
Physics-Uspekhi 38(8) 845 -875 (1995) ©1995 Jointly Uspekhi Fizicheskikh N a u k and Turpion Ltd 

PACS numbers: 61.72.Lk; 71.55.Cn; 72.80.Cw 

Charged dislocations in semiconductor crystals 

V B Shikin, Yu V Shikina 

Contents 

1. Introduction 845 
2. Equilibrium properties of a charged dislocation in n-type semiconductors 848 

2.1 Screening length; 2.2 Spectrum of electrons on a charged dislocation; 2.3 Determination of the filling factor 
3. Charged dislocations in p-type semiconductors 855 

3.1 Neutra l model of the a c c e p t o r - d o n o r action of dislocations; 3.2 Coulomb correction to the model; 3.3 Origin of an 
a c c e p t o r - d o n o r level; 3.4 Inversion of the type of conduction in plastically deformed n-type semiconductors 
3.5 Inversion of the type of conduction in germanium 

4. Current-voltage characteristic of a sample with charged dislocations 863 
4.1 Cur r en t -vo l t age characteristic of a barrier with saddle points; 4.2 Parameters of saddle points; 4.3 Influence of random 
fluctuations of the barrier profile; 4.4 Experiments on dislocation barriers; 4.5 Cur ren t -vo l t age characteristic of a single 
charged dislocation in a semiconductor 

5. Relaxation phenomena 872 
5.1 Exponential relaxation; 5.2 Logarithmic relaxation 

6. Conclusions 874 
References 875 

Abstract. The current s ta tus of the subject of charged 
dislocat ions in ge rman ium and silicon semiconductor 
crystals is discussed. Equi l ibr ium proper t ies of plastically 
deformed ge rman ium and silicon are described by a 
phenomenolog ica l mode l of the electron spectrum of 
charged dislocat ions in these crystals. This mode l is a 
development of the S h o c k l e y - R e a d theory and it 
pos tu la tes two acceptor levels, Ej and E 2 , and also one 
donor level, E\. Moreover , it is necessary to in t roduce a 
finite capaci ty £ x of the acceptor level E j . The adop ted 
mode l provides a self-consistent description of the main 
electrical proper t ies of plastically deformed ge rman ium and 
silicon. These proper t ies include the conduct ivi ty of the 
crystals in the n and p states, details of inversion of the 
type of conduct ion caused by dislocations, some features of 
the c u r r e n t - v o l t a g e characterist ics of crystals with or i ­
ented sets of dislocations, simplest re laxat ion p h e n o m e n a , 
etc. In ge rman ium, the level Ej is located near Ej « 0.1 eV 
above the top of the valence b a n d and its capaci ty is 
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Cx<0.\. The cor responding pa rame te r s of silicon are 
Ei w 0.4 eV and Ci < 0 . 1 . It is wor th no t ing the smallness 
of the capacity C l 9 which justifies inclusion of this 
addi t iona l pa ramete r a m o n g the characterist ics of the 
electron spectrum of dislocat ions. 

1. Introduction 
The main ideas on a possible role of dis locat ions in 
de terminat ion of the electric proper t ies of semiconductor 
crystals were pu t forward in the fifties dur ing the per iod of 
r emarkab le progress in the physics of semiconductors . The 
first exper imental results, demons t ra t ing clearly a signifi­
cant influence of dislocat ions on electric proper t ies of 
semiconductors , were obta ined by Gal lagher [1] who 
showed tha t plastic deformat ion of ge rman ium and silicon 
increases their resistivity and reduces the minori ty-carr ier 
lifetime. 

The exper imental results of Gal lagher [1] and a simple 
a tomic mode l of a dislocation core in a covalent crystal 
were used by Shockley [2] to pu t forward a fruitful idea of 
the existence, a long a dislocation, of wha t are k n o w n as 
dangl ing b o n d s tha t can exhibit acceptor or donor p r o p e r ­
ties. Shockley 's idea was developed quant i ta t ively by R e a d 
[3, 4]. R e a d formulated the main propos i t ions of a 
phenomenolog ica l theory of charged dislocations: he 
in t roduced the concept of dislocation electron levels Eh 

the filling f a c t o r / ! of dislocation levels, the rad ius R of a 
R e a d cylinder su r round ing each charged dislocation and 

tTranslator's note. Read called this quantity 'the fraction of the 
occupied states'; other authors use 'the occupation rat io ' , etc. 
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screening the linear charge localised on it, etc. R e a d ' s work 
revealed clearly the main feature of the occupat ion of 
electron dislocation levels by free electrons. In contras t 
to the p rob lem of occupat ion of poin t centres, in the case of 
dislocat ions this p rob lem should be solved tak ing account 
of the C o u l o m b interact ion of electrons which settle on a 
dislocation and of the self-consistent influence of this 
interact ion on the quant i ty / . 

The work of Shockley and R e a d [ 2 - 4 ] and the sub­
sequent experiments (Refs [5, 6]) repor t ing an iso t ropy of 
samples with a set of oriented dislocat ions has determined 
the ' l anguage ' and the main physical pa rame te r s of the 
p rob lem. A l though the general p ic ture is n o w much m o r e 
complex compared with the initial var iant discussed by 
R e a d [3, 4], the impor tance of this early work has no t 
diminished with t ime. 

Extensive exper imental and theoret ical invest igations of 
var ious details of the behaviour of charged dislocat ions in 
semiconductors , which have followed Refs [1 - 4 ] , have been 
summarised on m a n y occasions in a number of interesting 
reviews. A m o n g them one should ment ion par t icular ly a 
chapter wri t ten by Labusch and Schroter [7] in Dislocations 
in Solids (Vol. 5) publ ished in 1980 under the editorship of 
N a b a r r o , the review of Osip 'yan (Ossipyan) [8] publ ished 
somewhat later (1982), and the review of M a t a r e [9]. The 
pu rpose of the present review is to consider the state of the 
p rob lem of charged dislocat ions at the phenomenolog ica l 
level in the late eighties. In view of the rapidly growing 
vo lume of informat ion, we shall ignore almost completely 
the proper t ies of charged dislocat ions in I I - V I semicon­
duc tors (which are discussed in an excellent manne r in 
Ref. [10]) and also the spin-dependent effects, dealt with 
sufficiently tho rough ly in Ref. [8]. 

In the development , at this stage, of a phenomenolog ica l 
descript ion of the proper t ies of charged dislocat ions in 
covalent semiconductors we must bear in mind the 
following repeatedly verified observat ions . 

(1) In t roduc t ion of dislocat ions into n- type semicon­
duc tors reduces the average concent ra t ion of free carriers 
and the reduct ion becomes stronger as a result of cooling. 
In other words , dislocat ions act as acceptors in n- type 
semiconductors . A typical example of such an effect of 
dislocat ions on an n- type semiconductor is demons t ra ted in 
Fig. 1. 

(2) The conduct ivi ty of samples with an oriented set of 
dislocat ions is anisot ropic (Fig. 2), which is evidence of the 
linearity of these defects. 

(3) A n increase in the dislocation density above a certain 
critical value results in inversion of the type of conduct ion 
of a sample. Characterist ical ly, such inversion is a fairly 
ab rup t t ransi t ion, which can be seen clearly in Fig. 3 
i l lustrating the behaviour of the F e r m i level as a function 
of the plastic strain, i.e. of the dislocation density. The 
abrup tness of the t ransi t ion indicates tha t a dislocation has 
at least two acceptor levels, the lower of which is located 
near the top of the valence band . It is also impor t an t to no te 
tha t inversion appears no t when nd w nD, where nd and nD 

are the effective vo lume concent ra t ions of dono r s and 
dislocation acceptor centres (nD =NDa~1; ND is the t w o -
dimensional dislocation density; a is the a tomic spacing), 
bu t under the condi t ions when nd w \0~2nD. This c i rcum­
stance has to be taken into account in the selection of the 
mode l of the lower acceptor level in the spectrum of 
electrons on a dislocation. 

log (ft/cm 3 ) 
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Figure 1. Temperature dependences of the electron density in plastically 
deformed germanium [8]. Here, curve k represents a control sample with 
a donor concentration nd —2.9 x 10 1 3 c m - 3 ; curves 1, 2, 3 represent 
samples deformed to different degrees and characterised by dislocation 
densities of 2.8 x 10 6 , 4.4 x 10 6 , and 6 x 106 c m - 2 , respectively. 
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Figure 2. Dependences of the carrier mobility on temperature T [5]: 
(1) I\\D; (2) I-LD; (3) control measurements. 
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(4) Dis locat ions exhibit a c c e p t o r - d o n o r proper t ies in 
p- type semiconductors . After in t roduct ion of dislocat ions 

e(%) 

the Ha l l concent ra t ion of holes can be lower or higher t h a n 
the concent ra t ion of free carriers in a free sample, which is 
evidence of the a c c e p t o r - d o n o r act ion of dislocation states 
in a p- type semiconductor . A typical example of such 
behaviour of free holes in a deformed sample is given in 
Fig. 4. 

(5) There is a quali tat ive analogy between the behaviour 
of charged dislocat ions in ge rman ium and the behaviour in 
silicon. The analogy is no t absolute , for example, in the case 
of the spin-dependent proper t ies (an ESR signal of 
dislocation origin is observed for silicon bu t no t for 
ge rmanium) . However , in respect of the electric proper t ies 
the similarity between ge rman ium and silicon is qui te close. 

These observat ions determine the degree of complexity 
of a phenomenolog ica l mode l of a charged dislocation 
which can claim to provide a self-consistent descript ion 
of the main observed effects involving charged dislocations. 
These dis locat ions are linear defects with deep discrete 
acceptor levels Et and donor levels £ t in the b a n d gap of a 
semiconductor . The posi t ions of these levels are shown 
schematically in Fig. 5. All the energies are measured from 
the top of the valence band . The posi t ions of the main 
acceptor Ex and donor E\ levels are practical ly identical. 
This follows from Fig. 4 which shows tha t the slope of the 
t empera tu re dependence of the concent ra t ion of holes in a 
deformed sample is practical ly unaffected on t ransi t ion 
from the donor to the acceptor act ion of dislocations, 
i.e. by t ransi t ion across a t empera tu re T = T*. 

Figure 3. Behaviour of the Fermi level F, plotted as a function of the 
plastic strain of silicon crystals [8, 28]. 

i o 3 K / r 

Figure 4. Hole concentration nv in control (A) and plastically deformed 
(o) p-type germanium [7, 25], plotted as a function of T~l; acceptor 
concentration na — 7.3 x 10 1 2 cm 3 and dislocation density ND — 4.6 x 
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Figure 5. Energy level scheme of electrons localised at a 60° 
dislocation in germanium and silicon (a, b , and c show different 
electron transitions). 

The special na tu re of the inversion of the type of 
conduct ion of a deformed sample with increase in the 
dislocation density ND (see Fig. 3) makes it necessary to 
assume tha t the main acceptor level Ex is of limited capacity 
Ci < 0.1. To ensure a unified approach , we shall assume 
tha t all other dislocation levels have specific capacities Ct. It 
will be shown later tha t the existence of finite capacities Ct 

is also sufficient for the observat ion of var ious dislocation 
levels in the spectrum obta ined by the D L T S (deep level 
t ransient spectroscopy) me thod . Na tura l ly , in t roduct ion of 
finite capacities Ct is no t the only possible way of filling of 
higher dislocation levels with electrons. In principle, the 
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same proper t ies m a y be expected of a mode l which takes 
account of the free mo t ion of electrons a long a dislocation 
axis which leads to a finite energy of zero-point v ibra t ions 
a long a dislocation. However , this theoret ical var iant 
cannot account for the abrup tness of the t ransi t ion 
i l lustrated in Fig. 3. 

One of the tasks of our review will be to demons t r a t e 
tha t the p roposed mode l is not in conflict with the var ious 
experiments carried out on n - and p- type samples. W e shall 
assume tha t the pa rame te r s Sh Eh Ch and if necessary also 
St (St are the capacities of donor levels) are found 
experimental ly and are reasonably reproducib le between 
one set of exper iments and another . 

2. Equilibrium properties of a charged 
dislocation in n-type semiconductors 
As poin ted out above, a specific feature of the p rob lem of 
electron occupat ion of the dislocation levels is the need to 
include the C o u l o m b interact ion between electrons tha t 
have settled on a dislocation. The foundat ion s tone of 
R e a d ' s theory [3, 4] and of all its subsequent modif icat ions 
is the correct account of this interact ion and of its influence 
on the process of electron localisation. A systematic 
representa t ion of this theory requires in t roduct ion of a 
number of specific definitions, which are used in the 
descript ion of the equil ibrium and simplest kinetic p r o p e r ­
ties of charged dislocations. 

2.1 Screening length 
2.1.1 W e shall assume tha t an n- type semiconductor with a 
donor concent ra t ion nd contains , at t empera tu res cor re ­
sponding to the complete ionisat ion of the donors , a 
charged filament with the filling factor / : 

f=a-
c 

( i ) 

Here , a is the lattice per iod a long the dislocation axis and c 
is the average distance between electrons on a dislocation. 
The poten t ia l cp of a charged dislocation falls away from 
the axis because of the screening by the ionised donors . If 
over the whole region where cp(r) is defined the inequalit ies 

ecp <i 1, 0 ^ r < oo (2) 

are obeyed (T is the absolute t empera tu re and r is the 
distance from the dislocation axis), the general Poisson 
equat ion 

4ne , 
Acp •• - (nd - ne) , 

ne(r) = nd expf -
ecp 

(3) 

(3a) 

m a y be linearised: 

4%e2nd 

A<P = — <P. 

Here , s is the permit t ivi ty of the semiconductor . This 
equat ion becomes dimensionless as a result of subst i tut ion 
of the quant i t ies 

4neznd 

where r D is the familiar screening length applicable to weak 
electrostatic fields, k n o w n as the Deb ye length. 

2.1.2 In the p rob lem of screening of a charged dislocation 
the si tuat ion is the reverse of tha t described above, because 
in a wide range of distances 0 < r ^ R from the dislocation 
axis the following inequali ty is obeyed: 

ecp 
> 1 (5) 

which is oppos i te to tha t in expression (2). If this range 
r ^ R satisfies 

(6) 

then within this range we can simplify the p rob lem still 
further by assuming tha t ne <^ nd. The Poisson equat ion 
then reduces to 

Acp : 
4ne nd 

(7) 

The solution of E q n (7) with the 'geometr ic ' b o u n d a r y 
condi t ion 

dcp 
87 0 (J) 

and subject to the simplifying assumpt ion cp\r=R w 0 is as 
follows: 

2 > 

cp{r) : 
sa 

2 In 
R r 

(8) 

nR nA 

J_ 

a 

The quan t i ty R, defined by expression (8), was first 
in t roduced by R e a d [3, 4] and has since been called the 
R e a d radius . The physical mean ing of this quan t i ty is qui te 
simple. In the geometr ic approx imat ion , i.e. i f /? > r D , the 
quant i ty R is the distance at which the field of a charged 
dislocation is compensa ted by the field of ionised donors . 
Na tura l ly , a full p ic ture of the screening is m o r e complex. 
However , if R > r D , we can usual ly ignore the Debye 
screening and consider only the R e a d screening. 

The rat io of the R e a d and Debye lengths can be 
obta ined from expressions (4) and (8): 

R^_ 
r2 

4e2f 
saT 

This rat io is large if 

saT 

(9) 

(10) 

In the real cases of ge rman ium and silicon, when 0.1, 
the rat io defined above can reach T ^ 10. U n d e r these 
condi t ions the R e a d screening mechanism is the dominan t 
one. 

It should be poin ted out tha t , apar t from the electro­
static forces between a dislocation and free electrons, there 
is also a deformat ion interact ion V^(r, 6) discussed in detail 
below. This interact ion is no t cylindrically symmetr ic: 

const 
sin(0) 

where 6 is the angle measured from the glide p lane of an 
edge dislocation. Therefore, the overall d is t r ibut ion of 

<4> 



Charged dislocations in semiconductor crystals 849 

electrons a r o u n d a charged dislocation depends , in 
principle, on the angle 6. However , the deformat ion 
poten t ia l V% decreases with distance as 1/r, whereas the 
electrostatic po ten t ia l cp{r) given by expression (8) depends 
logari thmical ly on r. F o r this reason, at distances r^R, 
where a R e a d cylinder is formed, the deformat ion 
interact ion can be ignored or it can be included by 
means of pe r tu rba t ion theory. 

One m o r e seemingly self-evident simplification has to be 
discussed separately. This is related to the role of holes in 
the de terminat ion of the proper t ies of a charged dislocation 
in n- type semiconductors . The equil ibrium concent ra t ion 
of holes far from a dislocation is exponential ly small and its 
cont r ibut ion to the charge dis t r ibut ion in the vicinity of a 
charged dislocation would seem to be negligible: 

ftp = n*(T) exp < nd . (11) 

H e r e n*(T) is the density of the hole states in the valence 
b a n d and F is the F e r m i level. However , holes are a t t rac ted 
to negatively charged dislocat ions and the a t t rac t ion is no t 
trivial. To deal with this, we shall calculate the to ta l 
number of holes pulled into a R e a d cylinder: 

• f ( T = 27l/ln -r l - R1 
rdr . (12) 

where cp{r) is described by expression (8) and r by 
expression (10). The value of N+ depends in a step-like 
manne r on the pa ramete r r. If r < 1, the integral in 
expression (12) is governed pr imari ly by the distances 
r^R: 

N+ = TzR2np exp ( ~ r ) x r e x p ( r x ) d x 

= nR nv exp -F -F 
2-F 

(12a) 

In this limit the localisation of holes on a charged 
dislocation is u n i m p o r t a n t . 

However , if F > 1, the main par t of the integral in 
expression (12) for N+ is governed by the short distances 
r ^ c. As a result, expression (12a) should 'pass ' across a 
singularity characterised by r = 1, and this cor responds to 
a step-like increase in N+ in a n a r r o w range of the 
pa ramete r r. The presence of such a j u m p in the depend­
ence on T m a y give rise to the effects discussed below. 

2.1.3 The Debye and the R e a d simplifications of the 
Poisson equat ion for charged dislocat ions in an n- type 
semiconductor do no t exhaust all the limiting cases 
encountered in experiments . F o r example, when electrons 
begin to settle at dono r s and the definition of ne(r) given by 
expression (3a) becomes invalid, the range of the p a r a ­
meters describing this s i tuat ion deserves special a t tent ion. 
In this case the s t ructure of the t rans i t ion region, ma tch ing 
the region of complete ionisat ion of dono r s in the vicinity 
of a dislocation to the unpe r tu rbed pa r t of a crystal, differs 
considerably from the Debye case, so tha t we can speak in 
general of the thi rd (in addi t ion to the Debye and R e a d ) 
var iant of the screening of the field of a charged dislocation 
in an n- type semiconductor . 

