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Abstract. The current state of the ma themat ica l formalism 
commonly used in the study of fractals — infinite sets with 
noninteger Hausdor f f d imension — is briefly revealed. The 
appl icat ion of fractal analysis to h a d r o n physics is shown. 
In this connect ion, the hypothesis on the presence of the 
Fe igenbaum universali ty in h a d r o n mul t ip roduc t ion char ­
acteristics is discussed. 

1. Introduction 
Frac t a l sets (fractals) are infinite sets with noninteger 
Hausdor f f dimension [1]. In pract ice, however , we always 
deal with finite sets: a set of charged part icles generated by 
h a d r o n collision; ice crystals combining together to form a 
pa t t e rn on a glass window; eddies in tu rbulen t flow; etc. 
Nevertheless , it t u rns out tha t at a sufficiently large rat io 
(of the order of a hund red or more ) of the size of a whole 
object to the typical size of its const i tuents , the finiteness of 
the number of these const i tuents can be ignored on scales 
much greater t han their size, so tha t one m a y apply the 
ma themat i ca l formalism developed for p roper fractals. 

This has been done dur ing the past twenty years in 
a lmost all fields of physics: from the physics of the solid 
state (investigations of spin glasses) and fluids (analysis of 
appearance of turbulence) to astrophysics (the s tudy of 
stellar, galactic, and cosmic dust cloud dis t r ibut ions) which 
allows one to reveal very interest ing features eluding earlier 
researchers . (For one of the latest cross-disciplinary 
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collected paper s see Ref. [2].) In h a d r o n physics, the ideas 
of fractality t ook hold only fifteen years ago [ 3 - 5 ] , bu t 
serious interest was displayed somewhat later, after the 
practical ly s imul taneous publ ica t ion of two articles: by 
Bialas and Peschanski [6] and by Dremin [7]. The former 
au tho r s p roposed to s tudy intermit tency in charged part icle 
dis t r ibut ions in the m o m e n t u m space by means of factorial 
momen t s , while D r e m i n was the first to determine the 
dimension of the intrinsic mo t ion of p a r t o n s in h a d r o n s . 

Over the years fractal analysis has became recognised as 
one of the most powerful tools for the s tudy of the 
dynamics of mu l t i had ron generat ion. In m y opinion, it 
is imperat ive to collect and order the mater ia l concerning 
the theory of fractals and its appl icat ions in h a d r o n physics, 
strewn over a lot of fine books , reviews [ 8 - 1 2 ] , and original 
papers , m a k i n g it brief and unde r s t andab le for those who 
wish to s tudy the subject. 

This review consists of two par t s . In the first one, I 
in t roduce the no t ions which are necessary for the discrip-
t ion of infinite sets: cardinali ty, topological invar iants 
(Lebesque and inductive dimensions) ; Hausdo r f f d imen­
sion, generalised Renyi dimensions , and the spectral 
function depending on the space metr ic . Also the main 
no t ions of s tochast ic analysis p roposed recently by 
Schertzer and Lovejoy [13] are given: ' ca lm' and 'wild ' 
singularities, codimensions , the t race m o m e n t . In this par t , I 
have tried to avoid, where possible, too r igorous m a t h e ­
mat ica l proofs and ma themat i ca l t e rms no t commonly used 
in the physical l i terature. The interested reader can easily 
find them in the relevant references. 

In the second par t , I show h o w fractal analysis is applied 
in pract ice. As an example, one of the wel l -known 
a t t rac tors — the Fe igenbaum a t t rac tor — is considered as 
well as its finite approx imat ions , the limit 2 m -cycles . The 
latter characterise the t ransi t ion from order to chaos for a 
lot of nonl inear dynamica l systems. Nex t I describe the 
F e i g e n b a u m - J e n s e n - P r o c a c c i a me thod tha t enables one 

mailto:batunin@mx.ihep.su


610 A V Batunin 

to extract dynamica l informat ion from fractal s t ructure 
da ta (a transfer mat r ix m e t h o d ) which is then applied in 
h a d r o n physics. The results obta ined suggest tha t the 
dynamics responsible for the observed charged part icle 
dis t r ibut ions m a y be tha t of infinitely doubl ing bifurcat ions 
giving rise to the Fe igenbaum a t t rac tor at asymptot ical ly 
high energies. 

It should be noted , however , tha t just accept ing this 
hypothesis does no t al low one unambiguous ly to write 
down the equa t ions governing the dynamics of the process 
under considerat ion, since too m a n y nonl inear differential 
equa t ions have solut ions obeying the Fe igenbaum univer­
sality. The si tuat ion looks pa radoxica l — we can predict the 
behav iour of solut ions to the equat ion which we do no t 
know! Moreover , still for some k n o w n equat ion it is 
impossible to elucidate a pr ior i (i.e. before solving) whether 
or no t its solut ions undergo per iod doubl ing as the 
governing pa ramete r is varied. Thus , the p rob lem of the 
na tu re of fractals in h a d r o n physics remains to be solved. 
W h a t actually m a y give rise to fractals is, for example, the 
equa t ions of q u a n t u m ch romodynamics [14] or the second-
order phase t rans i t ion [15, 16]. 

2. Mathematical formalism 
2.1 Cardinality of sets 
By a set is mean t hereafter a set with an infinite number of 
elements (infinite set), unless otherwise specified. To 
compare one infinite set with another , in 1874 George 
C a n t o r [17, 18] in t roduced the no t ion of cardinali ty, or the 
cardinal number of a set. U n d e r this definition, two sets 
have the same cardinality (i.e. they are equivalent) if a one -
to -one cor respondence (which does no t need to be 
cont inuous) exists between their elements. Set A has a 
larger cardinal i ty then set B if for any m a p of one set on to 
ano ther an excess of elements of the set A remains . 

The cardinal i ty of an empty set is t aken to be equal to 
zero. The next set in order of cardinal i ty is tha t of all the 
na tu ra l number s , which is called the counting set. A n y finite 
set is obviously equivalent in cardinal i ty to a pa r t of the 
series of na tu r a l n u m b e r s and is called no larger than 
counting. The set of ra t iona l n u m b e r s and the set of 
algebraic n u m b e r s are count ing sets. A n associat ion of 
count ing number of count ing sets is also a count ing set. The 
set of i r ra t ional n u m b e r s and the set of real n u m b e r s come 
next in order of cardinali ty, the cardinal i ty of the con­
tinuum. The set of all in ternal po in t s of the uni t interval 
[0, 1] has the cardinal i ty of a con t inuum as well. {The po in t s 
inside [0, 1] can be matched one- to-one with the po in t s in 
entire real line th rough , say, the function 
y = (1 / T T ) a r cco tx . } 

The cardinal i ty of all the po in ts in a p lane (a t w o -
dimensional con t inuum) is equal to the cardinal i ty of the set 
of real numbers , i.e. the cardinal i ty of a con t inuum. 
Moreover , the same cardinal i ty characterises the cont in­
u u m of an infinite bu t countab le n u m b e r of d imensions and 
the set of all continuous real functions of a real variable. 
Otherwise, the set of all real functions (including discon­
tinuous ones) of a real var iable has cardinal i ty larger t han 
the cardinal i ty of a con t inuum. 

N o t e tha t the equali ty between the cardinali t ies of any 
countab le d imensional con t inuum — i.e. the existence of a 
one- to-one cor respondence between their elements — is 
reached at the expense of a discontinuity in such a 

correspondence . The continuity and one-to-one correspon­
dence of a m a p only in one direction also does no t ensure 
tha t the con t inuum of different d imensions can be dis­
t inguishable. One such example is the Peano curve [19] tha t 
m a p s an interval on to a square cont inuously and in a one -
to -one manne r . 

One m a y require one-to-one correspondence and con­
tinuity no t only for a m a p bu t also for the relevant inverse 
m a p (a so-called homeomorphism). Then one can in t roduce 
a characterist ic which is invar iant under such h o m e o -
morph ic m a p s — the dimension of the set. 

2.2 Topological dimension 
Quant i t ies which are invar iant under h o m e o m o r p h i c m a p s 
are called topological invar iants . Two definitions of the 
dimension of a set A are recognised: the inductive 
dimension, i n d A , and the Lebesque dimension, dim A. 

H Poincare in 1912 sketched the first definition of the 
inductive dimension in his article " W h y does space have 
three d imens ions?" [20]: "To divide spaces it is necessary to 
use sets called surfaces; to divide surfaces it is necessary to 
use sets called lines; to divide lines it is necessary to use sets 
called po in t s . . . " . In m o d e r n usage the definition of the 
inductive dimension da t ing back to Brauer [21], Ur i son , 
and Menger [22, 23] is as follows: A set A has A ^ n, n 
integer, if for any ne ighbourhood Ox of a po in t x G A there 
exists a ne ighbourhood Oxx G Ox, whose b o u n d a r y G has 
i n d G ^ n — 1. U n d e r this definition, an empty set has the 
dimension — 1 . A set is zero-dimensional if any of its po in t s 
has arbi t rar i ly small ne ighbourhoods with an empty 
b o u n d a r y . F o r example, the following sets are zero-
dimensional : 
— any n o n e m p t y finite or count ing set; 
— the set of real ra t iona l numbers ; 
— the set of real i r ra t ional numbers ; 
— any set of real n u m b e r s tha t does not contain an 
interval; 
— the set of po in t s belonging to ^-dimensional Eucl idean 
space, with all coordina tes of the po in ts being ra t iona l 
number s . 

