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Abstract. The current state of the mathematical formalism
commonly used in the study of fractals—infinite sets with
noninteger Hausdorff dimension —is briefly revealed. The
application of fractal analysis to hadron physics is shown.
In this connection, the hypothesis on the presence of the
Feigenbaum universality in hadron multiproduction char-
acteristics is discussed.

1. Introduction

Fractal sets (fractals) are infinite sets with noninteger
Hausdorff dimension [1]. In practice, however, we always
deal with finite sets: a set of charged particles generated by
hadron collision; ice crystals combining together to form a
pattern on a glass window; eddies in turbulent flow; etc.
Nevertheless, it turns out that at a sufficiently large ratio
(of the order of a hundred or more) of the size of a whole
object to the typical size of its constituents, the finiteness of
the number of these constituents can be ignored on scales
much greater than their size, so that one may apply the
mathematical formalism developed for proper fractals.
This has been done during the past twenty years in
almost all fields of physics: from the physics of the solid
state (investigations of spin glasses) and fluids (analysis of
appearance of turbulence) to astrophysics (the study of
stellar, galactic, and cosmic dust cloud distributions) which
allows one to reveal very interesting features eluding earlier
researchers. (For one of the latest cross-disciplinary
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collected papers see Ref. [2].) In hadron physics, the ideas
of fractality took hold only fifteen years ago [3—5], but
serious interest was displayed somewhat later, after the
practically simultaneous publication of two articles: by
Bialas and Peschanski [6] and by Dremin [7]. The former
authors proposed to study intermittency in charged particle
distributions in the momentum space by means of factorial
moments, while Dremin was the first to determine the
dimension of the intrinsic motion of partons in hadrons.

Over the years fractal analysis has became recognised as
one of the most powerful tools for the study of the
dynamics of multihadron generation. In my opinion, it
is imperative to collect and order the material concerning
the theory of fractals and its applications in hadron physics,
strewn over a lot of fine books, reviews [§—12], and original
papers, making it brief and understandable for those who
wish to study the subject.

This review consists of two parts. In the first one, I
introduce the notions which are necessary for the discrip-
tion of infinite sets: cardinality, topological invariants
(Lebesque and inductive dimensions); Hausdorff dimen-
sion, generalised Renyi dimensions, and the spectral
function depending on the space metric. Also the main
notions of stochastic analysis proposed recently by
Schertzer and Lovejoy [13] are given: ‘calm’ and ‘wild’
singularities, codimensions, the trace moment. In this part, |
have tried to avoid, where possible, too rigorous mathe-
matical proofs and mathematical terms not commonly used
in the physical literature. The interested reader can easily
find them in the relevant references.

In the second part, [ show how fractal analysis is applied
in practice. As an example, one of the well-known
attractors—the Feigenbaum attractor—is considered as
well as its finite approximations, the limit 2"-cycles. The
latter characterise the transition from order to chaos for a
lot of nonlinear dynamical systems. Next I describe the
Feigenbaum —Jensen —Procaccia method that enables one
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to extract dynamical information from fractal structure
data (a transfer matrix method) which is then applied in
hadron physics. The results obtained suggest that the
dynamics responsible for the observed charged particle
distributions may be that of infinitely doubling bifurcations
giving rise to the Feigenbaum attractor at asymptotically
high energies.

It should be noted, however, that just accepting this
hypothesis does not allow one unambiguously to write
down the equations governing the dynamics of the process
under consideration, since too many nonlinear differential
equations have solutions obeying the Feigenbaum univer-
sality. The situation looks paradoxical —we can predict the
behaviour of solutions to the equation which we do not
know! Moreover, still for some known equation it is
impossible to elucidate a priori (i.e. before solving) whether
or not its solutions undergo period doubling as the
governing parameter is varied. Thus, the problem of the
nature of fractals in hadron physics remains to be solved.
What actually may give rise to fractals is, for example, the
equations of quantum chromodynamics [14] or the second-
order phase transition [15, 16].

2. Mathematical formalism

2.1 Cardinality of sets

By a set is meant hereafter a set with an infinite number of
elements (infinite set), unless otherwise specified. To
compare one infinite set with another, in 1874 George
Cantor [17, 18] introduced the notion of cardinality, or the
cardinal number of a set. Under this definition, two sets
have the same cardinality (i.e. they are equivalent) if a one-
to-one correspondence (which does not need to be
continuous) exists between their elements. Set A has a
larger cardinality then set B if for any map of one set onto
another an excess of elements of the set A remains.

The cardinality of an empty set is taken to be equal to
zero. The next set in order of cardinality is that of all the
natural numbers, which is called the counting set. Any finite
set is obviously equivalent in cardinality to a part of the
series of natural numbers and is called no larger than
counting. The set of rational numbers and the set of
algebraic numbers are counting sets. An association of
counting number of counting sets is also a counting set. The
set of irrational numbers and the set of real numbers come
next in order of cardinality, the cardinality of the con-
tinuum. The set of all internal points of the unit interval
[0, 1Thas the cardinality of a continuum as well. {The points
inside [0, 1] can be matched one-to-one with the points in
entire  real line  through, say, the  function
y = (1/m)arccot x.}

The cardinality of all the points in a plane (a two-
dimensional continuum) is equal to the cardinality of the set
of real numbers, i.e. the cardinality of a continuum.
Moreover, the same cardinality characterises the contin-
uum of an infinite but countable number of dimensions and
the set of all continuous real functions of a real variable.
Otherwise, the set of all real functions (including discon-
tinuous ones) of a real variable has cardinality larger than
the cardinality of a continuum.

Note that the equality between the cardinalities of any
countable dimensional continuum —i.e. the existence of a
one-to-one correspondence between their elements—is
reached at the expense of a discontinuity in such a

correspondence. The continuity and one-to-one correspon-
dence of a map only in one direction also does not ensure
that the continuum of different dimensions can be dis-
tinguishable. One such example is the Peano curve [19] that
maps an interval onto a square continuously and in a one-
to-one manner.

One may require one-to-one correspondence and con-
tinuity not only for a map but also for the relevant inverse
map (a so-called homeomorphism). Then one can introduce
a characteristic which is invariant under such homeo-
morphic maps—the dimension of the set.

2.2 Topological dimension

Quantities which are invariant under homeomorphic maps
are called topological invariants. Two definitions of the
dimension of a set A are recognised: the inductive
dimension, ind A, and the Lebesque dimension, dimA.

H Poincare in 1912 sketched the first definition of the
inductive dimension in his article ‘““Why does space have
three dimensions?’’ [20]: ““To divide spaces it is necessary to
use sets called surfaces; to divide surfaces it is necessary to
use sets called lines; to divide lines it is necessary to use sets
called points...””. In modern usage the definition of the
inductive dimension dating back to Brauer [21], Urison,
and Menger [22, 23] is as follows: A set A has A <n, n
integer, if for any neighbourhood Ox of a point x € A there
exists a neighbourhood Ox € Ox, whose boundary G has
ind G < n—1. Under this definition, an empty set has the
dimension —1. A set is zero-dimensional if any of its points
has arbitrarily small neighbourhoods with an empty
boundary. For example, the following sets are zero-
dimensional:

—any nonempty finite or counting set;

—the set of real rational numbers;

—the set of real irrational numbers;

—any set of real numbers that does not contain an
interval;

—the set of points belonging to n-dimensional Euclidean
space, with all coordinates of the points being rational
numbers.

Note that all zero-dimensional sets are nonconnected, i.e.
they can be divided into nonempty nonintersecting sets.
However, the converse is not true: for any n there exists a
completely nonconnected n-dimensional set [22, 23].

The Lebesque dimension [24] for set A, dim A, is defined
by means of the cover multiplicity (the highest integer
number n for which there exist n sets with nonempty
intersection in the given system of sets).

The dimension dimA of a set A is the least integer
numbers n such that for any ¢ > 0 there exists a closed cover
of multiplicity < n+ 1, with the diameter of each cover set
being no greater than e.