The details of this case can be considered if in solving 
the Poisson equat ion we go beyond the geometr ic a p p r o x ­
imat ion represented by expression (7a) in order to ob ta in 
informat ion on the real behav iour of the poten t ia l cp{r) in 
the t ransi t ion region. In the case of complete ionisat ion of 
donors , i.e. when expressions (3) and (3a) apply, the 
solut ion of interest to us can be obta ined as follows. 

Firs t of all, it is easily demons t ra ted tha t the general 
cylindrically symmetr ic solut ion given by expression (8) for 
cp{r) near the b o u n d a r y of a R e a d cylinder R has the 
asympto te : 

cp(r) = 
2nendx 

x = R x <R (13) 

In the same approx imat ion characterised by x/R <̂  1, 
the exact equat ion for cp(x) in the t ransi t ion region follows 
from expressions (3) and (3a): 

0" = [1 - exp (-0)] , d> ' = 4 f , ( I 4 ) 

where 

0 = ecp 

dx 

sT 
4nnde2 

and r D is the Debye rad ius when the electron concent ra t ion 
is n = nd. 

The first integral of the above equat ion for <P, with a 
cons tant of in tegrat ion selected to ensure vanishing of the 
function 0' in the limit 0 —> 0, is 

0' = V2[0 - 1 + exp (-0)]1/2 . (15) 

Consequent ly , the dependence 0{x) is given by the 
relat ionship 

f d0 R~ 

- — — = ±V2 (x + C) , (16) 
J [0- 1 + e x p ( - ^ ) ] 1 / 2 

where C is an a rb i t ra ry constant . 
W e shall n o w assume tha t at large values of x the 

coord ina te dependence of 0, which follows from re la t ion­
ship (16), is identical with the coord ina te dependence given 
by expression (13). Since in the range of high values of 0 
relat ionship (16) becomes 

0 = Q.5{x + C ) 2 (16a) 

we find tha t the asympto tes of cp(x) described by 
expression (13) and (16a) are identical if we assume tha t 
C = 0. In other words , the solut ions for cp described by 
expressions (13) and (16) are matched asymptot ical ly if the 
origin in solution (16) coincides with the geometr ic 
b o u n d a r y r = R of a R e a d cylinder. 

In pract ical calculat ions it is convenient to subst i tute 
suitable limits in the integral in expression (16): 

d<2> 

<£R [0-1 + e x p ( - 0 > ) ] 
1/2 ±yfl: (17) 

(17a) 

where the constant 0 R is defined by the condi t ion 
•oo /»0 

n(x, 0R) dx = \ [l - n(x, 0R)] dx , 
Jo J - o o 
n(x, 0) = 1 - exp (-0) . 

The general ideas on the b o u n d a r y of a R e a d cylinder 
m a k e it possible to use the auxiliary definition of 0 R in 
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Figure 6. Behaviour of the Coulomb energy of free electrons $ and of 
the concentration of ionised donors n in the vicinity of the boundary 
of a Read cylinder, which is represented by a dashed line. The local 
concentration n(x) is reduced to the bulk concentration of donors nd, x 
is in units of the Debye radius r D , and the Coulomb energy ecp is 
reduced to temperature (<& — ecp/T). 

finding the value of <PR and in discussing other topics. This 
definition is n(&R) = \, where n(&) is the charge density 
relat ionship (17a). Wri t ten out explicitly, the definition of 
0 R is 

1 - e x p ( - * £ ) : 
1 

(18) 

Hence , we have & R = 0.693. The correct value of & R 

ob ta ined from relat ionship (17a) and represent ing the 
electric po ten t ia l on the surface of a R e a d cylinder is 
close to the definition of <PR given by expression (18). 

Fig. 6 shows the dependences <P(x) and n(x) tha t follow 
from definitions (17), (17a), and (13). It is interest ing to 
no te tha t in the process of electron screening the real 
t rans i t ion region is smeared out no t over one bu t over 
five to six Debye radii . 

Let us assume tha t the t empera tu re of a sample is close 
to the freeze-out t empera tu re of free electrons. In this limit 
the F e r m i level is given by the expression [11]: 

F° = - 0 . 5 £ d + 0 . 5 r i n ^ - (19) 

where m* is the effective mass of an electron and Ed is a 
dono r level measured from the b o t t o m of the conduct ion 
b a n d . Ne is the density of states in the conduct ion b a n d . 
Consequent ly , the expression for the F e r m i level in an 
external field becomes 

ecp (20) 

The cor responding dimensionless equat ion for <P, which 
replaces E q n (14), is 

1 cp" = 1 -
1 + a exp 0 

- a exp (-0) = n(<P) , 

where 
1/2 

exp 2T 
< 1 • (21) 

The first te rm on the r igh t -hand side of the above 
equat ion represents the charge a r o u n d a dislocation 
cont r ibuted by ionised dono r s in the field of a charged 
filament and the second term is the cont r ibut ion m a d e to 
the charge concent ra t ion by free electrons. In the limit 
0 —> 0, the r igh t -hand side of Eqn (21) vanishes. 

The first pa r t of E q n (21) is 
f\2 1 + a e x p 0 R , 

In Y + a l _ a l . e x P (~®) - * J • (22) 

The dependence &(x) is given by the relat ionship 

1 + a exp 0 
1 + a 

+ a [exp (-0) - 1 i f - ±V2x 

where, as above, the constant 
condi t ion 

(23) 

is found from the 

n(x,$R)dx = [1 -ft(x,<2>R) 
Jo J - o o 

dx (24) 

and $(x) is found from relat ionship (23). 
The expression for $(x) given by relat ionship (23) can 

readily be investigated numerical ly in exactly the same way 
as has been done in the electron screening case discussed 
above (Fig. 7). However , in the present case the usefulness 
of the one-dimensional analysis is limited because the 
t ransi t ion region is greatly smeared out and its one -
dimensional descript ion is no longer correct. 

Figure 7. Dependences <&(x) and n(x) plotted for different values of a. 
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In an analysis of this s i tuat ion it should be poin ted out 
tha t <PR defined by the condi t ion n(<PR) w 0.5 is much 
greater t han unity: 

0 R = In - > 1 (25) 

This c i rcumstance distinguishes sharply the case of screen­
ing of the field of a charged filament by localised electrons 
from the screening by free electrons discussed above. In 
fact, in the localised electron screening a R e a d region, 
where all the d o n o r s are ionised, exists only if 0 ^> &R. The 
general equat ion for this region [Eqn (21)] wri t ten down in 
te rms of the cylindrical Laplace opera to r A becomes 

A0 = 1 (26) 

A new region then appears which is no t encountered at all 
in the screening by free electrons: 

A<P = 2a sinh(0>), <PR > <P ^ 1 . (27) 

Only if 0 ^ 1 does the poten t ia l 0 app roach zero 
exponential ly: 

A0 w 2a0 . (28) 

It follows tha t the appearance of a new small pa ramete r 
a in the p rob lem greatly complicates the s t ructure of the 
b o u n d a r y of a R e a d cylinder. 

The essential details of this l imiting case are best 
considered, as in the initial var iant of the descript ion of 
the field a r o u n d a charged filament [with a definition of 
q>(r) given by expression (8)], by obta in ing the final results 
of the dis t r ibut ion of the potent ia l on the assumpt ion of a 
step-like charge dis t r ibut ion a r o u n d a charged filament: 

n ( r > \ n e , R d ^ r ^ R e , 
(29) 

where 

ne = nda, a <̂  1 [see Eqn (21)] . 

The quant i ty ne is the concent ra t ion of free electrons. The 
physical p ic ture of such a dis t r ibut ion of the screening 
charge concent ra t ion is as follows. In the region r ^ Rd all 
the dono r s are ionised. The rad ius of this region is set by 
the condi t ion 

ecp(Rd) « 0 . 5 £ d . (30) 

However , a posit ive charge inside this cylinder is insufficient 
for to ta l screening of the field of such a charged filament. 
Consequent ly , the filament field extends beyond the limits 
of the first j u m p in the charge concent ra t ion . In the region 
defined by Rd ^ r ^RQ the field ampl i tude is insufficient 
for complete ionisat ion of the donors . Therefore, the 
screening is then possible only because of the low 
concent ra t ion of free electrons nQ <^ nd. Obviously, the 
dis t r ibut ion n(r) described by expression (29) is no t very 
close to the real smooth dis t r ibut ion of the charge 
concent ra t ion of Eqn (21). Nevertheless , it does have the 
necessary characteris t ic proper t ies and it can be used to 
solve completely the cylindrically symmetr ic p rob lem of the 
potent ia l . The following b o u n d a r y condi t ions are used to 
solve this p rob lem: 

<p(Rd + 0) = <p(Rd - 0 ) , cp\Rd + 0) = <p'(Rd - 0) , 

which is supplemented by condi t ion (30) tha t determines all 
the specifics of the s i tuat ion. 

A solution of the appropr i a t e boundary -va lue p rob lem 
gives the following final expression for Re and the equat ion 
for the de terminat ion of Rd: 

Ri 
R2-Rl 

' 2 V C In [or1 (1 - x 2 ) ] ' R 

Vc = e2nAE~lnR2 , 

(32) 

(33) 

(34) 

where R is the R e a d rad ius of the p rob lem. 
Accord ing to E q n (33), the donor screening rad ius Rd is 

less t han the R e a d rad ius R to the extent tha t the pa rame te r 
y = EdVcl differs from zero. The electron rad ius Re obeys 
Re>R if a <| 1. 

Let us n o w consider the l imitat ions of the donor 
screening theory. As poin ted out above, the appea rance 
of an addi t iona l step in the dis t r ibut ion of the charge 
concent ra t ion a r o u n d a charged dislocation is due to the 
app roach of the chemical po ten t ia l to the value F —> 0.5Ed. 
This a sympto te of F applies to a semiconductor with one 
type of impur i ty at t empera tu res as low as we please. If in 
addi t ion to dono r s this sample conta ins only also a small 
a m o u n t na of an acceptor impuri ty , the chemical po ten t ia l 
remains in the vicinity of F w 0 . 5 £ d only as long as 
nd ne na. Fu r the r cooling causes the chemical po ten t ia l 
to app roach the value F —> Ed and the reasons for an 
addi t iona l step disappear . Therefore, the necessary condi ­
t ions for the existence of an addi t iona l step are 

nd > ne > na , (35) 

which m a y be obeyed in the vicinity of the freeze-out 
t empera tu re of free electrons. 

The one-dimensional descript ion of the t rans i t ion region 
is valid if 

-1/2 <R (36) 

The definitions of Rd and Re given by expressions (32) 
and (33) follow from the solution of the cylindrically 
symmetr ic p rob lem. These definitions are reasonable if 
the first of the steps in the dis t r ibut ion n(r) is sufficiently 
steep. Therefore, these re la t ionships are valid only in the 
range of quite low tempera tu res and are basically qua l ­
itative, bu t they allow us to distinguish clearly between the 
quant i t ies R, Rd, and Re. 

2.2 Spectrum of electrons on a charged dislocation 
In the case of a shal low dislocation level the spectrum of 
electrons on a charged dislocation can be found by solving, 
in the one-band approx imat ion , the relevant Schrodinger 
equat ion , which conta ins the initial a t t ract ive poten t ia l 
VD(r) of dislocation origin and the C o u l o m b field of a 
charged dislocation Vc(r): 

Vc(r) = ecp(r), q>(r) from solution (8) , 

[£(p) + VD(r) + Vc(r)]ilf = Eilf9 (37) 

where xjj is the wave function of an electron, m* is the 
effective mass of an electron, A and p are the Laplace and 
m o m e n t u m opera tors . Examples of solut ions of this 

<p(Rc)=0, cp'(Re) = 0, ( 3 1 ) 
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p rob lem can be found in a number of theoret ical papers , 
such as Ref. [12]. 

At first sight, an increase in the depth of an effective 
dislocation well seems to complicate the si tuat ion because 
the one-band approx ima t ion can no longer be used. 
However , we can say tha t this s i tuat ion simplifies because 
we are no t interested in a complete solution of the p rob lem 
of the spectrum of electrons on a dislocation, bu t only in the 
deform-at ion of this spectrum by the C o u l o m b interact ion. 
The poin t is this: under the condi t ions of s t rong localisation 
of electrons on a dislocation, which in real semiconductors 
m a y be only a few in tera tomic spacings, the average 
C o u l o m b field near the axis of a charged dislocation is a 
much smoother function of the coord ina te r t han the 
effective potent ia l energy VD(r) of dislocation origin. In 
such a s i tuat ion the initial equa t ion (37), where S(p) is n o w 
a complex function of the electron q u a s i m o m e n t u m /?, 
reduces to 

[£(P) + V d M ] <A = [Ej(p\\) - V C ( 0 ) ] «A , (38) 

where Vc(0) is the average value of the C o u l o m b energy in 
the vicinity of the axis of a charged dislocation and Ej(p\\) 
are the eigenvalues of the wave equat ion (38) for an 
electron located on a charged dislocation. The index j in 
the definition of Ej labels the discrete q u a n t u m n u m b e r s 
cor responding to the t ransverse mo t ion of an electron in 
the field VD(r)+ Vc(r) and the m o m e n t u m p^ represents 
the mot ion of an electron a long the dislocation axis. 

It follows from E q n (38) tha t the p rob lem of deep levels 
of an electron on a dislocation can be reduced to a p rob lem 
free of the C o u l o m b interact ion by new no ta t ion : 

Ej{pn)-Vc{0)=Ej°{pn), (39) 

where Ef(p\\) is the dispersion law of electrons on a 
dislocation in the absence of the C o u l o m b interact ion. 
Therefore, the C o u l o m b interact ion leads to a simple shift 
of the pos i t ions of all the deep levels by an a m o u n t 

£ / P | | ) = £ / ( P | | ) + V c ( 0 ) . ( 4 0 ) 

The separa t ion between adjacent deep levels is no t 
changed. Here , Vc(0) in formula (40) is Vc = eq>(c)9 

where cp(r) is obta ined from expression (8). 
The next p rob lem, which has no t yet been solved in a 

systematic manner , is the dependence of Ej on p\y The first 
indicat ions of the existence of free mo t ion of electrons a long 
a dislocation in silicon were obta ined from studies of the 
spin-dependent effects! repor ted in Refs [13, 14]. However , 
a general view on this topic has not yet been formulated. 

In the absence of informat ion on the na tu re of mo t ion 
of dislocation electrons it is necessary to adop t some mode l 
assumpt ions to pos tu la te free mot ion of an electron with an 
effective mass m* a long a dislocation or by pos tu la t ing tha t 
the electrons are localised. However , it should be po in ted 
out tha t the cont r ibut ion of the longi tudinal mo t ion of 
electrons to the to ta l free energy of dislocation electrons is 
p r o p o r t i o n a l to t empera tu re . On the other hand , in the case 
of deep dislocation levels and not - too-smal l filling factors 
the energies £}(0) and Vc(0) are much greater t han the 
t empera tu re . F o r this reason, in the calculat ion of the filling 
factor / of a dislocation the actual dependence Ej(p^) is 
impor t an t only at t empera tu res eVc(0) < T. In the other 

f i t had been found subsequently that the Lomer dislocations [15] 
participated in the experiments described in Refs [13, 14]. 

l imiting case of eVc(0) > T, which has a wide range of 
validity in the case of deep levels, we can replace 
expression (40) with the approx ima te formula: 

Ej(p\0*E?(O) + Vc=Ej + Vc . (41) 

The quant i t ies Ej are cons tan ts in this theory and should be 
determined experimentally. 

Express ions (40) and (41) al low us to d r aw an impor t an t 
conclusion on the sequence in which the levels Ej become 
occupied. As long as only the lower level Ex in the 
dislocation spectrum is filled, all the other levels should 
be vacant , since the rising value of Vc au tomat ica l ly lifts the 
higher levels with j > 1 above the chemical potent ia l . In 
view of this and since the feasibility of filling different 
dislocation levels has been confirmed experimental ly (see, 
for example, Fig. 3), we have to assume tha t dislocation 
levels have finite capacities Cy which represent addi t iona l 
characterist ics of the levels. W e shall not t ry to calculate the 
values of these capacities or the pos i t ions of the dislocation 
levels in the b a n d gap of a semiconductor , bu t we shall 
assume tha t each of the levels is characterised by two 
pa rame te r s Ej and Cy and their values should be found 
experimentally. 

Un t i l n o w in discussions of equil ibr ium proper t ies of 
charged dislocat ions we have ignored completely the 
deformat ion p h e n o m e n a which can influence the p a r a ­
meters of a charged dislocation. This gap will n o w be 
par t ly filled. 

W e shall begin by discussing the role of the deformat ion 
interact ion between electrons (holes) and a dislocation. In 
the isotropic approx imat ion this addi t iona l (to the C o u ­
lomb) interact ion is described by 

v^r'^) = Wi^0^l-y^w' i = hp> (42) 

where b is the Burgers vector; Wt are the e l e c t r o n - p h o n o n 
interact ion cons tan ts which are of the order of Wt w 10 eV 
for ge rman ium [11] and are in principle different for 
electrons and holes; v is the Poisson ra t io ; $ is the angle 
measured from the dislocation glide plane. Since the energy 
V^(r, $) of expression (42) is a variable-sign quant i ty , we 
can assume tha t there are quas imacroscopic regions in the 
valence and conduct ion b a n d s near which electrons (holes) 
are a t t rac ted or repelled by dislocation. 

Na tura l ly , b o u n d electron and hole states can appear in 
the poten t ia l described by expression (42). In the absence of 
cylindrical symmetry the details of the deformat ion spec­
t rum of electrons and holes on a dislocation can be revealed 
only numerical ly. Calcula t ions [ 1 6 - 2 1 ] give the following 
est imates of the ' dep th ' of the main deformat ion level E% in 
ge rmanium: 

E\ ~ —0.1 eV for electrons , 

E\ ~ +0 .02 eV for holes . (43) 

Such energies can still be regarded as represent ing ' shal low' 
levels and this justifies the one-band approx ima t ion in the 
calculat ion of £ | ' p . 