N o t e tha t all zero-dimensional sets are nonconnected, i.e. 
they can be divided into n o n e m p t y nonintersect ing sets. 
However , the converse is not t rue: for any n there exists a 
completely nonconnec ted ^-dimensional set [22, 23]. 

The Lebesque dimension [24] for set A, dim A, is defined 
by means of the cover multiplicity ( the highest integer 
number n for which there exist n sets with n o n e m p t y 
intersection in the given system of sets). 

The dimension dim A of a set A is the least integer 
n u m b e r s n such tha t for any s > 0 there exists a closed cover 
of multiplicity ^ n + 1, with the diameter of each cover set 
being no greater t han s. 

In par t icular , the Lebesque definition of dimension 
implies tha t any two-dimens iona l (n = 2) set can be 
covered by infinitesimal sets in such a way tha t each cover 
set bo rde r s no m o r e t han two other sets at any poin t on its 
b o u n d a r y , (n+ 1 = 3 ) , and cannot be covered by infinite­
simal sets if each cover set would border only one other set 
at every poin t of its b o u n d a r y . 

It was proved [22] tha t the inductive dimension and the 
Lebesque one for the same set A coincide: 

dim A = indA . (1) 
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F o r any two sets A and B the following inequali ty is t rue 
[23]: 

dim(A U S ) < dim A + d i m S + 1 (2) 

A n y ^-dimensional set can be represented as a sum of n + 1 
zero-dimensional sets and cannot be represented as a sum 
of a lesser number of zero-dimensional sets. The dimension 
of ^-dimensional Eucl idean space En equals n. 

A n y metr ic set A with countab le basis, with dim A ^ n, 
can be m a p p e d homeomorph ica l ly on to a Eucl idean space 
E, with d i m £ = 2n + 1 [25]. The n u m b e r 2n + \ cannot be 
reduced, i.e. there exist ^-dimensional spaces tha t cannot be 
m a p p e d homeomorph ica l ly onto E2n. F o r example, a line 
(dim = 1) exists tha t canno t be m a p p e d homeomorph ica l ly 
on to a p lane (dim = 2) bu t can be on to a th ree-
dimensional Eucl idean space (dim = 3) [23]. 

The topological invariant , the dimension, tu rns out to 
be related to the metr ic no t ion , the measure, since an n-
dimensional space has a posit ive ^-dimensional measure 
(the converse in general is no t t rue) . 

2.3 Measure and Hausdorff dimension 
A ^-dimensional measure for any real posit ive number 
0 ^ d < oo was in t roduced by Hausdor f f [26] in 1919: 

Let A = A 1 U A 2 U . . . be an a rb i r t ra ry par t i t ion of a set 
A into a count ing n u m b e r of subsets At with diameters 
S(At) < 8. Then for any s > 0, we find 

m^ = i n f £ « 5 d ( A , ) . (3) 

Let us pu t 

md(A) = supm s

d (A) , (4) 
£>0 

then md(A) is called the ^-dimensional measure of the set 
A. Obviously, m 0 ( A ) = 0 if A is an empty set; m 0 ( A ) = n if 
A is a finite set conta in ing n poin ts , and m 0 ( A ) = oo if A is 
an infinite set. 

The Hausdo r f f measure , md(A), is a nonincreas ing 
function of d for a given set A. Moreover , from the 
inequali ty d < g and md(A) it follows tha t mg(A) = 0. 

The Hausdorff dimension, Z ) H , of a set A is the upper 
b o u n d (sup) of the set of all real n u m b e r s d such tha t 
md(A) > 0. Two impor t an t dist inctions between DR and the 
topological dimension dim A should be stressed: 
— Z ) H is no t necessarily an integer number ; 
— Z ) H is no t a topological invariant , i.e. it depends on the 
metr ics defined on a given set. 

It is r emarkab le , however , tha t the lower b o u n d (inf) of 
all Z ) H s cor responding to all possible metrics on a given set 
is its topological d imension [27]: 

inf DR(A) = dim A (5) 

It is commonly accepted to calculate Z ) H in the following 
way. Cover the given set A entirely by a system of closed 
sets Ai with d iameters S(At) < s. F ind the min imal number 
N(s) of such sets for every 8. Clearly, N(s) is posit ive for 
any s > 0 and grows infinitely as s —> 0 only if A does no t 
consist of a finite number of poin ts . Let a posit ive number 
c exist such tha t the inequali ty 

holds , where r is a real number . Then 

logtf(e)l 
Z) H = lim inf 

s—>0 log 8 
(7) 

F ind by this formula the Hausdor f f dimension of some 
wel l -known fractal sets (we reach fractals p roper at last!). 

The Cantor set (CS) is defined as the set of real n u m b e r s 
tha t can be represented as the sum 

3n 

i=l 

= 0 (8) 

One can imagine CS, for simplicity, as the set of po in t s 
remain ing after the following (infinite) p rocedure : t ake the 
uni t interval , divide it into three equal pieces and remove 
the middle piece; then again divide each of the remain ing 
pieces (1 /3 long) into three equal smaller pieces, etc. One 
can easily check tha t the sum of lengths, L , of the removed 
pieces is equal to one exactly: 

r 1 2 4 l v V 2 Y , 

k=l 

(The same result can be obta ined if at every step of the 
p rocedure one removes any finite pa r t instead of one thi rd 
of the piece.) This confirms tha t the linear measure of CS 
equals zero. F ind its Z ) H . At the nth step of the 
const ruct ion procedure , 2n intervals ( l / 3 ) n long each are 
needed to cover CS. Therefore, 

lim 
log 2" 

n ^ o c \ l og ( l /3 )V log 3 
log 2 

0 . 6 3 0 9 2 9 . . . (9) 

N(s) ^ for any s > 0 , (6) 

By ana logy with CS, one can find for the Koch curve — the 
curve of infinite length su r round ing a finite area of a p lane 
[28]—£> H = l o g 4 / l o g 3 = 1 .261850. . . . The Serpinski car­
pet— an ana logue of CS on the square — has 
Z) H = l o g 8 / l o g 3 = 1.892789 . . . , the universal Menger 
curve — an ana logue of CS on the cube — has 
l o g 2 0 / log 3 = 2.727833 . . . [23]. 

N o t e tha t the three latter fractals have a topological 
dimension (dim) of one, whereas dim CS is zero. . 

W h e n we calculated the Hausdor f f dimension for a 
given set the metr ic was assumed to be the same over the 
whole set. But wha t if different regions of the set have 
different metrics? In other words , when some regions are 
m o r e 'dense ' t han others? 

The following section answers this quest ion. 

2.4 Renyi dimensions 
Cover again a given set A with a finite system of closed 
subsets Ai with the d iameters 3t < s (e > 0), and define the 
min imal number N(e) of such subsets for every 8. On every 
subset Ai let its own metr ic act so tha t the cor responding 
Hausdor f f d imension is equal to DR(At). To each subset At 

the relevant weight pt is ascribed, defined as the probabi l i ty 
for an element of the set A to be long s imultaneously to the 
subset At. In the case of the approx ima t ion of infinite sets 
A and At by finite ones tha t conta in N and Nt elements, 
respectively, one can find pt in the following way: 

Pi = lim — . 

In pract ice, when one investigates fractal phase trajectories 
one usually takes as pt the quant i ty inversely p ropo r t i ona l 
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to the t ime between two successive visits of the given set At 

by a poin t on the phase space trajectory. Clearly, the m o r e 
dense At is (the m o r e its elements are conta ined in a given 
vo lume of the phase space) the larger its weight is. It 
should be emphasised tha t , according to such a definition, 
the set with least Hausdor f f d imension has the largest 
density because its elements are concent ra ted in min imal 
volumes of the phase space. 

It is convenient to in t roduce the so-called singularity 
exponent , at, for a given weight ph 

Pi(l) oc Z" (11) 
which shows h o w rapidly the n u m b e r of At elements inside 
some region of diameter / decreases as / is decreased. The 
smaller At is, the slower tha t decrease is, the m o r e dense set 
we have. 

F o r example, a monof rac ta l at fixed / can be covered by 
N pieces, where N oc / _ D h , see E q n (7). Consequent ly , for 
every such cover piece we get the same pt = 1 /N. Then 

pt(l) oc / D h , i.e. 0Lt=Du . (12) 

In the case of a mult ifractal (i.e. a fractal set consist ing of 
monofrac ta ls with different Hausdor f f dimensions) , we 
obta in a spectrum of singularities, a m i n < at < a m a x . 

