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Abstract. A review is given of the use of the density Initially, in spite of the considerable progress in the

functional theory in calculations of the lattice dynamics of
crystals. This approach is based on calculation, in the first
order in nuclear displacements, of changes in the potential
and charge density. This is done using the linear response
theory and the linear muffin-tin (M T) orbitals. This makes
it possible to treat in a unified manner both simple systems
with almost-free electrons and transition metals. The
suitability of the method is demonstrated by calculations
of the phonon dispersion curves of Nb and Mo. The
calculated results are found to be in good agreement with
the experimental data.

1. Introduction

Calculations of the lattice dynamics of crystals are among
the most important tasks in solid-state physics. The main
interest lies in the transition metals, and in their alloys and
compounds. The interest in these materials is due to an
enormous variety of the structure of their phonon curves
and also due to the phenomena of lattice instability and of
superconductivity; in the latter case, phonons play the
central role and the effect is observed at relatively high
temperatures (8 —23 K). The bulk of the available informa-
tion on the phonon spectra of these materials has been
obtained experimentally from inelastic neutron diffraction.
In some cases such information has been deduced from
measurements of the elastic constants, specific heat, and
tunneling characteristics of superconductors.
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microscopic theory of the phonon spectra of metals with
almost-free electrons, which has been stimulated by the
development and application of the pseudopotential
method (see, for example, Ref. [1]), the progress in the
understanding of the phonon spectra of transition metals
has been relatively slow and difficult. This has primarily
been due to the difficulty encountered in the application of
the pseudopotential concept when discussing the effects of
the electron screening in systems with a strong d nature of
the conduction band. Consequently, in the past it has been
usually necessary to bring in phenomenological force
constants in order to reproduce the dispersion curves
(without any real understanding of the nature of the
observed anomalies) or the transition metals have been
regarded as materials with almost-free electrons and
attempts have been made to account for the phonon
dispersion by model pseudopotentials and also by models
of screening by free electrons. Naturally, such methods are
not theoretically justified.

More recently, there have been many attempts to
develop a complete microscopic theory of the phonon
spectra of the transition metals both formally and by
complex computer calculations. In the final analysis this
has resulted in a better understanding of the nature of the
dispersion curve anomalies. However, up to now (apart
from the very latest contributions [2—5]) there have been no
published completely ab initio calculations of the phonon
spectra which would agree with the experimental results
along all the symmetric directions.

In this review we shall consider the main reasons for this
theoretical situation and give a state-of-the-art account of
the microscopic theory of lattice dynamics with special
attention to the transition metals.

2. Many-body theory of lattice dynamics

The microscopic approach to the calculation of the electron
contribution to the lattice dynamics is based on the very
old idea of Born and Oppenheimer [6] of adiabatic
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separation of the slow motion of nuclei from the fast
motion of electrons in calculation of the energies of
molecules. A similar approach was later generalised to
crystals. The essence of this approximation can be stated as
follows. In view of the considerable difference between the
velocities of electrons and nuclei, characterised by
(m/M)]/z, where m and M are the masses of an electron
and a nucleus, it is permissible to consider two uncoupled
[apart from small nonadiabatic corrections of the order of
(m/M)"/?] systems of clectrons and nuclei. The system of
electrons is described by the Schrodinger equation for
electrons which are in the field of arbitrarily distributed
nuclei and are characterised by the Hamiltonian

He=T.+ Vee + Viie 2.1

where T, is the kinetic energy of electrons, V. is the
Coulomb interaction between electrons, and V. is the
nuclear —electron interaction. The nuclear system which
determines, in particular (in the harmonic approximation),
the spectrum of phonon excitations, has the Hamiltonian

H,=T,+V,, + E{R}. 2.2)

Here, T, is the kinetic energy of nuclei, V,,, is the Coulomb
interaction of nuclei, and E{R} is the electron energy
described by the Hamiltonian (2.1). This quantity can be
represented as the average, for any given set of {R}, value
of the Hamiltonian H:

E{R} = <OR|Hc|0R> > 2.3)
where |0g) is the ground state of the electron system for a
given distribution of nuclei {R}.

The above approach makes it possible to derive quite
simply, at least from the formal point of view, an expression
for the electron contribution to the force acting on a nucleus
when it is displaced slightly from an equilibrium position in
an ideal crystal, as well as the electron contribution to the
dynamic matrix of vibrations. In particular, the electron
contribution to the force can be represented by

dE

d
Br=-R="4R (0H.|0) , (2.4)

where the averaging is carried out over the ground state of
the crystal. It follows from the Hellman—Feynman
theorem, that expression (2.4) can be rewritten in the form

Fy = _<0‘avne 0> = —Jp(r)a‘én—lee(r) dr

OR

Therefore, the force acting on a nucleus when it is
displaced in a crystal is of purely electrostatic origin
and, at first sight, it should be easy to find it if we know the
electron density distributions p(r). In fact, calculation of
the function p(r) for a crystal is a far from simple task and
we shall return later to the problem of actual calculation of
this quantity.

The electron contribution to the dynamic matrix of
vibrations can also be obtained quite readily and it can be
expressed in terms of the second derivative of the total
energy:

2.5)

d d
A, (R—R)=——{(0|H 2.
1272 ( ) dR” dR;‘/ <0| C|0> > ( 6)

where p={x, y, z}. Applying again the Hellman—Feyn-
man theorem we can rewrite the matrix A,, (R — R')in the
form

_ ey _ [4p(r) 8Vie(r) 0 Vae (r)
Ay (R—R )_J iR, K, dH—Jp(r)aR”aRL, dr.(2.7)

It follows from formula (2.7) that in order to calculate the
dynamic matrix it is not sufficient, in contrast to
calculation of the force, to know just the electron density
distribution in an ideal crystal: we also need to know the
change in the electron density due to a change in the
potential of the nuclei due to their displacement. This
change in the electron density should be found, in the
linear approximation, from the change in the potential and
within the framework of the linear response theory it can
be written as follows:

dp(r) _ [OVao(r') ,
iR, J oR, (', r)dr’.

= (2.8)
Here, x(r, r') is simply the susceptibility of a system of
interacting electrons which are in the periodic field of
nuclei.

This many-body ab initio approach is most readily
applied to the description of the dynamics of a lattice of
a simple metal. The relationships obtained are general and
they apply to a system of ‘bare nuclei plus all the electrons
in a crystal, including localised electrons in the inner shells’.
In general, the ion core electrons may be excluded from
calculations by introducing the electron—ion pseudo-
potential in place of the simple Coulomb electron—
nuclear interaction. For simple metals this electron—ion
pseudopotential proves to be a fairly small quantity, so that
we can use perturbation theory not only because of
smallness of the shift of an ion from an equilibrium
position (only this approach has been used in the above
discussion), but also because of the smallness of the
pseudopotential. Since the expressions for the dynamic
matrix (2.7) and (2.8) are quadratic in terms of the
pseudopotential, the susceptibility of the electron system
can be described by the expression for a homogeneous
electron gas. In this case the Fourier representation of the
dynamic matrix can be written in the form

Ay () = A0 (@) + Y (4 +6),Vielg + G)xla +G)
G
<Vila+6)a+ O,

- GVie(G)x(G)Vie(G)Gyr . 2.9)
G

Here, A4,,(q) is the contribution of ions to the dynamic
matrix; the wave vector ¢ lies in the first Brillouin zone; G
is the reciprocal lattice vector; x(q + G) is the susceptibility
of an interacting homogeneous electron gas. The third term
in expression (2.9) follows from the second term in
expression (2.7) and it is due to the translational
invariance. Formula (2.9) applies to crystals with one
atom per unit cell, but it is easily generalised to the case
of crystals with a basis. The electron susceptibility can be
expressed simply in terms of the static dielectric function of
a homogeneous electron gas &g, 0):

x(q)=L[¥—l],

V() 2@ 0) @10
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where V(q) is the Fourier component of the Coulomb
interaction

4me?

7

Calculations of the phonon spectra of a whole range of
simple metals, carried out with the aid of various
approximate expressions for the static dielectric function,
are in very reasonable agreement with the experimental
data (see, for example, Ref. [1]).

When the pseudopotential is no longer small or if all the
electrons in a crystal are considered in a calculation of the
electron contribution to the dynamic matrix of vibrations
A,y (q), it is necessary to know the susceptibility of the
electron subsystem which takes account of the band
structure of the electron spectrum. In this case the Fourier
representation of the susceptibility is no longer a function of
the momentum ¢ alone, but is a matrix in the space of the
reciprocal lattice vectors G and G'. The exact expression for
Auur(q) can be written, in accordance with formulas (2.7)
and (2.8), in the form

Au,u’(q) = Z(q + G)ﬂ

GG’

V(g) = @11

Vae(@+G)x(g+G. g+ G")

XVie(@ +G') g+ G),

> GVae(G)x(G, G' V(GG

2.12)

where x(q + G, g + G') is the electron susceptibility matrix.
This expression has been derived by many authors over two
decades ago (see, for example, Refs [1, 7]), but there have
been no consistent ab initio calculations based on this
approach for crystals other than those of simple metals.

As is known (see, for example, Ref. [8]), even calcula-
tions of the dielectric response functions of a homogeneous
electron gas at densities corresponding to real metals
represent a very difficult and only partly solved prob-
lem. The difficulties in calculations of the same functions
for an electron subsystem of a crystal, carried out within the
framework of the standard many-body theory, are incom-
parably greater. However, it should be pointed out that a
general and absolutely rigorous expression (2.12) for the
electron contribution to the dynamic matrix has proved
very useful in solid-state theory. This expression has been
used to demonstrate a number of rigorous and exact
relationships describing lattice dynamics, and to develop
a multitude of approximate and semiphenomenological
approaches to the calculations of phonon spectra (see,
for example, Refs [7, 9]).

3. Density functional method and lattice
dynamics

The many-body approach to the theory of crystal lattice
dynamics presented in the preceding section leads to simple
and physically clear expressions for the electron contribu-
tion to the forces acting on the nuclei and for the same
contribution to the dynamic matrix. However, as pointed
out already, this approach is not very suitable for real ab
initio calculations. It is clear from expressions (2.5) and
(2.7) for the force and the dynamic matrix that both these
quantities are determined solely by the distribution of the

electron charge in an ideal crystal and by changes in this
quantity which are induced by displacements of nuclei or of
ion cores. The most general and rigorous approach to
calculations of these quantities is at present the density
functional method, proposed by Kohn, Hohenberg, and
Sham [10, 11] (see also Ref. [12]). An undoubted advantage
of this method is a practical technique for specific
calculations carried out within the framework of this
method.

Briefly, the method can be described by a theorem
proved in Ref. [10]: the energy of the ground state of a
system of interacting electrons which are in an external field
Ve (r) is a single-valued functional of the electron density
distribution p(r). This functional is extremal when p(r) is
varied and it reaches its minimum for a true distribution of
the electron density, i.e.

SE{p(r)}
dp(r)

The energy functional E{p(r)} can be written in the form

E{p)} = T{p)} + [ p0)Veu ()01

=0. 3.1)

p(r)p(r')
+2J r—r7]

Here, T{p(r)} is the kinetic energy functional and the
second term is the energy of the interaction with an
external field which in the case of crystals becomes

Zee
DI

where R are the positions of the basis sites in a unit cell and
t are primitive translations. The third term in expres-
sion (3.2) is the contribution of the electrostatic Coulomb
interaction between electrons (Hartree energy) and the last
(fourth) term is the exchange—correlation functional,
describing the contribution of the electron—electron
exchange—correlation interaction to the potential energy
of the electron system. Unfortunately, the exact form of the
expressions for the functionals of the kinetic and
exchange—correlation energies, needed in specific calcula-
tions, are not yet known. Nevertheless, a whole range of
approximate expressions has been proposed and they can
be used to carry out calculations whose results are in very
good agreement with the experimental data. The problem
of the explicit representation of the energy functional will
be discussed many times later in this review: at this stage
we shall discuss the derivation of the expressions for the
force and for the dynamic matrix on the basis of the
density functional method.