It is interest ing to no te tha t the relative depth of a 
deformat ion well for holes in the vicinity of a charged 
dislocation m a y vary with the degree of electron occupat ion 
of the dislocation levels. As / increases, the electrons tha t 
have settled on a dislocation begin addi t ional ly to compress 
the lattice in accordance with the familiar p ropos i t ions of 
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Figure 8. Different variants of an analysis of the experimental data of 
Ref. [23] f o r / ( r ) . The dashed curve represents the Read approximation 
characterised by Ex — E2, E2 + Vc — F, and E2 = 0 . 3 4 eV with the 
chemical potential F from Ref. [23]. The chain curve corresponds to 
the definition of f(T) given by expression (47) for a model with two 
levels: E2 = 0.41 eV, C2 = 0.1, Ex = 0.1 eV, Cx = 0.05. The continuous 
f(T) curve is calculated on the basis of expression (47) with the same two 
levels, but with the additional deformation contribution. The crosses are 
the experimental values taken from Ref. [23] The inset shows the 
temperature dependence of the fraction of the volume v occupied by 
dislocation cylinders and calculated from expression (52) for samples 
1-4 with the following dislocation densities ND = 3 x 10 6 , 3.8 x 10 6 , 
5.2 x 10 6 , and 6 x 106 c m - 2 , respectively; nd = 2.8 x 10 1 3 c m - 3 . 

the deformat ion poten t ia l theory . As a result, the energy of 
a single electron on a dislocation decreases by an 
a m o u n t [11] 

V% w WQ divw : 
wjf 

kna3 
(44) 

where the cons tant WQ is ana logous to tha t used in 
expression (42), k is the shear modu lus , and a is the a tomic 
spacing. The existence of an elastic strain p r o p o r t i o n a l to f 
within a tube of rad ius a/f also deforms, in principle, the 
lattice outs ide the dislocation. However , ac tua l calculat ions 
show tha t this effect can be ignored. The influence of the 
interact ion described by expression (44) on the value off is 
demons t ra ted in Fig. 8 (cont inuous curve). 

One further elegant effect of deformat ion origin has no t 
yet been confirmed experimentally, bu t it is wor th a t tent ion 
and it should be taken into account in calculat ions 
preceding the p lann ing of var ious future exper iments on 
electrons at dislocat ions. The effect in quest ion is the self-
localisation of an electron which occupies a dislocation level 
and is, in principle, free to move a long the dislocation axis. 
In reality, this does no t occur because the deformat ion 
interact ion described by expression (44) begins to play its 
par t . This interact ion has the effect tha t , in the one -
dimensional mo t ion which applies in this case, it is 
preferable for an electron to become self-localised in 
some specific scale a long the dislocation axis. The result 
is the mo t ion not of a free electron a long a dislocation bu t of 
a polar quasipart ic le with a significantly renormal ised (by 

the deformat ion interact ion) mass . Such a quasipart icle , first 
investigated for the localisation of electrons on a dislocation 
by V o r o n o v and Kosevich [22], is called a condenson . 

A s tandard m e t h o d for demons t ra t ing such one-d imen­
sional localisation is as follows. The to ta l functional of the 
energy of an electron on a dislocation takes account of its 
interact ion with the lattice deformat ion, is minimised, and 
averaged over the t ransverse mo t ion of an electron. The 
functional obta ined after these steps leads to the following 
one-dimensional equat ion of electron mot ion : 

where 

\x\dz = l 

a « 0.003 , 0 •• 

(45) 

W1 2mWb(\ - 2 v ) 

2%N2(\-v) 

Here , W is defined by expression (42); G is the Y o u n g 
modu lus , a is a numer ica l cons tant which appears in the 
course of averaging over the t ransverse variables, and X is 
the energy. 

The normal ised solut ion of E q n (45), of interest to us , is 

x(z) = VOM c o s h " 1 [k(z - ZQ)] , k = -
%Ti2G2 

(46) 

Therefore, an electron becomes self-localised in the course 
of its mo t ion a long the axis of a charged dislocation. 

2.3 Determination of the filling factor 
A discussion of the equil ibrium proper t ies of charged 
dislocat ions should be completed by a calculat ion of the 
equil ibrium filling factor / of a single dislocation, carried 
out for different limits in respect of the absolute 
t empera tu re , the concent ra t ion of poin t defects, and the 
strain of a sample, W e shall do this for n- type samples 
relying effectively on the informat ion presented in 
Sections 2.1 and 2.2. If the p rob lem is cylindrically 
symmetr ic and the finite mass of an electron moving 
a long the dislocation axis is ignored, and if the inequali ty 
R < N^1^2 is obeyed, the expression for / is 

j = l, ...,J. 

• (E} + V C 

exp I — + 1 (47) 

Here , F is the current value of the chemical potent ia l , 
Vc ~ eq>(c), cp(r) is defined by expression (8), the energy Ej 
and the chemical po ten t ia l are measured from the top of 
the valence band , J is the m a x i m u m serial number of the 
dislocation levels, and ND is the dislocation density. If the 
number of dis locat ions is small so tha t the R e a d cylinders 
of the individual dislocat ions do no t overlap, i.e. if 

— 1/2 

R < ND

 1 , then F can be the value of F for a 
dislocation-free n- type sample. 

If the number of dislocation levels is uni ty ( / = 1) and if 
C\ = 1, the definition off given by expression (47) reduces 
to the p rocedure employed in R e a d ' s pape r s [3, 4]. Then, 
with logar i thmic precision, we can simplify the definition of 
/ addi t ional ly by assuming tha t 

Ex + Vc = F , (48) 
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Rela t ionship (48) is equivalent to the R e a d equat ion: 

Ex +—(2 I n - - 1̂ 1 = F , (49) 
sa \ c J 

which was derived in R e a d ' s first pape r s on the theory of 
charged dislocat ions [here, c has the same mean ing as in 
expression (1)]. 

As the t empera tu re T of a sample is increased, the 
vanishing of the exponent ia l a rgument in the denomina to r 
of the F e r m i function becomes a p o o r approx ima t ion even in 
the case when only one level is present . The general definition 

1 - 1 

f=Cx 

(Ex + Vc 

e x p v — ^ 
+ 1 (50) 

can be reduced to a form convenient for compar i son with 
Eqn (49): 

Ci El+Vc= F F+T\ In 
/ 

(51) 

It is obvious tha t the definition of / given by expres­
sion (51) has a s t ructure similar to tha t given by E q n (49), 
bu t the value of F * is renormal ised. 

In general , / > 1, and there is only one correct way of 
calculat ing / , which is to use general expression (47). 

Pract ical informat ion o n / c a n be derived from a variety 
of experiments . The most popu la r me thod involves m e a s ­
u rement of the Hal l effect in deformed samples [6, 23]. It is 
assumed tha t the Hal l effect measurements give direct 
informat ion on the average concent ra t ion of free carriers 
(electrons and holes) (ne), which is related to the actual 
concent ra t ion ne and the relative vo lume v of the R e a d 
cylinders v^%R2ND by (see Ref. [9]): 

(ne> = n e ( l - v ) , V = KR2Nd (52) 

If (ne) and ne are known , the value of v is readily est imated. 
The measured value of ND can then be used to find R and, 
therefore, f=%R2NDa. The inset in Fig. 8 shows the 
exper imental values of v obta ined by this me thod [23]. 

If the dislocat ions in t roduced into a sample are 
sufficiently collinear, the informat ion on the pa ramete r v 
can be obta ined by measur ing the conduct ivi ty of the 
sample a long and across the direction of these disloca­
t ions, because we then have 

(7|| = ( 7 0 ( 1 - V) , 

<T_L = ^oO - V ) g ( v ) , 
(53) 

where cr0 is the conduct ivi ty of a cont ro l sample and g(v) is 
a s t ructure factor tha t takes into account the bypass ing of 
the R e a d cylinders by free electrons. 

In the exper iments repor ted in Ref. [23] the degree of 
this an i so t ropy of the dislocation dis t r ibut ion was of the 
order of 1 : 5, so tha t it was reasonable to use the definitions 
described by the set of expressions (53). The results of such 
de terminat ion of / with the aid of these expressions give 
values p lo t ted in Fig . 8. 

The dependence f(T) and the value off described by 
expression (47) can be used to find the pa ramete r s of the 
spectrum of electrons on a dislocation. Fig. 8 includes some 
theoret ical curves deduced subject to var ious app rox ima­
t ions: 
— a dashed curve obta ined with the aid of relat ionship (48) 
on the assumpt ion tha t there is one level 
EX=E2 = 0.34 eV; 

— a chain curve obta ined in the approx ima t ion of two 
levels and on the basis of general expression (47). 

It is wor th no t ing tha t var ia t ion of the posi t ion of the 
level Ex and of its capaci ty cannot increase the slope of the 
theoret ical curve so as to reduce the discrepancy between 
the calculat ions and experiments . 

The con t inuous curve in Fig . 8 is p lo t ted in the 
approx ima t ion of two levels t ak ing account of the deforma­
t ion interact ion represented by V^, defined by 
expression (44), on the assumpt ion tha t the wave function 
of an electron localised at a dislocation is smeared out over 
a distance of 9 A. 

The different calculated curves located close to the 
exper imental po in t s demons t ra t e tha t de te rminat ion of 
the value of / on the basis of the t r anspor t of proper t ies 
gives results which are far too ambiguous for de terminat ion 
of the characterist ics of dislocation levels. They should be 
supplemented by D L T S experiments , by informat ion on the 
behaviour of p- type ge rmanium, or by some optical measu re ­
ments which can be interpreted in a consistent manne r . 

G/QT 

KT1 -

10" 

i o - 3 -

10-7 -

20 140 io 3 K/r 

Figure 9. Temperature dependences of the electrical conductivity of 
control ( 7 ) and deformed (2-4) samples obtained in an electric field 
directed along (curves 2 * and 3*) and across (curves 2-4) the 
preferential direction of dislocations. The dislocation densities in 
samples 2-4 were 3.0 x 10 6 , 3.8 x 10 6 , and 5.2 x 106 c m - 2 , 
respectively [24]. 
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It is wor th po in t ing out tha t the behaviour of the 
pa ramete r v for silicon has not yet been investigated in 
the range v < 0.5. 

W e shall conclude our discussion of the experimental ly 
observed effects demons t ra t ing the presence of charged 
linear defects in plastically deformed semiconductors by 
no t ing an excellent quali tat ive result ob ta ined very early 
on [5] in a s tudy of the influence of oriented dislocat ions on 
the conduct ivi ty of a crystal, investigated subsequent ly in 
greater detail [24]. W e are speaking here of a s t rong increase 
in the an iso t ropy of a semiconductor conta in ing disloca­
t ions when its t empera tu re T is reduced below a certain 
critical value T0 (Fig. 9). 

A qual i tat ive explanat ion of this effect is as follows: 
when the t empera tu re T = T0 is reached, the R e a d cylinders 
of adjacent dislocat ions come into contact and the flow of 
the current in the direction n o r m a l to the dislocation axes 
becomes difficult. Therefore, the posi t ion of the poin t T0 

can be est imated from 

R(T0)*N~1/2, (54) 

where ND is the dislocation density in the semiconductor . 
If the dislocation density changes, this should alter the 
t empera tu re T0 in accordance with the est imate given by 
expression (54) and in accordance with the definition of the 
R e a d rad ius 

nR2nd =- , 
a 

where the filling factor varies approximate ly linearly with 
t empera tu re (Fig. 8). The measurements repor ted in 
Ref. [24] confirm tha t the t empera tu re T0 decreases on 
reduct ion in the dislocation density, in accordance with 
expression (54). 

3. Charged dislocations in p-type 
semiconductors 
Let us n o w tu rn to p- type semiconductors . As first no ted by 
Schroter [25], dislocat ions formed in p- type ge rman ium 
have s imultaneously b o t h acceptor and donor proper t ies . 
This follows from the exper imental t empera tu re dependence 
of the concent ra t ion of free holes in samples before and 
after plastic deformat ion (Fig. 4). At t empera tu res T < T*, 
the concent ra t ion of free holes nv in a deformed sample is 
less t han the cor responding density in an undeformed 
cont ro l sample njj, which can be explained by the donor 
action of the dislocations. At t empera tu res T > T*, the 
reverse is t rue: we n o w have nv > njj, which indicates the 
acceptor act ion of dislocat ions in a semiconductor . 

A n analysis of Schro ter ' s results [25] and of those 
repor ted later [ 2 6 - 2 8 ] has been m a d e with the use of 
m i n i m u m informat ion on the proper t ies of charged 
dislocat ions in p- type semiconductors . It has been 
assumed specifically tha t at T = T*, when dislocat ions 
are neut ra l , the F e r m i level F coincides with the posi t ions 
of a dislocation level E0: 

F(T*)=E0 . (55) 

At first sight this hypothes is seems reasonable and it 
allows us to est imate E0 (according to Refs [ 2 5 - 2 7 ] , in the 
case of ge rman ium we have E w 0.09 eV above the top of 
the valence band ) . However , a n u m b e r of quest ions of 
quali tat ive impor tance remain unanswered . Firs t of all, wha t 

is the n a t u r e of the level £ 0 : acceptor or donor? H o w can the 
vanishing of the filling f a c t o r / o f dislocation levels under the 
condi t ions described by expression (55) at a finite t empera ­
ture T = T* be explained? There is no doub t tha t this occurs 
(at T = T* the concent ra t ions of holes in the deformed and 
cont ro l samples are identical, indicat ing the absence of 
excess electrons at dislocations), bu t its in terpre ta t ion is 
no t clear. Finally, a less obvious quest ion: can the mode l of a 
charged dislocation with one phenomenolog ica l pa ramete r , 
which is the posi t ion E0 of a dislocation level in the b a n d gap 
of a semiconductor , describe satisfactorily the proper t ies of 
np(T) at high t empera tu res T T*? In fact, we can assume 
tha t in this range of t empera tu res T the dis locat ions act as 
acceptors . U n d e r the condi t ions such tha t T 5> T* the 
average concent ra t ion of holes nv(T) in a deformed sample 
is much higher t han the concent ra t ion of holes njj in a 
cont ro l sample, so tha t in discussing the si tuat ion at T ^> T* 
we can ignore the concent ra t ion of poin t acceptors . As a 
result, the quest ion of the electron occupat ion of a 
dislocation and, in par t icular , the solut ion of the a p p r o ­
pr ia te electrostatic p rob lem, reduces to a descript ion of the 
interact ion between a negatively charged dislocation and a 
cloud of holes su r round ing it. 

np/m 

10 1 5 I 1 1 1 1 1 
0 5 10 15 20 

i o 3 K / r 

Figure 10. Behaviour of np(T) in the neutral approximation for 
Ei — Si — EQ, SI — 1. The parameters EQ and C \ were determined 
from the experimental [27] position of T — T* and from the slope of 
the np(T) curve at this temperature. This gave E0 — 0.077 eV, 
Ci = 0 . 1 4 4 . Curves 1 -6 correspond to the dislocation densities 
3.5 x l O 1 1 , 2 x l O n , 7 x l 0 1 0 , 4.5 x 10 1 0 , 10 9 , and 107 m~ 2 . The 
dislocation densities ND for curves 1-4 were taken from Ref. [27]. 
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The electrostatic p rob lem formulated above has an 
exact solut ion [29, 30]. W e shall omit the details of the 
calculat ions, which can be found in Ref. [30], and give only 
the final expression for the average hole concent ra t ion: 

or 

nv{T) 
1 T 

a~R^T~( c sa 
T* < T < Tc . (56) 

Here , a is the a tomic spacing, s is the permit t ivi ty of the 
semiconductor , and R is the average distance between the 
dislocat ions. 

W e can easily see tha t the predict ions following from 
expression (56) are in qual i ta t ive conflict with the observa­
t ions [26, 27], which can be seen from Fig . 10 where the 
dependence nv(T) described by expression (56) is r epre ­
sented by the dashed curve. This conflict can be removed in 
only one way: we have to assume tha t the electron 
occupancy of a dislocation level is limited not only by 
the C o u l o m b forces [taken into account in the derivat ion of 
expression (56)], bu t also by other factors of nonelectr ic 
origin. 

In view of this, it is necessary to complicate the mode l of 
the spectrum in order to describe the proper t ies of a p- type 
semiconductor with a fairly high dislocation density: 

(a) the spectrum should have two levels in the lower pa r t 
of the b a n d gap, an acceptor Ex and a donor E\\ 

(b) the levels Ex and E\ have finite capacities Cx and Sx. 

3.1 Neutral model of the a c c e p t o r - d o n o r action of 
dislocations 
If in addi t ion to the assumpt ions (a) and (b) identified 
above, we also pos tu la te tha t the dislocation density ND is 
sufficiently high, then electrons (holes) settling on a 
dislocation hard ly interact with one another and the 
statistics of a semiconductor with dislocat ions resembles 
a similar p rob lem of dop ing by point- l ike impuri t ies . In 
par t icular , we can use the condi t ion of local neutra l i ty [31], 
which is represented by the following equat ion for the 
F e r m i level F: 

NY(T)QxV + 
nd 

1 + e x p [ - ( < ? ! - F ) / r ] 

l+QXV[(El-F)/T] + < (57) 

H e r e na is the concent ra t ion of po in t acceptors ; Ex and £ x 

are the posi t ions of the acceptor and donor levels in the 
b a n d gap of the semiconductor ; na=NDCi/a and 
nd=NDSi/a are the effective concent ra t ions of disloca­
t ion acceptors and donors ; Cx and Sx are the cor responding 
capacities of the dislocation levels; NY(T) is the density of 
the whole states in the valence b a n d . The np(T) curve 
passes t h rough the poin t T = T* wi thout a kink, as found 
experimental ly [ 2 5 - 2 7 ] , if 

Ei Si = E0 . (58) 

W e shall adop t this addi t iona l p ropos i t ion and in t roduce 
the no ta t ion 

x = exp n0 = NY(T) exp I -

which modifies E q n (57) to 

n0x + 
\+x \+x + *2 

(59) 

(60) 

1 + ^ _ « a 

+ 

n0 

1 

4 

0\ 2 On 1/2 

In the case of interest to us we have 

nd > na > n°a , 

so tha t expression (61) simplifies to 
o 

T r 
x 

| _«a_+_n a 

n0 + nd • n. o 

Hence , it is seen quite readily tha t in the limit T 
obta in 

(61) 

(62) 

(63) 

• oo, we 

n0 > nd , x 
1 

n0 

(«a+«a)9 np(T) =n0x =na+na . (64) 

The asymptot ic expression (64) for nv(T) can be used to 
est imate the capaci ty Cx from the k n o w n exper imental 
values of ftp(oo) and ND. Accord ing to Ref. [26], we have 
Wp(oo) = 1 0 2 0 m " 3 and ND = 3.5 x 1 0 1 1 m " 2 , so tha t 

Ci w 0.13 . (65) 

The poin t T* is of interest, which in te rms of the 
quant i t ies defined by expressions (59) and (60) is described 
by the following equalities: 

— na x * = x ( r * ) , (66a) 

«o = "0 C O 

C i 

Si n0(T*) 

(66b) 

(67) 

Obviously, the value of T* is independent of the dislocation 
density, i.e. all the dependences nv(T) ob ta ined for different 
dislocation densities should intersect at one poin t T = T*, 
which is indeed t rue . Next , since the exper iments repor ted 
in Ref. [27] do not suggest tha t Si is par t icular ly small, we 
can assume tha t S j w l . Then , expressions (66) and (67) 
provide the definition of the energy £ 0 : 

x*=^± or E 0 = F ( T ) - r \ a ^ (68) 

The definition of E0 given by the above expression is 
identical with expression (55) in the special case when 
c x = s x . 

