Surface effects 
W h e n a charged part icle moves near the surface of a solid, 
the role of the p lasma effects essentially increases. As is 
shown in Refs [188, 189], in this case the s topping losses 
are connected with excitation of the surface p l a smons and, 
in addi t ion, a dynamic- induced surface poten t ia l appears , 
similar to the potent ia l in a vo lume [see Eqn (3.36)]. In the 
condi t ions of a sliding interact ion with a surface on a 
section of the trajectory after reflection [245], the surface 
'wake ' po ten t ia l a t t rac ts a posit ive ion, and this m a y give 
rise to its spasmodic mo t ion [190]. The other effect is 
connected with the possibili ty of or ien ta t ional influence of 
the surface on the mot ion of a d ia tomic molecule or a 
cluster, which causes a ro ta t ion of the line perpendicular to 
the surface of the nuclei [112, 191]. In Ref. [192] the 
influence of the 'wake ' in teract ions on mult iple scattering 
was also considered. In par t icular , an emergence of the 
coherence of the scat tering for the small angles between the 
direction of the velocity vector and the molecule axis was 
ment ioned . 

There are two main approaches most often used in the 
theory of dynamic surface potent ia ls (and of the s topping 
power) : a dielectric me thod based on the mode l of a 
specular reflection [193-199] , and the m e t h o d of an 
effective Hami l ton i an in the representa t ion of surface 
p l a smons [188 -190 , 200]. The trajectory of a part icle 
before and after deflection is assumed to be rectilinear. 
The mos t general equa t ions for the induced dynamic 
poten t ia l are obta ined in Ref. [199]. In par t icular , when 
a charge (having velocity componen t s vj| and v_|_ paral lel and 
n o r m a l to the surface) moves outs ide a solid, the induced 
poten t ia l is equal to 

| L [ d ^ f d a , - V ^ X p ( - ' | z | ) 

(co-

x exp [-i(fc-V|| -co)t] , (3.78) 

where k = (k2, kz), z is the distance from the surface, and 
7 0 is defined by the expression 

dk7 (3.79) 
>(k2 +k2

z)s(k,co) ' 

With regard to E q n (3.78), the s topping losses per uni t pa th 
length are equal to 

dE _ 1 dE _ZX / _8<2> m d 

dx V! dt vx \ dr 

Taking into account tha t , for the rectilinear mo t ion r = vxt, 
we have 

f = - Z - ( d - ^ - ) (3-81) 
Ax v, V at J ^ , 

In Ref. [199] the equa t ions for calculat ions of dE/ dx with 
the different approx ima t ions of a dielectric function are 
cited. The case of the 'dressed ' ions has no t been considered 
so far. It is evident tha t sufficiently far away from the 
surface Zx<Pind(r, t) m a y be considered as a po ten t ia l 
result ing from the i o n - s o l i d interact ion. However , for 
z < 1.2 a.u. one should t ake into account pair interact ions, 
and so far it is no t clear h o w this can be m a d e compat ib le 
with the dielectric approach . As a rougher al ternat ive 
mode l the use of a ' con t inuous ' po ten t ia l of the surface of 
the form given be low was p roposed [202, 203]: U(x) =N 

(3.80) 

I'OC POO 

dz 27trV(v/ z 2 + r 2 ) d r , (3.82) 
Jx Jo 

where N is the density of the target a toms , z is the distance 
from the surface, V(R) is the pair IP of a part icle with an 
a tom of the med ium. In the compute r s imulat ion of the 
sliding reflections, all the k n o w n codes, such as T R I M 
[105], M A R L O W E [204], and the like [205, 206] deal with 
the usua l IPs , with collisions being considered according to 
a b ina ry scheme. 

In conclusion let us no te tha t in a n u m b e r of works the 
dynamic effects due to interact ion of the neu t ra l part icles 
with surfaces have also been studied. In par t icular , in 
Refs [207, 208] such effects have been considered for the 
van der Waa l s in teract ions of neu t ra l a t o m s with cylindri­
cal and p lane surfaces. In Ref. [208] it was shown that , for 
nonrelat ivist ic mo t ion of an a tom tha t moves paral lel to the 
surface, apar t from the a t t rac t ing force, a s topping force of 
a comparab le value and, under some condi t ions , even an 
accelerating force acting in the direction of mo t ion of the 
part icle and caused by the energy exchange of the part icle 
with the surface p l a smons m a y appear . Some other effects 
related to the small angle reflection of ions from the surface 
are considered in Ref. [245]. 

3.7 Characteristic features of interactions at high 
energies 
In this Section we shall discuss briefly a number of recent 
results connected with tak ing into account the effects tha t 
are beyond the scope of the s t andard approx ima t ions for 
pair and averaged potent ia ls . Thus , in rad ia t ion effects tha t 
appear in the interact ion of relativistic electrons and 
pos i t rons with the crystal lattice, a significant role is 
played by the noncoheren t processes of g a m m a rad ia t ion 
generat ion with the s imul taneous bi r th or absorp t ion of 
crystal excitat ions [304, 306, 307, 317]. Rad i a t i on t rans i ­
t ions accompanied by the transfer of the longi tudinal 
m o m e n t a of the order of 2nn/d to the lattice id is an 
in tera tomic distance in a chain) can be considered by 
tak ing into account only the discreteness of the a tomic 
chains (and their potent ia ls) in the longi tudinal direction. 
This mechanism is especially significant in the regime tha t 
is t ransient from the p lane to axial channell ing. In the case 
of mot ion of electrons with angular m o m e n t a tha t are 
small with respect to the chains, it is necessary to take into 
account the var ia t ion of their kinetic energy due to 
longi tudinal oscillations of per iod d/c, which is achieved 
by add ing an addi t iona l te rm to a CP associated with this 
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energy [304]. The effect of a r a inbow scattering of electrons 
appears in thin crystals [313, 314] because of the coherent 
addi t ion of the ampl i tudes of scattering to the same angle 
for the m o m e n t a of different part icles with respect to a 
single a tomic chain. On the cont rary , a similar effect in the 
scattering of posit ive part icles (pro tons) [310, 311] was 
interpreted within the concept of the interference of the 
cont r ibu t ions of scattering from several chains. 

In review [309] the p h e n o m e n o n of dynamic chaos due 
to combined action of the crystal fields and noncoheren t 
effects u p o n the oriented mot ion of the part icles was 
considered. In par t icular , the idea of an a tomic p lane as 
a system of crystal axes was developed. 

In order to t ake into account scat tering of the part icles 
by the field or iginat ing from the lattice polar isa t ion , the 
optical (complex) potent ia ls for the electrons and heavy 
part icles are used [112, 318]. With in the scope of this 
approach , the s topping power functions and coefficients 
of ' abso rp t ion ' of the heavy channelled ions were obta ined. 

