
Abstract. An analytical theory is developed of the
nonlinear stage of the Jeans instability in a cold non-
dissipative gas in an expanding Universe. It is shown that
the growth of this instability creates a giant dark-matter
halo, of 200 kpc size, around galaxies. This halo has a
density singularity described by rr // r7aa, where aa& 1.7 –
1.9. A comparison is made of this analytic theory with the
results of numerical simulations and a good agreement
between them is demonstrated. Analytic dynamic solutions

are used to develop a statistical method for calculation of
the correlation functions of galaxies and galaxy clusters.
The theory is compared with the available observational
data. The physical consequences of the proposed theory are
considered.

1. Introduction

Observations show that, over distances of the order of the
horizon radius, our Universe is homogeneous, isotropic,
and expands uniformly. The expansion leads to a rapid
cooling of matter. A cold gravitating gas is unstable
because of the action of universal gravitational forces.
Growth of the Jeans instability creates regions of strong
compression with dimensions much smaller than the
horizon radius. This is of decisive importance for the
formation of the large-scale structure of matter in the
Universe: galaxies, galactic clusters, superclusters, etc.
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The main role in this process is played by the hidden
mass, also called dark matter. This hidden mass manifests
itself only in the gravitational interaction. It was first
introduced in 1933 by Zwicky [1], who investigated galaxies
in the Virgo cluster and observed that the masses of
luminous galaxies are insufficient to account for the
observed dynamics: it is necessary to introduce additionally
the hidden mass [1]. Subsequently, dynamic hidden mass
has been observed in many other clusters and galaxies,
including our galaxy.

The existence of hidden mass and its special non-
baryonic nature are supported also by investigations of
the process of nucleosynthesis. Heavy elements cannot form
in the early Universe and their formation involves secon-
dary nucleosynthesis in stars. The primordial
nucleosynthesis yields, according to recent calculations,
the following mass abundances X of some of the light
elements [2]:

X(He4
) � 0:24 , X(D) � X(He3

) � 10ÿ5 , X(Li7
) � 10ÿ10 .

These primordial abundances of light elements impose
severe constraints on the ratio of the baryonic density of
matter rb to the critical density rc, represented by the
parameter Ob = rb=rc:

0:010hÿ2
< Ob < 0:015hÿ2 , (1)

where h is the Hubble constant, normalised to 100 km sÿ1

Mpcÿ1. On the other hand, a study of the dynamics of
matter and, in particular, investigations of the gas in
galactic groups and clusters give an estimate of the
dynamic mass which is an order of magnitude larger [3, 4]:

O =

r

rc
5 0:2 . (2)

Another important argument in support of the existence
of the nonbaryonic dark matter follows from the anisotropy
of the microwave background radiation. The argument is as
follows. Fluctuations in the baryonic matter can grow only
after the moment of recombination, which is characterised
by a red shift zR � 1000. Up to that moment the density
and temperature fluctuations are related by

dT R

T
�

drR

r0
.

The very existence of structures in the Universe indicates
that up to now the density fluctuations drR=r0 have been
greater than or of the order of unity. Consequently, at the
moment of recombination we should have

drR

r0
5 10ÿ3 .

However, observations show that the initial perturbations
are considerably less than this value. According to the
COBE (Cosmic Background Explorer) observations [5], the
temperature fluctuations dT=T amount to just 10ÿ5. The
dark-matter concept makes it possible to solve this problem
as well, because the dark-matter fluctuations grow much
earlier than the moment of recombination. As a conse-
quence, dark matter forms potential wells into which the
baryonic matter drops after recombination.

Therefore, although we do not know yet the particles of
which dark matter is composed, it is quite clear that these
particles are of nonbaryonic nature and, consequently,
interact very weakly with one another and with the

baryonic matter. It is usual to assume that these particles
are either a low-mass neutrino (known as hot dark matter —
HDM [6]) or some hypothetical heavy particles, such
photino, neutralino, etc. (known as cold dark matter —
CDM [7 – 9]). In recent years a combination of both
(CDM + HDM) has been considered.

From all this it follows that investigations of the
dynamics of dark matter, representing over 90% of the
mass of the Universe (when O = 1), are of key importance
for the understanding of the nonlinear structures that
appear in the Universe.

The problem of the appearance of a large-scale structure
in the Universe can be formulated as follows. Small initial
perturbations grow linearly in the homogeneous and
isotropic, uniformly expanding, Universe. It is natural to
assume that correlations of linear perturbations of different
scales are independent and are of Gaussian nature. The
problem is then determined entirely by the form of the
initial spectrum and by the parameter O. The nature of the
spectrum of the initial fluctuations was considered on the
basis of very general ideas by Zel’dovich [10] and Harri-
son [11]. The parameter O is usually taken as unity. In
particular, a spectrum close to the Zel’dovich – Harrison
spectrum (for O = 1) follows from the inflation theory [12].

Large-scale structures grow as a result of nonlinear
dynamics of the initial fluctuations. The problem has been
tackled recently mainly by the method of direct numerical
simulation. A nondissipative gas is replaced by an ensemble
of identical particles interacting in accordance with the
Newtonian law. The initial distribution of the particles is
assumed to be uniform with random small perturbations.
The initial spectrum is represented by a power law, quite
close to that describing the Zel’dovich – Harrison spectrum.
It is usual to vary the power exponent m of this spectrum
and the parameter O in such calculations.

More complex spectra, resulting from a combination of
CDM and HDM fluctuations, have also been analysed. In
such cases the simulation is three-dimensional. Up to
3 � 106 particles have been considered recently [13 – 15].
It should be pointed out that such simulation is used only in
the case of the nondissipative dark matter. Some inves-
tigators have also tackled the motion of the small fraction
of the dissipative baryonic matter, described by hydro-
dynamic equations [16].

These results of numerical calculations are then com-
pared with astronomical observations and particularly with
the data on nonlinear structures. The conclusions of the
current theories can be formulated as follows [17].

(1) After normalisation to the COBE data on the scale
of 100, the CDM model is in agreement with the recent
measurements of linear perturbations with other scales. The
only possible exceptions are measurements on the scale of
1 – 5 arcmin in the RING experiments [18]. The latter are
3.3 times greater than the results of extrapolation of the
COBE data in accordance with the linear Zel’dovich –
Harrison spectrum. It should be pointed out that 1 – 5
arcmin corresponds to a scale of several megaparsecs.

(2) On scales of the order of (10 – 15) h Mpc the galaxy –
galaxy and cluster – cluster correlations are considerably
higher than those deduced from the standard CDM
scenario.

(3) A comparison of the galactic velocity distribution
with observations shows that numerical calculations predict
a much greater dispersion of the velocities, i.e. a more
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chaotic motion. The observed motions include a correlated
coherent component, which is considerably greater than the
chaotic component.

(4) A preferred theory is that postulating the formation
of galaxies already at the stage corresponding to the red
shift Z = 5 – 10. Among the investigated numerical models
this condition is obeyed by the pure CDM model only at
low values of O, such as 0.2.

(5) An important role is played by direct collisions of
galaxies, resulting in their coalescence. The influence of
these processes on the distribution of galaxies is not yet
clear.

(6) According to the current observations, the Hubble
constant H 0 is closer to 60 – 80 km sÿ1 Mpcÿ1. The numer-
ical calculations under discussion lead to the preferred value
H 0 � 50 – 30 km sÿ1 Mpcÿ1 and also to small values
O � 0:2 – 0.3 (in the pure CDM model).

(7) Admission of a possible HDM + CDM combination
eliminates a large number of these contradictions. At
present this model seems to be the most promising [19].

On the whole, the remarkable success of numerical
simulations is due to the feasibility of verifying the
selection of the starting model of the initial spectrum
and of the composition of dark matter on the basis of a
detailed comparison with observational data. At present, it
is most probable that the spectrum of the intial perturba-
tions is close to the modified Zel’dovich – Harrison
spectrum of a combination with 0.75 CDM + 0:25 HDM
of dark matter with O = 1. It should be stressed however
that other versions of the models, particularly open models
with O � 0:2, cannot be excluded.

It is important to stress that very accurate answers
cannot be obtained by numerical simulation, because of the
fundamental limitations of the models. Even for the
maximum possible number of particles considered at
present (of the order of 106 – 107), the three-dimensional
nature of the problem means that each measurement
corresponds to (1 – 2)�102 particles. This means that the
maximum range of the change in the perturbation spectrum
considered in a model is only one to one-and-a-half orders
of magnitude:

kmax

kmin
� 10 – 30 .

This is insufficient to cover all the changes in the real
spectrum, from the linear range (greater or of the order of
100 – 300 Mpc) to the subgalactic scales.

Moreover, the use of ‘large’ particles, whose mass is
many orders of magnitude greater than the mass of dark-
matter particles (in reality, their mass is between two and
four orders of magnitude greater than the mass of a galaxy)
in numerical calculations leads to a colossal overestimate of
the role of the Coulomb scattering. This may have a
significant influence on the particle velocity distribution
and can distort the role of the dissipative processes. The
need to use ‘large’ particles is one of the most serious
shortcomings of the numerical methods. Moreover, it
should be pointed out that the Poisson equation is usually
solved by the fast Fourier transform method, which leads to
an effective smoothing out of singularities.

These shortcomings do not apply to the analytic
approach developed greatly in recent years. An analytic
description of nonlinear dynamics of gravitating matter
dates back to the paper of Chandrasekhar and Munch [20],

who proposed to use statistical methods for the dynamics of
continuous media, used extensively earlier in the theory of
hydrodynamic turbulence. The theory has been utilised to
the greatest extent in the well-known monograph of Peebles
[21]. The underlying assumption of this theory is smooth-
ness of the higher correlation functions, which makes it
possible to decouple approximately a chain of coupled
nonlinear equations.

Unfortunately, it is this assumption which is not
satisfied in reality: special singular regions are selected
where chains of correlation functions diverge. These
regions are determined by the nonlinear dynamics of
compression of cold gravitating matter and they play a
fundamental role in the establishment of a nonlinear
stochastic state. It should be pointed out that recent
developments in the theory of hydrodynamic turbulence
also support the decisive role of nonlinear singularities in
higher correlation functions [22]. In the theory of a
gravitating gas the role of singularities is considerably
greater because of the Jeans instability of the homogeneous
state of a system.

Zel’dovich [23] was the first to point out singular
formations in the dynamics of a nondissipative gravitating
gas. These are the well-known Zel’dovich pancakes,
investigated also by others [24, 25]. It has been found
since that a flat singularity of the pancake type is not
the only one and not the main one. A three-dimensional
compression singularity, which is of the highest order and is
the basis of the steady-state stationary solution, has been
discussed [25 – 29]: it is known as a nondissipative gravita-
tional singularity (NGS). It is the NGS that determines the
characteristic features of the pair correlation function in an
advanced nonlinear stochastic state of dark matter [30].
Singularities of the Zel’dovich pancake type manifest
themselves clearly only in the correlation functions of
higher orders.

These singularities of the dynamics of a gravitating gas
stand out clearly in the distributions of the density and
velocity of matter, and in the behaviour of the correlation
functions. This facilitates quite definite predictions, some of
which (for example, the giant dark-matter halo around
galaxies, the distribution of the velocities on the rotation
curves, and the singular law of the behaviour of a pair
correlation function) have already been confirmed by
observations.

The present review is concerned with the state of the art
of the analytical theory of the large-scale structure of the
distribution of matter in the Universe. Section 2 gives the
initial formulation of the problem and provides the
equations describing the dynamics of the nondissipative
cold matter, as well as the initial and boundary conditions
for these equations. The important role of truncation of the
Zel’dovich – Harrison spectrum in the short-wavelength
range, due to the finite mass of dark-matter particles, is
stressed.

Section 3 deals with the nonlinear growth of the initial
fluctuations. The general solution is obtained and a growing
unstable mode is identified. The relationships between the
density and velocity in a growing mode, important for the
development of a nonlinear theory, are considered. The
nonlinear solution, obtained in the hydrodynamic approx-
imation, is discussed in Section 4. In the initial perturbation
there are singularities near which the nonlinearity plays a
decisive role. It is shown that after a finite time a singularity
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appears near these points in the initial hydrodynamic
system of equations and then the system becomes invalid.

Section 5 deals with the solution after the appearance of
a singularity. It is stressed that the initial singularity in the
early flow is followed by regions of multistream flow. With
time, the number of streams in such regions increases.
Detailed studies have been made of the one-dimensional
planar case. In the limit t !1, the number of streams
tends to infinity and in the vicinity of an initial singularity a
stationary mixed kinetic NGS state is formed and it has a
singularity of the average density �r / xÿ4=7.

Section 6 is devoted to an NGS in the spherically
symmetric case. It is shown that in this case the formation
of an NGS is much faster than in the planar case. An
infinite number of streams appears practically immediately
after the initial singularity and a quasistationary density
distribution r / rÿ2 ln1=3

(1=r) is established. The general
case is considered in Section 7. It is stressed that, in general,
a stationary spherically symmetric distribution appears near
the initial singularity and at its centre there is a density
singularity which can be extrapolated sufficiently accurately
by the power law r / rÿa, where a = 1:7 – 1.9.

It is shown in Section 8 that the continuous growth of
the Jeans instability creates NGSs of various scales and that
large-scale singularities can capture small-scale ones, thus
giving rise to a hierarchical structure in those regions where
a multistream flow has developed and a quasisteady state
has been established.

Section 9 discusses structures of the largest scale, which
appear in transition regions of flow where kinetic mixing is
not yet complete and separate caustic singularities are
observed. The structure pattern is then cellular. It is stressed
that in these regions the third-order and higher correlation
functions should have singularities due to this cellular
structure.

Section 10 deals with the correlation functions and
presents a theory that takes account of the presence of
strong correlations near singular points. It is shown that the
observed singular structure of the pair correlation function
x / rÿa is related uniquely to an NGS. Some astrophysical
applications of the proposed theory are discussed briefly in
Section 11.

It should be stressed that when speaking of an analytic
theory of the hierarchical and large-scale structures, our
aim is not to regard this theory as in any way opposite to
numerical simulation, mentioned at the beginning of this
review. Above all, it is clear that the term ‘analytic theory’
used by us is arbitrary, because in this theory the derivation
and analysis of specific solutions rely significantly on
numerical methods.

Moreover, the analytic theory concentrates mainly on
the behaviour of matter in the vicinity of singularities.
However, as shown below, the bulk of matter is concen-
trated at the periphery, i.e. effectively outside the
singularities. Therefore, the general relationships applicable
to the average behaviour of the relatively smooth part of the
structure of matter are undoubtedly best described by direct
numerical simulation.

On the other hand, the analytic theory is undoubtedly
superior in the description of the behaviour of the density of
matter near singularities of the distribution of the velocities
and of the structure of the trapping regions, and also in the
description of singular properties of the correlation func-
tions. The two approaches are mutually complementary and

obviously the fullest and most accurate description of the
dynamics of the appearance and growth of the structural
matter in the Universe requires a sensible combination of
both approaches.

2. Initial equations. Initial and boundary
conditions

2.1 Main simplifications
As pointed out above, it follows from the observational
data that our Universe is on the whole homogeneous,
isotropic, and expands uniformly. The maximum size of
inhomogeneities, which govern the large-scale structure of
matter, is l < 300 – 500 Mpc, i.e. the inhomogeneity scales
are much less than the horizon radius R � 5 � 103 Mpc.
Consequently, in a theoretical investigation of this problem
we need consider only such fluctuations whose scale l is
small compared with the horizon radius R H:

l
R H
5 1 . (3)

At the same time, the peculiar flow velocities V can be
regarded as low compared with the velocity of light c:

V
c
5 1 . (4)

In fact, the peculiar velocities obey V 4 lH , where the
Hubble constant H , governing the expansion of the
universe, is

H � (50 – 100) km sÿ1 Mpcÿ1 . (5)

Hence and from inequality (3), bearing in mind that
R HH = c, we obtain relationship (4). Under the conditions
described by expressions (3) and (4), the relativistic effects
are not important and the Newtonian dynamics is
sufficient.

As pointed out above, according to current ideas, dark
matter consists of noninteracting or very weakly interacting
particles. The mean free path of such particles lf is
considerably greater than the scale of inhomogeneities.
Then, the parameter

l
lf

(6)

makes it possible, at least in the first approximation, to
ignore collisions of dark matter particles, i.e. to consider
dark matter as a gas of noninteracting particles.

During the period of nonlinear growth of fluctuations,
cooling in the course of expansion of the Universe ensures
that the gas of particles forming dark matter always remains
cold.

2.2 Kinetic and hydrodynamic equations
The dynamics of dark matter is that of a gas of
noninteracting particles moving in its own self-consistent
gravitational field. Under the conditions described by
expressions (3), (4) and (6), this dynamics is described by
the kinetic equation

q f
qt

+ v . q f
qr
ÿ

qc

qr
. q f
qv

= 0 ,

H2c =

�

f dv .
(7)
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Here, f(r, v, t) is the particle distribution function and
c(r, t) is the potential of the gravitational field. In
expressions (7) and later the system of units, selected for
compactness, is such that 4pG = 1, where G is the
gravitational constant.

The specific form of the distribution function f may
generally depend on the previous history of the appearance
of fluctuations, on the masses of the particles forming dark
matter, and on the interaction cross sections of these
particles. However, in the epoch of interest to us, dark
matter has already cooled (as pointed out above) and it has
formed a cold collision-free gas with a negligible tempera-
ture. The initial distribution function can then be selected in
the form

f(r, v, t) = r(r, t) d
�

vÿ V(r, t)
�

, (8)

where r is the gas density and V is the hydrodynamic
velocity.

Substitution of formula (8) into the set of expres-
sions (7) and rewriting the resultant system of equations
for the parameters r and V, bearing in mind the cosmo-
logical expansion of the universe, i.e. adopting an
expanding system of coordinates, yields the following
hydrodynamic system of equations:

qV
qt

+ aÿ1V .HV + aÿ1
_a V + aÿ1 Hj = 0 ,

qd

qt
+ aÿ1 H .

�

(1 + d)V
�

= 0 , (9)

H2j = a2r0d .

Here, V = V(x, t) is the peculiar velocity of matter,
d = d(x, t) = [r(x, t)ÿ r0(t)]=r0(t) is the deviation of the
density of the investigated gas from the average back-
ground density r0(t), and a(t) is the scaling factor.

Transformation of the variables x, V, and t from an
expanding system of coordinates to any fixed system can be
made in accordance with the familiar relationships [21]:

r = a(t)x , u = V + x _a ,

r = r0(1 + d) , j = c+

a
2

�ax 2 ,
(10)

where a dot represents differentiation with respect to time.

2.3 Initial and boundary conditions
The system of equations (9) can be solved by selecting the
initial and boundary conditions for the functions V and d.
Under the conditions described by expression (4) the
inhomogeneities of interest to us grow in an expanding
homogeneous Universe. The boundary conditions are then
unimportant, since the requirement of the vanishing of
perturbations at infinity is readily satisfied by the expansion
process.