The slope of the dependence nv(T) at the poin t T* is 

dftn 

dOr- 1 ) 
n0 

. E0n0na (69) 

As ND t ends to zero, the slope na tura l ly also tends to zero. 
However , numerical ly this dependence is too weak to 
account for the observed dispersion of the np(T) curves 
considered as a function of ND. Fig. 10 gives the 
numerical ly calculated dependences nv(T), p lo t ted in 
Ref. [31] on the basis of the definition nv =xn0 and of 
the expression (61) for x. These dependences agree well 
with the exper imental results [26, 27] in a wide range of 
t empera tu res for dislocation densities ND equal to 
3.5 x 1 0 1 1 and 2 x 1 0 1 1 m ~ 2 , bu t they disagree in the 
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range ND < 7 x 1 0 1 0 m - 2 . The reason for this disagreement 
m a y be the C o u l o m b interact ion between charges on 
dislocations, because this interact ion becomes stronger at 
lower dislocation densities. 

3.2 Coulomb correction to the model 
The asymptot ic proper t ies of the neu t ra l mode l are 
considered above (Section 3.1) in the limiting case when 
Ex = £i, Sx —> 1. In general, it is necessary to use numer ica l 
me thods . If we assume, as in Section 3.1, tha t Ex = £x, 
Si —> 1, we obta in the dependence of the hole concen t ra ­
t ion ftp on T [32]. The small difference between the 
pa rame te r s E0 and Cx obta ined from Fig. 10 and those 
deduced from analytic est imates (Section 3.1) is due to 
different m e t h o d s of fitting the exper imental da ta [27]. In 
Section 3.1 the t empera tu re T* and the asymptot ic value of 
ftp are used at high tempera tures . In Fig. 10 the fitting 
involves the value of T* and the slope of the dependence 
np(T) at T*. 

A shor tcoming of the neu t ra l mode l is a weak sensitivity 
of ftp(7") to the dislocation density ND in the range 

<Nv, where is the asymptot ic value of ND at 
which ftp(r) ceases to depend on ND. Na tu ra l ly , as ND 

t ends to zero, the dependence ftp(7") t ends to the cont ro l 
value ftp1 (Fig. 10). H owever, this dependence is insuffi­
ciently s t rong to explain the da ta repor ted in Refs [26, 27] 
for the range of small strains. The pu rpose of this section is 
to discuss possible factors tha t can increase the sensitivity of 
the mode l to the dislocation density. There are two such 
factors: the different depths of the levels Ex and £ x , and the 
C o u l o m b interact ion between electrons tha t have settled on 
a dislocation. 

3.2.1 The role of 2A = Ex — S X in the neu t ra l mode l 
characterised by 

Ex = E0 + A , SX = E0 - A , (70) 

can be identified wi thout in t roducing any addi t iona l 
concepts . W e shall cont inue to use the system of 
definitions given in Section 3.1 or expressions (76) and 
(77) given below, from which the C o u l o m b correct ions are 
removed. The behaviour of ftp(7") expected for the 

i o 3 K / r i o 3 K / r 

Figure 11. Influence of the parameters A/E0 on the behaviour of np(T). 
The parameters E0 and Cx were determined from the position of the 
point T = T* and the value of nv(T) at high temperatures [27]: 
(a) A/E0 = 0.25, E0 = 0.0831 eV, Cx = 0.146; (b) A/E0 = 0.35, E0 = 

0.0835 eV, Cx 

the first four 
Ref. [32]). 

= 0.145. The dislocation densities ND are the same as 
values in Fig. 10 (they are calculated on the basis of 
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condi t ions described in Ref. [27] on the assumpt ion tha t 
Si = 1 is i l lustrated in Fig. 11 for two values of A/E0 

a m o u n t i n g to 0.25 and 0.35. The pa rame te r s E0 and Cx are 
selected on the basis of two poin ts of the dependence nV(T) 
[the posi t ion of T = T* and the value of nV(T) at 
1 0 3 / r ^ 5]. It follows from Fig . 11 tha t , as A increases, 
a fan of the nP(T) curves becomes wider in the vicinity of 
the poin t T = T*. However , beginning from A/E0 ^ 0.25, 
the t empera tu re dependences nV(T) acquire new qual i tat ive 
details (addi t ional bending) , which are no t observed in the 
case of exper imental curves. Therefore, an increase in A so 
tha t it falls in the range A/E0 ^ 0.25 is pointless. 

The width of the fan of the np ( T ) curves in the vicinity of 
the poin t T = T* is nevertheless still insufficient to account 
for the exper imental s i tuat ion [26, 27] and the theory 
should be complicated further by including the C o u l o m b 
effects. 

3.2.2 The C o u l o m b interact ion between the charges on a 
dislocation at t empera tu res in the vicinity of T = T* can be 
divided arbi t rar i ly into two componen t s : 

Vc = V£ + Ve­ il!) 

The energy V c

+ cor responds to the variable-sign dis t r ibu­
t ion of the charge a long a dislocation when the to ta l charge 
is zero. It is obvious tha t Vq ^ 0 at the poin t T = T* and it 
can be described by an expression, which represents the 
form of the M a d e l u n g energy of ionic crystals: 

2 

VR 
sa 

/ + l n 2 , (72) 

where 

f+ = Cx exp + 1 

exp 
-E0 + VC

+ + F 
+ 1 

8 is the permitt ivi ty, a is the a tomic spacing, and F is the 
chemical potent ia l . The energy Vq reduces the energies of 
b o t h acceptors and dono r s of dislocation origin: 

E A = E 0 - V C

+ , E D = E 0 - V C

+ . (72a) 

W e recall, as repor ted in Section 3.1, tha t the experi­
men ta l values of E A and E D [26, 27] are similar in the 
neu t ra l approx imat ion : E A w E D w E 0 . 

The energy Vq appears in the absence of compensa t ion 
of posit ive and negative charges on a dislocation: 

r = cx 

fEa - FN 

+ i 

exp 
F — EA 

+ 1 

W e can assume that 

v - = ^ r l n ( i f -
sa \a 

sT 
Ane2nJT) 

(73) 

(74) 

The Debye screening means tha t Vq given by 
sion (74) can be used only in the vicinity of T*. 

If Vq ^ 0, the energies Ea and Ed are not equal even 
when they are equal in the neut ra l model . In fact, if a 
dislocation as a whole is positively charged, it a t t rac ts 

electrons (the energy Ea decreases) and repels holes (Ed 

increases). As a result, we can assume tha t 

Ea = E0 - V C + A , Ed = E0 + V c " A . (75) 

It is obvious tha t the role of Vq becomes greater away 
from the poin t T = T*. On the other hand , the presence of 
Vq has the greatest effect in the vicinity of T = T*. F o r the 
sake of generality, the definitions of E~ and Ed given by 
expression (75) include A ^ 0 taken from expression (70). 

The posi t ion of the chemical po ten t ia l F± is described 
by the following local neutra l i ty equat ion: 

Af v (r)exp + l + e x p [ ( - £ j + /*)/r] 
NvSx/a 

\+exV[(Et-F±)/T] 
(76) 

which is valid only in the vicinity of T = T*. Here , is the 
concent ra t ion of poin t acceptors , NY(T) is the density of 
states in the valence b a n d , and the concent ra t ion nV(T) is 
related to F± by 

nJT)=NY(T) exp (77) 

The solut ions of E q n s (76) and (77), in combina t ion 
with expression (70) under the condi t ions Vq = 0, gives the 
results p lo t ted in Fig . 11. C o m m e n t s on this figure can be 
found above. In t roduc t ion of the energy V^" in the 
calculat ions, i.e. the use of the system of equa t ions (76) 
and (77), together with expressions (72) and (72a), results in 
a slight renormal i sa t ion of E0 and has practical ly no effect 
on the fan of the nV(T) curves (the effect is less t han 10%). 

i o 3 K / r 

Figure 12. Behaviour of np(T) for the case when A ^ 0 and the 
electrons settling at a dislocation experience the Coulomb interaction 
[32]. Curves 1-4 represent the solution of Eqns (73)-(75) for the 

expres- e x p e r i m e n t a l v a l u e s of [27]: ( 7 ) 3.5 x 10 1 1 m - 2 ; ( 2 ) 2 x 10 1 1 m - 2 ; 
(3) 1 x 10 1 0 m~ 2 ; (4) 4.5 x 10 1 0 m~ 2 . The points ( x ) represent a con­
trol sample free of dislocations. Theoretical parameters: E0 — 0.0813 eV, 
Ci = 0.106, Si = 1, and A/E0 = 0.1624. 
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Final ly, the behaviour of nP(T) in the presence of V Q , 
described by expressions ( 7 3 ) - ( 7 5 ) , is p lot ted in Fig. 12 
together with the exper imental po in t s from Ref. [27] which 
cor respond to different dislocation densities. In this case, 
the op t imal set of the pa rame te r s is E 0 = 0.081 eV, CX = 0, 
and A / E 0 = 0 . 1 6 . 

Since the observed proper t ies of nP(T) repor ted in 
Refs [ 2 5 - 2 7 ] , including the dependence on N D , can be 
explained on the basis of the p roposed model , it is assumed 
tha t A ^ 0 and the C o u l o m b effects tha t a ccompany filling 
of dislocat ions with electrons are taken into account . 

3.3 Origin of an a c c e p t o r - d o n o r level 
Exper iments on single dislocat ions discussed above indicate 
tha t an a c c e p t o r - d o n o r level is located above the top of 
the valence band . However , experiments on the conduct iv­
ity of a b o u n d a r y in a ge rman ium bicrystal , which in a 
sense can be regarded as a per iodic system of edge 
dislocat ions separated by a distance 

D 
2sin(0.5cp) ' 

(78) 

requires an in t roduct ion of a dislocation level be low the 
top of the valence b a n d [ 3 4 - 3 7 ] . Here , b is the Burgers 
vector and cp is the misor ienta t ion angle. It might seem tha t 
in the opposi te case we could no t explain the presence of 
free holes in the vicinity of dislocat ions as the absolute 
t empera tu re tends to zero. 

Our p roposed mode l of an a c c e p t o r - d o n o r level makes 
it possible to el iminate this qual i ta t ive contradic t ion . This 
mode l pos tu la tes the deformat ion origin of such a level. As 
po in ted out above (Section 2), in the vicinity of a single 
dislocation an electron (hole) experiences a deformat ion 
poten t ia l which for an edge dislocation considered in the 
isotropic approx ima t ion is 

V(r, &) = W * ^ 2 V

X - sin $ 
v } 2TT(1 - v) r 

(79) 

Here , W is the deformat ion interact ion constant (for 
ge rmanium, its value is W « 10 eV), v is the Poisson ra t io , 
and # is the angle measured from a dislocation glide plane. 

The variable-sign na tu re of the interact ion poten t ia l 
described by expression (79) and the scale of the constant 
W suggest tha t at distances r of the order of b an inversion 
can take place in the electron spectrum when a locally 
pe r tu rbed top of the valence b a n d is found above the 
per tu rbed b o t t o m of the conduct ion b a n d . Deve lopment 
of this hypothesis leads to a number of quali tat ive 
consequences: 

(a) in an intrinsic semiconductor the electrons at the top 
of the pe r tu rbed valence b a n d begin to undergo t rans i t ions 
to the conduc t ion-band well, creat ing an e l e c t r o n - h o l e 
system; 

(b) the F e r m i level separat ing the vacant and occupied 
states in the b a n d gap of a semiconductor should drop to 
the top of the pe r tu rbed valence band , thus ensuring the 
appearance of a metall ic conduct ion b a n d of holes dis­
t r ibuted a long a dislocation, even in the limit T —> 0; 

(c) the real hole spectrum at the top of the deformed 
valence b a n d is quant ised at r ight-angles to the dislocation 
axis and the scale of such quant i sa t ion is characterised by 
the level E 0 ~ 0.1 eV above the unpe r tu rbed posi t ion of the 
top of the valence b a n d [see the set of expressions (43)]; 

(d) in a p- type semiconductor the level E 0 at the top of 
the per tu rbed valence b a n d begins to play the role of an 
a c c e p t o r - d o n o r level and interacts with poin t acceptors ; 
this ensures the correct posi t ion of this level (above the top 
of the unpe r tu rbed valence b a n d and above the level E A of 
po in t acceptors) , which — in principle — resolves the p a r a ­
dox in the in terpre ta t ion of the proper t ies of a b o u n d a r y in 
a bicrystal . 

It therefore follows tha t the deformat ion interact ion of 
electrons with the elastic field of a dislocation helps to 
provide a self-consistent description of the experiments on 
single dis locat ions and on a chain of such dislocat ions on 
the b o u n d a r y in a bicrystal . However , the mechanism of 

Figure 13. Lines of constant values of the deformation potential of the 
valence band of germanium, governed by the field of elastic stresses of a 
60° dislocation, considered in the hydrostatic approximation (a) and in 

accordance with expression (82) (b): curves 1-9 correspond to AEV 

ranging from +0.1 to —0.1 eV in steps of 0.25 eV; b is the Burgers 
vector of a 60° dislocation. 
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format ion of a two-dimens iona l hole system along the p lane 
of this b o u n d a r y is no t clear. If, in the isotropic a p p r o x ­
imat ion, we consider the dis t r ibut ion of the constant -energy 
lines of the poten t ia l described by expression (79), it is no t 
obvious tha t an overlap of the hole or electron regions can 
occur when separate dis locat ions form a per iodic chain 
(Fig. 13). However , a m o r e r igorous formulat ion of the 
p rob lem of the deformat ion poten t ia l given be low solves 
this p rob lem as well [33]. 

Let us consider a single 60° dislocation. Let us assume 
specifically tha t the x axis is directed a long the Burgers vector 
of the edge componen t of this 60° dislocation, tha t the z axis 
is paral lel to the direction of the (Oi l ) dislocation line, and 
the y axis is perpendicular to the glide p lane (111) . 
Accord ing to Ref. [38], the strain tensor stj of a 60° 
dislocation can then be expressed in te rms of the cor re ­
sponding strain tensors of a 90° dislocation and of the screw 
componen t . 

The edge componen t is characterised by the strains 

y/[b\ 

8 2 2 

8 1 2 — £ 2 1 

'8n(l - v ) (x2+y2)2 

V 3 Z > y 

'8n(l - v ) (x2+y2)2 

V3b 

3x2 

8n(l - v ) (x2+y2f 

[2v(x2+y2)-y2+x2] 

{*2-y2)-

(80) 

The strains of the screw componen t are 

b y 
8 1 3 — £31 

e 2 3 = £ 3 2 

8n ( j c 2 + v 2 ) 

b y (81) 

8n ( j c 2 + v 2 ) ' 

where b is the Burgers vector of the 60° dislocation and v is 
the Poisson ra t io . 

T h e deformat ion poten t ia l of the valence b a n d of a 
cubic crystal is [39] 

A £ v = A Sp BTJ ± [0.5B2 [(e„ - e 2 2 ) 2 + ( e 2 2 - 8 3 3 ) 2 

+ (833 - £ii)2 + d2(e2

u + £23 + < & ) ] ] 
1/2 

(82) 

The plus or minus signs cor respond to the splitting of the 
initially degenerate l ight-hole and heavy-hole valence 
subbands of a cubic crystal. The values of the deformat ion 
poten t ia l cons tan ts are given in Refs [39, 40]. F o r ge rman­
ium, these cons tan ts are A = — 4 eV, B = —2.7 eV, 
d = 5 eV, and v = 0.2. 

The results of calculat ions of constant -energy lines are 
presented in Figs 13b and 14. The region r ^ 2b is excluded 
from these calculat ions because in this region the cont in­
u u m definitions of etj given by the set of expressions (80) 
diverge. Since the size of the core of a dislocation is 
r0 = (3-5)b, a calculat ion carried out on the basis of 
formulas ( 8 0 ) - ( 8 2 ) is obviously meaningful for r > r 0 . 
Fig . 13b shows the s t ructure of the constant -energy lines 
calculated on the basis of expression (82) for a single 
dislocation in ge rmanium. It is evident tha t the region 
cor responding to a higher concent ra t ion of holes occupies a 
sector with the angle 286°, which is considerably greater 
t han the result ob ta ined in the hydros ta t ic approx imat ion 
(Fig. 13a). F o r AEY > 0, the area b o u n d e d by a cons tan t -
energy line and given by expression (82) is 10 t imes greater 

20 -

10 -

0 10 K/[b] 
Figure 14. Lines representing constant values of the deformation 
potential of the valence band of germanium governed by the field of 
elastic stresses of a boundary in a bicrystal when this boundary consists 
of a single row of 90° dislocations (the lines are numbered in the same 
way as in Fig. 13, the dislocation line is directed along [100] and the 
Burgers vector along [011]). 

t han the cor responding area obta ined in the hydros ta t ic 
approx imat ion . 

Let us conclude by considering the results presented in 
Fig. 14. This figure gives the s t ructure of the cons tan t -
energy lines for the valence b a n d of ge rman ium dis tor ted by 
the field of elastic stresses of the b o u n d a r y in a bicrystal 
when this b o u n d a r y consists of one r o w of 90° dislocations. 
The calculat ions were carried out on the basis of expres­
sion (82), selecting the plus sign and the values of the strain 
tensor given in Refs [39, 40]. A reduct ion in the distance D 
between dislocations first creates a pair of constant -energy 
lines (4 in Fig. 14) with the m i n i m u m posit ive energy 
(0.025 eV in our case). Outs ide these lines the dis tor t ions 
of the valence b a n d fall exponential ly. The AEY = 0 line for 
a single dislocation extends to infinity and tu rns to form a 
closed loop (line 5 in Fig. 14) localised between disloca­
t ions; it compresses the lines with negative energies 
(lines 6-9). The con t inuous curves give the solution for 
D = %b. If D = lb, the 0.05 eV lines t ransform as shown by 
the dashed curves and an addi t iona l pair of lines appears . 
F o r D = 5b a similar t r ans format ion affects the 0.075 eV 
lines. The 0.7 eV lines, cor responding to the depth of a 
dislocation level relative to the top of the unpe r tu rbed 
valence band , is t ransformed into a pair of infinite lines for 
D = 5.5b, which — in accordance with formula (78) — 
cor responds to the misor ienta- t ion angle 10° of the 
bicrystal . Exper imenta l invest igations [34] show tha t meta l ­
lic conduct ion of the b o u n d a r y in a ge rman ium bicrystal 
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appears at $ ^ 8°. This suppor t s the p roposed mode l of 
metall ic conduct ion which involves the states of the 
deformat ion poten t ia l of dislocat ions. 

