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Abstract. The conditions for the appearance and the 
spectrum of localised electron states are reviewed for 
various inhomogeneous structures made of narrow-gap 
semiconductors with mutually inverted energy bands. The 
methods of supersymmetry and factorisation are used to 
solve Dirac-type equations with inhomogeneous external 
potentials in one-dimensional, two-dimensional, and three-
dimensional systems. 

1. Classification of inhomogeneities in two-band 
semiconductor structures 
The k'p approximation is used widely in the description of 
the properties of narrow-gap semiconductors. In the 
simplest two-band approximation for I V - V I compounds 
the k'p scheme leads to the Dirac-type Hamiltonian in 
which the matrix element of the rate of interband 
transitions plays the role of the matrix element of the 
velocity of light [1]. 

This approach can be used to describe the various types 
of inhomogeneous semiconductor structures by including 
external fields in the appropriate Hamiltonian. In the case 
of the Dirac Hamiltonian these fields are represented by 
covariant bilinear forms and the Dirac equation is 

B A Volkov, B G Idlis, M Sh Usmanov P N Lebedev Physics Institute, 
Russian Academy of Sciences, Leninskii pr. 53, 117924 Moscow 

Received 28 April 1995 
Uspekhi Fizicheskikh Nauk 165 ( 7 )799 -810 (1995) 
Translated by A Tybulewicz 

[vy°Y • (p-eA)+y°A+Z-M + y°Z'B 
o s n . . (1.1) 

+ iyu + y°y5P + iy 5 M 0 + G] V = EW , 

where y^ are the Dirac matrices; y5 = y o ^ i ) ^ * ^ ^ the 
diagonal spin matrix; p = —iV is the momentum operator; 
v is the matrix element of an interband transition, which is 
regarded as a constant. The wave function is a column of 
Wi and W2 spinors, representing two adjacent terms 
forming the conduction and the valence bands of a 
semiconductor structure. 

The quantities G and A are the usual scalar and vector 
potentials of an electromagnetic field. The role of G(r) may 
also be played by the work function which varies in space. 
The field 2A(r) represents variation of the band gap [2, 3]. 

The interaction iy*w, due to the polar vector w, appears 
in I V - V I semiconductors which undergo a ferroelectric 
phase transition. The vector u is proportional to the 
polarisation [4] and, in view of the anisotropy of the 
optical deformation potential g, the interaction iy-u should 
be written in the form igzyi)uz + ig±y±u± (this is true, for 
example, of P b ^ G e ^ T e and P b ^ S n ^ T e , where the z axis 
is parallel to the [111] crystallographic direction). In a 
sample containing ferroelectric domains the field u varies in 
space. The field M0 may also appear in semiconducting 
ferroelectrics and it is due to an additional contribution, 
associated with the loss of a centre of inversion, to the 
spin-orbit interaction. 

The diagonal terms 27 *M and y°Z *B correspond to the 
Zeeman interaction (Hz = fiBZ•//, where / i B is the Bohr 
magneton) in which the contribution of the distant bands to 
the g factors is taken into account [5]. The exchange 
interaction Hex with magnetic impurities is of the same 
form if the spin density is even. This situation is encoun­
tered in semimagnetic I V - V I semiconductors, such as 
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P b ^ M n ^ T e and P b ^ E u ^ T e [6, 7]. The matrix element 
y°y5P also appears because of the exchange interaction with 
magnetic impurities. However, in this case the impurities 
should be antiferromagnetically ordered and should be 
located at interstices (when the spin density is odd and 
the matrix element (L~\Hex\L+) between L bands with 
opposite parities differs from zero, which corresponds to 
the appearance of the field y°y5P). 

It follows that all these fields may be encountered, in 
principle, in I V - V I semiconductors. Various heterojunc-
tions can be formed by varying the composition of solid 
solutions. The ferroelectric phase transition in P b ^ G e ^ T e 
and P b ^ S n ^ T e makes it possible to simulate the vector 
field u and the pseudoscalar field M 0 . The high solubility of 
magnetic impurities can be used to create the fields M, B, 
and P. 

We shall be interested only in those fields which may 
give rise to bound electron states of inhomogeneities of the 
system. It has been shown [2-4, 8] that this condition is 
satisfied by the fields A,u, and P. When only these fields 
as well as the potentials G(r) and A are retained in the 
Hamiltonian (1.1), the result is 

HW= {vy°y(p-eA)+y°A(r) 

+ iyu(r) + y°y5P + G(r)}W = EW. 
(1.2) 

Eqns (1.1) and (1.2), corresponding to the cases when 
A = const, P = P(r) (antiferromagnetic domain wall) and 
P = const, A = A(r) (heterojunction with a variable band 
gap in a homogeneous ferromagnet) are mathematically 
equivalent [8] in the absence of the field u(r). In fact, the 
Hamiltonian 

HXW = {vy°y(p - eA) +y°A(r) + y°y5P + G(r)}W =EW 
(1.3) 

subjected to the unitary transformation W = U& = 
exp(y 57i/4)d = (1 +y5)<2>/v/2, becomes 

H2${vy°y-(p - eA) - y°P + y°y5A(r) + G(r)}<2> = E&, 
(1.4) 

A comparison of the Hamiltonians (1.3) and (1.4) shows 
that Hi is identical with H2 when the substitutions 
A(r)^P, P —> A(r) and W —> & are made. We shall 
therefore consider only the fields A(r), U(r), G(r) and A(r). 

A Dirac-type Hamiltonian with inhomogeneous external 
potentials can be analysed conveniently by the super-
symmetry and factorisation methods. The procedure of 
reducing a given Hamiltonian to the super symmetric form is 
described in the Appendix. It is shown there that diago-
nalisation of the Hamiltonian (1.2) is possible only if the 
spatial dependence of the potentials is described by the 
same function f(f): 

A(r) = Al+A0f(r) 

u(r) =ux+ u0f(r) 

G(r)=g0f(r) 

(1.5) 

Since any inhomogeneity generally alters not only the band 
gap, but also the work function and the polarisation, this 
assumption is fully justified. 

2. One-dimensional semiconductor 
heterostructures 

In this section we shall demonstrate the use of the 
supersymmetry method in investigations of the electron 
spectra of heterostructures: this corresponds to a one-
dimensional dependence f=f(z). The condition for the 
existence of the zeroth mode of the super symmetric 
Hamiltonian Hs imposes certain constraints on the para­
meters of a semiconductor structure. The first of these 
constraints is [on condition that the superpotential Wx(z) 
given by expression (5.11) is real] 

A\ + ul > 0 (2.1) 

The other constraints on the parameters of a semiconduc­
tor structure can be identified if the asymptotic values of 
the functional dependence of these parameters are known. 
It is convenient to rewrite condition (5.19) of normalisation 
of the wave function of the zeroth mode in the form 

sign [ ^ ( ± 0 0 ) ] = -sign [W^Too)] (2.2) 

and to use the explicit expression for the superpotential 
Wx(z) [expressions (5.11) and (5.12) in the Appendix]. In 
general, these expressions are quite cumbersome [9], so that 
we shall consider only some special cases. 