Formally, the initial conditions for solving the system of
equations (9) can be selected by specifying a set of four
initial functions at some moment t = ti:

d(x, ti) = di(x) , V(x, ti) = Vi(x) . (11)

Which moment ti should be selected as the initial depends
on the physics of the interaction of the particles forming
dark matter and the mass of these particles. In our case, the
moment ti corresponds to the beginning of that epoch of
the evolution of the Universe when its general cosmological

expansion is governed by dark matter. Usually, this is the
moment when the dark-matter particles become non-
relativistic [21]. Naturally, the initial fluctuations at this
moment are small:

jdi (x)j5 1 . (12)

The above inequality allows us to consider the initial
stage of the growth of fluctuations in the linear approxima-
tion. In combination with the spatial distribution given by
expression (11), we can now define the initial fluctuations in
terms of their Fourier spectrum:

jdi (k)j
2 , di (k) =

�
+1

ÿ1

di (x) exp(ik .x) dx . (13)

2.4 Fourier spectrum of initial fluctuations
The linear theory is given in Section 3 of this review. Here,
we shall consider some general properties of the initial
spectrum. The form of the spectrum jdi(k)j

2 depends on the
previous history of the formation of fluctuations and their
growth at the time when 0 < t < ti. We shall consider first
the initial spectrum jd0

i (k)j
2. The actual form of this

spectrum is determined by the physical processes which
have occurred in the early Universe. Fairly general ideas on
this topic were put forward by Zel’dovich [10] and
Harrison [11].

In fact, from the physical point of view, it is natural to
expect that variations of the metric are not strongly
divergent. In the Newtonian approximation the metric is

ds2
=

�

1 +

2j

c2

�

c2 dt2
ÿ

�

1 ÿ
2j

c2

�

( dx 2
+ dy2

+ dz2
) ,

where j is the gravitational field potential. Hence, the
variations of the metric are

jdg00 j = jdgabj = 2jc2 .

Consequently,

jdgik j /

�
+1

ÿ1

exp(ik .x)j(0)
i (k) dk . (14)

The condition for a weak (logarithmic) rms divergence
of expression (14) is

jj
(0)
i (k)j /

1

k3=2
.

Then, the relationship between the potential ji and the
density deviation di from the system of equations (9) leads
to

jd0
i (k)j

2
/ k . (15)

In the limit k ! 0, the spectrum described by expres-
sion (15) is truncated naturally by the horizon scale Rÿ1

H .
In the case of smaller scales (k !1), the truncation of

the spectrum is determined by evolution at times 0 < t < ti.
This process can be described by some ‘transition’ function
C(k), which is multiplied by the initial spectrum jd0

i (k)j and
determines the spectrum at a moment ti:

jdi(k)j
2
= jd0

i (k)j
2 C(k) . (16)

The function C(k) basically distorts the ‘initial’ spectrum
on a small scale and truncates it quite abruptly. The
truncation is determined by the nature of the dark-matter
particles. Since at present these particles are not known, we
do not know the exact form of the function C(k).
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We shall however limit ourselves to such transition
functions C(k) which fall sufficiently rapidly in the limit
k !1 and we shall thus identify the smallest scale kmax.
We shall show later (Section 4) that during the nonlinear
stage of the Jeans instability the dominant role is not played
by the spectrum jdi(k)j

2, but by the specific realisation of
the initial fluctuations di(x). A sufficiently rapid fall of the
spectrum in the limit k !1 implies a sufficiently smooth
function di(x).

It will be shown in Section 4 that the function di(x)
should have a second derivative. It then follows from the
Fourier spectrum (13) that

q2di

qx 2 /

�
+1

ÿ1

k2 di (k) exp(ik .x) dk , (17)

and hence we obtain the following constraints on the
spectrum jdi(k)j

2 when k4 kmax:

jdi(k)j
2
4 kÿ10 , k !1 . (18)

Condition (18) is always satisfied by cold dark matter.
Therefore, at low values of jk j the initial spectrum is

close to that given by expression (15) and it decays rapidly
in the limit k !1. The smallest scale k = kmax, corre-
sponding to the maximum of the initial spectrum, is
governed by the mass of the dark-matter particles [31].
It should be stressed that, as shown later (Section 4) the
presence of a maximum in the spectrum and the rapid fall of
the spectrum for k > kmax is — according to condi-
tion (18) — of fundamental importance for an evolving
nonlinear structure.

The set of the initial conditions (11) and of the
conditions imposed on the initial spectrum, described by
expressions (15) and (18), satisfy all the requirements
necessary for the development of a theory.

3. Linear growth of initial perturbations

As pointed out above, according to the latest observational
data (particularly on the anisotropy of the relic radia-
tion [15]), the fluctuations in the early Universe are very
small [see expression (12)], so that their initial growth can
be described by a linear theory. Linearisation of the system
of equations (9) gives [21]

qV
qt

+ aÿ1
_a V + aÿ1 Hj = 0 ,

qd

qt
+ aÿ1 H .V = 0 , (19)

H2j = a2 r0(t) d .

The system of equations (19) can be solved quite
rapidly. In fact, it follows from the second equation of
this system that the density changes only under the
influence of the velocity divergence. The rotational com-
ponent of the velocity deduced from the first equation of
the system (19) is

V rot
= V rot

i
ai(ti)

a(t)
. (20)

We can see that this rotational (vortex) component of the
velocity always decays because of the overall cosmological
expansion. Calculation of the divergence from the first
equation in the system (19) and its substitution into the

second equation, gives the following equation for the
eigenmodes:

d2D

dt2 + 2
_a(t)
a(t)

dD
dt

= r0(t)D . (21)

Eqn (21) describes two modes: a growing one D1 and a
decaying one D2. In the absence of expansion ( _a = 0,
r0 = const) these modes would have been exponential.
However, expansion of the Universe alters in a radical
manner the time dependences of the modes. For example, if
O = 1 (where O is the ratio of the density to the critical
value) the time dependences of the modes are described by a
power law. In fact, substitution of a(t) / t3=2 and, corre-
spondingly, of r0 = (2=3)tÿ2 into Eqn (21) gives

D1 =

�

t
ti

�2=3

, D2 =

ti

t
. (22)

It is evident from relationships (20) and (22) that, as stated
above, only one mode in the linear solution grows with
time.

The eigenmodes D1 and D2 can then be used to find the
complete solution of the linear problem that satisfies the
initial conditions (11) [21]:

d =

di

E

�

D1(t) _D2(i)ÿ D2(t) _D1(i)
	

+

H.Vi

aiE

�

D1(t)D2(i)ÿ D2(t)D1(i)
	

,

(23)

V =

a(t)
4pE

�

dx 0 di(x
0

)

x 0 ÿ x

jx ÿ x0j3
�

_D1(t) _D2(i)ÿ _D2(t) _D1(i)
	

+V div
i

a(t)
aiE

�

_D2(t)D1(i)ÿ _D1(t) _D2(i)
	

+ V rot
i

ai

a(t)
.

Here, ai is the scaling factor at the moment ti; the
quantities di(x) and Vi(x) are determined by the initial
conditions (11); V div

i is the divergent component of the
velocity. The normalisation constant E is defined by the
relationship

E = D1(i) _D2(i)ÿ D2(i) _D1(i) ,

where the index i in expressions D1(i) and D2(i) means that
these functions are taken at the moment ti.

We shall now consider some important properties of the
linear solution of the system of equations (23). First, we
shall separate a growing mode:

d =

di

E
D1(t) _D2(i) +

H.Vi

aiE
D1(t)D2(i) ,

V =

a(t)
4pE

�

d3x 0 di (x
0

)

x ÿ x0

jx ÿ x0j3
_D1(t) _D2(i)

(24)

ÿV div
i

a(t)
aiE

D2(i) _D1(t) .

We can see that during the linear stage all the scales in a
growing mode increase identically, i.e. there is no distortion
of the initial spectrum of fluctuations in this mode and the
amplitudes of all the harmonics increase with time
proportionately to the eigenfunction D1. Consequently,
the nonlinear effects begin to play a role first on a scale
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corresponding to the maximum kmax of the spectrum (16)
of the initial fluctuations.

Moreover, out of all the possible initial conditions set by
selecting four arbitrary functions (representing the density
and three components of the velocity), only one very
definite combination increases with time. In fact, it follows
from the first equation of the system (23) that the growing
mode D1(t) is associated with the following combination of
the initial functions:

di(x) _D2(i) +
H.Vi

ai
D2(i) . (25)

A simple transformation of the second equation in the
system (23) readily shows that indeed the combination (25)
increases with time.

Therefore, out of an arbitrary set of four scalar initial
functions a much narrower class of functions increases with
time and this class corresponds to just one scalar initial
function. This initial function can be selected to be, for
example, the gravitational field potential j. Then the initial
density and velocity of the growing mode can be expressed
in terms of this potential:

di(x) =
H2ji

a2
i r0(i)

, Vi = ÿ

Hji

air0(i)

_D1(i)
D1(i)

. (26)

We can also use a different, more convenient, method of
specifying the initial conditions [27]. This can be done by
the following selection at t = ti:

djt=ti
= di(x) , Vjt=ti

= 0 . (27)

In fact, it is evident from Eqns (24) and (25) that, instead
of the usual density di(x), we can always introduce a new
‘effective’ density

~di(x) =
1
E

�

di(x) _D2(i) +
H.Vi

a(i)
D2(i)

�

.

Then, apart from relatively unimportant decaying terms,
the solution of the system of equations (24) becomes

d(x, t) = ~di(x)D1 , V(x, t) =
a(t)
4pE

�

d3x 0~di(x
0

)

�

x ÿ x0

jx ÿ x0j3
�

_D1(t) _D2(i)ÿ _D2(t) _D1(i)
�

.

It should be noted that at the initial moment t = ti = i
the term in the braces is identically equal to zero. The
solution obtained is thus equivalent to the solution of
Eqns (23) and (24) where the initial velocities are assumed
to be zero.

It therefore follows that only one growing mode is
obtained by solving the linear problem for arbitrary selected
initial conditions. The initial conditions specified by
expression (27) complete the solution of the problem for
this mode. In future. when we shall develop a nonlinear
theory, we shall begin with the initial conditions given by
expression (27) and we shall study the nonlinear evolution
of the growing unstable mode. The influence of the
decaying mode on the nonlinear dynamics of the growing
mode is of little importance. This particular point will be
considered in the Appendix.

4. Nonlinear growth of the Jeans instability

4.1 Appearance of the initial singularity
In the preceding section we discussed the linear theory and
demonstrated that in a cold nondissipative gas, considered
in the linear approximation, the amplitude of the initial
fluctuations in an unstable mode increases without
distortion of the initial profile. This means that the linear
approximation breaks down first and the nonlinear effects
become important at those points where the initial density
perturbations are largest, i.e. near each maximum of the
initial distribution of the effective density di(x). Therefore,
in the investigation of the nonlinear stage of the Jeans
instability it is important to consider first the dynamics of
the system in the vicinity of a single maximum.

We shall solve the problem by selecting the system of
coordinates at a point corresponding to some arbitrary
initial density maximum. We shall bear in mind that the
first to reach the nonlinear stage of growth are the
inhomogeneities with the scale of kmax. We shall begin
our analysis from these inhomogeneities. A special feature
of the dynamics of these inhomogeneities is that large scales
(k5 kmax) have not yet been reached and smaller fluctu-
ations are completely absent because of the rapid decay of
the initial spectrum (16) for k > kmax. Therefore, we can
consider them as separate smooth maxima.

Transformation of the coordinates and velocities in
accordance with expressions (10), and replacement of an
expanding system of coordinates with one at rest and with
its origin at the point of the density maximum di, transform
the system of equations (9) to

qr

qt
+

q

qr
(ru) = 0 ,

qu
qt

+

�

u. q
qr

�

u+

qc

qr
= 0 , (28)

H2c = r .

In the vicinity of a density maximum when the con-
ditions (15) and (18) are satisfied, the initial density
distribution can be represented, apart from terms of higher
orders of smallness, in the form

r(r) = r0(1 ÿ x2
) , x2

=

x 2

a2 +

y2

b2 +

z2

c2 . (29)

The coefficients a, b, and c in expressions (29) are,
respectively, the terms of a Taylor expansion of the
density near the point of the maximum r = 0:

aÿ2
=

1
2
q2ri

qx 2 , bÿ2
=

1
2
q2ri

qy2 , cÿ2
=

1
2
q2ri

qz2 .

We can assume that the following inequalities are always
satisfied:

a5 b5 c .

The condition specified by the first formula in expres-
sion (29), selected at the moment t = ti, is one of the initial
conditions for the system of equations (28). The other
initial condition is selected, in accordance with expres-
sion (27), in the form

Vi(r) = 0 . (30)
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4.2 One-dimensional flow
We shall now consider the solutions of the system of
equations (28) subject to the initial conditions (29), (30).
The relationships between the coefficients a, b, and c in
expression (29) can be arbitrary. We shall begin with the
limiting case

b
a
5 1 ,

c
a
5 1 .

Then, in the first approximation with respect to the small
parameters b=a and c=a, the problem can be regarded as
one-dimensional. The system of equations (28) then
becomes

qr

qt
+

q

qx
(ru) = 0 ,

qu
qt

+

�

u
q

qx

�

u +

qC

qx
= 0 , (31)

q2

qx 2 c = r ,

and the initial conditions (29), (30) can be written in the
form

t = 0 , Vi = 0 , ri(x) = r0

�

1 ÿ
x 2

a2

�

. (32)

In the above expressions, time is measured from t = ti.
The system of equations (31) can be integrated exactly

(26). In fact, introducing y = qc=qx and substituting the
third equation into the first, we find that integration with
respect to x gives

qy
qt

+ u
qy
qx

= c(t) , (33)

qu
qt

+ u
qu
qx

+ y = 0 . (34)

Eqn (33) describes the mass transport law since y(x) =
� x

0 r(x 1) dx 1 = m(x) is the mass of matter in the interval
(0, x). Therefore, if the total mass is conserved in the
system, the constant c(t) � 0.

Application of the hodograph transformation, i.e. the
assumption that t = t(u, y) and x = (u, y), and substitution
of the variables from expressions (33) and (34) gives

ÿ

qx
qu

+ u
qt
qu

= 0 ,

�

qx
qy
ÿ u

qt
qy

��

1 + y
qt
qu

�

= 0 . (35)

The second equation of the system (35) can be separated
into two: either

qx
qy
ÿ u

qt
qy

= 0

or

qt
qu

= ÿ

1
y

.

It is easy to show that the first equation is degenerate
and does not satisfy the initial conditions (26). It follows
implicitly from the second equation that

x = ÿ

u2

2y
+ H 1( y) , t = ÿ

u
y
+ M 1( y) . (36)

The functions H 1( y) and M 1( y) are determined by the
initial conditions (29), (30):

M 1( y) = 0 , x = H 1( y) . (37)

Solutions of the system of equations (37) in the vicinity of a
density maximum gives

H 1 ( y) =
y
r0

+

y3

3r3
0 a2 (38)

[see Eqn (34)]. It therefore follows from relationships (36)
and (38) that the solution is

x =

�

1
r0
ÿ

t2

2

�

y +

y3

3r3
0a2 . (39)

For short times [t < (2=r0)
1=2

], it follows from expres-
sion (39) that the solution in the vicinity of a density
maximum (x = 0) becomes

r =

1

1=r0 ÿ t2
=2
ÿ

1

r3
0a3

x 2

(1=r0 ÿ t2
=2)4 ,

u = ÿ

xt

1=r0 ÿ t2
=2

+

t

3r3
0a2

x 3

(1=r0 ÿ t2
=2)4 .

(40)

We can see that the density at the x = 0 maximum
increases rapidly with time t, the peak becomes narrower,
and flow towards the centre appears.

It is important to stress that the solution represented by
expressions (36) and (39) exists only for a finite time. In fact, a
flow singularity appears at time t = tc = (2=r0)

1=2:

r = r0

�

3x
a

�
ÿ2=3

, c =

r0a2

4

�

3x
a

�4=3

,

u = (2r0)
1=2 a

�

3x
a

�1=3

, t = tc =

�

2
r0

�1=2

.

(41)

The density tends to infinity in the limit x ! 0. The
velocity and the potential remain finite and the expression
for the singularity contains only their derivatives. The
appearance of a singularity in one-dimensional flow of a
cold nondissipative gravitating gas was pointed out by
Zel’dovich and Arnol’d [23, 24].

4.3 Spherically symmetric flow
We shall now consider another important limiting case,
that of the spherically symmetric geometry when the
parameters a, b, and c are all equal:

a = b = c , ri(r) = r0

�

1 ÿ
r2

a2

�

.

The system of equations (28) then becomes

qr

qt
+

1

r2

q

qr
(r2ru) = 0 ,

qu
qt

+ u
qu
qr

+

qc

qr
= 0 , (42)

1

r2

q

qr

�

r2 qc

qr

�

= r .
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On introduction of y = r2qc=qr, we find from the system of
equations (42) that

qy
qt

+ u
qy
qr

= c(t) ,
qu
qt

+ u
qu
qr

+

y

r2 = 0 . (43)

Calculations analogous to those represented by the systems
of equations (33) – (35) yield the following implicit solu-
tions [26]:

t = (2y)ÿ1=2H ÿ3=2
( y) arctan Z +

Z

1 + Z 2

� �

,

r =

1

H( y)(1 + Z 2
)

, Z = ÿ

u
�

2yH ( y)
�1=2

.

(44)

The expression for the function H( y) in the vicinity of a
maximum is found by analogy with expression (38):

H( y) =

�

y
y0

�
ÿ1=3

1 ÿ
1
5

�

y
y0

�2=3
" #

, y0 =

r0a3

3
. (45)

An analysis of expressions (44) and (45) shows that a
singularity again appears and this time this happens at a
moment t = t(1)c = p(3=8r0)

1=2 in the vicinity of the point
r = 0:

r =

3
7

�

40
9p

�6=7

r0

�

r
a

�
ÿ12=7

, c =

7
2
b

�

r
a

�2=7

,

ur = ÿ(2b)1=2
�

r
a

�1=7

, b =

r0a2

3

�

40
9p

�6=7

.

(46)

The singularity described by expressions (46) is integra-
ble. In fact, the potential c is finite and the mass function is
M (r) / r9=7, i.e. M = 0 in the limit r ! 0. This means that,
in spite of the presence of a singularity of the density r at
the centre, a black hole does not form since the mass does
not rise sufficiently rapidly (in the case of a black hole, we
should have M / r).

However, it should be stressed that, if we select a flatter
initial density distribution ri(r)

ri(r) = r0

�

1 ÿ

�

r
a1

�2n �

, n5 2 , (47)

a black hole forms at the same moment as a singularity at
the centre. In fact, in the limit r ! 0, the density is

r(r) / rÿ12n=(3+4n) . (48)

This means that M (r) / r9=(3+4n) in the limit r ! 0, i.e. if
n5 2, the mass at the centre rises more rapidly than in the
case of a black hole. We can demonstrate that expres-
sions (47) and (48) are valid also in the general relativity
case.

It therefore follows that if the initial distribution of the
density of nondissipative matter in the spherically symmet-
ric case is sufficiently flat, nonlinear compression of this
matter creates a black hole at the moment of appearance of
the initial singularity. A black hole does not form in the case
of the usual nondegenerate initial distribution described by
expression (29).

4.4 General case
Finally, let us consider the solution of the system of
equations (28) with the general initial conditions (29), (30).

We shall introduce parameters e1 and e2, representing
deviations from the spherical symmetry:

e1 =

aÿ b
a

, e2 =

aÿ c
a

.

The parameters e1 and e2 vary within the limits

04e1 4 1 , 04e2 4 1 .