3.4 Inversion of the type of conduction in plastically 
deformed n-type semiconductors 
In view of the acceptor act ion of dislocat ions in ge rman ium 
and silicon, which manifests itself in a number of ways 
discussed above, we can assume tha t a m o n o t o n i c increase in 
the dislocation density in an n- type semiconductor should 
result in inversion of the type of conduct ion of such a 
semiconductor , as found also when the concent ra t ion of 
po in t acceptors in an n- type semiconductor is varied [11]. 
However , the details of this t ransi t ion, considered as a 
function of the relative concent ra t ion of acceptors nl/nd, are 
very different for poin t defects and for dislocat ions. Here , 
and nd represent the concent ra t ions of poin t acceptors and 
donors . Some aspects of this p rob lem are considered 
quali tat ively be low on the basis of Ref. [41]. The s t ructure 
of the inversion t ransi t ion is interest ing also from the poin t 
of view of testing the phenomenolog ica l mode l of disloca­
t ion levels, which has proved successful in the descript ion of 
plastically deformed p- type semiconductors [31, 32]. 

Specific results relate to the behaviour of the F e r m i level 
in plastically deformed semiconductors considered as a 
function of the dislocation density ND at sufficiently low 
tempera tures . The behaviour of the chemical po ten t ia l F in 
samples conta in ing poin t impuri t ies is assumed to be k n o w n 
[11]. R o u g h l y speaking, if the p rob lem is symmetr ic for 
electrons and holes, the dependence F(nl/nd) is a step with 
its centre at a po in t nl = nd and its width A is of the order of 

(83) 

where Eg is the b a n d gap . 
It is best to start a description of the behaviour of the 

chemical po ten t ia l F in a plastically deformed ^z-type 
semiconductor , beginning from low dislocation densities 
ND, when 

R2 < 1 . (84) 

Here , R represents the rad ius of a R e a d cylinder a r o u n d a 
single charged dislocation. In the geometr ic approx imat ion 
R 5> r D (where r D is the Debye screening radius , cor re ­
sponding to the concent ra t ion nd of po in t donors ) , the 
R e a d rad ius determines the distance at which the field of a 
charged dislocation becomes screened. 

If inequali ty (84) is obeyed, the effective equat ion of 
neutra l i ty which — as usua l — describes the behaviour of the 
chemical potent ia l , should be wri t ten in the following form: 

fp\ ( y* 

3/2 (85) 

Ne exp 
Ndf 

+ = nd 

a 

2 / m c T 

where V and V* are the to ta l vo lume of a crystal and the 
vo lume inside the R e a d cylinders, and m e is the effective 
mass of an electron. The first te rm on the left-hand side of 
the first equat ion in the system (85) takes account of the 
expulsion of electrons from the R e a d cylinders and the 
second represents the cont r ibut ion m a d e to the negative 
charge density by charged dislocations, each characterised 
by the filling factor / related to V* by the first equa t ion in 

the system (85). The r ight -hand side of this equat ion is the 
concent ra t ion of dono r s assumed to be ionised. 

The relat ionship between / and V*/V, 

V* =Naf 
V and 

(85a) 

shows tha t the definition of F given by the first equa t ion in 
the system (85) reduces to its definition in the absence of 
dislocat ions [11]: 

Ne exp - = nd (86) 

In other words , dislocat ions do no t influence the behaviour 
of F9 as long as R2 < N^1. 

Therefore, the solution of the p rob lem of the disloca­
t ion- induced inversion of the type of conduct ion predicts 
no th ing special for the region na/nd w 1 of the dependence 
of the chemical po ten t ia l on the pa ramete r na/nd (in 
contras t to the case of poin t centres, where the region 
nl/nd ~ 1 is critical). In fact, inequali ty (84) together with 
%R2nd =f/a can be rewri t ten as 

71 nd 

Ny 
(87) 

Since the m a x i m u m value of f for n- type ge rman ium and 
silicon does no t exceed / « 1 0 - 1 , it is clear tha t in the 
region of na/nd w 1 an initially n- type semiconductor 
re ta ins its type of conduct ion by a large margin , because 
inequali ty (87) is no t yet violated. 

U n d e r the condi t ions opposi te to those specified by 
inequali ty (87) (in the R2ND > 1 range) the dislocat ions are 
capable of 'collecting' all the electrons from dono r s and, 
therefore, the posi t ion of the chemical po ten t ia l becomes 
dependent on the dislocation density. This effect is 
described by us in Ref. [41] with the aid of a cylindrical 
mode l which predicts the main proper t ies of inversion in a 
quali tat ively correct manner , with the exception of the 
critical behaviour of the dislocation density at which 
the approx ima t ion R2ND ^ 1 begins to be valid. The value 
of depends on details of the dis t r ibut ion of dislocat ions 
in a sample and can vary within certain limits of the 
pa ramete r R2ND when its numer ica l value is ~ 1. 

Accord ing to the simple cylindrical model , the occu­
pancy factor / of a single dislocation is, as above [see 
formula (85a)], related to the effective rad ius R which 
represents the average distance between dislocations: 

nR2nd=-. (88) 
a 

In the absence of free electrons and holes, the concent ra ­
t ion of which is assumed to be exponential ly small (this is 
par t icular ly t rue of silicon), relat ionship (88) represents the 
condi- t ion ensuring complete neutra l i ty of a crystal. 

The posi t ion of the chemical po ten t ia l can be found 
from the definition off: 

f = c x 

f+Ei + Vc expf — + 1 

+ C 2 | e x p ( ' ± ^ ± ^ | + 1 (89) 

2ne-
V c = — n d R2{2\n(nR3nd) - [l - (n2R6nl)~l] }.(89a) 
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Definit ion (89) takes account of the s t ructure of dislocation 
levels deduced from an analysis of the da ta on the 
behaviour of dislocat ions in n- type semiconductors . 
Moreover , explicit use is m a d e of the advan tages of the 
cylindrical mode l which yields the fairly simple expres­
sion (89a) for Vc. 

The critical value of R0, beginning from which the 
definition (89) begins to be valid, follows from the requi re­
ment tha t at R = RQ the chemical po ten t ia l F should occupy 
a posi t ion typical of an n- type semiconductor at T = 0 in 
the absence of dislocations, i.e. 

F = E g • (90) 

As a result, the definition of R0 is 

nR0nda = Ci 

+ c 2 

e x p | £ l + y c y o ) - £ f e ) + i 

,'E2 + VC(R0)-E^ , 1 

exp I ™ I + 1 (91) 

The behaviour of F in the range R < R0 is p lot ted in 
Fig. 15 for Ex = 0.42 eV, E2 = 0.62 eV, C 2 = 1, and 
var ious values of C\. Some details of this figure are 
wor th special note . Firs t , the chemical po ten t ia l F begins to 
' s ink ' into the b a n d gap smooth ly and no t abrupt ly , as is 
t rue of po in t impuri t ies . Crossing of the poin t R = Rc by 
the level 

F = 0.5EQ (92) 

which cor responds formally to inversion of the type of 
conduct ion , is no t marked by any singular behaviour . 
Second, the details of the 'passage ' of the chemical 

F / e V 
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Figure 15. Dependence of the chemical potential F on the dimensionless 
dislocation density S — ND/nda, plotted for three values of the 
parameter Cx: ( 7 ) Q = 0 . 0 1 ; ( 2 ) ^ = 0 . 0 6 ; (3) Cx = 0.2. For 
curves 7 and 3 the constants Cx were selected so that the calculated 
positions of the jumps of F(S) agreed with the experimental results; 
curve 2 corresponds to the intermediate case with Cx — 0.06. 

po ten t ia l across the level E2 are interesting. The j u m p 
AF tha t occurs at this level a m o u n t s to 

AF « -E2 + Ex (93) 

and the posi t ion R* follows from the est imate 

(nRlnda)~l « Cx . (94) 

A numer ica l de te rminat ion of the value of R* with the aid 
of definition (89) carried out for different values of Cx 

confirms the dependence R ~2 oc Cx with the coefficient of 
p ropor t iona l i ty tha t follows from expression (94). The re ­
fore, in a mode l of two levels with a limited capaci ty C\ the 
dependence F(d), where 3 = ND/(nda)9 has a characteris t ic 
j u m p at the poin t of dis locat ion-induced inversion of the 
type of conduct ion and the posi t ion of this j u m p depends 
on the capaci ty C\. 

The results obta ined can be used in an analysis of the 
exper imental results [28, 42] on dis locat ion-induced inver­
sion of the type of conduct ion in silicon. Both investiga­
t ions were carried out on samples doped with p h o s p h o r u s 
dono r s present in an approximate ly the same concent ra t ion 
(nd=2x 1 0 1 4 c m " 3 in Ref. [28] and nd=2x 1 0 1 3 c m " 3 in 
Ref. [42]). It was found tha t the type of conduct ion 
(revealed by the change in the sign of the Hal l coeffi­
cient) changed when the dislocation density was varied 
monotonica l ly . In b o t h cases a j u m p of the chemical 
po ten t ia l was observed on passage t h rough the middle of 
the b a n d gap . However the pos i t ions of this j u m p 3* on the 
3 axis were qui te different, as demons t ra ted in Fig. 15. To 
the right of the j u m p , i.e. in the range 3 > 3*, the results 
repor ted in Refs [28] and [42] for F(3) show practically no 
dispersion (this will be used later). In other words , in this 
range the chemical potent ia l lies at abou t the same height 
Ei w 0.42 eV above the valence b a n d in b o t h cases. 

The posi t ions of the exper imental po in t s in Ref. [42], 
r eproduced in Fig. 15, indicate tha t they cannot be 
described by the cylindrical mode l of the inversion t rans i ­
t ion developed above. In fact, according to Ref. [42], the 
chemical po ten t ia l begins to depend significantly on 3 in the 
range where it should remain constant and independent of 
the disloca-tion density. Moreover , it is stated in Ref. [42] 
tha t there are doub t s no t only abou t the cylindrical mode l 
of the inversion t ransi t ion, bu t also abou t R e a d ' s very idea 
of localisation of dislocation charges in a n a r r o w tube of 
rad ius C = a/f<^ R. It follows from the R e a d mode l and the 
da ta of Ref. [42] tha t in the range R > R0 the C o u l o m b 
energy exceeds the b a n d gap Eg9 which should no t occur. 
A t t e m p t s to solve this p rob lem led the au tho r s of Ref. [42] 
to an al ternat ive mode l in which the dislocation charge is 
' smeared o u t ' practical ly t h r o u g h o u t the whole R e a d 
cylinder [43]. 

However , one should poin t out one exper imental detail 
no t very sensitive to the mode l used in the analysis of the 
exper imental da ta and found to be pract ical ly the same for 
b o t h series of experiments [28, 42]. As poin ted out above, 
there is practical ly no dispersion of F(3) in the range 3 > 3*. 
This behaviour of F(3) can be accounted for by the 
cylindrical mode l of inversion of the type of conduct ion 
in the limiting case C\ <̂  1. However , if C\ lies near the value 
Cx w 0.2, where the j u m p of F repor ted in Ref. [42] is located, 
it then follows from Fig. 15 tha t a s t rong dispersion of F(3) 
is unavoidab le , bu t this is no t observed experimentally. 

Therefore, the absence of significant dispersion of F(3) 
in the range 3 > 3* repor ted in Ref. [42] indicates, in our 
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view, tha t the real value of C\ is C\ <̂  1. In other words , the 
dislocation densities found in Ref. [42] from the edge pits 
are somewhat underes t imated compared with the real 
values. On the other hand , the dislocation densities are 
p robab ly overest imated in Ref. [28] (they were obta ined by 
the ESR method) . Therefore, the exact value of the 
capaci tance C l 9 which is of the order of Cx = 0.01 
(curve 1 in Fig. 15), m a y be found m o r e accurately in 
the subsequent experiments . However , it is clear tha t the 
constant Cx would be qui te small (C\ <̂  0.1). 

3.5 Inversion of the type of conduction in germanium 
There is no detailed exper imental informat ion on the 
behav iour of the chemical potent ia l of ge rman ium in the 
vicinity of its j u m p , bu t detailed invest igations have been 
m a d e in the region where R < and R ^ R0. 

A quant i ta t ive descript ion of the vicinity of the j u m p A F 
and of the behav iour of the effective density of holes nv(T) 
has to allow for the influence of holes, the role of which is 
qui te significant, par t icular ly at higher t empera tures . M o r e ­
over, the density nv(T) is an observable quant i ty , which can 
be used to follow the evolut ion of inversion in the p- type 
range . 

The finite concent ra t ion of holes modifies, in the 
calculat ions relat ing to the behaviour of F, expres­
sion (88) which n o w becomes 

nR R 

TzR2nd-\-2n\ np(r)rdr = - , (95) 
J r 0

 a 

where 

o e(P 
nv{r) = ?zp exp — , (96a) 

Acp = 4ne&~1 [nd + np (r)] , (96b) 

p ' U = 0 , <p\r=R=0. (97) 

Here , nv(r) is the concent ra t ion of holes in the vicinity of a 
dislocation and s is the permit t ivi ty of the semiconductor . 
The b o u n d a r y condi t ions (97) for the electric po ten t ia l q>(r) 
are satisfied if we neglect the cont r ibu t ion of free electrons 
to the overall neutra l i ty of a crystal. 

The values of nv(R) calculated in Ref. [44] with the aid 
of expressions (89), ( 9 5 ) - ( 9 7 ) are p lo t ted in Fig. 16 a long­
side the exper imental results [27]. 

Interest ing results are also p lo t ted in Fig. 9 of Ref. [24], 
where several effects wor th a t tent ion can be observed 
simultaneously. 

Firs t , we can clearly see a ' fork ' in the t empera tu re 
dependences 0\\(T) and a±(T). The appea rance of this fork 
is discussed above in comment s following expression (54). 

Second, it is possible to observe a g radua l ' s inking ' of 
the chemical po ten t ia l of ge rman ium in the lower pa r t of the 
b a n d gap (left-hand sides of curves 2-4). W e recall tha t in 
the case of silicon this pa r t of the t empera tu re dependence 
of the chemical po ten t ia l has no t yet been determined 
experimentally, as can be seen in Fig. 15 where the upper 
pa r t of the dependence F(ND) has practical ly no experi­
men ta l poin ts . 

Third , we can show tha t in the range T < T0 the 
t ransverse mo t ion is h indered by an addi t iona l po ten t ia l 
barr ier whose height increases smooth ly with increase in the 
dislocation density. 

np/m 
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5 10 15 20 25 

10 3 K/2 

Figure 16. Concentration of holes in plastically deformed n-type 
germanium calculated on the basis of a model with two electron levels. 
The parameters used in the calculations were: = 0 . 1 1 eV, 
Ci = 0.1, E2 = 0.28 eV, n d = 5 x 10 1 1 c m - 3 . The dislocation densities 
ND were: ( 7 ) 5 x 106 c m - 2 ; ( 2 ) 4 x 106 c m - 2 ; (3) 5.5 x 106 c m - 2 ; 
(4) 3 x 107 c m - 2 . The parameters of this spectrum were selected to 
ensure the best agreement of curve 4 with the experimental data (o) 
taken from Ref. [27] (the calculations were reported in Ref. [44]). 

4. Current-voltage characteristics of a sample 
with charged dislocations 
One of the reasons for the appearance of po ten t ia l barr iers 
h inder ing the passage of an electric current in semicon­
duc tors m a y be a system of oriented dislocat ions of 
sufficient density. Such a system m a y appear , for 
example, at low-angle grain bounda r i e s or at boundar i e s 
in bicrystals [ 3 4 - 3 6 , 45] when the R e a d cylinders of 
adjacent charged dislocat ions over lap. Ano the r form of a 
dislocation barr ier is encountered in the p rob lem of 
electrostatic proper t ies of semi-conductors conta in ing a 
set of charged dislocat ions all oriented in the same 
direction. The possibili ty of format ion of an a r ray of 
charged dislocat ions of this type has been demons t ra ted in 
a number of experiments [24, 46]. The degree of or ienta t ion 
of these dislocat ions repor ted in these paper s reached 1:10. 
Obviously, an increase in the dislocation density or cooling 
of a sample will result in the overlap of the R e a d cylinders 
of the adjacent dislocat ions giving rise to an infinite cluster 
dissecting the whole sample. The unavo idab le appea rance 
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of such a cluster follows from general p ropos i t ions of the 
m o d e r n theory of percola t ion [47]. F r o m our poin t of view 
such a cluster is a barr ier of dislocation origin and its 
appearance considerably affects the electric proper t ies of a 
semiconductor . 

Dis locat ion barr iers have a characterist ic feature in the 
form of saddle poin ts , and the flow of free electrons 
overcoming a barr ier occurs mainly at these poin ts . It is 
therefore necessary to develop a special theory of the 
c u r r e n t - v o l t a g e characterist ics for the flow of an electric 
current across a dislocation barr ier . 

In this section we shall present a general formalism 
which makes it possible to describe, in the diffusion 
approx imat ion , the proper t ies of barr iers with arbi trar i ly 
deep saddle poin ts . W e shall derive the c u r r e n t - v o l t a g e and 
capac i t ance -vo l t age characterist ics under ohmic condi t ions 
for a semiconductor conta in ing a dislocation barr ier ; this 
will be done in the limiting cases of a s t rong or weak 
overlap of the R e a d cylinders. W e shall discuss the role of 
r a n d o m fluctuat ions of the barr ier profile. 

4.1 Current - voltage characteristic of a barrier with 
saddle points 
Calcula t ion of the c u r r e n t - v o l t a g e characterist ic represent­
ing the flow of an electric current across a po ten t ia l barr ier 
reduces to solution of the equat ion of cont inui ty d iv j = 0 in 
the vicinity of this barr ier and subject to certain b o u n d a r y 
condi t ions at the barr ier edges. These condi t ions take 
account of an external potent ia l difference. This p rocedure 
has been developed in detail for one-dimensional barr iers 
and it can be applied also to barr iers with saddle poin ts . 

4.1.1 Let us consider the specific case when charged 
dislocat ions are distr ibuted periodically a long the y axis 
and the per iod is d. The x axis is n o r m a l to the barr ier 
p lane . In the diffusion approx ima t ion the current density is 
given by the familiar expression: 

Ji 
8?z dcp 

1 ~ h en -— 
oxk oxk 

(98) 

where \iih are elements of the mat r ix 

Vik=tfik> * = 1,2; £ = 1 , 2 , (99) 

where xx = x, x2 = y\ the barr ier is e longated a long the y 
axis; /i is the electron mobil i ty; T is the absolute 
t empera tu re ; n is the electron concent ra t ion; cp is the 
electrostatic potent ia l . 