2.1. Symmetric heterojunction 
In an inhomogeneous structure in the form of a symmetric 
heterojunction only the band gap varies. Among the 
potentials described by formulas (1.5), we have only the 
potential A{z) (u0 = ux = g 0 = 0), and the expression for 
the superpotential has the simple form (5.11): 

W(z) = A0f(z) + Al=A(z). (2.3) 

The asymptotes of the function f(z) at z = ±00 will be 
denoted by fix and \i2 (specifically, it will be assumed that 
A*i < A*2)- ^ follows from expressions (2.2) and (2.3) that 
the zeroth mode of the Hamiltonian Hs exists only if 

fa /n2 < 0 and \ixA§ > Ax (2.4) 

In other words, the condition for the appearance of the 
zeroth mode is the mutual inversion of the bands of the 
semiconductors forming a heterojunction. Such a hetero­
junction is known as an inverted contact [2]. 

It then follows from general theorems of supersym-
metric quantum mechanics [10] that a bound state appears 
only in the case of particles with one spin direction. The 
spectrum of these states is linear (all the energy parameters 
are assumed to be normalised to Tiv) 

Ex = lk± 

and the wave functions are 

<H = C exp 

\J,exp(i0) / 

^| W(x)dx +\k±-r 

(2.5) 

(2.6) 

where exp(i#) = (kx + iky)/\kj_\; k± = (kx,ky,0) is 
the wave vector. In the (x, y) plane the functions 
satisfy the Dirac equation with zero mass. This equation is 
unitarily equivalent to the Weyl equation describing a 
neutrino [2]. Therefore, electrons localised in the plane of 
an inverted contact behave as a two-dimensional gas of 
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charged neutrinos. Such states exist irrespective of the 
actual form of A(z) and, therefore, are unaffected by 
fluctuations of the composition of the semiconductors 
forming a heterojunction. The only requirement is that the 
signs of the asymptotes A(±oo) should be opposite. 

2.2. Asymmetric inverted contact 
If the change in the work function of the two semi­
conductors in contact is taken into account, it is found that 
two-dimensional electron states exist in a limited range of 
energies and transverse momenta [3]. In fact, in this case 
(go ^ 0) the superpotential given by formula (5.11) is 

1/2 
A2 2 \ • 4 4 + ^ # 0 

and expression (5.12) is equivalent to 

Wx(z) 1/2 (2.7) 

which is energy-dependent. The spectrum of the bound 
states is limited because the superpotential of expression 
(2.7) becomes constant in sign as the energy \E\ is 
increased, and the wave function described by formula 
(2.6) becomes unrenormalisable. The existence of the field 
g(z) limits the energies in the spectrum of the interface 
states, but the zero-mass (linear) energy spectrum of the 
states 

4 go 
1/2 

(2.8) 

and the absence of degeneracy (in respect of the 
pseudoparity) are retained. The points of contact of linear 
and bulk spectra are given by the following relationships [3] 

(*i)max = 0*1,24) - ^ l ) 4 h - i 
1/2 

(2.9) 

Here, fa and fa on the right of the above expression 
correspond to k\ and kj_ on the left-hand side. 

It follows from the expression (2.7) for the super-
potential that the Weyl interface states exist only if 
141 < \So\ (i-e- ^ the change in the band gap in a 
heterostructure is greater than the change in the work 
function of the semiconductors forming this structure). 

The existence of a finite work function g0 leads to the 
appearance of interface states also in conventional unin-
verted heterojunctions. This is demonstrated in Refs [11, 12] 
for abrupt functions. However, it is also true of graded 
(linear-gradient) junctions, as is clear from expression (2.7). 
In fact, if the asymptotes of the function f(z) at z = =boo 
have the same sign, but different magnitudes (asymmetric 
heterojunction without band inversion), there is a finite 
interval of the energies E where the corresponding asymp­
totes of the superpotential described by expression (2.7) 
have opposite signs. Therefore, the states localised at an 
interface should exist irrespective of the form of the 
transition layer. The energies of these states overlap either 
the valence band (if g0 > 0) or the conduction band (if 
So < 0). 

2.3. Ferroelectric domain wall 
If there is a ferroelectric domain wall ( A 0 = g0 = 0, 
uo,i 0) in a semiconductor hetero structure, the super-
potential described by expression (5.11) becomes 

Wx(z) = u0f(z) + ux - lk± , (2.10) 

EK = E (2.11) 

Subsitution of expression (2.10) in (2.2) leads to the 
conclusion that in this case the conditions for the 
appearance of the zeroth mode are the opposite signs of 
the asymptotes of the function f(z) at z = ±oo (it is 
assumed specifically that w0 > u{). 

The solutions corresponding to the zeroth mode, 

: cexp | — | [ M ( * ) ± & J _ ] d x | . (2.12) 

correspond to two-dimensional electron states whose 
energy is E = - \ - A U and which are localised at a domain 
wall [4]. These solutions can be normalised for 
k_i < |w(±oo)|. In the opposite case when w(+oo) < 0, 
u{—oo) > 0, there are no bound states with E = - \ - A U but 
there is a level with E = —AX. 

2.4. Degenerate interface states 
We have considered so far the solutions corresponding to 
the zeroth mode of the super symmetric Hamiltonian Hs 

given by expression (5.10). However, in addition to the 
states represented by these solutions there may be ordinary 
degenerate interface states at a contact between two 
semiconductors. The whole spectrum of the interface 
states can be investigated provided we know the specific 
form of the functional dependence of the hetero structure 
parameters. We can select this dependence to be the 
function f(z) = tanh(z//), where / is the thickness of the 
transition layer. We shall use here the results given in 
Section 5.1. 

In the simplest case of a symmetric inverted contact 
(/0 = \/AQ) expression (5.30) for the spectrum becomes 

E± = ±[rkj-n(n-2l/l0)} 1/2 

I 
(2.13) 

which is identical with the results given in Ref. [2]. It 
follows from expression (2.13) that n should vary in the 
interval 0 < n < 2 / / / 0 . If / < / 0 , only the zeroth mode 
(n = 0) exists. If / > / 0 , additional two-dimensionally 
degenerate branches of interface states (m,A = + l ) and 
(m = + 1 , X = — 1) appear. If / ^> l0 the discrete levels given 
by expression (2.13) form a quasicontinuous spectrum, 
which fills the whole band gap [2, 13]. 