By analogy with the rmodynamics , one can define a 
function r(q, T ) , which is called the par t i t ion function. 
Obviously, it generalises the Hausdor f f measure [Eqn (3)] to 
multifractals. Each subset enters r(q T ) with its own weight 
Pi-

N(e) 
r f o T ) = l m $ > ? $ r T . 03) 

t=i 

At q = 0, the function r(q, T ) reduces to the usua l ( — T ) -
dimensional Hausdor f f measure m_ T (A) for the whole set, 
see E q n s (3) and (4), so tha t the cor responding value 
—x{q = 0) is equal to the Hausdor f f d imension of the set A, 

- T ( 0 ) = D h ( A ) (14) 

One can show [9, 29] tha t for every value of q there is also 
a un ique value of T (# ) , such tha t the function r[q, T(#)] has 
a positive-definite value 0 < r[q, T(#)] < oo. Then , for any 
real value of q one can in t roduce generalised Renyi 
dimensions Dn, 

T{q)=Dq{q-\) . (15) 

By such a definition, the Reny i dimension D0 is equal to 
the Hausdor f f dimension Z) H of the set A. Usual ly , an 
addi t iona l normal i sa t ion condi t ion is imposed, r(q, T ) = 0 
for all q and T (# ) , for which r(q, T ) is posit ive and finite. In 
order tha t the normal i sa t ion condi t ion for r(q, T ) tu rn into 
the normal i sa t ion condi t ion for the weighted sum of 
subsets of set A, 

(16) 

the equali ty T(1) = 0 must be obeyed. F r o m Eqn (13) it 
follows tha t at q 0, subsets with the largest weight give 
the main cont r ibut ion to r(q, T ) , i.e. the densest subset 
with min imal a. Subst i tut ing E q n s (11) and (15) into 
E q n (13) and requir ing r(q, T ) = 1 we obta in = a m i n . 
Analogous ly , at q <̂  0, subsets with smallest weight (i.e. 
most rarefied subsets with max ima l a) will give the main 
cont r ibut ion to a, and D _ o o = a m a x - Therefore, is equal 

to the Hausdor f f dimension of the most dense subsets of 
the set A, whereas is equal to the Hausdor f f 
dimension of the mos t rarefied subsets. 

The next step is to define h o w m a n y subsets with the 
given singularity at are inside the set A. In other words , one 
needs to determine the dimension /"(a,) of the fractals with 
the singularity at inside the mult ifractal A. In accordance 
with Eqn (7) for the Hausdor f f d imension, we can write for 
the number of pieces of the diameter / covering the fractals 
with the singularity at, 

-/(«.•) n(ah I) oc I (17) 

If a is con t inuous with the density p(a) then the number of 
fractals with dimensions in the interval (a, a + da) will 
obey the following law: 

d a p ( a ) / - / ( a ) . n(a, /) (18) 

Then , we subst i tute the expression for pt from Eqn (12) 
into E q n (13), pass to the limit / —> 0, replace the 
summat ion over / by integrat ion over a, and finally obta in 

N(l) 
i) = lim ^qa-z(q) = ^-T(q) 

i=l 

doc p(oc)l ?a- / (a ) _ (19) 

The integral can be calculated by the me thod of steepest 
descent since the region with the smallest exponent gives 
the greatest cont r ibut ion as / —> 0. Obviously, this min i ­
m u m is defined by two condi t ions: 

[q*-/(*)]'= 0, [q*-f(*)]"> 09 (20) 

wherefrom we immediately get 

f'{*o)=q, / > o ) < 0 . (21) 

N o t e tha t here a 0 is a l ready a function of q. Then we 
replace the value of the integral in E q n (19) by the value of 
the integral function at the ex t remum point , t ak ing into 
account the normal i sa t ion condi t ion for p (a ) , and obta in 

z(q) = qoc0(q) -f[oc0(q)] . (22) 

The f u n c t i o n / ( a ) is called the spectral function for a given 
multifractal , and Fig. 1 shows a typical example. It is easy 
to see tha t / ( a ) is related to the function x{q) via the 
Legendre t ransform. Indeed, subst i tut ing the first expres­
sion from E q n (21) into E q n (22), we obta in 

Tfe) = a / , ( a ) - / ( a ) . (23) 

f 

0.5 

0.4 

0.3 • 
0,2 • 
0.1 • 

• 
^ i 0.3 0.4 0,6 0,6 0.7 

Figure 1. Spectral function of the Feigenbaum attractor, calculated on 
the basis of formula (55). 
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The converse formula is also t rue: 

/ ( a ) = qx\q) — x{q), since a(q) = Tf(q). (24) 

Certainly, in the case of a monof rac ta l the spectral function 
' shr inks ' to a ^-function, since the whole monofrac ta l is 
characterised by a single value of a tha t equals its 
Hausdor f f dimension [see E q n (12)], and / ( a ) = a. 

A typical mult ifractal has a finite number b o t h of the 
most concent ra ted subsets and of the most rarefied ones 
(most often only one); therefore, the set of such subsets is 
zero-dimensional (see Section 2.2) and the spectral function 
at these po in t s comes to zero, 

/ ( a m i n ) = / ( a m a x ) = 0 (25) 

F r o m Eqn (21), we find tha t at the poin t a(0) the spectral 
function has a m a x i m u m . F r o m E q n s (24) and (14), it 
follows tha t this m a x i m u m is equal to the Hausdor f f 
dimension of the multifractal , 

/ m a x ( a ) = / [ « ( < > ) ] = - T ( 0 ) = D H ( A ) • (26) 

As a rule, for a given multifractal , one calculates first the 
-r(g)-dependence [or q(r), if it is m o r e convenient] and then 
finds its spectral function from E q n (24). 

2.5 Stochastic analysis 
The theory given above can be called the 'geometr ical ' 
analysis of fractals. Unfor tuna te ly , this s t andard theore t ­
ical f ramework presupposes very restrictive calmness and 
regular i ty assumpt ions . This was no ted in a recent work by 
Schertzer and Lovejoy [13], where they p roposed a m o r e 
general app roach to the s tudy of fractals, so-called 
' s tochast ic ' analysis. Later in this section I out l ine its 
basic s ta tements , referring the interest ing reader to the 
original pape r s [13, 30, 31]. 

Consider again a set A consisting of subsets At with the 
cor responding weights pt and singularity exponents ah see 
E q n (11). W e will t ake the n u m b e r s pt as cor responding to 
some (highly in termit tent) 'field' p roduced by successive 
i terat ions of the p rocedure of r a n d o m modu la t i on of larger 
s t ructures into smaller ones with a given probabi l i ty 
dis t r ibut ion (for example, the wel l -known a-model [6]). 
This app roach is applied, in par t icular , to the description 
of energy transfer from large vortices to small ones in a 
turbulent fluid where the density of the energy flux plays the 
role of the field xjj. 

Certainly, in accordance with a r igorous ma themat i ca l 
definition we get a field (infinite n u m b e r of the degrees of 
freedom) only by an infinitely small scale of par t i t ion (or 
covering) of the given set A . At finite scales (~ / ) , we obta in 
a descrete ana logue of the field \jjb defined on the Nt sets 
with the weights pt. I ts behav iour can be characterised either 
by its probabi l i ty dis t r ibut ion 

Pr ^ ry) oc 
c(y) (27) 

or by the cor responding law for the statistical order-g 
m o m e n t s (by means of a Laplace t ransform): 

-K(q) -qy+c(y) dc(y) (28) 

The exponent c(y) in E q n (27) is a codimension since the 
probabi l i ty dis t r ibut ion determines the fraction of the 
probabi l i ty space occupied by the singularities exceeding 
the order y. At scale /, the probabi l i ty can be est imated as 

the rat io of the number Ni(y) of cor responding sets to the 
to ta l number of sets Nt: 

Pr ^ ry) oc 
Ni(y) 

Nj 
(29) 

cf. Eqn (10). W h a t is the relat ion between y, c(y), a n d / ( a ) 
in t roduced in Section 2.4? This relat ion can be deduced bu t 
only for the values c(y) ^ Z), where D is the dimension 
(Eucl idean) of the embedding space. Indeed, by E q n s (7) 

-f(y) N o w and (18) we obta in Nt oc / and Afz(y) oc / 
consider D-d imens iona l in tegrat ion of the field x/jf. 

nl(A) = ^ , d D x . (30) 

77/(A) cor responds to the energy flux (in turbulence) or the 
weight pt (in fractals). F r o m E q n s (27) and (29), we 
immediately get 

P r [ i I , ( A , - ) > / " ' ] o c / D - M ) , (31) 

where the relat ion J dDx oc lD is used. Consequent ly , 

a = D - y , f(a)=D-c(y). (32) 

The restrictiveness of the 'geometr ical ' app roach is thus 
easily seen: a a n d / ( a ) , by definition, are posit ive so tha t in 
Z)-dimensional space one can see only a pa r t of the field \jtl 

singularities, ^ y, c(y) ^ Z), so-called ' ca lm' singularities. 
The singularities with y > D are called 'wild'. Increasing Z), 
if it is possible, one extends the range of observed 
singularities. N o t e tha t the quant i t ies y and c(y) are 
intrinsic field characterist ics independent of Z), while a and 
/ ( a ) diverge as D —> oo. 

Wri te down a general isat ion of the par t i t ion function, 
the so-called ' t race m o m e n t ' for the field observed on the 
set A with the diameter- / covering: 

(33) 

where ( . . . ) indicates averaging over all real isat ions of the 
field xjj at the given scale /. The t race m o m e n t combines 
ensemble with spatial averaging. In par t icular , in h a d r o n 
physics it cor responds to the averaging over all events at 
fixed bin size in m o m e n t u m space. Remember ing tha t 
Z7/(A/) cor responds to pt on a fractal with an /-diameter 
covering, and using Eqn (13), we ob ta in from E q n s (33) 
and (28): 

T r A iA/ oc l < q ) oc lD<s-l)-KM , (34) 

relat ing x{q) (depending on D) and k(q), the intrinsic 
quant i t ies of field. Like / ( a ) and T (# ) , the quant i t ies c(y) 
and k(q) are related via the Legendre t ransform: 

K(q)=yc'(y)-c(y), q = c'{y) (35) 

c(y)=qK'(q)-K(q)9 y = K'(q) . (36) 

To summarise , we have seen tha t a geometr ical app roach 
to the s tudy of fractals is limited. The values of the 
quant i t ies a and / ( a ) depend on the dimension of the 
observing space and , thus , cannot p lay the role of intrinsic 
quant i t ies of the fractal. In other words , the entire 
spectrum of singularities is inaccessible: first, because of 
the finiteness of D; second, because of the exceptional 
rar i ty of s t rong singularities (fluctuations) so tha t they are 
ra ther unlikely in a single realisat ion (separate event). 
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Thus , to get m o r e complete informat ion abou t the 
singularities of the field xjj (having the set A as its D-
dimensional project ion) one needs to increase D and the 
number of real isat ions (events) and then to average over 
them. 