In particular, the Lebesque definition of dimension
implies that any two-dimensional (n=2) set can be
covered by infinitesimal sets in such a way that each cover
set borders no more than two other sets at any point on its
boundary, (n+ 1 =3), and cannot be covered by infinite-
simal sets if each cover set would border only one other set
at every point of its boundary.

It was proved [22] that the inductive dimension and the
Lebesque one for the same set A coincide:

dimA =indA . (1)
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For any two sets A and B the following inequality is true  holds, where r is a real number. Then
[23]: lo
o gN(e)
Dy =1 fl—————=|. 7
dim(A UB) < dimA +dimB + 1 . ) B [ loge M

Any n-dimensional set can be represented as a sum of n + 1
zero-dimensional sets and cannot be represented as a sum
of a lesser number of zero-dimensional sets. The dimension
of n-dimensional Euclidean space E, equals n.

Any metric set A with countable basis, with dimA <n
can be mapped homeomorphically onto a Euclidean space
E, with dim E = 2n + 1 [25]. The number 2n 4+ 1 cannot be
reduced, i.e. there exist n-dimensional spaces that cannot be
mapped homeomorphically onto E,,. For example, a line
(dim = 1) exists that cannot be mapped homeomorphically
onto a plane (dim =2) but can be onto a three-
dimensional Euclidean space (dim = 3) [23].

The topological invariant, the dimension, turns out to
be related to the metric notion, the measure, since an n-
dimensional space has a positive n-dimensional measure
(the converse in general is not true).

2.3 Measure and Hausdorff dimension

A d-dimensional measure for any real positive number

0 < d < oo was introduced by Hausdorff [26] in 1919:
Let A =A;UA,U... bean arbirtrary partition of a set

A into a counting number of subsets A; with diameters

0(A;) <& Then for any & > 0, we find

m§ =inf» _5(A;) . 3)
i=1
Let us put
my(A) = supmg(A) , Q)
>0

then my(A) is called the d-dimensional measure of the set
A. Obviously, mg(A) =0 if A is an empty set; mo(A) = n if
A is a finite set containing n points, and my(A) = oo if A is
an infinite set.

The Hausdorff measure, my(A), is a nonincreasing
function of d for a given set A. Moreover, from the
inequality d < g and my(A) it follows that m,(A) = 0.

The Hausdorff dimension, Dy, of a set A is the upper
bound (sup) of the set of all real numbers d such that
mgy(A) > 0. Two important distinctions between Dy and the
topological dimension dimA should be stressed:

— Dy is not necessarily an integer number;
— Dy is not a topological invariant, i.e. it depends on the
metrics defined on a given set.

It is remarkable, however, that the lower bound (inf) of
all Dys corresponding to all possible metrics on a given set
is its topological dimension [27]:

infDy(A) = dimA . )

[t is commonly accepted to calculate Dy in the following
way. Cover the given set A entirely by a system of closed
sets A; with diameters 6(A;) < &. Find the minimal number
N(g) of such sets for every e. Clearly, N(g) is positive for
any ¢ > 0 and grows infinitely as ¢ — 0 only if A does not
consist of a finite number of points. Let a positive number
¢ exist such that the inequality

c

N(e) >
() > =

forany >0, (6)

Find by this formula the Hausdorff dimension of some
well-known fractal sets (we reach fractals proper at last!).

The Cantor set (CS) is defined as the set of real numbers
that can be represented as the sum

ooa
25

One can imagine CS, for simplicity, as the set of points
remaining after the following (infinite) procedure: take the
unit interval, divide it into three equal pieces and remove
the middle piece; then again divide each of the remaining
pieces (1/3 long) into three equal smaller pieces, etc. One
can easily check that the sum of lengths, L, of the removed
pieces is equal to one exactly:

() -

(The same result can be obtained if at every step of the
procedure one removes any finite part instead of one third
of the piece.) This confirms that the linear measure of CS
equals zero. Find its Dy. At the nth step of the
construction procedure, 2" intervals (1/3)" long each are
needed to cover CS. Therefore,

DM = [im (—

n—o0

a, =0 or 2. ®)

—]+2+ 7+
_3 9

log2" \ log2
log(1/3)") ~ log3
By analogy with CS, one can find for the Koch curve—the

curve of infinite length surrounding a finite area of a plane
[28]— Dy =log4/log3 = 1.261850... . The Serpinski car-

=0.630929... (9)

pet—an analogue of CS on the square—has
Dy =1log8/log3 =1.892789..., the universal M enger
curve—an analogue of CS on the cube—has

log20/log3 = 2.727833 ... [23].

Note that the three latter fractals have a topological
dimension (dim) of one, whereas dim CS is zero..

When we calculated the Hausdorff dimension for a
given set the metric was assumed to be the same over the
whole set. But what if different regions of the set have
different metrics? In other words, when some regions are
more ‘dense’ than others?

The following section answers this question.

2.4 Renyi dimensions

Cover again a given set A with a finite system of closed
subsets A; with the diameters §; < & (¢ > 0), and define the
minimal number N(g) of such subsets for every &. On every
subset A; let its own metric act so that the corresponding
Hausdorff dimension is equal to Dy (A;). To each subset A;
the relevant weight p; is ascribed, defined as the probability
for an element of the set A to belong simultaneously to the
subset A;. In the case of the approximation of infinite sets
A and A; by finite ones that contain N and N, elements,
respectively, one can find p; in the following way:

In practice, when one investigates fractal phase trajectories
one usually takes as p; the quantity inversely proportional
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to the time between two successive visits of the given set A;
by a point on the phase space trajectory. Clearly, the more
dense A; is (the more its elements are contained in a given
volume of the phase space) the larger its weight is. It
should be emphasised that, according to such a definition,
the set with least Hausdorff dimension has the largest
density because its elements are concentrated in minimal
volumes of the phase space.

It is convenient to introduce the so-called singularity
exponent, o;, for a given weight p;,

pi(l) oc 1%, an

which shows how rapidly the number of A; elements inside
some region of diameter / decreases as [/ is decreased. The
smaller A; is, the slower that decrease is, the more dense set
we have.

For example, a monofractal at fixed / can be covered by
N pieces, where N o< I 72", see Eqn (7). Consequently, for
every such cover piece we get the same p; = 1/N. Then

pi() o< IPn, Qe o, =Dy . (12)

In the case of a multifractal (i.e. a fractal set consisting of
monofractals with different Hausdorff dimensions), we
obtain a spectrum of singularities, o, < & < Epax-

By analogy with thermodynamics, one can define a
function I'(q, t), which is called the partition function.
Obviously, it generalises the Hausdorff measure [Eqn (3)] to
multifractals. Each subset enters I'(g 7) with its own weight
pi:

N(e)

I(g,7) =lim > ploi".
i=1

At ¢ =0, the function I'(q, 7) reduces to the usual (—1)-
dimensional Hausdorff measure m_.(A) for the whole set,
see Eqns (3) and (4), so that the corresponding value
—1(qg = 0) is equal to the Hausdorff dimension of the set A,

—1(0) =Dy (A) . (14)

One can show [9, 29] that for every value of ¢ there is also
a unique value of 7(g), such that the function I'[g, 7(¢q)] has
a positive-definite value 0 < I'[g, 7(¢)] < oo. Then, for any
real value of ¢ one can introduce generalised Renyi
dimensions D

(13)

q»
T(‘f) = Dq(q - ]) . (15)

By such a definition, the Renyi dimension D is equal to
the Hausdorff dimension Dy of the set A. Usually, an
additional normalisation condition is imposed, I'(¢, T) =0
for all ¢ and t(g), for which I'(g, 7) is positive and finite. In
order that the normalisation condition for I'(¢, t) turn into
the normalisation condition for the weighted sum of
subsets of set A,

o0
Zpi =1 )
i=1

the equality (1) =0 must be obeyed. From Eqn (13) it
follows that at ¢ > 0, subsets with the largest weight give
the main contribution to I'(g, T), i.e. the densest subset
with minimal «. Substituting Eqns (11) and (15) into
Eqn (13) and requiring I'(g, ) = 1 we obtain Dy, = o,
Analogously, at g €0, subsets with smallest weight (i.e.
most rarefied subsets with maximal «) will give the main
contribution to a, and D_,, = a,,,,. Therefore, D, is equal

(16)

to the Hausdorff dimension of the most dense subsets of
the set A, whereas D_, is equal to the Hausdorff
dimension of the most rarefied subsets.