The solution of the equat ion d iv j = 0 with j given by 
expression (98) can be found conveniently in the vicinity of 
a saddle po in t if Lange r ' s r ecommenda t ions are followed 
[48]. W e will therefore expand the poten t ia l q>(x, y) near a 
saddle poin t as a Taylor series: 

<p(x, y) «()9s + 0 . 5 ( A 2 v 2 - A 1 x 2 ) , X{ 

d2cp 
: dx2 

(100) 

where cps and 2,t are the poten t ia l and its curva ture at a 
saddle point . 

Fac to r i sa t ion of the poten t ia l q>(x, y) is accompanied , as 
indicated in Ref. [48], by vanishing of the y componen t of 
the to ta l current so tha t the dependence of the electron 
density on the coord ina te y is of the equil ibrium (Boltz-
m a n n ) na tu re : 

e<p(x, y)~ 
n(x, y) = a{x) exp ( 1 0 1 ) 

where o(x) is an a rb i t ra ry function of x. The x componen t 
of the current can be obta ined from expression (98) and 
from n(x, y) given by the above expression: 

jx(y) - / ^ - e x p ecps + 0.5el2y^ 

on condi t ion tha t 

8(7 Jo — = — exp 
dx jaT 

or 

c(x) A f 

e k \ X 

2T 

exp 
eX\XA 

2T 
dx + C 

(102) 

(103) 

(103a) 

The cons tan ts j 0 and C in the above expression can be 
found by applying the b o u n d a r y condi t ions for n(x, y) at 
the barr ier edges. It is assumed tha t far from a saddle po in t 
the poten t ia l q>(x, y) becomes one-dimensional and depends 
only on the coord ina te x. In other words , 

n = nd , cp = 0 for x —> —oo , 

n = nd , cp = —V for x —> +oo , 
( 1 0 4 ) 

where nd is the donor concent ra t ion and V is the external 
po ten t ia l applied to a barr ier . It follows from the 
definitions of n and cr(x), given by expressions (101) and 
(103a), and from the above condi t ions tha t 

C = nd , j 0 = \iTnd 

eV 
e x P I - y birr 

1/2 

(105) 

The average current per one per iod of the investigated 
dislocation chain is [49, 50]: 

1 f + 0 ° 
j x = D L U y ) d y 

v l / 2 
fiTndd 1 — exp 

eV 
exp 

ec^ 
T 

\eV < T\ 
D exp 

ecp^ 
, (106) 

where jx(y) is given by expression (102). Therefore, the 
p rob lem of calculat ion of the barr ier conduct ivi ty reduces 
to de terminat ion of the values of cps and Xt. If there is a 
scatter of the values of D and cps, then expression (106) 
should be averaged over all possible values of D and cps 

with the suitable weights . The p rob lem will be discussed in 
detail later. 

4.1.2 The results presented above are qui te r igorous 
in the range (ecpmax — ecps)/T \. However , if 
(ecpmax — ecps)/T < 1, the Langer approx imat ion , in pa r t i c ­
ular the expansion of q>(x, y) described by expression (100), 
loses its precision and this makes it difficult to investigate 
the limiting case of the c u r r e n t - v o l t a g e characteris t ic for a 
one-dimensional barr ier . Consequent ly , it is sensible to 
consider one m o r e way of solving the p rob lem of the 
c u r r e n t - v o l t a g e characteris t ic for a dislocation barr ier in 
the case when (ecpmax — ecps)/T < 1. 
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Let us assume tha t dislocat ions are dis tr ibuted per iod­
ically (period D) a long the crest of a barr ier . Let us expand 
all the functions of interest to us as Four ie r series: 

n(x, y) = ^^nk(x) cos(£cov), cp = cpk cos(£cov) , 

JX = ~ ^ J X K (*) cos(£a>y), j y = - ^ j y k (x) sm(kcoy) , 

2TI (107) 

and let us t ry to satisfy the equat ion d i v / = 0 approx i ­
mate ly by separat ing the ha rmon ics in the nonl inear te rm 
n(dcp/dxk) in the general expression (98) for the current 
density. 

In the zeroth approx imat ion , we have 

8/*o 
dx 

0 

jxo = const = —TfiriQ — e\i{n§cp§ + 0.5ni<Pi), n = - j — . 

(108) 

In the zeroth approx ima t ion the cont r ibu t ion of the higher 
ha rmonics is ignored. The influence of the periodic relief of 
the barr ier is related to the presence in expression (108) of 
a te rm cor responding to nxcpx. 

In the first approx imat ion , we find tha t 

9Ai , %\ 
dx dy 

CP'[ - CD2CPX = 

(109) 

(HO) 

where 

0 ' <P'U+o-<PiU-o 
4nenK 

Here , n s l is the Four ie r componen t of the surface charge 
density 

( H I ) 

The zero b o u n d a r y condi t ions for cpx are valid at large 
distances as long as L > d, which is assumed to be obeyed. 

E q n (109), wri t ten out explicitly to within te rms of the 
order of n s l and cpu and the b o u n d a r y condi t ions for this 
equat ion are: 

—Tn'[(x) •enslcp0 -enslcp0 - en^cpx 

-en0cpi + co2(Tnsi + en^cp^ = 0 

0 , ns 

ecpx 

(112) 

(113) 

The second of the above b o u n d a r y condi t ions is equivalent 
to the requi rement jy\(0, y) = 0, which should be satisfied 
at the crest of the barr ier . 

If the to ta l current across the barr ier is zero, the 
condi t ion j y l = 0 is obeyed identically and it reduces to 
the following requi rement for all values of x: 

n0(x) . (114) 

M o r e o v e r , ^ ! also vanishes and the equali ty j x X = 0 follows 
automat ica l ly if re la t ionships (108 ) - (112 ) are obeyed. 

W e shall omit details of the me thod used to solve the 
system of equa t ions (107 ) - (114 ) and give the first a p p r o x ­
imat ion for the c u r r e n t - v o l t a g e characterist ic: 

A o : 

where 

efindV 
R+L 

J exp [ecp0(x)/T - e2cp\{x)/4T2] dx 

cpx{x) = exp ( c | ) . 

(115) 

( 1 1 6 ) 

In the limit cpx —> 0 the characteris t ic described by 
expression (115) reduces to the familiar expression for 
the c u r r e n t - v o l t a g e characterist ic of a one-dimensional 
barr ier . 

4.2 Parameters of saddle points 
Calcula t ion of the pa rame te r s of saddle po in t s of a 
dislocation barr ier is a fairly difficult self-consistent 
p rob lem. The si tuat ion simplifies in the limiting cases of 
a s t rong (D <^ R) or weak (D ^ R) overlap of the R e a d 
cylinders of rad ius R when analyt ic calculat ions can be 
completed. W e shall consider each of these limiting cases 
separately. 

4.2.1 Strong overlap. W e shall omit the details of the 
calculat ions [49, 50] and give only a summary of the main 
results: 

? —1 / IT" I ^ 
cp(x, y) = 2KL ends I 1 

-\-2dendLs 

where 

2FLA 

'2n\x\ 
~D~ 
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Da 

In 21 cosh 
2TZX 

~D~ cos -
2ny 

(117) 

Here , s is the permit t ivi ty of the investigated crystal, nd is 
the vo lume concent ra t ion of donors , / is the occupancy 
factor of a single dislocation, and a is the a tomic spacing. 

The value of cp at certain characterist ic po in t s is 

(118) <Ps = <Po(l - y M 2 ) ) 

i i
 2 D

 i D 

2KC 
(118a) 

where 

cp0 = 2%endL2s 1 . 
a 

7 ' 

D 
2KC 

> 1 • 

The quant i t ies cps, cpmax, and cp0 occur in the definition of 
significant characterist ics of a barr ier . F o r example, the 
quant i ty cps occurs in the exponent ia l function used to 
describe the current-vol tage characterist ic. The poten t ia l 
cpmax is needed in the calculat ion of the occupancy f a c t o r / 
of a charge dislocation in a barr ier , found from the 
relat ionship 

-ED + Vc = F , 
_ecpl(x) 
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where Vc = ecpmax is the C o u l o m b energy of an electron at 
a dislocation, ED is the posi t ion of a dislocation level, and 
F is the F e r m i level. Finally, the poten t ia l cp0 occurs in the 
definition of the barr ier capaci tance C b : 

Q = sS 
q>0 2KL 

(119) 

where S is the contact area and Q is the to ta l charge. 
It is wor th no t ing tha t all three characterist ics cps, cpmax, 

and cp0 are identical for a one-dimensional barr ier . In fact, if 
in expression (118) we go to the limit (D/L) —> 0, we find 
tha t <ps = cpmax = cp0. 

4.2.2 Weak overlap. A rough idea of the proper t ies of a 
saddle poin t of two weakly over lapping R e a d cylinders can 
be obta ined from a simple geometr ic representa t ion 
(Fig. 17) with the pa rame te r s of the p rob lem cor respond­
ing to single R e a d cylinders. Let us assume tha t h is the 
degree of over lap. The chord 2b0 a long which two cylinders 
are in contact is related to h by 

b0 « (2Rh)l/2, R$>b0$>h$>rD , (120) 

where R is the R e a d cylinder rad ius and nR2nd =f/a. 
The dis t r ibut ion of the poten t ia l cp in the contact zone 

can be found by combining two cylindrically symmetr ic 
solut ions for the poten t ia l of a single charged dislocation 
cp0(x, y) when the overlap of these cylinders is h: 

cp{x,y) = cp0(x, y +R - h) + cp0(x,y - R + h) , (121) 

<Po(*>)0 sa 
2 In 

R 

(*2+y2) 2\l/2 
x 2 W 

R2 
.(121a) 

The coordina tes of the saddle po in t s are x = y = 0. W e 
then have 

i2 
AneriA h 

cp' = 8nend 

%nendh 
sR 

l+h/R 
(122) 

these cylinders within the contact zone conta in no free 
electrons and, therefore, they do no t par t ic ipa te in neu­
tral isat ion of the fields of charged dislocation lines. The 
resul tant free-electron deficit should be compensa ted by the 
regions which lie outs ide the contact and have no free 
electrons and, therefore, do no t par t ic ipa te in neutra l isa t ion 
of the fields of charged dislocation lines. This can be taken 
into account within the f ramework of the adop ted a p p r o x ­
imat ion of a superposi t ion of two cylindrically symmetr ic 
solut ions described by expression (121) by placing an 
addi t iona l charge o_ in the contact zone and an opposi te 
charge a+ outs ide the contact . Obviously, the charge a+ 

should be located as close as possible to the contact zone. 
If we assume tha t the addi t iona l charges are of the 

surface type, then 

a(x) = G[ 1 — ) •> a = endh < 0 , (123) 

A [ X ) - \ > 0 , b0^x<b, 

The quant i ty b is found from the condi t ion 
C+b 

<r(y)dy = 0 

(123a) 

(124) 

and is given by 

b = V3B0 . (124a) 

The ha rmon ic poten t ia l cp^\ cor responding to the 
charge dis t r ibut ion given by expression (123) calculated 
at a saddle point , is 

2B^bo j b ^ 3.7cj 
s(b - b0) B0 

(hR) 1/2 (125) 

Therefore, the poten t ia l at a saddle po in t for a weak 
overlap of the R e a d cylinders is 

<r[4nh + 3J(hR) 1/21 

(126) 

However , it should be poin ted out tha t the formula for 
cps in expression (122) is no t the final one. A n overlap 
between the R e a d cylinders means tha t the segments of 

Figure 17. Contact of two Read cylinders with a small overlap. The 
continuous curves represent the real boundaries of these cylinders. 

The dis t r ibut ion of the poten t ia l in the contact zone in 
the case when there is a potent ia l difference between the 
edges of a barr ier deserves separate discussion. The 
quali tat ive features of such a p rob lem can be formulated 
explicitly: 

Ai/f = 0 , 
(127) 

V 
for a ^ $ ^ 7i — a , 
for K + a ^ # ^ 2TC — a , 

The dis t r ibut ion in this case is 

2V 
arctan 

2Rr sin ft 
K R2 — r2 

Expression (128) is derived from the relat ionship 

2 w + i sin(2?z + 1)0 „ 2A sin ft 
2 n + l y ) = 0 . 5 arc tan 

2^ + 1 

The barr ier capaci tance is 

Q 
V 

D^D2V~ dft: 

1 

sD2D3 1 2R = — I n — 
TZR b 

(128) 

(129) 

(130) 

where D2 and D3 are the barr ier d imensions a long the y 
and z axes. 
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The definition of C b given by expression (130) together 
with expression (106) for the current density j x , 

ejnndV (h 
D \R 

1/2 

exp T 
(131) 

which takes account explicitly of the values cps and 
( ^ l / ^ ) 1 ^ 2 given by expressions (126) and (122), complete 
the task of description of the proper t ies of a barr ier with a 
weak overlap of the R e a d cylinders (D = R — h, h <^ R). 

4.3 Influence of random fluctuations of the barrier profile 
W e shall n o w consider deep saddles when on the average 
we have (ecpmax — ecps)/T > 1. The to ta l conduct ivi ty of a 
barr ier then consists of the conductivit ies of the separate 
saddle po in ts (which represent conduc to r s connected in 
parallel): 

5>(Ae)> • (132) 

In t roduc t ion of the probabi l i ty co(he) of the appearance of 
a given value he and assumpt ion tha t this probabi l i ty is 
Gauss ian makes it possible to rewrite expression (132) as 
follows: 

j r+oo 

Ux)=Tr= co(de)jx(he)dde, (133) 
U2 J - o o 

where 3e = D 
& /o A2 

D, he = h + de, co(3e) = yjl/n A~[ x 
exp(—3 2

Q /2A 2 ) , A is the var iance of the dis t r ibut ion of 3e, 
and jx(he) is ob ta ined from expressions (131) and (126). If 
we n o w assume tha t 3 <̂  Z), h <^ D, we find from 
expression (133) tha t : 

(A) = h Wyf A-11+" exp (-J^-pS^ &dt 

= jx(h)exp(0.5p2A2), p = 
3.1'e nd 3 

sT 
(134) 

Therefore, f luctuat ions of the barr ier profile, characterised 
by the var iance A, give rise to an addi t iona l exponent ia l 
factor in the definition of (jx), which makes it possible to 
detect qui te simply the influence on f luctuat ions of the 
c u r r e n t - v o l t a g e characterist ic . 

W e shall complete this theoret ical in t roduct ion by 
considering an exper imental me thod for the investigating 
barr iers with possible saddle poin ts . Such an investigation 
can be carried out if the c u r r e n t - v o l t a g e and the capaci ­
t a n c e - v o l t a g e characterist ics depend on t empera tu re and 
on the poten t ia l difference V applied to the barr ier edges. 

The first qual i tat ive quest ion, whether a barr ier is of 
q u a n t u m or classical na tu re , is answered by an analysis of 
the t empera tu re dependence of the c u r r e n t - v o l t a g e 
characterist ic p lot ted using the coordina tes In(7) and 
T~l. Rectif ication of the characterist ics in te rms of these 
coordina tes indicates act ivated-type behaviour of the 
current , i.e. classical behaviour , and makes it possible to 
determine the barr ier act ivat ion energy. 

C o m p a r i s o n of the barr ier heights deduced from the 
t empera tu re dependence of the c u r r e n t - v o l t a g e charac ter ­
istic and from determinat ion of the c a p a c i t a n c e - v o l t a g e 
characterist ic in the ohmic region should answer the 
quest ion whether there are saddle po in t s on a barr ier or 
is the barr ier one-dimensional . A one-dimensional barr ier 
has only one characterist ic height [see expression (118)]. If 

saddle po in ts are present , the informat ion which can be 
deduced from exper imental de te rminat ion of the c u r r e n t -
vol tage and c a p a c i t a n c e - v o l t a g e characterist ics can give 
informat ion on quali tat ively different details of the inves­
t igated barr ier . W e must bear in mind tha t in the ohmic 
range the barr ier capaci tance is no t always given by the 
simple expression (119). 

A n addi t iona l characterist ic of a barr ier with deep 
saddle po in ts is the behaviour of the c u r r e n t - v o l t a g e 
characterist ic in the region where the dependence on V 
is nonl inear . A n increase in V across a one-dimensional 
barr ier results in a characteris t ic p la teau of the c u r r e n t -
vol tage characterist ic, which appears because a finite 
current across a barr ier increases the filling factor of 
b o u n d electron states tha t de termine the barr ier height, 
i.e. such a current s t imulates barr ier growth . The density of 
the current flowing across a barr ier with deep saddle po in t s is 
concent ra ted mainly far from charged dislocat ions. This is 
indicated indirectly by the dis t r ibut ion of the pe r tu rb ing 
poten t ia l i/f(r, ft) described by expression (128), which 
vanishes on the axes of the R e a d cylinders (i.e. at the 
poin t r = 0). As a result, the c u r r e n t - v o l t a g e characteris t ic 
for a barr ier with deep saddle po in t s should not have a 
definite flat region l inking the ohmic region and the 
b r e a k d o w n pa r t of the characterist ic. 

The last interest ing detail we should ment ion is 
detection of f luctuat ions of the dislocation barr ier p r o ­
file. These f luctuat ions can be deduced from an analysis of 
the ohmic pa r t of the t empera tu re dependence of the 
c u r r e n t - v o l t a g e characterist ic considered in te rms of the 
coordina tes In(7), T~l. Accord ing to expression (134), if 
A ^ 0, then considerable deviat ions from linearity (asso­
ciated with the presence of a te rm p r o p o r t i o n a l to T~2 in 
the a rgument of the exponent ia l function) should occur in 
the In(7) p lane . 

N o t all the experiments described above have been 
carried out so far. However , those tha t have been p u b ­
lished suppor t the theoret ical predict ions . 

4.4 Experiments on dislocation barriers 
4.4.1 In those cases when the pos tu la ted deviat ion y from 
a one-dimensional barr ier , which m a y be described by 
formula (135) given below, is no t too large, a convenient 
me thod for detecting this involves s imul taneous investiga­
t ion of the barr ier c u r r e n t - v o l t a g e and c a p a c i t a n c e -
voltage characterist ics. The former characteris t ic gives 
informat ion on the height of the barr ier saddle po in t s 
y m i n and the c a p a c i t a n c e - v o l t a g e characteris t ic provides 
the average barr ier height V. In the presence of saddle 
poin ts , we have V m i n < V. The rat io 

^f = y < l (135) 

can be used as a measure of depar tu re of a barr ier from the 
one-dimensional approx imat ion . In the one-dimensional 
case, we have y —> 1. 

It should be po in ted out tha t inequali ty (135) is a 
necessary requi rement which follows from an analysis of 
the proper t ies of a barr ier with saddle poin ts . Therefore, 
when this inequali ty is satisfied, it implies self-consistency of 
the exper imental da ta on the c u r r e n t - v o l t a g e and capaci ­
t a n c e - v o l t a g e characterist ics of this barr ier . 