In par t icular , in h a d r o n physics one proceeds from the 
project ion on the rapidi ty axis (D = 1) to three-dimensional 
m o m e n t u m space (D = 3) and gains a large number of 
events (of the order of a hundred t housand ) in part icle 
collisions. 

Unfor tuna te ly , this is no t sufficient since there exist 
s tochast ic processes generat ing fields with so-called ' h a r d ' 
singularities. They are no t localised in space: in the 
ne ighbourhood of some point x , the limit lim/_>0 7i(x) 
does not exist. Thus , they are in principle out of the scope 
of the geometr ical version of fractal analysis. But this is the 
subject of a separate article, so I refer the interested readers 
to Refs. [13, 14, 30, 31]. In the second pa r t of this review 
(Section 3.3), it will be shown nevertheless tha t a substant ia l 
a m o u n t of informat ion abou t the process generat ing a given 
mult ifractal can be extracted in the f ramework of the 
geometr ical app roach . 

3. Physics applications 
In this chapter , it will be shown h o w the geometr ical 
version of fractal analysis is applied in pract ice. M o r e 
precisely, only the connect ion between this me thod and the 
Fe igenbaum universali ty will be considered because other 
appl icat ions were described, for example, in Refs [ 9 - 1 2 ] . 
To begin with, we shall s tudy abstract ma themat i ca l 
objects, the Fe igenbaum a t t rac tor and its finite a p p r o x ­
i m a t i o n s — limit cycles; then we proceed to the s tudy of 
real sets, charged part icle dis t r ibut ions a long the rapidi ty 
axis. 

3.1 Obtaining T (q)-dependence 
In pract ice, we always deal with finite sets, whether it is a 
set of po in t s on the phase space trajectory or a set of 
charged part icles generated in p r o t o n collision. 

Divide a given set conta in ing n t o t e lements into N 
nonintersect ing g roups Ah i = 1, 2 , . . . , A/", with the same 
number of elements n. Obviously, nN = ntot. Each group A 
receives the same weight pt = l/N bu t different diameter 
(bin) dt. Consider , for example, a set of charged part icles in 
the project ion on the rapidi ty axis in a separate event so 
tha t yt is the rapidi ty of the ith part icle. Then the diameter 
3j m a y be found from the formula 

(37) $j — \Xjn — * ( / - l ) „ + l | 

He re the subscript j labels the g roups of part icles 
(j = 1, 2 , . . . , N) while xt is the coord ina te of the ith 
part icle on the uni t interval [0, 1], obta ined from the entire 
rapidi ty interval [—vm a x , v m i n ] by means of some smooth 
t rans format ion , for example, xt;= \(tanhyt; + 1). Then , 
from Eqn (13) and the condi t ion r(q, T ) = 1, we get 

i=l i=l 

F r o m this, we immediate ly obta in 

N 

q{x) 
1 

logAf 

(38) 

(39) 

and then the T (g) -dependence by inversion. This me thod — 
the same-weight me thod ( S W M ) — is applied in h a d r o n 
physics only in the case when the velocities of all 
part icles in a given event are k n o w n to a sufficiently 
high accuracy. 

However , it is possible to find the -r(g)-dependence 
directly. To to this, divide the entire rapidi ty interval 
into the same diameter-^ bins . Then the same diameter 
bins will cor respond to different weights, pt = nt/nm, where 
nt is the number of part icles in the ith bin. M o r e precisely, 
define the m o m e n t s Gq [32], 

G,(5) = £ > ? (40) 

where the sum runs over all n o n e m p t y bins. Again , m a p the 
entire rapidi ty interval on to the uni t interval [0, 1] by 
means of some smoo th t rans format ion . Then, for no t too 
small a value of 3 (i.e. if the number of empty bins is no t 
too large), from the condi t ion T ) it follows tha t 

logG,(<5) 

log<5 
(41) 

In pract ice, this m e t h o d tu rns out to be less exact than 
S W M . As an i l lustrat ion, apply S W M to the C a n t o r set. 
On the nth step of its const ruct ion we have 

Pi 2j 

i Y 
3 , 

(42) 

so tha t we immediate ly get from E q n (13) and condi t ion 

r(q, T) 
x{q) = {q-\) 

log 2 
log 3 

D =1212 
q log 3 

(43) 

for all q. F r o m E q n (24) it follows tha t 

log 2 
QC = Da 

log 3 
cons t , / ( a ) = Dq = a = const , (44) 

i=i 

as would be expected for a monofrac ta l . 
Below we apply the formalism considered to p robab ly 

one of the best k n o w n mult ifractals — the Fe igenbaum 
a t t rac tor . Moreover , in recent years a hypothes is was 
pu t forward on its presence in the characterict ics of part icle 
mul t ip roduc t ion in high-energy collisions [ 3 3 - 3 6 ] . 

3.2 Limit cycles and the Feigenbaum attractor 
The Fe igenbaum a t t rac tor is a mult ifractal on the interval 
[0, 1] gomeomorph i c to the C a n t o r set. The Fe igenbaum 
a t t rac tor can be obta ined as a result of infinite series of 
per iod doubl ing bifurcat ions of limit cycles for one -
dimensional one-parameter m a p s of the interval [0, 1]. 
(Recall tha t the bifurcat ion is called a qual i ta t ive sudden 
change in the behaviour of a solution to some nonl inear 
equat ion as the governing pa ramete r is smooth ly varied.) 
In order tha t such bifurcat ions are possible, the given m a p s 
must obey the following condi t ions [37]: 
— have a un ique m a x i m u m in the interval [0, 1]; 
— increase monoton ica l ly from the left of the m a x i m u m 
and decrease monotonica l ly on the right of it; 
— depend smooth ly on the governing pa ramete r ; 
— the Schwartzian of the m a p must be negative at the 
poin t of bifurcat ion. 
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Recal l tha t the Schwartzian (the Schwartz derivative) of a 
function f(x) is an expression of the form 

Table 1. 

/ _ ! M 

Obviously, smooth m a p s with a quadra t i c m a x i m u m obey 
the condi t ions listed above; therefore, the Fe igenbaum 
a t t rac tor can be obta ined by i terat ion of the centre of the 
uni t interval by means of, for example, a logistic m a p 

Xn+1 = ^ n ( l ~Xn) (45) 

at X = = 3 . 5 6 9 9 4 5 6 . . . . If the governing pa ramete r X 
t akes values on the interval 3 < X < X^ then the succession 
of the po in ts xn at n —> oo converges t owards some limit 
2 m -cyc le (m = 1, 2 , . . . ) , cor responding to a given X = Xm. 
Every such limit cycle can be considered as a finite 
approx ima t ion of the Fe igenbaum a t t rac tor . W h e n X is 
smooth ly increased within the interval 3 < X < X^ the 
per iods of the limit cycles successively double , 2m —> 2 m + 1 , 
i.e. pe r iod-doubl ing bifurcat ions occur. The n a m e ' a t t r ac ­
t o r ' in this case reflects the fact tha t all po in t s from the 
interval [0, 1] except a count ing set are a t t rac ted by means 
of E q n (45) at X = X^ to the Fe igenbaum a t t rac tor [37, 38]. 

This mult ifractal received its n a m e in 1978 in h o n o u r 
of its discover and investigator, the Amer ican scientist 
M Fe igenbaum of Los A lamos . (For the Russ ian t rans la ­
t ion of his article see Ref. [39].) The main poin t of the 
discovery is tha t the cycle bifurcat ions for all m a p s obeying 
condi t ions listed above are described by two universal 
cons tan ts (the so-called Fe igenbaum constants) [40, 41]: 

a F = 2.5029078 . . . , 3¥ = 4.6692016 . . . . (46) 

The cons tant 3¥ characterises the ra te of convergence of 
the governing pa ramete r critical values t owards its limit 
value: 

lim <5f (47) 
•m+1 

while the cons tant a F characterises the scale of successive 
'spli t t ings ' of the limit cycle elements after each bifurcat ion: 

. - 1/2| lim 
l m + l 1/2| 

(48) 

where a F denotes the limit 2 m -cyc le element nearest to the 
cycle element x = 1/2. 

One-dimens ional one-parameter m a p s are commonly 
used in the s tudy of the phase space trajectories of 
nonl inear dynamica l systems, where they appear as Po in -
care m a p s [42]. (Recall tha t the Poincare m a p is a 
dependence of the form x(n + 1) = G[x(n), X], ob ta ined 
by intersection of a phase space trajectory in ^-dimensional 
phase space and (d — &)-dimensional hyperplane , 

x(n) = {xx(n\ x2(n), ...,xd_k(n)} . 

The number n labels the succession of the po in ts of 
intersection a long the trajectory.) It t u rns out tha t the 
restr ict ions imposed on the m a p s (see above) are ra ther 
weak, so tha t p lenty of real physical systems satisfy these 
restr ict ions. As a consequence, the Fe igenbaum discovery 
led to an explosion of experiments confirming the existence 
of the universal cons tan ts [43]. 

