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Abstract. Topologica l defects — monopo les , vortices, and 
strings — are discussed. It is shown tha t these objects form 
clusters with a nonin tegra l dimension, i.e. they are fractals. 
The fractal d imension reflects the physical proper t ies of a 
system. In par t icular , studies of m o n o p o l e current clusters 
in U ( l ) and SU(2) lattice gauge theories m a k e it possible to 
identify the confinement mechanism. In the confinement 
phase the current lines of a magnet ic m o n o p o l e form a 
percola t ing cluster and these lines are so dense tha t their 
dimension exceeds unity, whereas in the deconfinement 
phase their d imension is trivial: it is equal to uni ty . It is 
also shown tha t the str ing tension is p ropo r t i ona l to the 
dimension of extended m o n o p o l e currents . This is in 
agreement with a confinement mode l based on the 
condensa t ion of magnet ic monopo le s into a superconduc t 
ing phase . A string between a qua rk and an an t iqua rk is 
then ana logous to an Abr ikosov vortex in a super
conduc tor . A n account is given of the appl icat ion of the 
theory of fractals in the p rob lem of gauge fixing in lattice 
gauge theories . It is also demons t ra ted tha t , in SU(2) 
g luodynamics , domains of the deconfinement phase have a 
nonin tegra l dimension near a phase t rans i t ion point . A p a r t 
from monopo les , the review deals also with the proper t ies 
of vor tex and string clusters in three-dimensional and four-
dimensional X Y models . The cor responding physical 
objects are vortices in liquid hel ium and 'global cosmic 
str ings ' . 
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1. Introduction 

Objects with a nonin tegra l dimension, i.e fractals, have 
been observed recently in very diverse fields of physics, 
mathemat ics , and biology [1]. This brief review will give 
examples of fractals found by numer ica l s imulat ion of 
lattice gauge theories . M a n y interest ing examples and 
r igorous definitions can be found in the wel l -known b o o k 
of M a n d e l b r o t [1] and in the review of Paladin and 
Vulpiani [2]. 

The main p rope r ty of fractals is their nonin tegra l 
dimension. In reality, there is an infinite number of 
definitions of the fractal dimension, which give the same 
values for objects with an integral dimension, bu t generally 
give different values for fractals. This ambigui ty in the 
definition of a nonin tegra l dimension is no t very impor tan t . 
In specific appl icat ions the ac tual existence of a fractal is 
significant. A very simple definition of the dimension of a 
fractal will n o w be given by way of in t roduct ion . Let us 
consider an object consisting of a large number of po in t s 
dis tr ibuted in some way in a Z)-dimensional Eucl idean 
space. Let us calculate the average number of po in t s 
within a sphere of rad ius R (Fig. 1). To do this we can 
consider a function 

where N is the to ta l number of poin ts ; xt are the 
coordina tes of these po in ts ; 6 is the step function. If the 
investigated object is a fractal, then f(R) oc RD{ and the 
power exponent Df can be regarded as the fractal 
dimension of the object. In the case of real examples 
there is a finite interval of the values of R in which the 
function / is p ropo r t i ona l to the power exponent of R. 
Obviously, R should be (much) less t han the size of the 
whole fractal, i.e. R < L f . It is also clear tha t R should be 
(much) greater t han the m i n i m u m distance / f between the 
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Figure 1. Calculation of the dimension of a fractal defined by the 
mapping operation (2). 

po in ts . The greater the number of poin ts , the m o r e 
accurate the precision of de terminat ion of the dimension 
Df on the basis of the function (1). The very existence of a 
finite interval, where f(R) oc RD\ reflects the fundamenta l 
p rope r ty of fractals, which is their scaling invariance, i.e. 
self-similarity on different scales. M o r e complex objects, 
multifractals, have less trivial proper t ies [2]. Extensive 
mater ia l for compute r games is provided by recursion 
equat ions : for example, the fractal shown in Fig. 1 is 
defined by the m a p p i n g opera t ion 

x n e w = s i n ( x o i a ) + cos . u 

l 

(2) 

+ c o s ( v o l d ) . 