In Refs [305, 319] the au tho r s discussed induced-dis­
pers ion interact ion of the part icles with the lattice, which 
consists in the fact tha t on the a tom tha t is moving in 
longi tudinal-per iodic field of a crystal lattice, an electric 
(and in a magnet ic lattice — a magnet ic) m o m e n t p = aE is 
induced, tha t interacts with the field generat ing tha t 
momen t , dur ing the whole per iod of the part icle 's flight. 
This effect accompanies the k n o w n p h e n o m e n o n of the 
resonance excitation of the a tom discovered by O k o r o k o v 
[320]. One m o r e work [305] deals with the potent ia ls of 
magnet ic interact ion of neu t rons with the magnet ic field 

H = - v E 
c 

induced in their rest system, where v is the neu t ron velocity 
and E is the electric field of the lattice. 

4. Experimental results 
I would like to poin t out tha t , owing to the l imitat ions of 
space and t ime, the analysis of the exper imental results is 
no t in the least exhaustive. In the process of selection of 
this mater ia l we pu t the emphasis on such topics, the 
theoret ical in terpre ta t ion of which within the b o u n d s of 
descript ion of the models still calls for e labora t ion . 
Discussion of the characterist ic rad ia t ion in channell ing 
is restricted to a p lane case, where only those posi t ions of 
the lines of the detected rad ia t ion which are directly 
connected with the potent ia ls are considered. Other 
subjects can be found in m o n o g r a p h s and reviews [10, 
11, 112, 3 0 6 - 3 1 0 , 314]. 

4.1 Energy losses and ranges of the low-energy ions 
Over the last 15 years, significant progress has been m a d e 
in describing the s topping of low-energy (e <̂  1) ions and 
their ranges , when the main mechanism of energy losses is 
nuclear s topping. The universal theoret ical mode l of 
L indha rd et al. [101] is at the base of these achieve­
ments . This mode l is based on appl icat ion of the relat ions 
(3 .16) - (3 .18) for the cross sections of elastic slowing down, 
as well as the equat ion se = 0.15^/e for the inelastic ones 
and the assumpt ion of their independence. The result of the 
development of this concept is justif ication of the universal 
' r a n g e - e n e r g y ' dependence [50b, 50c, 142, 209, 210], which 
agrees with the exper imental dependence p e x p ( s ) ob ta ined 

for the a m o r p h o u s silicon targets with a deviat ion of 
several percent (on the average). At a semi-empirical level, 
the in t roduct ion of the effects of Zx and Z 2 oscillations for 
the cross sections of slowing down was successfully 
achieved [50b, 50c, 211]. It further encouraged the 
successful development of the theoret ical descript ion of 
the processes of sput ter ing of solids due to ion b o m b a r d ­
ment [210-212] . Devia t ions from the universal dependence 
for the meta l [213] and i o n - c r y s t a l targets [214, 215] have 
been overcome by modif icat ion of the screening pa rame te r s 
of IPs [216] and by tak ing into account i o n - i o n 
componen t s of interact ion of a part icle with a target 
[214, 215]. However , there is so far no adequa te theoret ical 
descript ion of the Zx and Z 2 dependences of the s topping 
cross sections and variables related to them. This gap in the 
theory was k n o w n already at the level of differential cross 
sections of elastic scattering. Their oscillation, a l though 
observed in experiments [217, 218], could not be described 
even with the most precise in tera tomic IP calculated with 
respect to the electron gas mode l (a detailed discussion of 
these experiments and the results of calculat ions is given in 
Refs [48, 75]). The si tuat ion became even m o r e complicated 
when a significant effect of the Z\ oscillations of the ranges 
in a m o r p h o u s semiconduct ing targets and its absence in 
meta l targets was discovered [219 -221 ] . Since at the 
energies of the order of 1 keV a . m . u . - 1 , typical for these 
experiments , the rat io of the elastic and inelastic losses is 
abou t 1 0 : 1 , the assumpt ion was m a d e tha t the range 
oscillations were due to the elastic cross section oscillations, 
and, finally, to the shell-effects of an IP . To this end, 
calculat ions of the ranges were carried out on the basis of 
appl icat ion of the potent ia ls tha t were calculated by means 
of the electron gas mode l [222-225] , and which, as could 
be expected, were no t in agreement with the exper imental 
results. This can be seen from Fig. 15, where theoret ical 
[225] and exper imental dependences p(e) for the ions of Au , 
Y b , and Eu in a m o r p h o u s silicon [220] are shown. 
Oscillations of the s topping cross sections were also 
observed on gaseous targets [218, 226]. In this work a 
suggestion was m a d e tha t the effect was due to the 
oscillation of the cross section Se of electron s topping. In 
tha t case, the cor responding ampl i tudes should be of the 
order of 200% of the mean values of 0.15^/fi- Exper imenta l 
results of the measurements of electron s topping [227] 
apparen t ly disprove this conclusion, as they show tha t the 
ampl i tude of the Zx effect in ca rbon does no t exceed 20% . 
N o t e tha t from the initial experiments concerning Z\ 
oscillations it was k n o w n tha t their ampl i tudes in ca rbon 
are especially large [228, 229]. Thus , this effect is p robab ly 
due to elastic s topping. Theoret ical difficulties seem most 
serious so far as gaseous targets are concerned since the 
potent ia ls of interact ion of the free a tomic part icles in this 
case are m o r e adequa te for the experiments . As an 
al ternative, factors responsible for the oscillations of 
differential cross sections, an impact of inelastic effects 
on the one h a n d [231] and generat ion of the quas i -
molecular states [48, 218] on the other , were suggested bu t 
these ideas have no t been developed to a p roper extent. 

The p rob lem of the absence of Zx oscillations of the 
ranges in meta l targets remains unsolved as well. A work ing 
hypothesis was p roposed in Refs [220 -225] tha t the 
electron gas screening the ion 'masks ' the details of the 
shell s t ructure. Genera l considera t ions suggest, however , 
tha t for a large ion size a screening electron cloud should 
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Figure 15. Ion ranges in reduced units. Open circles denote the 
experimental data [220], and solid circles the theoretical calculations 
[225]. Solid lines are for the purpose of demonstration of the 
dependence. 

also be large enough, so the per iphera l electron dis t r ibut ion 
a r o u n d an ion should be very close to the dis t r ibut ion tha t 
cor responds to a neu t ra l a tom, and therefore the fact of 
suppression of the Zx effect seems doubtful . On the whole, 
these ma t t e r s have still no t been clearly unde r s tood . 

4.2 Multiple scattering 
A detailed review of mult iple scat tering considering the 
relat ion between theory and experiments up to 1980 is 
given in Ref. [75], where the cor responding references are 
cited. A number of recent results can be found in 
Refs [233-239] . On the whole it can be said tha t , for 
the large reduced target thicknesses (T 1, see Section 
3.3), a good agreement between the theory and experiments 
is evident. However , for ' s low' ions with energies between 
3 keV and 1 M e V , in a number of cases essential 
divergences were no ted [240-242] . In Ref. [241] Zx 

oscillations of the angular half-width of the scattered 
part icle dis t r ibut ion were observed. In scattering on the 
poly crystal targets with grain sizes over 100 A, the 
exper imental angular half-width is somet imes only 2 5 % 
of the theoret ical half-width [243]. This difference was 
a t t r ibuted to the influence of channell ing. Exper imenta l 
angular dis t r ibut ions (especially for thin targets) are, as a 
rule, na r rower tha t the theoret ical ones, which indicates a 
weaker scattering potent ia l . However , in the in terpre ta t ion 

of the angular dis t r ibut ions of the Li ions scattered on V, 
Cr, Fe , Co , and G e targets [240], on the cont rary , it was 
necessary to decrease the screening pa ramete r by 20% -
30% in order to improve the agreement with the 
exper imental results, i.e. the scattering poten t ia l was 
higher t han the theoret ical one. 

