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Abstract. The current status of the subject of charged
dislocations in germanium and silicon semiconductor
crystals is discussed. Equilibrium properties of plastically
deformed germanium and silicon are described by a
phenomenological model of the electron spectrum of
charged dislocations in these crystals. This model is a
development of the Shockley—Read theory and it
postulates two acceptor levels, E; and E,, and also one
donor level, £&. Moreover, it is necessary to introduce a
finite capacity C; of the acceptor level E;. The adopted
model provides a self-consistent description of the main
electrical properties of plastically deformed germanium and
silicon. These properties include the conductivity of the
crystals in the n and p states, details of inversion of the
type of conduction caused by dislocations, some features of
the current—voltage characteristics of crystals with ori-
ented sets of dislocations, simplest relaxation phenomena,
etc. In germanium, the level E; is located near E; = 0.1 eV
above the top of the valence band and its capacity is
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C; £0.1. The corresponding parameters of silicon are
E; =~ 0.4 ¢V and C; <0.1. It is worth noting the smallness
of the capacity C;, which justifies inclusion of this
additional parameter among the characteristics of the
electron spectrum of dislocations.

1. Introduction

The main ideas on a possible role of dislocations in
determination of the electric properties of semiconductor
crystals were put forward in the fifties during the period of
remarkable progress in the physics of semiconductors. The
first experimental results, demonstrating clearly a signifi-
cant influence of dislocations on electric properties of
semiconductors, were obtained by Gallagher [1] who
showed that plastic deformation of germanium and silicon
increases their resistivity and reduces the minority-carrier
lifetime.

The experimental results of Gallagher [1] and a simple
atomic model of a dislocation core in a covalent crystal
were used by Shockley [2] to put forward a fruitful idea of
the existence, along a dislocation, of what are known as
dangling bonds that can exhibit acceptor or donor proper-
ties. Shockley’s idea was developed quantitatively by Read
[3, 4] Read formulated the main propositions of a
phenomenological theory of charged dislocations: he
introduced the concept of dislocation electron levels Ej;,
the filling factor f§ of dislocation levels, the radius R of a
Read cylinder surrounding each charged dislocation and

FTranslator’s note. Read called this quantity ‘the fraction of the
occupied states’; other authors use ‘the occupation ratio’, etc.
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screening the linear charge localised on it, etc. Read’s work
revealed clearly the main feature of the occupation of
electron dislocation levels by free electrons. In contrast
to the problem of occupation of point centres, in the case of
dislocations this problem should be solved taking account
of the Coulomb interaction of electrons which settle on a
dislocation and of the self-consistent influence of this
interaction on the quantity f.

The work of Shockley and Read [2—4] and the sub-
sequent experiments (Refs [5, 6]) reporting anisotropy of
samples with a set of oriented dislocations has determined
the ‘language’ and the main physical parameters of the
problem. Although the general picture is now much more
complex compared with the initial variant discussed by
Read [3, 4], the importance of this early work has not
diminished with time.

Extensive experimental and theoretical investigations of
various details of the behaviour of charged dislocations in
semiconductors, which have followed Refs [1 —4], have been
summarised on many occasions in a number of interesting
reviews. Among them one should mention particularly a
chapter written by Labusch and Schroter [7] in Dislocations
in Solids (Vol. 5) published in 1980 under the editorship of
Nabarro, the review of Osip’yan (Ossipyan) [8] published
somewhat later (1982), and the review of Matare [9]. The
purpose of the present review is to consider the state of the
problem of charged dislocations at the phenomenological
level in the late eighties. In view of the rapidly growing
volume of information, we shall ignore almost completely
the properties of charged dislocations in II-VI semicon-
ductors (which are discussed in an excellent manner in
Ref. [10]) and also the spin-dependent effects, dealt with
sufficiently thoroughly in Ref. [§8].

In the development, at this stage, of a phenomenological
description of the properties of charged dislocations in
covalent semiconductors we must bear in mind the
following repeatedly verified observations.

(1) Introduction of dislocations into n-type semicon-
ductors reduces the average concentration of free carriers
and the reduction becomes stronger as a result of cooling.
In other words, dislocations act as acceptors in n-type
semiconductors. A typical example of such an effect of
dislocations on an n-type semiconductor is demonstrated in
Fig. 1.

(2) The conductivity of samples with an oriented set of
dislocations is anisotropic (Fig. 2), which is evidence of the
linearity of these defects.

(3) An increase in the dislocation density above a certain
critical value results in inversion of the type of conduction
of a sample. Characteristically, such inversion is a fairly
abrupt transition, which can be seen clearly in Fig. 3
illustrating the behaviour of the Fermi level as a function
of the plastic strain, i.e. of the dislocation density. The
abruptness of the transition indicates that a dislocation has
at least two acceptor levels, the lower of which is located
near the top of the valence band. It is also important to note
that inversion appears not when ny = np, where ny and np
are the effective volume concentrations of donors and
dislocation acceptor centres (np = NDcf'; Np is the two-
dimensional dislocation density; a is the atomic spacing),
but under the conditions when ny ~ lsznD. This circum-
stance has to be taken into account in the selection of the
model of the lower acceptor level in the spectrum of
electrons on a dislocation.
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Figure 1. Temperature dependences of the electron density in plastically
deformed germanium [8]. Here, curve k represents a control sample with
a donor concentration ng = 2.9 X 101 cm”“’; curves I, 2, 3 represent
samples deformed to different degrees and characterised by dislocation
densities of 2.8 x 10°, 4.4 x 10°, and 6 x 10° cm~2, respectively.
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Figure 2. Dependences of the carrier mobility on temperature 7 [S]:
(1) I1|D; (2)ILD; (3) control measurements.
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(4) Dislocations exhibit acceptor—donor properties in
p-type semiconductors. After introduction of dislocations
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Figure 3. Bcehaviour of the Fermi level F, plotted as a function of the
plastic strain of silicon crystals [8, 28].
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Figure 4. Hole concentration n, in control (A) and plastically deformed
(0) p-type germanium [7, 25], plotted as a function of T ~'; acceptor
concentration n, = 7.3 x 10"> em™ and dislocation density Np = 4.6 x
107 cm™2

the Hall concentration of holes can be lower or higher than
the concentration of free carriers in a free sample, which is
evidence of the acceptor —donor action of dislocation states
in a p-type semiconductor. A typical example of such
behaviour of free holes in a deformed sample is given in
Fig. 4.

(5) There is a qualitative analogy between the behaviour
of charged dislocations in germanium and the behaviour in
silicon. The analogy is not absolute, for example, in the case
of the spin-dependent properties (an ESR signal of
dislocation origin is observed for silicon but not for
germanium). However, in respect of the electric properties
the similarity between germanium and silicon is quite close.

These observations determine the degree of complexity
of a phenomenological model of a charged dislocation
which can claim to provide a self-consistent description
of the main observed effects involving charged dislocations.
These dislocations are linear defects with deep discrete
acceptor levels E; and donor levels &; in the band gap of a
semiconductor. The positions of these levels are shown
schematically in Fig. 5. All the energies are measured from
the top of the valence band. The positions of the main
acceptor E; and donor &; levels are practically identical.
This follows from Fig. 4 which shows that the slope of the
temperature dependence of the concentration of holes in a
deformed sample is practically unaffected on transition
from the donor to the acceptor action of dislocations,
i.e. by transition across a temperature T =T".
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Figure 5. Energy level scheme of electrons localised at a 60°

dislocation in germanium and silicon (a, b, and ¢ show different
clectron transitions).

The special nature of the inversion of the type of
conduction of a deformed sample with increase in the
dislocation density Np (see Fig. 3) makes it necessary to
assume that the main acceptor level E; is of limited capacity
C, <0.1. To ensure a unified approach, we shall assume
that all other dislocation levels have specific capacities C;. It
will be shown later that the existence of finite capacities C;
is also sufficient for the observation of various dislocation
levels in the spectrum obtained by the DLTS (deep level
transient spectroscopy) method. Naturally, introduction of
finite capacities C; is not the only possible way of filling of
higher dislocation levels with electrons. In principle, the
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same properties may be expected of a model which takes
account of the free motion of electrons along a dislocation
axis which leads to a finite energy of zero-point vibrations
along a dislocation. However, this theoretical variant
cannot account for the abruptness of the transition
illustrated in Fig. 3.

One of the tasks of our review will be to demonstrate
that the proposed model is not in conflict with the various
experiments carried out on n- and p-type samples. We shall
assume that the parameters &;, E;, C;, and if necessary also
S; (S; are the capacities of donor levels) are found
experimentally and are reasonably reproducible between
one set of experiments and another.

2. Equilibrium properties of a charged
dislocation in n-type semiconductors

As pointed out above, a specific feature of the problem of
electron occupation of the dislocation levels is the need to
include the Coulomb interaction between electrons that
have settled on a dislocation. The foundation stone of
Read’s theory [3, 4] and of all its subsequent modifications
is the correct account of this interaction and of its influence
on the process of electron localisation. A systematic
representation of this theory requires introduction of a
number of specific definitions, which are used in the
description of the equilibrium and simplest kinetic proper-
ties of charged dislocations.

2.1 Screening length

2.1.1 We shall assume that an n-type semiconductor with a
donor concentration ny contains, at temperatures corre-
sponding to the complete ionisation of the donors, a
charged filament with the filling factor f:

F=2. ()

Here, a is the lattice period along the dislocation axis and ¢
is the average distance between electrons on a dislocation.
The potential ¢ of a charged dislocation falls away from
the axis because of the screening by the ionised donors. If
over the whole region where ¢(r) is defined the inequalities

%@, 0<r<oo )

are obeyed (T is the absolute temperature and r is the
distance from the dislocation axis), the general Poisson
equation

4me

Ap = e (ng —ne) ©)

ne(r) = nq exp (— #)

may be linearised:

(3a)

4‘rce2nd

A
@ eT

Here, ¢ is the permittivity of the semiconductor. This
equation becomes dimensionless as a result of substitution
of the quantities

2 eT
X =—, p = 2 ’
D 4me ngy

4

where rp is the familiar screening length applicable to weak
electrostatic fields, known as the Debye length.

2.1.2 In the problem of screening of a charged dislocation
the situation is the reverse of that described above, because
in a wide range of distances 0 < r < R from the dislocation
axis the following inequality is obeyed:

#»1, )

which is opposite to that in expression (2). If this range
r < R satisfies

R»"Ds (6)

then within this range we can simplify the problem still
further by assuming that n, € ny. The Poisson equation
then reduces to
N 4‘rce2nd

Ag (7

&

The solution of Eqn (7) with the ‘geometric’ boundary
condition

¢
or

and subject to the simplifying assumption ¢|,_, = 0 is as
follows:

- 2
go(r):Z—Z[Zlné—(l—%)] s ®)

TCR2l’ld :z .
a

~0 O

r=R

The quantity R, defined by expression (8), was first
introduced by Read [3, 4] and has since been called the
Read radius. The physical meaning of this quantity is quite
simple. In the geometric approximation, i.e. if R > rp, the
quantity R is the distance at which the field of a charged
dislocation is compensated by the field of ionised donors.
Naturally, a full picture of the screening is more complex.
However, if R » rp, we can usually ignore the Debye
screening and consider only the Read screening.

The ratio of the Read and Debye lengths can be
obtained from expressions (4) and (8):

R? _ 4e2f ©)
1 el '
This ratio is large if
& f
r=—>»1. 10
eaT > (19)

In the real cases of germanium and silicon, when f < 0.1,
the ratio defined above can reach I' > 10. Under these
conditions the Read screening mechanism is the dominant
one.

It should be pointed out that, apart from the electro-
static forces between a dislocation and free electrons, there
is also a deformation interaction V;(r, 8) discussed in detail
below. This interaction is not cylindrically symmetric:

const

Ve(r,0) = sin(6) ,

r

where 0 is the angle measured from the glide plane of an
edge dislocation. Therefore, the overall distribution of
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electrons around a charged dislocation depends, in
principle, on the angle 6. However, the deformation
potential V; decreases with distance as 1/r, whereas the
electrostatic potential ¢(r) given by expression (8) depends
logarithmically on r. For this reason, at distances r =~ R,
where a Read cylinder is formed, the deformation
interaction can be ignored or it can be included by
means of perturbation theory.

One more seemingly self-evident simplification has to be
discussed separately. This is related to the role of holes in
the determination of the properties of a charged dislocation
in n-type semiconductors. The equilibrium concentration
of holes far from a dislocation is exponentially small and its
contribution to the charge distribution in the vicinity of a
charged dislocation would seem to be negligible:

“ F

ny, =n (T)exp(—;) <ng . (11
Here n*(T) is the density of the hole states in the valence
band and F is the Fermi level. However, holes are attracted
to negatively charged dislocations and the attraction is not
trivial. To deal with this, we shall calculate the total
number of holes pulled into a Read cylinder:

R g
N, = 211:JU 1, €Xp <?> rdr
R RN ”
:211:an' (7> exp [—F(l _F>] rdr,

where ¢(r) is described by expression (8) and I' by
expression (10). The value of N, depends in a step-like
manner on the parameter I'. If I' <1, the integral in
expression (12) is governed primarily by the distances
r<R:

(12)

1
N, = nR’n, exp (—F)J xTexp(Ix) dx
0

1 r
2
= TR npexp[—F(ﬁ—Fﬁ)] .

In this limit the localisation of holes on a charged
dislocation is unimportant.

However, if I' > 1, the main part of the integral in
expression (12) for N, is governed by the short distances
r>=c. As a result, expression (12a) should ‘pass’ across a
singularity characterised by I' = 1, and this corresponds to
a step-like increase in N, in a narrow range of the
parameter I'. The presence of such a jump in the depend-
ence on T may give rise to the effects discussed below.

(12a)

2.1.3 The Debye and the Read simplifications of the
Poisson equation for charged dislocations in an n-type
semiconductor do not exhaust all the limiting cases
encountered in experiments. For example, when electrons
begin to settle at donors and the definition of n.(r) given by
expression (3a) becomes invalid, the range of the para-
meters describing this situation deserves special attention.
In this case the structure of the transition region, matching
the region of complete ionisation of donors in the vicinity
of a dislocation to the unperturbed part of a crystal, differs
considerably from the Debye case, so that we can speak in
general of the third (in addition to the Debye and Read)
variant of the screening of the field of a charged dislocation
in an n-type semiconductor.

The details of this case can be considered if in solving
the Poisson equation we go beyond the geometric approx-
imation represented by expression (7a) in order to obtain
information on the real behaviour of the potential ¢(r) in
the transition region. In the case of complete ionisation of
donors, i.e. when expressions (3) and (3a) apply, the
solution of interest to us can be obtained as follows.

First of all, it is easily demonstrated that the general
cylindrically symmetric solution given by expression (8) for
¢(r) near the boundary of a Read cylinder R has the
asymptote:

2‘rr,endx2

pr)=—br—, x=R-r, x<R. (13)

In the same approximation characterised by x/R < 1,
the exact equation for ¢(x) in the transition region follows
from expressions (3) and (3a):

do

' =[1—exp(-®)], &' =—, 14
[1 —exp (—®)] i (14)
where
T
x_:i’ ¢:@» r%): : 2
o T 4mtnge

and rp is the Debye radius when the electron concentration
is n=ny.