Let us n o w discuss, on the basis of Ref. [51], the 
exper imental results repor ted in Ref. [45] on the cur-
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r e n t - v o l t a g e and c a p a c i t a n c e - v o l t a g e characterist ics of a 
dislocation wall formed deliberately in n- type silicon in 
which the donor concent ra t ion is nd ~ 1 0 1 4 c m - 3 . The 
average distance D between dislocat ions in this wall is 
less t han the size L of the region of screening of the 
dislocation charge by free electrons, so tha t the overlap of 
the adjacent R e a d cylinders, represent ing the screening 
proper t ies of the med ium with a single charged dislocation 
should be sufficiently s t rong and the pa ramete r y of 
expression (135) should be close to uni ty . 

In principle, informat ion on the c u r r e n t - v o l t a g e and 
c a p a c i t a n c e - v o l t a g e characterist ics in the range which is 
linear in respect of the pe r tu rb ing potent ia l V should be 
sufficient to find the proper t ies of the pa ramete r y. 
However , the results repor ted in Ref. [45] have a number 
of special features which m a k e it necessary to use a m o r e 
complex procedure . First , the c u r r e n t - v o l t a g e charac ter ­
istic repor ted in Ref. [45] has an ohmic region followed by 
the above-ment ioned p la teau of the dependence I(V) (I is 
the current across the barr ier ) in the range eV/T ~ 10 ^ 1. 
On the other hand , var ious theories of the c u r r e n t - v o l t a g e 
characterist ics [ 5 2 - 5 5 ] , which pos tu la te tha t the barr ier is 
purely electrostatic, predict the appearance of this p la teau 
for values eV/T ^ 1 (Fig. 18, where the c u r r e n t - v o l t a g e 
characterist ic is p lot ted for the one-dimensional var iant 
employing the diffusion approx ima t ion and the pa rame te r s 
t aken from Ref. [45]). Obviously, some technical errors 
were m a d e in p lo t t ing Fig. 1 in Ref. [45]: these errors are 
revealed only if the characterist ic is p lot ted for a wide range 
of the pa ramete r eV/T: 0 ^ eV/T ^ 10. Second, the p r o p e r ­
ties of the c a p a c i t a n c e - v o l t a g e characterist ic in the linear 
regime can be determined only if precise informat ion is 
available on the barr ier geometry, which again is no t very 
satisfactory in Ref. [45]. Therefore, in the case of the latter 

eV/T 

Figure 18. Dependence I(V) at T — 264 K and T = 296 K, plotted 
using the coordinates employed in Ref. [45]. Curves 1-4 correspond to 
different values of ED: 0.55, 0.60, 0.65, and 0.70 eV, respectively. The 
top abscissa gives the values of eV divided by T. 

characterist ic one has to consider also the nonl inear range 
where the informat ion abou t V can be obta ined from the 
relative values insensitive to the exact barr ier geometry . 

Specific calculat ions were carried out in the diffusion 
approx ima t ion [51] with the aid of the one-dimensional 
formulas [see also expression (115)], investigated in detail 
by m a n y au tho r s beginning with Taylor et al. [52]: 

. _ j i 7 > i d [ l - e x p ( - g y / r ) ] 

l-Ll 

(136) 

Qxp(ecp/T) dx 

2nend(x — L2) 

2nend [x +LX) 

x > 0 ; 

x < 0 , 

where 

^ 1 , 2 — 
?zs , sV — ± 

2nd 4%ens aD 

n(0) = nd exp 
eq>(0) 

JUTT 

f(T) 
«(0) 

nx{T)+n{0) 

ecp(s) 

(137) 

exp ds 

nl(T)=Ne(T)QxV 

ED 
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Here j is the density of the current across the barr ier ; \I is 
the electron mobil i ty; cp(x) is the dis t r ibut ion of the 
poten t ia l in the barr ier zone; s is the permit t ivi ty; / is the 
filling factor of a single dislocation — defined by one of the 
formulas in the set of expressions (137) on the basis of a 
var iant of the theory of the c u r r e n t - v o l t a g e characterist ics 
given in Ref. [53]; NQ(T) is the density of states in the 
conduct ion b a n d ; E D is the posi t ion of the dislocation level 
relative to the b o t t o m of the conduct ion b a n d ; n(0) is the 
concent ra t ion of electrons at the barr ier crest. 

The relative capaci tance of the barr ier is given by the 
expression 

M v ) + l 2 ( v ) ' ( 1 3 8 ) 

follows from a formula in the set of 

Ch = 7.8 

where L 1,2 
expressions (137). 

The dependence of / on the dimensionless vol tage 
U = eV/T [Eqn (136)] is p lot ted in Fig. 18. The pa rame te r s 
used in the calculat ions were the same as in the experiments 
repor ted in Ref. [45]: nd = 1 0 1 4 c m - 3 , s = 12, and Ne are the 
density of the electron states in silicon. The p rocedure for 
de terminat ion of E D is explained in the capt ion of the 
figure. The dependence j(V) at t empera tu res T = 264 K and 
T = 296 K is p lot ted employing the coordina tes used in 
Ref. [45]. Curves 1-4 cor respond to different values of ED. 
Curve 2 agrees best with the exper imental results [45] if the 
exper imental po in ts are first shifted by one order of 
magn i tude a long the abscissa. As poin ted out above, this 
shift is of paras i t ic origin (no other explanat ion is offered). 

The a rb i t ra ry na tu re of the shift in Fig . 1 of Ref. [45] 
becomes obvious in par t icular when the c a p a c i t a n c e -
voltage characteris t ic given in Ref. [45] is analysed. Here , 
in t roduct ion of a similar renormal i sa t ion of V results in a 
quali tat ive disagreement between the theoret ical and 
exper imental values of the capaci tance. Therefore, a 
compar i son of the calculated dependence C b ( V ) of expres-
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Figure 19. Comparison of the calculated capaci tance-vol tage charac­
teristic C b ( y ) and the data of [45] without any correction. The value of 
C b is plotted along the ordinate on the assumption that the theory and 
experiment ( + ) agree in the limit V —> 0. Curve 2 is closest to the experi­
mental data; ( 7 ) ED = 0.65 eV; ( 2 ) ED = 0.7 eV; (3) ED = 0.75 eV. 

sion (138) and the results of Ref. [47] is m a d e in Fig. 19 
wi thout any correct ion bu t employing the coordina tes used 
in Ref. [45]. The dependence is fixed relative to the C b axis 
on the assumpt ion tha t the theory and experiment agree for 
V —> 0. Accord ing to Fig. 19, curve 2 with ED = 0.7 eV is 
closest to the exper imental results. 

It therefore follows tha t the c u r r e n t - v o l t a g e and 
c a p a c i t a n c e - v o l t a g e characterist ics of a barr ier given in 
Ref. [45] do indeed yield the different values of ED and their 
ra t io represents the extent to which the barr ier in quest ion 
can be regarded as one-dimensional . It follows from the 
ideas pu t forward above tha t y = 0 .6/0.7 = 0.86, i.e. the 
barr ier is largely one-dimensional a l though the presence of 
saddle po in ts at its crest is felt. 

4.4.2 One of the p rob lems in the in terpre ta t ion of the 
c u r r e n t - v o l t a g e characterist ics of barr iers of different 
origin in semiconductors (such as those associated with 
grain boundar ies , boundar i e s in bicrystals, dislocations, 
etc.) is the mult ivalued behaviour of the c u r r e n t - v o l t a g e 
characterist ic in the in termedia te range of the poten t ia l 
difference V between the barr ier edges. In some cases [45] 
this characterist ic has a p la teau between the ohmic and 
nonl inear dependences of j on V (Fig. 18). In other 
experiments [55] such a p la teau is no t observed. 

A qual i tat ive explanat ion of this p la teau (Fig. 18) can 
be found in a number of paper s in which the one -
dimensional mode l of a barr ier with deep electron states 

localised at its crest is employed (see, for example, 
Refs [52-54] ) . A n increase in the current across the barr ier 
is in this case accompanied by an increase in the concen­
t ra t ion of free electrons at the barr ier crest and this, in turn , 
increases the occupancy factor of localised electron states at 
the crest and, consequently, increases the barr ier height. 

Barr iers with saddle po in t s m a y have no such pla teau. 
Specific a rguments in suppor t of a m o n o t o n i c nonl inear i ty 
of j(V), i.e. in suppor t of a c u r r e n t - v o l t a g e characteris t ic 
with dj/dV > 0, are given in Ref. [56] for a barr ier tha t 
forms because of an overlap of the adjacent R e a d cylinders 
of a system of paral lel charged dislocat ions distr ibuted 
equidis tant ly with a per iod d, for example a long the 
b o u n d a r y of a bicrystal conta in ing the y axis. 

Let us assume tha t the degree of overlap h of the adja­
cent R e a d cylinders is small so tha t the chord b in Fig. 17 is 
much smaller t han the rad ius of a R e a d cylinder R: b <^ R. 
Let us also assume tha t the rad ius R is much greater t han 
the Debye rad ius rD for a given ^z-type semiconductor 
rj3 = sT/(4%e2nd), where s is the permit t ivi ty of the 
semiconductor , nd is the donor concent ra t ion , and T is 
the absolute t empera tu re sufficiently high to assume tha t all 
the donor states are ionised, bu t still low compared with the 
barr ier height ecps at the saddle poin t . In the vicinity of an 
ex t remum of cps the poten t ia l q>(x, y) is given by expres­
sions (120 ) - (122 ) : 

eq>(x,y) = ecps + 0.5ky2 — 0.5qx2 + ... , 

cps = 4ne2nds~lh2 , k = %ne2nds~l, q = %Ke2ndhs~lR~l , 
(139) 

R $>b$>h$>rD, T <^ ecps, b « (2Rh)l/2 . 

Here , k and q are the curvatures of the poten t ia l at a saddle 
poin t . 

U n d e r the condi t ions described by the set of expressions 
(139) the general p rob lem of calculat ion of the current 
across a barr ier can be divided into two par t s . Firs t , we 
have to determine the po ten t ia l i/f(r, ft) across a barr ier in 
the absence of a current t h rough the barr ier , and then we 
have to solve equat ion d iv j = 0 with a given dis t r ibut ion of 
the poten t ia l \j/(r9 ft), p r o p o r t i o n a l to the applied poten t ia l 
difference V. 

Bearing in mind tha t R > r D , we can formulate the task 
of finding the s t ructure of i/f(r, ft) as the boundary -va lue 
p rob lem: 

Ai/f = 0 , i/^(r, ft)\ 

-{ -V, 7t + a ^ t f ^ 2 7 t - a , a ~ R 

The result is [compare with expression (128)] 

0N 2V 2Rrsin(ft) 
y/fj-, ft) = — a rc tan — ^ 

R2 r2 

(140) 

(141) 

The density of the addi t ional surface charge a long the 
bounda r i e s of the R e a d cylinders is 

(7(0) = 8 dij/ 
4TC 8r 

sV 

2n2R sin(tf) 
\ft\ (142) 

The appearance of the charges a (ft) in the above expression 
under the act ion of the poten t ia l difference V means tha t in 
reality the barr ier bounda r i e s shift relative to their 
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equil ibrium posi t ions in the absence of V by an a m o u n t 

end 

< b (143) 

As a result, the barr ier loses its symmetry relative to the 
p lane conta in ing charged dislocat ions. This is the main 
reason why in the one-dimensional mode l the appea rance 
of a po ten t ia l difference V at the barr ier edges directly 
alters the condi t ions of occupat ion of the localised states at 
the barr ier crest. In the case when £(ft) is described by 
expression (143) the shifts of the R e a d bounda r i e s are very 
inhomogeneous . They are largest in the contact zones and 
small, in view of b/R <̂  1, far from these zones. 
Consequent ly , we can assume tha t in the zeroth a p p r o x ­
imat ion, in respect of the pa ramete r b/R <̂  1, the origin of 
the coordina tes of the p rob lem described by expres­
sion (140) coincides with the posi t ion of a charged 
dislocation and there are no reasons why there should 
be a change in the density of free electrons in the R e a d 
cylinder axes under the influence of the poten t ia l difference 
V, because the poten t ia l i/f(r, ft) given by expression (141) 
vanishes in the limit r —> 0. 

The current flowing across the barr ier eq>(x, y) is 
calculated in the diffusion approx imat ion , i.e. it is assumed 
tha t 

div7 = 0 , j=-/JL [TVn + enV(cp + x//)] (144) 

subject to the b o u n d a r y condi t ions tha t cor respond to the 
poten t ia l difference V at the barr ier edges; here, \i is the 
electron mobil i ty. Formal ly , the p rob lem described by 
E q n (144) is identical with the ana logous p rob lem of decay 
of a metas tab le state in the theory of first-order phase 
t ransi t ions , investigated in detail by Langer [48] [see also 
expressions (106) and (131)]. Omi t t ing the relevant details 
of the calculat ion, we shall n o w give the final results for the 
dependence of the average density (7^) of the current 
flowing th rough a given saddle poin t on the poten t ia l 
difference V: 

Ux) 
.o V l +0.5eV 

\Jx) 

(7°) = efindVd~ 
0.5 

Qxp(-ecpsT !) (145) 

R b . 

Obviously, the c u r r e n t - v o l t a g e characterist ic described by 
expression (145) has no p la teau. 

Figure 20. Effects of selective chemical etching of the surface of silicon, 
showing etch pits at dislocations and 'wakes' along glide planes. 

Figure 21. Temperature dependence of the electron mobility in plastic­
ally deformed silicon. The lines of flow of the current are directed 
perpendicular (3) to the glide plane and parallel to this plane (7 and 2 
along and across dislocations, respectively). The top part of the figure 
shows schematically a sample and the positions of dislocations and of 
the active glide plane [46]. 

4.4.3 The experiments repor ted in Ref. [46] deserve special 
considerat ion. Firs t , these are the only experiments k n o w n 
to us which demons t r a t e explicitly the possibili ty of the 
existence of a ' neu t ra l ' componen t in the s t ructure of 
dislocation barr iers . In fact, the dis t r ibut ion of the etch pits 
revealed in these experiments (Fig. 20) is completely 
isotropic in the xy p lane of the figure. However , the 
neu t ra l wakes following each of the dislocat ions m a k e the 
conduct ivi ty of the sample anisot ropic a long the x and y 
directions, as shown in Fig. 21 . W e are thus faced with an 
interest ing p rob lem of the proper t ies of the c u r r e n t -
vol tage characterist ic of a combined barr ier with charged 
and neu t ra l componen t s . A descript ion of such barr iers is 
still lacking. 

Second, there is an interest ing n o n m o n o t o n i c t empera ­
ture dependence of fi±, whereas the componen t ^ has no 
such min imum (Fig. 21). This n o n m o n o t o n i c behaviour can 
be explained as follows. Immedia te ly after the appea rance 
of a ' fork ' (i.e. of a difference between ^ and fi±) at abou t 
T w 300 K, the degree of an i so t ropy begins to rise and this 
cor responds to an increasing overlap of the adjacent R e a d 
cylinders. However , at T w 200 K, when the pa ramete r 
T = e2f/(saT) becomes comparab le with uni ty, the barr ier 
t r ansparency begins to rise. This rise can be compared with 
the steep rise of the concent ra t ion of holes [see expres­
sion (12)], which results in an effective reduct ion of the 
negative n a t u r e of charged dislocat ions. A n est imate of the 
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pa ramete r r for silicon with 8 ^ 10, a « 5 x 10" cm, and 
/ « 0.1 shows tha t r passes t h rough r w 1 in the vicinity of 
T w 200 K. It is na tu ra l to ment ion here the formally 
ana logous behaviour of cr± in the experiments on n- type 
ge rman ium [24] (see Fig. 9). However , the reasons for the 
n o n m o n o t o n i c t empera tu re dependence in the latter case 
are different. There is a change in the screening mecha ­
nisms, which occurs when free electrons are frozen out in n -
type samples. It is the region of such a change tha t 
cor responds to the posi t ion of the min imum of g±_{T) in 
Fig. 9, as can be confirmed by examining the t empera tu re 
dependence of the conduct ivi ty of a cont ro l sample and the 
behaviour of o\\(T). In the case of the dependence <t±(T), 
the screening rad ius at t empera tu res T w Tmin is described 
by formulas ( 3 2 ) - ( 3 4 ) and, under the condi t ions of a 
par t ia l freeze-out of electrons, is considerably greater 
t han the R e a d radius . U n d e r these condi t ions the overlap 
of the adjacent R e a d cylinders is max imal and the 
an i so t ropy tends to its m a x i m u m . However , at t empera ­
tures T < T m i n the chemical po ten t ia l begins to drop to its 
posi t ion between the b o t t o m of the conduct ion b a n d and 
the energy of poin t donors , t owards the donor energy. 
Consequent ly , the screening rad ius begins to app roach its 
R e a d value again, which considerably increases the dis­
locat ion barr ier t ransparency . 

4.5 Current - voltage characteristic of a single charged 
dislocation in a semiconductor 
One of the elegant effects tha t demons t ra t e b r e a k d o w n of 
the local neutra l i ty in the vicinity of dislocation lines in 
silicon and ge rman ium semiconductor crystals is the 
asymmet ry of the c u r r e n t - v o l t a g e characterist ic when 
the current flows from the dislocation axis to the per iphery 
of a semiconductor and vice versa. Relevant exper iments 
carried out on single dislocat ions in silicon [57] and 
ge rman ium [58] crystals demons t ra t e a clear diode effect 
of dislocation origin. 

A descript ion of the d iode effect for a single charged 
dislocation is given in Ref. [59] on the basis of the Debye 
approx ima t ion when Vc < T, where Vc is the energy of an 
electron in the electrostatic field of a charged dislocation on 
the axis of this dislocation, and T is the absolute 
t empera tu re . However , in the case of real dislocat ions 
with an edge componen t in silicon and ge rman ium it is 
found tha t the opposi te inequali ty Vc > T is obeyed in a 
wide range of t empera tures . U n d e r these condi t ions the 
c u r r e n t - v o l t a g e characterist ic of a single dislocation mus t 
be calculated anew, which was done in Ref. [60]. 