Recently, interest in mult iple scat tering had increased 
because of the correlat ion tha t was discovered between the 
energy losses and the angle of escape of a part icle leaving 
the film. F o r ions, this effect was noted in Refs [232-234] , 
and for electrons in Refs [235 -236 ] . In these studies, an 
increase in the s topping losses of part icles with an increase 
in the angle of the ou tgo ing part icle was observed with 
subsequent sa tura t ion of dependence. Intensification of the 
effect with the increase of Z 2 was noted . In the case of 
pene t ra t ion of the p r o t o n s with energy 100 keV [234], the 
effect was observed up to the ou tgoing angles of a = 15°. 
The pract ical significance of these invest igations is s t ipu­
lated by the necessity of increasing the accuracy of 
measurements of the energy losses of p r o t o n b e a m s used 
for cal ibrat ion in studies of the rad ia t ion stability of 
mater ia ls (in par t icular , biological tissues). The in terpre ta­
t ion of experiments [ 2 3 2 - 2 3 4 ] is no t completely clear so far 
(see, for example Refs [237, 238]). While at the energies of 
£ < 1 M e V in the angular range 0 ° - 3 ° one might expect 
the influence of the channell ing effect for a par t of the beam 
[234], for the angles of 1 0 ° - 1 5 ° it is certainly no t the case, 
and therefore the exper imental results cannot be explained 
by this effect (a l though it diminishes energy losses). The 
same can be said abou t exper iments [232, 233], where the 
p r o t o n energy was 7 MeV. The sa tura t ion of the depend­
ence was observed at the angles 3 ° - 4 ° , which exceed the 
critical angles of channel l ing by an order of magni tude . In 
Ref. [237] it was no ted tha t a l though the s imulat ion results 
[233] agreed with the exper imental dependences , the 
s topping powers tha t were used in calculat ions and tha t 
depended u p o n an impact pa ramete r , were three t imes the 
s topping losses calculated in the local electron density 
approx imat ion , which was considered reliable enough at 
these energies. Calcula t ions of the slowing down m a d e by 
means of the semiclassical mode l [238] with separat ion of 
the cont r ibu t ions of the inner and outer electrons led to still 
lower values of the energy losses (for the impact pa rame te r s 
close to zero). 

The investigation of mult iple scat tering of the part ial ly 
' s t r ipped ' ions, with specific processes of charge exchange 
and screening, or when there is ^ -dependence of an IP , is of 
par t icular interest. F o r light ions with Zx < 10, the first two 
effects are most impor tan t . In Ref. [239] angular dis t r ibu­
t ions of the 1 4 N and 1 6 0 ions with energies 3 0 -
330 keV a . m . u . - 1 scattered on meta l films were m e a s ­
ured. The au tho r s of Ref. [239] achieved a consistency 
between the measured and theoret ical (according to 
Moliere) angular dis t r ibut ions, on the condi t ion tha t the 
effective ion charges responsible for mult iple scat tering are 
1 .5-1 .8 t imes as high as the effective ' s topp ing ' charges. 
Hence , it was concluded tha t a mult iple scattering process 
occurs at smaller impact pa rame te r s than tha t of s topping. 
This conclusion seems to contradic t the idea of correlat ion 
of energy losses with the scat tering angle, which has been 
discussed earlier. In order to clarify this point , in Ref. [107] 
calculat ions of the angular dis t r ibut ions were m a d e with 
respect to the Mol iere theory modified with an interact ion 
poten t ia l t ak ing into account the exper imental values of the 
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Figure 16. Angular distributions of the O ions that penetrated an Al 
film with the thickness / = 0.3 \im; • and o — experiment [239] for 
E — 1.25 and 1.77 correspondingly; 1 and 2 — theoretical calculations 
that ignore the dynamic screening [108]; 3 and 4 — taking into account 
the screening and degree of ionisation. 

degree of ionisat ion and dynamic screening. The results of 
compu ta t ion of angular dis t r ibut ions of the ions scattered 
on the a luminum films are compared with the exper imental 
ones in Fig. 16. The value of the p lasma frequency is 
assumed to be equal to 0.57 a.u. F r o m Fig. 16, it follows 
tha t the appl icat ion of a m o r e correct po ten t ia l can explain 
exper imental dependences wi thout addi t iona l assumpt ions 
concerning 'special ' impact pa ramete r s . 

4.3 Critical angles of channelling 
In the L indha rd mode l [70], a critical channell ing angle 9cr 

is directly connected with the value of a scattering 
potent ia l . In the axial case, 0 k r can be found from the 
equat ion 

Uch(9crd)=E92

C] (4.1) 

where Uch(r) is a con t inuous potent ia l (CP) of the a tomic 
chain tha t is defined by E q n (3.50), d is the distance 
between the a t o m s of the chain, and E is the part icle 
energy. F o r a CP (3.52) from (4.1) the well k n o w n formulas 
for 9CY at high and low energies [176] follow 

9cr = 

2ZXZ2 

dE ' 

3ZxZ2a 
d3E 

2 \0 .25 

E > 

E < 

2ZxZ2d 

2ZxZ2d 
2 ' 

cr 

(4.2) 

where a is a screening pa ramete r . T h e value of the energy, 

a2 ' 

in the case of p r o t o n channell ing in (110) G e is 170 keV. In 
experiments , the angular half-width of the backsca t te r ing 
dip \// x / 2 p ropo r t i ona l to 9cr is measured ra ther t han 9cr 

itself [ 1 7 8 , 2 4 4 , 2 4 6 ] . The dependences i//x/2 oc E~l/2 and 

\jjx/2 oc £ - 1 / 4 tha t follow from Eqn (4.2) at high and low 
energies are nicely verified in experiments , a l though the 
low-energy range (E < 0.5 M e V a . m . u . - 1 ) is less studied 
[ 2 4 7 - 2 5 0 ] because the experiments are complicated by the 
dependence of x//l^2 on the scattering depth , by the necessity 
of a detector with bet ter energy resolut ion, and by other 
factors. I would like to stress, however , tha t the depend­
ence 1/^/2 oc E~ll2 is good for any form of potent ia l , where 
a relat ion \\iXj2 oc E~1^ is specific only for the L indha rd 
poten t ia l given by Eqn (3.52). In the general case, solution 
of E q n (4.1) leads us to function 9CX(E) of a m o r e 
complicated form which has been no ted for the first 
t ime in Ref. [251], where the 'fall' of the dependence 9CY(E) 
(from the low-energy pa r t ) in channell ing of the p r o t o n s of 
the keV energies in tungsten has been studied. Exper i ­
men ta l confi rmat ion of this result was repor ted in 
Ref. [252]. 