The first integral of the above equation for @, with a
constant of integration selected to ensure vanishing of the
function @’ in the limit ® — 0, is

@' =V2[®— 1 +exp(—0)]' . (15)

Consequently, the dependence @(x) is given by the
relationship

=+V2(x+C), (16)

J o
[® — 1 +exp(—@)]'"?

where C is an arbitrary constant.

We shall now assume that at large values of x the
coordinate dependence of @, which follows from relation-
ship (16), is identical with the coordinate dependence given
by expression (13). Since in the range of high values of @
relationship (16) becomes

®=05F+C), (16a)

we find that the asymptotes of ¢@(x) described by
expression (13) and (16a) are identical if we assume that
C =0. In other words, the solutions for ¢ described by
expressions (13) and (16) are matched asymptotically if the
origin in solution (16) coincides with the geometric
boundary r =R of a Read cylinder.

In practical calculations it is convenient to substitute
suitable limits in the integral in expression (16):

@
do
J = EV2I, (17
@ [d’ -1+ exp(—d’)]
where the constant @y is defined by the condition
00 0
J n(x, Pg)dx = J [1—n(x, dr)]dx , (17a)
0 —00

n(x,®) =1—exp(—P) .

The general ideas on the boundary of a Read cylinder
make it possible to use the auxiliary definition of @} in
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Figure 6. Bchaviour of the Coulomb energy of free electrons @ and of
the concentration of ionised donors n in the vicinity of the boundary
of a Read cylinder, which is represented by a dashed line. The local
concentration n(x) is reduced to the bulk concentration of donors ng, x
is in units of the Debye radius rp, and the Coulomb energy eq is
reduced to temperature (@ = e/T).

finding the value of @y and in discussing other topics. This
definition is n(@y) =3, where n(®) is the charge density
relationship (17a). Written out explicitly, the definition of
Dy is

1 —exp (—45}*{):%. (18)
Hence, we have &} = 0.693. The correct value of &Py
obtained from relationship (17a) and representing the
electric potential on the surface of a Read cylinder is
close to the definition of @} given by expression (18).

Fig. 6 shows the dependences @(x) and n(x) that follow
from definitions (17), (17a), and (13). It is interesting to
note that in the process of electron screening the real
transition region is smeared out not over one but over
five to six Debye radii.

Let us assume that the temperature of a sample is close
to the freeze-out temperature of free electrons. In this limit
the Fermi level is given by the expression [11]:

nyg 2 (m* T\

F'=—05E;+0.5Tn N N, =5 ( o ) , (19
where m* is the effective mass of an electron and Ej is a
donor level measured from the bottom of the conduction
band. N, is the density of states in the conduction band.
Consequently, the expression for the Fermi level in an
external field becomes

F=F —ep. (20)

The corresponding dimensionless equation for @, which
replaces Eqn (14), is

1
¢” = |:1 —m] — o eXp (—¢) = H((p) N

N. 1/2 Eq <
= | — _——— L .
o Y eXp T

The first term on the right-hand side of the above
equation represents the charge around a dislocation
contributed by ionised donors in the field of a charged
filament and the second term is the contribution made to
the charge concentration by free electrons. In the limit
@ — 0, the right-hand side of Eqn (21) vanishes.

The first part of Eqn (21) is

(di')z_ln 1 +aexp @
2 I+a

@1

+afexp (—®) — 1] . (22)

The dependence @(x) is given by the relationship

') -1/2
J ddi{ln 1D D o fexp (—@) - 1]} — V2%,
@y l+a

(23)

where, as above, the constant ®p is found from the
condition
0

J:o n(¥, @) dx = Jim [1 = n(%, @) d¥

and &(x) is found from relationship (23).

The expression for @(x) given by relationship (23) can
readily be investigated numerically in exactly the same way
as has been done in the electron screening case discussed
above (Fig. 7). However, in the present case the usefulness
of the one-dimensional analysis is limited because the
transition region is greatly smeared out and its one-
dimensional description is no longer correct.

(24)

-10 -8 —6 —4 -2 0 2

Figure 7. Dependences @(x) and n(x) plotted for different values of a.
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In an analysis of this situation it should be pointed out
that @ defined by the condition n(®z) =~ 0.5 is much
greater than unity:

d)R:ln§>>l. (25)
This circumstance distinguishes sharply the case of screen-
ing of the field of a charged filament by localised electrons
from the screening by free electrons discussed above. In
fact, in the localised electron screening a Read region,
where all the donors are ionised, exists only if @ > @ . The
general equation for this region [Eqn (21)] written down in
terms of the cylindrical Laplace operator A becomes

AD=1. (26)

A new region then appears which is not encountered at all
in the screening by free electrons:

A® =2asinh(®), Pz >D>1. 27)

Only if & <1 does the potential @ approach zero
exponentially:
AP =209 . (28)

It follows that the appearance of a new small parameter
o in the problem greatly complicates the structure of the
boundary of a Read cylinder.

The essential details of this limiting case are best
considered, as in the initial variant of the description of
the field around a charged filament [with a definition of
¢(r) given by expression (8)], by obtaining the final results
of the distribution of the potential on the assumption of a
step-like charge distribution around a charged filament:

0<r<Ry,

—J >
n(r)—{nc’ R, <r<R.. (29)
where
ne=mnga, a<l [see Eqn (21)].

The quantity n, is the concentration of free electrons. The
physical picture of such a distribution of the screening
charge concentration is as follows. In the region r < Ry all
the donors are ionised. The radius of this region is set by
the condition

ep(Ry) ~ 0.5E4 . (30)

However, a positive charge inside this cylinder is insufficient
for total screening of the field of such a charged filament.
Consequently, the filament field extends beyond the limits
of the first jump in the charge concentration. In the region
defined by Ry <r <R, the field amplitude is insufficient
for complete ionisation of the donors. Therefore, the
screening is then possible only because of the low
concentration of free electrons n, < nyq. Obviously, the
distribution n(r) described by expression (29) is not very
close to the real smooth distribution of the charge
concentration of Eqn (21). Nevertheless, it does have the
necessary characteristic properties and it can be used to
solve completely the cylindrically symmetric problem of the
potential. The following boundary conditions are used to
solve this problem:

@(R4+0) =o(Rq—0),
¢(Rc):0’ QOI(RC):O,

¢'(Ry+0) =9 (Rg—0),
(€D))

which is supplemented by condition (30) that determines all
the specifics of the situation.

A solution of the appropriate boundary-value problem
gives the following final expression for R, and the equation
for the determination of Ry:

R* — R}
Re=——, (32)
E R
1—x% = 4 =, x=—12, (33)
2VeInfo ' (1 —x?)] R
Ve = ée*nge 'mR?, (34)

where R is the Read radius of the problem.

According to Eqn (33), the donor screening radius Ry is
less than the Read radius R to the extent that the parameter
y= EdV{' differs from zero. The electron radius R, obeys
R.>R ifa<1.

Let us now consider the limitations of the donor
screening theory. As pointed out above, the appearance
of an additional step in the distribution of the charge
concentration around a charged dislocation is due to the
approach of the chemical potential to the value F — 0.5Ey.
This asymptote of F applies to a semiconductor with one
type of impurity at temperatures as low as we please. If in
addition to donors this sample contains only also a small
amount n, of an acceptor impurity, the chemical potential
remains in the vicinity of F~0.5E; only as long as
ng > ne, > n,. Further cooling causes the chemical potential
to approach the value F— Ey and the reasons for an
additional step disappear. Therefore, the necessary condi-
tions for the existence of an additional step are

(3%)

ng>n,>n,,

which may be obeyed in the vicinity of the freeze-out
temperature of free electrons.

The one-dimensional description of the transition region
is valid if

m=rma <R . (36)

The definitions of Ry and R, given by expressions (32)
and (33) follow from the solution of the cylindrically
symmetric problem. These definitions are reasonable if
the first of the steps in the distribution n(r) is sufficiently
steep. Therefore, these relationships are valid only in the
range of quite low temperatures and are basically qual-
itative, but they allow us to distinguish clearly between the
quantities R, R4, and R..

2.2 Spectrum of electrons on a charged dislocation

In the case of a shallow dislocation level the spectrum of
electrons on a charged dislocation can be found by solving,
in the one-band approximation, the relevant Schrodinger
equation, which contains the initial attractive potential
Vp(r) of dislocation origin and the Coulomb field of a
charged dislocation V¢ (r):

Ve(r) =ep(r), ¢@(r) from solution (8),

[E(B)+Vp()+Vc(n]¥=EY, (37)
E(5) =5 A

where ¥ is the wave function of an electron, m, is the
effective mass of an electron, A and p are the Laplace and
momentum operators. Examples of solutions of this
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problem can be found in a number of theoretical papers,
such as Ref. [12].

At first sight, an increase in the depth of an effective
dislocation well seems to complicate the situation because
the one-band approximation can no longer be used.
However, we can say that this situation simplifies because
we are not interested in a complete solution of the problem
of the spectrum of electrons on a dislocation, but only in the
deform-ation of this spectrum by the Coulomb interaction.
The point is this: under the conditions of strong localisation
of electrons on a dislocation, which in real semiconductors
may be only a few interatomic spacings, the average
Coulomb field near the axis of a charged dislocation is a
much smoother function of the coordinate r than the
effective potential energy Vp(r) of dislocation origin. In
such a situation the initial equation (37), where £(p) is now
a complex function of the electron quasimomentum p,
reduces to

(D) + Vo (] = [Ei(p)) = Ve ()] ¥

where V(0) is the average value of the Coulomb energy in
the vicinity of the axis of a charged dislocation and E;(p|)
are the eigenvalues of the wave equation (38) for an
electron located on a charged dislocation. The index j in
the definition of E; labels the discrete quantum numbers
corresponding to the transverse motion of an electron in
the field V() + Vc(r) and the momentum py represents
the motion of an electron along the dislocation axis.

It follows from Eqn (38) that the problem of deep levels
of an electron on a dislocation can be reduced to a problem
free of the Coulomb interaction by new notation:

E(p)) — Ve (0) = EX(p)) .

where Ejo(p”) is the dispersion law of electrons on a
dislocation in the absence of the Coulomb interaction.
Therefore, the Coulomb interaction leads to a simple shift
of the positions of all the deep levels by an amount

(38)

(39)

Ei(p)) = E/ (p)) + Ve(0) - (40)
The separation between adjacent deep levels is not
changed. Here, V-(0) in formula (40) is Vi =ep(c),

where ¢(r) is obtained from expression (8).

The next problem, which has not yet been solved in a
systematic manner, is the dependence of E; on p). The first
indications of the existence of free motion of electrons along
a dislocation in silicon were obtained from studies of the
spin-dependent effectst reported in Refs [13, 14]. However,
a general view on this topic has not yet been formulated.

In the absence of information on the nature of motion
of dislocation electrons it is necessary to adopt some model
assumptions to postulate free motion of an electron with an
effective mass m, along a dislocation or by postulating that
the electrons are localised. However, it should be pointed
out that the contribution of the longitudinal motion of
electrons to the total free energy of dislocation electrons is
proportional to temperature. On the other hand, in the case
of deep dislocation levels and not-too-small filling factors
the energies E;(0) and Vc(0) are much greater than the
temperature. For this reason, in the calculation of the filling
factor f of a dislocation the actual dependence E_,(p") is
important only at temperatures eV (0) < 7. In the other

fIt had been found subsequently that the Lomer dislocations [15]
participated in the experiments described in Refs [13, 14].

limiting case of eV (0) > 7, which has a wide range of
validity in the case of deep levels, we can replace
expression (40) with the approximate formula:

E(p)) mE’(0)+ Ve =Ej+ Ve . (41

The quantities E; are constants in this theory and should be
determined experimentally.

Expressions (40) and (41) allow us to draw an important
conclusion on the sequence in which the levels E; become
occupied. As long as only the lower level E; in the
dislocation spectrum is filled, all the other levels should
be vacant, since the rising value of V- automatically lifts the
higher levels with j > 1 above the chemical potential. In
view of this and since the feasibility of filling different
dislocation levels has been confirmed experimentally (see,
for example, Fig. 3), we have to assume that dislocation
levels have finite capacities C; which represent additional
characteristics of the levels. We shall not try to calculate the
values of these capacities or the positions of the dislocation
levels in the band gap of a semiconductor, but we shall
assume that each of the levels is characterised by two
parameters E; and C; and their values should be found
experlmentally

Until now in discussions of equilibrium properties of
charged dislocations we have ignored completely the
deformation phenomena which can influence the para-
meters of a charged dislocation. This gap will now be
partly filled.

We shall begin by discussing the role of the deformation
interaction between electrons (holes) and a dislocation. In
the isotropic approximation this additional (to the Cou-
lomb) interaction is described by

1 b

’2(n(l ))|r|sm(19), i=Lp,
where b is the Burgers vector; W; are the electron —phonon
interaction constants which are of the order of W; ~ 10 eV
for germanium [11] and are in principle different for
electrons and holes; v is the Poisson ratio; 9 is the angle
measured from the dislocation glide plane. Since the energy
Ve(r, 9) of expression (42) is a variable-sign quantity, we
can assume that there are quasimacroscopic regions in the
valence and conduction bands near which electrons (holes)
are attracted or repelled by dislocation.

Naturally, bound electron and hole states can appear in
the potential described by expression (42). In the absence of
cylindrical symmetry the details of the deformation spec-
trum of electrons and holes on a dislocation can be revealed
only numerically. Calculations [16—-21] give the following
estimates of the ‘depth’ of the main deformation level E; in
germanium:

Ef ~ —0.1 eV
EE ~ +0.02 eV for holes .

Vi(r, 9) = (42)

for electrons ,

(43)

Such energies can still be regarded as representing ‘shallow’
levels and this justifies the one-band approximation in the
calculation of E;P

It is interesting to note that the relative depth of a
deformation well for holes in the vicinity of a charged
dislocation may vary with the degree of electron occupation
of the dislocation levels. As f increases, the electrons that
have settled on a dislocation begin additionally to compress
the lattice in accordance with the familiar propositions of
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Figure 8. Different variants of an analysis of the experimental data of
Ref. [23] for f(T). The dashed curve represents the Read approximation
characterised by E| =E,;, E;+ Ve =F, and E, =0.34 ¢V with the
chemical potential F from Ref. [23]. The chain curve corresponds to
the definition of f(T) given by expression (47) for a model with two
levels: E, =0.41 ¢V, C, =0.1, E; =0.1¢V, C; =0.05. The continuous
S(T) curve is calculated on the basis of expression (47) with the same two
levels, but with the additional deformation contribution. The crosses are
the experimental values taken from Ref. [23] The inset shows the
temperature dependence of the fraction of the volume v occupied by
dislocation cylinders and calculated from expression (52) for samples
1—-4 with the following dislocation densities Np = 3 X 10°, 3.8 x 10°,
5.2 x 108, and 6 x 10° cm™2, respectively; ng = 2.8 x 10'* em ™.

the deformation potential theory. As a result, the energy of
a single electron on a dislocation decreases by an
amount [11]

wof

Ve W, dive ~ —22 |
¢ 0 kma?