The next step is to define how many subsets with the
given singularity «; are inside the set A. In other words, one
needs to determine the dimension f(«;) of the fractals with
the singularity «; inside the multifractal A. In accordance
with Eqn (7) for the Hausdorff dimension, we can write for
the number of pieces of the diameter / covering the fractals
with the singularity o;,

n(a;, 1) oc 177 a7

If o is continuous with the density p(«) then the number of
fractals with dimensions in the interval (o, o+ doa) will
obey the following law:

n(a, 1) = da p(o)l 7@ (18)

Then, we substitute the expression for p; from Eqn (12)
into Eqn (13), pass to the limit [ — 0, replace the
summation over i by integration over a, and finally obtain

N () _
I'(g,7) =lim > D = =) J da p(a)l®7® = 1. (19)
i=1

The integral can be calculated by the method of steepest
descent since the region with the smallest exponent gives
the greatest contribution as /— 0. Obviously, this mini-
mum is defined by two conditions:

[z —f@)] =0,  [gz—f@)]" >0, (20)
wherefrom we immediately get
) =q, ") <0. 21

Note that here aq is already a function of ¢. Then we
replace the value of the integral in Eqn (19) by the value of
the integral function at the extremum point, taking into
account the normalisation condition for p(a), and obtain

1(q) = qa0(q) — o (4)] - (22)

The function f(a) is called the spectral function for a given
multifractal, and Fig. 1 shows a typical example. It is easy
to see that f(o) is related to the function t(g) via the
Legendre transform. Indeed, substituting the first expres-
sion from Eqn (21) into Eqn (22), we obtain

©(q) = af () — f(@) . (23)
f
05 F ..°°“"°".,
® ..
.. ..
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Figure 1. Spectral function of the Feigenbaum attractor, calculated on
the basis of formula (55).




Fractal analysis and Feigenbaum universality in hadron physics

613

The converse formula is also true:

fl@) = q7'(q) —1(q), since a(q) =7(q). (24)

Certainly, in the case of a monofractal the spectral function
‘shrinks’ to a J-function, since the whole monofractal is
characterised by a single value of o that equals its
Hausdorff dimension [see Eqn (12)], and f(&) = a.

A typical multifractal has a finite number both of the
most concentrated subsets and of the most rarefied ones
(most often only one); therefore, the set of such subsets is
zero-dimensional (see Section 2.2) and the spectral function
at these points comes to zero,

f(amin) :f(“max) =0. (25)

From Eqn (21), we find that at the point «(0) the spectral
function has a maximum. From Eqns (24) and (14), it
follows that this maximum is equal to the Hausdorff
dimension of the multifractal,

fmax (@) = f[2(0)] = —7(0) = Dy (4) . (26)

As a rule, for a given multifractal, one calculates first the
7(g)-dependence [or ¢(t), if it is more convenient] and then
finds its spectral function from Eqn (24).

2.5 Stochastic analysis

The theory given above can be called the ‘geometrical’
analysis of fractals. Unfortunately, this standard theoret-
ical framework presupposes very restrictive calmness and
regularity assumptions. This was noted in a recent work by
Schertzer and Lovejoy [13], where they proposed a more
general approach to the study of fractals, so-called
‘stochastic’ analysis. Later in this section [ outline its
basic statements, referring the interesting reader to the
original papers [13, 30, 31].

Consider again a set A consisting of subsets A; with the
corresponding weights p; and singularity exponents a;, sce
Eqn (11). We will take the numbers p; as corresponding to
some (highly intermittent) ‘field” ¥, produced by successive
iterations of the procedure of random modulation of larger
structures into smaller ones with a given probability
distribution (for example, the well-known a-model [6]).
This approach is applied, in particular, to the description
of energy transfer from large vortices to small ones in a
turbulent fluid where the density of the energy flux plays the
role of the field .

Certainly, in accordance with a rigorous mathematical
definition we get a field (infinite number of the degrees of
freedom) only by an infinitely small scale of partition (or
covering) of the given set A. At finite scales (~/), we obtain
a descrete analogue of the field Y, defined on the N, sets
with the weights p;. [ts behaviour can be characterised either
by its probability distribution

Pr(y, =>17") oc [ (27)
or by the corresponding law for the statistical order-¢
moments (by means of a Laplace transform):

W9y o 1K@ JI*CIHU(Y) de(y) . (28)
The exponent ¢(y) in Eqn (27) is a codimension since the
probability distribution determines the fraction of the
probability space occupied by the singularities exceeding
the order y. At scale /, the probability can be estimated as

the ratio of the number N,(y) of corresponding sets to the
total number of sets N;:
Ni(y)

Pr(l//l 2[7}’) X —

N, (29)

cf. Eqn (10). What is the relation between y, ¢(p), and f(«)
introduced in Section 2.4? This relation can be deduced but
only for the values c(y) <D, where D is the dimension
(Euclidean) of the embedding space. Indeed, by Eqns (7)

and (18) we obtain N,oc/™” and N,(y) x 179 Now
consider D-dimensional integration of the field ¥
mA) = jw, dx . (30)

II)(A) corresponds to the energy flux (in turbulence) or the
weight p; (in fractals). From Eqns (27) and (29), we
immediately get

Pr [I,(A}) > %] o 1P | 3D
where the relation dix o [P is used. Consequently,
a=D—y, fla)=D—c(y). (32)

The restrictiveness of the ‘geometrical’ approach is thus
easily seen: o and f(a), by definition, are positive so that in
D-dimensional space one can see only a part of the field y,
singularities, ¥; < 9, ¢(y) < D, so—called ‘calm’ singularities.
The singularities with y > D are called ‘wild’. Increasing D,
if it is possible, one extends the range of observed
singularities. Note that the quantities y and c(p) are
intrinsic field characteristics independent of D, while o and

fla) diverge as D — oo.

Write down a generalisation of the partition function,
the so-called ‘trace moment’ for the field i, observed on the
set A with the diameter-/ covering:

Tyl = <Z T <Z ).

where (...) indicates averaging over all realisations of the
field Y at the given scale /. The trace moment combines
ensemble with spatial averaging. In particular, in hadron
physics it corresponds to the averaging over all events at
fixed bin size in momentum space. Remembering that
II(A;) corresponds to p; on a fractal with an /-diameter
covering, and using Eqn (13), we obtain from Eqns (33)
and (28):

Tr, l//;] o 7@  jPla—1)-K(a) ,

(33)

(34

relating t(g) (depending on D) and k(g), the intrinsic
quantities of field. Like f(a) and t(g), the quantities c(y)
and k(g) are related via the Legendre transform:

K(q) =yc'(y) = c(v),
c(y) = qK'(q) — K(q).,

(3%)
(36)

g=c'(y)
y=K'(q) .

To summarise, we have seen that a geometrical approach
to the study of fractals is limited. The values of the
quantities o and f(a) depend on the dimension of the
observing space and, thus, cannot play the role of intrinsic
quantities of the fractal. In other words, the entire
spectrum of singularities is inaccessible: first, because of
the finiteness of D; second, because of the exceptional
rarity of strong singularities (fluctuations) so that they are
rather unlikely in a single realisation (separate event).
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Thus, to get more complete information about the
singularities of the field ¥ (having the set A as its D-
dimensional projection) one needs to increase D and the
number of realisations (events) and then to average over
them.