In the event of p lane channel l ing at b o t h low and high 
energies, relat ion 9CY = ^U^/E is valid, where UQ is the 
height of the poten t ia l barr ier , and therefore the energy 
dependence (if any) of the value of xl/x/2y/E unambiguous ly 
indicates a var ia t ion in CP . This fact was noted for the first 
t ime in Refs [91, 166, 167], where it was shown tha t an E 
dependence of an IP or its var ia t ion due to influence of 
dynamic screening and var ia t ion in the charge state could 
induce an increase (decrease) of x//l^2 in compar i son with the 
expected values by a factor of 10% - 1 5 % . A decrease in the 
recorded angles of cap ture of Br and I ions in the p lane 
channels of an Au crystal with the increase of energy have 
been noted in Ref. [253], where the channel l ing of ions with 
the energies of 2 0 - 8 0 M e v has been studied. U n f o r t u ­
nately, there are no other exper imental da ta available. It 
should also be noted tha t the form of a CP also influences 
the angular profile of the backsca t te r ing dip [176]. H o w ­
ever, this p h e n o m e n o n did no t a t t ract the a t tent ion of those 
who tried to find a m o r e precise definition of a potent ia l . 

4.4 Measurement of the trajectories and potentials 
in the planar channelling of heavy particles 
The p lanar channell ing of ions, in contras t to the axial type 
(and also to the channell ing of electrons and posi t rons) , is 
specified by a marked per iodic mo t ion of part icles at small 
depths (in this case the effects of mult iple scat tering are still 
small). This effect results in oscillations of the b a c k -
scattering yield and the secondary processes concurrent ly 
with the app roach of the part icles to the a tomic planes . The 
s topping the moving ions generates energy ' scanning ' of the 
backsca t te r ing spectrum, its oscillations being due to the 
reflection of part icles at depths tha t are mult iples of the 
trajectory half-wave Xj2. The distance between adjacent 
max ima a and b of the energy spectrum is given by [254] 

ab ' S r ( k 2 E 0 ) ^ ^ + yk2Sr(E<)) 
COS umii 

(4.3) 

where E0 is the initial energy, k is a k inemat ic factor of the 
backscat ter ing, 9m and 90Ut are the angles of incidence and 
emergence from a crystal which are est imated from the 
n o r m a l to the surface, ST(E) is the s topping power of a 
nonor ien ted mot ion , y is the rat io of the s topping power of 
the part icles with a large oscillation ampl i tude , cont r ibut ing 
to the scattering, to ST. Measu r ing AEab gives informat ion 
related to X and a potent ia l , on the one hand , and to the 
energy losses, on the other hand . In most k n o w n 
experiments [255 -263] , such spectra have been measured 
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for different ra t ios of c o s # i n / c o s # o u t ( the so-called 'cosine 
m e t h o d ' [254]), and the value of X has been determined 
from E q n (4.3) by means of the tabula ted values of Sr 

[50b]. Barre t t [264] p roposed a ' ^ -method ' , where the \j/m 

angle cor responding to the m a x i m u m of backsca t te r ing 
could be found by scanning the angle of inclination of the 
beam with respect to the planes . The value of \j/m is related 
to A/2 by the expression 

X 
1 = 2 W , (4-4) 

where dp is the in terplanar distance, q is a cons tant of the 
order of unity, which is typical for the given energy and 
plane . E q n (4.4) is derived by compute r s imulat ion and has 
a clear physical meaning: if a part icle tha t s tar ts moving 
from the centre of a channel at the angle of \j/m with respect 
to a p lane moves a long a straight line, then it would 
intersect the p lane at the depth Az = X/4. In this case we 
would have q=l. In reality, its t rajectory is curvilinear, 
which increases the values of X and q. Ref. [254] shows in 
par t icular tha t , for the H e ions with the energies 1 - 2 M e V 
which are channel l ing in a ge rman ium crystal, 
1.39 < q < 1.43. The pa ram-e te r s X and \j/m are connected 
with a CP in an obvious way: 

(4.5) 

(4.6) 

where x is counted from the middle of the channel , 
UB = U(dv/2) — U(0) is the barr ier height of the potent ia l , 
Mi is the mass of the part icle. C o m p a r i s o n of the 
theoret ical [calculated with E q n s (4.5) and (4.6) and by 
simulat ion] and exper imental values of X and \j/m9 

determined by the 'cosines m e t h o d ' and by the 'q-
method ' , shows us [254] tha t there is an agreement 
between them with a 3 % - 1 0 % deviat ion, where the 
H e - G e IP should be 'weaker ' t han the Mol iere potent ia l 
having a screening pa ramete r given by E q n (2.29). This is 
p robab ly due to the influence of the screening with respect 

Figure 17. Relative yield of the backscattered helium ions with the 
energy 2 MeV as a function of the depth while channelling in (110) Ge 
[254]. The points correspond to the experimental values, and the solid 
line to the simulation. 

to a b o n d e d H e electron and the electron gas of the crystal. 
In Fig. 17 the exper imental and simulated spectra of the 
yield of the backscat te red part icles are shown as a function 
of the depth , the resolut ion with respect to the latter (in 
experiment and in s imulat ion) being 1 2 - 1 3 nm. 

Ano the r t rend in the empirical evaluat ion of potent ia ls 
has been initiated by the works of R o b i n s o n [265]. It is 
based on the appl icat ion of empirical dependence of 
s topping losses u p o n the frequency of oscillations of the 
ions in a channel (a and are empirical cons tants typical of 
a given type of an ion and channel) : 

dE I 
S(co) = — \ =a + pcQ, 

dx \E=E0 

(4.7) 

where co is the frequency of oscillations which can be 
determined 
ampl i tude) 

by the formula ( x m a x is an oscillation 

co T 
Jo 

dx 
(4.8) 

Mxmax) - U(x)]l/2 ' 

F a c t o r ^/2MX in Eqn (4.8) is omit ted, because it is included 
in the coefficient $ in E q n (4.7). R o b i n s o n p roposed a 
mode l expression for the s topping power of the form 

S(x,E)=S0+Sl[a(x)-l] , (4.9) 

where x is an ion coord ina te in a channel , S 0 and Si 
depend on the energy, and <r(0) = 1. 