Ano the r simple example is the process of diffusion of N 
poin t s ( 'bacter ia ' ) in which each poin t has a certain 
probabi l i ty to 'mul t iply ' or to 'die ' . Fig. 2 is t aken from 
Ref. [3] and it demons t ra tes the process for 500 po in t s living 
on a p lane . In the initial configurat ion the po in t s are 
scattered at r a n d o m on a square (Fig. 2a). At each step 
of the process hal f the r a n d o m l y selected poin ts d isappear 
and the remain ing poin ts are 'doubled ' ; each poin t then 
shifts by a step p ropo r t i ona l to a r a n d o m number 
characterised by a Gauss ian dis t r ibut ion of the probabi l i ty 
(Brownian mot ion) . Several islands or clusters form after 50 
such steps (Fig. 2b). A large number of steps is followed by 
the survival of just one cluster which has a fractal dimension 
(Fig. 2c); all the po in t s (bacteria) in this cluster have the 
same ancestor . It is interest ing tha t the average linear size of 
this fractal is independent of the dimension of space (and is 
p r o p o r t i o n a l to the square roo t of the to ta l number of 
particles) and also tha t the centre of gravity diffuses at the 
ra te of mo t ion of one part icle [3]. 

Real i ty (and the two examples given above) d e m o n 
strates tha t fractals appear a lmost always when even 
relatively simple systems are simulated numerical ly. In 
the case of physical models , the existence of fractals qui te 
frequently reflects the existence of some nontr iv ia l physical 
effect. A n excellent example, found by M a n d e l b r o t , is the 
appl icat ion of fractals to the theory of turbulence [1, 2]. 

The aim of this review is to show tha t the ' fractal ' 
concept is useful in the descript ion of physical p h e n o m e n a 
in lattice gauge theories. At the very least, a s tudy of the 
fractal proper t ies of vacuum in g luodynamics has helped 
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Figure 2. Evolution of an initially uniformly distributed set of points (a) 
by a diffusion process accompanied by reproduction, showing the 
configuration after 50 steps (b) and after 400 steps (c). At first sight it is 
quite surprising that the points do not 'spread out ' over the plane, but 
occupy compact regions irrespective of the number of steps [3]. 
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the au thor to unde r s t and the mechanism of colour con
finement. Over 20 years ago it was suggested [ 4 - 6 ] tha t 
ch romodynamics is a theory of s t rong interact ions. H o w 
ever, one of the main p rob lems which such a theory should 
tackle, which is the mechanism of colour confinement, has 
no t yet been solved analytically. The reason lies na tura l ly in 
the inability to t reat theoretical ly a field theory with a large 
coupl ing constant . On the other hand , numer ica l calcula
t ions on a lattice reveal clearly a chromoelectr ic field tube 
between a static quark and a static an t iqua rk (see, for 
example, Ref. [7]). In this review I shall show tha t numer ica l 
calculat ions m a k e it possible to unde r s t and the confinement 
mechanism. The most popu la r theoret ical explanat ion of 
confinement is based on a mode l p roposed b y ' t Hoof t and 
M a n d e l s t a m [8, 9] in which an electric field tube , formed 
between a qua rk and an an t iquark , is a dua l ana logue of an 
Abr ikosov vor tex in a superconductor [10]. This requires 
tha t vacuum in this theory should be similar to a super
conductor , bu t instead of a condensa te of Cooper pai rs 
there must be a condensa te of monopo les . This vacuum is 
usually called a 'dual superconduc to r ' . 

In Section 3, I shall discuss h o w a similar confinement 
mechanism arises in compac t e lectrodynamics. In pa r t i c 
ular , I shall show tha t the magnet ic m o n o p o l e currents form 
fractals [11] and tha t their dimension Df plays the role of the 
order pa rame te r for a conf inement -deconf inement phase 
t ransi t ion. 

In Section 4, I shall consider the simplest non-Abel ian 
theory on a lattice, which is SU(2) g luodynamics . It is no t 
possible to unde r s t and intuitively the physical effects in 
non-Abel ian theories, bu t the classical Abel ian theories are 
well unde r s tood : there is a clear pa t t e rn of physical 
p h e n o m e n a based on the Maxwel l equat ions . Therefore, 
before considering the confinement in non-Abel ian theories, 
it is necessary first to 'project ' this p h e n o m e n o n onto 
Abel ian theories and then t ry to demons t ra t e the existence 
of a super-conduct ing phase of Abel ian monopo les , which 
play the role of Cooper pairs . As in Section 3, a s tudy of the 
lines of the magnet ic m o n o p o l e current will help to identify 
the confinement mechanism. 

Section 5 deals with the p rob lem of gauge fixing in 
lattice theories . In the case of compact fields, it is found tha t 
fixing even of such a simple gauge as d^A^ = 0 is a 
nontr iv ia l task and it will be shown tha t the fractal 
dimension is useful in tackl ing this task. Other examples 
of gauges, impor t an t in appl icat ions , will also be consid
ered. 

The fractal proper t ies of vortices in the three-d imen
sional XY mode l and of 'global s t r ings ' in the four-
dimensional XY mode l are described in Section 6. 

The Append ix in t roduces the main concepts of lattice 
gauge theories, necessary for the unde r s t and ing of the bulk 
of this review. 