In particular, in hadron physics one proceeds from the
projection on the rapidity axis (D = 1) to three-dimensional
momentum space (D =3) and gains a large number of
events (of the order of a hundred thousand) in particle
collisions.

Unfortunately, this is not sufficient since there exist
stochastic processes generating fields with so-called ‘hard’
singularities. They are not localised in space: in the
neighbourhood of some point x, the limit lim,_q7,(x)
does not exist. Thus, they are in principle out of the scope
of the geometrical version of fractal analysis. But this is the
subject of a separate article, so [ refer the interested readers
to Refs. [13, 14, 30, 31]. In the second part of this review
(Section 3.3), it will be shown nevertheless that a substantial
amount of information about the process generating a given
multifractal can be extracted in the framework of the
geometrical approach.

3. Physics applications

In this chapter, it will be shown how the geometrical
version of fractal analysis is applied in practice. More
precisely, only the connection between this method and the
Feigenbaum universality will be considered because other
applications were described, for example, in Refs [9—-12].
To begin with, we shall study abstract mathematical
objects, the Feigenbaum attractor and its finite approx-
imations—limit cycles; then we proceed to the study of
real sets, charged particle distributions along the rapidity
axis.

3.1 Obtaining 7 ( g)-dependence
In practice, we always deal with finite sets, whether it is a
set of points on the phase space trajectory or a set of
charged particles generated in proton collision.

Divide a given set containing n,; elements into N

nonintersecting groups A;, i=1,2,..., N, with the same
number of elements n. Obviously, nN = n,. Each group A
receives the same weight p; = 1/N but different diameter

(bin) ;. Consider, for example, a set of charged particles in
the projection on the rapidity axis in a separate event so
that y; is the rapidity of the ith particle. Then the diameter
0; may be found from the formula

(37

5j = |xjn _x(j—l)n+l| :
Here the subscript j labels the groups of particles
(j=1,2,...,N) while x; is the coordinate of the ith
particle on the unit interval [0, 1], obtained from the entire
rapidity interval [—Yax> Yminl by means of some smooth
transformation, for example, x; =1(tanhy;+1). Then,
from Eqn (13) and the condition I'(g, ) = 1, we get

N N
D pIGT=NTIY 5T =1. (38)
i=1 i=1

From this, we immediately obtain

| N
= o; " 39
4(t) = g 20 (39)

i=1

and then the 7(g)-dependence by inversion. This method —
the same-weight method (SWM)—is applied in hadron
physics only in the case when the velocities of all
particles in a given event are known to a sufficiently
high accuracy.

However, it is possible to find the t(g)-dependence
directly. To to this, divide the entire rapidity interval
into the same diameter-6 bins. Then the same diameter
bins will correspond to different weights, p; = n;/n, where
n; is the number of particles in the ith bin. More precisely,
define the moments G, [32],

N
G,3) =3 0! (40)
i=1

where the sum runs over all nonempty bins. Again, map the
entire rapidity interval onto the unit interval [0, 1] by
means of some smooth transformation. Then, for not too
small a value of ¢ (i.e. if the number of empty bins is not
too large), from the condition I'(¢, t) it follows that

_log G,(9)

G,0) =59, o) =12

(41)

In practice, this method turns out to be less exact than
SWM. As an illustration, apply SWM to the Cantor set.
On the nth step of its construction we have

Yy Y
s = — N 6 = — .
n=(0) =)
so that we immediately get from Eqn (13) and condition
(g, 7)

(42)

log2 log2
=(g—1 , = 43
2(q) = (¢ )10g3 1= Tog3 43)
for all ¢g. From Eqn (24) it follows that
log2 .
a=D,= Tog3 =const, f(a) =D, =a=const, (44)

as would be expected for a monofractal.

Below we apply the formalism considered to probably
one of the best known multifractals—the Feigenbaum
attractor. Moreover, in recent years a hypothesis was
put forward on its presence in the characterictics of particle
multiproduction in high-energy collisions [33 —36].

3.2 Limit cycles and the Feigenbaum attractor

The Feigenbaum attractor is a multifractal on the interval
[0, 1] gomeomorphic to the Cantor set. The Feigenbaum
attractor can be obtained as a result of infinite series of
period doubling bifurcations of limit cycles for one-
dimensional one-parameter maps of the interval [0, 1].
(Recall that the bifurcation is called a qualitative sudden
change in the behaviour of a solution to some nonlinear
equation as the governing parameter is smoothly varied.)
In order that such bifurcations are possible, the given maps
must obey the following conditions [37]:

—have a unique maximum in the interval [0, 1];
—increase monotonically from the left of the maximum
and decrease monotonically on the right of it;

—depend smoothly on the governing parameter;

—the Schwartzian of the map must be negative at the
point of bifurcation.
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Recall that the Schwartzian (the Schwartz derivative) of a
function f(x) is an expression of the form

f”@)3{ﬂ@qf

) 2L

Obviously, smooth maps with a quadratic maximum obey
the conditions listed above; therefore, the Feigenbaum
attractor can be obtained by iteration of the centre of the
unit interval by means of, for example, a logistic map

Xn+1 le,,(l _xn) (45)

at A = Ay =3.5699456... . If the governing parameter 4
takes values on the interval 3 < A < A, then the succession
of the points x, at n — oo converges towards some limit
2"c¢cycle (m =1, 2,...), corresponding to a given 4 = Am.
Every such limit cycle can be considered as a finite
approximation of the Feigenbaum attractor. When 4 is
smoothly increased within the interval 3 < 1< 4, the
periods of the limit cycles successively double, 2™ — 2™+,
i.e. period-doubling bifurcations occur. The name ‘attrac-
tor’ in this case reflects the fact that all points from the
interval [0, 1] except a counting set are attracted by means
of Eqn (45) at A = A, to the Feigenbaum attractor [37, 38].
This multifractal received its name in 1978 in honour
of its discover and investigator, the American scientist
M Feigenbaum of Los Alamos. (For the Russian transla-
tion of his article see Ref [39].) The main point of the
discovery is that the cycle bifurcations for all maps obeying
conditions listed above are described by two universal
constants (the so-called Feigenbaum constants) [40, 41]:

oap =2.5029078 ..., &p = 4.6692016... . (46)

The constant dp characterises the rate of convergence of
the governing parameter critical values towards its limit
value:

lim )'m B j'mfl _
m—oo )'m+l —4

OF 47

m
while the constant o characterises the scale of successive
‘splittings’ of the limit cycle elements after each bifurcation:

—1/2
o =172

48
Mm—00 |xm+l —1/2] (“5)

=05,
where op denotes the limit 2”-cycle element nearest to the
cycle element x = 1/2.

One-dimensional one-parameter maps are commonly
used in the study of the phase space trajectories of
nonlinear dynamical systems, where they appear as Poin-
care maps [42]. (Recall that the Poincare map is a
dependence of the form x(n+ 1) = Glx(n), 4], obtained
by intersection of a phase space trajectory in d-dimensional
phase space and (d — k)-dimensional hyperplane,

x(n) = {x1(n), xo(n), ..., x4 ()} .

The number n labels the succession of the points of
intersection along the trajectory.) It turns out that the
restrictions imposed on the maps (see above) are rather
weak, so that plenty of real physical systems satisfy these
restrictions. As a consequence, the Feigenbaum discovery
led to an explosion of experiments confirming the existence
of the universal constants [43].