Assuming tha t an ion has m a d e an integer n u m b e r of 
half-oscillations, after averaging E q n (4.9) with respect to 
the per iod of mo t ion and tak ing into account Eqn (4.7), we 
will get: 

oc = S 0 - S l , 

p = 2Sx

1™0(j(x) 

dp 
0 ^ xmax ^ — . 

dx 

Mxmax) - U(x)] 1 / 2 ' 

(4.10) 

(4.11) 

Solution to the integral equa t ion (4.11) with respect to o(x) 
has the form 

o(x) 
KSI dx 

[U(x) - U(0)] 1 / 2 0 ^ x ^ -j- . (4.12) 

Tak ing into account the par i ty of U(x) and the condi t ion 
(t(0) = 1, from Eqn (4.12) it follows tha t 

U"(0) =2it ,2 (s0-ay (4.13) 

One m o r e relat ion is obta ined by averaging E q n (4.9) with 
respect to the coord ina te x . Tak ing into account 
E q n s (4 .7 ) - (4 .11) and Eqn (4.12), we get 

^2 
SY(E)=S0+Sl 

2P 
nd. V L 

U 

>dp/2 

0 

d 

a{x) dx — 1 

-U(0) (4.14) 

The variables a, S0, and ST(E) are found directly from 
experiment . Inner consistency of the mode l is verified by 
the closeness of the values of ST(E) ob ta ined from 
E q n (4.14) for different channels by means of different 
CP . W h e n CP is specified in an appropr i a t e pa ramet r i c 
form, Eqns (4 .13) - (4 .14) allow us to find approx imat ion 
pa rame te r s mak ing use of the da ta for several channels . In 



Interatomic potentials of interactions in radiation physics 903 

Ref. [265] this me thod was used for est imating the IP of H , 
He , O, and I ions with Si and Au a toms . In the case of H 
and H e ions, empirical potent ia ls agreed well with the 
H a r t r e e - F o c k IP bu t no t very well with the Mol iere IP . 
F o r I ions the agreement was p o o r (in each case it was 
assumed tha t an ion is a ba re part icle with an effective 
charge cor responding to a given velocity). 

In Ref. [266], E q n s (4.9) and (4.12) were used for 
calculat ing the energy losses of a part icles in the p lane 
channels of Ta with different approx ima t ions of CP . A 
weak dependence of the form of the result ing spectra from 
CP was detected. In Ref. [267] functions S(x,E) were 
calculated with E q n (4.9) for a p lane poten t ia l of the form 

U(x) =2nZlZ2NdvV3a2 

0.5dp + a — x 0.5dp + a + ' ( • ^) 

where s tandard designat ions were used. Pa rame te r s S 0 and 
Si necessary for the calculat ions were taken from the 
experiment [268]. The calculat ion results were compared 
with the compu ta t iona l ones for S(x, E) which were carried 
out with respect to the local electron density mode l [for a 
particles in the channels of (100) and (110) Si]. The 
agreement of the S(x, E) functions close to the channel 
walls was interpreted as a p r o o f of adequacy of the CP 
[Eqn (4.15)] for the given case. In par t icular , an agreement 
was observed of the exper imental values, 

(Sr - a ) 

with the theoret ical ones, 

dv |_ 
U f ) - ^ ( o ) 

within a deviat ion of 7% - 8 % (cr|h < (Tf

exv). It is quite 
obvious , however , tha t the t empera tu re influence, ignored 
in E q n (4.15), will cause an addi t iona l decrease in the 
height of a po ten t ia l barr ier of at least 10% . T h u s the to ta l 
deviat ion of the value of U(dv/2) — U(0) from its 
exper imental value will be ~ 35 % , so tha t the advan tage 
of the poten t ia l [Eqn (4.15)] is dubious . One m o r e m e t h o d 
of est imating the p lane potent ia ls was used in Ref. [270]. 
The basic relat ions are of the following form (x is a 
coordina te , U is a CP) : 

x(U) = 
1 

1/2 *ch(E±, U) 
dE, 

e± = En (4.16) 

where Xch(E±,U) is a 'wavelength ' of part icle oscillations 
with t ransverse energy E±, \jj-m is an initial ' ingoing ' angle 
with respect to the planes . In this case, the exper imental 
pa rame te r s are A c h and i/fin [see E q n s (4.3) and (4.6)]. It is 
p re t ty obvious tha t E q n (4.16) is the inverse of E q n (4.6) 
and is a special case of the k n o w n equat ion of the 
reconst ruct ion of the po ten t ia l by the per iod of mot ion in a 
one-dimensional po ten t ia l field [95]. 

4.5 Dependence of energy losses of heavy ions on the 
frequency of oscillations in planar channelling 
In Refs [91, 92] some essential details of exper iments in 
which the dependence of energy losses [Eqn (4.7)] was 
studied are presented. This has not , however , a t t rac ted 

Figure 18. A diagram of the ion motion in a plane channel for 
different CPs. The turning points i, j and correspond to the 
oscillation frequencies co and co + Aco. 

sufficient a t tent ion. Moreover , the dependence given by 
E q n (4.7) itself was no t given a t h o r o u g h theoret ical 
explanat ion. I ts ma in peculiari ty is increase of the 
coefficient ft with the increase of the ionic energy. 
Fo l lowing Ref. [91], we will show tha t this fact is directly 
connected with the decrease of the p lanar CP due to the 
energy dependence of the interact ion potent ia l . This is 
i l lustrated t h rough Fig . 18, where the tu rn ing poin ts /—/ 
and j—j of an ion having the same frequency of oscillations 
co bu t moving in different po ten t ia l wells are shown 
schematically. Owing to the greater steepness of curve 2, 
the po in t s j—j are located further from the channel walls 
t han the po in t s /—/. Wi th an increase in the oscillation 
frequency of Aco, the new tu rn ing poin ts will be 
displaced relative to the channel walls to a greater degree 
t han the po in t s j'-j' because the potent ia l curves are less 
steep. This suggests tha t , for ions having different energies 
bu t the same s topping power , the energy losses of 
the part icles moving in a less steep CP will be higher 
since the ions move in the domain of a higher density of 
the electrons and nuclei of the crystal. C o m p a r i n g this 
supposi t ion with the exper imental dependence [Eqn (4.7)], 
we can conclude tha t po ten t ia l curve 2 in Fig. 18 
cor responds to a lower energy. On the cont rary , for a 
CP which increases with an increase in energy, the 
coefficient of inclination ft would decrease. Quant i ta t ive 
calculat ions confirming these conclusions were repor ted in 
Refs [107, 333]. Fig. 19 presents exper imental and c o m p u ­
ta t iona l dependences S(co) for the I ions with energies of 15 
and 60 M e v for channell ing in (111) Au . In the calculat ions 
of an I - A u IP , an electrostatic interact ion with respect to 
E q n (2.18) was taken into account as well as the 
cont r ibut ion of the kinetic energy of the electron gas 
with respect to Eqn (2.61), and the densities of the Au and 
I electrons were obta ined from E q n (2.48) tak ing into 
account the exper imental values of an ionisat ion degree of 
the I ions for the given energy (Zj — = 13 for E = 15 
M e v and Zx-Nx =22 for E = 60 M e V [272]). The 
coefficients ct and bt in Eqn (2.48) cor responded to the 
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Figure 19. Stopping powers of 1 2 7 I ions while channelling in (111) Au 
as the functions of the oscillation frequencies and energy: solid lines 
represent experimental values; dashed lines represent the values of 
calculation in the quasistatic approximation [333]; dotted lines 
represent the values of calculation for the potential given by 
Eqn (4.17). 

app rox ima t ion in Ref. [68]. The IPs calculated in this way 
were averaged by a s tandard me thod tak ing into account 
the the rmal oscillations. The result ing CPs are shown in 
Fig. 20 a long with the potent ia ls of Mol iere type for the 
effective ion charges Z l e f f = 1 3 and Z l e f f = 22, respectively. 
In the second case, the I - A u IP is 

" W - ^ ' O - l 4 1 7 ) 

where a2 = 0 .8853Z 2

- 1 ^ 3 is a screening pa rame te r of an Au 
a tom, and the function $(x) cor responds to tha t given in 
Ref. [68]. Fig. 20 shows us tha t the dynamic decrease of the 
poten t ia l is mos t d ramat ic in the middle par t of a channel . 