It follows from the condition a5 b5 c that we always
have e2 5e1.

We shall consider first the case which does not differ too
greatly from the spherically symmetric geometry [28]:

e15 1 , e25 1 .

The system of equations (28) can then be rewritten
conveniently in the form

qr

qt
+

q

qr
(ru) = 0 ,

qu
qt

+

�

u. q
qr

�

u+ Fÿ ~F = 0 , (49)

div F = r , div ~F = 0 .

Here, the gradient of the potential Hc is represented as the
difference between the forces Fÿ ~F. The forces ~F is
proportional to the small parameters e1 and e2. In the
spherically symmetric case, we have ~F = 0.

Ignoring, in the first approximation, the force ~F and
introducing the notation

u =

r
x

U(x, t) , F =

r
x

B(x, t) , (50)

we find from the system of equations (49) that

qB
qt

+

U

x2

q

qx
(x2B) = 0 ,

qU
qt

+ U
qU
qx

+ B = 0 , (51)

where x are the ellipsoidal coordinates defined in
accordance with expression (29).

The system of equations (51) is analogous to the
spherically symmetric system (43) with the radius r
replaced by the variable x. It follows that the solution
of the system (51) is known: it is exactly the same as the
solution of the system (44) if the substitution r ! x is made.
The only difference is this: it follows from expression (50)
that curl F no longer vanishes because of the smallness of
the parameters e1 and e2. The angular momentum is
included by assuming that the force ~F in the system of
equations (49) is such that div ~F = 0. The force ~F balances
out exactly the rotational (vortex) component of the force
F.

We shall now take account of the presence of the force
~F. The solution of the system of equations (51) makes it

possible to represent the velocity in the form

u =

r
x

U(x, t) + v . (52)

Substituting expression (52) into the system of equa-
tions (49), bearing in mind that r� Hx � e1 � e2, and
taking the curl of the first equation, we find to within
O(e2

2) and O(e2
2) that

qx

qt
= curl

�

r
x

U � v

�

ÿ curl ~F , (53)

where x = curl v, curl ~F = r� H(B=x).
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The solution of the linear equation (53) — subject to the
initial conditions (29), (30) — can be expressed in terms of
the solution of the system (51). The new solution has the
simple form

x = ÿr� H
U
x

, (54)

which can easily be demonstrated by direct substitution of
expression (54) into Eqn (53), and by several vector
operations. It is clear from expression (54) that the value
of jxj is of the order of e1 � e2. Therefore, at the moment
of appearance of a singularity t = t(1)g when — according to
expression (46) — the radial velocity Vr is

Vr = ÿ(2b)1=2
�

r
a

�1=7

,

the velocities u
?

transverse to the radius r remain small (of
the same order of magnitude). In fact, it follows from
expression (54) that

ux? =

3
2

Vr
x
r
(e1y2

+ e2z2
) ,

uy? =

3
2

Vr
y
r
e1 , uz? =

3
2

Vr
z
r
e2 .

(55)

It is evident from expressions (55) for these velocities
that near a singularity the transverse components are not
equivalent. It means that the compression is asymmetric.
The velocity is lowest along the major semiaxis a of the
initial ellipsoid. It follows from the above expressions that
this velocity can be ignored.

Let us now identify the direction along which the
compression rate is maximal. We shall do this by introduc-
ing the function

g =

V 2

V 2
r
= 1 +

9
4
e2

1
y2

r2 + e2
2

z2

r2 , (56)

where e1 > e2 since a > b > c. Rewriting relationship (56)
in polar coordinates, we shall find the points of extrema of
the function g(y, j):

y = 0 , y =

p

2
, j = 0 , cos2 j =

e2
2

e2
1

. (57)

The last expression in formula (57) cannot be correct
because e2 > e1. We can therefore easily see that
gmax = 1 + e2

2 is reached at y = 0. Therefore, the highest
velocity is attained along the z axis, i.e. along the
semiminor axis of the initial ellipsoid. This is in full
agreement with the results of Zel’dovich [43] showing that
the strongest compression occurs along the shortest of the
axes of the initial ellipsoid.

The transverse velocity u
?

determines the density m of
the angular momentum of a gas relative to an inhomoge-
neity centre, because

m = r� u = r� u
?

.

It follows from the law of conservation of the angular
momentum that the total (integral) momentum M naturally
remains always zero. However, the mean square of the
angular momentum is not conserved: at the moment when
a singularity appears, it has a finite value proportional to
e2. The density of the square of the angular momentum is
then

m2
=

9
4

V 2
r r2

(e2 ÿ e1)
2
�

yz

r2

�2

+ e2
2

�

xz

r2

�2

+ e2
1

�

xy

r2

�2
" #

.

4.5 Region near a singularity. General comments
It is evident from the above discussion that the evolution of
the nonlinear solution of the system of equations (28) leads
to the appearance of a singularity after a finite time. A
description of the dynamics of the system during the
subsequent stages can be provided if the system of
equations (28) is supplemented by the rules of passage
through a singularity. These rules are governed by the
physical properties of the investigated system.

In the Euler approximation the system of equations (28)
describes equally the hydrodynamics of ordinary (baryonic)
matter and of nondissipative (dark) matter. However, after
the appearance of a singularity the two cases differ
fundamentally. In an ordinary gas the dominant role at
a singularity and beyond it is played by dissipative
processes. The dissipation, proportional to higher deriva-
tives of the velocity is not important before the appearance
of a singularity, but at the singularity the velocity gradient
becomes jHVj ! 1 and it begins to play the dominant role.

The dissipation means that the motion remains always
of single-stream nature and is described by the system of
equations (28). These equations should be supplemented by
large discontinuities (shock waves) at which energy dissipa-
tion takes place, and also by a change in temperature which
alters the pressure of the gas heated due to dissipation in the
shock waves [32].

A different situation applies in the case of completely
dissipation-free (dark) matter. There is now no dissipation
so that the velocity can have any gradient. Moreover,
special macroscopic flows are also possible when at the
same point r in space there are several noninteracting
streams travelling at different velocities Vi(r, t). It is the
passage of the initial singularity of the Jeans instability in
nondissipative matter which is responsible for the appear-
ance of multistream flows.

5. Multistream flows

It is natural to use the kinetic system of equations (7) in the
description of multistream flows. Here f(r, v, t) is under-
stood to be a function of the distribution of streams of
matter in the velocity space. In other words, if there is one
stream, the distribution function f(r, v, t) is defined by
expression (8). If there are n streams, then

f (r, v, t) =
X

n

i=1

ri(r, t) d
�

vÿ Vi(r, t)
�

. (58)

It should be stressed that the adoption of the kinetic
description represented by expressions (7) and (58) is
justified by the equivalence of the gravitational and inertial
masses: only because of this equivalence is the term
(qc=qr) .qf=qv, describing the interaction with the field in
expression (7), independent of the density of each of the
streams ri [26].

The gravitational forces acting on each of the streams
are proportional to its density ri (gravitational mass), but
the inertial forces are also proportional to the density ri
(inertial mass). Consequently, the density ri drops out of
the system of kinetic equations (7). Consequently, the
system (7) for a number of streams which have different
densities ri is exactly the same as the kinetic equation for a
system of identical particles.
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5.1 Solution near a singularity. Planar one-dimensional
case
We shall now consider the behaviour of the solution near a
singularity in the one-dimensional case. As pointed out
already, in this case we should not use the system of
equations (28), but the more general system of kinetic
equations (7) and (58). Up to the moment of appearance of
a singularity t = tc = (2=r0)

1=2, the flow is of single-stream
nature and the solution (36) is still valid.

The solution of the kinetic system of equations (7) and
(58) can be represented in the form of expression (8) with
the parameters r(x , t), V(x , t) defined in accordance with
formulas (36) and (41). Therefore, if we use expressions (8)
and (41), we find that at the singularity t = tc we have

f(x , v, t)t=tc
= r1xÿ2=3 d(v + v1x 1=3

) ,

r1 = r0

�

a
3

�2=3

, v1 = (2r0)
1=2

(3a2
)

1=3 . (59)

The solution described by the above expressions is
naturally valid only if x5 a.

Let us now consider the solution directly beyond the
singularity i.e. in the case when t > 0, where t = t ÿ tc,
t5 tc. We shall bear in mind that in the region of interest to
us, x5 a, the kinetic energy K = v2

=2 of a stream is
considerably higher than its potential energy:

K =

v2

2
=

1
2

v2
1x 2=3 , c =

1
4
r0a2

�

3x
a

�4=3

.

This means that the influence of the potential in the kinetic
equation is not very great, so that in the first approxima-
tion we can ignore the potential. Then the solution of the
kinetic system of equations (7) has the simple form

f(x , v, t) = f (x ÿ vt, v, 0) . (60)

It follows from expressions (59) and (60) that

f(x , v, t) = r1(x ÿ vt)ÿ2=3
d
�

v + v1(x ÿ vt)1=3� . (61)

It is important to note that the argument of the d function
has one root for jx j > x c, but for

jx j < x c; x c =

2

3
���

3
p (v1t)

3=2 (62)

it has three roots. It then follows that three-stream flow
appears in the vicinity of a singularity when t > 0. The
distribution function (61) can then be rewritten in the form
given by expression (58):

f(x , v, t) =
X

3

i=1

ri(x , t) d
�

v + vi (x , t)
�

, (63)

where the quantity

ri = r1

�

x ÿ vi (t)
�
ÿ2=3

�

�

�

�

dZ(vi)

dvi
(vi)

�

�

�

�

ÿ1

represents the density of the i th stream and vi = vi (x , t)
are the roots of the equation

Z(vi) = vi + v1(x ÿ vit)
1=3

= 0 . (64)

Relationships (58) together with the system of kinetic
equations (7) are together equivalent to introduction of
multistream hydrodynamics. In fact, use of representation
of the distribution function in the form of expression (58)
leads to modification of the system of equations (7) to a
new system

qri

qt
+

q

qx
(ri vi) = 0 ,

qvi

qt
+

�

vi
q

qx

�

vi +
qc

qx
= 0 , (65)

q2

qx 2 c =

X

i

ri .

The caustics, i.e. the surfaces on which streams [the roots
of Eqn (64)] coalesce or multiply, are important in the
systems of equations (65) and (7). The caustics correspond
to the points x c.

It in fact follows from expression (61) that if jx j > x c ,
there are three streams, but only one stream if jx j < x c. At
the points x c the derivatives of the coalescing velocities v1

and v2 have singularities:

qv1

qx

�

�

�

x=x c

! ÿ1 ,
qv2

qx

�

�

�

x=x c

! +1 . (66)

The stream densities r1 and r2, like the second derivative of
the field q2c=qx 2, also become infinite at the points �x c.
However, the potential itself and its first derivative remain
continuous:

r1 x=x c
= r2

�

�

�

�

x=x c
=

1
2
q2c

qx 2

�

�

�

x=x c

= C(x c, t)
�

x c(t)ÿ x
�
ÿ1=2

,

qc

qx

�

�

�

x!x cÿ0
=

qc

qx

�

�

�

x!x c+0
, c(x c + 0) = c(x c ÿ 0) .

(67)

The conditions described by expressions (66) and (67)
apply at each point of coalescence of the streams. They
represent a complete system of the boundary conditions for
the system of equations (65) describing multistream hydro-
dynamics.

5.2 Numerical simulation
The system of equations (7) had been integrated numer-
ically by the particle-in-a-cell method [33]. Numerical

2

5

10ÿ110ÿ1 2 2 x5

r

5

10

Figure 1. Distribution of the density r(x) at the moment of
appearance of a singularity.
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calculations were carried out for (1 – 2)�105 particles. The
solutions are presented in Figs 1 – 3. Fig. 1 shows the
distribution of the particle density r(x) at the moment
t = tc when a singularity appears. We can readily see from
Fig. 1 that the results of numerical calculations (points) are
in agreement with the analytic expression (41).

Fig. 2 demonstrates the formation of three-stream flow.
We can see clearly the caustic singularities described by
expression (66) and the behaviour of the density near the
caustics described by the system of equations (67). During
the subsequent evolution the field gradually slows down the
central stream, which stops and begins to move in the
opposite direction; at a certain moment this stream is

reversed, i.e. a singularity analogous to that described by
expression (41) again appears at the centre of the distribu-
tion. This is followed by the formation of a five-stream flow
zone near the centre.

Naturally, caustics separating the five-stream and three-
stream flow zones also appear. In the ( x – v) space the flow
is in the form of a spiral twisted towards the centre
(Fig. 3a). On each of the caustics the density still has a
singularity described by expression (67) (Fig. 3b). The
spiral subsequently twists tighter and tighter, and the
number of the streams near the centre increases. Regions
with different numbers of streams are separated by caustics.
The result is that the density function is strongly jagged, but

0.0
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0.020.010.00ÿ0.02 ÿ0.01

v

x

a

r

40

80

0.020.00ÿ0.02 ÿ0.01

x

0
0.01

b

Figure 2. (a) Appearance of a region of three-stream flow. (b) Distribu-
tion of the density r(x) in three-stream flow.
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Figure 3. (a) Phase space of five-stream flow. (b) Density distribution
r(x) in five-stream flow.
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the integral of the density m and the potential c still remain
fairly smooth functions described by expression (67).

We shall now consider the state established as a result of
prolonged mixing in the limit t !1. As pointed out above,
at the moment of appearance of the initial singularity the
kinetic energy near the singularity is much higher than the
potential energy. Consequently, there is no local trapping of
matter, so that immediately after the initial reversal the
singularity at the centre disappears (Fig. 2b) and the density
dis-tribution becomes smooth in the vicinity of the point
x = 0.

It would be natural to expect that also after prolonged
mixing a similar smooth density distribution would also
appear:

r = r
�

�

1 ÿ

�

x
a
�

�2 �

, (68)

which would differ from the initial density distribution only
by a change in the constants r

�
and a

�
. However, this is

incorrect.
A numerical calculation shows that after a long time

there is accumulation of matter at the centre. The density
r(x) fluctuates strongly in view of relationships (67).
Therefore, such accumulation can be seen more clearly
in the case of the integral density curve, i.e. when the mass
of matter is

m(x) =
�x

0
r(x 1) dx 1 ,

as shown in Fig. 4. For values t 5 10tc the curve plotted in
Fig. 4 practically ceases to vary: it thus shows the steady-
state distribution of the integral density. We can see that it
differs considerably from the dependence m(x) = r

�
x

represented by formula (68).
It is also evident from Fig. 4 that in this steady state the

average density �r(x) = d �m=dx rises strongly on approach to
the centre (x = 0): Moreover, in this region the fluctuations

of the density r becomes stronger, indicating accumulation
of the caustic singularities and a considerable deviation of
the mean field potential from the law c / x 2 in the limit
x ! 0 [this law follows from formula (68)].

5.3 Adiabatic approximation
The nature of the singularities predicted by the numerical
solution can be identified by analytic consideration of the
process of multistream mixing after a long time t. Then,
instead of the variable v, it is convenient to introduce a new
variable into the system of kinetic equations (7); this
variable is the adiabatic invariant

I =

�

v dx =

�x m

ÿx m

�

2(E ÿ c)
�1=2

dx . (69)

Here, E = v2
=2 + c is the energy of a stream and the

reflection points �x m are defined by the condition
E = c(x m). For a given potential, the definition (69)
establishes a unique relationship between the energy E
and the invariant I :

E = E(I) .

If, in accordance with expression (69), we adopt new
variables in the system of equations (7), the result is

qf
qt
�

�

2(E ÿ c)
�1=2 qf

qx

+

�x m

ÿx m

qc(x , t)=qt ÿ qc(x 1, t)=qt
�

2
�

E ÿ c(x 1, t)
�	1=2

dx 1
qf
qI

= 0 ,

q2c

qx 2 =

�Em

c

f
�

2(E ÿ c)
�1=2

dE .
(70)

We shall now consider the approximation which will be
called the adiabatic model. This model can be described as
follows. The process of mixing involves oscillations of the
streams and the appearance of multistream flows. The
adiabatic invariant I is conserved in these oscillations if
they appear against the background of a sufficiently slowly
varying potential. The distribution function of the adiabatic
invariants f(I) is then also conserved, which follows directly
from the system of kinetic equations (70).

The boundary of the multistream region (mixing region)
is the first caustic which appears immediately after the
initial singularity. In the adiabatic model it is assumed that
sufficient mixing, accompanied by conservation of the
adiabatic invariant I, occurs immediately after the passage
of the first caustic.

It therefore follows that the distribution function f(I) is
conserved in the region bounded by the first caustic. It
follows from the law of conservation of the mass of matter
crossing the first caustic that

dm
dt

= r (x c)
dx
dt

= f (Ic)
dIc

dt
, (71)

where x c is the coordinate of the caustic and Ic is the
adiabatic invariant on the caustic. Relationships (41) and
(69) then give

Ic =

�x c

0
u dx =

3
4

V1x 4=3
c . (72)
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5 52
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Figure 4. Integral density m(x) at times t > 10tc .

Large-scale structure of the Universe. Analytic theory 699



If x c is found from formula (72), then expressions (71)
and (41) can be used to determine the distribution function
f(Ic):

f(Ic) = r(x c)
dx c

dIc
=

�

3
4

�3=4
r1

V 1

Ic

V 1

� �
ÿ3=4

. (73)

In view of the conservation of the distribution function of
the adiabatic invariance, it follows that for any value of I,
we have

f(I) = f(Ic)jIc=I . (74)

The equation for the field potential can then be written in
the form

q2c

qx 2 =

�Em

c

f
�

I(E)]

�

2(E ÿ c)
�1=2

dE , (75)

where the dependence I(E) is defined by expression (69).
The system of equations (70) considered in the adiabatic

approximation thus assumes the form of expressions (69),
(73) – (75). Its solution in the limit x ! 0 should be sought
naturally in the form of the power law:

c = c1 x a .

It then follows from expression (69) that

I = C0
E1=2+1=a

c
1=a
1

, C0 = 21=2
�1

0
(1 ÿ ya)1=2 dy . (76)

We can see from expressions (73) and (74) that

f =

�

3
4C0

�3=4
r1

V 1

c
1=2
1

V 1

E
c1

� �
ÿ(3a+6)=8a

. (77)

Substitution of expression (77) in the equation for the
potential (75) gives finally the required steady-state solu-
tion:

a =

10
7

, c1 = V 2
1

49
30

C1
3

4C0

� �3=4
r1

V 2
1

" #8=7

, (78)

where

C1 = 2ÿ1=2
�
1

1
yÿ0:9

( y ÿ 1)ÿ1=2 dy ,

C0 = 21=2
�1

0
(1 ÿ y10=7

)
1=2 dy .

The solution described by expressions (76) – (78) is fully
mixed and steady-state, since the distribution function then
depends only on the stream energies E.

It is thus evident from the adiabatic model that
multistream mixing establishes a steady-state distribution
with a singularity of the average density at the point x = 0.
In fact, if a = 10=7, we have

�r =

30
49

c1xÿ4=7 . (79)

A singularity appears also in the steady-state distribution
function (77):

f / Eÿ9=10 . (80)

As pointed out above, relationship (79) is best examined
by considering the curve m(x) shown in Fig. 4. We can see
that, in the limit x ! 0, relationship (79) agrees well with
the results of a numerical simulation. It follows from the

distribution described by expression (58) that the real
distribution function consists of a set of d functions and,
therefore, it fluctuates strongly. However, once again the
agreement is satisfactory between numerical calculations
and relationship (80) [29].

