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A scientific session of the Division of General Physics and
Astronomy of the Russian Academy of Sciences was held
on 30 November 1994 at the P L Kapitza Institute of
Physical Problems. The following papers were presented at
this session:

(1) V S Troitskii (Institute of Applied Physics, Nizhny
Novgorod) “‘Experimental evidence against the Big Bang
cosmology’’

(2) A A Slutskin (Physicotechnical Institute of Low
Temperatures, Kharkov) “‘Frozen’ electronic phase and
high-temperature superconductivity’.

Summaries of these papers are given below.

PACS numbers: 98:80.Bp

Experimental evidence against the
Big Bang cosmology

V S Troitskii

1. Introduction

A cosmological theory is tested by comparing the observed
and theoretical dependences of the apparent luminosity
(m) and the angular size () of the galaxies on the red shift
(z). In standard cosmology, the expressions for these
quantities in terms of linear and stellar magnitudes are as
follows:

L@

o0 = R

m(z) = -2.51g€(z) =51gRat,, + M (2) = 5, (1
@

06) = R(z,q0)

The first expression gives the inverse-square dependence of
the surface illuminance (£) at the observer as a function of
his/her distance R to the observed galaxy whose absolute
luminosity L(z) is in watts per steradian. The third
expression is a purely geometric relationship governing
the apparent angular size of a galaxy whose linear size is
{(z). The influence of a specific cosmological theory
appears in these expressions only in the nature of the
dependence of the distance R(z, ¢q) on the red shift of a
galaxy and, to a slight extent, on the functions «,, =z + 1
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and ag = (z+ 1)~ These functions are found theoretically
and they depend on the assumed red shift mechanism. In
particular, the expanding Universe theory predicts for a
closed model (gy=1) that the metric distance is
R(z) = Ryz/(z+ 1), where 0<z<oo, Ry=cH;' and
H, is the Hubble constant. The dependence R(z)a,, = Ryz
has been confirmed by measurements for distances less
than 1% of the limiting value (which is Ry = 6000 Mpc if
Hy =50 km s Mp(:*' ) and it represents the well-known
Hubble law. A theory can be checked and an experimen-
tally tested cosmology can be developed if at least the
function R(z) or the product of this function and o are
found from measurements carried out over the whole
accessible range of the red shifts 107 <z<5. The
cosmological ‘standard candle’ and ‘standard rod’ tests
have been proposed for this purpose over 50 years ago.
These tests are based on measurement of the apparent
luminosity m(z) and of the angular size 6(z) of galaxies
which are located at different distances z, but have the
same standard luminosity L(z) = L, = const and the same
standard linear size Il(z) = [y = const. It is evident from
expressions (1) that the experimental dependences m(z) and
0(z) determine directly the unknown functions R(z)a, and
R(z)ay. The correctness of this approach, in principle, is
not in any doubt, but its practical application gives
ambiguous results. This is due to the fact that the galactic
parameters L(z) and [(z) are random quantities with a very
large scatter. The distribution law of the apparent
quantities P(m/z) and P(lg 8/z) is defined directly for
galaxies which are at the same distance z & Az. Hence, it
follows from expressions (1) that the primary parameters
P(M/z) and P[lgl(z)/z] have the same distribution.
Sandage et al. [1] found that in the case of the E, SO,
and S galaxies in the Virgo cluster, located at approx-
imately the same distance z, the distribution law P(M /z) is
normal and the variance is ¢ = 1.5 magnitudes. My own
and my colleagues’ investigations [2, 3] carried out on
ensembles of up to 30000 galaxies and 4000 quasars have
demonstrated that the conditional normal distribution law
is obeyed rigorously in the range 107° <z <4 with a
variance g = 1.2 £ 0.1 magnitudes both for the galaxies
and the quasars. The Schechter law P(L) =[x, derived
carlier for galaxies with z < 0.1 (x =L/ L), is not purely
experimental, because it is deduced from the calculated
values of L in accordance with expressions (1), so that it
cannot be used in our case. The Hubble diagram for the
apparent luminosity m(z) =51g€(2)(z+1)+M(z) =5 is
thus obtained in the form of a field of random points which
lie within a noise band of width £3¢0 ~ +3 magnitudes.
This corresponds to variation of the luminosity L(z) at
each z by a factor exceeding 10 on either side of the average
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value. The scatter is somewhat less for the random values
of 1gf(z) and lgl(z), which also obey the conditional
normal distribution. In this case the dynamic relationships
R(z)a, or R(z)ay are masked by the noise in the
experimental dependence m(z) and 1g6(z), which is due
to the random scatter of the absolute luminosity M (z) and
lgi(z). Familiar averaging methods have to be used to
reveal the dynamic relationships. A field of random
galactic quantities should be characterised by specific
statistical relationships such as the distribution law, and
by parameters such as the average value, deviation,
correlation, etc. Only these relationships and parameters
can reveal the dynamics latent in the random quantities. A
theory must therefore be checked by employing averaged
functions E(m/z) = m(z) and E(lg8/z) = 1g6(z), which are
found by the familiar method of regression analysis. A
comparison of the regression functions m(z) and 1g6(z)
with the theoretical relationships (1) makes it possible to
find the averaged functions L(z), [M (z)], and /(z) and also,
most important, to determine the dynamic function R(z),
which is our main task here. It is quite clear from the above
that it is impossible to apply the ‘standard candle’ and
‘standard rod’ methods without ways for independent
measurement of M and [ of galaxies for any value of z.
Several decades ago Sandage attempted to solve this
problem by proposing that the brightest galaxies in the
galactic clusters at various distances should be regarded as
the ‘standard candle’. This would seem to be based on a
fairly reasonable assumption that there should be an upper
limit to the absolute luminosity. From the point of view of
statistics, this implies the hypothesis of the existence of a
sharp discontinuity in the distribution curve of the absolute
luminosity P(M /z) at some value M ,,,, which is the same
for all z. However, such discontinuities are not observed in
this distribution. Galaxies selected in accordance with the
Sandage criterion are in fact in the wing of a Gaussian
distribution and, therefore, cannot be selected unambigu-
ously. The objects selected in accordance with this idea are
rare and exotic galaxies. In view of their high brightness,
they are most probably subject to rapid evolution of the
luminosity and size, but the selection described above
attempts to exclude the influence of such evolution. After
many years of application of this method of selection of
galaxies ‘suitable’ for comparison with theory, it has been
found that the agreement between the theoretical and
observed values of m(z) requires 0.5 < go < 5, whereas in
the case of observations of Igf(z) there is no quantitative
or qualitative agreement with theory. Therefore, these
methods have failed to solve the problem of checking the
theory and, as demonstrated in the thorough reviews of
Burbidge [4] and Baryshev [5], we are in a blind alley.