Section 2 deals with the fractal proper t ies of deconfine
ment domains [12] in a gluon p lasma in the region of a 
con f inemen t -decon f inemen t phase t ransi t ion. This simple 
example will serve to in t roduce definitions and concepts 
needed in the rest of the review. 

2. Fractal properties of deconfinement domains 

At sufficiently high t empera tu res (Tc ~ 200 MeV) , a phase 
t ransi t ion occurs in g luodynamics : a colour confinement 
phase changes to a deconfinement phase . In this section, 

based on the results of Ref. [12], I shall show tha t the 
deconfinement phase doma ins in SU(2) lattice gauge theory 
have a nonin tegra l dimension near the phase t ransi t ion. 

At a finite t empera tu re a lattice theory is defined on an 
asymmetr ic lattice. The physical t empera tu re on a lattice of 
size N3

sNt is related to the lattice step a as follows: 
T = l/Nta (Ns is the size of the lattice a long a spatial 
direction and Nt is the cor responding size a long a t ime 
direction; the concept of t empera tu re is definite if Ns Nt). 
Since a depends on the unrenormal i sed (bare) charge g, it 
follows tha t t empera tu re can be varied by al tering Nt or g. 
M y calculat ions were carried out on a lattice of 8 3 x 4 size. 
In the adop ted theory the phase t ransi t ion occurs at 
4/gl w 2.32 [13, 14]. The order pa rame te r is a Po lyakov 
line [15] and its q u a n t u m average is related to the free 
energy of a colour charge as follows: L oc exp(—F/T). [By 
definition, 

L = ^ T r exp 
, i / r 

i dt AA(x) 
Jo 

and in te rms of the lattice no ta t ion 

n=l 

where x = (x,na)]. Consequent ly , in the confinement 
phase , characterised by F = o o , (L) = 0 , in the region of 
the phase t ransi t ion we have F < oo and (L) ^ 0. 

It therefore follows tha t each site in the spatial lattice can 
be ascribed a value of L . A nonzero average (L) appears 
because the dis t r ibut ion of the values of L is asymmetr ic . By 
definition, we shall assume tha t a given lattice site lies in the 
deconfinement phase if the value of L cor responding to this 
site and averaged over six values of L cor responding to the 
ne ighbour ing sites exceeds a certain value s. It is assumed tha t 
the deconfinement phase occupies a uni t cube, which belongs 

Figure 3. Example of a domain of a deconfinement phase in the SU(2) 
gluodynamics at a temperature close to the critical value: T « 0.95TC. 
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Figure 4. Dependence of the volume of deconfinement domains on the 
area of their surface. The dashed line is the dependence 
V = const x A3/2. 

of the cubes and the links intersect the shared faces of the 
adjacent cubes. The dimension of a cluster, which consists 
of lattice links, can be defined as the rat io of the number of 
l inks N\ to the number of sites Ns be longing to a cluster, i.e. 

The number of links on a per iodic Z)-dimensional lattice 
is D t imes greater t han the number of sites so tha t our 
definition gives the correct value of the dimension of an 
object occupying all the links on the lattice. In the case of 
lines of lower density a na tu ra l in terpola t ion can be 
m a d e between integral dimensions. Appl ica t ion of this 
definition to the deconfinement phase doma ins shows 
tha t Df = 2.5 ± 0.2 when e = 0.4 - 0.45. Calcula t ions car
ried out by A I Veselov show tha t oc depends weakly on 
t empera tu re and is practical ly unaffected by a change from 
a lattice of 8 3 x 4 size to one of the 16 3 x 4 size. 

to a dual la t t ice! , and the poin t under considerat ion lies at the 
centre of this cube. If two cubes share a face, they are taken to 
be long to one domain . It follows tha t each configurat ion of 
fields cor responds to a certain number of three-dimensional 
doma ins of the deconfinement phase . The n u m b e r and 
s t ructure of these domains are governed in general by the 
value of the pa rame te r e, bu t it is found tha t var ia t ion of this 
pa ramete r within a wide range does no t influence the results 
significantly. In the confinement phase the shape of the 
doma ins is fairly simple: each consists of several cubes. 
Like the phase t ransi t ion, the domain s t ructure is fairly 
complex, as demons t ra ted by an example of a doma in shown 
in Fig. 3. 