Let us now consider our adiabatic approximation. We
can see that the solution described by expressions (79) and
(80) is of scaling nature, that the real fluctuations of the
potential are small (Fig. 5), and that moreover the period of
the oscillations of the streams

T(E) =

qT
qE

=

6
5

C0c
10=7
1 E1=5 (81)

tends to zero for E ! 0. Therefore, if E ! 0 (x ! 0), the
adiabatic solution is asymptotically correct. Consequently,
it is also valid for all energies E5 1, as confirmed by a
comparison with numerical results.

Relationship (81) and the scaling nature of the solution
described by expressions (79) and (80) provide essentially
the justification for the use of the adiabatic approximation.

5.4 Accumulation of caustics
The reduction in the oscillation period with energy
described by expression (81), means that in the limit
E ! 0, i.e. near the bottom of a potential well, the
caustics form more and more frequently. We shall now
consider the law governing such accumulation of the
caustics. According to expressions (61) and (63), the
process of multiplication of the caustics is equivalent to
the appearance of new roots of the d function. At any
moment t the distribution function retains its general form:

f = r(x , t) d
�

vÿ V (x 0, v, t)
�

,

where t = t ÿ t0, t0 is the initial moment of time and x 0 is
the initial point of a path which is an integral of motion.

We shall assume that this motion occurs asymptotically
in a mixed potential. We then have

t =

�x

x 0

ÿ

~v 2
ÿ 2c1x 10=7

1

�
ÿ1=2

dx 1 , ~v 2
= 2E . (82)
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Figure 5. Time dependence of the minimum of the potential.
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At t = 0, it follows from expression (41) that

V = ÿV 1x 1=3
0 .

Replacement of the variable x in expression (82) with a
new variable cos y = (2c1=~v

2
)

1=2x 5=7 gives

~vt =

�

~v 2

2c1

�7=10 �a

b
cos2=5 y dy , (83)

a = arccos
�

(2c1)
1=2x 5=7

0 =~v
�

and b = arccos
�

(2c1)
1=2x 5=7

=~v
�

.
In view of the symmetry of the pattern relative to the

variables v – x , the appearance of the new roots, i.e. of the
new turns of the spiral, can be observed more conveniently
along the v axis. The points vn can be found by substituting
x = 0, i.e. b = p=2, in Eqn (83). Then after a long time in
the limit t!1 the solution of Eqn (83) becomes

p

2
+ (2c1)

7=10 t

q0 v2=5
= arccos

�

(2c1)
1=2 x 5=7

0

v

�

, (84)

where

q0 =

1
2p

�2p

0
cos2=5 y dy .

If x 0 is expressed in terms of v by means of relation-
ships (82) and (84), the result is the following
transcendental equation:

v8=5
= V 3

1(2c1)
ÿ7=10 sin7=5

(2c1)
7=10 t

q0 v2=5

� �

. (85)

After a long time (t !1) the solution of Eqn (85) is
practically coincident with zeros of the sine:

(2c1)
7=10 t

q0 v2=5
n

= pn .

Therefore, the sequence of roots vn obeys

vn /

�

t

n

�5=2

, (86)

where n = 1, 2, . . . , N .
The maximum number N of the caustics can be

estimated from Eqn (85). Since the sine is always less
than unity, we find that

N 5t(2c1)
7=10 V 3=4

1 . (87)

According to inequality (87), the number of caustics
increases proportionately to time t.

The relative separation between the caustics Dvn=vn

decreases with increase in N . In fact, we find from
formula (86) that

Dvn

vn
=

5
2n

, (88)

i.e. according to equality (88), the reduction in the scale
(and, consequently, the reduction in the smallest distance
between the caustics) obeys

DvN

vN
=

5
2N

/

1
t

. (89)

In view of the above relationship, similar relation-
ships (86) – (89) are obeyed also by the coordinates x n of
the caustics. We recall that on each caustic the density

becomes infinite [see the system of equations (67)]. There-
fore, with the passing of time, the actual pattern of the
density distribution becomes more and more jagged and the
degree of jaggedness increases on approach to the centre of
a singularity in the region where x ! 0.

5.5 Natural oscillations
Only small-scale caustic waves have been considered so far.
The steady kinetic state of expression (80) can be regarded
as an equilibrium dynamic system. A deviation from the
position of equilibrium, such as (in particular) the initial
state described by the conditions (32), should result in the
excitation of natural oscillations of the system.

These natural oscillations can be described by represent-
ing the distribution function and the field potential as
follows:

f = f0(E) + f1 , c = c0(x) + j1 , (90)

where f0 and c0 are the steady-state distribution function
and the field potential; f1 and j1 are the deviations of the
distribution function and of the potential from the
equilibrium values.

Substitution of expression (90) into the system of
equations (7) gives

qf1

qt
+ v

qf1

qx
+

qc0

qx
qf1

qv
+

qj1

qx
qf0

qv
+

qj1

qx
qf1

qv
= 0 ,

q2j1

qx 2 =

�
+1

ÿ1

f1 dv .

(91)

The linear part can be separated in a natural manner from
the system of equations (91):

qf1

qt
+ v

qf1

qx
+

qc0

qx
qf1

qv
+

qj1

qx
qf0

qv
= 0 ,

q2j1

qx 2 =

�
+1

ÿ1

f1 dv .

(92)

The system (92) describes eigenmodes of linear oscilla-
tions. The first (fundamental) mode can be seen in the
oscillations of the field potential shown in Fig. 5. The
period and, consequently, the angular frequency of this first
mode, are

T = 4:2 , o = 1:50 .

Since the investigated system is nondissipative, linear
oscillations should naturally be undamped. However,
Fig. 5 demonstrates clearly that the amplitude of the
oscillations decays: this is due to the fact that the
oscillation amplitude is finite. The decay of this amplitude
is a consequence of the nonlinear interaction of the
eigenmodes.

We shall describe this process by expanding the function
f1 in terms of the ket eigenvectors jgn(x , v)i of the system of
equations (92):

f1 =

X

n

exp (ln t)A n(t) jgn(x , v)i , (93)

where ln are the eigenvalues of the system (92); An(t) is the
amplitude corresponding to the eigenmode jgn(x , v)i.
Substitution of expression (93) into the system of equa-
tions (91) and multiplication by the corresponding bra
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vector of the system (92) gives the following equation for
the amplitude of the lth-mode:

dA l

dt
=

X

m; n

exp
�

(ln + lm ÿ ll)t
�

A nA mKl;m; n , (94)

where

Kl;m; n = hgl

�

�

�

�x

0
dx 1

�
+1

ÿ1

dv1 gn(x 1, v1)
q

qv

�

�

�gmi .

Eqn (94) for A l can be used to find the asymptotic law
of decay of the amplitudes after a long time t. Bearing in
mind that all the eigenvalues ln of the system are purely
imaginary, Eqn (94) considered in the limit t !1 becomes

dA l

dt
= ÿ

X

m

A lÿm A m Kl;m; lÿm . (95)

The form of Eqn (95) for the mode amplitudes is a natural
consequence of the quadratic nature of the nonlinearity in
the system of equations (91).

Eqn (95) has the obvious solution

A l =
Cl

t
, (96)

where the constants Cl satisfy the following system of
algebraic equations:

X

m

Clÿm Cm Kl;m; lÿm + dm; l Cm

� 	

= 0 .

We can thus see that after a long time the amplitudes of the
eigenmodes decrease as 1=t.

The correspondence between the decay law of the
eigenmodes (96) and the law describing the reduction in
the scale by the caustic waves (89) is quite natural. The
decrease in the mode amplitudes is due to continuous
transfer of energy to higher harmonics, which occurs
precisely because of the caustic-induced reduction in the
scale. In this sense the process of nonlinear relaxation is
fully analogous to the nonlinear Landau damping of plasma
oscillations [34]. The first (fundamental) mode decays most
slowly and the dynamics of this mode can be judged on the
basis of the time dependence of the minimum of the
potential shown in Fig. 5. We can see that the 1=t law
is supported quite well by the numerical calculation.

5.6 Change in the entropy
Since the investigated system is conservative, both the
decay of the modes and the caustic-induced reduction in
the scale imply simply the transfer of energy to smaller
scales. In view of this, it is useful to consider the total
entropy of the system

S =

�

f ln
e
f

dv dx . (97)

It follows from Eqns (7), (58), and (97) that in the initial
state the total entropy is ÿ1. The dynamic process
described by the system of equations (7) cannot change
the entropy. Therefore, at any moment the entropy should
be ÿ1. The validity of this conclusion is readily confirmed
if we bear in mind that the distribution function can always
be represented in the form given by expression (58).
However, if we consider a mixed state described by

formula (80), we find that in this state — in accordance
with expression (97) — the entropy has the finite value

S f =
Q0c

b+1
m

b+ 1
ln Q0 + b lncm ÿ

b

b+ 1

� �

.

Here, according to formula (80), b = 9=10, cm is the depth
of a potential well, and

Q0 =

3
4C0

� �3=4
r1

V 1

c
1=2
1

V 1
c

9=10
1 .

The whole entropy of the mixed state is therefore
concentrated not in the mean average distribution, but
in giant small-scale fluctuations governed by the presence of
an infinite set of caustics. In this sense we can say that
relaxation of the investigated system to a mixed kinetic state
by the purely dynamic forces discussed above is incomplete:
in the absence of dissipation the system always conserves
nonequilibrium (giant) fluctuations.

6. Spherically symmetric singularity

6.1 Spherically symmetric case
We shall now consider the process of compression of a
spherically symmetric bunch after the appearance of a
singularity. We shall analyse first the qualitative features of
flow. According to expression (46), near a singularity the
stream velocity is

Vr = ÿ(2b)1=2
�

r
a

�1=7

and the potential of the gravitational field is given by

c =

7
2
b

�

r
a

�2=7

.

It is thus clear that the kinetic energy of a stream is less
than the potential energy:

jcj >
V 2

r

2
.

This means that the gravitational field has the dominant
influence on the flow of a gas near a singularity right up to
the moment of reversal at t = t(1)c .

The form of the gravitational potential after a reversal
at t > t(1)c can be found if, instead of the usual density r, we
introduce the effective density ~r = r2r, which takes account
of the spherical accumulation of flow. The system of
equations (42) can be rewritten in the form

q~r

qt
+

q

qr
(~ru) = 0 ,

qu
qt

+

�

u
q

qr

�

u +

qc

qr
= 0 ,

q

qr

�

r2 qc

qr

�

= ~r , (98)

i.e. the hydrodynamic equations have exactly the same
form as in the planar case and only the Poisson equation is
modified.

If we assume that after reversal the density ~r at the
centre (at r = 0) is — as in the planar case — finite (see
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Fig. 2b), i.e. if ~r = ~r0, it follows from the system of
equations (98) that in the limit r ! 0 the potential is of
the form

c = ~r0 ln r . (99)

In other words, an infinitely deep potential well appears
after reversal. However, the velocity v is low. It is therefore
clear that the motion of the gas and the particle density
near a singularity in the limit r ! 0 are governed entirely
by the action of the field.

It is also important to note that a logarithmic potential
well which appears at a time t close to t(1)c is very narrow.
This means that the frequency of the oscillations of the
streams trapped in the well is high and, as shown below, it
increases rapidly with the depth in the well, i.e. on approach
to the limit r ! 0. Consequently, in the vicinity of a centre
an infinite set of caustic singularities appears immediately at
t > t(1)c and these singularities converge towards the point
r = 0. Consequently, an infinite number of streams also
appears. A structure of this kind will be called a non-
dissipative gravitational singularity (NGS).

6.2 Adiabatic theory
It is natural to describe a gravitational singularity with the
aid of the theory of adiabatic trapping [35], since the
parameters of a potential well vary slowly with time
compared with the frequency of the oscillations of the
streams trapped in the well [see inequality (106) given
later]. This means that, in the first approximation, the
distribution function can be represented in the form

f = f(E, t) = f(I) ,

I =

�r1

0
V dr = 22=3

�r1

0
(E ÿ c)

1=2 dr , c(r1, t) = E .

Here, E = V 2
=2 + c is the energy, I is the adiabatic

invariant, and r1 = r1(E, t) is a reflection point.
Further calculations, fully analogous to those repre-

sented by expressions (70) – (75) in the planar case, yield a
nonlinear integrodifferential equation for the potential [26]:

d2~c

dx 2 +

d~c

dx
=

�0

~c

F1=8
( y) ( y ÿ ~c)

ÿ1=2 dy ,

F( y) =
�x 1(y)

ÿ1

�

y ÿ ~c(x)
�1=2

ex dx , ~c(x 1) = y .

(100)

Here, x = ln
�

r=r0(t)
�

, r0(t) is the coordinate of the first
caustic, and F( y) is the distribution function of the stream
energies,

y =

E

c1t
1=3

, t =

t ÿ t(1)c

t(1)c

, c(x , t) = c1t
1=3 ~c(x) .

Let us consider the asymptotic behaviour of the function
~c in the limit x !1 or r ! 0. Let us assume (this will be
justified later) that the function F( y) falls quite rapidly in
the limit y !1, so that the following integral converges:

�0

ÿ1

F1=8
( y) dy = B0 .

Then, the first equation in the system (100) assumes the
following form in the limit x ! ÿ1:

d2~c

dx 2 +

d~c

dx
=

B0

(ÿ
~c)

1=2
. (101)

The solution of Eqn (101), which becomes ÿ1 in the
limit x ! ÿ1, is

~c(x) = ÿ

�

ÿ

3
2

B0x

�2=3

1 +

2
9

ln(ÿx)
ÿx

+ � � �

� �

. (102)

Therefore, in the limit r ! 0 the gravitational field
potential is

~c(x) / ln2=3 1
r

. (103)

This potential ~c tends to ÿ1 when r ! 0. The effective
density ~r vanishes on approach to r ! 0 in accordance
with the following logarithmic law:

~r / (ÿx)ÿ1=3
/ lnÿ1=3 1

r
. (104)

A comparison of expressions (103) and (104) with expres-
sion (99) demonstrates near a singularity that the
distributions of the field ~f and of the density ~c are
governed entirely by the action of the gravitational field.

The asymptote of the energy distribution function for
E ! ÿ1 is also readily obtained from expressions (100)
and (102):

f(E, t) = B1t
1=6

(ÿy)ÿ1=32 exp ÿ

1
8
(ÿy)3=2

� �

. (105)

The above distribution function falls exponentially in the
limit E ! 0, which is in particular the justification for
Eqn (101). It should be pointed out that, in spite of its
exponential nature, the distribution function (105) is very
far from a Boltzmann equilibrium.

Finally, let us consider the validity of the adiabatic
approximation, i.e. the slowness of the change in the
potential ~c during one oscillation period T :

p =

T
2pc

qc

qt

�

�

�

�

�

�

�

�

5 1 . (106)

Direct calculations, carried out by the technique of
adiabats of an invariant, readily show that the parameter
p is given by [26]

p = p0(ÿy)1=4 exp
�

ÿ(ÿy)3=2� , (107)

where p0 is a constant of the order of unity and y is defined
by system (100).

It therefore follows that the condition of validity of the
adiabatic approximation, given by inequality (106) at
sufficiently high values of j yj, is always well satisfied,
i.e. in the vicinity of the bottom of a potential well the
solutions (103) – (105) are asymptotically exact.

We shall now consider some properties of the solution
obtained. The average density obeys

r / rÿ2 lnÿ1=3 1
r

, (108)

and, by analogy with the planar case described by
expression (79), it has a singularity at r ! 0. The actual
(not average) density is strongly jagged by the caustics (in
the adiabatic limit the jaggedness is everywhere dense), but
the first integral

m(r) = 4p
�r

0
r2r dr ,

is, as in the planar case (Fig. 4), smooth and tends to zero
in the limit r ! 0.
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In contrast to the planar case, in the spherical case the
singularity at r ! 0 also has the field potential given by
expres-sion (103). Consequently, local trapping and multi-
stream flow occur immediately after the formation of the
initial singularity described by formula (46) and, in view of
the narrowness of the wall, i.e. because relationships (106)
and (107) are obeyed, the processes of mixing and transition
to a kinetic state occur practically immediately at t > t(1)c ,
whereas in the planar case such a state appears only after
t4 tc.

6.3 Numerical simulation
In addition to the adiabatic theory, the problem has been
tackled by numerical simulation of the process of kinetic
mixing in the spherically symmetric case [36]. The results of
such simulation are presented in Figs 6 – 8. We can see that
a density singularity (curve 1 in Fig. 6) appears at the
moment t = t(1)c . However, the potential at this moment
still has a finite value (curve 1 in Fig. 7). The results
obtained are in good agreement with the exact analytic
solution given by formula (46).

According to the adiabatic theory predictions, a sharp
dip of the potential appears at the centre of the initial
distribution of matter at t > 0 (curve 2 in Fig. 7). Even at
very low values of t there are multiple reflections of
particles (in the limit r ! 0) from the self-consistent field
potential and a density distribution close to that described
by the law (108) is established (curve 2 in Fig. 6).

In the spherically symmetric case the behaviour of the
system differs considerably from that in the planar case.
Immediately after the appearance of a singularity a mixed
multistream state begins to evolve and this state is
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Figure 6. Distribution of the density r(r) at the moment of
appearance of a singularity.
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Figure 7. Potential c(r) at the moment of appearance of a singularity.
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Figure 8. Phase plane in the case of spherically symmetric compres-
sion.
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characterised by a distribution function in which it is
impossible to identify d-like peaks typical of multistream
flow (Fig. 8).

We recall that in the planar case the distribution
function is formed by consecutive tripling of the streams
at the centre of the distribution and quite a long time is
required for the appearance of a fairly smooth average
function.

It therefore follows that the analytic adiabatic theory
predictions are well supported by the numerical simulation
results. The spherically symmetric flow seems to be a unique
system in which the dynamic process establishes a kinetic
mixed state after a singularity in a time interval which can
be as short as we please. It is evident from Fig. 8 that the
incoming d-like hydrodynamic stream is rapidly converted
into a stream with a wide distribution function.

The planar and spherically symmetric cases represent
the limits of the initial general problem described by the
system of equations (28). In both cases a density singularity
appears under steady-state conditions: the differences are
solely in the order of the singularity and in the time taken
to reach the steady state. It is therefore natural to expect
that the main features of this limit will be manifested also in
the general case.

7. Nondissipative gravitational singularity

7.1 General case
The spherically symmetric case is degenerate in the sense
that all the particle motion occurs only along the radius r.
We shall now study the evolution in time of a general
singularity described by expressions (55), when — apart
from the radial motion — there are also transverse
components of the velocity. By analogy with expres-
sions (49) – (55), the ellipticity parameters near the
maximum of the initial density will be regarded as small:

e1 =

aÿ b
a
5 1 , e2 =

aÿ c
a
5 1 .