2. Initial observational data

Use of the regression analysis to check a theory must be
based on the global number of galaxies, so as to ensure that
the data ensemble is statistically representative. This should
be done taking account of the various effects of selection.
The global regression dependence m(z) has been found
from an ensemble of 9000 galaxies of all types and all 4000
known quasars in the red shift range 107>° < 7z < 4 within
the V band (visible range). Use has been made of 30 recent
reviews and catalogues. A study has been made of
the influence of the Malmquist effect [2, 3]. Moreover, a
K correction, calculated from the average spectra of
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Figure 1. Global Hubble regression diagram: (o) galaxies, (e) quasars;
the dashed lines form a family of theoretical dependences
m(z) =51gz+My+43 calculated for ¢y=1 and Hy=75

km em™' Mpc~'.

galaxies and quasars, has been introduced. In each interval
Algz =0.2 the normal distribution law P(m/z) has been
checked. This has shown that in the case of galaxies and
quasars the mean square deviation in each interval of z is
0 =12 +0.1 magnitudes. The influence of an inhomoge-
neous distribution of the number of data over z is avoided
by determination of the regression function on the basis of
the values of the average m for intervals Az. The global
regression dependence m(z) obtained by the present author
and his colleagues [3] is reproduced in Fig. 1 together with
a family of theoretical dependences. The analytic depend-
ence in terms of the stellar and physical quantities is

m(z) = (2.7+£0.1)1gz +18.6, &(z) =z"""107"*, (2)

107 <7 <4.

This dependence naturally differs fundamentally from the
curves usually plotted on the basis of a few tens of selected
‘standard’ galaxies.

The global regression dependence lg6(z) has been
obtained by us for 10250 normal galaxies in the red shift
range 107> < z < 0.5 within the V band. An analysis has
been made of all possible systematic distortions of the
function 6(z) when isophote measurements are made. These
distortions may be due to the likely evolution of the surface
brightness of the galaxies. The results demonstrate the
absence of any significant distortions [6]. The logarithmic
and linear forms of the regression function are:

120(z) = —(0.55 £0.05) 1gz + 0.93,

— 8.5
0(z) =—=,
@ =5

3

107%° < 7<0.5.