One finds by E q n (45) the limit super stable 8-, 16-, 32-, 
64- and 2048-cycles. The prefix ' super ' means tha t the given 

2 m 

8 0.284 0.358 0.446 
16 0.310 0.403 0.519 
32 0.324 0.430 0.563 
64 0.334 0.448 0.593 
oo 0.377. . . 0 .537. . . 0 .755. . . 

cycles contain element where the first derivative of the m a p 
vanishes (in our case, this is x = 1/2). The 2048-cycle 
reproduces with high accuracy the characterist ics of the 
Fe igenbaum at t rac tor , see Ref. [29]. To obta in the ^ i n ­
dependence we apply S W M since the coordina tes of the 
cycle elements are k n o w n within the interval [0, 1] and m a y 
be determined to a rb i t ra ry accuracy [38]. The nearest cycle 
elements are jo ined in pai rs generat ing a division of the unit 
interval into N subintervals (N = 2m~l for 2 m -cycle) each 
with weight pt = l/N. Setting var ious x we find accord­
ing to E q n (39) the q(r) dependence for every cycle. The 
generalised Reny i dimensions, DQ, were then found by 
E q n (15). In Table 1, the obta ined values D^, D0, and 
Z ) _ o c , are shown for the limit 2 m -cycles and the Fe igenbaum 
a t t rac tor . 

Recal l tha t 

DN D_ (49) 

a m o n g all Z ) H for all subsets of the set A (see Section 2.4). 
F o r the Fe igenbaum at t rac tor , D^M is generated by subsets 
h o m e o m o r p h i c to the C a n t o r set with the rescaling 
pa ramete r a F

2 , whereas D^AX is generated by subsets 
with the rescaling pa ramete r a F

! [29]. In other words , to 
calculate the limit Renyi d imensions for the Fe igenbaum 
a t t rac tor we use E q n (42) where, instead of 1/3, we 
subst i tute first a F

2 and then a F

! , and from E q n (43) we 
obta in respectively 

log 2 
D' 

2 1 o g a F 

2D" 

: 0.377756 . . . , 

log 2 
l o g a F 

0 . 7 5 5 5 1 2 . . . . 

(50) 

(52) 

F o r Reny i d imensions with a rb i t ra ry q, the analytical 
dependence can be obta ined by approx ima t ing the 
Fe igenbaum a t t rac tor by a two-scale C a n t o r set [29], 
3i = a F

 1 and 32 = a F

2 with the same weights px = 
p2 = 1/2. Subst i tut ing these expressions into E q n (13) we 
get for the 2 m -cycle in the limit case m —> oo 

r{q, z) = {P\S[+p\S'2)m = \. 
Wherefrom 

a%(a% + \) = 2q , 

and 

l o g ( y / l / 4 + 2 ^ - l / 2 ) 
U 1 ~ ,, - 1 (q- 1) l o g a F 

(52) 

(53) 

(54) 

F o r the limit Reny i dimensions and Eqn (54) 
gives the exact values. F o r DQ, we obta in the value 0.525, 
which is only 2 .5% different from the t rue value 0.537. F o r 
in termedia te D^s , the accuracy is bet ter t han 2 . 5 % . 
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F r o m E q n (54), it is easy to obta in an explicit expression 
for the spectral function of the Fe igenbaum a t t rac tor f¥ (a) 

a log a — %i log %i — a 2 log a 2 

(55) 
/ F ( a ) = " l o g 2 

%i = 2a — 20^ , a 2 = 2 / ) ^ — a 

This is shown in Fig. 1. 

3.3 Transfer matrix method 
In this section, it will be shown h o w to use our knowledge 
of the fractal s t ructure of the object under considerat ion 
(its Renyi dimensions) to obta in informat ion abou t the 
dynamics tha t is responsible for generat ing of this object. 
This became possible owing to the transfer mat r ix m e t h o d 
by Fe igenbaum, Jensen, and Procaccia , 1986 [44]. The key 
idea of this me thod rests on an analogy between the 
process of refinement of the fractal measure and a transfer 
mat r ix theory of an appropr i a t e Ising mode l [45]. 

Consider a finite cover of a given fractal by N n o n -
intersecting pieces {A,} . Let as usual , 3t be the diameter of 
the ith piece and pt be its weight. App ly S W M (Section 3.1) 
to find the g(-r)-dependence for the given set, i.e. consider 
such a covering of the fractal tha t all pt = l/N are the same. 
Then , the function q(j) can be found from E q n (39). 
Increase successively the number of the pieces N according 
to power law, N — Nn = an, where n is a posit ive integer, 
a > 0. Then for any n, we can label 3t (1 < / < N) as <5£ w r..,£ l , 
where st takes on a values 0, 1 , . . . , a — 1 if a is an integer. If 
a is a fraction then st t akes on [a] + 1 values 0, 1 , . . . , [a], 
where [a] is the integer par t of a. Hereafter we restrict 
ourselves to the case of integer as, for simplicity. Nex t 
define the daughte r - to -mother rat io for the ne ighbour ing 
'genera t ions ' [44]: 

V ^ " ' " = g « ^ « " - - * • ( 5 6 ) 

Suppose this rat io depends only on two latter indices 
e n + i , sn. Then 0"fi 1 } f i n defines a (transfer) mat r ix a x a, so 
tha t any diameter can wri t ten as the p roduc t of the transfer 
mat r ix elements, 

(57) 

(with no summat ion) . The summat ion appears when we 
subst i tute this expression into E q n (39), where the sum on 
the r ight-hand-s ide becomes as follows: 

a 

i=l Vs 

= £ H C „ e i < ^ = TrK(T)] (58) 

W e see tha t summat ion over the is t r ans forms into 
summat ion over all possible e, which, in tu rn , reduces to 
the p roduc t ion of the a matr ices . It should be clear by n o w 
h o w the ana logy arises with the calculat ion of the par t i t ion 
function, ZN, in a one-dimensional Ising mode l with 
neares t -neighbour interact ion [45]: 

ZN = ^ Q x V f - ^ Y S = E ^ 8 I 8 i + l + H ^ s i , (59) 
\/F. \ / i i 

where st is a spin var iable at the ith site t ak ing on m values, 
T is the tempera tu re , E is the s p i n - s p i n coupl ing constant , 
and H is the applied magnet ic field. In the simplest 
nontr iv ia l case, m = 2, the cor responding transfer mat r ix 
GS.S. appears as follows: 

' e x p ( — / — K) e x p / 
e x p / exp(—J + K) ^ 

where £ is the normal i sa t ion factor, / = E/kT, K = H/kT. 
The number of spin states, m, at each site of the 
cor responding Ising chain determines the size of the 
transfer matr ix . It shows h o w m a n y times, a, the number 
of the fractal cover pieces increases at every step. The 
transfer mat r ix elements provide informat ion on the scale 
of successive splittings of elements of a given fractal set at 
every step of its covering. 

The size of the region of interact ion depends on h o w far 
the ' m e m o r y ' goes back in the definition of rat io (56). If we 
t runca te the succession e n + 1 , £ „ , . . . , E\ by s n then we get the 
neares t -neighbour interact ion. Such a l imitat ion is justified 
because we k n o w tha t in m a n y fractal sets, the ' m e m o r y ' 
falls off exponential ly. 

Tak ing the t race in Eqn (58) reduces to the summat ion 
of nth powers of the eigenvalues Xj for the mat r ix c t ( t ) : 

Tr [O*(T)]=X;^ (60) 
j ' = i 

In the limit n —> oo ( the so-called t h e r m o d y n a m i c limit in 
the language of the Ising model) , only the largest 
eigenvalue 'survives' , A + , so tha t we obta in from 
E q n s (39), (58), and (60): 

> g ̂ +CO 
log a 

(61) 

W e use the subscript a to determine the function qa{x) from 
Eqn (39). N o t e that a and k+(x) are related, 

(62) 

which follows immediate ly from E q n (61). 
Thus , for a given mat r ix A + ( T ) we find the value a from 

the cor responding characteris t ic po lynomia l of the order 
a x a. In lowest-order nontr iv ia l case of 2 x 2 mat r ix (which 
cor responds to 1 ^ a ^ 2) we get 

/ 1 + ( T ) - X+(T)(GW + en) + (ffooffn ) " T - ( t fo i t f i o ) " 1 = 0 . 
(63) 

The mat r ix elements cr0 1 and cr1 0 appear only as a p roduc t , 
and thus X+(r) depends on three scales. Hence , together 
with A+(T ) we have four u n k n o w n and, therefore, need at 
least four exper imental po in t s z(q). As usual , one is t aken 
at q = 0 since T(0) = — D0 [see E q n (14)]. 

Then , from E q n 62 it follows tha t X(—D0) = 1, and we 
get from Eqn (63), 

^ o ) ( l - < ° ) ] I / D ° -07)1 O"' 0 1 ° 10 [(1 (64) 

N o t e tha t from E q n (62) at q = 1(T = 0) it follows tha t 
a = X+(0). At T = 0, Eqn (63) gives two solut ions for X+(0) 
(and, thus , for a): A+(0) = 2 for any GTJ ̂  0; and 
A + (0 ) = (y/5 + l ) / 2 at G00 = 0 or GU = 0. 

It is t ime to summarise . Suppose we k n o w the ^ i n ­
dependence for a given fractal and wish to k n o w wha t 
dynamica l process generates the given fractal (for example, 
a phase space trajectory or its Poincare section). By ' know 
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the dynamica l p rocess ' I mean 'calculate the transfer mat r ix 
elements and the a va lue ' , since the latter unambiguous ly 
define the type of the cor responding Poincare section. 
'Dynamics ' means the dynamics relative to the cor respond­
ing governing pa ramete r no t the dynamics in t ime at the 
fixed value of the governing pa ramete r . F o r example, the 
case a = 2 cor responds to the per iod-doubl ing bifurcation 
dynamics . 