Let us assume tha t a dislocation core coincides with the 
z axis of a cylindrical coord ina te system and tha t the s teady-
state current density j(r) is directed radially, so tha t 
d iv j = 0 and 

Joro (146) 

Here , r 0 is the min imum distance at which the local 
diffusion definition of the current density is still valid: 

j(r)=H»-)VC(r), (147) 
where fi is the electron mobil i ty; £(r), n(r) are, respectively, 
the local values of the chemical po ten t ia l and of the 
electron concent ra t ion in the bulk of the semiconductor . If 
we assume tha t the difference between the chemical 
potent ia ls of an electron on the dislocation axis and far 

from this axis (i.e. at a distance r^R, where R is the R e a d 
rad ius which governs the screening rad ius of the electric 
field of the dislocation) is eV (V is the applied poten t ia l 
difference), we can rewrite the definitions given by 
expressions (146) and (147) as follows: 

Jo 

ro 
f 

[rn(r 

(148) 

d r 

The explicit form of n(r) can be deduced from the 
s t ructure of £(r) in the limit of the Bo l t zmann statistics for 
electrons in the bulk of an n- type semiconductor where the 
donor concent ra t ion is nd and the diffusion coefficient is D: 

VC = eVcp + Tn~lVn, ja = eDT 
- l (149) 

In this case it follows from expressions ( 1 4 6 ) - ( 1 4 8 ) tha t 

c R \ecp(r)~ 
( \ ( e(p(r)\f Joro f - l \e(P(r)]A \ n*n\ 

n(r) = exp I f ~ ) \ n d ~ ~D~ J Y C X P ~T~ J ' ^ ^ 

where the poten t ia l cp can be described by [see expres­
sion (8)] 

cp(r) : 
sa 

R 
In 0.5 [ 1 

r \ R 
, nR2nd=-

a 
(151) 

H e r e / i s the dislocation filling factor; s is the permit t ivi ty; 
the explicit expression for the R e a d cylinder rad ius R is 
valid if R > r D , which is assumed to be obeyed; rD = 
sT/(4%e2nd); a is the in tera tomic spacing. 

The definitions given by expressions (148 ) - (151 ) relate 
the quant i t ies j 0 , V, and / . W e can deduce the c u r r e n t -
vol tage characterist ic, i.e. the relat ionship between j 0 and V, 
from these definitions if we also d e f i n e / i n te rms of ED and 
V. The simplified var iant of this definition is 

-ED+eV + Vc=t;(R), Vc • ecp (152) 

where ED is the posi t ion of the dislocation level in the b a n d 
gap of the semiconductor measured from the b o t t o m of its 
conduct ion b a n d ; £(R) = F is the posi t ion of the chemical 
po ten t ia l far from a dislocation; cp(r) is given by 
expression (151). 

The system of definitions ( 1 4 8 ) - ( 1 5 2 ) m a y be simplified 
considerably if we use the integral J[m(r)]_ 1 d r which occurs 
in the definition of j 0 given by expression (148). W e 
consequent ly have 

Jo 
Dnd 1 - e x p ( - e V y r ) 

7*0 f 
r~l Qxp(ecp(r)/T^ dr 

(153) 

This definition of j 0 resembles the familiar expression for 
the c u r r e n t - v o l t a g e characterist ic obta ined in the diffu­
sion theory of rectification [61], which is not surprising 
since a charged dislocation can be regarded as a 
cylindrically symmetr ic Schot tky barr ier . The difference 
between these two expressions is only the presence of a 
t runca t ing factor r 0 , which can be regarded as the rad ius of 
a poin t which br ings the current to the axis of a charged 
dislocation and the rad ius represent ing the cap ture of 
electrons by a dislocation level. 
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In the ohmic region and with logar i thmic precision in 
te rms of the pa ramete r R/r0 1, expression (153) can be 
reduced to 

v 2 r e2f 
r = —L. (154) saT 

A compar i son of this expression with the exper imental 
c u r r e n t - v o l t a g e characteris t ic of silicon [57] makes it 
possible to est imate r 0 for given values of 
nd w 101 4 c m - 3 and / ^ O . l on the assumpt ion tha t 
T = 250 K, R « 10"4 cm, s « 12, and p = 150 Q cm. The 
result is 2r(250 K ) « 2 and r0/R « 10" 1 . The same 
est imate of r0/R can be obta ined on the assumpt ion tha t 
the slope of the c u r r e n t - v o l t a g e characterist ic in the ohmic 
region, t aken from Ref. [57], is approximate ly 30-50 t imes 
less t han the slope of the characteris t ic of dislocation-free 
silicon (Fig. 22). Therefore, 2r(r0/R)2F w 1/50 and hence 
for r « 1 we have r0/R « 10"1. 
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Figure 22. General appearance of the cur ren t -vo l tage characteristic 
of a single dislocation obtained with: ( 7 ) a microprobe located at a 
point of emergence of a 60° dislocation; ( 2 ) a microprobe located 
above a dislocation-free surface; (3) two gold ohmic contacts [57]. 

5. Relaxation phenomena 
The p rob lem of establ ishment of an equil ibrium in the 
electron system of a semiconductor conta in ing charged 
disloca-t ions is in a surprisingly uncer ta in state. On the one 
hand , there are no doub t s abou t the quali tat ive features of 
the relaxat ion p h e n o m e n a which occur in plastically 
deformed semiconductors , for example, the n o n e x p o n e n -
tial ( logari thmic) t ime dependence of the nonequi l ibr ium 
photocon-duc t iv i ty after its significant (nonl inear) devia­
t ion from the equil ibrium value [62]. On the other hand , 
there are absolutely no publ ished quant i ta t ive details on 

even the simplest re laxat ion effect represented by the 
exponent ia l re laxat ion asympto te typical of the linear stage 
of var ious relaxat ion processes. The neglect of this p rob lem 
is par t icular ly str iking against the b a c k g r o u n d of the 
success of the exper imental and theoret ical studies of the 
relaxat ion involving poin t centres (see, for example, 
Ref. [63]). 

Exper imental is ts are obviously pu t off by the rou t ine 
na tu re of the p rob lem of the exponent ia l re laxat ion 
processes. The existence of such relaxat ion is no t in doub t 
and in terpre ta t ion of the exper imental re laxat ion t ime, 
par t icular ly of the pre-exponent ia l factor which governs 
the capture cross section, is very difficult. W e are aware of 
only one fairly detailed investigation of the relaxat ion of the 
pho toconduc t iv i ty in ge rman ium with a low dislocation 
density, when the adjacent R e a d cylinders do no t overlap 
[62]. The t rad i t iona l analysis of the results repor ted in 
Ref. [62], carried out below, gives an unexpected result: at 
low tempera tu res the electron capture cross section of a 
dislocation is anomalous ly large (it exceeds the dimensions 
of a sample!), which cannot be t rue . A discussion of possible 
reasons for this p a r a d o x leads to an interesting al ternat ive 
for the descript ion of the relaxat ion p h e n o m e n a involving 
dislocations. 

5.1 Exponential relaxation 
5.1.1 W e shall use the term ' t radi t ional formal ism' for the 
app roach in which re laxat ion of the filling factor / of a 
single charged dislocation in an n- type semiconductor is 
described by the following equat ion [11, 62]: 

At ' 
/ = 2nar0vT [ « ( ! - / ) - nj] , f = (155) 

where 

n = nd exp - — , Vc « — In - , 
T I sa c 

a 2 f 
kR nd =- , 

a 
ne=NeexV(-EdT-1), f< 1 . 

Here , ne = nd is the electron concent ra t ion far from a 
dislocation (it is assumed tha t all the dono r s whose 
concent ra t ion is nd are ionised); R is the R e a d radius ; s 
is the permit t ivi ty of the semiconductor ; Ed is the depth of 
a dislocation level measured from the b o t t o m of the 
conduct ion b a n d ; v T is the the rmal velocity of electrons; a 
is the a tomic spacing a long a dislocation; r 0 is the 
dis locat ion-capture length; n is the local concent ra t ion of 
electrons on the dislocation axis; T is the absolute 
t empera tu re ; Ne is the density of the electron states in 
the conduct ion band . 

If the equil ibrium value f0 is only slightly pe r tu rbed so 
tha t 

/ W = / o + 8 / (0 , 8 / < / b , 056) 
E q n (155) is linearised and, with a logar i thmic precision 
[on the assumpt ion tha t \n(R/c) 1], it becomes 

- — , Tq"1 = 2nar0vT ne In — , 
t 0 saT c0 

8 / = — (157) 

where 

TzRond 
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and t 0 is the characteris t ic re laxat ion t ime. The quan t i ty r 0 , 
calculated with the aid of Eqn (157) and the exper imental 
da ta [62] on the pho toconduc t iv i ty re laxat ion t ime t 0 of 
n- type ge rman ium conta in ing charged dislocat ions, is 
presented in Table 1 [64] where other relevant quant i t ies 
are also given. The value of r 0 varies in the range 
10 3 ^ r 0 ^ 10~ 8 cm. Obviously, the ampl i tude of this 
change is too large to cor respond to any physical mean ing 
of r 0 in E q n (157). 

Table 1. 

r / K / R/cm 2T T * / S r 0 / c m ra/cm 

80 0.13 2 . 9 x l 0 ~ 4 6.25 103 102 10" 6 

100 0.12 2 . 8 x l 0 ~ 4 5 50 0.83 5 x 10" 
125 0.11 2.64 x l O " 4 4.0 10 3 x 10" 5 1.4x10" 
170 0.09 2 . 4 x l 0 " 4 2.94 6 x 10" 1 2 x 10" 8 0 .7x10" 
200 0.08 2.25 x l O " 4 2.5 8 x 10" 3 1 x 10" 8 0 .4x10" 

Note. The results were obtained for weakly deformed n-type germanium 
with the following parameters: e = 16, ED — 0.4 eV below the 
conduction band, a = 5 x 1 0 - 8 cm, n d = 5 x 10 1 3 c m - 3 , and 
ff = 0 . 5 x 10 1 1 s" 1 . The value of r 0 was calculated on the assumption 
that T* = TQ, with T* taken from this table and T 0 from expression (157); 
the value of ra was obtained on the assumption that T* = T F F , where xa is 
given by expression (166). The data for T — 80 K were taken from 
Ref. [23] and the rest of the information on T, f, and T* was obtained 
from Ref. [62]. 

5.1.2 It is assumed in E q n (157) tha t the main obstacle 
prevent ing a bulk electron from reaching a dislocation is 
the t rans i t ion from the con t inuous spectrum to a discrete 
level. The probabi l i ty of this t ransi t ion is p r o p o r t i o n a l to 
the capture length r 0 . However , in reality there is one other 
reason tha t h inders the t rans i t ion of electrons from the 
bulk to a dislocation level. This reason is the conduct ivi ty a 
of a R e a d cylinder. If we assume tha t the main reason for 
the finite re laxat ion t ime is the finite conduct ivi ty of the 
semiconductor , we can write down a new relaxat ion 
equat ion which is an al ternat ive to E q n (157); we can 
then use this new equat ion to find the cor responding 
relaxat ion t ime xa. 

A n al ternat ive equat ion can be obta ined on the basis of 
the following assumpt ions and simplifications. 

The electron current in the interior of a R e a d cylinder can 
be described in te rms of a local (diffusion) approx imat ion : 

j ( r )=^«(r )V£ (158) 

Here , \i is the electron mobil i ty; £(r) and n(r) are the local 
values of the chemical po ten t ia l and of the electron 
concent ra t ion . The definition of j(r) given by expres­
sion (158) is valid up to the min imum distance rCT, beyond 
which in the range r <ra the diffusion approx imat ion of 
expression (158) becomes invalid. However , in this range 
an electron m a y be captured by a dislocation level. The 
length ra t hus plays the role of the cap ture length r 0 , which 
occurs in expressions (155) and (157). The value of ra is no t 
calculated and it remains a pa ramete r of the theory. 

In the vicinity of r w ra the local values of the bulk 
chemical po ten t ia l £(r) and of the chemical po ten t ia l £ D of 
electrons on a dislocation are equal: 

C f c ) = C D < CD = - E D + V C . (159) 

Here , the definitions of ED and Vc are ana logous to those 
given following E q n (155). The requi rements defined by 
expression (159) mean tha t an electron which has 'lifted 
i tself to the region r w ra can pene t ra te wi thout difficulty to 
a dislocation level. In wri t ing down the chemical po ten t ia l 
£ d of the dislocation electrons, we ignored, for the sake of 
simplicity, the en t ropy cont r ibu t ion because b o t h ED and 
Vc are much greater t han the cor responding energy 
equivalent of t empera tu re . 

W e shall simplify the analysis by pos tu la t ing tha t the 
p rob lem is cylindrically symmetric , which is generally 
incorrect because at short distances r = ra a considerable 
cont r ibut ion to the relaxat ion displacements of the bulk 
electrons is m a d e by the anisot ropic deformat ion potent ia l . 

The initial re laxat ion equat ion is n o w 

/ = -2naraja , (160) 

where j a is the bulk flux of electrons at the distance r = ra 

from the cylinder axis. If we assume tha t the characteris t ic 
t ime needed to establish an electron flux in a R e a d cylinder 
is much shorter t han the dislocation relaxat ion t ime 

R2 eD 
T f f > T D , T D W — - , \i = — (161) 

[the above inequali ty is justified after the definition of the 
t ime xa given by formula (166)], we can assume tha t the 
electron current density j(r) satisfies the requi rement 
d iv j = 0, i.e. 

- l 
j(r) =JoW (162) 

The definition (158) and the b o u n d a r y condi t ions (159) 
lead to the following expression for j a , which is deduced 
from Eqn (160): 

V Coo + Co ~ T / , x 

a dr/rn(r) 

e ( p ^ = ^ I L * _ 0 . 5 ( \ - r 2 R - 2 ) 
sa r 

(r) = exp( - — J \ n d - — 
, R dr ecp 

— exp — 
r r T 

(163) 

(163a) 

(163b) 

where Coo i s the chemical po ten t ia l measured from the 
b o t t o m of the conduct ion b a n d , outs ide the R e a d cylinder. 

Obviously, under equil ibrium condi t ions and with 
logar i thmic precision we have 

C o o + ^ D ~VC =0 (164) 

This requi rement is the definition of the equil ibrium 
occupat ion factor f0. However , if the combina t ion in 
expression (164) differs from zero, the current j a of 
expression (163) appears and, according to E q n (160), 
the value of / m a y vary with t ime. 

The integral which occurs in the definition of j a by 
expression (163) can be calculated. As a result, Eqn (160) 
subject to expression (163) becomes 

\2r 
j = 2%Ta 1 — exp (165) 

where 

8t = tO0+ED-VC: 

2 
nde x eD ex 

m* 
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Here , x is the m o m e n t u m relaxat ion t ime for electrons 
scattered by the lattice defects; a is the conduct ivi ty in the x 
approx imat ion ; m* is the effective mass of an electron; r 
and V c are defined by expressions (154) and (155). 

Linear isa t ion of expression (165) in the range 8£ < T 
gives the definition of xa which represents the re laxat ion 
t ime of charged dislocat ions due to the finite conduct ivi ty 
a [64]: 

271(7 R R( 

IT 

> 1 (166) 

A n analysis of the results of Ref. [64] ( together with the 
informat ion on xa at T = 80 K taken from Ref. [23]) and 
the use of xa defined by the above expression gives values of 
ra listed in Table 1. The range of var ia t ion of ra with 
t empera tu re T is 10~ 7 ^ ra < 10~ 6 cm, which looks m o r e 
reasonable t han the range of var ia t ion of r 0 which follows 
from expression (157). 

W e shall conclude by no t ing tha t the finite conduct ivi ty 
of a R e a d cylinder m a y be one of the impor t an t factors tha t 
influence the exponent ia l re laxat ion t ime. In the experi­
men t s repor ted in Ref. [62] this re laxat ion channel is the 
dominan t one. 

A few words should be said abou t the physical factors 
tha t determine the capture rad ius r 0 . De te rmina t ion of the 
capture cross section is a difficult kinetic p rob lem [63]. 
Nevertheless , in this case of dislocat ions there are clear 
energy considera t ions which m a k e it possible to est imate 
quali tat ively the capture rad ius [65]. 

This can be done because the combina t ion of the 
C o u l o m b poten t ia l of expression (8) and of the deforma­
t ion poten t ia l V«*(r, ft) a r o u n d a charged dislocation is 
characterised by a saddle poin t r 0 t h rough which electrons 
are mos t likely to pene t ra te from the bulk of a semi­
conduc tor to a dislocation. The posi t ion of this saddle po in t 
can be found from 

8r 
Vc(r)-VZ[r, 0 , 

which finally gives 

(I-2D) W 
: 2TC(1 - » ) V G 

(167) 

(168) 

The scale r 0 for ge rmanium is r 0 ^ 10 cm. 

5.2 Logarithmic relaxation 
In discussing the relaxat ion p h e n o m e n a involving charged 
dislocat ions we cannot ignore the logar i thmic relaxat ion 
mechanism. This specific mechanism is observed only for 
linear charged defects and was discovered by Figielski and 
his colleagues [62] (Fig. 23). This is one of the nonl inear 
effects described by E q n (155). 

Let us assume tha t initially there is an ab rup t change 8 / 
in the occupancy factor, which tends to reduce it. Recovery 
of the equil ibrium then occurs mainly by inflow of electrons 
from the bulk of a semiconductor to a dislocation (the 
ou tgoing term is u n i m p o r t a n t ) . If we addi t ional ly assume 
tha t 

/ = / o + 8 / , 8 / < / 0 , bu t 

we find from E q n (155) tha t 

t}f=x~lQxp(-lc}f) , 

2e2bf 
saT > 1 , (169) 
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Figure 23. Low-temperature relaxation of the photocurrent in n-type 
germanium containing charged dislocations. The horizontal dashed 
lines represent different initial illumination intensities [62]. 

r , 1 = (<r») (1 - / o ) exp (^Y^j (170) 
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or 

exp(A8/) — 1 J , 8 / = l n 1 + 
At 

(171) 

Here , Vc is given by expression (168). 
The result, 8/oc \nt is specific to linear charged defects. 

At present , this p rope r ty is used widely for the diagnostics 
of charged dislocat ions in the investigated crystals. It 
appears very effectively in D L T S experiments on charged 
dislocat ions (see, for example, Ref. [66]). However , a 
discussion of the details of the D L T S experiments is 
outs ide the scope of this review. 

6. Conclusions 
W e shall conclude this review by po in t ing out once m o r e 
tha t the major i ty of the exper imental da ta on charged 
dislocat ions in ge rman ium and silicon can be explained in a 
self-consistent manne r by a system of levels shown in 
Fig. 5. This system is of phenomenolog ica l origin, i.e. it 
does no t answer the quest ion of the actual posi t ions of 
levels in the b a n d gap of a semiconductor or on the 
smallness of the capacities Cx of the lower acceptor levels 
Ex. Nevertheless , the system is very useful. 

Var ious spectroscopic m e t h o d s for the investigation of 
dislocat ions in semiconductors are being developed rapidly. 
These m e t h o d s can provide informat ion on the role of the 
deformat ion potent ia l , on the influence of splitting of 
dislocations, on the specific effects of po in t impuri t ies 
localised near the cores of charged dislocations, etc. These 
topics require a separate review. 
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