The regression function is plotted in Fig. 2 and compared
there with the theoretical dependence for the go = 1 model.
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1g(8/") Hence by elimination of z, we find that
30 - R[L(2)]'?/R,, 1(z) = 4.5. Here, the function Ry(z)/R,(z)

-3.0 -2.0 —-1.0 0.0 1.0

Figure 2. Global regression dependence of the angular size of galaxies
(black dots). The continuous curve is the theoretical dependence for
go = 1 and [(z) = const.

The global regression dependence also differs radically
from the dependence obtained for a small number of
selected exotic objects, as was done by Sandage [7],
Kapahi [8], and Kellermann [9], who obtained 0oz
The experimental relationships (2) and (3) make it possible
to detemine the average surface brightness over a galactic
disk, averaged over all the galaxies:

u(z) =m(z) +51g6"(z) = (=0.05 £0.1) Igz + 23,

107 <2 <0.5. @
which is expressed in stellar magnitudes per square of an
arcsecond. We can see that this surface brightness is
practically independent of z and equal to u(z) =23
magnitudes. Direct measurements of the surface brightness
carried out recently with the aid of charge-coupled devices
give 22.0 < u(z) < 24.0 magnitudes irrespective of the red
shift of the sources in the interval 107>° <z<0.5
(Graham [10], Hoessel et al. [11], Dressler et al. [12], and
Peletier et al. [13]). This is a good confirmation of the
precision of the independent series of measurements of
m(z) and Ig6(z) and, consequently, of relationships (2) and
(3). The theoretical expressions (1) can be written in a form
more convenient for further comparisons:

L(z)

/! _ 5 I(Z)
&) = R2() 0 (z)=2x10 Ro(2)’
(5)
u(z)=-251g (;E ))Rg) +26.6.

A comparison of relationships (2) and (3) with the
corresponding first two relationships given above yields

R, (2) _2056]0372[ @ )]1/2
(6)

Ro(z) = 2°%10 () .

and the expression [L(z)]' 2/l(z) are of different physical
origin, so that they are independent and, consequently,
each of them is equal to a constant. Obviously,
RH(Z)/Rm (Z) = (Xg/dm =1, so that

T@]” _ v,

H I R,(2) =Re(z) =R(z). (1)

The statistical relationship [L(z) ]/2/1( =const found in
this way is supported by a number of investigations, which
are summarised in my recent paper [14]. They are also
supported by studies of the correlation between the
luminosity and the size of galaxies listed in the UGC
catalogue [6]. The required functions are thus found to be

0.55 [L(Z)]W _ 103‘72\/L_0

Ly ’
(@] ®

R(Z) . R()Z

—~

Here, L(z)/L, is an arbitrary function, since for the three
required functions L(z), {(z), and R(z) there are only two
relationships: (2) and (3). Therefore, the experimentally
determined functions R(z) and (Xm/(Xg differ fundamentally
from the theoretical functions used in standard cosmology.
It would seem that by selecting L(z) one can make the
expression for the distance (8) agree with the function of
the distance in standard cosmology. However, this is
impossible even in principle since in standard cosmology
there are two expressions for the distance. For example, if
qo =1, Rm = RHz and Ry =Ryz(z+ 1)72 Selection of
L(z)/LO = 7% ensures agreement with the distance R,,(z)
and selection of L(z)/Lo=2z""(z+ 1)™% provides agree-
ment with Ry(z).

3. Statistical cosmological tests

Since the observed astrophysical parameters of galaxies and
quasars obey specific statistical laws, a number of new tests
can be proposed. For example, one could investigate the
dependences on z of the variances of the luminosity and
angular size, and also of the average values and variances
of the spectral indices of the radiation emitted by galaxies
and quasars, and so on. Our investigations [2, 3] show that
neither the distribution law of m and 1g 0 nor their variance
depend significantly on the red shift and it is found that
a(m) = const applies to galaxies and to quasars throughout
the investigated red shift range 107> < z < 4. The variance
is also constant, a(lgf) = 0.25, in the range 10~ <z < 0.5
accessible to investigation. The variance and the average
value of the spectral index and the continuous spectra of
the optical radiation emitted by quasars and galaxies are
found to be independent of the red shift [2, 15]. The same
result is reported by Hutchings et al. [16] for the microwave
emission spectra of quasars. The fact that these statistical
characteristics are independent of the positions of the
objects in space are evidence of the equilibrium state of the
Metagalaxy system. All these tests demonstrate unambig-
uously the absence of any detectable evolution of the
average luminosity L(z) and size [(z) of galaxies in the
investigated range of their existence, which is 7 to 10 billion
years. Thus, on the assumption that L(z) =L,, we can
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now find the numerical values of the parameters L,

I(z) = ly, and Ry.