U/koV 

0.125 0.250 0.375 x/dv 

Figure 20. A CP for the I ions for channelling in (111) Au: curves 1, 2 
represent an 'effective charge' approximation [Eqn (4.17)]; curves 3, 4 
represent a quasistatic approximation [107, 333]. 

On the cont rary , E q n (4.17) leads to an increase of CP 
when the part icle energy increases. 

In order to find a theoret ical dependence S(co), the 
oscillation frequencies with respect to Eqn (4.8) were 
calculated followed by el imination of the ampl i tudes 
j c m a x by means of the coord ina te dependence of the 
s topping losses averaged with respect to the per iod of 
mo t ion and taken in the form 

S(x,E) = 0 .034Z? e f f ( £ ) ^1 + ^ * 2 ) M e V ^ m _ 1 • ( 4 - 1 8 ) 

E q n (4.18) provides an approx imat ion of the results of 
theoret ical calculat ion of the s topping losses [273] for H e 
and I ions in an Au crystal. As can be seen from Fig. 19, 
the theoret ical calculat ion (dot ted curves) correctly shows 
the main feature of the experiment: increase of the 
steepness with the increase of energy. Some over-
est imation of the oscillation frequencies of ions can be 
accounted for by the er rors in calculat ion of the potent ia ls . 
Ana logous calculat ions for a CP [Eqn (4.17)] which are 
shown by dot ted and dashed lines show a decrease of 
steepness of with the energy increase. One m o r e 
considerat ion in suppor t of this theory arises when the 
s topping powers of I ions for a disoriented crystal are 
compared . Thus , for the energies of 15 and 60 MeV, the 
cor responding exper imental values were 9 and 23.9 
M e v u r n - 1 [274], i.e. they increased by a factor of 2.65. 
At the same t ime, the square of the charge of the ions 
increased by a factor of ( 2 2 / 1 3 ) 2 = 2.9. In accordance with 
E q n (4.14) this discrepancy can be related to the decrease 
of the poten t ia l barr ier height by 1 0 - 1 5 % owing to the 
energy dependence of the IP . This fact conforms with the 
agreement between the theoret ical and exper imental 
est imates of ST(E) which occurs with the energy increase 
[265], since the theoret ical values for the s topping losses 
were est imated for the poten t ia l [Eqn (4.17)] which grows 
with the energy. In this case, the rise in Sr{E) in accordance 
with Eqn (4.14) occurs m o r e rapidly t han in the dependence 
oc Z i e f f , which follows from Eqn (4.18) and is averaged with 
respect to the coord ina te x; and thus the s topping 'deficit ' 
observed at E = 15 M e V decreases at E = 60 M e V (see the 
da ta of Table 3 in Ref. [265b]). T h u s the dependence 
S(co) = a + /fco is defined, on the one hand , by dynamics of 
the mo t ion of ions in the channel which is determined by the 
CP , and, on the other , by dependence of the s topping u p o n 
the coord ina te E q n (4.18). Let us no te tha t , for sufficiently 
high energies, when an IP begins to rise (see Section 2.7), the 
pa ramete r in Eqn (4.7) decreases down to its asymptot ic 
value which cor responds to the potent ia l [Eqn (4.17)] for 
Z l e f f = Z 1 . Therefore est imates of ft for different energies 
could give valuable informat ion for the m o r e precise 
definition of the energy dependence of an IP . 

4.6 Characteristic radiation of the channelled electrons 
and positrons 
W h e n the relativistic leptons are channelled, the wave 
function of the b o n d e d mot ion satisfies the Schrodinger 
equat ion [275 -277 ] : 

- 1 A ± y ( r ) ± + [U(r±) - E±] «P(r±) = 0 , (4.19) 

where y is the Loren tz factor, 

. _ 6 2 6 2 
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r (x , y) is a t ransverse project ion of the rad ius vector to a 
p lane xy tha t is perpendicular to the direction of the 
longi tudinal mot ion , U(r_i) is a con t inuous poten t ia l (in the 
case of p lanar channell ing, Aj_ = d 2 / d x 2 ) . It is shown in 
Refs [112, 275, 278] tha t for the electrons with energies 
E < 50 M e V for p lanar channell ing and E < 10 M e V for 
the axial type the energy levels E± are discrete. The 
rad ia t ion lines tha t cor respond to the spon taneous 
t rans i t ions between them, tak ing into account the rela­
tivistic t r ans format ion of the frequency, conform to the 
energies 

Ey = 2y2AE± . (4.20) 

Nonequ id i s t ance of the E± levels leads to emergence of 
some isolated peaks in the spectrum, which allows us to 
est imate the spatial locat ion of the rad ia t ing particles. The 
spectrum of the t ransverse energies and g a m m a quan t a is in 
all p robabi l i ty determined only by the form of a CP . 

C o m p a r i s o n of the exper imental and theoret ical values 
of the energies Ey tha t have been calculated for the specific 
potent ia ls allows us to assess their quali ty. On the other 
hand , the exper imental informat ion can be used for var ious 
purposes , i.e. diagnost ics of the potent ia ls , in the analysis of 
the electron density in channels , in the measurement of 
D e b ye tempera tures , in the s tudy of the an iso t ropy of the 
the rmal oscillation of the lattice a toms , etc. [11, 280, 281, 
186, 306, 307]. 

Electron rad ia t ion in axial channell ing in d i amond and 
silicon crystals was reviewed in Refs [283, 284], in p lanar 
channell ing in Refs [285, 287, 288], and for pos i t rons in 
Refs [288, 290, 291]. Rad i a t i on in a LiF crystal was 
investigated in Refs [292, 293], and in some other crystals 
of a complex type in Refs [285, 294, 295]. In the calculat ions 
of spectral lines, potent ia ls of the D o y l e - T u r n e r type were 
most often used [Eqns (3 .74) - (3 .75) ] , and the Schrodinger 
equat ion (4.19) was solved by the p lane waves me thod . In 
Refs [296, 187, 298] a quasiclassical approx imat ion was 
used, and for pos i t rons the classical me thod was used, 
because for energies E > 50 M e V the number of levels of 
coupled mot ion is sufficiently large. In these studies, a 
p lanar po ten t ia l tha t cor responds to the mode l given by 
E q n (2.25) was used. In Ref. [299] a var ia t ional me thod of 
solving the Schrodinger equat ion with a D o y l e - T u r n e r 
po ten t ia l was used. The results of the theoret ical calcula­
t ions of the energies of the rad ia t ion peaks agree well with 
each other and with the exper imental da ta . In Refs [287, 
296, 187], however , it was noted tha t the frequencies 
cor responding to the max ima of the pos i t ron rad ia t ion 
for the D o y l e - T u r n e r (DT) poten t ia l exceeded the exper­
imenta l values by approximate ly 7% - 1 0 % , whereas for the 
electron deviat ions they exceeded the exper imental values 
by l % - 5 % . In this respect, a CP for the piecewise 
exponent ia l mode l ( P E M ) given by E q n (2.25) proves to 
be m o r e universal , which is confirmed by the da ta of Tables 
5 and 6. Calcula t ions with the Mol iere poten t ia l have a 
poore r agreement with the exper imental da ta . N o t e tha t the 
initial calculated values of a CP with the appl icat ion of the 
P E M were overest imated [187] [in E q n (14) of this work the 
last te rm must have a posit ive sign]. 