44
where the constant W, is analogous to that used in
expression (42), k is the shear modulus, and « is the atomic
spacing. The existence of an elastic strain proportional to f
within a tube of radius a/f also deforms, in principle, the
lattice outside the dislocation. However, actual calculations
show that this effect can be ignored. The influence of the
interaction described by expression (44) on the value of f is
demonstrated in Fig. 8 (continuous curve).

One further elegant effect of deformation origin has not
yet been confirmed experimentally, but it is worth attention
and it should be taken into account in calculations
preceding the planning of various future experiments on
electrons at dislocations. The effect in question is the self-
localisation of an electron which occupies a dislocation level
and is, in principle, free to move along the dislocation axis.
In reality, this does not occur because the deformation
interaction described by expression (44) begins to play its
part. This interaction has the effect that, in the one-
dimensional motion which applies in this case, it is
preferable for an electron to become self-localised in
some specific scale along the dislocation axis. The result
is the motion not of a free electron along a dislocation but of
a polar quasiparticle with a significantly renormalised (by

the deformation interaction) mass. Such a quasiparticle, first
investigated for the localisation of electrons on a dislocation
by Voronov and Kosevich [22], is called a condenson.

A standard method for demonstrating such one-dimen-
sional localisation is as follows. The total functional of the
energy of an electron on a dislocation takes account of its
interaction with the lattice deformation, is minimised, and
averaged over the transverse motion of an electron. The
functional obtained after these steps leads to the following
one-dimensional equation of electron motion:

ﬁ2 /" 2,2.3
— X —Ax+afy =0,

2m,
where
J ldz =1, @5)
w? 2mWb (1 =2
im 0003, p=t = 2WE(=2)
G 212 (1 —v)

Here, W is defined by expression (42); G is the Young
modulus, a is a numerical constant which appears in the
course of averaging over the transverse variables, and 4 is
the energy.

The normalised solution of Eqn (45), of interest to us, is

2,2

Y~ _mafy
X(Z) = 0.5k cosh [k(( — Z())] N k= W .
Therefore, an clectron becomes self-localised in the course
of its motion along the axis of a charged dislocation.

(46)

2.3 Determination of the filling factor

A discussion of the equilibrium properties of charged
dislocations should be completed by a calculation of the
equilibrium filling factor f of a single dislocation, carried
out for different limits in respect of the absolute
temperature, the concentration of point defects, and the
strain of a sample, We shall do this for n-type samples
relying effectively on the information presented in
Sections 2.1 and 2.2. If the problem is cylindrically
symmetric and the finite mass of an electron moving
along the dislocation axis is ignored, and if the inequality
R < N51/2 is obeyed, the expression for f is

E +Vc—F -
=25 5=GC [exp (%) +1] . @D

j=1,...,J.

Here, F is the current value of the chemical potential,
Ve = e@(c), ¢(r) is defined by expression (8), the energy E;
and the chemical potential are measured from the top of
the valence band, J is the maximum serial number of the
dislocation levels, and Np is the dislocation density. If the
number of dislocations is small so that the Read cylinders
of the individual dislocations do not overlap, i.e. if
R < N,;‘/Z, then F can be the value of F for a
dislocation-free n-type sample.

If the number of dislocation levels is unity (/ = 1) and if
C, =1, the definition of f given by expression (47) reduces
to the procedure employed in Read’s papers [3, 4]. Then,
with logarithmic precision, we can simplify the definition of
f additionally by assuming that
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Relationship (48) is equivalent to the Read equation:
2 .
R
E, +e—f(2ln—— 1) —F,
ea ¢

which was derived in Read’s first papers on the theory of
charged dislocations [here, ¢ has the same meaning as in
expression (1)].

As the temperature T of a sample is increased, the
vanishing of the exponential argument in the denominator
of the Fermi function becomes a poor approximation even in
the case when only one level is present. The general definition

E +Ve.—F !
r=cfon (B2 ]

(49)

(50)

can be reduced to a form convenient for comparison with
Eqn (49):
* * Cl

E,+Vec=F*, F :F+T(ln771>. (51)
It is obvious that the definition of f given by expres-
sion (51) has a structure similar to that given by Eqn (49),
but the value of F* is renormalised.

In general, J > 1, and there is only one correct way of
calculating f, which is to use general expression (47).

Practical information on f can be derived from a variety
of experiments. The most popular method involves meas-
urement of the Hall effect in deformed samples [6, 23]. It is
assumed that the Hall effect measurements give direct
information on the average concentration of free carriers
(electrons and holes) (n.), which is related to the actual
concentration n, and the relative volume v of the Read
cylinders v = 11:R2ND by (see Ref. [9]):

(ng) =n(1—v), v=nR’Nyp .

If (n.) and n, are known, the value of v is readily estimated.
The measured value of N can then be used to find R and,
therefore, f:nRzNDa. The inset in Fig. 8 shows the
experimental values of v obtained by this method [23].

If the dislocations introduced into a sample are
sufficiently collinear, the information on the parameter v
can be obtained by measuring the conductivity of the
sample along and across the direction of these disloca-
tions, because we then have

(52)

O'|| = 0'0(1 — V) N (53)
g, =0o(l =v)g(v),

where g, is the conductivity of a control sample and g(v) is
a structure factor that takes into account the bypassing of
the Read cylinders by free electrons.

In the experiments reported in Ref. [23] the degree of
this anisotropy of the dislocation distribution was of the
order of 1:5, so that it was reasonable to use the definitions
described by the set of expressions (53). The results of such
determination of f with the aid of these expressions give
values plotted in Fig. 8.

The dependence f(T) and the value of f described by
expression (47) can be used to find the parameters of the
spectrum of electrons on a dislocation. Fig. 8 includes some
theoretical curves deduced subject to various approxima-
tions:

—a dashed curve obtained with the aid of relationship (48)
on the assumption that there is one level
E] = E2 =0.34 CV,

—a chain curve obtained in the approximation of two
levels and on the basis of general expression (47).

It is worth noting that variation of the position of the
level E; and of its capacity cannot increase the slope of the
theoretical curve so as to reduce the discrepancy between
the calculations and experiments.

The continuous curve in Fig. 8 is plotted in the
approximation of two levels taking account of the deforma-
tion interaction represented by V}, defined by
expression (44), on the assumption that the wave function
of an electron localised at a dislocation is smeared out over
a distance of 9 A.

The different calculated curves located close to the
experimental points demonstrate that determination of
the value of f on the basis of the transport of properties
gives results which are far too ambiguous for determination
of the characteristics of dislocation levels. They should be
supplemented by DLTS experiments, by information on the
behaviour of p-type germanium, or by some optical measure-
ments which can be interpreted in a consistent manner.
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Figure 9. Temperature dependences of the electrical conductivity of
control (/) and deformed (2-4) samples obtained in an electric field
directed along (curves 2* and 3%*) and across (curves 2—4) the
preferential direction of dislocations. The dislocation densities in
samples 2—4 were  3.0x10%, 3.8x10° and 5.2 x10% cm™2,
respectively [24].
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It is worth pointing out that the behaviour of the
parameter v for silicon has not yet been investigated in
the range v < 0.5.

We shall conclude our discussion of the experimentally
observed effects demonstrating the presence of charged
linear defects in plastically deformed semiconductors by
noting an excellent qualitative result obtained very early
on [5]in a study of the influence of oriented dislocations on
the conductivity of a crystal, investigated subsequently in
greater detail [24]. We are speaking here of a strong increase
in the anisotropy of a semiconductor containing disloca-
tions when its temperature 7 is reduced below a certain
critical value T (Fig. 9).

A qualitative explanation of this effect is as follows:
when the temperature 7 = T is reached, the Read cylinders
of adjacent dislocations come into contact and the flow of
the current in the direction normal to the dislocation axes
becomes difficult. Therefore, the position of the point T
can be estimated from

R(To) ~Np'? (54)

where Ny is the dislocation density in the semiconductor.
If the dislocation density changes, this should alter the
temperature T, in accordance with the estimate given by
expression (54) and in accordance with the definition of the
Read radius

TtRQI’ld :i .
a

where the filling factor varies approximately linearly with
temperature (Fig. 8). The measurements reported in
Ref. [24] confirm that the temperature T, decreases on
reduction in the dislocation density, in accordance with
expression (54).

3. Charged dislocations in p-type
semiconductors

Let us now turn to p-type semiconductors. As first noted by
Schroter [25], dislocations formed in p-type germanium
have simultaneously both acceptor and donor properties.
This follows from the experimental temperature dependence
of the concentration of free holes in samples before and
after plastic deformation (Fig. 4). At temperatures T < T*,
the concentration of free holes n, in a deformed sample is
less than the corresponding density in an undeformed
control sample no, which can be explained by the donor
action of the dislocations. At temperatures 7 > T*, the
reverse is true: we now have n, > ng, which indicates the
acceptor action of dislocations in a semiconductor.

An analysis of Schroter’s results [25] and of those
reported later [26—28] has been made with the use of
minimum information on the properties of charged
dislocations in p-type semiconductors. It has been
assumed specifically that at T =T, when dislocations
are neutral, the Fermi level F coincides with the positions
of a dislocation level E:

F(T*)=E,. (55)

At first sight this hypothesis seems reasonable and it
allows us to estimate E, (according to Refs [25-27], in the
case of germanium we have E =~ 0.09 ¢V above the top of
the valence band). However, a number of questions of
qualitative importance remain unanswered. First of all, what

is the nature of the level E: acceptor or donor? How can the
vanishing of the filling factor f of dislocation levels under the
conditions described by expression (55) at a finite tempera-
ture T = T* be explained? There is no doubt that this occurs
(at T = T* the concentrations of holes in the deformed and
control samples are identical, indicating the absence of
excess electrons at dislocations), but its interpretation is
not clear. Finally, a less obvious question: can the model ofa
charged dislocation with one phenomenological parameter,
which is the position E, of a dislocation level in the band gap
of a semiconductor, describe satisfactorily the properties of
n,(T) at high temperatures 7 > T*? In fact, we can assume
that in this range of temperatures 7 the dislocations act as
acceptors. Under the conditions such that T > T* the
average concentration of holes n,(T) in a deformed sample
is much higher than the concentration of holes ng in a
control sample, so that in discussing the situation at T > T*
we can ignore the concentration of point acceptors. As a
result, the question of the electron occupation of a
dislocation and, in particular, the solution of the appro-
priate electrostatic problem, reduces to a description of the
interaction between a negatively charged dislocation and a
cloud of holes surrounding it.
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Figure 10. Behaviour of n,(7) in the neutral approximation for
E, =& =E, S;=1. The parameters E, and C; were determined
from the experimental [27] position of T =T* and from the slope of
the ny(T) curve at this temperature. This gave Ey=0.077 ¢V,
C; =0.144. Curves /-6 correspond to the dislocation densities
3.5x 10", 2x 10", 7x10', 45x10"°, 10°, and 10" m™>. The
dislocation densities N for curves 7/ —4 were taken from Ref. [27].
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The electrostatic problem formulated above has an
exact solution [29, 30]. We shall omit the details of the
calculations, which can be found in Ref. [30], and give only
the final expression for the average hole concentration:

- 1 T &
ity (T)

_URQTC’ TC_ECJ’
Here, a is the atomic spacing, ¢ is the permittivity of the
semiconductor, and R is the average distance between the
dislocations.

We can easily see that the predictions following from
expression (56) are in qualitative conflict with the observa-
tions [26, 27], which can be seen from Fig. 10 where the
dependence 1, (7T) described by expression (56) is repre-
sented by the dashed curve. This conflict can be removed in
only one way: we have to assume that the electron
occupancy of a dislocation level is limited not only by
the Coulomb forces [taken into account in the derivation of
expression (56)], but also by other factors of nonelectric
origin.

In view of this, it is necessary to complicate the model of
the spectrum in order to describe the properties of a p-type
semiconductor with a fairly high dislocation density:

(a) the spectrum should have two levels in the lower part
of the band gap, an acceptor E; and a donor &;;

(b) the levels E; and &; have finite capacities C; and S;.

T"<T<T.. (56)

3.1 Neutral model of the acceptor—donor action of
dislocations

If in addition to the assumptions (a) and (b) identified
above, we also postulate that the dislocation density Np is
sufficiently high, then electrons (holes) settling on a
dislocation hardly interact with one another and the
statistics of a semiconductor with dislocations resembles
a similar problem of doping by point-like impurities. In
particular, we can use the condition of local neutrality [31],
which is represented by the following equation for the
Fermi level F:

Ny(T) exp (—?) N

ng

I+ oxp (&) — F)/T]

=~ Tre [~ P/T]

Here ng is the concentration of point acceptors; E; and &,
are the positions of the acceptor and donor levels in the
band gap of the semiconductor; n, =NpC,/a and
ng = NpSi/a are the effective concentrations of disloca-
tion acceptors and donors; C| and S are the corresponding
capacities of the dislocation levels; N, (7 ) is the density of
the whole states in the valence band. The n,(T) curve
passes through the point 7 = T* without a kink, as found
experimentally [25-27], if

ElgE]:Eo.

—i—ng .

(57)

(58)

We shall adopt this additional proposition and introduce
the notation

Ey—F E
X = exp 07_" ,  ny=N,(T)exp <—70) , (59)
which modifies Eqn (57) to
Xng N, 0
=—2 4n 60
n0x+]+x l—f—x—'—nd (60)

or

0y 2 071/2
In the case of interest to us we have
ng > n, > nd (62)
so that expression (61) simplifies to
v Matra (63)

ny+ng —nd’
Hence, it is seen quite readily that in the limit 7 — oo, we
obtain
1
ng>ng, X - (e +n3), ny(T) =nox =n, +ng . (64)
0
The asymptotic expression (64) for n,(T) can be used to
estimate the capacity C; from the known experimental

values of n,(c0) and Np. According to Ref. [26], we have
n,(00) = 10 m™ and Np =3.5x 10" m™2, so that

C, ~0.13 . (65)

The point T* is of interest, which in terms of the
quantities defined by expressions (59) and (60) is described
by the following equalities:

ngx*=n, x*=x(T"), (66a)
nox* =ny, ng=ny(T*) (66b)
or
C] I’lg
—= - 67)
Sy no(T%)

Obviously, the value of T* is independent of the dislocation
density, i.e. all the dependences n,(T) obtained for different
dislocation densities should intersect at one point T =T%,
which is indeed true. Next, since the experiments reported
in Ref. [27] do not suggest that S is particularly small, we
can assume that S; ~ 1. Then, expressions (66) and (67)
provide the definition of the energy E,:
* Cl * * CI
x =3, or Eg=FT")-T lnS—].

(68)

The definition of E, given by the above expression is
identical with expression (55) in the special case when
C] = SI'

The slope of the dependence n,(T) at the point 7" is

dn,
(T

*
_ E'Ol'l()l’l?i noy _
s NG+ ng \ng +ng

As Np tends to zero, the slope naturally also tends to zero.
However, numerically this dependence is too weak to
account for the observed dispersion of the n,(T) curves
considered as a function of Np. Fig. 10 gives the
numerically calculated dependences n,(7), plotted in
Ref. [31] on the basis of the definition n, =xn, and of
the expression (61) for x. These dependences agree well
with the experimental results [26, 27] in a wide range of
temperatures for dislocation densities Np equal to
35%x 10" and 2x 10" m™2, but they disagree in the

(69)
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range Np < 7 x 10" m™2. The reason for this disagreement
may be the Coulomb interaction between charges on
dislocations, because this interaction becomes stronger at
lower dislocation densities.