Let us consider several lattice configurat ions of fields in 
the region of a phase t ransi t ion and measure the volumes 
and areas of the deconfinement domains . The results 
obta ined for 4/g2 = 2.29 are p lot ted in Fig. 4. The depend
ence of the vo lume on the area is described very well by the 
formula V = const x A a , where a = 1.12 ± 0.05. The results 
agree within the limits of the error for 4/g2 = 2.29 (T < Tc) 
and for 4/g2 = 2.35 (T > Tc). If the doma ins are n o r m a l 
three-dimensional objects, then V = c o n s t x A 3 / 2 and this 
dependence is represented by the dashed line in Fig. 4. It 
follows from this result tha t the domains have a ' loose ' 
s t ructure, which can be seen also in Fig. 3. A study of the 
fractal proper t ies of domains [ 1 6 - 1 8 ] , carried out near a 
phase t rans i t ion in the three-dimensional Ising model , also 
gives a nontr iv ia l power exponent = 1.15 ± 0.05. This 
should be compared with a = 1.03 ± 0.03 obta ined for our 
example when g = oo, i.e. for a r a n d o m dis t r ibut ion of the 
values of L between —1 and 1. It should be stressed tha t if 
g = oo, regions with L > e are no t the deconfinement 
domains . 

A calculat ion of the fractal d imension of the deconfine
ment phase domains , carried out on the basis of formula 
(1), shows tha t Z) f = 2.3 ± 0.4. W e can see tha t the error in 
the de terminat ion of Z) f is fairly large. In the case of objects 
on a lattice a much simpler definition of the fractal 
dimension can be p roposed . The domains consist of uni t 
cells (cubes) of a dua l three-dimensional lattice. On the 
initial lattice, each domain cor responds to an object 
consist ing of links and sites. The sites are at the centres 

f The 'dual lattice' concept is defined in the Appendix. 

3. Fractal dimension as a confinement-
deconfinement order parameter 

This section is based on the results repor ted in Ref. [11]. 
The usua l order pa ramete r s , governing the phase of a 
gauge ( con f inemen t -deconf inemen t ) field are the string 
tension o [19] and the Po lyakov line [15]. The string tension 
is the force act ing between a qua rk and an t iqua rk 
separated by an infinite distance. Therefore, the deconfine
ment phase is characterised by a = 0 and the confinement 
phase by a ^ 0. As poin ted out above, in the case of the 
deconfinement phase we have L ^ 0 and for the confine
ment phase we have L = 0. The order pa ramete r p roposed 
here is associated with the confinement mechanism based 
on a mode l of vacuum in which a condensa te of magnet ic 
monopo le s exists. 

It is well k n o w n tha t in four-dimensional and three-
dimensional compac t q u a n t u m electrodynamics the con
finement is indeed due to condensed monopo le s [ 2 0 - 2 2 ] . In 
the next section we shall consider monopo le s in four-
dimensional compact lattice electrodynamics. The defini
t ions in t roduced be low will be useful in the next section in a 
discussion of a physically m o r e interest ing example of 
lattice g luodynamics . 

Let us n o w consider the results of numer ica l calcula
t ions. C o m p a c t e lectrodynamics is a theory of Abel ian 
gauge fields and the range of var ia t ion of these fields is 
finite. The actual range is u n i m p o r t a n t and in lattice 
theories it is usua l to assume tha t — n < A^a^n (a is 
the length of a lattice l ink). In four-dimensional compact 
lattice e lectrodynamics there is a confinement phase at high 
values of the charge (if ft < /? c , where ft = l/e2 and e is the 
unrenormal i sed charge). Since gauge fields are defined 
m o d u l o 2n/a, the field strength tensor — defined be low 
by expression (5) — can have singularities which cor respond 
to monopo le s [21, 22]. In a con t inuum theory the charge 
inside the vo lume b o u n d e d by a surface S can be found 
from the G a u s s theorem: 

1 
4n 

E-dS 4*1 
The same theorem applied to the dua l field s trength tensor 
gives the value of the magnet ic charge 

1 
871 1 6j"va (4) 
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A nonzero value of m appears because of the presence of a 
singularity (Dirac string) in F^v. 

Before wri t ing down a lattice ana logue of the definition 
of a magnet ic charge m, let us recall the definition of fields 
in lattice theories. In compact e lectrodynamics the dynamic 
variables 6 (—% ^ 6 < K) are defined on the lattice links. 
The variable 6xfi, cor responding to a lattice link emerging 
from a poin t x a long a direction fi, is p ropo r t i ona l to the 
vector po ten t ia l 6xpL =Afl(x)a, where a is the length of a 
lattice link. Each p laque t te (a uni t square on a lattice) 
cor responds to a phase which is p r o p o r t i o n a l to the field 
strength tensor: 

= a2F^(x) + 0 ( < 2 4 ) , ^ 

where ft is a vector of length a directed a long the fi axis. 
The s tandard action of the theory has , in accordance with 
formula (18), the form S = /?(1 — c o s # p ) . 