4. Average parameters of galaxies and space

We shall determine R,, L,, and [, from the average
luminosity of groups of galaxies within the radius z < 0.02,
which is My =—-21=+0.5 magnitudes. It is known that
—251gLy= My—5, and hence L,= 10]0'4L® =
104 erg s7!sr. Finally, it follows from expressions (8) that

R(Z) :ROZO.SS ,
R, = (830 £ 200) Mpc,
ly = (35 £ 8) kpc,

_ , &)

M = —21 £ 0.5 magnitudes.
Here, R is the distance from the galaxies characterised by
z=1. The fact that the average values of the luminosity
and size, the forms of the spectra of galaxies and quasars,
and the variances of these quantities are independent of the
positions of the objects in the space of the Metagalaxy fits
well the known fundamental cosmological principle of
homogeneity and isotropy of the Universe in space and
time, established earlier for the average volume density of
matter. Naturally, the constancy of these average values
does not exclude the possibility of evolution of the
luminosity and size of specific galaxies. There is an
appropriate analogy here with the average strength of
people on the whole of our planet, which remains constant
in time, although each man undergoes evolution of his
strength. The statistical homogeneity of the characteristics
of galaxies in the space of the Universe is evidence of the
great age of the Universe, which at least should be an order
of magnitude greater than the age of the galaxies, estimated
at 15 to 20 billion years.

5. Nature of the red shift

The experimentally determined dependence z = R2/R(2)
limits greatly the range of hypotheses which can account
for the red shift. This range is limited even further if it is
postulated that a new explanation of the origin of the red
shift should agree with the known and thoroughly
investigated physical processes. These conditions are
satisfied by the familiar gravitational shift. In fact,
following classical physics, a spherical light wave
propagating in an infinite medium with a homogeneous
density p performs work against the gravitational force of
matter interacting with the spherical wave. This reduces the
wave energy by an amount —de = ec? do, where ¢ = hv,
@ = 4nGpR?/3, and, consequently, dv/v = 8nGpR dR /3¢’
Integration in the range from the frequency v, at the
moment of emission to v, at the moment of reception of a

wave  propagating from R=0 to R ives
vi/vo = (z+1) = exp(R*/2r;), where r, =+/3¢>/8nGp is

the gravitational radius. In the relativistic treatment,
confirmed for weak fields, we have
z+1)=( —Rz/ré)_o's. If R <r,, then in both cases
we find that z:R2/2r2,. According to expressions (9),
we should have z = R2/R% and then on the assumption that
R%:Zré, we find the required density of matter is
p=10" 8 g em™>, which is 50—100 times higher than the
published estimates. This conclusion also follows from
standard cosmology. It is therefore assumed that

98% —99% of the mass is in a hidden invisible state. It

is possible also that other but quite hypothetical explana-
tions of the red shift (such as those proposed by Kropotkin
[17]) will prove to be in better agreement with experiments.

6. Microwave background

According to the reported results, the Universe is a
practically unbounded system of galaxies. This makes it
possible to explain the observed microwave background by
thermal emission of both microwave and optical radiation
by stars. The stellar microwave radiation flux at the
observation wavelength 4, collected within a solid angle Q
of the aperture of an antenna at a distance R in an element
of volume QR*dR, is dp = FnmQF(4, T)dR d,, where
FOALT) = (2nc’h/2)[exp(he/AkT) — 1] is the Planck emis-
sivity function of stars whose temperature is T;
A=2y(z+1) is the wavelength of the radiation emitted
by a star; r is the average radius of the stars; n is the
average density of galaxies; m is the average number of
stars in the galaxies. This radiation is screened (absorbed)
by galaxies on its way to the observer. The attenuation or
screening function is approximately y = (1 —0.33nl°R),
where [/ is the average size of the central regions of the
galaxies. If dp is multiplied by y and integration with
respect to R is performed for R = Ry4/z, the result is the
spectral density of the flux at the wavelength 4,. The
equivalent temperature T} of this microwave background
can be found by equating the spectral flux density from a
black body in a solid angle Q at the wavelength 4, when the
temperature is Ty,. This gives