As usual, the force acting on a nuclei at a site R by the
electrons when the nucleus is displaced will be described by

dE{p(r)}
dR

drdr’ + E {p(r)} . (3.2)

cxt (r (33)

Fp=— (3.4)

and the total derivative will be represented in the form

AE{p()} _OE(p()}  SE(p(r)} dp(r)
dRr OR dp(r) dR

3.5)

In view of the extremality of the total energy func-
tional (3.1), the second term in Eqn (3.5) vanishes. Since in
the expression for the total energy (3.1) only the second
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term, describing the interaction with the external field,
depends explicitly on R, it follows that

Fr = —Jp(r) a%@ dr

Similarly, the electron contribution to the dynamic matrix,
given by

(3.6)

, dFRu
Ay (R—R") = TR (3.7)
can be rewritten in the form
dp(r) BV e (r) &V elr)
A, (R—R) = = =
' ) J dR7, " OR, dr+Jp(') R R, ar

u u

(3.8)

Therefore, the formal expressions for the electron con-
tributions to the force and the dynamic matrix, obtained
within the framework of the many-body approach
[expressions (2.5) and (2.7)], are completely identical with
the expressions (3.6) and (3.8) obtained by the density
functional method. This is not surprising, because in both
methods we start from a consideration of the electron
energy in a given field of nuclei and then deal with the
change in this energy under the action of the displacements
of the nuclei. The difference between these approaches lies
in the methods used to calculate the energy, the electron
density distribution and the changes in these quantities.
Before we discuss the current and most consistent
methods of calculation within the framework of the density
functional, we shall consider briefly some of the simplest
but very effective approaches to the theory of lattice
dynamics based on simple approximations for the func-
tional (3.2). Let us consider a weakly nonuniform electron
system. In this case the density functional (3.2) can be
described by what is known as the local approximation:

E{p0)} = [ o) (o)) + [ p0) Vo) 01

2 /

+ijm drdr’ + Jp(r)gXC [p(r)] dr . (3.9)
2) r—r|

Here, f[p(r)] is the kinetic energy of electrons per particle
in a homogeneous electron gas in which the density is
everywhere p, and g, (p) is the corresponding exchange—
correlation energy. The values of #(p) and . (p) are quite
well known for a wide range of densities of a homogeneous
electron gas; in particular, they have been calculated by the
Monte Carlo method [13]. If only the exchange energy is
included, ¢(p) and & (p) can be described by the following
exact analytic expressions

/3
;3

t(p) = cop’

3.10
belp) = 19! G40
where ¢, and ¢; are constants independent of the electron
density. Substitution of these expressions in the func-
tional (3.9) leads to the Thomas—Fermi theory which has
been well known since the thirties. If g.(p) in expres-
sion (3.10) is supplemented by the correlation energy, the
resultant expression represents the Thomas—Fermi—Dirac
functional. We shall not discuss in detail this theory and its
applications in solid-state physics (see, for example, the
first chapter in Ref. [12]), but we shall consider briefly only
one of these applications used frequently and effectively to

calculate the properties of ionic and molecular crystals.
These crystals can be regarded as consisting of saturated
‘elementary’ units: ions, atoms, or molecules with filled
electron shells. After separation of the Madelung Coulomb
energy of ionic compounds, the remaining part is found to
be determined by the short-range forces and is related
primarily to the pair overlaps between the nearest
neighbours. This makes it possible to regard quite
accurately the total electron density of a crystal as a
superposition of the densities of the individual elementary
units and the latter can be found in turn from any program
for atomic calculations. The energy of the pair interactions
is described by the expression

AE(R) = E{p,(r) + pu (r +R)}

—E{pu(r)} — E{pu(r+R)} . (.11
where E{p(r)} is the local Thomas—Fermi—Dirac approx-
imation. The short-range pair interaction of ions is
determined by the difference between the expres-
sion (3.11) and that describing the interaction of point
ions, and it can be found numerically. The total energy of a
crystal can thus be written as follows:

E=Ey+Y U
R,R'
where Ey; is the Madelung Coulomb energy for point ions
and Upg' is the short-range pair interion potential
discussed above.

First calculations of this type were carried out back in
the thirties by Jensen, Lentz and Gombas [14]. The current
series of calculations was started in the seventies by
Gaydenko and Nikulin [15] who found the parameters of
the interatomic interactions within the framework of the
Thomas—Fermi functional. The work has since been
developed on the basis of what is known as the Gor-
don—Kim electron gas model [16]. This model has been
used in calculations of the binding energy, equilibrium
interatomic distances, elastic constants, pressures of poly-
morphic transformations, etc., for a large number of ionic
and molecular crystals. A good agreement with the
experimental data has been achieved. The phonon spectra
of these crystals have not been calculated. This has been
done later [17] in connection with various types of lattice
instabilities in ionic crystals: melting, transition to a
superionic state, and structural instability.

The method under discussion has a number of short-
comings and the most important of these is the rigid ion
approximation. This means that any possible deformations
ofions, including those related to their dipole polarisability,
are ignored in this approach. These shortcomings of the
Gordon—Kim model have recently been eliminated. First, a
suggestion has been made to include the influence, on the
ions, of the crystal Madelung Coulomb potential, which is
due to the presence of the surrounding ions. This requires
calculation of the distribution of the electron density for a
single ion not in its free state, but in a charged Watson
sphere. The charge on this sphere is assumed to be equal to
the charge of an ion but opposite in sign, and the radius of
the sphere is calculated by equating the potential inside the
sphere to the Madelung potential on the ion. This
procedure leads first of all to some compression of negative
ions in a crystal and expansion of positive ions, which

(3.12)
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describes much better (compared with the superposition of
the densities of free ions) the experimentally found densities
in ionic crystals. A change in the interionic distances alters
also the Madelung potential and, consequently, the radius
of the Watson sphere and as a consequence also the
effective radius of an ion. Ions thus seem to ‘breathe’ in
a crystal so that the model has been called the potential-
induced breathing (PIB) [18]. The total energy of a crystal
considered in this approximation is

E=Ey+Y_ S(Ur)+ Y. V(U Up) (3.13)
R

RR’

where Sy is the energy of a single ion which depends on
the Madelung potential Uy and Vixg/(Ug, Rg/) is the short-
range pair interaction, which also depends on the
Madelung potentials Up and Ugs of the ions at R and
R’. Calculations of the static and dynamic properties of a
whole range of ionic crystals carried out within the
framework of this approximation has made it possible to
improve considerably the agreement with the available
experimental data, compared with that attainable on the
basis of the original Gordon—Kim model.

In fact, the PIB approximation is a method for including
the monopole polarisability of ions. An equally important
role in ionic crystals is played also by the dipole polaris-
ability, describing in the appropriate approximation the
contribution to the total polarisability energy of the
electron subsystem. A generalisation of the Gordon-
Kim model proposed recently [19] takes into account quite
simply also the dipole polarisation of ions in lattice
dynamics calculations. This is done by calculating first
the behaviour of a single ion in an external electric field E.
It is well known that an atom or an ion subjected to an
external field acquires a dipole moment

P=qE, (3.14)

where o is the dipole polarisability of the atom or ion
involved. The dipole moment P can be described quite
simply in terms of the change in the electron density p(r)
due to the action of the field:

P :JrSp(r) dr . (3.15)
The function 8p(r) can be calculated by any program
designed to give the parameters of free atoms. Details of
such calculations can be found in Mahan’s paper [20]. The
next step, in full agreement with the Gordon—-Kim
approach, is a calculation of the pair interaction of two
ions with given dipole moments P, and Pg.. This is done
with the aid of formula (3.11) for the pair energy with the
Thomas—Fermi—Dirac functional. At large distances this
interaction reduces to the standard interaction between
point dipoles. However, at short distances, when ions
overlap, this interaction differs considerably from that of
point dipoles, which can be deduced from formula (3.11)
by numerical methods. Calculations are also carried out
relating to the interaction between an ion with a given
dipole moment P, and the electric field of a spherically
symmetric ion. At large distances this interaction is again
identical with that deduced for point objects. However, at
short distances it can be found by numerical methods
applying formula (3.11). The final expression for the
energy of a crystal regarded as the function of the density

and of the dipole moment in this approximation can be
written in the form

2
E=Ey+Y_ S(Ug)+ Y V(U Ug) +Z;T’;
R

R.R' R
+ZPR‘I’RR’PR' + ZPRVRR’PR’
R,R' R,R’
+ZPRMRR’ - ZPRER . (3]6)
R,R' R

The first three terms in the above expression represent the
PIB model. The other five terms, which depend on the
dipole moments Py, determine the polarisation contribu-
tion to the crystal energy. The fourth term describes the
energy needed for the creation of a dipole moment Py of
an ion with a polarisability az. The fifth term is the energy
of the interaction between point dipoles described by the
matrix @Ppp+, defined as

®ppr =R>(1 —RR'), (3.17)

where R =R/R. The sixth term represents the short-range
interaction of extended dipoles. The matrix 7yzg: is
determined by the difference between the real interaction
of the point dipoles described by expression (3.11) and the
interaction of dipole moments. The last two terms describe
the energy of the interaction of dipoles with the electric
field of point ions (eighth term) and also the short-range
interaction between an extended dipole and a spherically
symmetric ion (seventh term). The matrix M zp/, usually
called the deformability matrix by analogy with the
terminology of a phenomenological theory of a deform-
able ion put forward by Hardy [21], vanishes for an ideal
cubic lattice. It differs from zero for a deformed crystal and
it is then proportional to the amplitude Uy of the
displacement of an ion from its equilibrium position.
Calculations of the electron polarisability and of the
phonon frequencies, carried out for a large number of
binary ion crystals with cubic symmetry on the basis of
expression (3.18) for the total energy [19], are in surprisingly
good agreement with the experimental data.

As pointed out above, the method for calculation of
lattice dynamics just described and based on the use of the
simplest density functionals of the Thomas—Fermi—Dirac
type can be used to tackle a fairly limited class of systems.
These are mainly the systems composed of ‘saturated’
elements and on top of that these elements should not
change greatly on transition from the free to the crystalline
state. However, in calculations of such extremely important
(from the theoretical and practical points of view) materials
as metals and covalent semiconductors it is necessary to
employ more modern and (unfortunately) more time-
consuming methods. The main error in the calculation
of the parameters of crystals by the Thomas—Fermi—
Dirac functional method comes from the local approxima-
tion for the kinetic energy. This difficulty is avoided by
Kohn and Sham [11] by adding to and then subtracting
from the functional(3.12), the kinetic energy T, of an
interacting electron gas which experiences an inhomoge-
neous external field that depends on the electron density:

E{p)} = Tofp@)} + [ )Vl

+ drdr’ + E, {p(r)} .

e_2JP(r)P(r/) (3.18)

2 ) r—r|
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Here, E,.{p(r)} is the total exchange—correlation energy,
which includes the contributions of both the potential and
kinetic energies:

E{p()} = Ex{p(®)} +T{p()} — To{p(r)} .

The electron density p(r) is then
p(r) = fulia (W) »
K4

where f;; are the occupation numbers of single-particle
states (here k is the wave vector which lies in the irreducible
part of the Brillouin zone and A numbers the energy
bands), which are equal to unity for states with energies &
lower than or equal to the chemical potential (Fermi
energy) &, and which vanish for all other states with
energies higher than &z. Minimalisation of expression (3.1)
gives the following equation for the wave function

(3.19)

(3.20)

Via(r) = [ked):
Vo Ve (r) + Lrp(’ )| dr' + Vi (r) — &z | ) =0 .
(3.21)
Here, V,.(r) is the exchange—correlation potential:
8Exe{p(r)}
Vielr) =————. 3.22
=" (322)
Rewriting Eqn (3.21) in the form
[~V + Vegr(r) — a1a] [k2) = 0, (3.23)

we obtain the usual single-particle Schrodinger equation
with the self-consistent effective potential

chf(r) = cxt(r) + VC(r) + ch(r) .

The total energy of the system of interacting electrons can
be expressed as follows in terms of the solutions of
Eqn (3.23):

E{p)} = 3 fustis = [ p0)Vare)dr + [ p0) Vi)

k,A

(3.24)

< J p(r)p( )d,d, 'FE{p(M)}. (329

The first and second terms in this equation represent the
kinetic energy of noninteracting electrons. We shall not
discuss in detail the Kohn—Sham method or the
fundamental, for this method, problem of deriving the
exchange—correlation potential V. (r). The most widely
used approximation for this quantity is at present the local
approximation, i.e. exactly the same approximation as in
the Thomas—Fermi—Dirac method. A detailed discussion
of the feasibility of using the local approximation and the
methods of going beyond this approximation can be found
in a monograph on the subject [12] and in a recent review of
Jones and Gunnarsson [22].

The Kohn—Sham method combined with the expression
(3.25) for the total energy and with a suitably selected
expression for the exchange—correlation functional
E..{p(r)} makes it possible, in principle, to carry out a
self-consistent calculation of the properties of the ground
state of a crystal, including its energy and electron density.
A detailed discussion of such self-consistent methods will be
given in the following section of this review. Even at the
stage of calculation of the total energies it is possible to find
the phonon frequencies of some of the vibrational modes of

a crystal by the ‘frozen phonon’ method [23]. This method
involves direct calculation of the total energy of a crystal
with an ideal lattice and also in the presence of a distortion
corresponding to one of the normal vibrational modes. The
phonon frequency can then be found quite simply from the
difference between these two energies:
oy =200
Ul

where U, is the amplitude of a normal mode and M is the
reduced mass. The frozen phonon method is, in principle,
suitable for the calculation of the phonon modes with a
wave vector ¢ commensurate with any reciprocal lattice
vector, because only then the distorted lattice remains
periodic and the single-particle Kohn—Sham equations can
be solved. A new unit cell of the distorted structure should
not be too large so as to avoid major technical problems in
solving the equations. Some examples of such calculations
will be given in later sections of this review.