Appl ica t ion of formula (4) to a uni t three-dimensional 
cube on a lattice and replacement of integrat ion over the 
surface by summat ion over the cube faces (on the a s s u m p 
t ion tha t a is small) gives 

»=i l>. (6) 
which is summed over the p laque t te phases which 
cor respond to the cube faces; their or ienta t ion is shown 
in Fig . 5. It is evident from this figure tha t each value of 
Ox,ii occurs twice in the sum (6): once with the plus sign and 
once with the minus sign; m can have a nonzero value only 
because m o d 2K occurs in the definition of 0 p given by 
formula (5). In the case of n o n c o m p a c t fields there is no 
m o d 2K in the definition of the field strength tensor and 
m = 0. This reflects the elementary fact of the absence of 
monopo le s in n o n c o m p a c t e lectrodynamics. A discont inu
ity of 2K which appears for m ^ 0 on a p laque t te 
cor responds to the format ion of a Di rac string on a 
lattice. W e can easily show tha t m = 0, ± 1, ± 2 . The 
discrete values of the charge obey the Di r ac quant i sa t ion 
condi t ion. In four-dimensional space the monopo le s 

Figure 5. Going round the plaquettes which are the faces of a cube for 
which a magnetic charge is calculated from formula (6). 

Figure 6. Lines of magnetic monopole currents in compact lattice 
electrodynamics: (a) deconfinement phase; (b) confinement phase. 

cor respond to the lines of a current which be long to the 
links of a four-dimensional dual lattice (a static m o n o p o l e 
cor responds to a current directed a long the ' t ime axis ') . 
A n y three-dimensional cube on a four-dimensional lattice 
cor responds to a link on a dua l lattice. A cube is defined by 
three directions and a link dua l to a cube is directed a long 
the fourth direction. If a given three-dimensional cube 
cor responds to a magnet ic charge m defined by formula (6), 
then a magnet ic current *j = m flows a long a dua l link (see 
the Appendix) . W e can show tha t the lines of the current 
are closed and this na tura l ly cor responds to the law of 
conservat ion of magnet ic charges. 

Numer i ca l experiments [ 2 3 - 2 5 ] show tha t in the 
confinement phase the current lines cover densely a dua l 
lattice and there are m a n y self-intersections. In the 
deconfinement phase the current lines are less dense. 
Examples of the project ions of the current lines from a 
four-dimensional space on to a two-dimens iona l surface of a 
page are shown in Figs . 6a and 6b for the deconfinement 
and confinement phases , respectively. Pictures of this k ind 
were first given in Refs [24, 25]. 

It is found tha t a satisfactory language describing the 
currents of monopo le s on a lattice is represented by the 
fractal dimension Df defined by formula (3). Lat t ice fields 
have been generated and the lines of magnet ic current have 
been identified for var ious values of ft in lattice gauge U ( l ) 
theory. In each field configurat ion there are several 
connected objects (clusters). Fig . 7 shows the dependence 
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Figure 7. Dependence of the average dimension of the largest of clusters 
of magnetic monopole currents on ft in compact lattice electrodynamics. 

of the average fractal d imension of the largest of the clusters 
on the value of W e can see tha t in the confinement phase 
(fi < /?c), the dimension Df is nontr iv ia l (an object com
posed of lines has the dimension Df > 1). If ft > /? c , then 
Df = 1. The behaviour of the p roposed order pa ramete r Z) f 

co r responds quali tat ively to the pa t t e rn of condensa t ion of 
magnet ic monopo le s in the confinement phase . The 
magnet ic currents in the phase in which monopo le s are 
condensed are so dense tha t their dimension is greater t han 
uni ty. A n even m o r e direct numer ica l confi rmat ion of the 
condensa t ion of monopo le s is given in Ref. [26], where a 
calculat ion of the effective poten t ia l of monopo le s is 
repor ted ; it is found tha t in the confinement phase this 
po ten t ia l has a m in imum cor responding to a m o n o p o l e 
condensa te (Higgs potent ia l ) and in the deconfinement 
phase the average value of the opera tor of creat ion of a 
m o n o p o l e in vacuum is zero. 