F @+ 1)’y(R)dz
o Vzlexp(he(z +1)/AkT) — 1]

— he 1_] 10
= [0 (i) -1 o

Here, zo is found from the condition y(zo) =0. A
calculation of Ty, carried out with the use of the well-
known parameters of galaxies and stars in the Main
Sequence, yields the observed background temperature,
which is determined primarily by the stellar radiation
obeying the Rayleigh—Jeans law at distances of up to
60000 Mpc in the range 0 < z < 5000 and is independent
of the observation wavelength in the range
0.1 <4y <100 cm. This result makes it possible to
estimate small-scale fluctuations, AT,/T, =3 x 107, in
agreement with observations [18]. We can use relationship
(10) to account for the mysterious agreement between the
energy of the optical radiation integrated over all the
frequencies for our Galaxy and the background radiation
energy (see Ref. [4]).

In conclusion, it should be pointed out that the conflict
between the dependence R = R(+/z and the generally
accepted Hubble law R o z is not a convincing argument
against the results obtained, since the Hubble law has been
established for small values of z (< 0.02) when any smooth
function, including R = R¢4/z, is distinguishable from a
straight line. There have been new determinations of the
dependence R(z) based on the Tully—Fisher law by Arp
and van Flandern [19], and measurements of Giraud [20], in
good agreement with our empirical dependence R(z), which
moreover is supported by the more realistic hypotheses
about the red shift. A reduction in the estimates of the
distances to galaxies and quasars by a factor of 4 for z ~ 1,
compared with the estimates obtained from standard theory,

1
3 r*nmR 0
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eliminates the problem of superluminal velocities of the
expansion of matter in these objects, which now become less
than the velocity of light. Finally, application of the statistical
approach to the problem of checking the Big Bang theory,
started almost simultaneously by us [21] and by Segal
and Nicoll [22], gives similar results for the dependence R (z).
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‘Frozen’ electronic phase and high-
temperature superconductivity

A A Slutskin

In the thirties, Eugene Wigner demonstrated [1] that a
homogeneous Fermi liquid of free electons, which repel one
another in accordance with the Coulomb law, can undergo
a first-order phase transition to a localised state with a
periodic spatial structure (Wigner crystal). According to
Wigner, this happens when the electron density is so low
that the characteristic Coulomb energy per electron

o

u=< (1)
=

(e is the electron charge and 7 is the average distance
between electrons) exceeds the characteristic kinetic energy
e
mr

which is acquired by an electron of mass m when it is

localised in a region ~7 because of the quantum
uncertainty principle.

Wigner’s concept of electron crystallisation was first
applied to the conduction electrons in solids by Verwey [2].
Verwey measured the electrical conductivity of metal oxide
Fe;O04 as a function of temperature T and observed an
abrupt change in the conductivity at T ~ 10? K, which he
treated as melting of a Wigner crystal formed by charge
carriers in the oxide. Such Verwey transitions have since
been discovered in a whole range of metal oxides which are
semiconductors. In explaining the Verwey transitions by
Wigner’s concept it is necessary to assume that the
characteristic dimensions of the electon localisation region
exceed a typical period ay of the conductor lattice. One can
then expect the appearance of boson excitations, which are
phonons with relatively high velocities and are typical of a
Wigner crystal. However, to the best of my knowledge,
these excitations have not been detected experimentally.
This has made it necessary to postulate the existence of non-
Wigner collective mechanisms of electron localisation.

My purpose will be to show that long-range Coloumb
forces in homogeneous narrow-band conductors may lead
to electron self-localisation of a new type [3, 4], which is of
purely dynamic (quantum) nature and thus fundamentally
different from the ‘thermodynamic’ Wigner crystallisation.
[ shall also show that the macroscopic electronic state
formed as a result of such localisation differs qualitatively
from a Wigner crystal in respect of its thermodynamic and
conducting properties.