In calculation of the phonon spectra at an arbitrary
point of the Brillouin zone it is necessary to apply, as
mentioned earlier in the discussion of the many-body
approach, the linear response method. The calculations
are quite simple, at least in the formal sense.

Let us assume that displacements of atoms from an
equilibrium configuration described by the positions
{R +1t} are

St = 8A exp(ig-t) + 8A™ exp(—ig-t) ,

where 8A is a complex polarisation vector and ¢ is the
phonon wave vector within the first Brillouin zone. The
presence of such a displacement field in a crystal alters the
external Coulomb potential of the nuclei, which acts on
electrons:

—ZRe
Z R w (3.26)
where Z, are the nuclear charges. We shall expand the
external field in terms of the displacements and retain only
the terms of the first order of smallness. Then, the change
in the external potential can be represented by a super-
position of two fields:

cht (r

Ve (r) = ZSAR Zexp(iq-t) V%
ZSAR Zexp( iq- t)V = (3.27)

which have the wave vectors +¢q and —gq, i.e.
Ve (r) = (3.28)

D B4R Vet (r) + Y BARSg Vewi () -
R R

We must point out straight away a very important property
of an external perturbation. If the radius vector r acquires
an increment equal to the primitive translation vector, then
both components of expression (3.27) transform as the
Bloch-type waves:

3V (r + 1) = exp(ig-1)8* Vo, (r) .

(For simplicity, the index R of the variation & will be
omitted.) This means that if a perturbation in one unit cell
is known, it can be found quite simply for the whole
crystal, which will be shown to be a very important
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circumstance. It should also be mentioned that both
components have the Hermitian property, i.e.

[5i Vet (r)] T =8V (r) .

Thus the presence of a phonon with a wave vector ¢ is
associated with the given external perturbation of the type
described by formula (3.28) and our next problem is to find
what happens to the charge density distribution. According
to the Kohn—Sham theory, the distribution of the density p
is a sum of the occupied states of absolute squares of one-
electron wave functions described by expression (3.20). In
the linear response theory [24] the change in the distribution
of the electron density 3p can, in the first order, be written
in exactly the same form as 8V, i.c.

dp=> 8487 p+> 8Axdrp .
R

R

and can be expressed in terms of Y, ; and also in terms of
the first-order corrections 8%y, ; and 8y, ;:

§p = (3 Vit + Vi i) (3.29)
W)
where  &%y;, = (8%y,,)*. The first-order correction

|8kA) = 85, is a Bloch function with the wave vector
k + g, which can be seen quite easily on the basis of an
expression derived by applying standard perturbation
theory:

st
550 = 3 i & gy EEIAR Ver D).
I &h — Ekxql!

(3.30)

Since the electron density, induced by the displacements of
nuclei, screens the external perturbation described by
expression (3.27), it follows that the matrix element of
this expression should include a screened perturbation
8% Vo expressed in terms of 8%p is as follows:

8 Vegr = 8 Ve + 85V + 8%V,

Zge’
= Z exp(£ig-t)V—2=
t

[r—R —t|
+ /
Jﬁp—df Wae gty (3.31)
Ir—r'| ~ dp

where the exchange and correlation effects are considered
in the local density approximation. We shall now substitute
the expression for the first-order corrections (3.30) into
formula (3.29). The change in the density is then expressed
in terms of what is known as the static polarisability
function of noninteracting electrons

fag(r, r') = Jiw — Frexqr
k740 Skd T Brxql!

X Wieagst (Wi (W (W ()

as an integral of this function and of the screened
perturbation:

3 p(r) = Jniq(r, rSE Vo (r) dr

(3.32)

(3.33)

or in symbolic operator notation: 8p = #dV,. Calculation
of a screened perturbation in a self-consistent manner, i.e.
by calculation of the response of electrons to an external

field Sivm in accordance with formulas (3.29) and (3.30),
followed by screening the response in accordance with
expression (3.31) and repetition of the whole cycle can be
avoided if the reciprocal of the static dielectric function of
a crystal is calculated. We shall rewrite expression (3.31) in
the symbolic form: 8V i = 8V, + (Ve + vy )8p, where

1 _dv,,
r—r T Tdp

ve = d(r—r')

are integral operators. Then, &V.;=2& '8V, and 8p =
70V, where ¢ is the reciprocal dielectric function
defined as ¢! = (1 —an—vxcn)fl and y is the gener-
alised susceptibility function which can be expressed
in terms of &' as follows: A= & 'n. This approach
requires inversion of the dielectric function matrix
e=1—vcm—v,m in some representations (for example,
the representation of plane waves or of the angular
momentum). The only limitation that may have to be
imposed concerns the dimensions of this matrix. Histor-
ically, the success of the pseudopotential theory in the case
of simple metals has led to the use of the plane wave
representation. For example, in the limit of free electrons
all the linear response functions depend only on the
difference r—r’, so that application of the Fourier
transformation yields directly the formulas for simple
metals discussed in the preceding section. However, even in
the case of covalent semiconductors with a fairly small
pseudopotential, the dimensions of the matrices which have
to be calculated in the plane wave representation are so
large that only a few attempts have been made to complete
these calculations. The problem becomes even more
complex in the case of the transition metals.

It is thus clear that calculation of the static susceptibility
function of a crystal or directly of the induced electron
density is the key to the problem of lattice dynamics. In
spite of full mathematical rigour of the derivation of
Eqn (3.8), this equation is quite unsuitable for any
practical calculations of the dynamic matrix of a transition
metal. The main reason for this is the need for a large basis
set in the representation of one-clectron wave functions of
the valence electrons in the calculation of the polarisabil-
ity (3.32). This has held up this part of solid-state physics
for over 20 years. It is well known that in the valence range
the energy band structure can be reproduced with a small
basis of test functions. For example, in the method of linear
muffin-tin (MT) orbitals discussed in the next section the
one-electron spectrum can be calculated with a precision of
the order of 1072 Ry employing just 9 orbitals per atom. On
the other hand, the expression for the polarisability (3.32)
contains a sum over all the filled and empty states, which
requires knowledge of highly excited Bloch functions and,
as a minimum, it is necessary to calculate them in advance.
The latter can be found formally only by diagonalisation of
very large Hamiltonian matrices, which limits the practical
value of the method. Physically, such slow convergence of
the polarisability in the case of a transition metal is related
to a very simple circumstance: both the one-electron wave
functions |kA) and the first-order corrections |3 kA) to these
functions oscillate in the region of an ion core. In the case of
substances with almost-free electrons these oscillations can
be excluded by replacing the real crystal potential with a
weak pseudopotential. Unfortunately, as the energy bands
become narrower, expansion of pseudowave functions in
terms of plane waves converges increasingly slowly and the
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pseudopotential concept loses its advantages. A calculation
of the dynamic matrix in accordance with formula (3.8)
using expression (3.32) for the polarisability proves to be
very sensitive to the errors in the wave functions because of
incompleteness of the basis. We shall now illustrate this by a
simple example of the acoustic sum rule. We shall assume
that all the nuclei of the lattice atoms are displaced by an
infinitesimally small distance d. We can then expect all the
electrons to follow the motions of their nuclei and this
results simply in a rigid shift of the charge density:
8p =d x Vp. Let us now see what happens to the wave
functions perturbed by a potential of the d X VV type. We
then have

(kA'|VV[kZ)

|8k A)
Eka — &y

dz ki)

=d ) _|kA')(kA'|VIkA) =d x V|kJ) . (3.34)
7

We can see that the last equality can be derived only if use
is made of the mathematical property of completeness of
the wave functions, which is acquired over the whole
energy scale. In the opposite case a large error is made in
determination of the long-wave limit of the dynamic matrix
and, consequently, the error has an influence for any value
of q.

In spite of the unsatisfactory quantitative description
of the phonon spectra by the response function method,
based on standard perturbation theory, the structure of the
anomalies of the dispersion curves of transition metals has
been explained qualitatively by numerous phenomenolog-
ical models. The simplest of these models ignores the matrix
element of the electron —electron interaction. The quantities
most readily amenable to standard band calculations are
the one-clectron energies &; and, therefore, it is very
interesting to follow the behaviour of the pure band
factor (fis = futqr')/ (ks — €k1qa') in expression (3.32), con-
sidered as a function of the wave vector ¢, and to check
what effect it has on the structure of the phonon spectrum.
As demonstrated by Keeton and Loucks [25], and also by
Liu et al. [26], if the Fermi surface has pronounced
singularities of the ‘nesting’ type (i.e. singularities resulting
from the addition of one part of the surface to another by
translation through a certain wave vector ¢,), one can
expect a peak in the absolute values of the polarisability and
susceptibility functions. However, there are serious diffi-
culties associated with ignoring the ¢ dependence of the
matrix elements of the electron—phonon interaction and
those related to the fact that the peaks of this type are small
in magnitude against a fairly smooth background, partic-
ularly when all the interband transitions are included. These
circumstances should be taken into account in any attempts
to analyse of the anomalies of the phonon spectra of the
transition metals. A review of other model theories can be
found in Ref. [7].

4. Linear MT orbital method for band structure
calculations

It follows from the foregoing discussion, that in the theory
of calculations of the force and lattice dynamics the central
place is occupied by self-consistent calculations of the
electron density distribution for an arbitrary configuration
of atoms in a unit cell of a crystal. It is therefore of interest

to consider the state-of-the-art of the problem of self-
consistent solution of single-particle equations by the
density functional method and the application of the
method of frozen phonons to phonon frequency calcula-
tions. In spite of the obvious shortcomings of the frozen
phonon method, associated with its limited applicability to
just the high-symmetry wave vectors, it is nevertheless
highly universal and can be applied both to systems with
wide bands (simple metals and semiconductors) and to
transition metals. This advantage of the method is
primarily due to the development and application of
what are known as the all-electron methods in the band
theory of solids.

In calculation of the total energy of a crystal as a
function of the displacements of nuclei an important aspect
is the correct inclusion of the effects of the nonsphericity of
the distribution of the electron density and potential at
interstices of the unit cell of a crystal, since the vibrations of
atoms directed towards one another distort considerably the
electron density in the interstitial region. The standard
technique for the solution of the Schrodinger equation with
an arbitrary potential involves the use of the variational
principle. A functional is derived and its minimisation by
variation of the one-electron wave functions leads to the
Schrodinger equation. The one-clectron wave function is
represented by an expansion in terms of a certain basis |xf):

D ol)AL
o

where Aff are the coefficients of the expansion which, for a
fixed basis [y%), provide the variational freedom of the
functional and are found by solving the matrix eigenvalue
problem:

> il

The main problem is related to the construction of suitable
test functions which represent a Bloch state of a valence
electron. In the pseudopotential method the basis functions
are plane waves and this factor simplifies particularly the
finding of the algorithm for the calculation of the band
structure. However, as mentioned above, as the width of the
valence band decreases, the expansion of pseudowave
functions in terms of plane waves converges more and
more slowly, and the pseudopotential loses its advantages.
In all-electron methods the space in a crystal is divided into
nonoverlapping spheres centred on each atom, known as
muffin-tin (MT) spheres, and the remaining interstitial
region. Within the MT spheres the basis functions are
linear combinations of numerical solutions of the radial
Schrodinger equation containing the spherical part of the
potential. These numerical solutions are multiplied by
spherical harmonics. Such a representation ensures rapid
convergence of the basis both for delocalised and localised
states. In the interstitial region, where the potential is fairly
smooth, the basis functions are selected from the solution
of the Helmholtz equation: (=V? — &%) f(r) = 0 (here, &* is
the average kinetic energy of an electron in the interstitial
region). In the well-known linear augmented plane wave
(LAPW) method [27, 28], the solutions are plane waves
which are matched smoothly to the solutions of the radial
Schrodinger equation at the boundaries of the MT spheres.
In spite of the fact that this complete basis set may, in

ki) = @.1)

~ V2 Vg — e ui)A =0 4.2)
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principle, reproduce the correct behaviour of the Bloch
states in the interstitial region, the slow convergence of the
plane waves in the case of structures which are not close-
packed or loose or in the case of supercells leads to serious
restrictions on the convergence of this method.