D a t a in Tables 5 and 6 show tha t the D T potent ia l is 
responsible for the higher energy values of the peak of 
pos i t ron rad ia t ion and for the higher energies of the 
separate lines for the electrons [especially in the case of 
t rans i t ion 1 - 0 in (100) and (110) Si]. On the cont rary , a 

Table 5. Energies of the gamma quanta in the maximum of a radiation 
peak of the channelled positrons. In columns 3 - 5 , the results of 
calculations corresponding to the PEM, the Moliere potential, and the 
DT potential, respectively, are given. 

Plane y Calculated Experimental 
values values 

Refs [296, 187] Ref. [187] Refs [290, Refs [290, 291] 
291] 

(110) Si 111 42 40 44.2 42.5 
(110) Si 107.4 38 37 41.6 38.8 
(100) Si 111 45 45 4 ^ 5 1 46.7 
(110) C 107.4 64 60 69.2 65.3 
(110) Ge 107.4 49.5 52.2 48.1 

P E M approx ima t ion leads to smaller energies of the 1 - 0 
t ransi t ion. These deviat ions cannot be related to the 
inaccuracy of the quasi-classical approx ima t ion used in 
Refs [296, 187], because it was shown [187] tha t the error of 
this me thod in determining the levels of t ransverse mo t ion 
does no t exceed 1% even for energies of 5 - 1 0 M e V . A n 
addi t iona l test of the potent ia ls allows compar i son of the 
sums of energies for the separate t ransi t ions . Table 7 lists 
the values cor responding to the potent ia ls in Tables 5 and 6 
and shows tha t eventually the sums of the P E M differ from 
the exper imental values by only 1% - 2 % . This fact is due to 
a compensa t ion of the energy 'deficit ' for the t rans i t ions 
from the lower levels by a cor responding 'excess' for the 
higher levels. In the case of the D T potent ia l , deviat ions are 
somewhat larger and reach 2 .5% - 3 % 

These results m a k e it possible to evaluate somewhat 
differently an a t t empt to define m o r e precisely the Debye 
t empera tu re of the silicon crystal in Ref. [285b], where in 
order to achieve consistency between theoret ical and 
exper imental values of the energies of quan t a in the 1 - 0 
line, the value of 495 K was t aken instead of 543 K (the 
common ly used value cor responding to the da ta of x-ray 
diffraction [302, 303]). M o r e precise calculat ions in 
Ref. [312] resulted in the values of 0 D = 504 K for 
T = 298 K, and 9D = 514 K for T = 110 K. N o t e tha t a 
deviat ion of 9D influences only the 1 - 0 t ransi t ion, and does 
no t influence the other levels. On the cont rary , if we t ry to 
achieve such an agreement for the P E M potent ia l , 9D will 
have to be increased to up to 575 K, which will result in a 
not iceably poore r agreement between the theoret ical and 
exper imental values of J2^r Thus , the Debye t empera tu re 
values cannot be revised wi thout the critical choice of a CP . 

Similar r emarks can be m a d e in connect ion with the use 
of the rad ia t ion spectra of the channelled part icles for 
de terminat ion of the electron densities in a channel [283] 
based on the Poisson equat ion 

Pe(r±)=^A±V(r±) . (4.21) 

The me thod used here consists in correct ing the theoret ical 
values of the form factor of the potent ia l in E q n (3.62) to 
a t ta in conformity between the theoret ical and exper imental 
spectra. This p rocedure is no t quite correct mathemat ica l ly , 
because the Four ie r t ransform of the a tomic factor, 
represented by a sum of Gauss ian exponents 
[Eqn (3.72)], does no t present correctly the shell d is t r ibu­
t ion of the poten t ia l and the electron density which would 



906 G V Dedkov 

Table 6. Energies of the gamma quanta radiated by the channelled electrons in the 'forward' direction. 

Plane y Transition Calculated values* Experimental values 

Refs [296, 187] Ref. [300] Refs [291, 180] Refs [291,292] 

(110) Si 110.6 1 -0 122.4 139.1 134 128 
2 - 1 94.8 101.4 96 94 
3 - 2 70.6 75.5 69 68 
4 - 3 53.8 58.2 53 52 
5 - 4 43.6 45.4 41 42 

(110) Si 55.8 1 -0 38.7 44.8 — 40 
2 - 1 26.8 28.9 — 25 
3 - 2 19.0 19.8 — 17 

(100) Si 110.6 1 -0 95.2 109.1 — 99 
2 - 1 66.3 72.3 — 64 
3 - 2 45,3 50.3 — 39 

(100) Si 55.8 1 -0 29.5 34.3 — 31 
2 - 1 17.6 17.3 — 21 

(110) C 106.7 1 -0 158.4 161** 163.8 161.8 
2 - 1 104.3 100** 108.3 104.4 
3 - 2 78.2 72** 79.0 78.4 
4 - 3 56.3 49** 60.4 58 

(100) C 106.7 1 -0 116.9 117** 120.6*** 120 
2 - 1 65.1 57** 65*** 65.4 

*The results of calculations in columns 4 - 6 correspond to the same potentials as in Table 5 (columns 3 - 5 ) . 
**These values are taken from Ref. [276]. 
***These values are taken from Ref. [301]. 

Table 7. Total values of the gamma-quanta energies of the planar 
channelling of the electrons. 

Plane Calculated values* Experimental 
values 

(1) (2) (3) 

(110) Si 
(110) Si 
(100)Si 
(110) C 
(100) C 

110.4 
55.8 
110.6 
106.7 
106.7 

385.2 
84.5 
206.8 
397.2 
182 

417.6 
93.5 
231.7 
382 
174 

393 384 

— 82 
— 202 
411.5 402.6 
185.6 186.3 

*Data in the columns (1), (2), and (3) correspond to those of the 
columns 4 - 6 in Table 6. 

cor respond to the H a r t r e e - F o c k dis t r ibut ion. In addi t ion, 
when we m a k e a correct ion of the form factors by the value 
of AV g , the cor responding function can be determined only 
for a finite number of vectors. Therefore, the reciprocal 
which is an inverse Four ie r t ransform for the a tomic 
poten t ia l and electron density in a crystal, is no t un ique . As 
a result, there is an entire class of functions of the electron 
density dis t r ibut ions and Debye t empera tu res for which it 
is possible to reach an agreement between the theoret ical 
and exper imental da ta [306]. I believe tha t a m o r e 
consistent app roach would be to apply the analytical 
H a r t r e e - F o c k approx ima t ions of the P E M type or the 
B o n h a m - S t r a n d mode l [321] ra ther t han the D T model , 
where a correct ion function A V g should ensure fulfillment 

of the s t andard normal is ing condi t ions tha t are imposed 
u p o n the a tomic poten t ia l and electron density. The models 
ment ioned above provide correct initial approx ima t ions for 
the solut ion of this p rob lem. 