The mechanism of the postulated ‘dynamic’ Coulomb
self-localisation can be understood by considering first the
possibility of formation of a Wigner crystal in a narrow-
band conductor on the basis of the familiar Lindemann
criterion. According to this general criterion, a crystal exists
if the amplitude of its zero-point vibrations &r satisfies

&

7

<03, 3)

or in the case of a Wigner crystal

2 1/2
o s (@) <03. (4)

r m*

where n=N/N, 0(0:8/?3 is the number of electrons (per
atom) participating in the conduction process; N is the
total number of electrons; N, is the number of sites in the
crystal lattice; m* is the effective mass of a conduction
electron, which is related to the width ¢ of an energy band
by

2
m* (%) ¢t )
o

where my is the mass of a free electron. Since in the case of
a narrow-band conductor, we have m* > m,, the Linde-
mann criterion (4) and the essentially equivalent
thermodynamic Wigner criterion

A<u, (6)

can be satisfied even at ‘metallic’ values of the electron
density (n~1). Hence, it follows that the long-range
Coulomb interaction leads unavoidably, at a given density
n, to the localisation of the whole ensemble of narrow-band
electrons at sufficiently low temperatures. However, it is
definitely not true that such a localised structure must be a
Wigner crystal!
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The reason for this is that the dynamics of a narrow-
band electron is essentially discrete: it can be described by
the tight-binding approximation, according to which an
electron undergoes quantum jumps to adjacent sites in the
crystal lattice and tunnels between equivalent atomic
orbitals. In this situation a very important factor is the
ratio of the width ¢ of an energy band to a characteristic
variation

2
Ou o< u (oc__o) 7
r

of the Coulomb energy of an electron in the course of its
hopping between adjacent lattice sites. The role of the
parameter #/8u can be understood if we compare the
amplitude dr of the zero-point vibrations in a Wigner
crystal with the intersite distance of. It follows from
expressions (4), (5), and (7) that

8}’2 t _]/2 t ]/2
e (@) o (a) ®

where ¢, = ez/oco is a characteristic atomic energy. In the
case of a narrow-band conductor we have f < g, so that
the parameter ¢/du and, therefore, the ratio 8r/a, are both
~1 even at a low electron density: n ~ t/g,. However, in
accordance with the tight-binding approximation, the
amplitude & may be only of the order of or greater
than the intersite distance o. This suggests that at electron
densities

t t

HNBO<(6M~1) ©)
a Wigner crystal should transform (most likely by an
infinite series of second-order phase transitions) to a
localised phase with a qualitatively different structure.

The nature of the new macroscopic state becomes clear
if we consider the limit #/8u < 1. In this case an electron
located at a given site of the crystal lattice cannot in general
tunnel to any one of the adjacent sites, because the
Coulomb fields created by the remaining electrons push
apart the energy levels of the nearest orbitals by an amount
~ du, which is considerably greater than the width of the
energy band ¢. This means that if #/8u < 1, then the long-
range forces of the mutual repulsion between electrons
destroy completely the Bloch (current-carrying) states in a
narrow band and that all electrons are localised at certain
crystal lattice sites. More precisely, if (1 —n)~ 1, the
stationary states [}) of the whole ensemble N of the
narrow-band electrons represent, in the leading approxima-
tion in terms of the parameter 7/8u, all possible products

W) = [ri)lra) ... |ry) (10)

of N arbitrarily selected orbital electron states at sites
[r1), |ra), .., |y} (ris the vector number of a site). Such a
localised macroscopic state, which differs radically from a
Wigner crystal, may be called a ‘frozen electronic phase’
(FEP). The characteristic features of an FEP can be seen
most clearly in the limit #/3u < 1. The most important
features are as follows.

(A) If the electron density » is fixed, then in the ground
state of an FEP, we have

o) = f)Ird) ... Irk) (11)

and the sites r? (i=1,2, ...,N) occupied by electrons
form generally a very disordered structure of the

quasicrystal type, known as an ‘electronic glass’ [3, 4]
This disorder is a direct consequence of the fact that a
periodic (translation-symmetric) electron configuration,
which corresponds to the absolute minimum of the energy
of the mutual Colomb repulsion of electrons, is incom-
mensurate with the crystal lattice of a conductor in the
general case of irrational vaues of n (in the thermodynamic
limit when N, Ny — o0).

(B) In view of the absence of continuous spatial degrees
of freedom in an FEP, its elementary excitations are not
phonons, as in a Wigner crystal, but transitions in two-level
electron systems localised in regions of ~ a, size and
distributed at random over the whole configuration of
an electronic glass. These two-level systems (like the
familiar two-level systems of atomic glasses) form because
of accidental degeneracy, which appears as follows. In view
of the disorder of an electronic glass, its sites must include
N ~ (t/Su)N < N “lability’ sites R, (x=1,2, ..., N),
which are distingished by the fact that a jump of an
electron from site R, to one of the adjacent sites R, alters
the Coulomb energy of the system by a small (compared
with du) amount du,, comparable with the band width ¢.
The tunnelling lifts this degeneracy at the ‘lability’ sites and
this gives rise to the formation of an electronic glass of N
two-level systems with the excitation energies

w, = [42 + (Buy)’)"? (@=1,2,...,N). (12)

Then, both the ground |, ) and excited |y}) states of two-
level systems represent the following superpositions of
orbitals at sites:

s) = ay |By + Dy |R,), (13)

where the absolute amplitudes uo,i and b:f are comparable
with unity.