On the other hand, the representation of localised
orbitals and, in particular, the representation of linear
MT orbitals (LMTO) [29] is well known for its rapid
divergence of the basis. In the interstitial region the linear
MT orbitals represent linear combinations of the Bessel and
Hankel functions at some fixed energy ¢ = x*. In particular,
in the standard LMTO method [27], in which the atomic
sphere approximation (ASA) and the condition x> = 0 are
used, all that is needed is 9 orbitals per atom in order to
reproduce the energy bands with an error not exceeding
1073 Ry. Several approaches have been developed recently
for taking account of the nonsphericity of the potential
(these are known as the non-MT corrections) within the
framework of this method. Weyrich [30] proposed the use
of the Fourier transformation for the LMTO in the
interstitial region. Such formulation does not increase
the size of the Hamiltonian matrices or the overlap.
However, a calculation of the contribution of the inter-
stitial region to the Hamiltonian and of the distribution of
the charge density makes this generalisation of the method
very time-consuming. Blochl [31] made an attempt to use
the tight-binding approximation in the case of the MT
orbitals and to find directly the density at certain points in
space. Unfortunately, this approach has been tested only on
a small number of materials [31] and further application of
the method remains in doubt. It has recently been
proposed [32] that the total electron density in all space
can be represented by the values and first derivatives of the
MT orbitals at the boundaries of the M T spheres, where the
product of two MT orbitals is made to fit a linear
combination of two Hankel functions. The density dis-
tribution can thus be found approximately by interpolation.

A new approach to the solution of this problem is
proposed in Ref. [33] where use is made of the representa-
tion of the spherical harmonics near the M T spheres and at
the interstices. The space in a crystal is divided into
polyhedral Wigner—Seitz cells and the MT orbitals are
represented by one-centre expansions in terms of the
spherical harmonics inside the spheres surrounding the
polyhedra. Such one-centre expansions describe correctly
the density only in the regions within the atomic cells.
Consequently, the problems of solution of the Poisson
equation and calculation of the matrix elements of the
potential of the region between the spheres are reduced to
finding an effective method for integration of the functions
in the region between a sphere and the boundary of a
polyhedron. This can be done either by applying the
technique of expansion in terms of the spherical harmonics
of the 0 function [29] or, as shown in Ref. [33], by reducing
the volume to the surface integrals with the aid of the Gauss
theorem. The advantage of the proposed method is a
unified representation of all the quantities in terms of
the spherical harmonics for both regions of space in a
crystal, which leads to a calculation method the rate of
which is only several times less than the rate of the standard
LMTO-ASA method. This approach also retains the
simplicity and physical clarity of the LMTO-ASA method
and can be readily incorporated in the existing computer
programs.
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Figure 1. Plotting of an MT orbital:  (a) initial shell function;
(b) replacement of the diverging part of a linecar combination of the
numerical radial functions and of the regular Bessel functions in an MT
sphere at the origin of the coordinate system, and also replacement in all
other polyhedra (excluding that at the origin of coordinates) of tails with
one-centre expansions in terms of the Bessel functions (as illustrated by
the arrows); (c) replacement of the Bessel functions in all the MT
spheres with the numerical radial functions. The vertical lines identify
the boundaries of the MT spheres and of the polyhedra.

We shall now discuss in greater detail the task of
construction of the linear MT orbitals. The space in a
crystal is divided in a certain way into polyhedra Wigner —
Seitz cells surrounding each atom. Inscribed MT spheres as
well as the spheres surrounding the polyhedron are
introduced for these atomic cells. Both types of spheres
are centred at the lattice sites. We shall consider what is
known as the shell function, which in the LM TO method is
the singular Hankel function K, (ry —t) centred at a site
R +1t, as shown in Fig. la, and having the energy ¢ = K.
(Here and later it is assumed that all the radial functions
with the vectors in braces are multiplied by spherical
harmonics, where L denotes a combined index for Im;
the subscript R over r denotes the difference r — R, where
{R} are the positions of atoms in a unit cell, and {¢t} are
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primitive translations.) Inside the sphere centred at R +¢
the diverging part of the shell function is replaced by a
linear combination of numerical radial functions subject to
the condition of smooth matching at the boundary of the
sphere. The radial functions are here the solutions
¢r (rr —t, &) of the Schrodinger equation which con-
tains the spherical part of the potential and which applies at
certain energies €,z in the region of interest to us, as well as
the energy derivatives of these functions ¢g; (rpx —t, &)
Inside every other atomic cell centred at R’ +¢’ the shell
function tail is replaced by its own one-centre expansion in
terms of the Bessel functions:

K (rg —t) = ZJL’(rR’ —t")Spipp ' —1) (4.3)

Ll

where J; (rg —t) is a Bessel function and Sz, (f) are
structural constants in the coordinate space. (This is
illustrated in Fig. 1b.) Since the Hankel and Bessel
functions are described by the expressions

i(rew) ™!
K/(r) = —ﬁ hy(kr) (4.4)
sy = B ey (45)

2 o)
where h; = j, — in; are the usual spherical Hankel functions,

and j,, n; are the spherical Bessel and Neumann functions,
the expression for the structure constants is

811',(2[”— ])” L" ="
Swwe(t) = Z(21' — 1= 1y S (o)

x K|t —R' +R))(=)""Y:s(t —R'+R) , (4.6)

where w is the average radius of a Wigner —Seitz cell and
CE,, are the Gaunt coefficients. Finally, the linear MT
orbitals are found by replacing the Bessel functions in all
the MT spheres with linear combinations of ¢y, and ¢,
(Fig. 1c), which are selected so that the LMTO is
everywhere continuous and differentiable.

The last step is the summation over a lattice of MT
orbitals, centred at various sites, with a phase shift exp (ik +¢)
so that the basis functions satisfy the Bloch theorem. This
can be done quite simply: it involves just summation of the
structure constants given by expression (4.6) since the
orbitals constructed in this way are already represented
everywhere by one-centre expansions. The basis functions
are then

e (rer) = ey (rp)Srr +Z¢{(’L’(rR’)Sﬁ”L’RL » TR' <SR/,
LI

Zre (rrr) = Ko (rp)Srie: +ZJR’L’(rR’)S7€’L’RL . e € QR
LI

@.7)

where Sy is the radius of an MT sphere, Q' is the
interstitial region of a given atom, and Sk, ., is the
Fourier representation of the structure constants given by
expression (4.6):
k .
SR’L’RL = Zexp(lk't)SRlL!RL (t) . (48)
t

The radial functions ®%, (rz) and @3, (rz) are now such
linear combinations of the solutions ¢, and ¢y, which are

matched smoothly to the Hankel and Bessel functions at
the boundary of a sphere.

We shall now make some comments about the expan-
sions described by expressions (4.7). Inside nonoverlapping
MT spheres these expansions converge rapidly and are
readily calculated. On the other hand, in the interstitial
region Qg of a given atom such expansions converge
slowly and are generally converging only for radii rp
smaller than the distance between the nearest sites. This
means, in particular, that the space should be separated into
polyhedra which are similar in shape to the compact
Wigner —Seitz cells of close-packed structures in which
the distances between ry € Q™ and the nearest neighbours
amount approximately to % In the case of loose structures
the technique of empty spheres should be used [34], first in
order to remove the regions of divergences of the one-centre
expansions and, second, in order to reduce the number of
terms in the sums over L in expressions (4.7). The frozen
phonon calculations have shown that the summation up to
lhax = 8 ensures a convergence of the phonon frequencies to
a value of the order of several percent. In particular, in the
case of Al and Si with two empty spheres, such precision
can be achieved for [,,, =6, whereas for Nb with the
valence states that are strongly of d nature we must have
l,.x of at least 8.

Let us now consider the selection of fixed energy tails
g =x". In his original paper, Andersen [27] developed the
LMTO method making use of the KP=0 approximation
when, in particular, all the formulas become simple. This
approximation is justified because in the case of close-
packed structures the average kinetic energy of the valence
electrons is approximately zero within one energy ‘window’
of the order of 1 Ry. The systems of interest to us are
distorted lattices where the interstitial region should be
treated more rigorously. Many approaches are known for
the improvement of the basis set of the LMTO
method [35, 36]. It is worth mentioning one of them [36],
which has become popular [37] and in which the size of the
basis is increased by use of one more value of x*. While the
first energy ’ is usually placed close to the average
potential in the interstitial region (known as the MT
zero), the second (and possibly the third) are taken to
be large and negative (from —1 to —2 Ry). The advantage
of this method is an improvement in the variational
freedom of the basis by inclusion of orbitals of the type
used in the method of linear combination of atomic orbitals
(LCAO). On the other hand, a shortcoming of this method
is the tripling of the size of the basis, which increases the
computer time 27-fold.

[t is proposed in Ref. [33] that one or possibly two
energies ” in the filled part of the band be used. This may
be justified directly by the energy-dependent multiple
scattering theory. It can be applied to materials with the
valence bands 0.8 Ry wide, where it is expected that
contributions of the 0K/0x and O°K/0k® type to the
expansion are small. In the case of materials with wide
valence bands or when the MT spheres are very small, one
should use a basis set consisting of two or more values of k.
The corresponding tail energies may be located near the
bottom and top of the valence band and separated from
them by >1.0 Ry. (Smaller separations may lead to almost-
linear MT orbitals and a singular overlap matrix.)

In any case we have to select positive rather than
negative values of x and this may give rise to some
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complications in calculations. The problem is this: the use
of positive tail energies makes the structure constants
singular when x> is equal to the energy of a free
electron. The singularity occurs also at k=0 in the
standard LMTO method, but it is bypassed by displace-
ment from the point I' by a certain small vector. Here we
can consider formally x> as a complex quantity and the
addition of a small imaginary region (usually amounting to
several hundredths of a rydberg) avoids this technical
difficulty.

We shall now consider expressions for the Hamiltonian
matrices and for the overlap. In the case of the basis LMTO
set defined by expressions (4.7) the wave functions of the
valence electrons |[kA) are represented in the form of linear
combinations |XRL> with the coefficients A%} found from
the variational principle. In the case of the one-electron
Hamiltonian in the density functional theory, these coeffi-
cients are found from the following generalised eigenvalue
problem:

> e =V + VM) +

L,R

—3k1<)(l(e’L’|X5ceL )]A%
= Z(Hllg’L’RL
L,R

where VMT(r) denotes the spherical and V™M'(r) the
nonsperical part of the potential. We can easily see that the
contributions of various regions of space are separable. The
Hamiltonian and the overlap matrices are

VNMT

)ke.)

— &0k JAKL =0, 4.9)

k k,MT k,NMT k,int k,int
HEpgp = HEMT +HEXNT iolm 4 vEm (4.10)

Ok =O08NE ok (4.11)
The first and second terms in expression (4.10) and the first
term in expression (4.11) represent integrals over MT
spheres, whereas the other terms in expression (4.11)
represent integrals over the interstitial region. Here,
H ) ,RL is a matrix element of the operator

V vMT () and H",LN,]\;Z is a matrix element of the
nonspherical part of the potential. The third term in
expression (4.10) is a matrix element of the kinetic energy
in the interstitial region. Since the basis functions are the
solutions of the Helmholtz equation, they can be described
in a trivial manner in terms of the interstitial overlap
integral [second term in expression (4.11)]. The last term in
expression (4.10) is a matrix element of the interstitial
potential.

All these contributions are represented by one-centre,
two-centre, and three-centre integrals, and are simple
generalisations of the formulas employed in the standard
LMTO method. The radial matrix elements are calculated
employing the properties of the radial Schrodinger equation
and of its energy derivative.

The interstitial element of the overlap matrix is an
integral of the two—centre type, which is expressed in terms
of the product of two Hankel functions centred at the sites
R and R’. Since they are eigenfunctions of the operator
-V, they can be expanded in terms of the Bessel functions
and represented in the form of one-centre expansions of
expressions (4.7), which formally are infinite series. On the
other hand, such one-centre expansions can be used in
estimating an integral by means of a technique proposed in

Ref. [33], but this complicates finding the overlap matrix.
The best method is to use many-centre expansions and to
calculate the interstitial overlap matrix with the help of the
Green identity [38].

The all-potential method described above has the same
advantages as the familiar Green function (or the
Korringa—Kohn—Rostocker) method. The non-MT cor-
rections from both regions of space have the same form and
can be considered together. They can be separated into k-
dependent structure constants and a potential-dependent
part. The latter part can be calculated only once ahead of a
cycle carried out over points in the k space. Consequently,
the bulk of the computer time is used in calculation of the
convolutions of the radial matrix elements with the §
matrix. The one-centre expansions of expressions (4.7)
converge inside the MT spheres with [,,, <4 and in the
interstitial region with L, ,, < 8. This means that the sums
in the two-centre and three-centre integrals should include
also higher angular momenta. The computer time is then
approximately equal to the time needed to solve the
eigenvalue problem and, therefore, in the case of the basis
sets with one value of x the total time needed for the
calculation of the matrices H and O and their subsequent
diagonalisation is only 2—2.5 times greater than the time
needed in the standard calculations by the LMTO-ASA
method.

The potential Vz(r) = VM () + VIMT(r) is understood
to be expanded in terms of spherical harmonics both inside
the MT sphere and in the interstitial region. Its exchange—
correlation part is usually found by direct calculation at a
given set of points in space, which is followed by expansion
in terms of the spherical harmonics. The Coulomb con-
tribution is calculated by solving the Poisson equation
inside a sphere surrounding an atomic cell. The contribu-
tion of the external space is then included by multipole
charges in each cell.