A prior i , the value a is u n k n o w n and, thus , the size of 
the transfer mat r ix is u n k n o w n too . Therefore, one begins 
as usua l with the simplest nontr iv ia l case of 2 x 2 matr ices , 
solving the system of four linear equa t ions (63). The a value 
is found then from Eqn (62). If the solut ions exist and are 
sufficiently stable relative to var ious q(r) then the s tudy is 
finished here — the dynamics is t aken to be found. If there 
are no solut ions or they exist bu t change strongly at var ious 
q(r) then one has to s tudy the case of 3 x 3-matrices. If 
again there are no stable solut ions one proceeds to the case 
of 4 x 4-matrices and so on. 

It is necessary to m a k e one remark . In experiments , only 
a finite precision, say, A3 is accessible to measurement of 
the cover diameter of the fractal under considerat ion. The 
diameter f luctuat ions 3t —> 3t + A3 cause the ^-fluctuations, 
q —> q + Aq, where 

3q ~ -TAS — . (65) 
H logAf v ) 

Therefore, to minimise the influence of exper imental 
f luctuat ions on the finite result one needs to t ake T-values 
near zero. 

The transfer mat r ix me thod works if a m o n g the 
eigenvalues of o matr ix , there is one much larger t han 
the others . Then the function qa(r) [Eqn (61)] fits with high 
accuracy the ' exper imenta l ' function q(r) [Eqn (39)] on a 
sufficiently large interval. 

One m a y apply the transfer mat r ix me thod to the limit 
cycles and Fe igenbaum a t t rac tor in order to see tha t this 
me thod really allows one to reveal the per iod-doubl ing 
dynamics . Tak ing g(-r)-dependence for each limit cycle and 
Fe igenbaum a t t rac tor , we find according to E q n s (63) and 
(62) the elements of the cor responding transfer matr ices and 
the a-value (see Table 2). The latter equals two with high 
accuracy for any limit cycle and Fe igenbaum a t t rac tor as 
would be expected, while the values cr 0 0 , c r n and cr 0 1 cr 1 0 

converge from be low to their limit values. These limit values 
by const ruct ion [see E q n (56)], can be expressed via a F : 

a F , o n = a F

2 . (66) 

Then DF_ and DL

X are related to (T00 and a n in the 
following way: 

log 2 

log tfoo ' 

log 2 

log <TU ' 
(67) 

Table 2. 

2m a o"oo ffoi^io 
log 2 log 2 

2m a o"oo ffoi^io log<7„ log^oo 

8 2.000 0.2091 0.0857 0.0210 0.282 0.443 
16 2.00 0.2613 0.1062 0.0315 0.309 0.517 
32 1.999 0.2852 0.1160 0.0404 0.322 0.553 
64 1.999 0.3029 0.1234 0.0458 0.331 0.580 
oo 2.000. . . 0 .399. . . 0.1596 0.0722 0.377. . . 0 .755. . . 

Wi th high enough acuracy, these equalities are valid also 
for the limit cycles, compare 2nd and 4th co lumns of 
Table 1 and the 6th and 7th co lumns of Table 2. 

Thus , the transfer ma t r ix me thod allows one u n a m b i g ­
uously to find the origin of the limit cycles: 
— they are self-similar, if the scale of the fractal cover is 
successively doubled ( a = 2); 
— two scales t ake pa r t in their const ruct ion (cr 0 0 and c r n ) , 
converging t owards a j j 1 and a j j 2 , respectively; 
— no transfer ma t r ix element is zero. 

The only dynamics obeying all these condi t ions is tha t of 
per iod doubl ings generated by Poincare m a p s with a 
quadra t i c m a x i m u m . If some other fractal under considera­
t ion exhibits the same proper t ies of the transfer mat r ix 
elements then one can be sure tha t the under ly ing dynamics is 
tha t of per iod doubl ing. The transfer mat r ix me thod was 
successfully applied to the da ta processing in the Benar 
experiment [44]. 

3.4 Analysis of events in hadron collisions 
Armed by such a promis ing technique, let us use the mat r ix 
transfer m e t h o d to analyse the events tha t occur in 
h a d r o n - h a d r o n collisions. Let us assume tha t the 
coordina tes of the observed part icles in the m o m e n t u m 
space form a finite set which is an approx imat ion of some 
u n k n o w n fractal [46], the dynamics of which we wan t to 
reveal. This app roach to h a d r o n physics has recently 
become a powerful ins t rument for the investigation of 
mult iple format ion of part icles [12]. 

F o r simplicity, let us consider a one-dimensional section 
of the m o m e n t u m space, which is the rapidi ty axis, and 
denote the rapidit ies of the observed part icles by yt. There is 
a clear analogy with the one-dimensional Poincare section 
of some mul t id imensional phase trajectory such tha t the 
rapidit ies of the observed part icles cor respond to the poin t 
of intersection of this t rajectory and the Poincare section. 

It should be stressed tha t our in terpre ta t ion of the 
relat ionship between the multiplicity of part icle collisions 
and the Ising mode l differs radically from the usua l 
in terpre ta t ion found in the l i terature [47, 48]. Usua l ly a 
part icle on the rapidi ty axis is assigned a spin var iable 
whose value is 1 on an Ising chain (spin 0 cor responds to the 
absence of a particle) and the transfer mat r ix reflects the 
interact ion of such spins. Natura l ly , this app roach cannot 
be used to extend the t r ea tment to m o r e complex Ising 
chains when at each site there m a y be m o r e t han two spin 
states and /o r the interact ion involves m o r e t han jus t the 
nearest sites in a chain. 

However , in our mode l the part icles are no t assigned 
spin variables and these variables appear only in the course 
of t ransi t ion between different par t i t ions formed from the 
same set of part icles on the rapidi ty axis. This set is 
regarded as an approx ima t ion of some infinite fractal 
set. In our app roach the ' s p i n - s p i n in terac t ion ' is a 
' topological ' characterist ic of a fractal and it is in no 
way related to correla t ions in the posi t ions of real part icles 
on the rapidi ty axis. Our mode l can be generalised to m o r e 
complex Ising chains, which seems to be a very promis ing 
field for investigation, bu t this is outs ide the scope of the 
present review. 

F o r compar i son , let us consider two exper imental 
events: the wel l -known a n o m a l o u s event repor ted by the 
N A 2 2 col labora t ion [49], who investigated the 7 i + p inter­
action with the centre-of-mass energy y/s = 22 GeV, and 
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Table 3. 

Wtot Doo D 0 D - o o a (T00 <Tll ^ 0 1 ^ 1 0 

log 2 log 2 

l o g < 7 n log^oo 

26 0.337 0.811 1.241 2.000 0.550 0.125 0.238 0.334 1.16 
24 0.326 0.666 1.181 1.999 0.558 0.117 0.120 0.324 1.19 
22 0.315 0.737 1.163 1.999 0.579 0.108 0.166 0.312 1.27 
20 0.302 0.568 0.975 2.000 0.470 0.098 0.089 0.299 0.918 
18 0.288 0.657 1.066 2.000 0.608 0.088 0.101 0.286 1.39 
16 0.273 0.492 0.881 2.000 0.458 0.076 0.049 0.270 0.888 

119 0.487 0.782 1.37 1.999 0.609 0.241 0.140 0.488 1.40 

the event recorded by the J A C E E col labora t ion when a 
cosmic-ray silicon nucleus interacted with a p h o t o g r a p h i c 
emulsion at an energy of abou t 4 TeV per nucleon ( S i -
AgBr interact ion) [50]. In the case of the N A 2 2 event, the 
dependence q(z) was found by the same-weight m e t h o d [see 
expression (39)], since the rapidit ies of all 26 part icles are 
k n o w n accurately (Ap/p<2%). The complete integral 
[0, 1] by a smooth t rans format ion , xt = ( t a n h j J ) / 2 , and 
all the part icles — beginning from the f i r s t—were com­
bined into pa i rs with the nearest ne ighbour on the x axis. 
The diameter 3t was calculated from formula (37). 

In the case of the J A C E E event, we determined the 
dependence T (# ) , expressed in te rms of the m o m e n t s Gq 

[defined by expression (40)], since in the case of this event 
only the h i s togram dN/drj was k n o w n with the bin size 0.1 
on the pseudorap id i ty scale. W e analysed only the pa r t of 
the h i s togram above the smooth b a c k g r o u n d [51, 52], 
represent ing 119 part icles out of the to ta l number of 
charged part icles nch = 1010 ± 30. 

Figure 2. Dependences of the Renyi dimensions Dq on q for the 
Feigenbaum attractor (curve 7) , for the limits 16 an d l8 cycles 
(curves 2 and 3, respectively) and for the anomalous event reported by 
the NA22 collaboration [49] circles (labelled 4), analysed on the basis of 
just 20 central particles. 

Earlier, in de terminat ion of the Reny i dimensions and of 
the transfer mat r ix elements, we selected for each event its 
own value T(0) and three arbi trar i ly selected other values of 
x{q) (see also the comment in Section 3.3), which we then 
subst i tuted in expression (63). The resul tant system of four 
nonl inear equa t ions was solved numerical ly by the 
mul t id imensional N e w t o n me thod . 