(C) The thermodynamics of an FEP is very complex and
its detailed description is outside the scope of this paper. It
is important to stress that, in contrast to a Wigner crystal,
an FEP is of purely dynamic origin and heating of this
phase does not convert it into a Fermi liquid of free
electrons: an FEP remains a localised structure without
a long-range order.

The electronic glass modification of an FEP is infinitely
degenerate, like a spin glass. In other words, there is an
infinitely large number of stationary states described by
expression (10) and the Coulomb energies of these states are
exponentially close (at least in terms of the parameter N'/2
to the Coulomb energy of the ground state, but the electron
configurations ry, r,, ..., ry differ considerably from one
another. A characteristic transition time of the electron
system between these states is exponentially large:
~ (8u/t)". This means that an electronic glass should
have a number of properties typical of a spin glass: an
infinite spectrum of the relaxation times, nonergodic
behaviour, and slow relaxation to a thermodynamic
equilibrium state when an external perturbation is removed.

These properties of an FEP appear in full measure if the
external field created by ions of doping elements is
sufficiently homogeneous, namely when the characteristic
change in the potential energy of an electron is such a field
(experienced as a result of intersite hopping) is less than du.
This condition may be satisfied, for example, in layer
(quasi-two-dimensional) conductors if donors or acceptors
are located sufficiently far from conducting layers. It is very
important to stress that in layer conductors where the
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distance between the layers L is much greater than the
crystal lattice period ay it is relatively easy to satisfy along
the layers one of the main conditions for the formation of
an FEP: the electron —electron long-range interaction. This
is because in a layer electron system the screening radius of
the electron —electron interaction is always greater than or
of the order of L for any (including ‘metallic’) values of the
two-dimensional electron density. Consequently, the mutual
Coulomb repulsion of two-dimensional electrons is of the
long-range type if the average distance 7 between them is
less than or of the order of L. This condition is easily
satisfied.

A typical example of layer conductors with L > «
are cuprates known to exhibit high-temperature super-
conductivity. Therefore, it is interesting to consider the
possible role of an FEP as an important factor in the
appearance of high-temperature superconductivity.

Let us now consider an sd system which consists of
electron layers of two types: (a) s layers of light s electrons
(with their mass of the order of the free-electron mass)
which are in the Fermi-liquid state; (b) d layers of narrow-
band d electrons. In the proposed superconductivity
scenario of a layer sd system there are only Coulomb
electron —electron interaction forces. These forces play a
dual role: the mutual long-range repulsion between the d
electrons is reponsible for the appearance of an FEP
(electronic glass) and the Coulomb sd interaction ensures
that the s electrons exchange (by a virtual mechanism)
elementary excitations of an electronic glass (electronic
glass excitations) which —as stated above —are transitions
in electron two-level systems. Since such electronic glass
excitations are Bose-like, this exchange unavoidably leads
to an effective ss attraction with all the consequences that
follow from it: the Cooper instability of the Fermi-liquid
subsystem of the s electrons and its transition to a
superconducting state at some critical temperature 7.

A theoretical investigation of the superconductivity of a
layer sd system [4] reduces to the following. If the s—d
hybridisation is ignored (the role of such hybridisation
reduces simply to equalisation of the chemical potentials of
the s and d layers), the Hamiltonian of such a system is

A=A+ (A + A, (4

[

where H*® is the Hamiltonian of the Fermi liquid of the s
electrons; the index / labels the d layers; H,® and H,“ are,
respectively, the Hamiltonian of the electronic glass state of
the Ith layer and the Hamiltonian of the Coulomb
interaction of the electronic glass with the s layers which
are closest to the Ith d layer. Both Hamiltonians H® and
19,‘"" are expressed in terms of the creation (BJ) and
annihilation (B,) operators of excitations in the two-level
systems in a given d layer, which satisfy the following
mixed commutation rules