One finds by Eqn (45) the limit superstable 8-, 16-, 32-,
64- and 2048-cycles. The prefix ‘super’ means that the given
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Table 1.
2m Dy D, D_y

8 0.284 0.358 0.446
16 0.310 0.403 0.519
32 0.324 0.430 0.563
64 0.334 0.448 0.593
00 0.377... 0.537... 0.755...

cycles contain element where the first derivative of the map
vanishes (in our case, this is x =1/2). The 2048-cycle
reproduces with high accuracy the characteristics of the
Feigenbaum attractor, see Ref. [29]. To obtain the ¢(t)-
dependence we apply SWM since the coordinates of the
cycle elements are known within the interval [0, 1] and may
be determined to arbitrary accuracy [38]. The nearest cycle
elements are joined in pairs generating a division of the unit
interval into N subintervals (N = 2" for 2"-cycle) each
with weight p;, = 1/N. Setting various t we find accord-
ing to Eqn (39) the ¢(tr) dependence for every cycle. The
generalised Renyi dimensions, D,, were then found by
Eqn (15). In Table 1, the obtained values D, D,, and
D_,, are shown for the limit 2" cycles and the Feigenbaum
attractor.
Recall that

Do =Di", D_o=Dj" (49)

among all Dy for all subsets of the set A (see Section 2.4).
For the Feigenbaum attractor, Djj" is generated by subsets
homeomorphic to the Cantor set with the rescaling
parameter ap’, whereas DI is generated by subsets
with the rescaling parameter ocE' [29]. In other words, to
calculate the limit Renyi dimensions for the Feigenbaum
attractor we use Eqn (42) where, instead of 1/3, we
substitute first ap> and then ap', and from Eqn (43) we

obtain respectively

log?2

F

=0.377756..., 50

©  2logay (50)

D' — 2D, = 1°82 _ 755510 (52)
e *  logag

For Renyi dimensions with arbitrary ¢, the analytical
dependence can be obtained by approximating the
Feigenbaum attractor by a two-scale Cantor set [29],
8, =ar' and &, =op> with the same weights p; =
po = 1/2. Substituting these expressions into Eqn (13) we
get for the 2"—cycle in the limit case m — oo

I(q, 7) = (plo] +pis)" =1. (52)
Wherefrom
af(af +1) =27, (53)
and
1 1/4+29—-1/2
pr = H0) _loa(T/ATT 1)) -

Cg=1 (g—1)logas
For the limit Renyi dimensions DEOO and Dzo, Eqn (54)
gives the exact values. For Dg, we obtain the value 0.525,
which is only 2.5% different from the true value 0.537. For
intermediate Dgs, the accuracy is better than 2.5%.
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From Eqn (54), it is easy to obtain an explicit expression
for the spectral function of the Feigenbaum attractor fg ()

e (2)

o =200 —2D,

_alogo—a;loga; —aylogay

log?2 (55)

o0 =2Dy —a .
This is shown in Fig. 1.

3.3 Transfer matrix method
In this section, it will be shown how to use our knowledge
of the fractal structure of the object under consideration
(its Renyi dimensions) to obtain information about the
dynamics that is responsible for generating of this object.
This became possible owing to the transfer matrix method
by Feigenbaum, Jensen, and Procaccia, 1986 [44]. The key
idea of this method rests on an analogy between the
process of refinement of the fractal measure and a transfer
matrix theory of an appropriate Ising model [45].
Consider a finite cover of a given fractal by N non-
intersecting pieces {A;}. Let as usual, §; be the diameter of
the ith piece and p; be its weight. Apply SWM (Section 3.1)
to find the g(t)-dependence for the given set, i.e. consider
such a covering of the fractal that all p; = 1/N are the same.
Then, the function ¢(tr) can be found from Eqn (39).
Increase successively the number of the pieces N according
to power law, N — N, =a", where n is a positive integer,
a > 0. Then for any n, we can label §; (1 <i<N)asd, ..,
where g takes on a values 0, 1,..., a — 1 ifa is an integer. If
a is a fraction then ¢ takes on [a] + 1 values O, 1,..., [d],
where [a] is the integer part of a. Hereafter we restrict
ourselves to the case of integer as, for simplicity. Next
define the daughter-to-mother ratio for the neighbouring
‘generations’ [44]:
w = 01,60yl - (56)
58,,,...,8]
Suppose this ratio depends only on two latter indices
€ny15 &0 Then o, . defines a (transfer) matrix a X a, so
that any diameter can written as the product of the transfer
matrix elements,

0, .0

Vg Ve -

(57)

=0 g ..
Epyeess €1 €n -1 En—1 Ep—2

(with no summation). The summation appears when we
substitute this expression into Eqn (39), where the sum on
the right-hand-side becomes as follows:

&

1 -
2 :5' = 2 :(O.Enen—l Ot 62+ Oerg 551)
i=1

Ve
=> _[o@)];, 8" =Tr[o" ()] (58)
€81
[0'(1:)]81_5A =0,y -
We see that summation over the is transforms into

summation over all possible g which, in turn, reduces to
the production of the o matrices. It should be clear by now
how the analogy arises with the calculation of the partition
function, Z,, in a one-dimensional Ising model with
nearest-neighbour interaction [45]:

S
ZN=zvs:exp<—ﬁ>, S=EZE;8;+1+HZF';» 9

where ¢; is a spin variable at the ith site taking on m values,
T is the temperature, E is the spin—spin coupling constant,
and H is the applied magnetic field. In the simplest
nontrivial case, m = 2, the corresponding transfer matrix
Oge, appears as follows:

a:é(exp(—J—K) exp J )

exp J exp(—J+K) /)’
where £ is the normalisation factor, J = E/kT, K = H/kT.
The number of spin states, m, at each site of the
corresponding Ising chain determines the size of the
transfer matrix. It shows how many times, a, the number
of the fractal cover pieces increases at every step. The
transfer matrix elements provide information on the scale
of successive splittings of elements of a given fractal set at
every step of its covering.

The size of the region of interaction depends on how far
the ‘memory’ goes back in the definition of ratio (56). If we
truncate the succession &,41, &,, ..., & by g, then we get the
nearest-neighbour interaction. Such a limitation is justified
because we know that in many fractal sets, the ‘memory’
falls off exponentially.

Taking the trace in Eqn (58) reduces to the summation
of nth powers of the eigenvalues 4; for the matrix o(t):

Tr [¢"(7)] = za:l," . (60)
=

In the limit n — oo (the so-called thermodynamic limit in
the language of the Ising model), only the largest
eigenvalue ‘survives’, A,, so that we obtain from
Eqns (39), (58), and (60):

logi, (t
q{l(t) = 10g+ﬂf ) *

(61)
We use the subscript a to determine the function ¢,(t) from
Eqn (39). Note that a and A, (z) are related,

@ = 2,(0).

which follows immediately from Eqn (61).

Thus, for a given matrix A, (t) we find the value a from
the corresponding characteristic polynomial of the order
a X a. In lowest-order nontrivial case of 2 X 2 matrix (which
corresponds to 1 <a <2) we get

23(2) = 2 (1)(00¢ + 0i7) + (900011) " = (G01010) T =0..
(63)

(62)

The matrix elements gy and gy appear only as a product,
and thus A, (1) depends on three scales. Hence, together
with A, (1) we have four unknown and, therefore, need at
least four experimental points 7(g). As usual, one is taken
at ¢ =0 since 7(0) = —D, [see Eqn (14)].

Then, from Eqn 62 it follows that A(—D,) =1, and we
get from Eqn (63),

] 0
001010 = [(1 _U(L))(;))(] _‘71)1(')] /P, (64)

Note that from Eqn (62) at ¢ = 1(r =0) it follows that
a=2,(0). At T=0, Eqn (63) gives two solutions for 4, (0)
(and, thus, for a): 1,(0)=2 for any o;#0; and
2.(0) = (/5+1)/2 at 6o =0 or a;; = 0.

It is time to summarise. Suppose we know the ¢(t)-
dependence for a given fractal and wish to know what
dynamical process generates the given fractal (for example,
a phase space trajectory or its Poincare section). By ‘know
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the dynamical process’ I mean ‘calculate the transfer matrix
elements and the a value’, since the latter unambiguously
define the type of the corresponding Poincare section.
‘Dynamics’ means the dynamics relative to the correspond-
ing governing parameter not the dynamics in time at the
fixed value of the governing parameter. For example, the
case a =2 corresponds to the period-doubling bifurcation
dynamics.