Final ly, investigations [27, 28] of percola t ion proper t ies 
[29, 30] of m o n o p o l e clusters have shown tha t in the 
confinement phase there is a nonzero probabi l i ty tha t 
two poin ts are linked by a m o n o p o l e current if the distance 
between them tends to infinity. In the deconfinement phase 
this probabi l i ty is zero. Ten generated field configurat ions 
on a lattice of size 10 4 have been calculated for a given value 
of ft and the probabi l i ty tha t two poin ts separated by a 
distance L are linked by a m o n o p o l e current line has been 
found. This probabi l i ty has then been fitted by the function: 

f(L) 
A e x p ( - m L ) | c 4 

(7) 

where A, a and C are fitting pa ramete r s . The dependence of 
C2 on P is p lo t ted in Fig. 8. If 4>(x) is the m o n o p o l e 
creat ion opera tor , the calculated probabi l i ty is p r o p o r 
t ional to the correlat ion function (</>(0)</>(0)</>(x)</>(x)), and 
the pa ramete r C represents a m o n o p o l e condensate . A n 
impor t an t consequence follows from Fig. 8: in the 
deconfinement phase , when ft > fic (or in the confinement 
phase , when < /?c), a m o n o p o l e condensa te is equal (or 
no t equal) to zero, which is na tura l ly in agreement with the 
confinement mechanism under discussion. A compar i son of 
Figs 7 and 8 shows tha t the nontr iv ia l fractal dimension 
(Df) of m o n o p o l e currents cor responds to the confinement 
phase in which monopo le s are condensed. The quant i ty 

Figure 8. Square of the magnitude of the condensate of monopoles in 
compact lattice electrodynamics, calculated for a lattice of 104 size as a 
function of ft. 

Df — 1 behaves like the order pa ramete r Df — 1 > 0 for 
P < fic and Df - 1 « 0 for > fic. 

4. Abelian magnetic monopoles and confinement 
in gluodynamics 

Par t ia l gauge fixing in SU(AT) g luodynamics which does no t 
fix the gauge group [ U Q ) ] ^ - 1 is p roposed in the well-
k n o w n paper of 't Hoof t [31]. The d iagonal elements of a 
gluon field behave as gauge fields under residual Abel ian 
t r ans format ions and the off-diagonal elements behave as 
mat te r fields. In view of the compact na tu re of the Abel ian 
gauge g roup , there are monopo le s in the system and if they 
are condensed, then confinement can be explained (as 
ment ioned earlier) by a classical theory [8, 9]: vacuum 
behaves as a superconductor , the role of Cooper pai rs is 
played by monopo les , and a string between the colour 
charges is a dua l ana logue of an Abr ikosov vortex. 

M a n y numer ica l exper iments (discussed, for example, in 
Suzuki ' s review [32]) confirm the m o n o p o l e confinement 
mechanism in the U ( l ) theory, derived by an Abel ian 
project ion from the SU(2) lattice g luodynamics . The string 
tension Ou(i), deduced from the Wilson U ( l ) loops [which 
are the loops const ructed only from the Abel ian fields and 
the Abel ian fields represent the project ion of the SU(2) fields] 
is identical with the to ta l string tension in the SU(2) 
g luodynamics [33]. There are indicat ions [34] tha t the 
m o n o p o l e density obeys the scaling law i.e. tha t monopo le s 
survive in the con t inuum limit. The m o n o p o l e currents 
satisfy the L o n d o n equat ion for a superconduc tor [35]. It 
has also been shown recently [36, 37] tha t the string tension 
in the SU(2) g luodynamics can be reproduced by the 
cont r ibut ion of the m o n o p o l e currents . F o r complete 
clarity, it is very impor t an t to demons t ra t e the presence 
of a condensa te of Abel ian monopo les . It is k n o w n tha t in 
the confinement phase the density of monopo le s is high and 
tha t it is low in the deconfinement phase [24, 25]. By itself, 
this does no t yet p rove the p roposed confinement model . In 
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an o rd inary conduc tor the density of free charges m a y be 
high bu t this is insufficient for the format ion of an 
Abr ikosov vortex: a charge carrier condensa te is necessary. 

W e shall show in this section tha t in the SU(2) 
gluodynamics a m o n o p o l e condensate , deduced (as 
described in the preceding section) from the percola t ion 
proper t ies of magnet ic currents , is — as expected — 
different from zero for the confinement phase and vanishes 
for the deconfinement phase [27, 28]. A numer ica l inves
t igat ion of the effective act ion for monopo le s [38] gives a 
similar result: the en t ropy of m o n o p o l e currents is greater 
t han their energy. Consequent ly , a m o n o p o l e condensa te 
exists in the SU(2) g luodynamics at absolute zero. 

All these r emarkab le proper t ies have been derived for 
just one, k n o w n as the m a x i m u m , Abel ian project ion [24, 
25]. In fact, there is an infinite number of Abel ian 
project ions of a given non-Abel ian theory. The confine
ment mechanism is found to depend on the project ion. W e 
shall show tha t a s tudy of the fractal proper t ies of the 
m o n o p o l e currents demons t ra tes the special na tu re of the 
m a x i m u m Abel ian project ion. 