We shall deal with this problem by rewriting the kinetic
equation (7) in spherical coordinates:

qf
qt

+ pr
qf
qr

+

py
r2

q f
qy

+

pj
r2 cos2 y

q f
qj

+

qc

qt
ÿ

pj
r2 cos2 y

qc

qj

� �

q f
qE

ÿ2

�

py
qc

qy
+

pj
cos2 y

�

qf

qm2 ÿ
qc

qj

q f
qpj

= 0 ,

H2c =

�

f dpj dpy dpr , (109)

where the momenta pr , py , and pj are related to the
velocities vr , vy , and vj by

vr = pr , vy =

py
r

, vj =

pj
r cos y

,

where E = p2
r=2 + p2

y=2r2
+ p2

j=(2r2 cos2 y) + c is the energy
of the system, m2

= p2
y + p2

j= cos2 y is the square of the
angular momentum, and pj = mj has the physical meaning
of the angular momentum relative to the z axis. As usual,
the relationships applicable to the initial singularity

[expressions (46) and (55)] should be regarded as the
initial conditions for the system of equations (109).

We shall now consider a system of expressions (55).
Two velocity components, uj and uy, are transverse to the
radial velocity vr. Consequently, the components u

?x , u
?y ,

u
?z are not independent and, as can be seen from

expressions (55), the component u
?x can be ignored near

a singularity. This means that one of the transverse
components, for example uj , can be assumed to be zero.

Without limitations on the generality, the expression for
the transverse component uy is described by the following
expression, accurate to within e2:

uy =

3
2

vre , (110)

where e2
= e2

1 + e2
2 ÿ e1e2. Consequently, the system of

equations (109) can be simplified. In fact, if the distribu-
tion function is represented in the form

f = ~f d(pj) ,

the result is

q~f
qt

+ pr
q~f
qr

+

m

r2

q~f
qy

+

qc

qt
q~f
qE

ÿ

qc

qy

q~f
qm

= 0 ,

pr =

�

2

�

E ÿ cÿ
m2

2r2

��1=2

.

(111)

For simplicity, we shall omit the tilde above f.
An analysis of the solution of the systems of equa-

tions (51) and (55) shows that

m � e ,
qc

qy
� e ,

i.e. the angular part of the distribution function is small.
Moreover, this angular part decays with time because of
energy transfer to higher harmonics, in full analogy with
the process discussed in Section 5.

Averaging over the angle y in Eqns (111) and bearing in
mind that the quantities E and m2 are integrals of motion,
we find that the spherical part of the distribution function is
described by the following kinetic equation:

qf
qt
�

�

2

�

E ÿ cÿ
m2

2r3

��1=2
qf
qr

+

qc

qt
qf
qE

= 0 . (112)

The Poisson equation then becomes

q

qr

�

r2 qc

qr

�

= 21=2
�
1

0
dm2

�

�0

c+m2
=2r2

f (E, m2, r, t)

�

E ÿ cÿ
m2

2r2

�
ÿ1=2

dE . (113)

7.2 Adiabatic theory
We shall use the adiabatic approximation (see Sections 5
and 6) to find the solution of the system of equations (112),
(113) [28]. In this approximation the function f depends on
the square of the angular momentum m2 and on the
adiabatic invariant:

I = 21=2
�rmax(E)

rmin(E)

�

E ÿ c(r1, t)ÿ
m2

2r2
1

�1=2

dr1 , (114)
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where rmin and rmax are zeros of the radicand. The energy E
in Eqns (113) and (114) is measured from the caustic. It
follows from the hydrodynamic solution that

m2
= m2

0r16=7
0 , E(r0) = E ,

E(r0) =
9
7
c0r9=7

0 + o(e) , (115)

m2
0 = 0:0881~r0e

2 , ~r0 = r0a12=7 .

The condition of continuity of flow on the caustic gives

r(r0) dr0 = f (I0) dI0 . (116)

According to the adiabatic theory, the form of the
distribution function f(I) is governed by the conditions at
the trapping boundary, i.e. on the caustic at I = I0(t).
Conservation of the adiabatic invariant means that the
distribution function is

f (I) = f (Im)jIm=I . (117)

It follows from relationships (114) – (117) and from the law
of conservation of the angular momentum that

f (I) = f0 I1=8
(E) d(m2

ÿ l2
0 I2

) , (118)

where

f0 =

49
72

~r0

c0

7
9c0

� �7=2

Cÿ9=8
1 , l2

0 =

7
9c0

� �8m2
0

C2
1

,

C1 = 21=2
�kmax

kmin

E ÿ c0k
2=7

ÿ

m2
0

2k2

�

7
9c0

�8
" #1=2

dk .

Substitution of relationship (118) into Eqns (113) and
(114) gives

q

qr
r2 qc

qr
= 21=2f0

�
1

0
dm2

�

�0

c+m2
=2r2

I1=8
(E) d(m2

ÿ l2
0I2

)

�

E ÿ cÿ
m2

2r2

�
ÿ1=2

dE ,

I = 21=2
�rmax

rmin

E ÿ c(r1, t)ÿ
l2
0

2r2
1

I2

" #1=2

dr1 .

(119)

When l2
0 tends to zero, the system of equations (119)

reduces exactly to the system (100) derived in the absence of
the momentum. In this limit, the field potential is

c = ÿ

3
2

C0 ln
r0(t)

r

� �2=3

(120)

where r0 is the position of the caustic separating the regions
of single-stream and multistream flow, and C0 is a
normalisation constant.

An analysis of the system of equations (119) by a
procedure analogous to that described above shows that
in a region of radius

04 r4 re , re = 0:0731
w0(t)
c0

� �7=2

e46=49 ,

there is a power-law solution of the system (119):

c = ÿw0(t) + c1r2=7 , c1 = 5:742 c0e
ÿ32=49 . (121)

Outside the region defined by the above expressions the
momenta are unimportant and, therefore, the solution
described by expression (120) is valid. The depth of the

potential well w0(t) in the solution (121) is found by
assuming continuity of the potential at a point r = re. With
logarithmic accuracy, we have

w0 =

�

3
2

C0 ln

�

r0

0:07

�

3
2

C0

�
ÿ7=3

c
ÿ7=2
0 eÿ46=49

��1=2

. (122)

Relationships (120) – (122) solve, in the adiabatic
approximation, the problem of the appearance of a non-
dissipative gravitational singularity in the presence of
momentum. The radial distribution of the density near
this singularity is shown in Fig. 9. The dashed line in Fig. 9
is the behaviour of the density described by expres-
sions (120) and (121) (curves 1 and 2, respectively). The
difference between these two curves is slight. For example,
if they are represented by the power low rÿa, then for the
value re = 10ÿ2 adopted in this figure, we have a = 1:87 and
1.72 for curves 1 and 2, respectively.

It therefore follows that the steady-state distribution of
the density near a singularity can be described approx-
imately by a power law:

r = Krÿa , a � 1:7 – 1:9 , (123)

where with an error of about 5% the value of a can be
regarded as constant.

7.3 Numerical simulation
In numerical simulation of the situation after the moment
of appearance of a singularity we solved Eqns (112) and
(113) subject to the initial conditions (110) at t = tc. The
simulation results show that immediately after the
singularity a steep dip of the potential appears in the
vicinity of the centre at r = 0, but the dip is shallower than
in the spherical case. The solution then obtained has the
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104
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Figure 9. Radial distribution (re = 10ÿ2
) of the density in a mixed state:

( 1 ) in accordance with expression (120); ( 2 ) in accordance with
expression (121).
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properties of both spherically symmetric and planar
solutions.

We can see in fact three clearly separate zones in Fig. 10:
(1) 0 < r < r0 is the zone where intense mixing of the
streams takes place; (2) r > rc is the region of hydro-
dynamic single-stream flow, separated from the third
zone by a caustic located at the point rc; (3) r0 < r < rc

is an intermediate transition zone, the structure of which
resembles the multicaustic pattern of one-dimensional flow
(in this zone the mixing is not complete and the separate
caustics can be seen). The continuous line in Fig. 10 is the
distribution of the average density formed after the
appearance of the singularity. We can see that the results
of the numerical calculation agree well with the adiabatic
theory predictions represented by expression (123). This
prediction [25, 27] and the calculations [35] are supported
by the results of numerical calculations carried out recently
by other authors [58].

It therefore follows that during the development of the
Jeans instability in cold nondissipative matter in the vicinity
of the initial maximum of the effective density we can
expect, after a sufficiently long time, a density singularity of
the type described by expression (123) and this singularity is
practically independent of the ellipticity e of the initial
maximum. However, the quantity e influences significantly
the time taken to reach the steady-state solution: the larger
the value of e, the longer the time needed for a system to
assume a mixed state.

8. Hierarchical structure

8.1 General qualitative pattern
We have considered above the nonlinear dynamics of a
single bunch which appears in the vicinity of the effective
density maximum described by expression (29). Beginning
from this section, we shall analyse the behaviour of a
random distribution of the density of a nondissipative self-
gravitating gas which has a wide spectrum of the initial

fluctuations. It is important to stress that this is the
Zel’dovich – Harrison spectrum that terminates abruptly at
the wave number k = kmax, which corresponds to the mass
of dark matter particles (see Section 2). In the region of
k = kmax the spectrum therefore has a clear maximum, so
that inhomo-geneities which are specifically of the
R � R m = kÿ1

max scale are the first to reach the nonlinear
evolution stage.

Under the conditions specified by expression (18) there
are no small-scale fluctuations and the large-scale fluctu-
ations are still weak: they have not reached the nonlinear
stage. This means that the nonlinear growth of the first
inhomogeneities is of purely dynamic nature and, con-
sequently, it can be described accurately by the solutions
given above.

In a time exceeding the Jeans time [tg = (4pGr0)
ÿ1=2

] the
first steady-state dynamic NGS structures form on a scale
of R m. They are characterised by a definite scaling law of
the distributions of the density, velocity, and field potential,
described by expression (121), which depend little on the
actual form of the initial maxima.

It is very important to note that during the period of the
linear growth of inhomogeneities their scales increase with
time in the course of the Hubble expansion of the universe,
proportionately to the scaling factor. After the separation
of a nonlinear bound object (NGS), the scale and structure
of this object become fixed. During the subsequent Hubble
expansion such NGSs participate as separate elements or
objects separated by distances which increase, but the
objects themselves do not change.

Moreover, the process of expansion of the Universe
reduces the average density of matter, but the density in an
NGS remains constant. The latter density is governed by
the characteristic scale of the NGS and by the moment at
which it forms. At a given moment the observed size of the
object R 0 in comoving coordinates is related to its size R at
the moment of formation by

R 0

=

R
1 + zR

, (124)

where zR is the cosmological red shift associated with the
moment of formation of the NGS.

The monotonic nature of the fluctuation spectrum
corresponding to k < kmax and the continuity of the growth
of the fluctuation amplitude with time [we are speaking here
naturally of an unstable mode described by expression (24)]
imply that the initial scale R m of the nonlinear stage of the
evolution is followed by larger scales (R = 1=k > R m).
Then, NGSs of scale R m < R may occur as separate
elements of an NGS scale R . Then, after completion of
nonlinear relaxation, NGSs of scale R also become separate
objects in the expanding universe, so that the Hubble
expansion inside them ceases.

This is followed by the nonlinear stage of the evolution
of NGSs of scale R 1 > R . They may include NGS elements
of scale R and of scale R m. This is how a hierarchical
structure of NGSs of various scales, embedded in one
another, gradually grows. The present section is intended
to give a description of this process.

It should be stressed that, since the initial fluctuation
spectrum is random, different numbers of NGSs with
different scales may combine to form separate objects of
a hierarchical structure, depending on the statistics of the
maxima in the initial spectrum. Some of these objects may
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Figure 10. Spatial distribution of the density in the case when
e2

= 0:1.
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not combine with others at all and they retain their
independence.

A study of various possible combinations of these
objects should identify their statistics and the correlation
properties. The statistics is dealt with in Section 10. Finally,
we should mention that we are discussing here only
completely formed NGSs. Some structures appear also
in the course of their formation. Moreover, these structures
are the largest-scale objects that separate out in the
Universe. They are dealt with in Section 9.

8.2 Hierarchy of scales
We shall now consider a random distribution of the initial
density of a gravitating gas characterised by a wide
spectrum of fluctuations which are assumed to be
homogeneous and isotropic. The dynamics of this gas is
still described by the system of equations (7) subject to the
initial conditions (27), where di(r) is a random function
with a wide spectrum of scale R . Let us introduce a
distribution function averaged over the scale R :

fR (r, v, t) =
�

f(r + s, v, t)W (s) ds . (125)

Here W (s) is a smoothed-out function, which is normalised
and falls rapidly at infinity:

�
+1

ÿ1

W (s) ds = 1 .

Suitable averaging in the system of equations (7) gives

q fR

qt
+ v. q fR

qr
ÿ

qc

qr
. q fR

qv
+ SR = 0 , (126)

where

H2c =

�

f dv ,

SR =

�

H(dc) . q
qv

f (r + s)W (s) ds ,

dc = c(r + s)ÿ c(r) .

We shall show that the correlation integral S R is
generally small, so that in the first approximation it can
be ignored. In the same approximation the system of
equations (126) is practically identical with the initial
system of equations (7). The only difference is that the
initial density distribution di(r) is averaged:

d(r, R , ti) =

�
+1

1

W (jrÿ yj) di( y, ti) dy . (127)

This means that all the maxima of the initial density with a
scale smaller than R are smoothed out. Therefore, the
solution of the system of equations (126) with the
distribution (127) gives rise to an NGS of scale R or
greater. It is understood that the singular law of the density
distribution in an NGS, described by expression (123),
applies also to scales of order R .

Let us now consider a scale R 14R . The equations for
fR1 are of the same form as the system of equations (126),
but the initial inhomogeneities may contain only the density
maxima of scales ~R 5R 1 because of the averaging
described by expression (127). The dynamic evolution of
such systems leads to the formation of stationary gravita-
tional singularities of scale R 1 which contain singularities

described by the function fR of scale R , which behave as
small elements trapped in the field of an NGS of scale R 1.
This applies also to singularities of scale R 25R trapped in
the field of an NGS of scale R and described by a function
fR 2.

In accordance with expression (124), it is important to
stress that the size of each object R , R 1, or R 2 is governed by
the red shift zR which corresponds to its formation. The
bulk of the objects of size R is formed when

hd2
(r, R , t)i = d2

0 � 1 . (128)

The quantity d0 is not known exactly, but in the case of a
power-law spectrum it is independent of the smoothing-out
scale R 0 and it is a universal constant.

Extrapolation of the linear law representing the increase
in the density up to the moment t, described by expres-
sion (128), readily yields a relationship between zR and R
for a power-law spectrum of the initial perturbations:

1 + zR =

�

R f

R

�
(m+3)=2

, (129)

where m is the power exponent of the spectrum of the
initial density perturbations (for the Zel’dovich – Harrison
spectrum we have m = 1) and R f is the maximum scale
which at a given moment begins the nonlinear stage of its
evolution described by expression (128) (zR f

= 0). From
relationships (124) and (129) we can now obtain an
expression relating the sizes of the objects in the comoving
coordinate system in the present epoch and at the moment
of their formation

R 0

= R (m+5)=2 Rÿ(m+3)=2
f . (130)

It therefore follows that a complete solution for the
established range of scales R < R f represents a hierarchical
structure consisting of NGSs of different scales embedded
in one another and moving along finite paths, and also of
separate NGSs moving independently. Typical dimensions
of NGSs are then described by relationships (128) and
(130).

Scaling relationships (123) for the dark matter density,
for the potential, and for the velocity are independent of the
initial spectrum and remain the same for all the scales where
multistream flow has already been established. On the other
hand, the number of growing NGSs of different sizes
depends strongly on the distribution of the initial fluctu-
ations.

8.3 Cloud-in-cloud parameter and estimate of the
correlation integral
The main parameter that characterises the degree of
embedding or inclusion of smaller objects of a hierarchical
struc-ture in larger ones is the cloud-in-cloud parameter
E(R), i.e. the probability that an object of size R is inside
some other object. This probability is governed by the
dependence of the ‘concentration’ of the maxima of the
initial density distribution on their size n(R) and by the
spatial correlations of these maxima.

If in the long-wavelength range the initial spectrum
obeys a power law jd(k)j2 / km (see Section 2), then in the
case of sufficiently large values of R the scaling invariance
of the spectrum leads to

n(R) dR = 3bRÿ4 dR , (131)
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where b is a dimensionless parameter which depends on the
power exponent m of the spectrum. The concentration of
objects of size exceeding R is n (> R) = b(Rÿ3

ÿ Rÿ3
f ),

where R f is the size of the largest objects that have formed
up to a given moment.

Ignoring the correlations in the distributions of the
objects, we can estimate the cloud-in-cloud parameter from

E(R) =

�R f

R

4
3
pR 3n (R) dR = 4pb ln

R f

R
. (132)

An estimate of the dimensionless parameter b deduced
from observational data on clusters and groups of galax-
ies [37] gives

b � 6:4 � 10ÿ3 .

This empirical estimate may be somewhat underestimated
because the contribution of dark matter to the masses of
the objects is not taken fully into account. A theoretical
estimate of the upper limit of b for a spectrum with the
power exponent m also gives a low value [38]:

b < 0:016

�

6
m + 5

�3=2

.

Therefore, the degree of embedding of objects in a real
hierarchical structure is not very large. The evolution
pattern of a hierarchical structure depends on time t. At
any given moment t a hierarchical structure evolves from a
scale R m to a scale R(t), which is given by expression (128).
The maximum turbulence scale is of the order of R f: it is
governed by the range of scales that have reached the
nonlinear stage up to the moment in question.

We shall now estimate the correlation integral S R in the
system of equations (126). Such an integral for an NGS of
smaller scale R trapped in an NGS of larger scale R 1 differs
from an integral for untrapped NGSs, i.e. for those that
move independently. In view of the smallness of the
parameter b, the interaction between NGSs can be esti-
mated from the Coulomb law.

The order of magnitude of a correlation integral is

S R �
f

tR
, tR = ptg , (133)

where the parameter p is the ratio of the ‘mean travel time’
to the Jeans time. For a freely moving NGS this parameter
is

p � (bL)
ÿ1 , (134)

where L is the Coulomb logarithm.
We shall now consider the case of trapped NGSs. In

view of the smallness of the dimensionless parameter b, the
probability of trapping an NGS of smaller size R by one of
larger size R 1 is low: it is of the order of b. If we estimate the
parameter p for this case and bear in mind the density
distribution described by expression (123), we obtain

p � (Lb2
)
ÿ1
�

R 1

R

�18=7� r
R 1

�6=7

. (135)

We can see that the parameter p is always large: this is true
both in the case of a freely moving NGS, described by
formula (134), and in the case of trapped NGSs described
by formula (135). Therefore, in the first approximation, we
can ignore SR in the system of equations (126).

In the case of a freely moving NGS a collision occurs
mainly at the ‘edges’, which does not affect the structure of
a singularity. However, in the case of trapped NGSs when
t > tR a distortion occurs in the central part of the
singularity. However, it should be pointed out that the
estimate given by formula (135) is obtained on the assump-
tion that in the course of a motion of an NGS of smaller
scale R in an NGS of larger scale R 1 the former does not
lose its mass. On the other hand, according to expres-
sion (123) the bulk of the mass is concentrated at r � R .
Consequently, during the motion of an NGS of scale R in a
potential of scale R 1 there is a loss of the mass of the NGS
in a region of high gradients.

The process of inelastic head-on collisions may also be
important. For example, it should be noted that, apart from
the scattering of NGSs by one another, there is also
scattering of dark-matter particles by an NGS. In view
of the large mass of an NGS, the scattering of dark-matter
particles changes only the angle but not the energy. Such
scattering accelerates the change of the distribution function
to the isotropic form by averaging this function over the
angles.