3.2 Coulomb correction to the model
The asymptotic properties of the neutral model are
considered above (Section 3.1) in the limiting case when
E, =&, S, — 1. In general, it is necessary to use numerical
methods. If we assume, as in Section 3.1, that E, =&,
S; — 1, we obtain the dependence of the hole concentra-
tion n, on T [32]. The small difference between the
parameters E, and C; obtained from Fig. 10 and those
deduced from analytic estimates (Section 3.1) is due to
different methods of fitting the experimental data [27]. In
Section 3.1 the temperature T* and the asymptotic value of
n, are used at high temperatures. In Fig. 10 the fitting
involves the value of T* and the slope of the dependence
n,(T) at T*.

A shortcoming of the neutral model is a weak sensitivity
of n,(T) to the dislocation density Np in the range

Np < Nj, where N7y is the asymptotic value of N at
which np(T) ceases to depend on Np. Naturally, as Np
tends to zero, the dependence n,(T) tends to the control
value ng (Fig. 10). However, this dependence is insuffi-
ciently strong to explain the data reported in Refs [26, 27]
for the range of small strains. The purpose of this section is
to discuss possible factors that can increase the sensitivity of
the model to the dislocation density. There are two such
factors: the different depths of the levels E| and &, and the
Coulomb interaction between electrons that have settled on
a dislocation.

3.2.1 The role of 24=E, —&, in the neutral model
characterised by

E]:E0+A, 5]:E0—A, (70)
can be identified without introducing any additional
concepts. We shall continue to use the system of

definitions given in Section 3.1 or expressions (76) and
(77) given below, from which the Coulomb corrections are
removed. The behaviour of n,(T) expected for the
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Figure 11. Influence of the parameters 4/E, on the behaviour of n, (7).
The parameters E, and C; were determined from the position of the
point T =T, and the value of n,(T) at high temperatures [27]:
(a) 4/Ey =0.25, E; =0.0831 ¢V, C; =0.146; (b) 4/Ey=0.35, Ej=
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0.0835 ¢V, C; =0.145. The dislocation densitiecs Np are the same as
the first four values in Fig. 10 (they are calculated on the basis of
Ref. [32]).
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conditions described in Ref. [27] on the assumption that
S; =1 1is illustrated in Fig. 11 for two values of A/E,
amounting to 0.25 and 0.35. The parameters E, and C; are
selected on the basis of two points of the dependence n,(T)
[the position of T =T" and the value of ny(T) at
103/T> 5] It follows from Fig. 11 that, as 4 increases,
a fan of the n,(T) curves becomes wider in the vicinity of
the point T = T*. However, beginning from A/E, = 0.25,
the temperature dependences n,(T) acquire new qualitative
details (additional bending), which are not observed in the
case of experimental curves. Therefore, an increase in 4 so
that it falls in the range 4/E, > 0.25 is pointless.

The width of the fan of the n, (T') curves in the vicinity of
the point T = T* is nevertheless still insufficient to account
for the experimental situation [26, 27] and the theory
should be complicated further by including the Coulomb
effects.

3.2.2 The Coulomb interaction between the charges on a
dislocation at temperatures in the vicinity of 7 = T can be
divided arbitrarily into two components:

Ve =Vd+ Ve . (71)

The energy V™ corresponds to the variable-sign distribu-
tion of the charge along a dislocation when the total charge
is zero. It is obvious that VC+ # 0 at the point T = T* and it
can be described by an expression, which represents the
form of the Madelung energy of ionic crystals:

v —zf* In2 (72)
c — PR )

where

E,— V& —F !
ff=c, [exp ("+> + 1]

—E,+ VI +F -
+S|[exp<70+7,c+ )—i—l] R

¢ is the permittivity, a is the atomic spacing, and F is the
chemical potential. The energy V. reduces the energies of
both acceptors and donors of dislocation origin:

E,=E,—V&, Eq=E,—-VI. (72a)

We recall, as reported in Section 3.1, that the experi-
mental values of E, and Ey [26, 27] are similar in the
neutral approximation: E, = Ey =~ E|.

The energy V¢ appears in the absence of compensation
of positive and negative charges on a dislocation:

- —1
f~=c [exp (E*" T_ F) + 1]

- -1
F—E
+Sl[exp( - d>+1] . (73)
We can assume that
2=
_ef ry ._ 5 eT
Ve = In|— R = 74
¢ e <af ) d 4me’n, (T) 7

The Debye screening means that Vo given by expres-
sion (74) can be used only in the vicinity of T*.

If V¢ #0, the energies E, and E4 are not equal even
when they are equal in the neutral model. In fact, if a
dislocation as a whole is positively charged, it attracts

electrons (the energy E, decreases) and repels holes (Ey
increases). As a result, we can assume that

Ey =Ey—Vc+4, Ej=Ei+Vc—4. (75)

It is obvious that the role of Vo becomes greater away
from the point 7 = T*. On the other hand, the presence of
VT has the greatest effect in the vicinity of 7 = T*. For the
sake of generality, the definitions of E; and Ej given by
expression (75) include 4 # 0 taken from expression (70).

The position of the chemical potential F* is described
by the following local neutrality equation:

—F* NpC,/a

Ny(T) exP( T >+ 1+ exp [(—E;i—i—F*)/T]
. Np Sy/a

C 1+exp [(Ef — FH)/T]

+nd, (76)

which is valid only in the vicinity of T = T*. Here, ng is the
concentration of point acceptors, N,(T) is the density of
states in the valence band, and the concentration n,(T) is
related to F* by

1y (T) = N (T) exp (?) .

The solutions of Eqns (76) and (77), in combination
with expression (70) under the conditions VCi =0, gives the
results plotted in Fig. 11. Comments on this figure can be
found above. Introduction of the energy VI in the
calculations, i.e. the use of the system of equations (76)
and (77), together with expressions (72) and (72a), results in
a slight renormalisation of E, and has practically no effect
on the fan of the n,(T) curves (the effect is less than 10% ).

(77
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Figure 12. Behaviour of n,(T) for the case when 4#0 and the
clectrons settling at a dislocation experience the Coulomb interaction
[32]. Curves -4 represent the solution of Eqns (73)—(75) for the
experimental values of Np [27]: (1) 3.5 % 10" m™2; (2)2x 10" m™2;
(3)7%x 10 m™2; (4) 4.5 x 10'° m™2. The points (X ) represent a con-
trol sample free of dislocations. Theoretical parameters: Eq = 0.0813 ¢V,
C; =0.106, S, =1, and 4/E, = 0.1624.
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Finally, the behaviour of n,(T) in the presence of V¢,
described by expressions (73)—(75), is plotted in Fig. 12
together with the experimental points from Ref. [27] which
correspond to different dislocation densities. In this case,
the optimal set of the parameters is E, = 0.081 eV, C; =0,
and 4/Ey =0.16.

Since the observed properties of n,(T) reported in
Refs [25-27], including the dependence on Np, can be
explained on the basis of the proposed model, it is assumed
that 4 # 0 and the Coulomb effects that accompany filling
of dislocations with electrons are taken into account.

3.3 Orrigin of an acceptor—donor level

Experiments on single dislocations discussed above indicate
that an acceptor —donor level is located above the top of
the valence band. However, experiments on the conductiv-
ity of a boundary in a germanium bicrystal, which in a
sense can be regarded as a periodic system of edge
dislocations separated by a distance

b

D=—_ 78
2sin(0.5¢) ° 78

requires an introduction of a dislocation level below the
top of the valence band [34—-37]. Here, b is the Burgers
vector and ¢ is the misorientation angle. It might seem that
in the opposite case we could not explain the presence of
free holes in the vicinity of dislocations as the absolute
temperature tends to zero.

Our proposed model of an acceptor —donor level makes
it possible to eliminate this qualitative contradiction. This
model postulates the deformation origin of such a level. As
pointed out above (Section 2), in the vicinity of a single
dislocation an electron (hole) experiences a deformation
potential which for an edge dislocation considered in the
isotropic approximation is

Here, W is the deformation interaction constant (for
germanium, its value is W =~ 10 eV), v is the Poisson ratio,
and 9 is the angle measured from a dislocation glide plane.

The variable-sign nature of the interaction potential
described by expression (79) and the scale of the constant
W suggest that at distances r of the order of b an inversion
can take place in the electron spectrum when a locally
perturbed top of the valence band is found above the
perturbed bottom of the conduction band. Development
of this hypothesis leads to a number of qualitative
consequences:

(a) in an intrinsic semiconductor the electrons at the top
of the perturbed valence band begin to undergo transitions
to the conduction-band well, creating an electron—hole
system;

(b) the Fermi level separating the vacant and occupied
states in the band gap of a semiconductor should drop to
the top of the perturbed valence band, thus ensuring the
appearance of a metallic conduction band of holes dis-
tributed along a dislocation, even in the limit 7 — 0;

(c) the real hole spectrum at the top of the deformed
valence band is quantised at right-angles to the dislocation
axis and the scale of such quantisation is characterised by
the level Ey ~ 0.1 eV above the unperturbed position of the
top of the valence band [see the set of expressions (43)];

(d) in a p-type semiconductor the level E, at the top of
the perturbed valence band begins to play the role of an
acceptor —donor level and interacts with point acceptors;
this ensures the correct position of this level (above the top
of the unperturbed valence band and above the level E, of
point acceptors), which—in principle—resolves the para-
dox in the interpretation of the properties of a boundary in
a bicrystal.

[t therefore follows that the deformation interaction of
electrons with the elastic field of a dislocation helps to
provide a self-consistent description of the experiments on

1-2v b .
V(ir,9) =W m p sind . (79)  single dislocations and on a chain of such dislocations on
the boundary in a bicrystal. However, the mechanism of
20 20
/18] /18]

-20

=20

Figure 13. Lines of constant values of the deformation potential of the
valence band of germanium, governed by the ficld of elastic stresses of a
60° dislocation, considered in the hydrostatic approximation (a) and in

accordance with expression (82) (b): curves /-9 correspond to AE,
ranging from +0.1 to —0.1 eV in steps of 0.25 ¢V; b is the Burgers
vector of a 60° dislocation.
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formation of a two-dimensional hole system along the plane
of this boundary is not clear. If, in the isotropic approx-
imation, we consider the distribution of the constant-energy
lines of the potential described by expression (79), it is not
obvious that an overlap of the hole or electron regions can
occur when separate dislocations form a periodic chain
(Fig. 13). However, a more rigorous formulation of the
problem of the deformation potential given below solves
this problem as well [33].

Let us consider a single 60° dislocation. Let us assume
specifically that the x axis is directed along the Burgers vector
of the edge component of this 60° dislocation, that the z axis

is parallel to the direction of the (011) dislocation line, and
the y axis is perpendicular to the glide plane (111).
According to Ref. [38], the strain tensor g; of a 60°
dislocation can then be expressed in terms of the corre-
sponding strain tensors of a 90° dislocation and of the screw
component.

The edge component is characterised by the strains

__V3b y

o 871:(] - V) (_x2 +y2)2
V3b y

&n = >
871:(] - V) (_xz +y2)

&) = V3b Y

181 —) (2 +2)

&1 [2v (x* +y%) —y* = 3x7],

[2v (x* +yH) —y? +x2] , (80)

2 (xz _«Vz) .

The strains of the screw component are

&1y =

PR SN
13 — @31 — ] (x2+y2) s

b y (81)
8232832:—5 m,

where b is the Burgers vector of the 60° dislocation and v is
the Poisson ratio.

The deformation potential of the valence band of a
cubic crystal is [39]

AEV =A Sp 8,‘./' + [0582 [(8]] — 822)2 + (822 — 833)2

12
+ (e —en)’ +d*(eh + &3 + 5%3)]] (82)

The plus or minus signs correspond to the splitting of the
initially degenerate light-hole and heavy-hole valence
subbands of a cubic crystal. The values of the deformation
potential constants are given in Refs [39, 40]. For german-
ium, these constants are A =-—-4¢V, B=-27¢V,
d=5¢eV, and v=0.2.

The results of calculations of constant-energy lines are
presented in Figs 13b and 14. The region r < 2b is excluded
from these calculations because in this region the contin-
uum definitions of g; given by the set of expressions (80)
diverge. Since the size of the core of a dislocation is
ro = (3-5)b, a calculation carried out on the basis of
formulas (80)—(82) is obviously meaningful for r> r.
Fig. 13b shows the structure of the constant-energy lines
calculated on the basis of expression (82) for a single
dislocation in germanium. It is evident that the region
corresponding to a higher concentration of holes occupies a
sector with the angle 286°, which is considerably greater
than the result obtained in the hydrostatic approximation
(Fig. 13a). For AE, > 0, the area bounded by a constant-
energy line and given by expression (82) is 10 times greater

/(8]
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Figure 14. Lines representing constant values of the deformation
potential of the valence band of germanium governed by the field of
clastic stresses of a boundary in a bicrystal when this boundary consists
of a single row of 90° dislocations (the lines are numbered in the same
way as in Fig. 13, the dislocation line is directed along [100] and the
Burgers vector along [011]).

than the corresponding area obtained in the hydrostatic
approximation.

Let us conclude by considering the results presented in
Fig. 14. This figure gives the structure of the constant-
energy lines for the valence band of germanium distorted by
the field of elastic stresses of the boundary in a bicrystal
when this boundary consists of one row of 90° dislocations.
The calculations were carried out on the basis of expres-
sion (82), selecting the plus sign and the values of the strain
tensor given in Refs [39, 40]. A reduction in the distance D
between dislocations first creates a pair of constant-energy
lines (4 in Fig. 14) with the minimum positive energy
(0.025 eV in our case). Outside these lines the distortions
of the valence band fall exponentially. The AE, = 0 line for
a single dislocation extends to infinity and turns to form a
closed loop (line 5 in Fig. 14) localised between disloca-
tions; it compresses the lines with negative energies
(lines 6-9). The continuous curves give the solution for
D = 8b. 1f D = 7b, the 0.05 eV lines transform as shown by
the dashed curves and an additional pair of lines appears.
For D = 5b a similar transformation affects the 0.075 eV
lines. The 0.7 eV lines, corresponding to the depth of a
dislocation level relative to the top of the unperturbed
valence band, is transformed into a pair of infinite lines for
D =5.5b, which—in accordance with formula (78)—
corresponds to the misorienta-tion angle 10° of the
bicrystal. Experimental investigations [34] show that metal-
lic conduction of the boundary in a germanium bicrystal
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appears at 9 > 8°. This supports the proposed model of
metallic conduction which involves the states of the
deformation potential of dislocations.