Whenever / reaches an integral multiple of l0, a pair of 
interface states splits from the Dirac bands. This is due 
to the fact that the parameter a = l/l0 then assumes values 
which are integers and the sequence of potentials U±(jxrn z) 
[described by expressions (5.23) and (5.24)] reduces to the 
potential U(a, z) = 0 for n = a (the point from which the 
energy Es is measured is shifted by the amount 
A0/l= l/ll0). In other words, the potential given by 
expression (5.28) becomes reflection-free. This means 
that the asymptotes of the delocalised wave functions do 
not contain a reflected wave and a contact of this kind is 
absolutely transparent for the Dirac-spectrum electrons. 

When the asymmetry of the contact (g0 ^ 0) is taken 
into account, the results given above are not affected in a 
qualitative sense. The number N of the Dirac levels within 
the band gap is determined by the thickness of the contact: 

1/2 
42 2 \ = 2/ 4 - S o (2.14) 
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In the case of a ferroelectric domain wall only the 
coefficients ui9 w0, and Ax differ from zero. It follows from 
expression (5.30) that 

where 

E± = ± A 2 , n(2u0l-
TT 

•n) 
1 -

(ux — XkjJ I 2,2-1 

(UQI — n) 

1/2 

(2.15) 

which shows that the condition for the appearance of a 
Dirac level with the serial number n is 

> 

/ 2 2 \ 1 /2 

(2.16) 

We thus reach the conclusion, which also remains valid 
for the general form of the potential described by expression 
(5.11), that in the case of graded heterostructures the band 
gap contains not only the zeroth mode, but also a finite 
number of doubly degenerate Dirac levels. These levels 
correspond to states localised at the interface and the 
number of these levels is governed by the transition layer 
thickness / and by the semiconductor structure parameters. 
If the contact (junction) is abrupt, so that the thickness / is 
less than a certain critical value at which the first 'Dirac' 
level appears, only the zeroth mode (known as the 'Weyl' 
branch) is observed. 

3. One-dimensional size-quantised 
semiconductor structures 
3.1 Rectangular quantum well formed by inverted 
contacts 
Let us consider a rectangular quantum well of width 2a 
formed by a semiconductor with inverted bands and 
surrounded by two different semiconductors with unin-
verted bands. The function f(z) for this structure can be 
selected in the form 

f(z) = \ + flL+flR (1 + iiL)0(a + z)- (1 + iiR)0{a - z). 
(3.1) 

Here, 6 are the step functions and the parameters (1 + fiL) 
and (1 +/JLR) give the height of the left- and right-hand 
barriers, respectively. 

The supersymmetry method described in the Appendix 
is inapplicable to the dependence/(z) of the type described 
by formula (3.1). However, then expression (5.10) (or its 
quadrature analogue) can be solved separately in each 
region, bearing in mind that the logarithmic derivative 
of % has jumps at the interfaces: 

dz z=-a dz 

dx^2) 

dz z=+a dz 

(3.2) 

= ±(1 +nR)xxT(a). 
•a 

This leads to the following dispersion equation 

tanh(2ga) = 

<ML +<1R+KL -**) 

(x+xL)(x+xR) - q 2 ~ qLqR+qL{x+XR) ~ <1R(x+XL) ' 

4L,r = (WX + xL,Rf - (Wx - xf + q2 , 

q2 = (Wx-x)2-E2 = (A1-A0)2 

+(ux - w0 - ^k±)2 ~{E + g0)3 , 

(3.4) 

Let us assume that ux = u0 = g0 = Ax = 0, A0 = x. Then, 
expressions (3.4) become 

2 
QL,R 

: x2L,R + q2 

(3.5) 

Let us consider specifically that \x\ < \xL R\. The real values 
of q in the dispersion equation (3.3) then correspond to 
levels localised at the walls of a quantum well, the 
imaginary values of q when the real values are qL and 
qR correspond to size-quantisation levels in the well, and 
the imaginary values of q, qL, and qR represent delocalised 
states in the continuous spectrum. We shall be interested in 
the localised states which are of the same origin as the Weyl 
branch in the case of a single inverted contact. 

A detailed analysis of the dispersion equation (3.3) is 
reported in Ref. [14]. In particular, if a —> oo the solution of 
Eqn (3.3) is q = x and E = ±Xk_L, i.e. the zeroth mode is 
doubly degenerate (A = ±1). The wave functions of these 
states are localised at the opposite interfaces. If the size of 
the well is finite, the spectrum of the localised states 
becomes of the gap type: 

E = ± I x2 - q2 + k\ 
1/2 

(3.6) 

If the size of the well is reduced to a certain critical value 
a = ac (which depends on the relationship between x and 
xL R), the quantity q becomes purely imaginary, i.e. both 
levels described by formula (3.6) transform to size-
quantisation levels. It follows that the electron-like and 
hole-like branches of the localised states split off from the 
upper and lower bulk energy bands, respectively. It should 
therefore be stressed that even in the case of a single 
inverted contact the zeroth mode is truly degenerate 
because there is always a second interface between an 
'inverted' semiconductor and, for example, vacuum. 

Let us return to an analysis of the solutions of the 
disperison equation. In general, the expression for ac is 
fairly cumbersome. The dispersion equation for a symmet­
ric well (xL = xR = x0) is identical with that obtained in 
Refs [15, 16]: 

th(2qa) mo 
x(x + x0) - q2 

which means that 

2ar = 1 fxo-
x0-\-x 

(3.7) 

(3.8) 

In the fully symmetric case (x = x0) we have ac = 0, i.e. 
there are states localised at the interfaces for any size of the 
well. 

(3.3) 
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3.2. Inverted semiconductor film 
The largest value 2ac = \/x is obtained for x <C x0, which 
corresponds to a film of a semiconductor with inverted 
bands surrounded by an insulator. An estimate of this 
value for a I V - V I semiconductor (2A ^ 1 0 0 meV, 
v = 3 x 107 cm s _ 1 ) gives ac w 100 A. The origin of the 
interface states can be demonstrated for such a film in a 
clear manner. In fact, in this case the spectrum of the 
system is completely discrete (in a transverse direction) and 
the dispersion equation has the simple form 

tanh(2ga) = - . (3.9) 

The solutions of this equation with purely imaginary values 
of q correspond to size-quantisation levels with E > \x\. 
The states inside the band gap (E < \x\) correspond to real 
values of q. In a semiconductor with an uninverted band 
structure (x < 0) there are only size-quantisation levels, 
which simply shift to the edge of the band gap when this 
gap is reduced. The band gap width then passes through 
zero and becomes negative (x > 0), but the levels still shift 
continuously to the edge, although their number does not 
change. Finally, when x reaches a certain finite value 
(which depends on the film thickness 2d), the imaginary 
solution with the value of q smallest in the absolute sense 
becomes real, i.e. the electron and hole size-quantisation 
levels nearest to the edge of the band gap migrate into the 
gap and form interface states. 