5. Calculations of the forces and total energy by
the linear MT orbital method

As pointed out above, the density functional theory makes
it possible to calculate directly the change in the total
energy of a crystal caused by displacements of the atomic
nuclei. This can be done by the LMTO band method just
discussed, which takes account of the nonsphericity of the
density and potential. However, although the total energy
can usually be calculated to within a few percent, this
method is unsatisfactory in predicting the frequencies of
atomic vibrations because of the need to carry out several
self-consistent calculations in order to determine the
dependence of the total energy on the displacements of
atoms. Another shortcoming of the frozen phonon method
is subtraction of energies of the order of 10* Ry, which
yields a phonon energy ~ 1073 Ry. The best approach is an
analytic differentiation of the expression for the total
energy with respect to displacements, followed by calcula-
tion of the atomic forces, which should be much more
accurate. In the development of the method for calculation
of the dynamic matrix at an arbitrary point in the Brillouin
zone, which is given below, we shall find this a very
important circumstance, because analytic calculation of the
first derivative of the force with respect to displacements is
a simpler task than calculation of the second derivative of
the total energy.



748

S Yu Savrasov, E G Maksimov

According to the Hellman —Feynman theorem, the force
experienced by an atom is electrostatic and it acts on the
nucleus of an atom. Consequently, this force can be
determined precisely if the distribution of the total charge
density in a crystal is known. Unfortunately, this distribu-
tion is derived from one-electron wave functions, which are
only approximate solutions of the Schrodinger equation
obtained by the variational principle. Consequently, the
forces calculated on the basis of the Hellman—Feynman
formula may be highly inaccurate. On the other hand, the
atomic forces deduced by numerical differentiation of the
total energy with respect to displacements give good results,
so that the Hellman—Feynman force should be supple-
mented by a correction associated with the use of an
incomplete basis set in the representation of wave func-
tions. This is known as the Pulay correction [39], which
vanishes in the theory of multiple scattering [40] and also in
calculations carried out by the pseudopotential method for
materials containing the s and p electrons. There have been
several investigations of this problem within the framework
of the all-electron LMTO and LAPW methods [31, 41]
Unfortunately, the validity of the proposed formulas is very
doubtful in view of the absence of concrete calculations. On
the other hand, the conclusion reached in Ref. [33] is
supported by a series of specific calculations of the phonon
frequencies. The results of these calculations have been
compared with those made by the total energy method and
the agreement is sufficiently good for the practical use of the
proposed formula. (A similar derivation of the formula for
the calculation of the forces within the framework of the
LAPW method has recently been proposed independently
in Ref. [42])

Two approaches to the calculation of the forces acting
on atoms in a crystal have been proposed. These
approaches are based on the fundamental property of
the total energy functional E{p, V,}, which depends on
the overall distribution of the electron density p and on the
external Coulomb potential V., of the nuclei: for a given
value of V,,, this functional is extremal when p is varied and
its reaches its minimum for a true distribution of the
electron density. This gives rise to an important prop-
erty: when the external potential is altered, the total
derivative of E with respect to the displacement of an
atom is equal to its partial derivative, i.e. dE/dR = OE/0R,
whereas

OF dp _

%dR_0

follows from the steady-state condition. This is the
Hellman —Feynman theorem and it represents the first of
the known approaches to the calculation of the forces
based on its use. As demonstrated in the preceding sections
of this review, according to this theorem the forces
expressed solely in terms of the change of the external
field are described by the integral

dE _ [ OVex
aR )P or

dr, 6.1
and —at first sight—may be found in a trivial manner if
the electron density distribution is known. However, this is
true only for calculations carried out within the framework
of the pseudopotential method, in which the basis is
formed by plane waves independent of the positions of
atoms. However, the majority of the calculations, carried

out with the aid of other basis functions within the
framework of the LMTO and LAPW methods, demon-
strate that this formula may give results which differ by
two or three orders of magnitude from reality. The second
approach is based on Andersen’s theorem of forces (see, for
example, Ref. [43]), which deals with the total energy not
as a function of the density but of the potential. According
to this theorem, the force acting on a nucleus and all the

electrons which are inside an arbitrary surface X
surrounding a given nucleus is
dE §
— = . F, F., 5.2
dR SR (; fklsk}l) + ES + XC ( )

where the first term represents the change in the one-
electron energies associated with the virtual displacements
of the frozen potential, Frg is the electrostatic force
between the electron and nuclear charges outside and
inside the surface, and F,, is the exchange—correlation
contribution. If the motion of electrons is self-consistent,
the force acting on them vanishes and, consequently, the
quantity calculated from formula (5.2) represents the
required force acting on a nucleus. This formulation is
more general than the preceding one, since it makes it
possible to deal with the con-tribution of electrons to an
arbitrary total energy, which may differ from zero if the
one-electron wave functions are found approximately. One
of the problems encountered here is a prescription for
selection of the surface X.

In fact, in practical calculations the energy is not a
functional of the charge density or of the potential. In
minimisation of the functional the electron density is
represented by

. 2
Z Jialbwal™
v

where the wave functions are expanded in terms of a
certain basis set

ki) = lu)As" .

Consequently, for a fixed basis, the variational freedom of
the functional applies only to the coefficients Ao’f’l and the
total energy remains constant when only these coefficients
are varied. This variational principle leads to the matrix
eigenvalue problem of the kind described by expres-
sion (4.2), which is obtained not only as a variational
solution of the one-electron Schrodinger equation, but also
as a result of global minimisation of the total-energy
functional. This quite obvious (but missing from the
published literature) statement is very important for the
understanding of the derivation of any formula for the
forces. It follows from this statement that the total
derivative dE/dR is equal to the partial derivative
OE/OR, whereas
dE  d{a}y

d{A¥} drR

Let us now consider a very simple and practical method
for finding the forces based on the theorem under
discussion. Let us assume that a self-consistent calculation
of the atomic configuration {R} is carried out and that it
yields the coefficients AX*{R} and E{R}. We shall also
assume that the calculation is carried out for the {R + 8R}
configuration and that the solution to the eigenvalue

0.
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problem is not sought, but variational coefficients are
substitute from the preceding stage of the calculation,
i.e. the coefficients AX*{R} are substituted again. Since
our basis is made to fit the potential, it is in fact essential to
ensure partial self-consistency, but at each stage it is
possible to use the old coefficients AX*{R}. In this way
we obtain the total energy of a distorted configuration
E{R + 8R}. (The tilde symbol means that the energy found
is not the exact total energy for the investigated config-
uration). It follows from the theorem just formulated that
the force field can be found for the configuration {R} if the
function E{R + dR}, rather than the exact dependence
E{R + R}, is differentiated. This requires ensuring full
self-consistency only once and no significant modification
of the computer programs, so that the approach should be
very effective. However, at this stage we shall try to derive
directly the formula for the calculation of the forces,which
should be even more effective, and it will be needed in the
development of the linear response theory discussed in the
next section.

We shall carry out a direct differentiation of the total
energy of a crystal, described by formula (3.25), with
respect to the position of an atom at a site R. If the
electron density is self-consistent, we find that

dE J WV

R-oJ)P R Y

. /d
+> sz< (YIIIZ(“ — V2 o Vg — 8k11|kl> .
o

where the first term represents the Hellman—Feynman
result and the second is the Pulay correction, associated
with incompleteness of the basis set. We shall represent the
one-electron wave function by an expansion in terms of
linear MT orbitals. The Pulay correction can be found if
we calculate the following matrix element:

(Sxhe | — V2 +V — g3 lkA)

which obviously does not vanish if |kA) are found by the
variational method. [The contribution made by the change
in the variational coefficients A disappears because |[kA)
satisfy the matrix eigenvalue problem of the type described
by expression (4.2).] The change

dyk
o) = |21

(5.3)

in the MT orbital is the difference between the MT
orbitals |xk. sz, ) and |k, ), defined for the final and initial
atomic configurations, respectively. We shall consider their
approximation involving replacement of the exact orbital
|x,’§+5RL) with an orbital |)Z,'§+5RL) derived from the solutions
éry. and ¢y, for an unperturbed crystal. This leads to the
‘rigid”> part of the change [8yf, ) which contains
—3R'Vyg, (rg/) in each atomic cell R’ plus a contribution
associated with the change in the structure constants. This
rigid part of the response can be used quite simply to
estimate the matrix element (5.3). The ignored contribution
is the ‘soft’ part |8°y%, ) associated with changes 8¢, 8°¢.
Therefore, our next task will be to prove that the soft
contribution to the force can be ignored. Since out test
functions for the interstitial region are independent of the
parameters of the potential, the soft contribution differs
from zero only inside the MT spheres. Consequently, the

error in the determination of the force will be proportional
to the following matrix element:

(B trre) =V +V — ecilk Aoy, s

where the integration volume is extended to the region
occupied by the MT spheres and where the induced orbital
|8k, ) vanishes and has a zero radial derivative at the
boundary of a sphere. The equation for the change in the
radial functions can be written as follows:

(=V24+VMT )8+ VMg =0,
VMT

5.4

(5.5)

where 8° is the soft change in the spherical part of the
potential. [The equation for the energy derivatives is
obtained by direct differentiation of Eqn (5.5).] Since the
potential depends on the density, we can write
MT
WV By,
dp do

where the contribution representing the change in the
coefficients SA{;A, ie.

ssv MT — (ssVCXt)MT +

dp__ s
d{aghy — "7

vanishes on the basis of the variational principle
formulated at the beginning of this section. This is
important in our analysis, because—in principle—we
can deal with the self-consistent equation (5.5) at the radial
level and we can thus find the exact force. However, it is
obvious that the bulk of the change in the spherical part of
the potential is related to a certain constant shift VMT on
the energy scale inside each MT sphere: V™' (r) = const.
Then, according to Eqn (5.5), the change in the radial
functions is 8¢ = —const x ¢ and its energy derivative is
8¢ = —const x ¢, and the first part of the error in the
determination of the force is estimated by means of the
integral

J VNMT/.)dr,
SMT

which is negligibly small, since the electron density is
practically independent of the linearisation centres ¢,. The
second part of the error, which originates from the matrix
element of the operator V2 4+ vMT g expression (5.4) is
related directly to the linearised nature of the MT orbitals
and can also be quite small if the parameters g, are selected
at the centres of gravity of the filled part of the energy
band. This discussion justifies theoretically our approx-
imation.

If only the rigid displacement of the M T orbitals centred
on the atoms is included, whereas the change in the shape of
these MT orbitals is ignored, the theorem of forces can be
formulated even more clearly. We shall do this by dividing,
as in the preceding section, the space in a crystal into
Wigner —Seitz cells. Then the total force can be written in
the form [33]

d¢
Fp = kz; Jia 5—;;4-1’}34 -I-JQ Vp(r)Vc(r)] dr

R

+ L) V(p(r)es(r)] dr — VOJ Vo(r)dr, (5.6)

where the last three contributions are also obviously
integrals over the surfaces of a polyhedron. This result
is simply the familiar Andersen theorem on forces [43] and
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it gives the force in terms of the change in the sum of one-
electron energies under the influence of virtual displace-
ments of the frozen potentials plus the electrostatic
Madelung contribution FY' and the surface terms. (Here,
V, is the point on the energy scale which is regarded as the
origin and is called the MT zero.) This is not surprising,
because in accordance with this theorem, in the force
calculations it is necessary to assume that the self-
consistent crystal potential remains constant when atoms
are displaced. Since the basis set is made to match this
potential, the result is simply a rigid shift of the basis
functions centred on the atoms and this shift reproduces
the shift of all the frozen potentials.

We shall now consider briefly the practical side of the
calculations. Since all the surface integrals and FY can be
found quite simply, the main difficulty is a calculation of
the change in the eigenvalues 8¢ ;/0R for each point k and
each band A. It has been estimated that in this case the
computer time has to be increased by about 50% compared
with the time needed to solve the eigenvalue problem and,
consequently, such calculation of the forces should be very
effective.

We shall now give the results of calculations carried out
by the total energy method and with the aid of the force
formula. We shall do this for a number of phonon modes in
Si, Nb, and Al. The results will be compared with the
corresponding calculations carried out by the LAPW
method, by the pseudopotential method, and by another
version of the LM TO method; they will also be compared
with the experimental data. Some comments should be
made about the calculations. First, a basis set with one k is
selected for all the materials, so that the Hamiltonian and
overlap matrices are low-dimensional. Second, since the
method relies on one-centre expansions in terms of the
spherical harmonics for the wave functions, charge density,
and potential in the interstitial region, it follows that
summation over L should include higher angular
momenta. Use has been made of [,,, = 6—8 (as specified
below) in the expansion of the tails of the s, p, and d
orbitals. (The overlap integral converges much faster as a
result of many-centre expansions for the MT orbitals in the
interstitial region.) Although convergence of the total
energy to within 1073 Ry per atom can be achieved for
lax = 10—12, the convergence of the difference between the
energies of distorted and undistorted lattices or of the
atomic forces calculated for a given geometry is achieved
for [, = 6—8, which is quite satisfactory for our purposes.
The wave functions are expanded up to [,,, =4 in all the
calculations, but the charge density and the potential are
expanded up to [,,, = 8. This is related to the consideration
of the half-core states. Since the M T spheres should remain
unchanged for all the distorted configurations of a given
lattice and since they should not overlap, they become quite
small. Consequently, the amplitude of the high (from
—10 Ry and higher) core states has a finite value at the
boundary of a sphere. Such states are regarded as of the
band type and are calculated for separate energy ‘windows’
on the assumption that there is no hybridisation with the
valence band. On the other hand, deep core levels are found
from atomic calculations as the solutions of the Dirac
equation, used with the spherical part of the potential, and
are recalculated for each self-consistency iteration state.