3.4 Inversion of the type of conduction in plastically
deformed n-type semiconductors
In view of the acceptor action of dislocations in germanium
and silicon, which manifests itself in a number of ways
discussed above, we can assume that a monotonic increase in
the dislocation density in an n-type semiconductor should
result in inversion of the type of conduction of such a
semiconductor, as found also when the concentration of
point acceptors in an n-type semiconductor is varied [11].
However, the details of this transition, considered as a
function of the relative concentration of acceptors ng/nd, are
very different for point defects and for dislocations. Here, n,
and ny represent the concentrations of point acceptors and
donors. Some aspects of this problem are considered
qualitatively below on the basis of Ref. [41]. The structure
of the inversion transition is interesting also from the point
of view of testing the phenomenological model of disloca-
tion levels, which has proved successful in the description of
plastically deformed p-type semiconductors [31, 32].
Specific results relate to the behaviour of the Fermi level
in plastically deformed semiconductors considered as a
function of the dislocation density Np at sufficiently low
temperatures. The behaviour of the chemical potential F in
samples containing point impurities is assumed to be known
[11]. Roughly speaking, if the problem is symmetric for
electrons and holes, the dependence F(nl/ny) is a step with
its centre at a point ng = ny and its width 4 is of the order of

T

P
Eg

A= (83)
where E, is the band gap.

It is best to start a description of the behaviour of the
chemical potential F in a plastically deformed n-type
semiconductor, beginning from low dislocation densities
Np, when

R*<Np'. (84)

Here, R represents the radius of a Read cylinder around a
single charged dislocation. In the geometric approximation
R > rp (where rp is the Debye screening radius, corre-
sponding to the concentration ny of point donors), the
Read radius determines the distance at which the field of a
charged dislocation becomes screened.

If inequality (84) is obeyed, the effective equation of
neutrality which —as usual—describes the behaviour of the
chemical potential, should be written in the following form:

F VS Ngf
N, exp (7) (1—7>+%:nd,

N 2 (m,T 3/2

[ ﬁ3 ( 21T. > E}
where V and V* are the total volume of a crystal and the
volume inside the Read cylinders, and m, is the effective
mass of an electron. The first term on the left-hand side of
the first equation in the system (85) takes account of the
expulsion of electrons from the Read cylinders and the
second represents the contribution made to the negative

charge density by charged dislocations, each characterised
by the filling factor f related to V* by the first equation in

(85)

the system (85). The right-hand side of this equation is the
concentration of donors assumed to be ionised.

The relationship between f and V*/V,

V' N, f

= , 85
Vv ang (852)

shows that the definition of F given by the first equation in
the system (85) reduces to its definition in the absence of
dislocations [11]:

F
Ne.exp ==ny . (86)

T
In other words, dislocations do not influence the behaviour
of F, as long as R’ < NBI.

Therefore, the solution of the problem of the disloca-
tion-induced inversion of the type of conduction predicts
nothing special for the region n,/ny ~ 1 of the dependence
of the chemical potential on the parameter n,/ng (in
contrast to the case of point centres, where the region
ng/nd ~ 1 is critical). In fact, inequality (84) together with
TR?ng = f/a can be rewritten as

f o Np

R*Ny=L 2<1, n,
T ng a

(87)

Since the maximum value of f for n-type germanium and
silicon does not exceed f~ 1071, it is clear that in the
region of n,/ng~1 an initially n-type semiconductor
retains its type of conduction by a large margin, because
inequality (87) is not yet violated.

Under the conditions opposite to those specified by
inequality (87) (in the R?’Np > 1 range) the dislocations are
capable of ‘collecting’ all the electrons from donors and,
therefore, the position of the chemical potential becomes
dependent on the dislocation density. This effect is
described by us in Ref. [41] with the aid of a cylindrical
model which predicts the main properties of inversion in a
qualitatively correct manner, with the exception of the
critical behaviour of the dislocation density Ng at which
the approximation R2ND > 1 begins to be valid. The value
of N depends on details of the distribution of dislocations
in a sample and can vary within certain limits of the
parameter R?>Np when its numerical value is ~1.

According to the simple cylindrical model, the occu-
pancy factor f of a single dislocation is, as above [see
formula (85a)], related to the effective radius R which
represents the average distance between dislocations:

2 S
MR ng == . (88)
a
In the absence of free electrons and holes, the concentra-
tion of which is assumed to be exponentially small (this is
particularly true of silicon), relationship (88) represents the
condi-tion ensuring complete neutrality of a crystal.

The position of the chemical potential can be found

from the definition of f:

E —F -l
r oo (P 4

E,+Ve—F !
+C2[exp(—+ 2t Ve >+1] R

T (89)

2me?
VC =

ndR2{21n(nR3nd) —[1 = (=*R°n3)7"] }.(89a)
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Definition (89) takes account of the structure of dislocation
levels deduced from an analysis of the data on the
behaviour of dislocations in n-type semiconductors.
Moreover, explicit use is made of the advantages of the
cylindrical model which yields the fairly simple expres-
sion (89a) for V(.

The critical value of R, beginning from which the
definition (89) begins to be valid, follows from the require-
ment that at R = R the chemical potential F should occupy
a position typical of an n-type semiconductor at 7 =0 in
the absence of dislocations, i.c.

F=E,. (90)
As a result, the definition of Ry is
Ei+Vc(Ro) — E, !
TR3nga = C, [exp ( ] C; ) ’”) + 1]
E; +Vc(Ro) — E, B
+C, |exp T +1 . 91

The behaviour of F in the range R < R, is plotted in
Fig. 15 for E;, =042¢eV, E,=0.62¢V, C,=1, and
various values of C;. Some details of this figure are
worth special note. First, the chemical potential F begins to
‘sink” into the band gap smoothly and not abruptly, as is
true of point impurities. Crossing of the point R = R by
the level

F=0.5E, , 92)

which corresponds formally to inversion of the type of
conduction, is not marked by any singular behaviour.
Second, the details of the ‘passage’ of the chemical
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Figure 15. Dependence of the chemical potential F on the dimensionless
dislocation density 6 = Np/nga, plotted for three values of the
parameter Cy: (1) C;=0.01; (2)C;=0.06; (3)C;=0.2. For
curves / and 3 the constants C; were selected so that the calculated
positions of the jumps of F(J) agreed with the experimental results;
curve 2 corresponds to the intermediate case with C; = 0.06.

potential across the level E, are interesting. The jump
AF that occurs at this level amounts to

and the position R, follows from the estimate
(nRinda)_l ~C . (94)

A numerical determination of the value of R, with the aid
of definition (89) carried out for different values of C;
confirms the dependence R7? x C, with the coefficient of
proportionality that follows from expression (94). There-
fore, in a model of two levels with a limited capacity C; the
dependence F(3), where 6 = Np /(nqa), has a characteristic
jump at the point of dislocation-induced inversion of the
type of conduction and the position of this jump depends
on the capacity C,.

The results obtained can be used in an analysis of the
experimental results [28, 42] on dislocation-induced inver-
sion of the type of conduction in silicon. Both investiga-
tions were carried out on samples doped with phosphorus
donors present in an approximately the same concentration
(ng =2 % 10" cm™ in Ref. [28] and ny =2 x 10" em™ in
Ref. [42]). It was found that the type of conduction
(revealed by the change in the sign of the Hall coeffi-
cient) changed when the dislocation density was varied
monotonically. In both cases a jump of the chemical
potential was observed on passage through the middle of
the band gap. However the positions of this jump 6" on the
0 axis were quite different, as demonstrated in Fig. 15. To
the right of the jump, i.e. in the range § > &%, the results
reported in Refs [28] and [42] for F() show practically no
dispersion (this will be used later). In other words, in this
range the chemical potential lies at about the same height
E, =~ 0.42 eV above the valence band in both cases.

The positions of the experimental points in Ref. [42],
reproduced in Fig. 15, indicate that they cannot be
described by the cylindrical model of the inversion transi-
tion developed above. In fact, according to Ref. [42], the
chemical potential begins to depend significantly on é in the
range where it should remain constant and independent of
the disloca-tion density. Moreover, it is stated in Ref. [42]
that there are doubts not only about the cylindrical model
of the inversion transition, but also about Read’s very idea
of localisation of dislocation charges in a narrow tube of
radius C = a/f< R. It follows from the Read model and the
data of Ref. [42] that in the range R > R, the Coulomb
energy exceeds the band gap E,, which should not occur.
Attempts to solve this problem led the authors of Ref. [42]
to an alternative model in which the dislocation charge is
‘smeared out’ practically throughout the whole Read
cylinder [43].

However, one should point out one experimental detail
not very sensitive to the model used in the analysis of the
experimental data and found to be practically the same for
both series of experiments [28, 42]. As pointed out above,
there is practically no dispersion of F(d) in the range 6 > 6*.
This behaviour of F(§) can be accounted for by the
cylindrical model of inversion of the type of conduction
in the limiting case C; € 1. However, if C; lies near the value
C, = 0.2, where the jump of Freported in Ref. [42]is located,
it then follows from Fig. 15 that a strong dispersion of F(9)
is unavoidable, but this is not observed experimentally.

Therefore, the absence of significant dispersion of F(d)
in the range 8 > 6" reported in Ref. [42] indicates, in our
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view, that the real value of C; is C| < 1. In other words, the
dislocation densities found in Ref. [42] from the edge pits
are somewhat underestimated compared with the real
values. On the other hand, the dislocation densities are
probably overestimated in Ref. [28] (they were obtained by
the ESR method). Therefore, the exact value of the
capacitance C;, which is of the order of C; =0.01
(curve / in Fig. 15), may be found more accurately in
the subsequent experiments. However, it is clear that the
constant C; would be quite small (C; <€0.1).

3.5 Inversion of the type of conduction in germanium
There is no detailed experimental information on the
behaviour of the chemical potential of germanium in the
vicinity of its jump, but detailed investigations have been
made in the region where R < R, and R <R,.

A quantitative description of the vicinity of the jump AF
and of the behaviour of the effective density of holes n,(T)
has to allow for the influence of holes, the role of which is
quite significant, particularly at higher temperatures. More-
over, the density n,(T) is an observable quantity, which can
be used to follow the evolution of inversion in the p-type
range.

The finite concentration of holes modifies, in the
calculations relating to the behaviour of F, expres-
sion (88) which now becomes

R S
TR ng +21tj np(r)rdr:'z , 95)
o a
where

n,(r) = ng exp # , (96a)

Ap = 4meg™! [nd +n, (r)] , (96b)

(pl|r=R = 0’ (p|r=R =0. (97)

Here, n,(r) is the concentration of holes in the vicinity of a
dislocation and ¢ is the permittivity of the semiconductor.
The boundary conditions (97) for the electric potential ¢(r)
are satisfied if we neglect the contribution of free electrons
to the overall neutrality of a crystal.

The values of n,(R) calculated in Ref. [44] with the aid
of expressions (89), (95)—(97) are plotted in Fig. 16 along-
side the experimental results [27].

Interesting results are also plotted in Fig. 9 of Ref. [24],
where several effects worth attention can be observed
simultaneously.

First, we can clearly see a ‘fork’ in the temperature
dependences o (T) and ¢ L(T). The appearance of this fork
is discussed above in comments following expression (54).

Second, it is possible to observe a gradual ‘sinking’ of
the chemical potential of germanium in the lower part of the
band gap (left-hand sides of curves 2—4). We recall that in
the case of silicon this part of the temperature dependence
of the chemical potential has not yet been determined
experimentally, as can be seen in Fig. 15 where the upper
part of the dependence F(Np) has practically no experi-
mental points.

Third, we can show that in the range T < T, the
transverse motion is hindered by an additional potential
barrier whose height increases smoothly with increase in the
dislocation density.
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Figure 16. Concentration of holes in plastically deformed n-type
germanium calculated on the basis of a model with two electron levels.
The parameters used in the calculations were: E; =0.11 ¢V,
C,=0.1, E;=028¢V, ng =5x 10" ¢m™. The dislocation densities
Np were: (1)5x10° em™%; (2)4 x 10® em™; (3) 5.5 x 10° em™2;
(4)3 %107 cm™2. The parameters of this spectrum were selected to
ensure the best agreement of curve 4 with the experimental data (O)
taken from Ref. [27] (the calculations were reported in Ref. [44]).

4. Current - voltage characteristics of a sample
with charged dislocations

One of the reasons for the appearance of potential barriers
hindering the passage of an electric current in semicon-
ductors may be a system of oriented dislocations of
sufficient density. Such a system may appear, for
example, at low-angle grain boundaries or at boundaries
in bicrystals [34—36, 45] when the Read cylinders of
adjacent charged dislocations overlap. Another form of a
dislocation barrier is encountered in the problem of
electrostatic properties of semi-conductors containing a
set of charged dislocations all oriented in the same
direction. The possibility of formation of an array of
charged dislocations of this type has been demonstrated in
a number of experiments [24, 46]. The degree of orientation
of these dislocations reported in these papers reached 1:10.
Obviously, an increase in the dislocation density or cooling
of a sample will result in the overlap of the Read cylinders
of the adjacent dislocations giving rise to an infinite cluster
dissecting the whole sample. The unavoidable appearance



864

V B Shikin, Yu V Shikina

of such a cluster follows from general propositions of the
modern theory of percolation [47]. From our point of view
such a cluster is a barrier of dislocation origin and its
appearance considerably affects the electric properties of a
semiconductor.

Dislocation barriers have a characteristic feature in the
form of saddle points, and the flow of free electrons
overcoming a barrier occurs mainly at these points. It is
therefore necessary to develop a special theory of the
current —voltage characteristics for the flow of an electric
current across a dislocation barrier.

In this section we shall present a general formalism
which makes it possible to describe, in the diffusion
approximation, the properties of barriers with arbitrarily
deep saddle points. We shall derive the current —voltage and
capacitance—voltage characteristics under ohmic conditions
for a semiconductor containing a dislocation barrier; this
will be done in the limiting cases of a strong or weak
overlap of the Read cylinders. We shall discuss the role of
random fluctuations of the barrier profile.

4.1 Current - voltage characteristic of a barrier with
saddle points

Calculation of the current —voltage characteristic represent-
ing the flow of an electric current across a potential barrier
reduces to solution of the equation of continuity divj = 0 in
the vicinity of this barrier and subject to certain boundary
conditions at the barrier edges. These conditions take
account of an external potential difference. This procedure
has been developed in detail for one-dimensional barriers
and it can be applied also to barriers with saddle points.

4.1.1 Let us consider the specific case when charged
dislocations are distributed periodically along the y axis
and the period is d. The x axis is normal to the barrier
plane. In the diffusion approximation the current density is
given by the familiar expression:

on 1)
= — T = bl
i Zu,k( ae T axk) , (98)
where u; are elements of the matrix
Wi = poy, i=12; k=12, (99)

where x; = x, x, = y; the barrier is elongated along the y
axis; p is the electron mobility; 7 is the absolute
temperature; n is the electron concentration; ¢ is the
electrostatic potential.