In principle, the collisional processes discussed here lead
to ‘thermalisation’ of matter. As is well known, under
thermal equilibrium conditions, we have

Hc = ÿT
Hr

r
,

H2c = 4pGr ,
(136)

where T is the temperature of a gas in equilibrium. The
solution of the system of equations (136) yields a singular
density distribution (an isothermal sphere):

r =

T
2upG

rÿ2 . (137)

The law given by expression (137) is close to expres-
sion (123), but the distribution function described by
Eqns (118) and (119) differs very greatly from the Max-
well –Boltzmann function. This is because the law described
by expression (123) reflects mainly accumulation of streams
directed towards the centre, whereas the equilibrium
distribution described by expression (137) is dominated
by the particles trapped inside a potential well. There-
fore, a long period is necessary to convert the distribution
function to its equilibrium form. Such an equilibrium is
never reached in cold nondissipative matter.

In fact, the attainment of an equilibrium described by
expression (137) requires a time much longer than the mean
free time

tf � (nsV)
ÿ1 , (138)

where n is the dark-matter density, s is the collision cross
section of dark-matter particles, and V is their character-
istic velocity, found from the distribution function defined
by Eqns (118) and (119). Even in the case of a light
neutrino with mass mn � 2 eV the time tf is between eight
and nine orders of magnitude longer than the lifetime of
the Universe. In the case of heavy dark-matter particles the
time tf is obviously even longer.

We have considered so far only the nondissipative dark
matter. It is the absence of dissipation in cold self-
gravitating dark matter that gives rise to NGSs. How-
ever, the dynamics of the baryonic matter is largely
determined by dissipative processes. Such matter loses
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energy by emission of radiation and drops to the bottom of
the potential wells formed by the cold dark matter. The
luminous baryonic matter then acts as an indicator of the
structure of dark matter, identifying in particular the
position of the centre of an NGS. This produces a unique
object: baryonic matter with a halo of dark matter.

Examples of such objects are galaxies: in this case the
evidence for the presence of a dark-matter halo is provided
by flat rotation curves [39]. Other examples of such objects
are clusters which contain a trapped hot gas. It should be
pointed out that as the baryonic matter drops to the bottom
of the potential wells, its density rises and, in the region
where the average densities of the baryonic and dark matter
become equal, there may be considerable distortions in the
canonical distribution of dark matter described by
Eqns (118) and (119).

9. Large-scale structure

In the preceding section we discussed a mixed kinetic state
of nondissipative dark matter. This state appears in those
regions where matter has oscillated many times in a self-
consistent gravitational field. Kinetic mixing establishes a
steady-state distribution function of matter. This steady
state, which we call here an NGS, forms at the minima of
the potential of the initial spectrum of fluctuations. It is
characterised by a definite distribution function (118) and
by a density singularity described by expression (123). A
system of NGSs of different scales forms a hierarchical
structure.

However, a general pattern of the structures that form
in the Universe changes with time and depends on the initial
fluctuation spectrum. For example, for the Zel’dovich –
Harrison spectra a hierarchical structure of NGSs appears
first of all on a small scale. Up to the present epoch, NGSs
have evidently formed on scales R 4 5 – 10 Mpc (galaxies,
clusters). On the other hand, in the range of very large
scales (R > 100 – 200 Mpc) the fluctuations are small and
their growth is described by the linear theory. The
distribution of matter in this range of scales is essentially
homogeneous: there are no clear structures.

The range of scales 10 Mpc4R 4 100 Mpc represents
the transition between the two cases. Within this range we
can identify a subrange of intermediate scales R � 50 –
100 Mpc where perturbations just reach the nonlinear stage
(d � 1). In this subrange the flow is of potential nature and
it is described by single-stream hydrodynamics. The density
of matter grows rapidly near a minimum of the potential.
The distributions of the density and velocity are described
by the system of equations (51) and by the set of
expressions (55): they are characterised, apart from the
scale R , by the dimensionless parameters e1 nd e2.
Subranges of intermediate scales correspond in the Uni-
verse to nonlinear struc-tures of the ‘Great Attractor’
type [40] and in these structures the density contrast at
the maximum reaches d � 2 – 5.

In the subrange R � 20 – 50 Mpc the flow is no longer of
single-stream nature: the first caustics appear, but the
number of streams is still small. The caustics represent
bent flat objects of the Zel’dovich pancake type. The
caustics intersect, forming filamentary objects and
‘nodes’, and a cellular structure is established.

This section deals with the cellular structure. The main
structure elements are the caustics (Section 4) which are

planar objects separating the zones of single-stream and
triple-stream flow at which two streams merge [see expres-
sions (66) and (67)].

We shall consider particularly the solution of the system
of equations (49) near a caustic. An initial singularity,
described by the set of expressions (41), is followed by
the formation of a pair of caustics. Expansion of the
solution (36) near a caustic for t5 1 gives the following
expressions for the stream densities r1, r2, and r3:

r1 =

r0

1 + t

1 ÿ z2
1

z2
1 ÿ t=(1 + t)

,

r2 = ÿ

r0

1 + t

1 ÿ z2
2

z2
2 ÿ t=(1 + t)

,

r3 =

r0

1 + t

1 ÿ z2
3

z2
3 ÿ t=(1 + t)

,

where

z1 = 2
t

1 + t

� �1=2

ÿ

x ÿ x c

3at
,

z2;3 = ÿ

t

1 + t

� �1=2

�

x ÿ x c

a
(t+ t2

)
ÿ1=2

n o1=2
,

x c =

2
3
ta

t

1 + t

� �1=2

.

On approach to a caustic the densities r2 and r3 increase
without limit proportionately to (x ÿ x c)

ÿ1=2. The total
density of matter

r =

X
3

i=1

ri(x , t) , (139)

plotted in Fig. 2b, also increases as (x ÿ x c)
ÿ1=2 on

approach to a caustic. Differentiation of the expression
for x c gives the velocity and acceleration of a caustic:

vc =

dx c

dt
=

1
1 + t

�

t

1 + t

�1=2�

1 +

2
3
t

�

,

wc =

d2x c

dt2 =

1
2
tÿ1=2

(1 + t)
ÿ5=2 .

A reference system moving together with the caustic is
accelerated. Therefore, the following inertial force appears
in the system:

W c = 2r0a wc .

If we use this circumstance and also the system of
equations (65), we can find the potential in the vicinity of a
caustic:

c = c0 +

r0a2

1 + t

�

ÿ

�

tÿ1=2
(1 + t)

ÿ3=2

+2

�

t

1 + t

�1=2 �

1 ÿ
t

3

��

x ÿ x c

a
ÿ

ÿ

1
6t

(1 ÿ 3t)

�

x ÿ x c

a

�2

ÿ

4
3

y(x ÿ x c)

t1=4
(1 + t)

1=4

�

x ÿ x c

a

�3=2�

. (140)
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It is evident from the solution (140) that the potential does
not form a well. Therefore, matter flows across the caustic
and a trapped state of matter does not appear in its
vicinity.

The solution (140) is valid at times close to the time
t = tc of appearance of the initial singularity (i.e. at t5 1).
After a sufficiently long time (t4 1) the form of the
solution (140) depends on how fast the density of the
initial distribution of matter decreases. If it decreases in
accordance with the power law, i.e. if

r0(x) = r0
m

3A 1=3

�

x
a

�
ÿ1ÿm=3

for x4 a ,

where A and m are arbitrary positive constants, the
potential of the field near the caustic front is given by

c = c0 + r0a

�

ÿ

�

p

2
ÿ Aÿ1=3

(pt)
ÿm=3

�

(x ÿ x c)

+

2
���

2
p

3a
C(m, A) tÿ(1=2+m=3)=(1+m=3)

(x ÿ x c)
3=2

y(x ÿ x c)

+

m

12aA 1=3
(pt)

ÿ(1+m=3)
(x ÿ x c)

2
y(x c ÿ x)

�

, (141)

where

C(m, A) = 2Aÿ1=2(m+3)

�

1 +

m

3

�
ÿ1=2 �

m

3

�1=2(1+m=3)

.

Therefore, the solution (141) derived for t4 1 is
qualitatively similar to the solution (140) derived for
t5 1. Only the time dependences of the coefficients are
different.

We shall now consider filamentary structures that form
as a result of crossing of caustic surfaces. We shall assume
that caustic crossing does not create a deep potential well,
capable of trapping streams. (This assumption will be
justified later.) Then, in the first approximation, near a
point of intersection all the streams move freely and do not
influence one another. This means that the total potential of
the gravitational field is a superposition of the potentials of
two caustics.

It follows from the solution (141) that

c = c0 +

X

j=1;2

r
(j)
0 aj

�

ÿ

�

p

2
ÿ Aÿ1=3

(ptj)
ÿm=3

�

dj

+

2
���

2
p

3aj
C(m, A) t

ÿ(1=2+m=3)=(1+m=3)
j d3=2

j y(dj)

+

m

12ajA
1=3

(ptj)
ÿ(1+m=3) d2

j y(ÿdj)

�

. (142)

Here, the index j numbers the caustics, dj denotes the
distance from the point X where the potential up to the jth
caustic is calculated; dj > 0 if the point X is in the region of
three streams of the jth caustic, but dj < 0 if the point X lies
outside this region. The shading of the caustic shown in
Fig. 11 is directed towards the region where there are three
streams for a given caustic.

It is evident from Fig. 11 that the expressions for dj

( j = 1, 2) are given by

d1 = x cosjÿ y sinj , d2 = ÿx cosjÿ y sinj , (143)

where ( x , y) are the coordinates of the point X .
Substitution of the formulas for dj into expression (142)
gives the potential near the point of intersection of two
caustics. The general expression is very cumbersome.

The behaviour of the potential can be made qualitatively
clear by considering the simplest case when the intersecting
caustics have the same parameters, i.e. when

r
(1)
0 = r

(2)
0 = r

(3)
0 , a1 = a2 = a3 , t1 = t2 = t .

Then,

c(x , y) = c0 + 2r0a

��

p

2
ÿ Aÿ1=3

(pt)
ÿm=3

�

y sinj

+

2
���

2
p

3a
C(m, A) tÿ(1=2+m=3)=1+m=3)

�

�

(x cosjÿ y sinj)3=2
y (x cosjÿ y sinj)

+ (ÿx cosjÿ y sinj)3=2
y (ÿx cosjÿ y sinj)

�

+

m

12aA 1=3
(pt)

ÿ(1+m=3)
(x 2 cos2 j+ y2 sin2 j)

�

. (144)

All the terms, apart from the linear, in expression (144)
are positive and they increase with distance away from the
point of intersection of the caustics. In other words, the
potential c(x , y) has the shape of a bent ‘dish’ tilted in the
direction of negative values of y. It follows from expres-
sion (144) that the tilt of this dish is so large that the
potential has no minimum in the vicinity of a filamentary
singularity. The edges of the dish are only slightly bent
since tÿ(1=2+m=3)=(1+m=3)

5 1, tÿ(1+m=3)
5 1.

The potential behaves similarly also for caustics with
any set of parameters. It is evident from expression (144)
that the linear term in the potential vanishes only in the
degenerate case when j = 0, i.e. when the caustic fronts
collide.

It therefore follows that intersection of the caustics
creates filamentary objects which also have a purely
kinematic structure: their self-consistent gravitational field
is incapable of trapping streams of matter, which justi-

y

x

j j

d1
d2

X

Figure 11. Pattern of intersecting caustics ( X is the point at which the
potential is calculated).

Large-scale structure of the Universe. Analytic theory 711



fies — in particular — the hypothesis on the superposition of
the potential described by expression (141).

In addition to filamentary objects, which are formed as
a result of intersection of a pair of caustics, ‘nodes’ may
form as a result of intersection of a filament with a plane.
Let us consider the structure of the potential near objects of
the node type. We shall do this by adopting a reference
system in which the point of intersection is at rest. We shall
describe the spatial orientation of a caustic by the vector

lj = (aj , bj , gj) , jljj = 1 , j = 1, 2, 3 ,

which is oriented along the normal to the caustic front and
directed to the region of three streams.

The distance from the point X to the jth caustic is

dj = lj X .

Calculations similar to those made in the derivation of
expression (144) yield the potential:

c(x , y , z) = c0 +

X
3

j=1

r
(j)
0 aj

�

ÿ

�

p

2
ÿ Aÿ1=3

(ptj)
ÿm=3

�

dj

+

2
���

2
p

3aj
C(m, A) t

ÿ(1=2+m=3)=(1+m=3)
j d3=2

j y(dj)

+

m

12aj A 1=3
(ptj)

ÿ(1+m=3) d2
j y(ÿdj)

�

. (145)

Expression (145) is fully analogous to (144). As in the case
of a filament, in the vicinity of a node there is in general no
potential well capable of trapping and thus forming a
steady kinetic state.

It therefore follows that the range of scales in which a
large-scale cellular structure (pancakes, filaments, nodes)
appears is — in a mathematical sense — an intermediate
asymptote between the region of linear growth of perturba-
tions and the kinetic region of multistream flow.
Consequently, such large-scale structures cannot reach a
steady state.

The whole pattern evolves in time because, on the one
hand, all the larger scales approach the nonlinear stage and,
on the other, the number of caustics, filaments, and nodes
increases in the case of small scales. The strength of these
singularities decreases with time (Fig. 5) and the range of
scales gradually shifts to a mixed kinetic region where
a hierarchical structure of NGSs, discussed above, is
formed.

It should also be pointed out that singularities of the
density of nondissipative matter in cellular structures are
weaker than NGSs. In fact, it follows from expres-
sions (141), (144), and (145) that the density singularities
near pancakes, filaments, and nodes can be described by

r / dÿ1=2 ,

where d is either a coordinate along the normal to a
caustic, a radius in a plane perpendicular to a filament, or a
radius vector in the case of a node. In contrast to NGSs,
the contribution of the singularities to the pair correlation
function is not the main one. Filamentary singularities can
make a singular contribution to a three-point correlation
function, whereas singularities of the pancake type can
make a contribution only to the fourth-order correlation
function.

10. Correlation functions

10.1 General comments. Definition of an object
In the preceding sections we have considered the structure
of nonlinear formations of dark matter. This section deals
with investigations of the statistical properties of such
formations. As shown in Section 7, in the vicinity of an
initial density maximum the nonlinear gravitational self-
compression creates an NGS, which is a steady-state self-
trapped spherically symmetric distribution of the dark
matter density r(r) with a singularity at its centre described
by expression (123):

r(r) = ~r

�

r
R

�
ÿa

. (146)

According to expression (123), the quantity a lies in the
range 1.7 – 1.9. We shall use the average value: a � 1:8. We
can see that the power exponent a is constant under steady-
state conditions and independent of the profile and scale of
the initial maximum. This is in fact the main scaling
property of three-dimensional nonlinear gravitational
compression of cold nondissipative matter.

It therefore follows that each NGS represents a
spherically symmetric formation with the intensity distribu-
tion described by expression (146) and this singularity is
characterised by just two parameters: R and ~r. The radius R
is a comoving size of the density maximum at a moment tR

[see expression (128)], when ~d(�0, tR ) = d0 � 1. The moment
tR is a characteristic moment in time when a given density
peak becomes separated by a nonlinear process from the
overall cosmological expansion and the physical (intrinsic)
size of the peak becomes fixed. The red shift corresponding
to the moment tR will be denoted by zR .

It follows from the definition of tR that at t > tR a peak
passes through a nonlinear evolution stage and is trans-
formed into an NGS of size R . It then exists as an
independent object with a constant physical size and a
steady-state distribution of the density inside it. The size R 0

of an object, expressed in comoving coordinates, observed
during the present epoch, is related by expression (124) to
its comoving size R at the moment of formation.

In this section an object is understood to be a fully
formed NGS, which is a gravitationally bound dark-matter
formation, in which the density distribution is given by
expression (146) and whose size is R . Such objects form a
hierarchical structure (Section 8). The degree of clusterisa-
tion of the structure is slight [see expression (132)].

The main task in this section is the development of a
statistical theory of such objects. This will be done
following Ref. [30]. We shall use the language of the
statistics of N points representing the positions in space
of all the objects formed with all possible sizes. The starting
point in our theory is combined distribution of the
probabilities P( �yi, R i) of the formation of N objects of
given dimensions R i with centres at given points �yi.

The influence of nonlinear dynamics on the statistical
properties of a system of objects is usually described by an
infinite chain of coupled equations for the moments of an N
particle distribution function, known as the Bogolyubov –
Born – Green – Kirkwood – Yvon (BBGKY) chain. This
problem has been discussed on many occasions for the
case of self-gravitating matter and, in particular, it is dealt
with in Peeble’s monograph [21].
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Such a chain of equations is usually solved by truncating
it and neglecting higher momenta. However, as pointed out
above, a strongly correlated singular distribution of matter
appears in regions of the effective density maxima, where a
pair correlation function and higher momenta are char-
acterised by x4 1 and where, consequently, such a
truncation procedure is incorrect. The formation of
strongly correlated distributions should be taken into
account properly and this aspect underlies the method
considered below.

The appearance of strongly correlated distributions can
be described by introducing the transition probability
determined on the basis of the nonlinear solution described
by expression (146). This approach makes it possible to find
directly the relationship between the final values of the
correlation functions and their initial values, and it is the
main new feature of our method. It makes it possible to
avoid solving a chain of coupled equations and it can
effectively take care of the whole BBGKY hierarchy in the
region defined by x4 1.

10.2 Model of the formation of correlations
As pointed out above, an NGS is formed fairly rapidly
after the effective density, given by expression (29), reaches
d � 1 at a maximum. In our statistical model we shall
assume that this occurs instantaneously. If some smaller
object is trapped by a given NGS, the probability f(r) of
finding it at present in a unit volume at a distance r from
its centre can be regarded as proportional to the density of
matter given by expression (146):

f(r, R) =

3 ÿ a

4p
R 0ÿ3 y(R 0

ÿ r)
r

R 0

� �
ÿa

. (147)

The constant in the above expression is found by
postulating mass conservation in a volume r < R during
the formation of an NGS when the comoving size R 0 of an
object during the present epoch is given by formula (124).

The density distribution inside an NGS, which is
governed by the laws of nonlinear compression, is given
by expression (146) only in the asymptotic limit r ! 0 and
the error contributed by it is of the order of 1 at r � R 0.
Consequently, at distances r5R 0 we can expect the
corrections to the probability distribution (147) to be
significant.

We shall now determine the conditions for trapping one
object by another. An object of size R 2 with its centre at a
point �y2 traps an object of size R 1 with its centre at the point
�y1 if the following conditions are satisfied:

R 1 < R 2 , j�y1 ÿ �y2j < R 2 . (148)

If the above conditions are not satisfied by any objects ( �y2,
R 2), we can regard an object ( �y1 R 1) as remaining in place.

In calculation of diagrams of higher order in terms of
the number of participating objects the important aspect is
the distribution of the times of formation of objects of a
given size (red shift). Strictly speaking, the times of
formation are subject to a scatter, but for the sake of
simplification let us assume that all the objects with a given
size R are formed simultaneously and the corresponding red
shift is zR . Here, zR corresponds to the moment when the
majority of the objects of size R forms. The value of zR is
determined by the spectrum of the initial inhomogeneities
jdi(k)j

2 (Section 8).