In Refs [292, 293] a form factor correct ion was also used 
in calculat ions of the rad ia t ion spectra in a LiF crystal, 
where the ampl i tudes of the the rmal oscillations of the L i + 

and F ~ ions cor responded to different values of Debye 
tempera tures . Thus , in Ref. [292] the rat io of the ampl i tudes 
was equal to 1.28 instead of 1.65; this latter value followed 
from the relat ion kB@D ~ M{u2 (M{ is an ion mass , kB is the 
Bo l t zmann constant ) . This fact, together with the disagree­
ment of the values of 0 D used by different au tho r s 
(especially for the crystals and alloys of a complex 
composi t ion) , makes the compar i son and in terpre ta t ion 
of results ra ther difficult. Thus , the au tho r s of Refs [285, 
293] came to the conclusion tha t the ampl i tude of the rmal 
oscillations of a F ~ ion in a LiF crystal is underes t imated by 
a factor of 2, and in a LiH crystal the ampl i tudes of H are 
twice as high as those of D in L i D . It was noted (see also 
Ref. [306]) tha t this conclusion is suppor ted by Fig . 21, 
where the exper imental rad ia t ion spectra of the electrons 
with the energy of 54.5 M e V in the (100) channel of the LiH 
and LiD crystals are shown. The conclusion is based on the 
apparen t shift of the rad ia t ion lines into the lower frequency 
domain for a LiH crystal. However , it follows from the 
theory tha t var ia t ion of the Debye t empera tu re (and in the 
the rmal oscillations ampl i tude as well) influences not iceably 
only the frequency of the 1 - 0 t ransi t ion, whereas in Fig. 
21 one can see the shift of all the lines. Besides, at a higher 
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Figure 21. Radiat ion spectra of the electrons of 54.5 MeV channelled 
in the (100) plane of the LiH and LiD crystals [239, 295]. 

ampl i tude of the the rmal oscillations the line width should 
be greater for a LiH crystal (for example, the impact of the 
t empera tu re u p o n the spectra shown in Fig . 7 in Ref. [306]), 
which also does not agree with the da ta given in Fig. 21 . 
Thus , we arrive at opposi te conclusions. 

It is shown in Ref. [186] tha t compar i son of the 
intensities of the first max ima of the coherent b remss t r ah -
lung radia t ion (CBR) can give us significant informat ion on 
the values of the ionic charges of the crystal a t o m s (in the 
case of p lanar channels tha t consist of the p lanes with the 
ions of different CBR signs [for example, (111) N a C l ] . This 
can be explained by the presence of ha rmonics with the 
per iods of dv and 2dv in a CP (dv is the distance between the 
planes with the ions of different signs), where the Four ie r 
ha rmonics of the larger per iod are p r o p o r t i o n a l to the ionic 
charges of the crystal a toms . In my opinion the possibilities 
of diagnost ic appl icat ion of the CBR spectra have not yet 
been fully under s tood , whereas the CBR peak ampl i tudes 
are directly related to the separate Four ie r ha rmonics of the 
crystal potent ia l , in contras t to the rad ia t ion spectra in 
channell ing which are formed by the to ta l potent ia l . 

It is useful to no te a n u m b e r of works related to the 
spectral characterist ics of the rad ia t ion of channelled 
part icles t ak ing into account the dislocation effects 
[ 3 1 5 - 3 1 6 ] and the influence of the external per iodic fields 
[277, 305, 307], as well as works dealing with direct 
reconst ruct ion of the potent ia ls t h rough their spectra 
[322 -323] . The latter p rob lem is a complicated one and 
needs addi t iona l analysis. 

In conclusion it m a y be said tha t a l though the theory is 
successful in explaining the characterist ic features of the 
observed rad ia t ion spectra, appl icat ion of these da ta in the 
f ramework of a new diagnost ic me thod will impose rigid 
requi rements concerning the qual i ty of the potent ia ls 
required for the calculat ion models . At present , these 
requi rements are no t fully satisfied. 

5. Conclusions 
It can be seen from this review tha t the concept of 
in tera tomic potent ia ls is widely used in the s tudy and 

in terpre ta t ion of n u m e r o u s p h e n o m e n a associated with the 
pene t ra t ion of beams of the charged particles in mat te r . 
M a n y of these p h e n o m e n a (such as sput ter ing, phase 
t rans i t ions due to i r radia- t ion, interact ion with surfaces, 
energy losses in channell ing, dechannell ing, etc) were 
considered only briefly, or completely omit ted, here. 
Progress in exper imental techniques over the last 1 0 - 1 5 
years enables one to carry out measurements of var ious 
values per ta in ing to a part icle beam with an accuracy of 
several percent ( including the values for energy losses and 
ranges, angular and energy dis t r ibut ions , rad ia t ion spectral 
lines in channell ing, etc.). The exper imental results 
p r o m o t e d the format ion of the m o d e r n ideas concerning 
the physical na tu re of the processes of s topping and 
channell ing of part icles in mat te r , rad ia t ion in channell ing, 
and the yield in secondary processes. These achievements 
have led to the creat ion of new exper imental m e t h o d s of 
measurement of IPs and some other variables, the 
informat ion related to them being a powerful too l for 
the p rob ing of solids. 

At the same t ime, there are still p rob lems which, a long 
with the in terpre ta t ion of experiments (they are, first of all, 
Zi and Z 2 oscillations of the scat tering cross sections, 
s topping, and ranges) , also involve the need for ob ta in ing 
the correct theoret ical po ten t ia l curves for a wide range of 
internuclear distances b o t h in a gaseous phase and in solids. 
As can be seen from this review, one of the p robab le t rends 
of development in the theory of rad ia t ion effects is a 
possibili ty of in t roducing the concept of a p a r t i c l e - s o l i d 
IP no t only by way of summat ion of the separate 
independent cont r ibut ions , bu t also by tak ing into account 
the ion charge states, the effects of dynamic screening, 
correlat ion due to separate in teract ions in the small-angle 
scattering and channell ing, as well as the electron s t ructure 
of the target a toms . In the case of small-angle scattering and 
channell ing, the energy dependence of the poten t ia l tha t 
p roduces changes in the s topping losses t h rough the 
trajectories of mo t ion m a y become sufficiently great. 
Thus , solid state effects can be taken into account at an 
earlier stage by including them in the potent ia ls . F o r the 
successful development of this t rend, addi t iona l experi­
men t s are necessary on dynamic screening and energy 
dependences of an IP for heavy ions. 

Ano the r theoret ical topic tha t is only briefly discussed in 
this review is the possibili ty of t ak ing into account the 
inelastic channels in the processes of e lementary acts of 
i o n - a t o m interact ion th rough their inclusion in the 
potent ia ls . D o i n g so within the f ramework of a mode l of 
con t inuous slowing down will give fresh impetus to the 
development of the theory. 
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