The solution of the equation divj =0 with j given by
expression (98) can be found conveniently in the vicinity of
a saddle point if Langer’s recommendations are followed
[48] We will therefore expand the potential ¢(x, y) near a
saddle point as a Taylor series:

2
Oe, )~ 0+ 0.5 ~ Ac?), Ai=g 8l =,
where @, and 4; are the potential and its curvature at a
saddle point.

Factorisation of the potential ¢(x, y) is accompanied, as
indicated in Ref. [48], by vanishing of the y component of
the total current so that the dependence of the electron
density on the coordinate y is of the equilibrium (Boltz-
mann) nature:

(100)

n(x,y) = o(x) exp [—M] , (101)

T

where g(x) is an arbitrary function of x. The x component
of the current can be obtained from expression (98) and
from n(x, y) given by the above expression:

Je) = —uT g—z exp (— w> ; (102)
on condition that
g—jzl'i—OTexp (—e;f) (103)
or
a(x) :—ﬂr exp (—e'l'ﬁ) dx +C . (103a)
uT ) _o 2T

The constants j, and C in the above expression can be
found by applying the boundary conditions for n(x, y) at
the barrier edges. It is assumed that far from a saddle point
the potential @(x, y) becomes one-dimensional and depends
only on the coordinate x. In other words,

n=ng, =0 for x — —o0,

(104)
¢=-V for x — +oo0,

n=ny,
where ny is the donor concentration and V is the external
potential applied to a barrier. It follows from the
definitions of n and o(x), given by expressions (101) and
(103a), and from the above conditions that

. eV A \/?
C=ny, _/OzuTnd[l —exp (—?)] (ﬁ) . (105)

The average current per one period of the investigated
dislocation chain is [49, 507

1 —+00
Jr = BJ s (v)dy

/2
_ —1 _ _ev _e(ps ﬁ :
~ Hlhad [] P ( r )] o ( T ) (iz>

1/2
~ ~ V(4 _ o
eV <T| =~ D (l) exp ( T (106)

where j (y) is given by expression (102). Therefore, the
problem of calculation of the barrier conductivity reduces
to determination of the values of ¢, and 4. If there is a
scatter of the values of D and ¢,, then expression (106)
should be averaged over all possible values of D and ¢,
with the suitable weights. The problem will be discussed in
detail later.

4.1.2 The results presented above are quite rigorous
in the range (e —e®,)/T > 1. However, if
(e@ax — €®,)/T < 1, the Langer approximation, in partic-
ular the expansion of ¢(x, y) described by expression (100),
loses its precision and this makes it difficult to investigate
the limiting case of the current—voltage characteristic for a
one-dimensional barrier. Consequently, it is sensible to
consider one more way of solving the problem of the
current —voltage characteristic for a dislocation barrier in
the case when (e@,,.x —e9,)/T < 1.
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Let us assume that dislocations are distributed period-
ically (period D) along the crest of a barrier. Let us expand
all the functions of interest to us as Fourier series:

n(x, y) = an (x)cos(kawy), o= Z o, cos(kwy) ,

o ==Y ju(x)cos(kay), j, ==Y ju(x)sin(kwy),

o (107)

D

and let us try to satisfy the equation divj=0 approxi-
mately by separating the harmonics in the nonlinear term
n(0p/0x;) in the general expression (98) for the current
density.

In the zeroth approximation, we have

9o
JX — 0
Ox
or
. ’ / / ’ dn
Jro = const = —Tuny — eu(ng@y + 0.5n,¢1), n' = e
(108)

In the zeroth approximation the contribution of the higher
harmonics is ignored. The influence of the periodic relief of
the barrier is related to the presence in expression (108) of
a term corresponding to n ;.

In the first approximation, we find that

aixl aiyl

- =L =0, 109
Ox + Oy (109

" 2 4neny
¢l —wlg = -, (110)
where
4meng
(pl |:|:oo e 0’ q)’lx—>+0 - (pll |x—>—0 = _T] .

Here, n, is the Fourier component of the surface charge
density

ny(y) = Zn‘\.k cos(kwy) .

The zero boundary conditions for ¢, are valid at large
distances as long as L > d, which is assumed to be obeyed.

Eqn (109), written out explicitly to within terms of the
order of ng; and ¢, and the boundary conditions for this
equation are:

(111)

n / / " !
—Tn'{(x) — eng @y — eng @y — en @

—eny@] + @’ (Tng +engg,) =0, (112)
eq
st x—d:oo_) O’ sl x:OZT] "o x=0 ' (1]3)

The second of the above boundary conditions is equivalent
to the requirement jy;(0, y) =0, which should be satisfied
at the crest of the barrier.

If the total current across the barrier is zero, the
condition j,; =0 is obeyed identically and it reduces to
the following requirement for all values of x:

na(r) =2 (114)

Moreover, j,; also vanishes and the equality j,; = 0 follows
automatically if relationships (108)—(112) are obeyed.

We shall omit details of the method used to solve the
system of equations (107)—(114) and give the first approx-
imation for the current—voltage characteristic:

eunyV
jro = =1 d , (115)
|| expleanto)/r = 2aimyar?] ax
-L
where
2men,
q’l(x):_ﬁ@(p(—@ﬂ) : (116)

In the limit ¢, — 0 the characteristic described by
expression (115) reduces to the familiar expression for
the current—voltage characteristic of a one-dimensional
barrier.

4.2 Parameters of saddle points

Calculation of the parameters of saddle points of a
dislocation barrier is a fairly difficult self-consistent
problem. The situation simplifies in the limiting cases of
a strong (D < R) or weak (D <R) overlap of the Read
cylinders of radius R when analytic calculations can be
completed. We shall consider each of these limiting cases
separately.

4.2.1 Strong overlap. We shall omit the details of the
calculations [49, 50] and give only a summary of the main

results:
2 1 x| ’
o(x, y) =2nL enge” ( _T>

2 2 21y
+2dendL£7] M —In|2( cosh o cosﬂ s
D D D

(117)
where

_ s f

= ng =—.
Zl’ld’ s Da

Here, ¢ is the permittivity of the investigated crystal, ny is

the volume concentration of donors, f is the occupancy

factor of a single dislocation, and « is the atomic spacing.
The value of ¢ at certain characteristic points is

2D
9. = ‘Po(l -2 ln(2)> , (118)
2D D
Pmax = (p0<1 +T In ﬁ) 5 (] 183)
where
D
Py = 2‘":e”dL237] , ¢ :% s e >1.

The quantities @, @, and @, occur in the definition of
significant characteristics of a barrier. For example, the
quantity ¢, occurs in the exponential function used to
describe the current-voltage characteristic. The potential
®nax 18 needed in the calculation of the occupancy factor f
of a charge dislocation in a barrier, found from the
relationship

_ED+VC:Fs
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where Vo = e@,,,, is the Coulomb energy of an electron at

a dislocation, Ep, is the position of a dislocation level, and

F is the Fermi level. Finally, the potential ¢, occurs in the

definition of the barrier capacitance Cy:
0 &S

Cp=—=

=3l (119)
0

where S is the contact area and Q is the total charge.

It is worth noting that all three characteristics @g, @ ax»
and ¢, are identical for a one-dimensional barrier. In fact, if
in expression (118) we go to the limit (D/L) — 0, we find
that D5 = Pmax = Po-

4.2.2 Weak overlap. A rough idea of the properties of a
saddle point of two weakly overlapping Read cylinders can
be obtained from a simple geometric representation
(Fig. 17) with the parameters of the problem correspond-
ing to single Read cylinders. Let us assume that 4 is the
degree of overlap. The chord 25, along which two cylinders
are in contact is related to i by

bo ~ (2Rh)'*, R>by>h>ry ,

where R is the Read cylinder radius and nRQnd =f/a.

The distribution of the potential ¢ in the contact zone
can be found by combining two cylindrically symmetric
solutions for the potential of a single charged dislocation
@o(x, y) when the overlap of these cylinders is h:

(120)

(ﬁ(x,y)=(p0(x,y—|—R—h)+(p0(x,y—R+h), (]2])
of R 4y’

The coordinates of the saddle points are x =y =0. We
then have

- _41tendh2 ~y __ 8mengh
ST 7 A eR
(122)
1+h/R
@) = 8meny L+h/R )

However, it should be pointed out that the formula for
@, in expression (122) is not the final one. An overlap
between the Read cylinders means that the segments of

4
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-
/
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Figure 17. Contact of two Read cylinders with a small overlap. The
continuous curves represent the real boundaries of these cylinders.

these cylinders within the contact zone contain no free
electrons and, therefore, they do not participate in neu-
tralisation of the fields of charged dislocation lines. The
resultant free-electron deficit should be compensated by the
regions which lie outside the contact and have no free
electrons and, therefore, do not participate in neutralisation
of the fields of charged dislocation lines. This can be taken
into account within the framework of the adopted approx-
imation of a superposition of two cylindrically symmetric
solutions described by expression (121) by placing an
additional charge o_ in the contact zone and an opposite
charge o, outside the contact. Obviously, the charge o,
should be located as close as possible to the contact zone.

If we assume that the additional charges are of the
surface type, then

2
o(x)=c(1-25), o=enh<0, (123)
bg
<0, 0<x <Dy,
a(x)—{>0’ by<x<b, (123a)
The quantity b is found from the condition
+b
J a(y)dy =0 (124)
—b
and is given by
b=3b, . (124a)

The harmonic potential qo(]), corresponding to the
charge distribution given by expression (123) calculated
at a saddle point, is

(y _ _2bybo b

n 2 3 1o )]/2
P = e(b —by) bo '

=2 (R (125)

Therefore, the potential at a saddle point for a weak
overlap of the Read cylinders is

_ a[anh +3.7(hR)']
; :

(126)

The distribution of the potential in the contact zone in
the case when there is a potential difference between the
edges of a barrier deserves separate discussion. The
qualitative features of such a problem can be formulated
explicitly:

Ay =0,
127)
Vv for s <I<n—0, b
Y(r 9) = {—V for t+a<d<2n—a, *=Rr-
The distribution in this case is
2Rr sin ¥
U(r, 9) = 2L arctan %. (128)
Expression (128) is derived from the relationship
in(2 1Y 2A sin ¥
YA sin@n+ 19 _ o s areran 22500 (129)
2n+1 1—A?
The barrier capacitance is
0 eDyD; 2R
== =D;D,V = In == 1
Cy Vv 3D> J‘T(ﬁ)d19 R Moo (130)

where D, and D5 are the barrier dimensions along the y
and z axes.
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The definition of C}, given by expression (130) together
with expression (106) for the current density j, ,

1/2
. eungV ﬁ e
oot (1" o (o2,

which takes account explicitly of the values ¢, and
(11/12)'/2 given by expressions (126) and (122), complete
the task of description of the properties of a barrier with a
weak overlap of the Read cylinders (D =R —h, h € R).

(131)

4.3 Influence of random fluctuations of the barrier profile
We shall now consider deep saddles when on the average
we have (e@n.« —e®,)/T > 1. The total conductivity of a
barrier then consists of the conductivities of the separate
saddle points (which represent conductors connected in
parallel):

1= 3G ) -

Introduction of the probability w(h,) of the appearance of
a given value h, and assumption that this probability is
Gaussian makes it possible to rewrite expression (132) as
follows:

(132)

. 1 oo .
() = o= J @(8,)j (he) do, , (133)
2 —00
where 0, =D.—D, h.=h+3d, o(.)=+/2/n47" x

exp(—02/24%), A is the variance of the distribution of d,
and j,(h,) is obtained from expressions (131) and (126). If
we now assume that 6 <D, h<D, we find from
expression (133) that:

) - p) i +00 5%
<./x) :./x(h) EA J exXp _2A2_p5c déc

_37¢n3 o5 (134)
P="r 2 :

— () exp(0.594%).

Therefore, fluctuations of the barrier profile, characterised
by the variance 4, give rise to an additional exponential
factor in the definition of (jj,), which makes it possible to
detect quite simply the influence on fluctuations of the
current —voltage characteristic.

We shall complete this theoretical introduction by
considering an experimental method for the investigating
barriers with possible saddle points. Such an investigation
can be carried out if the current—voltage and the capaci-
tance—voltage characteristics depend on temperature and
on the potential difference V applied to the barrier edges.

The first qualitative question, whether a barrier is of
quantum or classical nature, is answered by an analysis of
the temperature dependence of the current—voltage
characteristic plotted using the coordinates In(j) and
T~'. Rectification of the characteristics in terms of these
coordinates indicates activated-type behaviour of the
current, i.e. classical behaviour, and makes it possible to
determine the barrier activation energy.

Comparison of the barrier heights deduced from the
temperature dependence of the current —voltage character-
istic and from determination of the capacitance—voltage
characteristic in the ohmic region should answer the
question whether there are saddle points on a barrier or
is the barrier one-dimensional. A one-dimensional barrier
has only one characteristic height [see expression (118)]. If

saddle points are present, the information which can be
deduced from experimental determination of the current—
voltage and capacitance—voltage characteristics can give
information on qualitatively different details of the inves-
tigated barrier. We must bear in mind that in the ohmic
range the barrier capacitance is not always given by the
simple expression (119).

An additional characteristic of a barrier with deep
saddle points is the behaviour of the current—voltage
characteristic in the region where the dependence on V
is nonlinear. An increase in V across a one-dimensional
barrier results in a characteristic plateau of the current—
voltage characteristic, which appears because a finite
current across a barrier increases the filling factor of
bound electron states that determine the barrier height,
i.e. such a current stimulates barrier growth. The density of
the current flowing across a barrier with deep saddle points is
concentrated mainly far from charged dislocations. This is
indicated indirectly by the distribution of the perturbing
potential Y(r, ¥) described by expression (128), which
vanishes on the axes of the Read cylinders (i.e. at the
point r = 0). As a result, the current—voltage characteristic
for a barrier with deep saddle points should not have a
definite flat region linking the ohmic region and the
breakdown part of the characteristic.

The last interesting detail we should mention is
detection of fluctuations of the dislocation barrier pro-
file. These fluctuations can be deduced from an analysis of
the ohmic part of the temperature dependence of the
current —voltage characteristic considered in terms of the
coordinates In(j), T~'. According to expression (134), if
A # 0, then considerable deviations from linearity (asso-
ciated with the presence of a term proportional to T2 in
the argument of the exponential function) should occur in
the In(j) plane.

Not all the experiments described above have been
carried out so far. However, those that have been pub-
lished support the theoretical predictions.

4.4 Experiments on dislocation barriers

4.4.1 In those cases when the postulated deviation y from
a one-dimensional barrier, which may be described by
formula (135) given below, is not too large, a convenient
method for detecting this involves simultaneous investiga-
tion of the barrier current—voltage and capacitance—
voltage characteristics. The former characteristic gives
information on the height of the barrier saddle points
Vmin and the capacitance—voltage characteristic provides
the average barrier height V. In the presence of saddle
points, we have V,,;,, < V. The ratio

Vrﬂin
Vv

=y<1 (135)
can be used as a measure of departure of a barrier from the
one-dimensional approximation. In the one-dimensional
case, we have y — 1.

It should be pointed out that inequality (135) is a
necessary requirement which follows from an analysis of
the properties of a barrier with saddle points. Therefore,
when this inequality is satisfied, it implies self-consistency of
the experimental data on the current—voltage and capaci-
tance—voltage characteristics of this barrier.

Let us now discuss, on the basis of Ref. [51], the
experimental results reported in Ref. [45] on the cur-
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rent—voltage and capacitance—voltage characteristics of a
dislocation wall formed deliberately in n-type silicon in
which the donor concentration is ng ~ 10" cm™. The
average distance D between dislocations in this wall is
less than the size L of the region of screening of the
dislocation charge by free electrons, so that the overlap of
the adjacent Read cylinders, representing the screening
properties of the medium with a single charged dislocation
should be sufficiently strong and the parameter y of
expression (135) should be close to unity.