Let us begin with the formal definition of an Abel ian 
project ion [31] and, for the sake of simplicity, let us consider 
the gauge group SU(2). A n Abel ian project ion represents 
such par t ia l fixing of the gauge of non-Abel ian fields for 
which the Abel ian cal ibrat ion group remains nonfixed. The 
simplest example of such fixing is the diagonal isa t ion of the 
field s trength tensor F^x) for given values of \i and v. In 
lattice theories the p rocedure is as follows. If a configura
t ion of fields in a lattice UxpL is given, then for each lattice 
site an ana logue of the field s trength tensor is described by 
formula (A.2) in the Appendix . U n d e r the gauge t r a n s 
format ion given by formula (A.6), this mat r ix behaves as 
follows: 

UXiflv = QxUXifiVQx . (8) 

F o r given values of fi and v (for example, fi = 1 and v = 2), 
it is possible to select for each lattice site the gauge 
t rans format ion matr ices Qx in such a way tha t Ur

xpLV is 
diagonal . Obviously, the t rans format ion 

/ exp( ioO 0 \ 
\ 0 e x p ( - i a j J w 

leaves the mat r ix UxpLV in the d iagonal form. Therefore, the 
mat r ix Q is defined, apar t from the t rans format ion given by 
the formula (9). The mat r ix elements of the fields UxpL 

which remain unfixed by this Abel ian t r ans format ion are 
t ransformed as follows: 

U^p -> Ul

x

1^ exp [i(ax - ax+fi)] , 

12 12 r , M ( 1 0 ) 

Ux,p -> UXili exp [i(ax + <x.x+li)\ . 

The phase 6xfl of a d iagonal element \UX

x]n — 
e x p ( i ^ ) A i ) | L ^ ^ | ] t rans forms as an Abel ian gauge field on 
a l a t t i ce | : 6xfi —> 6xfi + ax — (xx+fi. The procedure for 
investigating m o n o p o l e currents on a lattice in the SU(2) 
g luodynamics consists of the following steps: 

f In the continuum limit the diagonal elements of a gauge field also 
transform as the Abelian gauge fields: AJJ —> AJJ + iQ^a; the off-diagonal 
elements transform as the matter fields of charge 2: A^ —> A ^ exp(±2ia). 

(1) generat ion of configurat ions of the SU(2) fields with 
the weight exp( —5), where S is the SU(2) act ion; 

(2) project ion of the resul tant SU(2) fields by, for 
example, d iagonal isa t ion of Ux^2 over the whole lattice, 
so tha t the phase of the diagonal elements 0xpL can be 
regarded as an Abel ian gauge field; 

(3) calculat ion of the m o n o p o l e currents in accordance 
with formula (6), as described in the preceding section. 

The Abel ian project ion, which involves diagonal isa t ion 
of UXiflv, does no t give interesting physical results. In fact, 
there is an infinite number of the SU(2)—>U(1) project ions. 
Ins tead of a p laque t te matr ix , which becomes diagonalised 
by the gauge t ransformat ion , we can select any opera to r 
which t ransforms in a manne r similar to tha t described by 
formula (8): X(x) —> QxX(x)Qx. F o r example, at a finite 
t empera tu re we can diagonalise a Po lyakov line 

N 

i=i 

W e can easily see tha t this line behaves under gauge 
t r ans format ions in exactly the same way. Ano the r example 
is the m a x i m u m Abel ian project ion [24, 25], which 
cor responds to the search for the next m a x i m u m : 

% a X E T r ^V3^'>3) • (11) 
x X,fi 

Here Ux^ is the gauge- t ransformed field given by formula 
(A.6) and the sum is taken over all the lattice links. W e can 
easily see tha t this project ion makes the UxpL gauge fields as 
diagonal as possible and hence its name . Obviously, 
condi t ion (11) is invar iant under the Abel ian t r ans fo rma
t ions (9) and the phase of (Uxfl)u plays the role of a 
compact gauge field from which monopo le s can be formed 
in a certain configurat ion. As poin ted out at the beginning 
of this section, it is the m a x i m u m Abel ian project ion tha t 
provides much evidence tha t the vacuum in the SU(2) 
g luodynamics is constructed in a way similar to a dua l 
superconductor and the monopo le s formed from the fields 
6xpL are condensed. 

A p a r t from ambiguit ies in the selection of the project ion 
of a non-Abel ian theory on an Abel ian one, there is also 
ambigui ty in the U ( l ) theory itself [39]. W e can assume tha t 

Figure 9. Construction of an extended monopole. 
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the SU(2) theory is projected on the U ( l ) theory with link 
lengths a, 2a, . . . . This means tha t the monopo le s described 
by formula (6) can be obta ined by summing the phases no t 
only of the e lementary p laquet tes (see Fig. 5), bu t also the 
phases of con tours of size 2a (Fig. 9), 3a, . . . . Such 
'extended ' monopo le s [39] of 2 , 3 , ... size m a y possibly 
play an impor t an t role in the formulat ion of the g luody
namics action in te rms of m o n o p o l e currents [40]. 