Every object in our model is thus characterised by the
coordinates of its centre �x i and by its size R i. The structure
of the distribution of matter is described by the statistics of
a large number N of points in the physical space �x and in
the space of sizes R . The nonlinear evolution is described by
a random process of consecutive trapping of smaller objects
by larger ones. The rules for finding the appropriate
transition probability in the case of a single trapping event
are discussed below. In calculation of the final j-point
correlation functions it is essential to know also the initial
correlations of all the N objects and the rules for calculation
of the transition probability for multiple trapping. Let us
now consider these topics.

10.3 Calculation of j-point correlation functions
We shall determine the transition probability for a test
object which is trapped by several other objects. Let the
radius of the first object, which has captured the test
object, by R 1. This is followed by the formation of an
object of size R 2 > R 1, which traps the first object. The
probability W (�r ) of a transition of the test object to the
final state, given by the vector �r relative to the centre of the
second object, can be represented in the form

W (�r) =
�

f (j�r + �x j, R 1) f (j�x , R 2j) d�x ,

if in accordance with our assumption the internal structure
of the trapped object is not altered by collisions and tidal
forces because of insufficient time.

For the sake of brevity, let us adopt the term the ‘density
of the probability of finding objects (of a given size) at such
points’ to mean the density of the probability of finding
objects per unit volume (per unit interval of sizes) in the
vicinity of such points.

Since in the process of mixing the various trapped
objects quickly ‘forget’ their initial correlations, the nom-
inal densities of the probability of a transition involving
several objects within one other object can be calculated
independently and multiplied. For example, if there are two
objects of sizes R 1 and R 2 and they are trapped by an object
of size R 3 which is at a point �x 3, the density of the probability
of detecting them after mixing at points �x 1 and �x 2 is quite
simply

W (�x 1, �x 2) = f (j�x 1 ÿ �x 3j, R 3) f (j�x 2 ÿ �x 3j, R 3) .

The density of the probability of a transition in general
is calculated in a similar manner. We shall use
W n

a ( �x i, �yi, R i) to denote the density of the probability of
finding n objects with dimensions R i at points �x i on the
assumption that they are formed at points �yi. Then the
density of the probability of finding, during the present
epoch, j objects with dimensions R 1, . . . , R j at points
�x 1, . . . , �x j can be represented by

P(�x 1, . . . , �x j , R 1, . . . , R j)

=

X

a

Pa(�x 1, . . . , �x j , R 1, . . . , Rj)

=

X
1

n=j

X

a

�

. . .

�

W n
a (�x i, �yi, R i)P n

a (�yi, R i)

�

Y
n

i=1

d�yi

Y
n

i=j+1

d�x i dR i . (149)
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Here, the index a is used to number all possible variants of
the spatial embedding of n objects in one another (in other
words, all the different trapping configurations). For
example, if j = 2 and n = 2 or 3, all possible variants of
the embedding of objects 1, 2, and 3 have the form shown
schematically in Fig. 12a.

It is important to note that in the enumeration of the
trapping configuration in expression (149) only those
objects are included which actually trap at least one of
the objects 1, . . . , j. The objects which are trapped, but
themselves do not trap any other object are ignored.
Finally, the summation in expression (149) over n up to
1 is meaningful if the Universe contains any number of
large objects. In reality, because of the limited evolution
time of galaxies it is sufficient to consider only, for example,
n < (2 – 3) j. This is justified further by the circumstance
that the terms with large values of n should be small because
of the smallness of the cloud-in-cloud parameter E.

In expression (149) the quantity P n
a (�yi, R i) is the density

of the probability of the formation of given n objects at
points �yi in the configuration shown in Fig. 12a, so that
none of these objects traps any other external objects. This
probability density can be described by

P n
a ( �yi, R i) = Y n

a ( �yi, R i)P n
( �yi, R i) .

Here, P n
( �yi, R i) is the density of the probability of the

formation of some n objects of dimensions R i at points �yi,
and of the formation of all the other objects wherever
possible, but in such a way that they do not trap the

selected objects. The function Y n
a (�yi, R i) is equal to unity if

the objects are in the configuration shown in Fig. 12a and
zero in the opposite case. This function ensures that the
conditions of expression (148) are satisfied for each pair of
objects. Thus, in the case when j = 2 and n = 2 or 3 the
above configurations are described by the following
functions:

Y2
0 = y(j�y1 ÿ �y2j ÿ R 2) ,

Y2
1 = y(R 2 ÿ j�y1 ÿ �y2j) ,

Y3
2 = y(R 3 ÿ R 2) y(R 3 ÿ j�y1 ÿ �y3j) y(j�y2 ÿ �y3j ÿ R 3)

� y(j�y1 ÿ �y2j ÿ R 2) + y(R 3 ÿ R 1) y(R 2 ÿ R 3)

� y(R 3 ÿ j�y1 ÿ �y3j) y(j�y2 ÿ �y3j ÿ R 2) ,

Y3
3 = y(R 3 ÿ R 2) y(R 3 ÿ j�y2 ÿ �y3j) y(j�y1 ÿ �y3j ÿ R 3)

� y(j�y1 ÿ �y2j ÿ R 2) ,

Y3
4 = y(R 3 ÿ R 2) y(R 3 ÿ j�y2 ÿ �y3j) y(R 2 ÿ j�y1 ÿ �y2j) ,

Y3
5 = y(R 2 ÿ R 3) y(R 3 ÿ R 1) y(R 3 ÿ j�y1 ÿ �y3j)

� y(R 2 ÿ j�y2 ÿ �y3j) ,

Y3
6 = y(R 3 ÿ R 2) y(R 3 ÿ j�y2 ÿ �y3j) y(R 3 ÿ j�y1 ÿ �y3j)

� y(j�y1 ÿ �y2j ÿ R 2) .

The corresponding densities of the transition probabilities
are of the form

W 2
0 = d(�x 1 ÿ �y1) d(�x 2 ÿ �y2) ,

W 2
1 = f (j�x 1 ÿ �x 2j, R 2) d(�x 2 ÿ �y2) ,

W 3
2 = f (j�x 1 ÿ �x 3j, R 3) d(�x 2 ÿ �y2) d(�x 3 ÿ �y3) ,

W 3
3 = f (j�x 2 ÿ �x 3j, R 3) d(�x 1 ÿ �y1) d(�x 3 ÿ �y3) ,

W 3
4 = f (j�x 1 ÿ �x 2j, R 2) f (j�x 2 ÿ �x 3j, R 3) d(�x 3 ÿ �y3) ,

W 3
5 = f (j�x 1 ÿ �x 3j, R 3) f (j�x 2 ÿ �x 3j, R 2) d(�x 2 ÿ �y2) ,

W 3
6 = f (j�x 1 ÿ �x 3j, R 3) f (j�x 2 ÿ �x 3j, R 3) d(�x 3 ÿ �y3) .

Each term in the sum (149) can be assigned a diagram in
accordance with the following rules:

(1) each arrow i k
���!

corresponds to a factor f (j�x i ÿ �x k j,
R i);

(2) a vertex with i 6= 1, . . . , j which is not approached
by any arrow (i� !) corresponds to a factor d(�x i ÿ �yi);

(3) the whole diagram with n vertices is assigned
additionally a factor P n

a ( �yi, R i).
Integration is carried out over all the values of �x i, �yi,

and R i apart from �x 1, . . . , �x j and �R 1, . . . , �R j. The
sum (149) contains all possible diagrams that include
n5 j vertices and which are characterised by the following
properties:

(4) not more than one arrow enters any vertex;
(5) the only vertices from which not even one arrow

emerges are those labelled 1, . . . , j.
In this way the sum contains only the diagrams that do

not contain loops or parts which are not associated with the
vertices 1, . . . , j. All permissible diagrams n4 4, which
contribute to the pair ( j = 2) correlation function are
plotted in Fig. 12b.

Summation of all the possible diagrams for a given j
yields the density of the probability of finding, during the
present epoch, j objects of given dimensions at given points.
Therefore, expression (149) and the diagram procedure
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Figure 12. (a) Schematic representation of all the variants of spatial
embedding of n objects in one another, corresponding to Eqn (149)
with j = 2. (b) All permissible diagrams with n4 4 that contribute to
the pair ( j = 2) correlation function of the participating objects.
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described above solve, in principle, the problem of calculat-
ing the final j-point correlation function on condition that
the probability density P n

(�yi, R i) is known for any initial
distribution of an arbitrary number n of untrapped objects
at the moment of their formation.

The quantity P n
( �yi, Ri) represents the density of the

probability of finding a given relative configuration of the
density maxima of various dimensions during the linear
stage and, as assumed by us, it is governed entirely by the
initial spectrum of inhomogeneities jdi(k)j

2. Calculation of
this quantity for an arbitrary spectrum is a separate task,
which is not considered here.

We shall use later P n
( �yi, R i) in that simple case when

there are no initial correlations between the positions of all
the objects formed. We can show that this simplification does
not alter the form of the pair correlation function x in the
strong correlation range (x4 1). In this case, on condition
that the total number of the objects formed is large, we
obtain

Pn
( �yi, R i) = n(R 1) . . . n(R n)

�

1 ÿ E(v) +
1
2
E2
(v) + O(E3

)

�

,

(150)

where

E(v) =
�

v(�yi;R i)

n(R) dR d�y .

Integration in the above expression is carried out over the
full range of v in the space of ( �y, R ) which contains objects
that have trapped at least one of the objects ( �yi, R i);
n( R ) dR is the concentration of the objects with dimensions
ranging from R to R + dR . In the case of a scaling-
invariant object this concentration is given by for-
mula (131).

10.4 Pair correlation function
We shall now consider in greater detail the most
interesting, from the point of view of observations, pair
correlation function. We shall calculate this function from
expression (149) for j = 2. We shall use expression (150) to
describe P n. We note that in the case of small values of n of
interest to us, the quantity E(v) is a small parameter
proportional to the cloud-in-cloud parameter (132):

E(v)4
X

n

i=1

�R f

R i

4
3
pR 3n(R) dR = 4pb

X
n

i=1

ln
R f

R i
.

All the diagrams that contribute to the pair correlation
function consist of one or two connected pieces and are of
the form shown in Fig. 13a. It can readily be demonstrated
that any of these diagrams containing a ‘tail’ of k links (or
two tails having a total of k links) represents a small
correction of the order of E k to the corresponding diagram
without a tail. Thus, all the leading terms in the expansion
in terms of E have no tails. We shall number these diagrams,
beginning from those most important in terms of the small
parameter E, exactly as shown in Fig. 13b.

In view of the homogeneity and isotropy of the statistics
of the initial perturbations, the required probability density
(and the pair correlation function) depend only on
r = j�x 1 ÿ �x 2j. The zeroth diagram describes the contribu-
tion of the initial correlations of the objects not trapped by
any other objects. Since in this approximate calculation the

initial correlations are ignored, the contribution of the
zeroth diagram is trivial:

P0(r, R 1, R 2) = n1n2 y(rÿ R 2)
�

1 + O(E)
	

,

n1 � n(R 1) , n2 � n(R 2) .

The first diagram describes the contribution of pairs:

P1(r, R 1, R 2) = n1n2 y(R
0

2 ÿ r)
3 ÿ a

3
(1 + z2)

3
�

r

R 0

2

�
ÿa

, (151)

where z2 = R 2=R 0

2 ÿ 1 = (Rf=R 0

2)
(m+3)=(m+5)

ÿ 1 [see expres-
sion (29)] is the red shift at the moment of formation of the
larger object in a pair. If r < R 0

2 and R 1 6= R 2, it is this first
diagram that dominates the pair correlation function.

The next diagrams describe the contribution of three-
member systems:

P2(r, R 1, R 2) = n1n2
2
3

3 ÿ a

m + 5
A

��

R 0

2

R 0

1

�3ÿa

ÿ 1

�

� b 1 + z2( )
3
�

r

R 0

2

�3ÿ2a

, r5R 0

2 , (152)

P3(r, R 1, R 2) = n1n2
3 ÿ a

16g
A

�

17
6

+

22
gÿ 6

�

� b 1 + z2( )
3
�

r

R 0

2

�3ÿ2a

, r5R 0

2 , (153)

where g = (m + 5)(3 ÿ a) + 3 and A is a constant of the
order of 1.

Expressions (151) – (153) contain the leading terms of
the expansion in E. We can show that there are no other
contributions, diverging in the limit r ! 0, to the correla-
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Figure 13. (a) General form of all the diagrams that contribute to the
pair correlation function (i, j, k = 0, 1, 2, . . .). (b) Diagrams for j = 2,
n4 4, which are the leading diagrams in terms of the small
parameter E.
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tion function. In calculation of the dominant diagram
described by expression (151) no use has been made of
the relationship (130) between the moment of formation of
an object and its size. In view of this, the main contribution
to the correlation function can be considered ignoring the
relationship (130) and assuming that R i and zi are inde-
pendent characteristics of an object.

Moreover, we need not use the assumption represented
by expression (150) that there are no correlations in the
positions of the objects formed and we can consider the case
of an arbitrary probability P n

( �yi, R i). Then, the contribu-
tion of the main diagram becomes

P1(r, R 1, R 2) = C(R 1, R 2) n1n2 y(R
0

2 ÿ r)

�

3 ÿ a

3
1 + z2( )

3
�

r

R 0

2

�
ÿa

,

where

C(R 1, R 2) =
3

4pn1n2R 3
2

�

j�y1 j<R 2

P 2
( �y1, �0, R 1, R 2) d�y1

is a factor which is independent of r and takes account of
the initial correlations. Therefore, in the most general case,
the main contribution to the probability has the form given
by expression (155) below, accurate apart from the factor
C which is independent of r.

The observed objects (such as clusters of certain
richness, etc.) correspond in reality to a whole range of
sizes from R i1 to R i2 (or, correspondingly, of masses from
M i1 to M i2), and also possibly to a range of the moments of
formation. Therefore, a more correct, i.e. corresponding
closer to reality, expression for (for example) the pair
autocorrelation function is

xi(r) =
1

n2
i

�R i2

R i1

�R i2

R i1

P(r, R 1, R 2) dR 1 dR 2 ÿ 1 ,

ni =

�R i2

R i1

n(R) dR .

(154)

In the case of strong correlations (xi4 1) the leading
term found from expressions (151) and (154) is

xi(r) =
adi

r

� �a

, (155)

where

a = b1=3

�

1 ÿ
M i1

M i2

�1=3

(3 ÿ a)
1=a

(1 + zi)
(3ÿa)=a , (156)

on the condition that the ranges of the masses M i2 – M i1

and of the times of formation zi1 – zi2 are fairly narrow.
Here, di = nÿ1=3

i is the average distance between the objects,
given by

di = R i1b
ÿ1=3

�

1 ÿ
M i1

M i2

�
ÿ1=3

. (157)

The quantity zi denotes the average moment of formation
of the investigated objects: M i1;2 = (4=3) pr0R 3

i1;2. The ratio
of the baryonic and dark components of the masses of the
objects is, on average, constant, so that the baryonic
masses (156) and (157) can be substituted in expressions
M i1 and M i2.

11. Conclusions

We shall conclude by considering briefly some of the
astrophysical manifestations of the processes discussed
above.

11.1 Giant halo of galaxies
Nonlinear structures which appear in the dark matter
distribution are discussed above. However, it is the
baryonic matter which is observable. It is natural to
assume that in a homogeneous Universe the baryonic dark
components are mixed uniformly. The ratio of their
densities is given by the parameter

P =

rb

rd
, (158)

which is a universal constant.
It should be noted that this parameter P is related to

other universal constants by

P =

8p
3

Grb

OH 2 . (159)

If O = 1 and 50 km sÿ1 Mpcÿ1 4H4 100 km sÿ1 Mpcÿ1,
and since rb � 3 � 10ÿ31 g cmÿ3, we obtain

0:024P 4 0:08 , (160)

which is in agreement with the current ideas [2].
During the linear stage of the evolution of inhomoge-

neous structures in the universe, after recombination, the
ratio of the densities of the baryonic and dark matter
components (158) is conserved. During the nonlinear stage,
stable spherically symmetric NGSs form in the nondissi-
pative matter distribution. This is accompanied by the
appearance of gravitational potential wells. The baryonic
gas is heated during the nonlinear stage by compression and
explosion of supernovas. It emits radiation, losing energy,
and gradually drops to the bottom of a potential well,
forming a galactic system.

Luminous galaxies become distributed in the central
regions of spherically symmetric dark matter structures
(NGSs), which appear as a giant halo of the galactic
systems. This halo was predicted in Refs [25, 41].

Let us determine the size of the giant halo [42]. We shall
bear in mind that, according to expression (123), the
distribution law of the density of the nondissipative matter
in an NGS is

r = Krÿa , a � 1:8 .

Consequently, the total dark matter mass in a galactic
NGS is

M =

4p
3 ÿ a

KR 3ÿa
g , (161)

where R g is the effective size of the dark-matter halo.
Hence,

R g =

(3 ÿ a)M
4pK

� �1=(3ÿa)

=

(3 ÿ a)M G

4pKP

� �1=(3ÿa)

. (162)

Here, M G is the observed baryonic mass of a galaxy; P is
the universal parameter, defined above [expressions (159)
and (160)], and the constant K is a typical parameter which
can be different for different galaxies: it is governed by the
scale of the galaxies and by the moment of appearance of
an NGS.
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The constant K can be determined from the rotation
curves. The observation of these curves has made it possible
to detect the latent (dark) matter in the vicinity of galaxies.
Fig. 14 shows the rotation curve of our galaxy. The dashed
curve is the theoretical dependence V(r), which is plotted —
in accordance with the virial theorem — for the density
distribution given by expression (123):

V 2
= (2 ÿ a)c =

4p
3 ÿ a

KGr2ÿa .

The constant K is then

K � 1:7 � 1016 g cmÿ1=2 . (163)

It follows from formula (163) that if the distance of the
Sun from the centre of the galaxy is taken to be r

�
= 8 kpc, the

dark-matter density is of the order of 0.5 GeV cmÿ3. This
value is in agreement with the results obtained by other
authors [43]. Substitution of formula (163) into expres-
sion (162), gives the size of the giant halo of our galaxy:

R g = R G

�

5%
P

M G

3 � 1044g

�1=(3ÿa)

, R G � 200 kpc . (164)

Hence, the size of the halo of our galaxy is of the order of
200 kpc.

It should be stressed that the distribution law of the
dark-matter density in an NGS given by expression (123) is
well supported by the rotation curves of other spiral
galaxies (Fig. 15). On the other hand, determination of
the size of the giant halo gives values similar to those in
formula (164). but with a larger scatter which is associated
mainly with the difference between the masses of such spiral
galaxies [44].

The moment of creation z of galaxies is determined
similarly. If we take into account an increase in the scales
because of the Hubble expansion from the moment z to the
present epoch, and if we assume that the scale of a given
galactic system at the moment z of its creation is R 0 = R g,
we find that in the present epoch this size is

R = R g (1 + z) .

On the other hand, the size R can easily be expressed in
terms of the baryonic mass M G of a galaxy:

M G =

4p
3
rbR 3 , R =

�

3
4p

M G

rb

�1=3

,

where rb � 3 � 10ÿ31 g cmÿ3 is the average density of the
baryonic matter during the present epoch. Hence, it follows
that

z =

R
R g

ÿ 1 .