In principle, information on the current—voltage and
capacitance—voltage characteristics in the range which is
linear in respect of the perturbing potential V should be
sufficient to find the properties of the parameter .
However, the results reported in Ref. [45] have a number
of special features which make it necessary to use a more
complex procedure. First, the current—voltage character-
istic reported in Ref. [45] has an ohmic region followed by
the above-mentioned plateau of the dependence I(V) (I is
the current across the barrier) in the range eV /T ~ 10 > 1.
On the other hand, various theories of the current—voltage
characteristics [52—55], which postulate that the barrier is
purely electrostatic, predict the appearance of this plateau
for values eV/T > 1 (Fig. 18, where the current—voltage
characteristic is plotted for the one-dimensional variant
employing the diffusion approximation and the parameters
taken from Ref. [45]). Obviously, some technical errors
were made in plotting Fig. 1 in Ref. [45]: these errors are
revealed only if the characteristic is plotted for a wide range
of the parameter eV/T: 0 < eV /T < 10. Second, the proper-
ties of the capacitance—voltage characteristic in the linear
regime can be determined only if precise information is
available on the barrier geometry, which again is not very
satisfactory in Ref. [45]. Therefore, in the case of the latter

eV/T

0.01 0.1 1 10
1077 , ,

I/A

107

1077 |

10710 ! !
0.001 0.01 0.1 1
v/v

Figure 18. Dependence /(V) at T =264 K and 7 =296 K, plotted
using the coordinates employed in Ref. [45]. Curves /-4 correspond to
different values of Ep: 0.55, 0.60, 0.65, and 0.70 ¢V, respectively. The
top abscissa gives the values of eV divided by T.

characteristic one has to consider also the nonlinear range
where the information about V can be obtained from the
relative values insensitive to the exact barrier geometry.

Specific calculations were carried out in the diffusion
approximation [51] with the aid of the one-dimensional
formulas [see also expression (115)], investigated in detail
by many authors beginning with Taylor et al. [52]:

i uTng[1 — exp(—eV/T)]

2 , (136)
J exp(e@/T) dx
—L,
2 —L,)°
o[
P\x) = 2
2
neng(x + L) , X <0,
&
where
ng 1% f : n(0)
Li,=—= , ng=-—, f(T) =———"—=, (137
Y27 20y T 4men T uD A7) ny(T) + n(0) (37)

2(0) = ny xp <_ e(pT(0)> <1 _ ”-T’;ld J:l exp @ ds) ,

ny(T) = No(T) exp (— ETD> .

Here j is the density of the current across the barrier; u is
the electron mobility; @(x) is the distribution of the
potential in the barrier zone; ¢ is the permittivity; f is the
filling factor of a single dislocation —defined by one of the
formulas in the set of expressions (137) on the basis of a
variant of the theory of the current —voltage characteristics
given in Ref. [53]; N (T) is the density of states in the
conduction band; Ep is the position of the dislocation level
relative to the bottom of the conduction band; n(0) is the
concentration of electrons at the barrier crest.

The relative capacitance of the barrier is given by the
expression

L,(0) +L2(0)
Li(V)+Ly(V)’

where L, follows
expressions (137).
The dependence of f on the dimensionless voltage
U =eV/T [Eqn (136)] is plotted in Fig. 18. The parameters
used in the calculations were the same as in the experiments
reported in Ref. [45]: ng = 10" ecm™, & =12, and N, are the
density of the electron states in silicon. The procedure for
determination of Ep is explained in the caption of the
figure. The dependence j(V) at temperatures T = 264 K and
T =296 K is plotted employing the coordinates used in
Ref. [45]. Curves /-4 correspond to different values of Epy.
Curve 2 agrees best with the experimental results [45] if the
experimental points are first shifted by one order of
magnitude along the abscissa. As pointed out above, this
shift is of parasitic origin (no other explanation is offered).
The arbitrary nature of the shift in Fig. 1 of Ref. [45]
becomes obvious in particular when the capacitance—
voltage characteristic given in Ref. [45] is analysed. Here,
introduction of a similar renormalisation of V results in a
qualitative disagreement between the theoretical and
experimental values of the capacitance. Therefore, a
comparison of the calculated dependence Cy, (V) of expres-

C,=17.8 (138)

from a formula in the set of
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Figure 19. Comparison of the calculated capacitance—voltage charac-
teristic C, (V) and the data of [45] without any correction. The value of
C,, is plotted along the ordinate on the assumption that the theory and
experiment (+ ) agree in the limit V — 0. Curve 2 is closest to the experi-
mental data; (/) Ep =0.65¢V; (2) Ep =0.7¢V; (3) Ep =0.75 ¢V.

sion (138) and the results of Ref. [47] is made in Fig. 19
without any correction but employing the coordinates used
in Ref. [45]. The dependence is fixed relative to the Cy, axis
on the assumption that the theory and experiment agree for
V — 0. According to Fig. 19, curve 2 with Ep = 0.7 eV is
closest to the experimental results.

It therefore follows that the current—voltage and
capacitance—voltage characteristics of a barrier given in
Ref. [45] do indeed yield the different values of Ep and their
ratio represents the extent to which the barrier in question
can be regarded as one-dimensional. It follows from the
ideas put forward above that y =0.6/0.7 = 0.86, i.c. the
barrier is largely one-dimensional although the presence of
saddle points at its crest is felt.

4.4.2 One of the problems in the interpretation of the
current —voltage characteristics of barriers of different
origin in semiconductors (such as those associated with
grain boundaries, boundaries in bicrystals, dislocations,
etc.) is the multivalued behaviour of the current—voltage
characteristic in the intermediate range of the potential
difference V between the barrier edges. In some cases [45]
this characteristic has a plateau between the ohmic and
nonlinear dependences of j on V (Fig. 18). In other
experiments [55] such a plateau is not observed.

A qualitative explanation of this plateau (Fig. 18) can
be found in a number of papers in which the one-
dimensional model of a barrier with deep electron states

localised at its crest is employed (see, for example,
Refs [52—-54]). An increase in the current across the barrier
is in this case accompanied by an increase in the concen-
tration of free electrons at the barrier crest and this, in turn,
increases the occupancy factor of localised electron states at
the crest and, consequently, increases the barrier height.

Barriers with saddle points may have no such plateau.
Specific arguments in support of a monotonic nonlinearity
of j(V), i.e. in support of a current—voltage characteristic
with 9j/0V >0, are given in Ref. [56] for a barrier that
forms because of an overlap of the adjacent Read cylinders
of a system of parallel charged dislocations distributed
equidistantly with a period d, for example along the
boundary of a bicrystal containing the y axis.

Let us assume that the degree of overlap & of the adja-
cent Read cylinders is small so that the chord b in Fig. 17 is
much smaller than the radius of a Read cylinder R: b < R.
Let us also assume that the radius R is much greater than
the Debye radius rp for a given n-type semiconductor
rh = €T /(4me’ng), where & is the permittivity of the
semiconductor, ny is the donor concentration, and 7T is
the absolute temperature sufficiently high to assume that all
the donor states are ionised, but still low compared with the
barrier height e at the saddle point. In the vicinity of an
extremum of ¢, the potential ¢(x, y) is given by expres-
sions (120)—(122):

ep(x,y) = eq, +0.5ky? —0.5¢x* + ...,

o, = 411'.6211(18_]/12 , k= 8ne2nds_] , 4= 81te2ndhs_'R_' R
(139)
R>b>h>ry, T<ep,, b~ (2Rh)'* .

Here, k and ¢ are the curvatures of the potential at a saddle
point.

Under the conditions described by the set of expressions
(139) the general problem of calculation of the current
across a barrier can be divided into two parts. First, we
have to determine the potential Y(r, 9¥) across a barrier in
the absence of a current through the barrier, and then we
have to solve equation divj = 0 with a given distribution of
the potential Y (r, ¥), proportional to the applied potential
difference V.

Bearing in mind that R > rp, we can formulate the task
of finding the structure of Y(r, ¥) as the boundary-value
problem:

Ay =0, ¥(r, 9)

r=R

o<t —a,

_[+v, _b
_{—V, T+oae<d<2n—a, a_R<<]' (140)
The result is [compare with expression (128)]
2V 2Rr sin (19
Y(r, 9) = arctan %nﬁz) . (141)

The density of the additional surface charge along the
boundaries of the Read cylinders is

& oY 1%

o) = = T2 Rn()

=¥ P =a.
4 Or |,_p [9] > o

(142)
The appearance of the charges o(¢9) in the above expression
under the action of the potential difference V means that in
reality the barrier boundaries shift relative to their
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equilibrium positions in the absence of V by an amount

£(9):
¢@) =29

eny

Cmax <D . (143)
As a result, the barrier loses its symmetry relative to the
plane containing charged dislocations. This is the main
reason why in the one-dimensional model the appearance
of a potential difference V at the barrier edges directly
alters the conditions of occupation of the localised states at
the barrier crest. In the case when &(9) is described by
expression (143) the shifts of the Read boundaries are very
inhomogeneous. They are largest in the contact zones and
small, in view of b/R <1, far from these zones.
Consequently, we can assume that in the zeroth approx-
imation, in respect of the parameter b/R < 1, the origin of
the coordinates of the problem described by expres-
sion (140) coincides with the position of a charged
dislocation and there are no reasons why there should
be a change in the density of free electrons in the Read
cylinder axes under the influence of the potential difference
V, because the potential Y(r, ¥) given by expression (141)
vanishes in the limit » — 0.

The current flowing across the barrier e@(x,y) is
calculated in the diffusion approximation, i.e. it is assumed
that

divi=0, j=—u[TVn+enV(p+y)] (144)

subject to the boundary conditions that correspond to the
potential difference V at the barrier edges; here, p is the
electron mobility. Formally, the problem described by
Eqn (144) is identical with the analogous problem of decay
of a metastable state in the theory of first-order phase
transitions, investigated in detail by Langer [48] [see also
expressions (106) and (131)]. Omitting the relevant details
of the calculation, we shall now give the final results for the
dependence of the average density (j.) of the current
flowing through a given saddle point on the potential
difference V:

Gy = ().

0.5
(js) = epngva™ (%) exp(—ep,T) (145)

d=R—h, h<R, &n=b.

Obviously, the current —voltage characteristic described by
expression (145) has no plateau.

4.4.3 The experiments reported in Ref. [46] deserve special
consideration. First, these are the only experiments known
to us which demonstrate explicitly the possibility of the
existence of a ‘neutral’ component in the structure of
dislocation barriers. In fact, the distribution of the etch pits
revealed in these experiments (Fig. 20) is completely
isotropic in the xy plane of the figure. However, the
neutral wakes following each of the dislocations make the
conductivity of the sample anisotropic along the x and y
directions, as shown in Fig. 21. We are thus faced with an
interesting problem of the properties of the current—
voltage characteristic of a combined barrier with charged
and neutral components. A description of such barriers is
still lacking.

Figure 20. Effects of selective chemical etching of the surface of silicon,
showing etch pits at dislocations and ‘wakes’ along glide planes.

;L/cm2 syt
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Figure 21. Temperature dependence of the electron mobility in plastic-
ally deformed silicon. The lines of flow of the current are directed
perpendicular (3) to the glide plane and parallel to this plane (7 and 2
along and across dislocations, respectively). The top part of the figure
shows schematically a sample and the positions of dislocations and of
the active glide plane [46].

Second, there is an interesting nonmonotonic tempera-
ture dependence of p,, whereas the component p has no
such minimum (Fig. 21). This nonmonotonic behaviour can
be explained as follows. Immediately after the appearance
of a ‘fork’ (i.e. of a difference between p) and p,) at about
T =~ 300 K, the degree of anisotropy begins to rise and this
corresponds to an increasing overlap of the adjacent Read
cylinders. However, at T ~ 200 K, when the parameter
T = ¢*f/(eaT) becomes comparable with unity, the barrier
transparency begins to rise. This rise can be compared with
the steep rise of the concentration of holes [see expres-
sion (12)], which results in an effective reduction of the
negative nature of charged dislocations. An estimate of the
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parameter I' for silicon with e = 10, a = 5 x 1078 cm, and
f= 0.1 shows that I" passes through I' = 1 in the vicinity of
T ~200 K. It is natural to mention here the formally
analogous behaviour of ¢, in the experiments on n-type
germanium [24] (see Fig. 9). However, the reasons for the
nonmonotonic temperature dependence in the latter case
are different. There is a change in the screening mecha-
nisms, which occurs when free electrons are frozen out in n-
type samples. It is the region of such a change that
corresponds to the position of the minimum of ¢, (7) in
Fig. 9, as can be confirmed by examining the temperature
dependence of the conductivity of a control sample and the
behaviour of g (T). In the case of the dependence o, (7),
the screening radius at temperatures 7 ~ T,;, is described
by formulas (32)—(34) and, under the conditions of a
partial freeze-out of electrons, is considerably greater
than the Read radius. Under these conditions the overlap
of the adjacent Read cylinders is maximal and the
anisotropy tends to its maximum. However, at tempera-
tures T < T, the chemical potential begins to drop to its
position between the bottom of the conduction band and
the energy of point donors, towards the donor energy.
Consequently, the screening radius begins to approach its
Read value again, which considerably increases the dis-
location barrier transparency.

4.5 Current - voltage characteristic of a single charged
dislocation in a semiconductor

One of the elegant effects that demonstrate breakdown of
the local neutrality in the vicinity of dislocation lines in
silicon and germanium semiconductor crystals is the
asymmetry of the current—voltage characteristic when
the current flows from the dislocation axis to the periphery
of a semiconductor and vice versa. Relevant experiments
carried out on single dislocations in silicon [S7] and
germanium [58] crystals demonstrate a clear diode effect
of dislocation origin.

A description of the diode effect for a single charged
dislocation is given in Ref. [59] on the basis of the Debye
approximation when Ve < T, where V¢ is the energy of an
electron in the electrostatic field of a charged dislocation on
the axis of this dislocation, and T 1is the absolute
temperature. However, in the case of real dislocations
with an edge component in silicon and germanium it is
found that the opposite inequality Vo > T is obeyed in a
wide range of temperatures. Under these conditions the
current —voltage characteristic of a single dislocation must
be calculated anew, which was done in Ref. [60].