{B;’ Ba} =1, Bi :Biz =0,
[BaBa’] = [BaB;—’] = [B:B;—’] =0,

where, as above, the index a labels two-level systems; {...}
represents an anticommutator; [...] is a commutator. Then
ﬁfg is similar in its structure to the Hamiltonian of free
phonons and H;¢ resembles the Hamiltonian of the
electron —phonon interaction:

H*® :ZwaB:{Ba—l—const; (15)
o

A = %Zw;' (Ry — R,)VVy(R, —r)i(r,) (B +B,).
(16)

Here, the index [ is omitted for the sake of simplicity; 7i(r,)
is the operator of the s-electron density at a site ry in an s
layer; V,(r) is the screened Coulomb potential of the sd
pair interaction; the summation over o extents to all the
two-level systems in a given d layer; the summation over r
applies to all the sites in the s layers adjoining a d layer.
The effective Hamiltonian of the ss interaction H % can
be found from perturbation theory in terms of the param-
eters t/du and oy/L. The procedure is analogous to the
familiar technique used in the study of the electron —phonon
interaction in what is known as the weak coupling
approximation. In this case the matrix element of a
transition between pairs of states with oppositely directed
momenta p is described by the following expression:

s.

(p, —p|H|p+p, —P—a)

02,252 Fmax 8(5)60_](5) e
=8V u(q) L E(+9) - EQ) — () de, (17)

where ¢ is the transferred momentum: V,(q) is the Fourier
transform of the sd-interaction potential; E(p) is the
dispersion law of the s electrons; w(e) is the excitation
energy of two-level systems given by formula (12) and
corresponding to the Coulomb splitting du, = ¢; g(e) is the
number density of two-level systems with the given value of
e, which vanishes when ¢ is equal to or greater than a
certain maximum energy &, ~ Ou. Hence it is clear that
the ss attraction occurs in that part of the momentum space
where [E(p 4+ ¢) — E(p)]” is less than or of the order of 2,

The next step is the application of the canonical BCS
scheme to the effective Hamiltonian H3. The resultant
integral equation for the gap width (self-consistency
condition) has a number of special features which are
due to, on the one hand, the square-root singularity of
the number density of two-level states with the limiting
energy @ = 2t and, on the other, the smallness of the ratio
/L. This makes it necessary to modify considerably the
traditional calculation technique. The final result, which
gives the gap width 4(p) on the Fermi surface at absolute
zero T =0 is

N
L] v TS5, (18)

A(p) = ytexp |-

n*A(p)
The dependence on the momentum p occurs only in the
quantity

_ g(0)ny o\’ —1/2 -1
) = gt~ () (o)™
where ny(ory/ 7)? is the number of electrons per unit cell in a
d layer; vg is the number density of the s electrons in an s
layer on the Fermi surface; v(p) is the velosity of an s
electron at a given point on the Fermi surface; pr is a
characteristic Fermi momentum. Therefore, the gap
reproduces directly the anisotropy of the distribution of

the Fermi velocities and it increases on reduction in v,.

(19)
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The critical temperature T, is related to the maximum
value of the gap, max 4(p), by the same simple relationship
as the temperature and gap width in the isotropic BCS
theory:

kpT,=Cmax4(p), C=0.57. (20)

The distinguishing feature of the expression for the gap
(17) is the independent of the parameter 4 (and, therefore,
of the argument of the exponential function) on the d-band
width ¢, i.e. on the characteristic width of the attraction
region. According to the estimate given by expression (19),
the value of 4 and, consequently, the gap width and T, all
increase on reduction in the distance between the layers L
and on reduction in n;. However, the value of n, is limited
from below by the long-range condition: ¥ < L. The optimal
situation obviously corresponds to L ~ ay and n; ~ 1. In
this case the argument of the exponential function in
expression (17) is comparable with unity and fairly high
values of T, are obtained even for relatively narrow bands.
For example, the temperature 7, ~ 10> K corresponds to
the d-band width ~1072 eV,

We thus reach the conclusion that the Coulomb
electron —electron repulsion in a layer sd system induces
a transition between the subsystem of the narrow-band
d electrons to an FEP state (i.e. it suppresses the Fermi-
liquid behaviour of the subsystem) and can by itself lead to
superconductivity with a relatively high value of 7 in a
wide range of the electron densities. It follows from the
above discussion that the layer nature of the electron
structure is needed only to ensure, at all electron densi-
ties, the long-range interaction (weak screening) of the
Coulomb forces which results in quantum self-localisation
(“freezing’) of the d electrons.
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