A priori, the value a is unknown and, thus, the size of
the transfer matrix is unknown too. Therefore, one begins
as usual with the simplest nontrivial case of 2 X 2 matrices,
solving the system of four linear equations (63). The a value
is found then from Eqn (62). If the solutions exist and are
sufficiently stable relative to various ¢(t) then the study is
finished here—the dynamics is taken to be found. If there
are no solutions or they exist but change strongly at various
g(t) then one has to study the case of 3 x 3-matrices. If
again there are no stable solutions one proceeds to the case
of 4 X 4-matrices and so on.

It is necessary to make one remark. In experiments, only
a finite precision, say, Ad is accessible to measurement of
the cover diameter of the fractal under consideration. The
diameter fluctuations §; — d; + Ad cause the g-fluctuations,
q — q+ Ag, where
N 4G+ —a(z)

bq r~ —Thd =

(65)
Therefore, to minimise the influence of experimental
fluctuations on the finite result one needs to take 7-values
near zero.

The transfer matrix method works if among the
eigenvalues of ¢ matrix, there is one much larger than
the others. Then the function ¢,(t) [Eqn (61)] fits with high
accuracy the ‘experimental’ function ¢(z) [Eqn (39)] on a
sufficiently large interval.

One may apply the transfer matrix method to the limit
cycles and Feigenbaum attractor in order to see that this
method really allows one to reveal the period-doubling
dynamics. Taking ¢(t)-dependence for each limit cycle and
Feigenbaum attractor, we find according to Eqns (63) and
(62) the elements of the corresponding transfer matrices and
the a-value (see Table 2). The latter equals two with high
accuracy for any limit cycle and Feigenbaum attractor as
would be expected, while the values oy, o, and gy 0
converge from below to their limit values. These limit values
by construction [see Eqn (56)], can be expressed via og:

AF —1 AF -2
Opp =%F , O] =0f . (66)
Then D" and DL,

following way:

are related to oy and o), in the

log?2 log?2
Dlioo:—i, Dzo:—i. (67)
log ag loga,
Table 2.
n log2 log2
2% a Goo a1 601010 B -2k
logoy, logoagy
8 2.000 0.2091 0.0857 0.0210 0.282 0.443
16 2.00 0.2613 0.1062 0.0315 0.309 0.517
32 1.999 0.2852 0.1160 0.0404 0.322 0.553
64 1.999 0.3029 0.1234 0.0458 0.331 0.580
oo 2.000... 0.399... 0.1596 0.0722 0.377... 0.755...

With high enough acuracy, these equalities are valid also
for the limit cycles, compare 2nd and 4th columns of
Table 1 and the 6th and 7th columns of Table 2.

Thus, the transfer matrix method allows one unambig-
uously to find the origin of the limit cycles:

—they are self-similar, if the scale of the fractal cover is
successively doubled (o = 2);

—two scales take part in their construction (oo, and og1;),
converging towards o' and o, respectively;

—no transfer matrix element is zero.

The only dynamics obeying all these conditions is that of
period doublings generated by Poincare maps with a
quadratic maximum. If some other fractal under considera-
tion exhibits the same properties of the transfer matrix
elements then one can be sure that the underlying dynamics is
that of period doubling. The transfer matrix method was
successfully applied to the data processing in the Benar
experiment [44].

3.4 Analysis of events in hadron collisions

Armed by such a promising technique, let us use the matrix
transfer method to analyse the events that occur in
hadron—hadron collisions. Let us assume that the
coordinates of the observed particles in the momentum
space form a finite set which is an approximation of some
unknown fractal [46], the dynamics of which we want to
reveal. This approach to hadron physics has recently
become a powerful instrument for the investigation of
multiple formation of particles [12].

For simplicity, let us consider a one-dimensional section
of the momentum space, which is the rapidity axis, and
denote the rapidities of the observed particles by y;. There is
a clear analogy with the one-dimensional Poincare section
of some multidimensional phase trajectory such that the
rapidities of the observed particles correspond to the point
of intersection of this trajectory and the Poincare section.

It should be stressed that our interpretation of the
relationship between the multiplicity of particle collisions
and the Ising model differs radically from the usual
interpretation found in the literature [47, 48] Usually a
particle on the rapidity axis is assigned a spin variable
whose value is 1 on an Ising chain (spin 0 corresponds to the
absence of a particle) and the transfer matrix reflects the
interaction of such spins. Naturally, this approach cannot
be used to extend the treatment to more complex Ising
chains when at each site there may be more than two spin
states and/or the interaction involves more than just the
nearest sites in a chain.

However, in our model the particles are not assigned
spin variables and these variables appear only in the course
of transition between different partitions formed from the
same set of particles on the rapidity axis. This set is
regarded as an approximation of some infinite fractal
set. In our approach the ‘spin—spin interaction’ is a
‘topological’ characteristic of a fractal and it is in no
way related to correlations in the positions of real particles
on the rapidity axis. Our model can be generalised to more
complex Ising chains, which seems to be a very promising
field for investigation, but this is outside the scope of the
present review.

For comparison, let us consider two experimental
events: the well-known anomalous event reported by the
NA22 collaboration [49], who investigated the wtp inter-
action with the centre-of-mass energy /s =22 GeV, and
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Table 3.
log2 log2
ot Do, Dy D_w a [ ) 001010 - -
logay, log oo

26 0.337 0.811 1.241 2.000 0.550 0.125 0.238 0.334 1.16

24 0.326 0.666 1.181 1.999 0.558 0.117 0.120 0.324 1.19

22 0.315 0.737 1.163 1.999 0.579 0.108 0.166 0.312 1.27

20 0.302 0.568 0.975 2.000 0.470 0.098 0.089 0.299 0.918

18 0.288 0.657 1.066 2.000 0.608 0.088 0.101 0.286 1.39

16 0.273 0.492 0.881 2.000 0.458 0.076 0.049 0.270 0.888
119 0.487 0.782 1.37 1.999 0.609 0.241 0.140 0.488 1.40

the event recorded by the JACEE collaboration when a
cosmic-ray silicon nucleus interacted with a photographic
emulsion at an energy of about 4 TeV per nucleon (Si—
AgBr interaction) [50]. In the case of the NA22 event, the
dependence ¢(t) was found by the same-weight method [see
expression (39)], since the rapidities of all 26 particles are
known accurately (Ap/p <2%). The complete integral
[0, 1] by a smooth transformation, x; = (tanhy;1)/2, and
all the particles—beginning from the first—were com-
bined into pairs with the nearest neighbour on the x axis.
The diameter d; was calculated from formula (37).

In the case of the JACEE event, we determined the
dependence 1(g), expressed in terms of the moments G,
[defined by expression (40)], since in the case of this event
only the histogram dN/dy was known with the bin size 0.1
on the pseudorapidity scale. We analysed only the part of
the histogram above the smooth background [51, 52],
representing 119 particles out of the total number of
charged particles ng, = 1010 % 30.

q

03 | | | |

—4 0 4 8 12 q

Figure 2. Dependences of the Renyi dimensions D, on ¢ for the
Feigenbaum attractor (curve /), for the limits 16 an d18 cycles
(curves 2 and 3, respectively) and for the anomalous event reported by
the NA22 collaboration [49] circles (labelled 4), analysed on the basis of
just 20 central particles.

Earlier, in determination of the Renyi dimensions and of
the transfer matrix elements, we selected for each event its
own value 7(0) and three arbitrarily selected other values of
7(q) (see also the comment in Section 3.3), which we then
substituted in expression (63). The resultant system of four
nonlinear equations was solved numerically by the
multidimensional Newton method.

The results are presented in Table 3, where the last row
(niy = 119) corresponds to the JACEE event and the other
rows represent the NA22 event. The first column gives the
number of particles included in our analysis: we dropped
successively two outermost particles (one from the front
hemisphere and the other from the rear hemisphere) and we
thus selected the central interaction zone.