We shall consider the results of calculations for an
optical I phonon in Si. This phonon mode is calculated for

a shift of two silicon atoms along the [111] direction.
The geometry of the positions of the atoms is
+(1/8 +x)a(1, 1, 1), where a =10.26 a.u. is the experi-
mental lattice parameter. The calculations include also
two empty spheres, which follow behind the silicon
atoms; this is a standard practice in the LMTO method.
The positions of these spheres are also altered in order to
conserve the total number of symmetry operations under
distortion conditions. The basis set, representing the wave
functions, can be expanded in terms of spherical harmonics
up to [, = 6. The fixed tail energy is selected to be 0.1 Ry.
The core states 2s and 2p are regarded as the valence states
and the tail energies are —9.4 and —6.4 Ry, respectively.
The radii of all the MT spheres are assumed to be 2.10 a.u.
The exchange—correlation potential is taken from Ref. [44]
and the method of tetrahedra [45] is used for integration
over the Brillouin zone.

The results of this calculation are presented in Table 1. It
lists the frequency of the investigated phonon mode, and also
the third-order force constants calculated with the aid of
formulas for the total energy and force. The results are
compared also in Table 1 with the calculations reported by
Yu, Singh, and Krakauer [42] carried out by the LAPW
method, with the pseudopotential calculations of Yin and
Cohen [46], with the results of another calculation by the
LMTO method reported by Methfessel, Rodriguez, and
Andersen [37]; they are also compared with the experimen-
tal data. Once again, we can see that the agreement between
the calculations based on the total energy and on the atomic
forces is excellent. The error is 0.5% and it is comparable
with the error in the LAPW and pseudopotential methods.
All the results are in good agreement with the experiments;
the precision of the calculations is close to the precision of
another LM TO calculation, and also to the results of Yu,
Singh, and Krakauer [42] and of Yin and Cohen [46].

Table 1. Frequency of the optical I' phonon in Si and the third-order
force constant k,,. of Si (results of calculations by various methods
and experimental data).

Method o/THz ky. /(Ry/ad)

Our results: 15.43 0.4304
total energy 15.51 0.4338
atomic forces

LAPW [42]: 15.37 0.4026
total energy 15.40 0.4030
atomic forces

Pseudopotential [46]: 15.16 0.357
total energy 15.14 0.355
atomic forces

LMTO [37]: 15.47 0.4212
total energy

Experiment 15.53 [47] 0.3820 [48]

The total energies and forces were calculated for an H
phonon in Nb. The longitudinal and transverse modes of
the bec lattice at the point H = (0, 0, 1)(2n/a) are degen-
erate (¢ = 6.22 a.u. is the experimental lattice parameter).
The details of the calculations are as follows. A basis s, p, d
with one x, which has a one-centre expansion, is cut off at
Imax = 8. The fixed energy of an MT orbital tail is  selected
to be 0.5 Ry at approximately the centre of gravity of the
filled part of the energy band and subject to a small
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correction of 0.03 Ry. The levels 4s and 4p are also regarded
as the valence levels with the edges of the tails amounting to
—3 and —5 Ry, respectively. The radius of the MT sphere in
Nb is taken to be 2.568 a.u. and integration over the
Brillouin zone by the method of tetrahedra is carried
out for 60 k points. Table 2 gives the calculated total
energies of four distorted configurations, measured relative
to the equilibrium configuration. The displacements ¢ are
converted to a value per atom and expressed in units of the
lattice parameter. The forces are calculated by polynomial
sixth-order interpolation with an even series (because of
symmetry). Such interpolation can give the values of the
force for each displacement . Table 2 includes, for the sake
of comparison, also the results of calculations based on
formula (5.6). We can see that the difference between them
is less than 1.8%, which is close to the error of 0.8% found
earlier for Si. If these results are used, a calculation of the
total energy can be used to estimate the frequency of an H
phonon: the value obtained is 6.56 THz. A calculation
based on the expression for the forces gives 6.60 THz,
which is only 0.7% greater than the earlier value and by
1.7% greater than the experimental frequency which is
6.47 THz [49]. We can therefore draw the conclusion that
the agreement with the experiments is good.

Table 2. Total energy, measured from the equilibrium configuration,
and atomic forces as functions of the displacements  (in units of the
lattice parameter) for the H phonon in Nb.

B 0.005 0.010 0.015 0.020
AE /107 Ry 0.1668 0.6781 1.5696 2.8403
Faum/(Ry/ag) 001073 0.02241 0.03494  0.04623
Feae/ (Ry/ag) 0.01070  0.02233  0.03453  0.04706

The last example in this section is a calculation of an X
phonon in the fcc lattice of Al. The valence electrons with
k=03 Ry can be represented by the MT orbitals 3s, 3p,
and 3d (Im k* =0.03 Ry, exactly as in the preceding
calculations). The MT orbitals 3s and 2p are used to
describe the low-lying levels with ’> = —6.5 Ry and
K =—4 Ry, respectively. The basis has a one-centre
expansion to [,,, = 6. The lattice parameter is 7.64 a.u.
and the radius of an MT sphere in Al is selected to be
2.623 a.u. Since for an fcc lattice the longitudinal and
transverse modes are not degenerate at the point
X = (0, 0, 1)(2n/a), two separate calculations are needed.
In integration over the Brillouin zone the longitudinal mode
is calculated at 75 k points and 75 k points for a low-
symmetry transverse mode. The calculated results are
compared in Table 3 with the measured frequencies [49].
The agreement between the calculations based on formulas
for the total energy and those based on the forces is good,
but the difference is greater than that found for Si and Nb,
and it amounts to 7%. All the theoretical values are close to
the experimental data to within 4.5%.

Table 3. Frequencies of the X phonon (in terahertz) in Al calculated
from the total energy and atomic forces, and found experimentally.

Mode Total energy Atomic forces  Experiment [49]
Longitudinal 9.38 10.05 9.69
Transverse 5.62 6.07 5.79

6. Variational theory of the linear response

We shall now consider the development of the linear
response theory, based on the use of MT-basis sets, the
advantages of which have been demonstrated in detail in
the preceding two sections. The problem of convergence of
the polarisability described by expression (3.32), associated
with the summation over highly excited states and,
consequently, violation of the acoustic sum rule seems to
be artificial. Let us consider a calculation of the parameters
of any phonon within the framework of the total energy
method described in the preceding section. For simplicity,
we shall assume that ¢ vanishes. Then, the displacement of
all the atoms in the basis in a unit cell by a certain distance
d does not alter anything in the calculation process, i.e. it
simply shifts the origin in the coordinate space. The self-
consistent density is obviously invariant under such a
displacement of the basis and it depends only on the
relative distances between the atoms. The acoustic sum rule
is then satisfied identically and if we wish to find the
change in the density in the coordinate system of the
undistorted lattice, the result is d X Vp. Hence, we may
conclude that the main problem appears in the attempt to
expand the displaced density and the wave functions
relative to the origin of the coordinates of the original
lattice. Since the wave functions oscillate in the region of
the ion core, their rigid displacement leads to first-order
corrections in the original coordinate system and these
corrections are of the d x V|kA) type; this, in turn, is also
subject to strong short-wavelength oscillations and these
can be found by the use of a mathematically complete
system of functions. Consequently, any theory of atomic
vibrations should automatically describe such rigid shifts.

A very elegant method, which makes it possible to
eliminate the sum over the filled states in expression (3.32)
for the polarisability, was proposed by Sternheimer [50] in
connection with calculations of the atomic polarisability. It
is based on the solution of the differential equation which is
satisfied by the first-order corrections. Let us consider the
one-electron Schrodinger equation in which the effective
potential in the density functional theory is supplemented
by a weak perturbation. Expansion of one-electron wave
functions as a series in terms of the small parameter of this
perturbation and retention of only the first-order terms gives

(V2 +V —g;)[8kA) + (8Vegr — Beiz) ke 2) = 0 .

Since in the theory of lattice dynamics a perturbation is in
the form of a superposition of waves of the type described
by an expression such as (3.28), this applies also to the
first-order corrections, as shown in the preceding section.
In the case of nonzero wave vectors g, we may conclude
that the first-order corrections to the one-electron energies
always vanish, since

Bery = (kA|dVeglkeA) =0
because the integrand behaves as the function
exp(—ik-r) exp(=ig-r) exp(ik -r) = exp(tik-r) ,

multiplied by a function which is periodic over the lattice.
The integral of the above expression over the whole space
is identically equal to zero. Consequently, we can write
down

(=V2 4+ V — ;) [0k A) + 85 VoplkA) = 0 . 6.1
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The result is therefore an inhomogeneous second-order
differential equation for the corrections to the wave
functions. Since the wave functions are of the Bloch
type, the above equation can be solved only for one unit
cell. The sole condition is, as in the original Schrodinger
equation, that the boundary conditions imposed by the
Bloch theorem should be obeyed.

Let us consider the advantages of this method. First, it
does not require introduction of supercells, as is done in the
frozen phonon method, so that we can use the former
method for any value of q. Second, the proposed method
does not require knowledge of any excited states, since
Eqn (6.1) relates the first-order corrections— which,
according to expression (3.29), have to be found only for
the filled states—to the filled states themselves. This avoids
the difficulty encountered in applying perturbation theory
to the response functions and related to the summation over
highly excited energy levels. As a consequence, the acoustic
sum rule is satisfied identically since the wave function
gradient obeys Eqn (6.1) with a potential of the VV type,
ie.

(=V2 +V —g;)VIkA) + VVIkA) =0 .

This approach to the problem of lattice dynamics is
proposed in Ref. [51] and, independently, in Ref. [52],
where the Sternheimer method is generalised within the
framework of the pseudopotential formalism and its use is
demonstrated by a calculation of the phonon spectrum of
Si. The use of plane waves as the basis [53] is very elegant
and makes it possible to ignore the corrections associated
with the change in the basis functions as a result of
displacements. It is this that makes it possible to calculate
the atomic forces by the frozen phonon method and the
dynamic matrix in the linear response theory by means of
formulas based on the Hellman—Feynman theorem.
Unfortunately, as mentioned several times earlier, the
very slow convergence of the expansion of the pseudopo-
tential wave functions in terms of plane waves for narrow-
band systems makes this method unsuitable for the
calculation of the properties of phonons in a transition
metal.

Construction of a rapidly converging basis set for
representation of first-order corrections occupies the cen-
tral place in the method proposed in Ref. [4] The MT
orbital representation is used there and this makes it
possible to calculate the phonon spectra of any crystals,
including transition metals. The method is quite fast and
accurate: the time needed to calculate the dynamic matrix
for an arbitrary vector ¢ is comparable with the time
required for a self-consistent calculation of the band
structure of an unperturbed crystal; the error in the
calculated phonon frequencies is usually a few percent.

Two problems are encountered when the MT-basis
functions are used in the linear response theory. The first
problem is due to the fact that the unperturbed energy
bands g and the wave functions |k4) are obtained in this
basis with the help of the Rayleigh—Ritz variational
principle. These wave functions are not the exact solutions
of the one-electron Schrodinger equation. It is therefore
necessary to adopt the variational formulation of the linear
response theory. The second problem, discussed several
times above, is related to the fact that the MT-basis
functions are matched to an unperturbed one-electron
potential and, therefore, they cannot be used directly as

the basis for expansion of the first-order corrections. They
should be reconstructed in order to take account of the
perturbation characteristics. In particular, the augmented
partial waves inside the MT spheres should track the
motion of their atoms, so as to allow for the rigid shift
of the wave function in the region of the atomic core.