The results are presented in Table 3, where the last r o w 
( n t o t = 119) cor responds to the J A C E E event and the other 
rows represent the N A 2 2 event. The first co lumn gives the 
number of part icles included in our analysis: we d ropped 
successively two ou te rmos t part icles (one from the front 
hemisphere and the other from the rear hemisphere) and we 
thus selected the central interact ion zone. 

The transfer mat r ix me thod revealed, for b o t h events, 
the doubl ing dynamics (a = 2), the fact tha t all the mat r ix 
elements have nonzero values, and ensured a reasonable 
agreement between the theoret ical (in the region of the 
8, 16, 32 cycles) and exper imental values of the mat r ix 
element c r n , which is responsible for the pa r t s of the 
fractal with the highest density of the elements. M o r e ­
over, the Dq dependence for the N A 2 2 event with 20 central 
part icles was found to be almost identical with the Dq 

dependence for the limit 16 cycle when q ^ 6 (Fig. 2). It was 
found tha t this near- ident i ty is no t accidental and in the 
next section I shall consider briefly the bifurcation mode l 
which accounts for this. 

3.5 Bifurcation model 
A bifurcat ion mode l was p roposed by me in 1992 [33] to 
account for the intermit tency in the rapidi ty dis t r ibut ions 
of charged part icles formed at high energies [6, 11, 12]. The 
main assumpt ions m a d e in the bifurcat ion mode l are as 
follows: 

(1) there is a nonl inear equat ion which controls the 
dynamics of qua rks and gluons, and the solut ions of this 
equat ion depend on jus t one pa ramete r which is the energy 

of a collision in a single event; 
(2) the n u m b e r of par t i t ions of the phase trajectory 

cor responding to a given solution determines the n u m b e r of 
in termedia te part icles (the n u m b e r of clans), which m a y 
decay into the observed particles; 

(3) the number k of the part icles in each decay m a y vary, 
bu t the average over all the decays and events remains 
constant for different energies: 

(4) on the phase trajectory there is a one-dimensional 
Poincare section which has a single quadra t i c m a x i m u m if 
the direction of this section in the phase space is selected 
a long the rapidi ty axis. 

In other words , after some t ransformat ions , we can 
wri te down the Poincare m a p in the form of a logistic m a p , 
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described by expression (45), where the governing p a r a ­
meter X depends on the collision energy as follows [33]: 

^ ~ ^oo - ~ ~h , (68) 
3 y s 

where is the collision energy in gigaelectron-volts . W e 
recall tha t , for each value of the governing pa ramete r 
X G [3, X^] there is one and only one stable limit 2m cycle 
(m = 1, 2, 3 , . . . ) in a uni t interval [0, 1]. The posi t ion of 
each element in a cycle can be calculated with any desired 
precision. The complete interval on the rapidi ty axis 
[ — J m a x ? J m a x ] is m a p p e d onto [0, 1] by a smooth 
t rans format ion , such as ( t a n h j + l ) / 2 , which does no t 
alter the topological characterist ics of the initial fractal set 
(formed by clans). 

Consequent ly , for any energy of a collision in a given 
event we can use formula (68) to find the cor responding 
value of X and, consequent ly, the cor responding 2m cycle. 
This is the key feature of the bifurcation model : the 
observed dis t r ibut ions of part icles in the m o m e n t u m phase 
space (in par t icular , the rapidi ty dis t r ibut ions) are simply 
'p ic tures ' of the dis t r ibut ions of the elements of the limit 2m 

cycles in a uni t interval. 
The decay of clans into secondary part icles reduces the 

density of the initial fractal set and this increases the 
observed Reny i d imensions Dq with q < 0, compared 
with the t rue dimensions Dq. This is the reason why, in 
the bifurcation mode l f ramework, there is some discrepancy 
between the values of the mat r ix element cr 0 0 responsible for 
the pa r t s of the fractal with the min imal part icle density. 

This is suppor ted also by the values of D _ o o , D0, and 
for the J A C E E event, which are identical with the 
cor responding average values for the events involving 
collisions of heavy ions [53]. One should poin t out also 
tha t equali ty (67) for the exper imental events is satisfied 
with high precision (compare second and fourth, and also 
n in th and tenth co lumns in Table 3), par t icular ly in the case 
of and c r n , undis tor ted by the clan decays. Conse ­
quently, the transfer mat r ix elements for the observed 
exper imental events can be obta ined directly from D ^ , 
Do, and even wi thout solving E q n (63). 

F o r Di with q > 0 and par t icular ly with q > 1, r e spon­
sible for the densest pa r t s of the fractal, we can expect very 
small deviat ions from the t rue values of Dq. In fact, if the 
clans decay isotropically and independent ly of one another , 
the probabi l i ty tha t several n mesons are within a certain 
rapidi ty interval is p ropo r t i ona l to the size of the interval. 
Consequent ly , the smaller the interval, i.e. the higher the 
density of part icles in this interval, the lower is the 
probabi l i ty of r a n d o m ' imi ta t ion ' of the t rue fractal 
dimension by the secondary n mesons . 

The quest ion is: are there any other characterist ics of 
mult ipar t ic le p roduc t ion , apar t from Dq for q 1, tha t are 
predicted by the bifurcation mode l and which permit direct 
compar i son with experiments? The answer is 'yes' , and we 
shall consider this answer in the next section. 

3.6 Feigenbaum universality and period-doubling 
dynamics in hadron physics 
The next characterist ic of the limit 2m cycle which can be 
used in compar i son with experiments is the dependence of 
the m a x i m u m n u m b e r of elements nmax within a fixed 
interval 8^ on the value of 8£. 

max 

16 
a n 

t / 
12 y 
8 

A 

• 

m - i 

4 + -2 

i i 

8 16 24 32 

max 

0 8 16 24 

Figure 3. Dependences of Amcix on nch, described by expression (69), 
plotted for Ay — 0.5 (a) and Ay — 0 .1(b) . Experimental points: 
(a) symbols labelled 1 represent 7T + p collisions with y/s — 22 GeV [49], 
symbols labelled 2 represent pp collisions with y/s — 540 GeV [54], 
symbols labelled 3, represent the p - A G B r interaction for 
Piab = 4 0 0 G e V / c [55]; (b) symbols labelled 1 represent the 7 i + p colli­
sions with y/s — 22 GeV [49], symbols labelled 2 represent pp collisions 
with y/s — 22 GeV. The theoretical predictions are given by the open 
squares which, for the same of convenience, are joined by rectilinear 
segments. 
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The theoret ical dependence of nmax(b^)/b^ found 
experimental ly cor responds to the m a x i m u m part icle 
density A m a x , defined as follows: 

Ann 

An 
(69) 

where Arj is a fixed interval of the pseudorapid i ty ; Anmax is 
the m a x i m u m n u m b e r of part icles in the interval Arj, which 
is found by scanning the complete pseudorap id i ty interval rj 
with the interval Arj for each event, following by averaging 
over all the events ( ( . . . ) ) . Fig . 3 gives the values of A m a x 

for the 7 i + p , pp [49], pp [54], and p-AgBr [55] in teract ions 
at var ious energies for two fixed pseudorap id i ty intervals 
Arj : Arj = 0.5 and 0.1. 

It follows from the bifurcation mode l tha t a number of 
clans created in part icle collisions can only be 2 m , where 
m = 1, 2, 3 , . . . . All the in termedia te values for the set 
result from the decay of clans into secondary had rons . 
Consequent ly , the bifurcat ion mode l predicts the value of 
w m a x ( $ £ ) o n r v f ° r the clans, i.e. for the 2m sets which 
are regarded as the cor responding sizes of the cycles. 
Our calculat ions can be compared with the exper imental 
results if we k n o w the correspondence between Arj and 
8<i; G [0, 1]. W e shall do this by finding the m a x i m u m 
number of b ins 

M e x p 2yn 

At] 
(70) 

for each experiment and by equat ing it to the theoret ical 
value: 

M e x P = M t h e o r 

1 Y ± m a x 1 Y ± m a x 

W e then have the following correspondence: 

1 
Arj d£ = 

(71) 

(72) 

it should be noted tha t the value of ymax for the set 2m is 
no t taken from experiments bu t from the relat ionship 

log (73) 

where (mn) is the mass of a nucleon (K meson) ; ( v ^ ) m + i 

is the threshold energy for the appearance of the next 2 
cycle [see expression (68)]. F o r m = 1, 2 , . . . , 6, the cor re ­
sponding energies ( v ^ ) m

 a r e ( m gigaelectron-volts): 

m 1 2 3 4 5 6 
(74) 

(y/s)m 1.00 4.67 21.8 102 475 2218 

Therefore, for each value of ^ and a fixed value of Arj we 
can find the cor responding 2m cycle from the above 
tabu la t ion and we can identify the cor responding bin size 
8<i; G [0, 1] from expression (72). The quan t i ty 8^ is then 
used to scan the whole uni t interval in order to find 
nmax(&0 a n d the result is the quant i ty nmax(b^)/Arj (see 
Fig. 3). The agreement between the theory and experiment 
is quite satisfactory. In fact, the bifurcation mode l explains 
the experimental ly observed [49, 55] uni ty slope of the 
dependence Amax(nch) at high values of nch: 

•• anch + b, ath i (75) 

which is a consequence of the self-similar s t ructure of the 
2m cycles. In other words , any finite pa r t of the uni t 

interval conta in ing a sufficient number of the elements of 
the 2m cycle can reproduce the s t ructure of the other 2n 

cycles, where n > m. If the resolut ion is fixed, the only 
difference is the increasing (doubl ing) number of the cycle 
elements within the interval 8£. As a result, the value of 
nmax doubles at each m —> m + 1 t ransi t ion. The larger the 
value of 8<i; (or Arj in the experiments) , the earlier (i.e. for 
smaller sets) can we observe such a self-similarity and, 
consequently, a linear dependence Amax(nch). In fact, it is 
evident from Fig. 3 tha t formula (75) is obeyed for nch ^ 8 
and Arj = 0.5, whereas for Arj = 0.1 this formula is valid 
only for nch ^ 16. It should be noted tha t in the trivial case 
of a uni form dis t r ibut ion of part icles in accordance with 
their rapidi ty, the linear rise of A m a x ( n c h ) can be observed 
beginning directly from nch = 2 and extending to infinity. 