For our galaxy, this relationship leads to z � 9.
The existence of a giant halo of galaxies whose size is

given by formula (164) and in which the dark-matter
distribution is described by expression (123) is typical
only of the objects with a fully formed NGS. This
condition is far from being satisfied in every case. For
example, the structure of an NGS is disturbed by collisions
of galaxies (it should be stressed that such galaxy collisions
represent primarily the collisions of their NGSs), in the
presence of a strong gradient of the gravitational field, and
also in the case of objects which are not fully formed.

The last situation may be observed during the present
epoch, first, because of the scatter of the moments of
creation of galaxies and, second, because the time to form
an NGS depends strongly on the structure of the initial
fluctuations: in the case of perturbations characterised by a
large value of e, i.e. those which are strongly elongated or
planar, the time needed for the formation of an NGS is
considerably longer than the time before the appearance of
the initial fluctuations with small values of e (Sections 4 and
6). A criterion of completion of the formation of an NGS
may be, for example, the shape of a galaxy: it is most likely
that an NGS has not yet been formed in the case of
irregular galaxies. Therefore, the ideas on the structure of
dark-matter formations put forward in Ref. [45] on the
basis of an analysis of several irregular galaxies cannot be
regarded as sufficiently well-grounded.

Observational data confirming the existence of a giant
dark-matter halo have started to appear recently [46].
Moreover, some support for the existence of a giant
halo follows from the observations of gamma-ray bursts.
This is discussed below.
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Figure 15. Distribution of the dynamic mass in the vicinity of spiral
galaxies [39]. The continuous line is the theoretical dependence.
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Figure 14. Rotation of our galaxy. Dashed curve is the theoretical
dependence V(r).
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11.2 Giant halo of neutron stars (model of the origin of
gamma-ray bursts)
It is well-known that in the course of formation of a galaxy
the initial baryonic matter — containing hydrogen, helium,
and small amounts of light elements (Section 1) — becomes
enriched with heavy elements that are created by nuclear
reactions in stars. It is very important to stress that
considerable enrichment occurs already at the very early
stage of a protogalaxy [47]. It is usually assumed that this
is the result of an explosion of a large number of
supernovas.

Apart from changes in the chemical composition and
the heating of the primordial gas, supernovas should also
generate relic neutron stars [48]. These neutron stars suffer
hardly any collisions. Consequently, their dynamics during
the stage of formation of the galactic structure is identical
with the dynamics of nondissipative matter. Specifically,
neutron stars occupy a region of size R g and their density
rN is distributed in accordance with the law

rN = rN0

�

r
R g

�
ÿa

, rN0
=

3 ÿ a

4pR 3
g

N , (165)

where N is the total number of relic neutron stars.
The existence of such a halo is pointed out in Ref. [42]

and it is suggested there that relic neutron stars are the
sources of gamma-ray bursts. This makes it possible to
explain the main statistical properties of these bursts, which
are their highly spherical symmetry and a considerable
concentration at the centre of our galaxy, which is known as
the log N – log S curve. The observational data of Ref. [49]
are compared in Fig. 16a with the results of a calculation of
the parameters of gamma-ray bursts based on the distribu-
tion given by expression (165). The agreement in the region
of nearby bursts can be proved if account is taken of the
creation and expansion of neutron stars after the explosions
of supernovas in the galaxy at a later stage (dashed
curve) [42].

The weak asymmetries in the distribution of gamma-ray
bursts are very important. They are due to two factors.
First, the Sun is not at the centre of our galaxy but is shifted
relative to this centre in the galactic plane to a distance
r
�
= 8 kpc. Second, there should be an asymmetry due to

the interaction between the giant halos of our galaxy and
the M34 (Andromeda) galaxy located at a distance of
600 kpc and moving in the direction towards us at the
velocity of 200 km sÿ1. In view of the sizes of the giant
halos of the two galaxies, their peripheral structure should
be distorted because of the interaction.

An analysis of recent data obtained by the COMPTON
Observatory [50] shows that the BATSE (Burst and
Transient Source Experiment) sensitivity is sufficient to
detect gamma-ray bursts at distances up to 150 – 200 kpc.
The observational data reveal both dipole and weak local
asymmetries, demonstrating clearly the interaction with the
giant halo of the Andromeda galaxy, in satisfactory
agreement with the giant halo model (Fig. 16b) [51].

It therefore follows that the model of a giant halo of
relic neutron stars, which is based on the theory of a giant
dark matter halo, can describe quite satisfactorily not only
the spherical symmetry and the spatial distribution of the
gamma-ray bursts, but also their weak asymmetry. The
model is also in satisfactory agreement with recent observa-
tional data.

11.3 Pair correlation functions
In the strong correlation range (x4 1) the main contribu-
tions to the pair correlation function comes from binary
systems (Section 10). Their contribution not only dom-
inates the parameter b, but it rises most rapidly with
reduction in the distance r.

It follows from expression (155) that the steady-state
pair correlation functions of galaxies, clusters, superclus-
ters, etc. should increase with reduction in the distance in
accordance with rÿa, where a � 1:8 is the universal scaling
parameter governed by the laws of three-dimensional
nonlinear compression of self-trapped nondissipative
dark matter. It is well known that this dependence is in
full agreement with the observed pair correlation functions
of galaxies and clusters [52]. The examples shown in Fig. 17
demonstrate a good agreement between the theory and
observations.
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Figure 16. (a) Curve representing the log N – log S dependence, plotted
in accordance with Eqn (165) on the basis of the ‘standard candle’
assumption. The dots represent the observational data [49].
(b) Contours of fluctuations of the number of sources of gamma-ray
bursts corresponding to 1s, 2s, and 3s. The shaded area is the giant
halo of the dark matter of Andromeda [50].
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In recent years the same dependence of the pair
correlation function has been reported also for other
objects such as groups of galaxies, quasars, and various
clusters. We can therefore conclude that the nonlinear
compression theory [26 – 30] presented above is confirmed
by the observational data. Moreover, since the law
described by expres-sion (123) is derived relying strongly
on the low thermal velocities of the dark-matter particles,
we may conclude that the observations provide indirect
support for the conclusion that the dark matter is cold.

In the range of high values of the correlation function,
not only the scaling law of expression (155) is obeyed, but
also the amplitude of the function depends on the average
distance between the objects. Fig. 18 gives the results of
observations taken from Ref. [53]. In the range of distances
20hÿ1

< di < 80hÿ1 Mpc the amplitude of the correlation
function A i increases in accordance with the law

A i = xi (1 Mpc) = (0:4di)
1:8 . (166)

As pointed out above, objects with these dimensions
have not yet completed (or have done so quite recently) the
nonlinear stage of the evolution process, i.e. the red shift at
the moments of their formation is small and lies somewhere
in the interval 0 < zi < 0:5. In this case the scatter of zi is
unimportant and the dependence of A i on di, which follows
from theoretical formulas (155) and (156), is in agreement
with the observed dependence (166).

It is evident from Fig. 18 that galaxies do not obey the
law (166): the amplitude of their correlation function is
considerably greater. The same effect, though to a lesser
degree, is observed also for quasars. However, galaxies
appear much earlier than the other objects for which data
are plotted in Fig. 18. If in expression (156) we substitute
the average red shift at the moment of formation of galaxies
zg � 5 – 8 and the corresponding value for quasars
zq � 1:5 – 2, we find that the results are in agreement
with the observations. It should be noted however that
the constant 0.4 in the experimental law (166) is approx-
imately twice that obtained from expressions (155) and
(156) on the assumption that zi < 0:5.

We have discussed so far only the main contribution to
the correlation function in the range of its high values
(x4 1), where expression (155) obtained above is valid.
This contribution is related solely to binary systems.

The next, in terms of the parameter b, contribution to x

depends on the distance as r3ÿ2a. The contribution is small if
the correlation function is calculated by averaging over a
sufficiently large region of space. However, it may become
comparable with the main contribution if we consider, for
example, only the correlation of objects of one type in close
vicinity to their large cluster. In this case the dependence rÿa

should change to r3ÿ2a as x is reduced.
It is interesting to note also that a similar change in the

slope is indeed observed for the correlation functions of
galaxies inside the clusters [54]. However, a reliable com-
parison requires both an increase in the amount of
observational data and a further development of the theory
proposed here. In particular, in the calculation of the
correlation function in the range of values x � 1 we
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Figure 18. Dependence of the amplitude of the pair correlation
function on the average distance between objects [53].
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need to take account accurately of the initial correlations
and the distribution of objects in accordance with their
formation times.

It is important to stress that the pair correlation
function manifests strikingly the specific properties of
NGSs not only because they represent the strongest
singularities in respect of the density compression, but
also because they are spherically symmetric. The contribu-
tion of other large-scale structural singularities, such as
filaments or pancakes (Section 7), to the pair correlation
function is much smaller because of the averaging over
directions.

There is therefore a considerable interest in the study
of higher correlations. For example, a triple correlation
function depends on two vectors: R1 = r1 ÿ r2 and
R2 = r2 ÿ r3. The presence of filament or pancake struc-
tures should manifest itself by a singularity of the triple
correlation function x(3) when the dependence on the angle
y between the vectors R1 and R2 is considered: the function
x(3) diverges in the limit y! 0.

Similar singularities are naturally expected also for
higher correlations. One would hope that the progress in
the gathering of observational data and their analysis will
make it possible to identify in future such singularities of
the higher correlation functions of the observational data.

11.4 Centre of a nondissipative gravitational singularity
In addition to a giant halo, a fully formed NGS has also a
sharply defined centre, which is a density singularity
described by expression (123). The presence of this
singularity is important in dark-matter diagnostics [55].
In fact, although the cross section of the interaction of the
dark-matter particles with one another is extremely small,
irrespective of the nature of dark matter, the radiation flux
created by this interaction is

F /

�

sr2 d3r , (167)

where s is the particle interaction cross section. Substitu-
tion of expression (123) for the density into the above
relationship shows that the above integral diverges at r = 0,
i.e. at the centre of an NGS.

It follows that the main radiation flux, which can be
used in dark-matter diagnostics, is associated with the
centre of an NGS. It is at this centre that we can expect
the greatest effect. The radiation flux is determined by
truncation of the law governing the increase in the NGS
density described by expression (123). The actual truncation
of the divergence of the density described by this expression
depends primarily on the stage in the hierarchy in which a
given NGS has formed.

For example, if an NGS has grown from the maxima of
scale k = kmax, the truncation region is extremely small: it is
determined by the decaying mode in the initial spectrum of
the fluctuations (Appendix). However, if an NGS has not
yet formed, the truncation radius of the singularity is
determined by the current moment of time and decreases
with time.

The assumption that an NGS in our galaxy has already
developed is used in Ref. [54] to calculate the expected
radiation flux from the centre of this singularity. It is
assumed that dark matter is in the form of weakly
interacting supersymmetric particles. It is shown that the
strongest truncation of the NGS in our galaxy can come

from a massive black hole. A comparison of the predicted
radiation flux with observations sets limits on the mass of
supersymmetric particles.

The existence of a singularity is important also in the
dynamics of the protogalactic baryonic gas. As pointed out
above, the baryonic matter density is only a few percent of
the dark matter density. Therefore, during the initial stage,
the baryonic gas moves in a given field of an NGS and
drops to the bottom of a potential well.

The density of the baryonic gas near a singularity then
increases strongly and the motion of this gas is always of
potential nature. Consequently, a massive protostar forms
near the centre. Nuclear processes in such objects are
known to be very fast [56] and they lead to the formation
of a giant black hole. An estimate of the mass of the
resultant black hole can be found in Ref. [28].

One might mention here also other predictions which
should be checked in detail by comparison with observa-
tional data. These predictions include, first, a giant halo of
established clusters with the dark matter distribution in
accordance with the law described by expression (123). The
existence of such a halo should give rise to rotation curves
of galaxies or other objects trapped in the gravitational field
of the halo. The size of the halo is estimated to be 2 –
5 Mpc. The second prediction is the appearance of pancake,
filament, and node structures, and of the structure of the
biggest large-scale objects which have not reached the stage
of the initial singularities (these are objects of the Great
Attractor type [40]).

We should mention also the qualitative differences
between the regions in space which are inside and outside
the giant halos of galaxies. In view of the Hubble expansion
the dark matter density and, consequently, the average
density of the baryonic matter are very different in these
regions. This difference is likely to affect the formation of
condensed objects, for example, small galaxies. It can be
investigated in particular by considering the example of the
near cosmic space of our galaxy and its closest neighbours.{
In principle, it should be possible also to observe directly
the interaction of planets with dark matter [57].{

It should be stressed that the analytic theory of the
large-scale structure of matter presented in this review is as
yet far from complete. Among the many problems that need
to be discussed further, we would like to mention the
following.

(1) It is necessary to generalise the solution of the
dynamic problem of the formation of an NGS to the
case of an arbitrary value of the parameter e, to include
in greater detail the influence of the anisotropy of the initial
data, and also to discuss fully the process of three-
dimensional mixing. A more effective use of numerical
methods is needed to solve these problems.

(2) It is desirable to study the process of collisional
relaxation. It should be stressed that this means collisions of
galactic systems and primarily the collisions of giant dark-
matter halos. The influence of the baryonic matter and, in
particular, of the baryonic gas, can then be very significant:
the baryonic matter determines dissipation and this must
affect the overall dynamics of the process.

{This was pointed out by G V Chibisov.

{A numerical error was made in estimating a constant in Ref. [57]. In
spite of the underestimation of this constant, the effect in question
should remain within the limits of observability.
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(3) It is essential to extend the statistical theory in order
to take account of both the initial correlations and the
correlations of higher orders. Moreover, it is necessary to
separate the singularities of the correlation functions of the
third and fourth orders when these singularities correspond
to dynamic filament or pancake structures (Section 9). It is
obviously equally important to identify the same types of
singularities in the higher correlation functions also in the
observational data.

There are also other interesting problems. However, it is
obviously most important to find a way for correct
matching of this anaytical theory to the direct numerical
simulation methods. This approach could make the greatest
contribution to further developments of the theory.
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Appendix: Influence of a decaying mode on the
formation of a nondissipative gravitational
singularity

In considering the nonlinear theory of a growing
perturbation mode we have ignored completely a decaying
mode and we have thus narrowed down the class of initial
conditions. In fact, arbitrary initial conditions are set by
four scalar functions di(x) and vi(x), whereas in the case of
a growing mode they are set by just one function. However,
since separation into growing and decaying modes is
possible only during the linear stage, it is necessary to
consider the influence of all possible perturbations that we
have ignored on the solution described by expression (123).
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The velocity of particles in a decaying mode is

v = ÿ
_D2(t)

a(t)
E

�

_D1(i)
�

d3x 0 di(x
0

)

x0 ÿ x

jx 0 ÿ xj3

ÿD1(i)
vd

i

a(t)

�

+ vr
i

ai

a(t)
. (A1)

Let us first consider the irrotational motion, i.e. let us
assume that vr

i = 0. We shall be interested in the solution
given by expression (A1) in a region close to the effective
density maximum considered above. Then, in general, the
velocity v can be expanded as a Taylor series. If only the
nonlinear terms are retained, the result is

ua = Ua; b xb ,

where the velocity ua and the coordinate x a are made
dimensionless in accordance with formula (46).

The description of the velocity by expression (A1) is
valid as long as d < 1. If d5 1, we have to consider a
contracting solution, described by relationships (51). A
characteristic tensor Ua;b at the moment when d = 1,
will be denoted by E. It depends on the rate of expansion
of the Universe and on the fluctuation amplitude di. If
O = 1, then

E � d
3=2
i 5 1 . (A2)

An analysis of the solution described by expression (A1)
demonstrates that, without limiting the generality of the
discussion, we need to consider only those initial values of
the field of velocities of the decaying mode which are
characterised by div v = 0. Then, on reduction of the matrix
Ua; b to the diagonal form (bearing in mind that curl v = 0),
we obtain

ux =

E

3
x , uy = ÿ

2
3
Ey , uz =

E

3
z . (A3)

In writing down the relationships in expression (A3) we
are assuming that the gradient of the field of velocities near
the point r = 0 of the density maximum is directed along the
y axis. We shall now consider how the selection at the
moment t = t� (d = 1) of the initial velocity given by
expression (A3) affects the process of compression of a
bunch when this process is due to the growing mode. Since
we are interested in the vicinity of r = 0, at the compression
stage we can expand the solution given by expression (51)
near this specific point:

v = ÿ

2
3

r
1 ÿ t

, r =

2

3(1 ÿ t)
2 . (A4)

Here, the quantity r is normalised to a and t is normalised
to tc.

Subtraction of formulas in expression (A4) from the
complete hydrodynamic system of equations (28) and
designation of the differences by dv, dr, dc, yields

q

qt
dvÿ

2
3(1 ÿ t)

(r.H) dv +

2
3(1 ÿ t)

dv + Hdc

+(dv.H) dv = 0 ,
(A5)

q

qt
dr+

2

3(1 ÿ t)
2 (H.dv)ÿ

2
3(1 ÿ t)

H.(rdr)

+H.(dr dv) = 0 .

The initial conditions for the system of equations (A5) are
specified in expression (A3). We shall seek the solution of
the system of equations (A5) in the form

dvk = rk hkZ
4 , dr = q(Z) Z4 , Hdc =

1
3

r dr , (A6)

where Z = (1 ÿ t)
ÿ1=3, and there is no summation over k .

Substitution of the relationships in expression (A6) into
the system of equations (A5) gives

1
3
q

qZ
hk + h2

k +

1
3

qZÿ4
= 0 ,

1
3
q

qZ
q ÿ

2q
3Z

+ q
X

k

hk +

2
3
Z2
X

k

hk = 0 . (A7)

Since, according to expression (A2), we have E5 1, it is
sufficient to consider just the linear solution of the system
of equations (A7). Dropping the nonlinear terms from the
system of equations (A7) and substituting the initial
conditions given in expression (A3), we obtain

dr = 0 , dvk = gk rk (1 ÿ t)
ÿ4=3 ,

g1 =

E

3
, g2 = ÿ

2
3E

, g3 =

E

3
.

(A8)

It therefore follows from expression (A8) that in the
linear approximation the density does not rise, i.e. q = 0,
but the velocity rises faster than the velocity of the main
stream described by expression (A4) and near a singularity
it is much higher than the latter.

We shall therefore consider the nonlinear solution of the
system of equations (A5) on the assumption that n !1. It
follows asymptotically from the first equation of this
system (A7) that

1
3
qhk

qZ
+ h2

k = 0 . (A9)

The above equation described the kinematic motion of
particles. Its solution is

hk(Z) =
hk (0)

1 + 3hk(0)(Zÿ 1)
. (A10)

It is important that along the coordinate y the
perturbations grow faster than along the other two
coordinates. If Z = 1 + E=2, it follows from the initial
conditions given by expression (A3) that a singularity
appears in the solution given by expression (A10). This
singularity [see Eqn (A9)] is the result of a nonlinear
kinematic reversal. It is one of the possible Lagrangian
singularities [25]. This means that the central singularity of
expression (123) discussed by us spreads out over a certain
small region around r = 0 because of kinematic mixing.
Estimates of the energy show however that the character-
istic size dr of the spreading region is extremely small:

dr � E2
= d3

i . (A11)

Consequently, under real physical conditions this process is
of little importance.

We shall conclude by noting that inclusion of low
rotational (vortex) velocities vr

i leads to a similar small
region of smoothing out of the centre of an NGS.
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