The wave function also has the simplest form for 
a film [15] 

/ sinh[g(a + z)] 

*x(z)=B 

\ 
2 

U exp(i0) E + ; j c sinh [q(a - z)] 

E + Xk 
q 

sinh [q(a — z)] 

\ X exp (i6) sinh [q(a + z)] 

, (3.10) 

B2 
X 2 - c E + XkA 

x - 2a(x2 - q2) 2E 
(3.11) 

concentrated at the boundaries and, as k± is increased, the 
'electron' states with positive parity are driven against the 
right-hand boundary and those with negative parity are 
driven to the left-hand boundary. The reverse is true of the 
'hole' states. 

The existence of pseudoparity leads to certain selection 
rules for the optical transitions between localised states 
whose spectra is described by expression (3.6). In contrast 
to an inverted contact, the matrix element of the velocity (for 
an Ex — E[, transition) is v = v(Yx>\y°y\Y2) and it has 
nonzero components both in the plane of a film and across 
it: 

V / = U v ( l - Sxx') 

vk± = Xvdn, 
\E\ 

(3.15) 

2(2ax - 1) I~2 J • { T 7 \ s i 1) 
V) 

Hence, it is clear that for light polarised along the 
I =\nxkA]/\k1_\ direction, only the transitions with a 
change in parity are allowed. The expression for vz then 
becomes identical with the corresponding expression for an 
inverted contact [16]. In the case of light polarised in the 

z) plane only the parity-conserving transitions are 
allowed. Such transitions are impossible in the case of an 
inverted contact when the zeroth mode is nondegenerate. It 
is also evident from expressions (3.15) that the components 
vk± and vz are proportional to (x2—q2)1^2, i.e. they 
decrease with increase in the film thickness (vanishing in 
the limit a —> oo). This is due to the fact that the wave 
functions of the electron and hole states with the same 
parity are localised at the opposite boundaries of the film. 
Expressions (3.15) can be used to calculate the frequency 
dependence of the absorption of light with different 
polarisations. For example, the transmission coefficient 
of light polarised linearly in the film plane is [15] 

R(u>) 
Hcnr 

v2 1 
1 + e(nw - Eg) (3.16) 

It should be pointed out that in a state with the wave 
function (3.10) the maxima of the distributions of the 
charge and spin densities do not coincide in space. In fact, 
the charge density nx(z) is 

*x(z) = *l(z)Hz) = § 2 { ^ ^ s i n h 2 W + *)] 

+- • ^ s i n h 2 

2E 
[q(a - z)] | , 

where 

B2 

(3.12) 

(3.13) 
x — 2a(x2 — q2) 

According to expression (5.4), the spin distribution 2^(z) is 

cosh(2gz)" 
cosh(2ga) 

(3.14) 

It is thus clear that the distribution of the spin density is 
symmetric with its maximum at the centre and it vanishes 
at the boundaries of a film. However, the charge density is 

where Eg = 2hv(x2 — q)1^2 is the gap in the spectrum of the 
localised states and nx is the refractive index of light. 

The spectrum of the surface states of a film and of a 
semi-infinite crystal of a narrow-gap semiconductor is 
determined in Ref. [17] by adopting a different 
approach. Eqn (5.2) is solved with a constant gap 
A(z) = A (and g = u = 0) and the following phenomeno-
logical boundary conditions are applied: 

W = -iA(y n)V, (3.17) 

which require only the absence of the current across the 
interfaces. Here, n is the normal to the surface and A is a 
certain Hermitian matrix, which is defined by a single 
phenomenological real parameter a0: 

A = a0+- a0 

+ 0o - " a0 

(3.18) 

We can show that a0 is governed by the semiconductor 
structure parameters and is related to the finite work 
function: g0 ^ 0. This can be shown by substituting 
u(z) = 0 in Eqns (5.6) and (5.7). The canonical trans-
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formation operator S, which diagonalises the quadrature 
equation (5.7), then becomes 

S = cosh (^j + y° sinh (^j , tanh (a) = j - • (3.19) 

The action of the operator (3.19) on the linear equation 
(5.6) gives 

{y° [y3Pz + - iy3Xk± -e}x = o, 

where 

= (a\ -gl)1/2f(z) +E(g0/A0), 

M1 

(3.20) 

E = EA{ 

Hence, since the pseudoparity operator P commutes with 
the operator S and the function x satisfies the boundary 
conditions % = —i(yn)x, we find that 

¥ = -iS(y n)S-[W = -iSz(y • n)W , (3.21) 

i.e. the matrix A in expression (3.18) is identical with the 
square of the operator (3.19), which leads to 

a0 = cosh (a) + sinh (a) = sgn(^ 0 ) ( i - g o M ) ) 
( 1 + W 4 > ) 

1 / 2 

(3.22) 

We can see that for g0 = 0, we have a0 = ± 1 , depending on 
whether the energy bands of the semiconductor film are 
inverted or not. For g0 ^ 0, the absolute value of this 
parameter can be less or greater than unity, depending on 
the sign of go/A0. In the case of an abrupt heterojunction 
the quantity g0 represents the difference between the work 
functions of the two semiconductors. Therefore, for 
go/A0 < 0 the valence band offset at the heterojunction 
is less than the conduction band offset, whereas the 
opposite is true for g0/A0 > 0. 

3.3. Ferroelectric domain 
We shall now consider a homogeneous intrinsic semi­
conductor containing one ferroelectric domain of size 2a. 
Once again, we shall use the function (3.1) and assume that 
A0 = g0 = u\ = 0, \iL = pR = 1. The dispersion equation 
(3.3) then becomes 

q(q2 — 4Xk ±u0)1/2 

tanh(2ga) = 
2UQ(UQ + Xk±) — q2 

(3.23) 

The roots of this equation determine the energy spectrum 
of localised states 

E = ±\[A2

l-{u{)+XkA_)2 -</2] 
1 / 2 

(3.24) 

In the limit a —> O O (representing two walls separated by an 
infinite distance), the solution of Eqn (3.23) is q = u0 + Xk± 

and the spectrum consists of two degenerate branches with 
energies E = ±A\. If the domain is of finite dimensions, the 
degeneracy of X is lifted and the spectrum of localised states 
exhibits dispersion. An analysis of Eqns (3.23) and (3.24) 
shows [18] that these states exist in the range of transverse 
momenta 0 < k± < u0 (X = +1) and 0 < k± < kc (X = —1), 
where 

f (1 + \6a2ul)1'2 -
%a2 Wq 

(3.25) 

In the case of negative parity states, if k± > kc, the solution 
of Eqn (3.23) becomes purely imaginary and the wave 
function changes from exponentially falling at the domain 
walls to an oscillatory function, i.e. it corresponds to the 
'size-quantisation' states inside the domain. Apart from 
this branch, if k± > kn c , where 

1 
4u0 

(3.26) 

a whole series of negative-parity 'size-quantised' states 
appears. As the domain dimensions are reduced, in the 
limit a —> 0, we have knc —> O O and these branches 
disappear. The surface states with X = +1 mer^e with 
the bulk spectrum branch E~ = ±[A\ + (w0 — k^)2]1^2, and 
the states with X = — 1 become size-quantised (kc —> 0) and 
merge with the branch E+ = ±[A\ + (u0 + k±)2]l'2, so that 
we then have the usual continuous spectrum of a bulk 
semiconducting ferroelectric. 