Let us assume that a dislocation core coincides with the
z axis of a cylindrical coordinate system and that the steady-
state current density j(r) is directed radially, so that
divj =0 and

. JoTo

Jr) ===

(146)

Here, ry is the minimum distance at which the local
diffusion definition of the current density is still valid:

Jj(r) = pn(r)VE(r) (147)

where u is the electron mobility; {(r), n(r) are, respectively,
the local values of the chemical potential and of the
electron concentration in the bulk of the semiconductor. If
we assume that the difference between the chemical
potentials of an electron on the dislocation axis and far

from this axis (i.e. at a distance r = R, where R is the Read
radius which governs the screening radius of the electric
field of the dislocation) is eV (V is the applied potential
difference), we can rewrite the definitions given by
expressions (146) and (147) as follows:

uv

Jo=—x (148)

roj
o

The explicit form of n(r) can be deduced from the
structure of {(r) in the limit of the Boltzmann statistics for
electrons in the bulk of an n-type semiconductor where the
donor concentration is ny and the diffusion coefficient is D:

[m(r)] dr

V{=eVo+Tn~'Vn, p=eDT7". (149)

In this case it follows from expressions (146)—(148) that

n(r) = exp (— &T(’)){nd —-’% JR rexp [%(r)] dr} . (150)

where the potential ¢ can be described by [see expres-
sion (8)]

_2¢f[ R r 2 _f
(p(r)—a[ln7—0.5<l—ﬁ>], mRng =" (151)

Here f is the dislocation filling factor; ¢ is the permittivity;
the explicit expression for the Read cylinder radius R is
valid if R > rp, which is assumed to be obeyed; r2D =
€T /(4me’ny); a is the interatomic spacing.

The definitions given by expressions (148)—(151) relate
the quantities jy, V, and f. We can deduce the current—
voltage characteristic, i.e. the relationship between j, and V,
from these definitions if we also define f'in terms of E, and
V. The simplified variant of this definition is

—Ep +eV + Ve = (R), vC:ego<3> , (152)

f
where Ep is the position of the dislocation level in the band
gap of the semiconductor measured from the bottom of its
conduction band; {(R) = F is the position of the chemical
potential far from a dislocation; ¢(r) is given by
expression (151).

The system of definitions (148)—(152) may be simplified
considerably if we use the integral [[rn(r)]™" dr which occurs
in the definition of j, given by expression (148). We
consequently have

1 —exp(—eV/T)

o J P! exp(e(p(r)/T)dr

o

. Dl’ld
Jo=—"—

(153)

This definition of j, resembles the familiar expression for
the current—voltage characteristic obtained in the diffu-
sion theory of rectification [61], which is not surprising
since a charged dislocation can be regarded as a
cylindrically symmetric Schottky barrier. The difference
between these two expressions is only the presence of a
truncating factor ry, which can be regarded as the radius of
a point which brings the current to the axis of a charged
dislocation and the radius representing the capture of
electrons by a dislocation level.
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In the ohmic region and with logarithmic precision in
terms of the parameter R/ry > 1, expression (153) can be
reduced to

D v 2r 2,
.io=ﬂe—2f’(@) . r=4 (154)

" eal
A comparison of this expression with the experimental
current —voltage characteristic of silicon [57] makes it
possible to estimate ry, for given values of
ng ~ 10" em™ and f~0.1 on the assumption that
T=250K, R~10"*cm, ¢~ 12, and p =150 Q cm. The
result is 2I'(250 K)~2 and ry/R ~107'. The same
estimate of ry/R can be obtained on the assumption that
the slope of the current —voltage characteristic in the ohmic
region, taken from Ref. [57], is approximately 30 —50 times
less than the slope of the characteristic of dislocation-free
silicon (Fig. 22). Therefore, 2I'(ry/R)* ~ 1/50 and hence
for '~ 1 we have r,/R ~ 107",

Figure 22. General appearance of the current—voltage characteristic
of a single dislocation obtained with: (/) a microprobe located at a
point of emergence of a 60° dislocation; (2) a microprobe located
above a dislocation-free surface; (3) two gold ohmic contacts [57].

5. Relaxation phenomena

The problem of establishment of an equilibrium in the
electron system of a semiconductor containing charged
disloca-tions is in a surprisingly uncertain state. On the one
hand, there are no doubts about the qualitative features of
the relaxation phenomena which occur in plastically
deformed semiconductors, for example, the nonexponen-
tial (logarithmic) time dependence of the nonequilibrium
photocon-ductivity after its significant (nonlinear) devia-
tion from the equilibrium value [62]. On the other hand,
there are absolutely no published quantitative details on

even the simplest relaxation effect represented by the
exponential relaxation asymptote typical of the linear stage
of various relaxation processes. The neglect of this problem
is particularly striking against the background of the
success of the experimental and theoretical studies of the
relaxation involving point centres (see, for example,
Ref. [63]).

Experimentalists are obviously put off by the routine
nature of the problem of the exponential relaxation
processes. The existence of such relaxation is not in doubt
and interpretation of the experimental relaxation time,
particularly of the pre-exponential factor which governs
the capture cross section, is very difficult. We are aware of
only one fairly detailed investigation of the relaxation of the
photoconductivity in germanium with a low dislocation
density, when the adjacent Read cylinders do not overlap
[62]. The traditional analysis of the results reported in
Ref. [62], carried out below, gives an unexpected result: at
low temperatures the electron capture cross section of a
dislocation is anomalously large (it exceeds the dimensions
of a sample!), which cannot be true. A discussion of possible
reasons for this paradox leads to an interesting alternative
for the description of the relaxation phenomena involving
dislocations.

5.1 Exponential relaxation

5.1.1 We shall use the term ‘traditional formalism’ for the
approach in which relaxation of the filling factor f of a
single charged dislocation in an n-type semiconductor is
described by the following equation [11, 62]:

. - . : . df
f="2margvy [i(1 =) =nef], f=4 (155)
where

_ Ve 2¢f R

= -=< Ve —Lin—,
n ndexp< T>’ (s o nc
c=-, nRzndzi,

a

ne :Ncexp(—EdT_]), f<1.

Here, n, =ny is the electron concentration far from a
dislocation (it is assumed that all the donors whose
concentration is ny are ionised); R is the Read radius; ¢
is the permittivity of the semiconductor; Ey is the depth of
a dislocation level measured from the bottom of the
conduction band; vy is the thermal velocity of electrons; a
is the atomic spacing along a dislocation; r, is the
dislocation-capture length; 7 is the local concentration of
electrons on the dislocation axis; 7 is the absolute
temperature; N, is the density of the electron states in
the conduction band.

If the equilibrium value f; is only slightly perturbed so
that

o) =fo+3f(1), ¥ <fo,

Eqn (155) is linearised and, with a logarithmic precision
[on the assumption that In(R/c) > 1], it becomes

(156)

. oF 26%f, . R
Sf:——f’ ’L'al :2Tl:ur0ance—f01H—0, (157)
T eaT Co
where
TCR(2)I’ld :l&, C'Ozi’
a fo
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and 7, is the characteristic relaxation time. The quantity ry,
calculated with the aid of Eqn (157) and the experimental
data [62] on the photoconductivity relaxation time 7, of
n-type germanium containing charged dislocations, is
presented in Table 1 [64] where other relevant quantities
are also given. The value of r, varies in the range
10° =)= 107 cm. Obviously, the amplitude of this
change is too large to correspond to any physical meaning
of ry in Eqn (157).

Table 1.
T/K f R /cm 2t /s ro/em rq/em

80  0.13 29x10™* 625 10° 10 107°

100 012 2.8x107* 5 50 0.83 5% 1077
125 011 2.64x107* 40 10 3x 10 1.4x1077
170 0.09 24x107* 294 6x107" 2x10® 0.7x1077
200 0.08 2.25x107* 25 8x 1073 1x10™®  04x1077

Note. The results were obtained for weakly deformed n-type germanium
with the following parameters: ¢=16, Ep =0.4¢V below the
conduction band, a=5x10"% cm, ng=>5x 108 ecm™3,  and
6 =0.5x 10" s7'. The value of r, was calculated on the assumption
that t* = 1y, with t* taken from this table and 7, from expression (157);
the value of r, was obtained on the assumption that t* = t,, where 1, is
given by expression (166). The data for 7 =80 K were taken from
Ref. [23] and the rest of the information on T, f, and t* was obtained
from Ref. [62].

5.1.2 It is assumed in Eqn (157) that the main obstacle
preventing a bulk electron from reaching a dislocation is
the transition from the continuous spectrum to a discrete
level. The probability of this transition is proportional to
the capture length ry. However, in reality there is one other
reason that hinders the transition of electrons from the
bulk to a dislocation level. This reason is the conductivity o
of a Read cylinder. If we assume that the main reason for
the finite relaxation time is the finite conductivity of the
semiconductor, we can write down a new relaxation
equation which is an alternative to Eqn (157); we can
then use this new equation to find the corresponding
relaxation time 1.

An alternative equation can be obtained on the basis of
the following assumptions and simplifications.

The electron current in the interior of a Read cylinder can
be described in terms of a local (diffusion) approximation:

N _H

i) ==n(nve. (158)
Here, p is the electron mobility; {(r) and n(r) are the local
values of the chemical potential and of the electron
concentration. The definition of j(r) given by expres-
sion (158) is valid up to the minimum distance r,, beyond
which in the range r < r, the diffusion approximation of
expression (158) becomes invalid. However, in this range
an electron may be captured by a dislocation level. The
length r; thus plays the role of the capture length ry, which
occurs in expressions (155) and (157). The value of 7, is not
calculated and it remains a parameter of the theory.

In the vicinity of r~ 7, the local values of the bulk
chemical potential {(r) and of the chemical potential {p of
electrons on a dislocation are equal:

{(r;)=Co Co=—Ep+Vc. (159)

Here, the definitions of Ep and V- are analogous to those
given following Eqn (155). The requirements defined by
expression (159) mean that an electron which has ‘lifted
itself” to the region r = r, can penetrate without difficulty to
a dislocation level. In writing down the chemical potential
{p of the dislocation electrons, we ignored, for the sake of
simplicity, the entropy contribution because both Ep and
Ve are much greater than the corresponding energy
equivalent of temperature.

We shall simplify the analysis by postulating that the
problem is cylindrically symmetric, which is generally
incorrect because at short distances r =7, a considerable
contribution to the relaxation displacements of the bulk
electrons is made by the anisotropic deformation potential.

The initial relaxation equation is now

(160)

where j, is the bulk flux of electrons at the distance r =,

from the cylinder axis. If we assume that the characteristic

time needed to establish an electron flux in a Read cylinder

is much shorter than the dislocation relaxation time
R’ _eD

TG>ID9 TDzﬁa ﬂ—T

;: —2narg js

(161)

[the above inequality is justified after the definition of the
time 1, given by formula (166)], we can assume that the
electron current density j(r) satisfies the requirement
divj =0, i.e.

i) =igtsr™ . rzay (162)

The definition (158) and the boundary conditions (159)
lead to the following expression for j;, which is deduced
from Eqn (160):

_iCoo—i_CD_VC

JRSNCE <) C Vemep@. (6
7 J dr/rm(r)
2,
e (r) :% [m R%—O.S(l —r2R*2)] , (163a)

. R
(r) =exp (—#) <nd —'Ig" J dr exp #) , (163b)
, T

where (. is the chemical potential measured from the
bottom of the conduction band, outside the Read cylinder.

Obviously, under equilibrium conditions and with
logarithmic precision we have

Coo+ED_VC:0-

This requirement is the definition of the equilibrium
occupation factor f,. However, if the combination in
expression (164) differs from zero, the current j, of
expression (163) appears and, according to Eqn (160),
the value of f may vary with time.

The integral which occurs in the definition of j, by
expression (163) can be calculated. As a result, Eqn (160)
subject to expression (163) becomes

or
= o\ (1 —exp &
j=2nlo (R) (l exp T) R

where

(164)

(165)

3 =lo+Ep—Ve,
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Here, 7 is the momentum relaxation time for eclectrons
scattered by the lattice defects; o is the conductivity in the t
approximation; m* is the effective mass of an electron; I’
and V¢ are defined by expressions (154) and (155).

Linearisation of expression (165) in the range 8{ < T
gives the definition of 7, which represents the relaxation
time of charged dislocations due to the finite conductivity
o [64]:

one . RZ 1 /RN
—1 0 0
= n=2, r,=—=(-2 1.
to el n ct (r(,> >

An analysis of the results of Ref. [64] (together with the
information on 7, at 7T =80 K taken from Ref. [23]) and
the use of 7, defined by the above expression gives values of
7, listed in Table 1. The range of variation of 7, with
temperature 7T is 1077 < 7y < 107% cm, which looks more
reasonable than the range of variation of », which follows
from expression (157).

We shall conclude by noting that the finite conductivity
of a Read cylinder may be one of the important factors that
influence the exponential relaxation time. In the experi-
ments reported in Ref. [62] this relaxation channel is the
dominant one.

A few words should be said about the physical factors
that determine the capture radius ry. Determination of the
capture cross section is a difficult kinetic problem [63].
Nevertheless, in this case of dislocations there are clear
energy considerations which make it possible to estimate
qualitatively the capture radius [65].

This can be done because the combination of the
Coulomb potential of expression (8) and of the deforma-
tion potential V,(r, ¥) around a charged dislocation is
characterised by a saddle point ry through which electrons
are most likely to penetrate from the bulk of a semi-
conductor to a dislocation. The position of this saddle point
can be found from

(166)

0 b
which finally gives
(1-20) W o 28f
=——>" —1 Ve =——. 168
"0 2n(1 —v) V{0 & €7 e (168)

The scale ry for germanium is ry = 107 cm.

5.2 Logarithmic relaxation

In discussing the relaxation phenomena involving charged
dislocations we cannot ignore the logarithmic relaxation
mechanism. This specific mechanism is observed only for
linear charged defects and was discovered by Figielski and
his colleagues [62] (Fig. 23). This is one of the nonlinear
effects described by Eqn (155).

Let us assume that initially there is an abrupt change &f
in the occupancy factor, which tends to reduce it. Recovery
of the equilibrium then occurs mainly by inflow of electrons
from the bulk of a semiconductor to a dislocation (the
outgoing term is unimportant). If we additionally assume
that

26°8f

f=fo+8f, 8f<f,, but >1,

(169)

we find from Eqn (155) that
8f =1, exp (—A81) .

n
1.0 - oo—
10°G, — - Logarithmic relaxation
0.8 -
10°G, —
0.6 -
102Gy —
04 °
02 F10Gy, — — — Exponential relaxation
G _____________
0 0

Time

Figure 23. Low-temperature relaxation of the photocurrent in n-type
germanium containing charged dislocations. The horizontal dashed
lines represent different initial illumination intensities [62].

0
o = (o0} nog (1 — fo) exp (%) , (170)
2
_2 ke
eal ¢y
or
exp(A48f) — 1= g , Adf=In <1 +g) . 171)

Here, Vé) is given by expression (168).

The result, &f o< In ¢ is specific to linear charged defects.
At present, this property is used widely for the diagnostics
of charged dislocations in the investigated crystals. It
appears very effectively in DLTS experiments on charged
dislocations (see, for example, Ref. [66]). However, a
discussion of the details of the DLTS experiments is
outside the scope of this review.

6. Conclusions

We shall conclude this review by pointing out once more
that the majority of the experimental data on charged
dislocations in germanium and silicon can be explained in a
self-consistent manner by a system of levels shown in
Fig. 5. This system is of phenomenological origin, i.e. it
does not answer the question of the actual positions of
levels in the band gap of a semiconductor or on the
smallness of the capacities C; of the lower acceptor levels
E,. Nevertheless, the system is very useful.

Various spectroscopic methods for the investigation of
dislocations in semiconductors are being developed rapidly.
These methods can provide information on the role of the
deformation potential, on the influence of splitting of
dislocations, on the specific effects of point impurities
localised near the cores of charged dislocations, etc. These
topics require a separate review.
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