The variational formulation of the linear response
method is needed in connection with the solution of the
linearised Schrodinger equation (6.1) with the help of an
expansion of the first-order corrections (to the one-electron
wave functions) in terms of the basis of the MT orbitals.
The energy functional should be found the minimisation of
which with respect to |§*kA) leads to Eqn (6.1). If the initial
Schrodinger equation is obtained subject to the condition
which should be satisfied by the wave functions that
minimise the total energy functional, the functional of
interest to us can be derived by expanding the total energy
in terms of a change in the external potential (in terms of
the displacements of the nuclei) up to the terms of the
second order of smallness. The most general form of such
an expansion is

8PE =" fia(878 kA + 88 kAl — V* + V — g,k A)
423 fu (8 KAl = V2 + V — Eyy[8YkA)

+ J 3T p& V gdr + J 3t pd VvV, dr

+ Jp5+8_ Ve dr +c.c. , (6.2)

where [858FkA) represents second-order corrections to the
wave functions. We have retained deliberately the first term
in the above expression, because the unperturbed wave
functions are only approximate solutions of the Schro-
dinger equation, as is true of the LMTO method which is
used to find them by solving the matrix eigenvalue problem
of the type described by expression (4.9). Variation of this
expression with respect to [8%k4) and use of the induced
density given by formula (3.29) leads to the condition
which should be satisfied by the first-order corrections that
minimise 52E, i.e. it leads to the differential Sternheimer
equation in which the change in the one-electron potential
Schff should be found in a self-consistent manner in
accordance with expression (3.31). The expression given
above—representing the second-order change in the total
energy in the density functional theory (specifically, the
electron part of this energy) —describes simply the electron
contribution to the dynamic matrix. (The contribution of
the nuclei is given by the appropriate Ewald sum and
finding it is a trivial matter.) The property of extremality
follows directly from the Hohenberg—Kohn principle and
it can be used to calculate the dynamic matrix quite
accurately: since the first-order corrections and the charge
densities themselves are variationally correct, the error is
only of the second order of smallness in terms of the error
in |87kA). The second and third terms are missing from
expression (6.2) at its minimum and, therefore, the result
can be interpreted as that obtained from the Hellman—
Feynman theorem (last two contributions) plus a correc-
tion for incompleteness of the basis set [first term in
expression (6.2)]. This correction is due to the approximate
nature of the unperturbed states |[kA) and it is completely
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analogous to the Pulay force, as used in the calculations of
the atomic forces described in Section 3.

There is one more important property which follows
from extremality of the dynamic matrix and is associated
with calculation of the third derivative of the total energy.
This may apply to the anharmonic coefficients, the
Gruneisen coefficients, and other nonlinear coefficients.
Let us consider the derivative of 8®E with respect to
some parameter x (for example, the lattice parameter in
calculation of the Gruneisen coefficient or the displacement
of a nucleus in calculation of the anharmonic coefficient of
any one vibrational mode). We then have

Ve 8PE  ddWE  d{|5kA)}
dx  Ox O d{|stkA)} dx

and the last contribution should banish if the variational
derivative d8@E/d{|6TkA)} is found at the minimum of
the functional 8?E. This property makes it possible to
express all the nonlinear coefficients in terms of the known
first-order corrections and variation of the latter due to a
change in x can be ignored. We must comment here on the
second-order changes in the wave functions that occur in
the dynamic matrix. These functions make only a limited
contribution to the first term of expression (6.2) and they
are easily calculated for a given set of the basis functions
[see formula (6.4) given later]. In view of this limitation,
which is defined below, it is easy to calculate also the
derivatives of these functions with respect to the selected
parameter x, so that these functions do not affect the
statement made above.

Let us now consider the problem of constructing the
Hilbert space for representing the first-order corrections.
Let us return to the MT-basis set {|x*)} of dimension N
(where o is a combined index denoting RL), which
represents the unperturbed functions |[kA). The space is
separated into MT spheres, centred on the atoms, and the
interstitial region. Inside the spheres the MT orbitals are
linear combinations of the numerically calculated radial
functions multiplied by spherical harmonics. In the inter-
stitial region they are the Hankel functions. The one-
electron wave function can be represented by a linear
combination

N
i)y = lu)As”

where A¥* are the coefficients in the expansion found by
solving the eigenvalue matrix problem:

N
D=V HV —egl)Ay =0
o

(We recall that this result is not only obtained by solving
the one-electron Schrodinger equation with the aid of the
variational method, but can be regarded as the result of
global minimisation of the total energy functional in terms
of the coefficients AX* for a fixed basis {|x¥)}.)

In the linear response method the first-order variation
|85k A) should include the change |§¥y%) in the basis of the
MT orbitals and the change SiA;‘A in the expansion
coefficients:

N
18KA) =Y [18% %A + 1) 8 AL

o

(6.3)

Since this function is a Bloch wave with the wave vector

k + g, the functions |y%*), |6%x¥) are also Bloch waves.

The first of them is the initial MT orbital with the wave
vector k +q and the second is a linearised MT orbital
constructed as follows: inside the MT spheres the basis
|5ixf) represents a change in the numerical radial
functions plus a contribution associated with the change
in the structure constants. The change in the radial
functions is described by an incomplete set of differential
equations, derived by linearisation of the radial Schro-
dinger equation in terms of the perturbation 8V, [2]. This
change contains two contributions. The first is trivial and it
is associated with a rigid shift of the potential inside an M T
sphere and the second is related to the change in the profile
of the potential. In the interstitial region the basis [8y¥)
can be represented as the sum

Z exp [i(k+q)-t] VK, (rz —1)

of the gradients of the Hankel functions centred at the
lattice sites. The expansion of |3k 4), written in the form of
expression (6.3), converges rapidly because the basis |5ixo’f)
matches a perturbation in exactly the same way as the
initial basis |xf) matches the unperturbed crystal potential.
Expression (6.3) can also be interpreted as an expansion of
|85kA) in terms of the basis |x**) in a local coordinate
system shifted together with its nucleus; in this case the
convergence in respect of the number of orbitals per atom
should be approximately the same as for the unperturbed
states.

We should also consider the second-order corrections.
They appear in the formulation of the method described
here because the states [kA) are not exact and represent only
the variational solutions [see the first term in expres-

sion (6.2)]. The second-order change in the wave
functions is
N
8%8%kA) = (Ixk)8 8FAL + 37 *)5 AL
o
HELTNSTAL + (58T . (64

where §586FA%* and |8+8¥¢¥) are the second-order changes in
the expansion coefficients and in the basis functions,
respectively. Substitution of the above expression into the
first term of formula (6.2) demonstrates that the contribu-
tion representing the second-order changes in the
coefficients can be ignored, because they occur in
expression (6.4) only as the coefficients of the unperturbed
basis functions, i.e.

N
D 8 STAL(xf| — VP +V —alkd) =0 .
o

On the other hand, the last three contributions to
expression (6.4) are important in calculation of SPE.
There are a number of fundamental consequences of the
fact that the second-order changes in the coefficient A% can
be ignored. We can see that in the second-order change in
the wave function described by expression (6.4) only the last
three terms are really needed. In selection of the Hilbert
space {|x); |8x)} of the basis functions the variational
freedom of the functional (6.2) arises only from the
coefficients 8TAX*. This is fully analogous to the varia-
tional freedom of the total energy functional represented
solely by the coefficients Ao’f’l, as shown in the preceding
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section. There, this aspect has a consequence in the
calculation of the forces acting on atoms: if the variations
in the total energy are considered in terms of the
displacements, the steady-state condition means that there
is no need to include the contribution corresponding to the
change in the variational coefficients. In the present case the
consequence is the same: in calculation of the nonlinear
parameters, discussed in the preceding section, the steady-
state nature of 8?E implies that there is no need to include
the contribution corresponding to the changes in the
coefficients 8*A . The coefficients 854 ¥* themselves are
found by a minimisation procedure. Variation of 8P E with
respect to 85A X gives the following matrix system of linear
equations:

N
D T = VP Ve — el ™) 8 A
o

N
+ Z[(Xﬁiqwi chf|X§><5iXI;;¥q| — V2 + Ve — &aal5)
o

) = VP 4 Ve — 1al14)]AY =0 . (6.5)

This system of linear equations represents, as expected, a
variant of the initial matrix eigenvalue problem described
bzl expression (4.9). It gives the minimum of the functional
8P E in the space of the coefficients ES“‘LA'.,‘L’1 and any second-
order changes in the basis, such as [88Tx%), do not
influence the position of the minimum. On the other hand,
the functions [8*8¥ %) determine the value of 8?E at its
minimum and should be included in calculation of the
dynamic matrix.

The linear system of equations (6.5) is readily solved for
SiA';’l. This requires inversion of the matrix

() =V +V —aaln™)

whose cigenvalues are known to be &, — g,y and whose
eigenvectors are A{,‘,i"l ,where A’ =1, ..., N. The result for
8*A%% is then substituted into formula (6.3), which yields
the final expression for [8*k4) in the following form:

N
8%K2) = 8" )AL
o

(k£q| — V> + Vg — g5 o0 85 x5A %R
8y — Eptqn’

N
+ Z |k £42")
A'l

(O SETFALE | V2 v — g lkA)

Ekp = Epxql’

N
+) ke +ql)
Al

{k % q|8* Vgl )

(6.6)
Ekp — Eptql

N
+ Z |k £42")
A'l

This formula has a simple physical meaning. The first three
terms, containing {|0y)}, appear because of the use of the
variational solutions. They can be regarded as corrections,
associated with incompleteness of the basis set, to the last
contribution (with Schff), which has the form of
expression (3.30) deduced by standard perturbation
theory. If all the unperturbed states are found rigorously
and represent a mathematically complete system of
functions, then the first and second terms cancel out and

the third term disappears: we again obtain expres-
sion (3.30). However, the use of the functions |8y) in the
basis reduces considerably the number of states |k 4 gA)
needed to reach convergence in expression (6.6). Following
this conclusion, the summation in the last three contribu-
tions is carried out only over the lowest N energy states,
where N is the size of the basis for the unperturbed system.
Moreover, the acoustic sum rule is obeyed. If ¢ =0 and
3V =d x VVyy and |8x%) = d x V|y¥) are substituted,
the last three contributions in expressions (6.6) are
combined together in an integral of the gradient of the
periodic function, which vanishes, and which is calculated
over the surface of a unit cell. This comment is related to
excited states. It follows from the logic of the above
conclusion that the change in the charge density associated
with a phonon, which is a property of the ground state of
unperturbed and perturbed crystals, should be calculated
beginning from knowledge of just the occupied states,
whereas all the empty states can (in principle) be arbitrary.
The LMTO method has a major advantage in tackling this
problem: it is fast and exact within a certain energy
‘window’. The states |k +¢qA’) are the ecigenstates of the
matrix of the Hamiltonian (xl’;i"| — V2 4 Vgl xk#9) which is
constructed specifically to reproduce well only the filled
bands. (The energy window of interest to us contains the
centres ¢, of linearisation.) Consequently, the excited states
in expression (6.6) should not be interpreted as the real
states: in this formulation the linear response theory
requires knowledge only of the filled energy bands.

It is interesting to consider the interpretation of the
excited states in the exact Green function (or the Korringa —
Kohn—Rostocker) methods and in the augmented plane
wave method. Since the energy bands g; and the eigen-
vectors AX* in the Korringa—Kohn—Rostocker (and the
augmented plane wave) methods can be obtained from the
matrices of the Hamiltonian (X'b(sv)| — V2 4 Veglih(e,)) of
the LMTO (LAPW) methods for all values of ¢, = g, the
states [k & gA’) in expression (6.6) should be regarded as the
eigenstates of the matrix

<X/I;iq(3k1)| — V2 + Verlta ™ (e0s)) »

and only the bands &, with energies close to & will then
be described correctly. In this case knowledge of such an
auxiliary spectrum for each filled band g is needed in
order to find |5kA).

We shall now demonstrate application of the linear
response method to the phonon spectra of Nb and Mo. We
shall make a number of comments about these calculations.
The first comment relates to selection of the size of the basis
set used in expansion of the one-electron wave functions
and of the first-order corrections to these functions. In
many cases it is sufficient to use the M T orbitals s, p, and d
selected with one tail energy K’ approximately at the centre
of the filled part of the band. However, this is insufficient in
the case of some phonon wave vectors (this applies in
particular to a longitudinal mode along the [001] direction
in Mo). The variational freedom of the dynamic matrix
functional is improved by the use of the basis functions
representing linear combinations of the orbitals s, p, and d
with two energies x*. The first energy is selected, as usual,
approximately at the ‘centre of gravity’ and it is close to
0.5 Ry, whereas the second one is 1 Ry higher, ie. it
represents 1.5 Ry. Both energies have small imaginary



Ab initio calculations of the lattice dynamics of crystals

755

parts (0.03 Ry) by bypassing the singularities of the
structure constants at positive energies.

The second comment is related to the one-centre
expansion of the response functions in the interstitial
region. As in the standard LMTO method, when expan-
sions in terms of spherical harmonics are used, the higher
angular momenta must be included. In the majority of
calculations of the expansions of the tails of the M T orbitals
it has been assumed that [,,, =8, which implies a
procedure of internal summation in three-centre integrals
representing changes in the Hamiltonian and overlap
matrices. The wave functions and the first-order correc-
tions are expanded up to /., =4, but the changes in the
charge density and in the potential are expanded to
lnax = 8. It is also found that in some cases (this applies
particularly to a transverse Nb mode along the [111]
direction at low values of ¢), the dynamic matrix converges
only for /[, = 10-12.