3.4. Spectrum of interface states in a magnetic field 
Let us consider how the spectrum of the interface states is 
modified by a homogeneous magnetic field / / , directed 
along the z axis. To reveal the effect of this field, we shall 
assume that the potentials w, P , and G in the Hamiltonian 
(1.2) vanish and we shall select the vector potential A in the 
A = [H • p]/2 gauge, where p = (x,y). The Hamiltonian 
then becomes 

HA = [vyVPz + 7°A(z) + vy\y+n_ + y_n+)] , (3.27) 

where y± = (y1 ± iy2), ft± = (nx ± my)9 n =p — eA. We can 
show that this Hamiltonian commutes with the operator 

P A = y5 (y [n x n±]) = iyV(y+n_ + y_n+) , (3.28) 

which represents a simple generalisation of the operator 
described by expression (5.3) to the case when a magnetic 
field is present. The eigenfunctions of the operator (3.28) 
are found as follows. The commutation properties of the 
matrices y±, lead to 

(3.29) 

where Z3 is the operator of the projection of the spin onto 
the z axis and L2 = H/\e\H is the magnetic length. The 
eigenfunctions of the operator ft+ft_ are the Landau 
oscillator functions y), where 

H2 

n+n_<Pn(x,y)=2njj<Pn(x,y), /i = 0 ,1 ,2 , . . . (3.30) 

Since the spin operator I is diagonal, the components of 
the eigen bispinor $ of the operator (3.29), and 
consequently also of the operator P A , can be represented 
in the form 

^ 1 , 3 = &n-l(x, y)flj(Z)> 

Then, bearing in mind that 

Xh r— ? 

PATP = — V2nip , 

(3.31) 

(3.32) 
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we obtain the Dirac equation for ^ in the form 

| y ° W?z + A(z)] - iy3XHv ^ - E = 0 . (3.33) 

A comparison of this expression with Eqn (5.6) shows that 
the only difference is the replacement of k± with Vln/L, 
i.e. in a homogeneous magnetic field directed along the z 
axis the Landau quantisation takes place and the spectrum 
described by expression (3.6) becomes 

1 / 2 

E = ±\yc1-q1+-1 (3.34) 

If n = 0, the components are = 0, so that the zeroth 
Landau levels with energies E = ±y/x2 — q2 are not 
degenerate. The other levels with n = 0 remain doubly 
degenerate in terms of the parity X = ± 1 . 

The matrix elements of the transitions between the 
Landau levels can be calculated by analogy with the 
velocity components described by expressions (3.15). If 
light polarised along the z axis propagates perpendicular 
to a magnetic field (Voigt configuration), only the transi­
tions between the levels with the same index n are allowed 
(these are 'interband' transitions) and the matrix element 
itself is identical with the corresponding expression (3.15) 
for vz. In the Faraday configuration, when light propagates 
along a magnetic field, it is meaningful to speak of the right-
and left-handed circular polarisations in the plane of a film. 
In this case the transitions between the Landau levels with 
the numbers n and n=n±\, are allowed and for the 
transitions in which n increases, the right-handed polarisa­
tion is active, whereas the left-handed polarisation is active 
in the transitions accompanied by a reduction in n. Both 
'interband' and 'intraband' transitions are then possible. 

We shall conclude by noting that the operator (3.28) 
commutes also with the general Hamiltonian 

HW = [vy°yn + y°A(z) + iy3u(z) + G(z)] W = EW (3.35) 

which means that in all the cases discussed above the 
application of a magnetic field results in a standard 
splitting of the spectrum into the Landau levels. 

4. Two-dimensional and three-dimensional 
inhomogeneous structures 
4.1 Localised states near linear and point defects 
We shall now consider the characteristics of two-dimen­
sional structures. We shall ignore the existence of 
polarisation. Mechanical stresses and strains near linear 
and point defects are known to decrease inversely 
proportionally to the distance from these defects [19, 
20]. Therefore, in describing the spectrum of narrow-gap 
semiconductors containing such defects the spatial 
dependences of the potentials A(r) = A0f(r) + Ax and 
G(r) = g0f(r) can be selected in the form f(r) = 1/r. In 
Section 5.2 of the Appendix it is shown that in this (and 
only in this) case the Hamiltonian can be reduced to the 
super symmetric form. The conditions for a real super-
potential and for normalisation of the wave function of the 
zeroth mode are 

M2 + A2-g2>0, 

AoA^EgoKO 

(4.1) 

(4.2) 

where M = 1/2, 3 /2 , . . . , in the case of a linear defect and 
M = 1,2, . . . = (j+ 1/2) for a point defect (Af is the 
projection of the angular momentum along the z axis 
and j is the total angular momentum). It is evident from 
expressions (4.1) and (4.2) that if g0 ^ 0, localised states of 
both electrons and holes may appear near such defects 
irrespective of whether the energy bands of a semiconduc­
tor are inverted. It should also be noted that if A0 = 0, then 
expression (5.46) for the spectrum in the three-dimensional 
case (pz = 0) becomes identical with the familiar expression 
for localised states near a charged point centre, derived in 
Ref. [21] for two-band semiconductors: 

En = -sign(go) 
(c + n)A 

[{c + nf+g2] 

1/2 

(4.3) 

where the quantity g0 acts as the effective charge and 
condition (4.2) is equivalent to the condition that the same 
centre captures both electrons and holes. 