The transfer matrix method revealed, for both events,
the doubling dynamics (a = 2), the fact that all the matrix
elements have nonzero values, and ensured a reasonable
agreement between the theoretical (in the region of the
8, 16, 32 cycles) and experimental values of the matrix
element o;, which is responsible for the parts of the
fractal with the highest density of the elements. More-
over, the D, dependence for the NA22 event with 20 central
particles was found to be almost identical with the D,
dependence for the limit 16 cycle when ¢ = 6 (Fig. 2). It was
found that this near-identity is not accidental and in the
next section I shall consider briefly the bifurcation model
which accounts for this.

3.5 Bifurcation model

A bifurcation model was proposed by me in 1992 [33] to
account for the intermittency in the rapidity distributions
of charged particles formed at high energies [6, 11, 12]. The
main assumptions made in the bifurcation model are as
follows:

(1) there is a nonlinear equation which controls the
dynamics of quarks and gluons, and the solutions of this
equation depend on just one parameter which is the energy
V/$ of a collision in a single event;

(2) the number of partitions of the phase trajectory
corresponding to a given solution determines the number of
intermediate particles (the number of clans), which may
decay into the observed particles;

(3) the number k of the particles in each decay may vary,
but the average over all the decays and events remains
constant for different energies:

(4) on the phase trajectory there is a one-dimensional
Poincare section which has a single quadratic maximum if
the direction of this section in the phase space is selected
along the rapidity axis.

In other words, after some transformations, we can
write down the Poincare map in the form of a logistic map,
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described by expression (45), where the governing para-
meter A depends on the collision energy as follows [33]:

1
3V5T
where /5 is the collision energy in gigaelectron-volts. We
recall that, for each value of the governing parameter
A € [3, A there is one and only one stable limit 2" cycle
(m=1,2,3,...) in a unit interval [0, 1]. The position of
each element in a cycle can be calculated with any desired
precision. The complete interval on the rapidity axis
[~Vmax> Ymax] 18 mapped onto [0, 1] by a smooth
transformation, such as (tanhy+1)/2, which does not
alter the topological characteristics of the initial fractal set
(formed by clans).

Consequently, for any energy v/5 of a collision in a given
event we can use formula (68) to find the corresponding
value of A and, consequently, the corresponding 2™ cycle.
This is the key feature of the bifurcation model: the
observed distributions of particles in the momentum phase
space (in particular, the rapidity distributions) are simply
‘pictures’ of the distributions of the elements of the limit 2"
cycles in a unit interval.

The decay of clans into secondary particles reduces the
density of the initial fractal set and this increases the
observed Renyi dimensions D, with ¢ <0, compared
with the true dimensions D,. This is the reason why, in
the bifurcation model framework, there is some discrepancy
between the values of the matrix element o, responsible for
the parts of the fractal with the minimal particle density.

This is supported also by the values of D_,, Dy, and D
for the JACEE event, which are identical with the
corresponding average values for the events involving
collisions of heavy ions [53]. One should point out also
that equality (67) for the experimental events is satisfied
with high precision (compare second and fourth, and also
ninth and tenth columns in Table 3), particularly in the case
of D, and a;;, undistorted by the clan decays. Conse-
quently, the transfer matrix elements for the observed
experimental events can be obtained directly from D,
Dy, and D_,, even without solving Eqn (63).

For D; with ¢ > 0 and particularly with ¢ > 1, respon-
sible for the densest parts of the fractal, we can expect very
small deviations from the true values of D,. In fact, if the
clans decay isotropically and independently of one another,
the probability that several m mesons are within a certain
rapidity interval is proportional to the size of the interval.
Consequently, the smaller the interval, i.e. the higher the
density of particles in this interval, the lower is the
probability of random ‘imitation’ of the true fractal
dimension by the secondary m mesons.

The question is: are there any other characteristics of
multiparticle production, apart from D, for ¢ > 1, that are
predicted by the bifurcation model and which permit direct
comparison with experiments? The answer is ‘yes’, and we
shall consider this answer in the next section.

A Ay — (68)

3.6 Feigenbaum universality and period-doubling
dynamics in hadron physics

The next characteristic of the limit 2™ cycle which can be
used in comparison with experiments is the dependence of
the maximum number of elements n,,, within a fixed
interval 8¢ on the value of &¢.

max
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Figure 3. Dependences of A,ax on ng,, described by expression (69),
plotted for An=0.5(a) and Ay =0.1 (b). Experimental points:
(a) symbols labelled 7 represent w'p collisions with /s =22 GeV [49],
symbols labelled 2 represent pp collisions with /s = 540 GeV [54],
symbols labelled 3, represent the p—AGBr interaction for
Py = 400 GeV/c [55]; (b) symbols labelled 7 represent the ntp colli-
sions with /s =22 GeV [49], symbols labelled 2 represent pp collisions
with /s =22 GeV. The theoretical predictions are given by the open
squares which, for the same of convenience, are joined by rectilinear
segments.
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The theoretical dependence of n,,,(d€)/8¢ found
experimentally corresponds to the maximum particle
density A .. defined as follows:

Amax = <%> k)
An

where Ay is a fixed interval of the pseudorapidity; Ang,y is
the maximum number of particles in the interval Ay, which
is found by scanning the complete pseudorapidity interval »
with the interval An for each event, following by averaging
over all the events ({...)). Fig. 3 gives the values of A .,
for the ntp, pp [49], pp [54], and p-AgBr [55] interactions
at various energies for two fixed pseudorapidity intervals
An: Ap=0.5 and 0.1.

It follows from the bifurcation model that a number of
clans created in particle collisions can only be 2™, where
m=1,2,3,.... All the intermediate values for the set
result from the decay of clans into secondary hadrons.
Consequently, the bifurcation model predicts the value of
Nmax(8E) only for the clans, i.e. for the 2" sets which
are regarded as the corresponding sizes of the cycles.
Our calculations can be compared with the experimental
results if we know the correspondence between Ax and
8¢ €[0, 1. We shall do this by finding the maximum
number of bins

(69)

2V me
Ml =2

for each experiment and by equating it to the theoretical
value:

(70)

Mrctffx = M:I}::gr =My - (71)
We then have the following correspondence:
Ay & 68 = (72)

max

it should be noted that the value of y,,, for the set 2" is
not taken from experiments but from the relationship

(\/‘;)erl B 2mN
m

T

ymax = log b (73)
where ny (my) is the mass of a nucleon (T meson); (\/;)mﬂ
is the threshold energy for the appearance of the next 2"
cycle [see expression (68)]. For m =1, 2,..., 6, the corre-
sponding energies (1/s),, are (in gigaelectron-volts):

m 1 2 3 4 5 6

(Vs)

Therefore, for each value of 4/s and a fixed value of Ay we
can find the corresponding 2" cycle from the above
tabulation and we can identify the corresponding bin size
8¢ €[0, 1] from expression (72). The quantity & is then
used to scan the whole unit interval in order to find
Nmax (&) and the result is the quantity ny,,(88)/An (see
Fig. 3). The agreement between the theory and experiment
is quite satisfactory. In fact, the bifurcation model explains
the experimentally observed [49, 55] unity slope of the
dependence A, (ng) at high values of ngy,:

. (74)
1.00 4.67 21.8 102 475 2218

Apax =ang, + b, (75)

which is a consequence of the self-similar structure of the
2™ cycles. In other words, any finite part of the unit

Atheor = I,

interval containing a sufficient number of the elements of
the 2" cycle can reproduce the structure of the other 2"
cycles, where n > m. If the resolution is fixed, the only
difference is the increasing (doubling) number of the cycle
elements within the interval 8&. As a result, the value of
nmax doubles at each m — m + 1 transition. The larger the
value of 8¢ (or Ay in the experiments), the earlier (i.e. for
smaller sets) can we observe such a self-similarity and,
consequently, a linear dependence A . (ng). In fact, it is
evident from Fig. 3 that formula (75) is obeyed for n,, = 8
and An = 0.5, whereas for Ay = 0.1 this formula is valid
only for ng, = 16. It should be noted that in the trivial case
of a uniform distribution of particles in accordance with
their rapidity, the linear rise of Amax(ng,) can be observed
beginning directly from ngy = 2 and extending to infinity.