I th ink it would be m o r e interest ing to determine the 
inverse dependence n/Arjmin(n) for a fixed collision energy. 
Let us begin by selecting events with the same n u m b e r n t o t 

of charged part icles. Then , for each fixed value of 
n = 2, 3, 4 , . . . < n t o t , we can find — for each event — that 
the min imum pseudorap id i ty or rapidi ty interval Arjmin(n) 
which conta ins a given number of charged particles; we can 
then average the result over all the events. It is desirable to 
m a k e this analysis for sets of events for which the to ta l 
number ntot differs by a of 2: for example, 

: 2 ( n c h ) , ( n c h ) , and \{nch] 

factor 

A similar n/6^min(n) dependence can be calculated 
analytically for the limit 2m cycles on the basis of 
formula (13) with T = 1: 

o c 8 ^ v = 1 
1 

4 ( 1 ) - 1 ' 
(76) 

Figure 4. Dependences of the quantity n/Arimin (n) (represented by 
A m a x ) on Arjm[n, plotted for the limit 16, 32 and 64 cycles (curves 7, 2, 
and 3, respectively). 
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which gives — for example — the values v = 0.628 and 
v = 0.605 for the 16 and 32 cycles, respectively. In the 
case of the Fe igenbaum at t rac tor , we have 

« 0 ) = 
l o g ( « F +q F ) 

log 2 
= 3.132158 . . (77) 

which gives v = 0.53099 . . . . W e also found numerical ly the 
value of 5 £ m m ( ^ ) for n = 2, 3, 4 , . . . for the limit 16, 32, and 
64 cycles. This m a d e it possible to plot in Fig . 4 the 
quant i ty n/Arjmin(n) (represented by A m a x ) as a function of 
Arjmin. The quant i ty Arjmin is defined as usua l [see 
expressions (70) - (72)]: 

A * 7 m i n = ^ m a x ^ i r (78) 

The extreme poin t on the left on each curve in Fig. 4 
cor responds to n = 2. All these curves fit well a straight line 
with the slope —0.65 ± 0.03 [see the set of expressions (76)]. 

However , in real experiments [56] the measured q u a n ­
tity, closely related to the quan t i ty under considerat ion 
here, was the ' en t ropy ' S considered as a function of the size 
of the symmetr ic interval | v | ^ v c of the rapidi ty. The 
en t ropy S is defined by 

S = K h + 1) ln(?zc h + 1) - nch \nn{ ch (79) 

where nch is the number of charged part icles in the interval 
\y\ ^yc. If we regard S/ymax as a function of the scaling 
var iable \n(yc/y ax), where — as u s u a l — w e have 
ymax = \n(y/s — 2mN)/mn, we find tha t the bulk of the 
curve is a straight lie with a slope ( ~ 0.090 ± 0.002) which 
is insensitive to y/s (Fig. 5) [56]. If the dependence nch(ych) 
is wri t ten in the form 

\mK±J 
(80) 

like the approx ima t ion [57] for the da ta of the set of pp 
collisions in the energy range y/s = 5 - 9 0 0 GeV, 

("tot) (81) 

where fi = j8(l) = 0.449 ± 0.018, mn± = 0.231 GeV, we can 
readily see tha t S /yp(yc/ymax) for nch. The theoret ical value 
of is given by the formula [58] 

P = P(1) = - ^ 1 = 0 . 4 4 9 8 0 6 . . . , 
log<5F 

(82) 

where 3¥ is the second Fe igenbaum constant [see 
expression (46)]. 

Next , it follows from expression (81) tha t 

ln(nm) « fymax , (83) 

and we than have 

J m a x l n n t o t 

(84) 

W h a t does the bifurcat ion mode l say abou t the r igh t -hand 
side of the above approx ima t ion equali ty? Let us assume 
the cor respondence 5 £ m m <&yc/yax. Then the number of 
elements in a specific 2m cycle, which lies within an interval 
of length 5 ^ m i n , agrees with the exper imental value of nch in 
the interval \y\ ^yc. Apply ing again expression (13) with 
T = 1, we obta in 

P 

In n t o t ( < 7 - l ) l n « t < 
In 8 £ m i n + P (85) 
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Figure 5. Dependences of the normalised entropy S / y m a x on the scaling 
variable y c / y m a x . The experimental pints correspond to the pp collisions 
with v ^ = 546 GeV [59] and 900 GeV [60]. The theoretical lines 
correspond to the limit 4 and 8 cycles (7 and 2, respectively). 

i.e. the theory does indeed predic t -
scale — a straight line with the slope 

P 

-on a logar i thmic 

(q- 1) lnntot ' 

The slopes for the 4, 8, and 16 cycles are k = 0.083, 0.072, 
and 0.060 respectively, which is in reasonable agreement 
with the exper imental slope 0.090 ± 0.002 (Fig. 5). W e 
must also t ake into account tha t , first, the theory reflects 
the pos i t ions of the clans on the rapidi ty axis and tha t their 
decay into secondary part icles changes somewhat the slope 
of this straight line; second, the theory predicts the slope on 
the assumpt ion tha t yc is the min imum distance a long the 
rapidi ty axis needed to 'cover ' a given n u m b e r of particles, 
whereas the exper imental value of yc is k n o w n to be greater 
t han or equal to the theoret ical value. 

Consequent ly , from the poin t of view of the bifurcation 
model , it would be preferable to determine the quant i ty 
B = l n ( n c h / n t o t ) as a function of the scaling var iable 
J c / j m a x - Here , yc denotes the min imum interval \y\ <yc 

which conta ins the given n u m b e r nch of charged part icles. 
F o r the cor responding limit cycles [see expression (13)], the 
quant i ty B is 

Z = q ^ _ x l n 8 g m i n ( / i ) . (86) 

The values of \/[q{\) — 1] for the limit 8, 16, and 32 cycles 
are 0.335, 0.372, and 0.395, respectively. 
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4. Conclusions 

This review provides a brief account of the evolution, for 
over a century, of the ma themat i ca l a p p a r a t u s needed to 
investigate fractals, beginning from the C a n t o r concept of 
the cardinal i ty of an infinite set to the generalised Renyi 
dimensions. W e became acquain ted with the topological 
Lebesque dimension and with dimension p roposed by 
Brauer , and by Ur i son and Menger . W e also considered the 
concept of a measure and of the Hausdor f f dimension, 
which depend on the metr ic of the topological space. At the 
end of Section 2, we also encountered the initial in forma­
t ion on a new m e t h o d for investigating fractals, which is 
s tochastical analysis. 

In Section 3, we applied the ma themat ica l a p p a r a t u s 
in t roduced earlier to one of the best k n o w n fractals, 
discovered recently literally in all b ranches of physics, 
which is the Fe igenbaum a t t rac tor . W e became acquain ted 
with the transfer mat r ix me thod , relat ing the processes of 
successive increasingly accura te covering of a given fractal 
to the theory of the transfer matr ices of the cor responding 
Ising model . This me thod provides means for extract ing 
informat ion on the dynamics of a process generat ing a given 
fractal and has earlier been applied successfully to t u r b u ­
lence in the physics of l iquids. W e applied this me thod to 
two events of mult iple format ion of part icles in h a d r o n -
h a d r o n collisions and showed tha t the dynamics responsible 
for a given part icle dis t r ibut ion on the rapidi ty axis is very 
p robab ly the per iod-doubl ing dynamics which, for infinite 
collision energies, leads to the Fe igenbaum a t t rac tor . 

This result m a y have far-reaching consequences. First , 
the existence of the Fe igenbaum universal i ty n a r r o w s down 
significantly the class of equa t ions which can pre tend to the 
role of cont ro l of the dynamics of the hadron-c rea t ion 
processes, since in this case they should have solut ions with 
a quadra t i c singularity on the appropr i a t e Poincare m a p . 

Second, generalisat ion of the Fe igenbaum universali ty 
to relativistic processes makes it possible to use m a n y 
results of the un imode l m a p p i n g theory in h a d r o n p h y s ­
ics. In par t icular , on the basis of this hypotheses , it is 
possible to calculate in a parameter-f ree manner , the 
exponents represent ing the growth with energy of the 
average multiplicity of part icles in different rapidi ty inter­
vals [33], the multiplicity dependence of the m a x i m u m 
part icle density per unit rapidi ty [33, 51], and the rat io 
of the lengths and heights of steps considered as a function 
of the average t ransverse m o m e n t u m on the multiplicity 
when the collision energy is fixed [35]. 

The next step should be a study, by the transfer mat r ix 
me thod , of ' o rd ina ry ' events in h a d r o n - h a d r o n and 
n u c l e u s - n u c l e u s collisions, and also in the e + e ~ annihi la­
t ion process, since the per iod-doubl ing dynamics (if it does 
exist) should describe all the events. 
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