4.2. Interface states in two-dimensional and three-
dimensional quantum wells 
If the spatial dependences of the fields differ from 1/r, it is 
not possible to diagonalise the Hamiltonian and other 
methods have to be adopted. For example, in the case of a 
rectangular cylindrical well of radius a the function f(p) is 

f(p) = (fi+l)6(p-a)-\ (4.4) 

where the parameter \i governs the well depth. In this case 
the relevant equation (5.10) can be solved separately in 
each region bearing in mind that at the interface the 
derivative of the wave function xT(p) has a discontinuity: 

dp 
p=cr " dp p=a 

1/2 

<*IX=F(«)-

(4.5) 

The result is the following dispersion equation [22]: 

QeQi 

(v+lftAl-gD-ql-q2 

= Im (gjfl)/m+l { a i a ) K m (<lea)Km+l fe^) 
7 m+l (<lia)Km {Qea) + l l (aia)Km+l ( ^ ) ' 

(4.6) 

where q2 = (A0 - A,)2 - (E + g0) +p2

z, q2

e = (JJLA0 + Ax) -
(E-fig0)2 -\-p2

z and m = (M - 1/2); / m ( ^ a ) , Km(qea) are 
modified Bessel functions of the first and second kinds. 

For simplicity, we shall consider the case when 
A\ — go = 0 and q2 = q2 + (/n2 — 1)AQ. It should be pointed 
out that the real values of qt correspond to the levels 
localised on the boundary of a cylinder, that the imaginary 
values of qt in combination with the real qe represent size-
quantisation levels inside the cylinder, and the imaginary 
values of qie indicate delocalised states in the continuous 
spectrum. For real values of qh the right-hand side of Eqn 
(4.6) is positive. However, the left-hand side, which is then 
{litfi + G"2 " l ) ^ o ] 1 / 2 / 2 } [ ( ^ + l)Al ~ i s Positive only if 
fi > 0. Hence, it follows that the interface states appear in a 
cylindrical quantum well only if the bands of the semi­
conductors are mutually inverted in and outside the well. 
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In the simplest case of a 'symmetric' well (/n = 1, 
Qi — Qe — #)> the dispersion equation (4.6) becomes 

q = lm{qa)lm+i{qa)Km{qa)Km+l(qa) 

(qa)Km(qa) + Im(qa)Km+l(qa)] 
(4.7) 

In the limit a —> oo the solution of (4.7) is q = A0 and 
£ = =|=/?z, i.e. the problem becomes equivalent to that of a 
one-dimensional inverted contact [23] and the zeroth mode 
is characterised by degeneracy of infinite multiplicity in 
terms of the projections of the total angular momentum M 
on the z axis. A reduction of the radius of this well lifts the 
degeneracy of m, corresponding to different absolute values 
of M, and the doubly degenerate spectrum of localised 
states becomes the gap spectrum 

E = ±[a2

0+P

2

z-<?\1/2 . (4.8) 

The number of levels inside the band gap is governed by 
the maximum value of the angular momentum, which is 

2 | M | m a x = [\+4A2

0a2] 
1 / 2 

(4.9) 

The levels with high values of M are within the continuous 
spectrum. Obviously, there is a critical value of the radius 
ac = I / A / 8 ^ 0 ? for which all the levels inside the band gap 
are expelled from it to the continuous spectrum and there 
are no localised states. 

A small change in the shape of the well, for example, a 
change from the circular to the elliptic shape of a cylinder, 
shifts only slightly the energy levels. This is confirmed by 
calculations carried out on the basis of perturbation theory 
in which the ellipse eccentricity is a small parameter. All the 
levels remain, as before, doubly degenerate. If the area of a 
circle 'deformed' into an ellipse is conserved, there is no 
shift of the levels. 

In the case of a three-dimensional spherically symmetric 
quantum well the dispersion equation is analysed exactly as 
described above. For a well with a finite radius the spectrum 
of states localised at an interface is a set of discrete levels 
whose degeneracy multiplicity is 2N, where N is the number 
of different projections of the total angular momentum 
along the z axis. As in the preceding case, there is a certain 
critical value of the radius at which all the localised levels 
are expelled into the continuous spectrum. 

5. Appendix. Factorisation and supersymmetry 
methods for solving the Dirac equation 
5.1 One-dimensional case 
We shall use the methods of factorisation [24] and 
supersymmetry [10] to solve the Dirac equation in the 
presence of one-dimensional scalar A(z), axial u(z) and 
vector A ̂  = [0,0,0,G(z)] potentials: 

HW= {vy°y - p + y°A(z) + iy3u(z) + G(z)}¥ = EW . (5.1) 

The wave function W can be selected in the form W = 
*F(z) exp(i£_|_«r), where k± = (kx, ky, 0). Then, in place of 
Eqn (5.1), we obtain 

HW = {vy°y3pz + vy°(y - k ± ) + y°A(z) 

+iy3u(z) + G(z)}V = E¥. (5.2) 

We can show that the Hamiltonian H commutes with the 
pseudoparity operator P [14] 

P = f(y.l)=- (5.3) 

where / is a unit vector which lies in the (x, y) plane and is 
perpendicular to the wave vector k±: I = [n x (n is 
a unit vector along the z axis). The eigenvalues of the 
operator P are ± 1 . The operator P is associated with the 
operator of spin projection along the direction of /: 

t, = \t xl\=y°P. (5.4) 

It follows that the wave functions of the Hamiltonian (5.2) 
can be the eigenfunctions of the operator P, so that 

and the equation for becomes 

{y°[yl

Pz + A(z)] + ir3[u(z) -U±] + G(z) -E}Vx = 0. 
(5.6) 

The process of finding the quadrature of this equation gives 

{p2

z + A\z) + [u(z) - lk±Y - [E - G(z)Y 

+[j-z [ y 3 j ( z ) " ?VG(z) + iA(z)] }&l = 0 • 
(5.7) 

The matrix part of this equation can be diagonalised only if 
the spatial dependences A, G, and u are given by the same 
function f(z) 

A(z) = Ax + A0f(z) , 

u(z) =ui+ u0f(z): 

G(z)=g0f(z). 

(5.8) 

Such diagonalisation is performed by the canonical 
transformation W = 5%, where 

tanh (a) 

tan(/>) 

(5.9) 

4 ^ 

Consequently, Eqn (5.7) becomes 

Pf + Wj- if dz Xx=E1xx = E%Xx, (5.10) 

where 

Wx(z)=wx + xf(z) 

Es=e2 =E2 - A\- (Ml - Xkif + w\ , 

(5.11) 

(5.12) 

and 

= [A\A0 + (ui -Mc±)uo+Eg0]/x, 

2 2 

The Hamiltonian (5.10) has a specific symmetry due to 
the special nature of the potential energy, representing the 
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sum of the square and of the derivative of the same function 
Wx{z). This becomes obvious if Hs is represented in the 
form 

where 

Q+=B~S+

9 Q_=B+S~ , 

B± = (TVZ + WX), S±=\(G

r 0 

(5.13) 

(5.14) 

a = ax =b kr 2 . 