The third comment is related to selection of the number
of the k points in the irreducible part of the Brillouin zone,
which are needed in integration by the method of tetra-
hedra [45]. For all the wave vectors g the number of points
is selected to ensure that the dynamic matrix converges to
within 0.1% —0.3% . In the majority of cases, convergence
of this order is reached for about 100 points, although in
final calculations this number was selected to be 256. In rare
cases this number had to be increased to 508. The last
comment is related to the number of iterations needed for
self-consistency of the induced density. The number of
iterations for finding a self-consistent change in the density
depends strongly on how close is a given phonon wave
vector g to the centre of the Brillouin zone. For those wave
vectors which lie near the zone boundary, this number is
approximately 50. However, in the long-wavelength limit
the number of iterations had to be increased greatly because
of the Coulomb divergence of the 8Q/¢” type, where 8Q are
charge oscillations inside a cell. In principle, such a
divergence can be summed by introducing an effective
permittivity &(g), which for metals increases proportio-
nately to ¢* if ¢ is small. This is fully analogous to the
summation of all the loop diagrams in the random phase
approximation. However, this procedure has not yet been
implemented and self-consistency in the long-wavelength
limit is achieved, as in the case of large values of ¢, by the
method of admixing the density from the preceding
iteration step. In the limit ¢ — 0, the admixing parameter
is selected to be very small (of the order of 0.01), so that the
number of iterations needed for self-consistency is of the
order of 150—250.

Since from the computational point of view the linear
response method is fairly difficult, it is necessary to test all
the computer algorithms and programs. Such testing should
involve first a calculation of the charge density induced by
the atomic displacements in a unit cell. In a comparison of
the induced densities the reference standard can be a
calculation carried out by the frozen phonon technique,
based on the all-potential LMTO method described in
Sections 2 and 3. By way of example, let us consider a
longitudinal phonon mode at the point (0, 0, ) in the
Brillouin zone of Nb. A suitable selection of a supercell with
four atoms enables us to construct self-consistent distribu-
tions of the charge density as a function of the
displacements of nuclei from equilibrium positions. The
density change associated with this phonon was found by
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Figure 2. Seclf-consistent change in the charge density for an arbitrary
phonon mode with ¢ = (0, 0, %) in Nb, deduced within the framework
of the all-potential LMTO method. The dependence of the radial
component for /=0 and m = 0 is shown.
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Figure 3. Sclf-consistent change in the charge density for an arbitrary
phonon mode with ¢ = (0, 0, 1) in Nb, obtained within the framework
of the all-potential LMTO method. The dependence of the radial
component for /=2 and m = 0 is shown.

numerical differentiation of this displacement function at
each point of the unit cell. This was the method used to find
the induced density (Figs 2 and 3). In view of the use of an
expansion in spherical harmonics, these figures show only
two examples of the dependences of the radial components
of the change in the density on the distance from a nucleus:
l=0,m=0in Fig. 2and [ =2, m =0 in Fig. 6. The linear
response methods was applied to the investigated phonon
mode: this did not require any supercells or numerical
differentiation procedures. The calculated dependences of
the induced density are shown in Figs 4 and 5. Comparison
of the figures in pairs (Figs 2 and 4, and Figs 3 and 5)
demonstrates that the corresponding curves are practically
identical, illustrating strikingly the advantages of the linear
response method: the method is accurate and fast. More-
over, it is evident that a change in the density is an
oscillatory function in the core region of an atom. Let
us consider in detail the nature of these oscillations and the
related topics. The initial electron density oscillates in the
core region and this is a consequence of the shell structure
of the atoms. It is natural to expect that a rigid shift of this
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Figure 4. Sclf-consistent change in the charge density for an arbitrary
phonon mode with ¢ = (0, 0, 1) in Nb, obtained by the linear response
method. The dependence of the radial component for /=0and m =0 1is
shown.
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Figure 5. Sclf-consistent change in the charge density for a longitudinal
optical mode with ¢=(0,0,1) in Nb, deduced within the lincar
framework method. The dependence of the radical component for
=2 and m =0 is shown.

Figure 6. Calculated distribution of the charge density gradient for Nb
in a (110) plane.

density in the core also gives rise to oscillations of the
change in the density, because 8p =V X p applies in this
region. This is evident from Fig. 6, which gives the
distribution of the density gradient in a (110) plane.
However, oscillations of this kind are subtracted from
the induced densities shown in Figs 2—5, ie. only the
soft contribution to the linear response is shown. Fig. 7
demonstrates the pattern of the behaviour of the soft
contribution to a change in the density for a phonon
with ¢=(0,0,%) in a (110) plane, which also reveals
oscillations of the dipole nature, but of much smaller
amplitude. A direct comparison of these oscillations with
those of the valence density is made in Fig. 8 which
demonstrates that the spatial positions of the peaks of

]

NS4

Figure 7. Calculated soft contribution to the density, induced by the
formation of a longitudinal phonon mode with ¢ = (0, 0, %) in Nb. The
(110) plane is shown.
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Figure 8. Comparison of the oscillations of the valence density and of
the density induced by a longitudinal phonon mode with ¢ = (0, 0, 1)
in Nb.
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Figure 9. Contribution to the dynamic matrix made by the dipole
oscillations in the region of an atomic core, induced by a longitudinal
phonon mode with ¢ = (0, 0, %) in Nb.

both functions coincide and, consequently the oscillations
of the soft contribution to the linear response are also due
to the shell structure of the atomic cores. At first sight, it
seems that the force acting on a nucleus is established inside
the core region and is then screened by the distribution of
the valence charge. However, we shall now show that this is
incorrect. Fig. 9 shows that the contribution to the dynamic
matrix, (within the framework of the Hellman—Feynman
theorem) can be represented in the form of a force which is
a function of the distance to a nucleus (continuous curve).
The dashed curve in this figure is the induced density
distribution. We can see (and this follows also from Fig. 6)
that within the core the nucleus is inside nesting dipoles and
the contributions of these dipoles fully compensate one
another. The first peak in the dependence of the force
established at a distance of about 0.05 a.u. corresponds to
the innermost induced dipole. The amplitude of this peak is
an order of magnitude higher than the real value of the
dynamic matrix. The force is then screened by the second
inner dipole and it can be seen to vanish near » = 0.1 a.u.
On emergence from the core region the contribution to the
dynamic matrix decreases continuously and at about
0.4 a.u. it almost reaches the expected value. We can see
that there is a sum rule according to which the combined
contribution to the force made by the core region is
negligible. This result helps us to understand the great
sensitivity of the expression for the dynamic matrix derived
within the framework of the Hellman—Feynman theorem
for a transition metal. Since this force is purely electrostatic,
acts on a nucleus, and is related to a change in the density
around a nucleus, the contribution made by the oscillations
inside the core (which is not eliminated by introduction of a
pseudopotential) should be enormous and it should be
calculated very accurately. Any slight error in the deter-
mination of 8p results in a major error in the dynamic
matrix.

We shall now discuss the results of calculations of the
phonon spectra. We shall begin with Nb. The dispersion
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Figure 10. Phonon dispersion curves for Nb: the continuous curves
arc the experimental data obtained by inclastic neutron diffraction; the
points are the values calculated by the linear response method.

curves of this metal have been calculated along the I'—H,
I'-P, and P-H directions in the Brillouin zone, which
correspond to the [00x] and [xxx] directions in the
reciprocal space. The lattice parameter is selected to be
6.15 a.u., as predicted theoretically by calculations based on
the total energy method. (The experimental lattice para-
meter is 6.22 a.u.) The radius of an M T sphere is selected to
be 2.72 a.u. An exchange—correlation potential from
Ref. [44] is used. The valence states are represented by
the basis set s, p d, with rc% = 0.55 Ry and K% =1.5Ry. In
addition to the real valence states, the half-core states 4s
and 4p also remain of the valence kind (in some energy
windows) when calculated by the linear response method.

The corresponding energies are Ki, = —3 Ry and
Kip = —1.5 Ry. Fig. 10 gives, for the sake of comparison,

the calculated dispersion dependences (points) and the
experimental results of Ref. [49] (continuous curves). We
can see that along all the directions the agreement between
the theory and experiment is very good and the error does
not exceed 3.4%. In particular, the theory reproduces
satisfactorily the anomalous behaviour of the dispersion
curve of a longitudinal mode in the range of the wave
vectors g near the point (0, 0, 0.7) and near the point (0.7,
0.7, 0.7), and also of a transverse mode along the I'—H
direction if g is low. All the curves behave correctly at long
wavelengths and this means that the acoustic sum rule is
obeyed. This correct behaviour of the curves in the long-
wavelength limit also makes it possible to draw the
conclusion that the calculated velocities of propagation
of longitudinal and transverse acoustic waves along various
directions are close to their experimental values. Moreover,
this means that the theory describes well also the elastic
constants of this material.

We shall analyse the nature of the anomalies of the
longitudinal modes near the points (0.7, 0.7, 0.7) and (0, 0,
0.7). We shall do this by considering the behaviour of the
band structure factor in the crystal polarisability described
by expression (3.32). The dispersion of this function along
the high-symmetry directions is shown in Fig. 11. (Only the
contribution of the intraband transitions is shown: at ¢
approaching zero, this contribution becomes the density of
states in matter.) The dependence in question has a small
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Figure 11. Calculated band contribution to the real part of the polarisability. Only the intraband transitions are considered.

singularity near the point (0.7, 0.7, 0.7) related to nesting of
the Fermi surface for this wave vector and usually employed
to account for the anomalous behaviour of this longitudinal
mode. We can also see that the function under considera-
tion has a number of singularities near which there are no
significant anomalies; also this function has no singularities
at the point where the anomaly of the longitudinal mode A,
is observed. This anomaly was elucidated by calculating the
distribution patterns of the induced densities for the wave
vectors ¢ = (0, 0, x), which are plotted in Fig. 12 for a (110)
plane at x = 0.9, 0.8, 0.7, and 0.6 (from top to bottom). It is
evident from these results that at x = 0.9 and 0.8 a nucleus
is inside a quadrupole charge induced in the interstitial
region and this charge disappears on passing through the
region of the anomaly (x = 0.7 and 0.6). Consequently, the
force acting on the nucleus changes there abruptly. This
behaviour of the density should be attributed to the
nonsmooth behaviour of a matrix element of the
electron —phonon interaction, which has a singularity
near the point in question. We can summarise the results
by concluding that the anomalies of the vibrational modes
of transition metals are most likely related to a very fine
interplay which establishes the distribution of the induced
electron charge, as reflected in the electrostatic contribution
to the dynamic matrix. [t cannot be explained by the simple
nesting theory.

In particular, a dip of the phonon dispersion curve near
the momentum ¢ = (0.7, 0.7, 0.7) is observed for practically
all the bce metals, both simple and transition. This dip is
most likely related to the behaviour of a structure factor of
the type

. 1
Zexp(lq-R)VﬂVﬂr 7
R

which appears in calculations of the band structure and
phonon spectra. For bcc metals the dependence of this
factor has a strong dip near the momentum ¢ = (0.7, 0.7,
0.7).

We shall conclude with a discussion of the results of
calculations of the phonon spectrum of Mo. As in the case
of Nb, the dispersion curves of this metal were calculated
along the '-H, I'-P, and P—H directions in the Brillouin
zone. The lattice parameter was selected to be 5.89 a.u., as
predicted theoretically by calculations based on the total
energy method. (The experimental lattice parameter is
5.95 a.u.) The radius of an MT sphere was taken to be
2.55 a.u. The exchange—correlation potential was taken
from Ref. [44]. The valence states were represented by a
basis set s, p, and d with k] =0.51 Ry and K3 =15 Ry. In
addition to the real valence states, the half-core states 4s
and 4p were also assumed to be of the valence type (in
separate energy windows) in the linear response calcula-
tions. The corresponding energies were taken to be
Ki, = —3.3 Ry and Kip = —1.6 Ry. A comparison of the
calculated dispersion curves (points) with the experimental
results [49] (continuous curves) is made in Fig. 13. Asin the
case of Nb, the agreement between the theory and
experiment [49] is very good along all the directions and
the error does not exceed 4.1%. In particular, the theory
reproduces well the familiar anomalous behaviour of the
dispersion curves of the longitudinal and transverse modes
in the range of the wave vectors ¢ near the point (0, 0, 1).
All the curves behave in the expected manner at long
wavelengths, which means that the calculated velocities of
the longitudinal and transverse waves travelling along
various directions and also the elastic constants of this
metal are close to their experimental values.
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Figure 12. Charts of the densities induced by vibrations of atoms near
a longitudinal mode (0, 0, x) anomaly at x = 0.7. The changes in the
densities for x = 0.9, 0.8, 0.7, and 0.6 (from top to bottom) are shown.
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Figure 13. Phonon dispersion curves for Mo: the continuous curves
are the experimental data obtained by inelastic neutron diffraction; the
points are the values calculated by the linear response method.
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