[ think it would be more interesting to determine the
inverse dependence n/An,,;, (n) for a fixed collision energy.
Let us begin by selecting events with the same number 7,
of charged particles. Then, for each fixed value of
n=2,3,4,... <ny we can find—for each event—that
the minimum pseudorapidity or rapidity interval A, (n)
which contains a given number of charged particles; we can
then average the result over all the events. It is desirable to
make this analysis for sets of events for which the total
number ng, differs by a factor of 2: for example,
Mot = 2{nen)s (nen), and 3 (ne).

A similar n/8&.;,(n) dependence can be calculated
analytically for the limit 2" cycles on the basis of
formula (13) with 7= 1:

n 1
&, v=1——rc—, (76)
8 min (1) q(1) =1

A ax

[ 3

10° |

- 2
102 | 1
10' |

100 Lol o1l L1l Lol
107° 1072 107! 10°

Figure 4. Dependences of the quantity n/An,;, (n) (represented by
A max) on Ao, plotted for the limit 16, 32 and 64 cycles (curves 7, 2,
and 3, respectively).
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which gives—for example—the values v =0.628 and
v=0.605 for the 16 and 32 cycles, respectively. In the
case of the Feigenbaum attractor, we have

q(]) — log(al% +aF)

=3.132158 ...,
log?2

(7"
which gives v = 0.53099... . We also found numerically the
value of 8&,,;,(n) for n =2, 3, 4, ... for the limit 16, 32, and
64 cycles. This made it possible to plot in Fig. 4 the
quantity n/An,,;, (n) (represented by A ,,) as a function of
AY,i- The quantity An,,, is defined as usual [see
expressions (70)—(72)]:

A11min = 2ymax(sémin . (78)

The extreme point on the left on each curve in Fig. 4
corresponds to n = 2. All these curves fit well a straight line
with the slope —0.65 £ 0.03 [see the set of expressions (76)].

However, in real experiments [56] the measured quan-
tity, closely related to the quantity under consideration
here, was the ‘entropy’ S considered as a function of the size
of the symmetric interval |y| <y, of the rapidity. The
entropy S is defined by

S =(ng +1) In(ng, + 1) — ne, Inng, , (79)

where ng, is the number of charged particles in the interval
[y| <y.. If we regard S/yn. as a function of the scaling
variable In(y./yax), where—as usual—we have
Ymax = In(y/s — 2my)/my, we find that the bulk of the
curve is a straight lie with a slope (~0.090 £ 0.002) which
is insensitive to /s (Fig. 5) [56]. If the dependence ng, (yen)
is written in the form

=\ BOe/Ymax)
Neh = < \/;> s

Mgy

(80)

like the approximation [57] for the data of the set of pp
collisions in the energy range /s =5-900 GeV,

(o) = (n;f)ﬁ

where = (1) = 0.449 £+ 0.018, m,, = 0.231 GeV, we can
readily see that S/yg(ye/Ymax) for ng,. The theoretical value
of B is given by the formula [58]

81)

log?2
=p(1) = = 0.449806... , 82
B=p1) =1 oo (82)
where dp is the second Feigenbaum constant [see
expression (46)].
Next, it follows from expression (81) that
]n<ntot> ~ ﬁymax ’ (83)
and we than have
S In Rep . (84)
Ymax ]l’l Mot

What does the bifurcation model say about the right-hand
side of the above approximation equality? Let us assume
the correspondence 8¢, < y./yax. Then the number of
elements in a specific 2" cycle, which lies within an interval
of length 8&,,;,, agrees with the experimental value of ny, in
the interval |y| <y.. Applying again expression (13) with
7 =1, we obtain

In Neh

= ﬁ In 8émin + ﬁ )

= (85)
Inng  (g—1) Inng,

S/ymax

+ 546 GeV

O 900 GeV
05

03

02

0.01 0.1 1

Yo/ Yimax

Figure 5. Dependences of the normalised entropy S /ynax on the scaling
variable y./ymax. The experimental pints correspond to the pp collisions
with /s =546 GeV [59] and 900 GeV [60]. The theoretical lines
correspond to the limit 4 and 8 cycles (/7 and 2, respectively).

i.e. the theory does indeed predict—on a logarithmic
scale—a straight line with the slope

B

(g—1) Inng

The slopes for the 4, 8, and 16 cycles are k = 0.083, 0.072,
and 0.060 respectively, which is in reasonable agreement
with the experimental slope 0.090 £ 0.002 (Fig. 5). We
must also take into account that, first, the theory reflects
the positions of the clans on the rapidity axis and that their
decay into secondary particles changes somewhat the slope
of this straight line; second, the theory predicts the slope on
the assumption that y, is the minimum distance along the
rapidity axis needed to ‘cover’ a given number of particles,
whereas the experimental value of y_ is known to be greater
than or equal to the theoretical value.

Consequently, from the point of view of the bifurcation
model, it would be preferable to determine the quantity
B =In(ny /ny;) as a function of the scaling variable
Ye/Ymax- Here, y. denotes the minimum interval |y| <y,
which contains the given number ny, of charged particles.
For the corresponding limit cycles [see expression (13)], the
quantity B is

1

B = FOEE In8& ;0 (n) .
The values of 1/[g(1) — 1] for the limit 8, 16, and 32 cycles
are 0.335, 0.372, and 0.395, respectively.

(86)
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4. Conclusions

This review provides a brief account of the evolution, for
over a century, of the mathematical apparatus needed to
investigate fractals, beginning from the Cantor concept of
the cardinality of an infinite set to the generalised Renyi
dimensions. We became acquainted with the topological
Lebesque dimension and with dimension proposed by
Brauer, and by Urison and Menger. We also considered the
concept of a measure and of the Hausdorff dimension,
which depend on the metric of the topological space. At the
end of Section 2, we also encountered the initial informa-
tion on a new method for investigating fractals, which is
stochastical analysis.

In Section 3, we applied the mathematical apparatus
introduced earlier to one of the best known fractals,
discovered recently literally in all branches of physics,
which is the Feigenbaum attractor. We became acquainted
with the transfer matrix method, relating the processes of
successive increasingly accurate covering of a given fractal
to the theory of the transfer matrices of the corresponding
Ising model. This method provides means for extracting
information on the dynamics of a process generating a given
fractal and has earlier been applied successfully to turbu-
lence in the physics of liquids. We applied this method to
two events of multiple formation of particles in hadron—
hadron collisions and showed that the dynamics responsible
for a given particle distribution on the rapidity axis is very
probably the period-doubling dynamics which, for infinite
collision energies, leads to the Feigenbaum attractor.

This result may have far-reaching consequences. First,
the existence of the Feigenbaum universality narrows down
significantly the class of equations which can pretend to the
role of control of the dynamics of the hadron-creation
processes, since in this case they should have solutions with
a quadratic singularity on the appropriate Poincare map.

Second, generalisation of the Feigenbaum universality
to relativistic processes makes it possible to use many
results of the unimodel mapping theory in hadron phys-
ics. In particular, on the basis of this hypotheses, it is
possible to calculate in a parameter-free manner, the
exponents representing the growth with energy of the
average multiplicity of particles in different rapidity inter-
vals [33], the multiplicity dependence of the maximum
particle density per unit rapidity [33, 51], and the ratio
of the lengths and heights of steps considered as a function
of the average transverse momentum on the multiplicity
when the collision energy is fixed [35].

The next step should be a study, by the transfer matrix
method, of ‘ordinary’ events in hadron—hadron and
nucleus—nucleus collisions, and also in the eTe™ annihila-
tion process, since the period-doubling dynamics (if it does
exist) should describe all the events.
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