Here, B are the Bose operators which generally describe 
'interacting bosons' [10] and the operators S± obey the 
Fermi transposition relationships and have the nilpotent 
property (S±)2 = 0. Consequently, we can demonstrate 
that the operators Q± commute with the Hamiltonian: 
[HS9 Q±] = 0. This is evidence of invariance of the 
Hamiltonian Hs under the transformations performed by 
the operators Q±9 i.e. the transformations involving the 
replacement of a boson by a fermion and vice versa. 
Consequently, the Hamiltonian Hs is the Hamiltonian of 
Witten's super symmetric mechanics [25]. 

We shall consider the problem of the ground state of Hs 

by representing this Hamiltonian in the matrix form: 

H, 
H_ 

H_ 

0 

# 4 

(5.15) 

where 

H+ = B~B+ =Pl + U+(z), 

H_ = B+B~ =P

2

Z + U_(z), (5.16) 

u± = W2(z) + W'(z). 

The Hamiltonians H± act in the space of one-compo­
nent wave functions and each of these Hamiltonians is 
factorised, i.e. it is a product of two conjugate first-order 
differential operators. Consequently, the problem of finding 
zero-energy states reduces to that of solving the equations 
B+x+ = 0 or B~x~ = 0. 

Expression (5.14) for the operators B±

9 makes it possible 
to write the system of equations B±x± = 0 in the form 

-±W(z) 

The solutions of these equations are 

: cexp W(x)dx 

(5.17) 

(5.1c 

However, since % a r e the eigenfunctions of the Hamil­
tonian HS9 they should be quadratically integrable. 
According to expression (5.18), this is possible if the 
following conditions are satisfied: 

Jo 
W(x) dx —> =Foo for |z| —> oo , (5.19) 

where the minus and plus signs on the right of integral 
(5.19) correspond to the functions % + a n d x~• 

The conditions (5.19) are incompatible, so that only one 
of the functions can be normalised. Therefore, if the 

state with the energy Es = 0 ('zeroth mode') does exist, it is 
nondegenerate and this state corresponds to that of the 
functions which is normalisable [i.e. the spinor part of 
the wave function corresponding to the zeroth mode has a 
structure either (10 0 1), or (0 1 i 0)]. However, it may 
prove that none of the functions is normalisable. 

It should be noted that the Hamiltonian Hs can be 
represented in the form of the square of the Hermitian 
operators Qx and Q2: 

G i = G + + G - , Qi = - i ( G + - G - ) • (5.20) 

The operators QX9 Ql9 and Hs obey the following algebra: 

{Qi9Qk} = 23ikHS9 [QhHs}=09 i9k = \92 9 (5.21) 

which includes both the commutation and anticommuta-
tion relationships (this is known as the Lie super algebra). 
Consequently, the spectrum of the Hamiltonian Hs is non-
negative and the levels with Es ^ 0 are doubly degenerate. 
It follows that the Hamiltonians H± have almost the same 
spectrum for arbitrary functions W(z). The only difference 
is that one of the Hamiltonians H± has the lowest level 
whose energy is zero and the other Hamiltonian does not 
have such a level [26, 27]. It then follows from formula 
(5.12) that in this case we have the ground-state solution 
for the Hamiltonian of Eqn (5.1). 

Following Refs [28, 29], we can find the complete 
spectrum by making use of two properties of supersym-
metric theories: the degeneracy of the spectrum and zero 
energy of the ground state. 

Let us consider the specific case when the Hamiltonian 
H_ has the zero level. If the potentials U± differ only in 
respect of the parameters (including an additive constant) 
which occur in them, the complete spectrum of H± and, 
consequently, of the super symmetric Hamiltonian Hs can 
easily be found. In fact, let us assume that 

U+(a,z) = U_(auz) + Q(*i) (5.22) 

where a is the set of all the parameters and OLX is some 
function of a [CLX = / (a ) ] , the form of which is governed by 
the potentials. Let us now derive a series of Hamiltonians 
H„, where n = 0, 1, 2, ...: 

Hn=p2

z + U_(an,z)+^2Q(ak) (5.23) 

where ctn is the result of the n-fold application of the 
function/, and let us compare the spectra Hn and Hn+l. It 
follows from relationship (5.22) that 

Hn+i =P2

Z + z) + £ g ( « * ) (5.24) 

As pointed out above, Hn and Hn+l have the same spectra 
with the exception of the lowest level Hn [with energy 
J2t=i Q(ak)]- Going over from Hn to Hn_x and so on, we 
obtain the initial Hamiltonian H_ with the lowest level of 
zero energy and all the other levels coincide with the lowest 
levels of the Hamiltonians Hn. Therefore, the complete 
spectrum of H_ is given by En = J2k=\ Q(ak)- Conse­
quently, the spectrum of the Hamiltonian with the 
potential Ufa z) = U_fa z) + Qofa) is [28] 

E: = En + Q0fa = Y^Qfa) + Qofa (5.25) 
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For the potentials U± obeying condition (5.22) the 
corresponding function W(jx,z) satisfies the functional 
differential equation 

W 2 (a , z ) + — W(OL, z) 
dz 

= W2(auz)-j-zW(auz)+2Q(al) 
(5.26) 

Therefore, the spectra of the Hamiltonians H ± and, 
therefore, the spectrum of H s can easily be found by 
solving Eqn (5.26) and are given by formula (5.25). 

Application of the supersymmetry method to the 
complete spectrum of the Hamiltonian (5.6) will now be 
considered for the specific case of the following spatial 
dependence on the fields described by expressions (5.8): 

f(z) = tanh (5.27) 

Substitution of dependence (5.27) into expressions (5.8), 
(5.11), and (5.16) gives 

u ± = j 2 a ( a ± ! ) t a n h 2
 (jj + 2 ^ t a n h ^ + l2b2 ± ^ , 

(5.28) 

where a = x/l = l/l0, b = [AXAQ + (u\ — A£ ± )w 0 + Eg0](l0/l)9 

and l0 = l/x is the wave-function localisation length. 
Successive application of formulas (5.22)-(5.25) gives 
[ci\ — a— 1, an = a — n, bn=ab/an9 Qk = l2(b2

k_\ — b2

k)-\-
(2a + \-2k)/l2

9 Q 0(fl) = 0]. 

n(2a — n) 
EZ = 52Qk=l2(b2-b2

n) + -
I1 

(5.29) 

Finally, substitution of expression (5.29) into formula 
(5.12) yields the complete spectrum of localised states of 
the Hamiltonian (5.1) (representing the doubly degenerate 
'Dirac' branch of the spectrum) 

1 
2 / 2 + ( „ _ / / / ( ) ) 

AXAQ + (u\ — A.k±)uo ± I —n + 
l< 

-{AXAQ + (ui - Ak±)uoy 
1 / 2 

(5.30) 

where n = m + (1 +X)/2 and m = 0, 1 ,2 , . . . 

5.2. Multidimensional case 
Application of the supersymmetry method to the spectrum 
of the Hamiltonian (5.1) can be generalised to the 
multidimensional case. When the potentials occurring in 
the Hamiltonian depend only on the vector p = (x9y90)9 

the wave function can be selected in the form W = 
W(p) Qxp(ipzz) and then Eqn (5.1) (with u = 0), written 
down in a cylindrical coordinate system, becomes 

[f{y -p) + ~y°A(p) + G(p)] <¥(p) = EV{p) , 

where 
1 0 0 0 
0 cos(</?) sin(y?) 0 
0 — sin(y?) cos(</?) 0 
0 0 0 1 

Ky\ 

(5.31) 

(5.32) 

and p = (—i<9p, — i<9^/p,/?z). Next, if A and G depend 
only on \p\ (cylindrical symmetry), we can simplify Eqn 
(5.31) by eliminating the angular variables with the 
aid of the nonunitary transformation W(p) = S<P(p) = 
y/pQxp(y°y1(p/2)0(p). The equation for <j>(p) then 
becomes 

M 
fypP + ff — + yVpz + f A { P ) + G(p) 

= E$(j>) • 

<f>(p) 

(5.33) 

where <P = <P(p) exp(iM^) and M = ±(1/2) , DZ ( 3 /2 ) , . . . 
because of the condition W((p + 2) = *P(<p). If the coor­
dinate dependences of A and G are described by the same 
function / (p) , namely 

A(p)=A0f(p)+A1, G(p) = g()f(p) , (5.34) 

the canonical transformation & = S0x = exp(y°a;/2)x, 
where tan(a;) = —g0/A0, can be used to transform Eqn 
(5.33) to 

{y° [ylPP + w(p)] + y°y2 j + y°y3

Pz } x ( p ) = ^ x ( p ) , (5.35) 

where 

v(p) = sfl f(p) + 
A0A1 +Eg0 

0Ai +EA0 

(5.36) 

Taking quadratures of Eqn (5.35), we obtain (x is a column 
of spinors X - a n d X+): 

A ~ , \ [~2 M2 M 2 . , d w L 
HiX±(p) = J P , + y ~ <r3 ^ + w (P) T ffi ^ | X T 

( e 2 - p 2

z ) x t -

(5.37) 

Here, H i is the Hamiltonian of super symmetric quantum 
mechanics 

X = (E2-p2)x = Esx 

and its matrix potential is 

V{p) = ^ - + iy2w{p). 

Then the 'supercharges' g ± are 

e± = [ T d p + v ( P ) ] . 

(5.38) 

(5.39) 

(5.40) 

It can easily be shown that the Hamiltonian (5.38) can be 
diagonalised only if f(p) = 1/p. The transformation 
X(p) =exp(y 2 a ; 2 /2 )7 / (p) , where tan(o;2) = (A2

0 - gl)l,2/M9 

can reduce the Hamiltonian (5.38) to the following form 

Hfn{p) = [P

2

P + W2(p) - Z3W'(p)]r,(p) = E2r,{p), 
(5.41) 
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where 

W(p) + ̂
M2+A2-g2~P 

E =El + 
( 4 , ^ 1 + g g 0 ) 2 

M2 + A\-gl 
-A\-pi = (5.43) 

= E2 -A2-p2

z+d2 

and I3 is the third component of the spin operator. It then 
follows from general theorems of supersymmetric mechan­
ics [10] that the zeroth mode of the Hamiltonian (5.41) 
exists if 

AoAi+EgoKO. (5.44) 

The ground state energy ( 5 . 3 3 ) is found from the equation 
Es = 0. It should also be noted that the Hamiltonian ( 5 . 4 1 ) 
is identical in form with the SchroSdinger equation of 
supersymmetric quantum mechanics for the motion of a 
particle in a Coulomb field [29], where the role of the 
orbital momentum / is played by the quantity 
(M2 + Al — go)1/2 with a known spectrum. The results of 
the preceding subsection [Eqns ( 5 . 2 2 ) - ( 5 . 2 5 ) ] can be used 
to write down the general spectrum of localised [near 
Pn — (c + n)2/cd, where n = 0 ,1,2, . . . ] states of the Hamil­
tonian (5 .33 ) : 

(c + nf+g2 [ 
-1 ± c + n 

goA\Ao (5 .45) 

:^/[gl + (c + n)2](A2+p2

z)-A2A 

It should be noted that if pz = 0 and A0 = 0, expression 
( 5 . 4 5 ) yields the familiar spectrum of the Coulomb states of 
three-dimensional fields: 

-sign(go) 
(c + n)Al 

^{c + nf+g2 

yfk (5 .46) 

Here, g0 plays the role of the interaction constant. In fact, 
in the case of three-dimensional spherically symmetric 
potentials A(r) and G(r), the Hamiltonian ( 5 . 1 ) commutes 
with the operator 

j£ = y0(*-L + l) , (5 .47) 

the eigenvalues of which are & = =F(/' + 1 /2 ) = =pl, =p 2, 
Here, L is the orbital momentum operator and j is the 
total angular momentum of the electron. Therefore, the 
wave functions of the Hamiltonian ( 5 . 1 ) can be the 
eigenfunctions of the operator K, such that 
K¥(r)=k¥(r), where W = (l/r)$(r), and the function 
0(r) can be found from the equation 

T2pr + -Ti+T3A(r) + G(r) d>(r) = E0(r) (5 .48) 

where pr = —i6r, and TI,T2, and r 3 are the Pauli matrices. 
Taking quadratures of Eqn (5 .48 ) , we obtain 

^ + | : M W + i r 2 G ( r ) ] 

- [ £ - G ( r ) ] 2 } 
(5 .49) 

0 = 0. 

It is easy to show that for the same spatial dependences 
of A and G [given by expression (5 .34 ) where p is 
replaced with r], the nonunitary transformation ^>(r) = 
exp(r 3 /? /2)x(r) , where tanh(/?) = go/A$, can reduce Eqn 
( 5 . 4 9 ) to 

r J 2 j dwl 
••E2x, (5 .50) 

where the expressions for w(r) and E are exactly the same 
as those given by expressions (5 .36 ) , apart from the 
replacement of p with r. Comparison of Eqns ( 5 . 3 7 ) and 
(5 .50 ) shows that all subsequent comments relating to the 
solutions of Eqn (5 .37 ) apply also in the three-dimensional 
case if p is replaced with r, M with —k, and it is assumed 
that pz = 0. 
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