It is found tha t the fractal dimension of m o n o p o l e 
currents is p ropo r t i ona l to the string tension o (which is the 
force acting between a qua rk and an an t iqua rk separated by 
an infinite distance) and the magn i tude of the m o n o p o l e 
condensa te is correlated with the string tension. Two 
m e t h o d s have been used to vary the str ing tension [27, 
28, 39]: the first is m o r e physical and involves var ia t ion of 
t empera tu re , whereas the second is m o r e formal and is 
k n o w n as the cooling of gauge fields. 

Fig. 10 gives the t empera tu re dependence of the 
magn i tude of a condensa te of monopo les . The calculat ions 
used in this figure [27, 28] have been carried out for the 
SU(2) g luodynamics on a lattice of 10 3 x 4 size. The 
magn i tude of the condensa te has been calculated on the 
basis of percola t ion proper t ies of the m o n o p o l e currents 
[see the explanat ion following formula (7) in the preceding 
section]. The m o n o p o l e currents have been obta ined on the 
basis of the m a x i m u m Abel ian project ion. Fig. 10 includes 
also the values of the string tension o repor ted in Ref. [41]. 
W e can see tha t the condensa te and the string tension 
vanish at the critical poin t T = Tc. The same result is 
obta ined in Ref. [28] also for the monopo le s of 2 3 and 3 3 

size. The fractal d imension of the m o n o p o l e currents l 3 , 2 3 , 
and 3 3 is greater t han uni ty if T < Tc (in the confinement 
region) and is trivial (Z)f = 1 ) if T > Tc. Therefore, the 
percola t ion proper t ies of m o n o p o l e clusters and their fractal 
dimension, obta ined by the m a x i m u m Abel ian project ion in 

the SU(2) g luodynamics at a finite t empera tu re , suppor t the 
m o n o p o l e confinement mechanism. 

Similar results are repor ted in Ref. [39] when the string 
tension is varied by the me thod in which vacuum fields are 
cooled. This me thod [ 4 2 - 4 5 ] involves consecutive var ia t ion 
of the link matr ices Ux^ in such a way tha t each var ia t ion 
minimises the act ion. Therefore, every t ime a local min i 
m u m is sought , the global m i n i m u m (when UxpL = 1 for all 
x and fi) is ob ta ined after several tens or even hundreds of 
passes t h rough all the lattice links. In the first few steps the 
string tension is a lmost cons tant [46] and the subsequent 
cooling steps reduce this tension [47]. Therefore, the cooling 
p rocedure makes it possible to vary smooth ly the string 
tension. If the initial configurat ion of the fields has a 
dis t r ibut ion with the probabi l i ty density exp( —5), then 
after the very first field-cooling step the dis t r ibut ion is 
different. This cooling p rocedure can be regarded as 
mot ion , in the configurat ional space, of fields over a 
certain p a t h which connects the q u a n t u m fields to the 
vacuum field = Q+dflQ. 

Fig. 11 shows the dependence [39] of the fractal 
dimension of the m o n o p o l e currents on the string tension 
obta ined by the m a x i m u m Abel ian project ion in the SU(2) 
g luody-namics . The initial SU(2) field configurat ions have 
been obta ined by the M o n t e Car lo me thod on a lattice of 
10 4 size for an unrenormal i sed charge g w 1.78. These 
configurat ions have then been cooled and at each cooling 
stage the m a x i m u m Abel ian project ion has been fixed and 
the fractal d imension of the m o n o p o l e currents as well as 
the string tension have been calculated. W e can see tha t the 
fractal d imension of the m o n o p o l e currents of size l 3 , 2 3 , 
and 3 3 is p ropo r t i ona l to the string tension. This correlat ion 
is one further p r o o f of the m o n o p o l e confinement mech
anism. It should be po in ted out tha t monopo le s of size l 3 

Figure 10. Temperature dependences of the square of the magnitude of 
the condensate of monopoles ( x ) and of the string tension (•) in the 
SU(2) gluodynamics. 
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Figure 11. Dependence of the fractal dimension of monopole currents of 
size l 3 , 2 3 , and 3 3 on the string tension during cooling. The monopoles 
are obtained from the maximum Abelian projection in the SU(2) 
gluodynamics. 
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rapidly disappear as a result of cooling and numer ica l 
est imates demons t ra t e tha t their density is far too low to 
account for the string tension. It follows tha t in the 'cooled 
v a c u u m ' the confinement is due to extended monopo le s of 
size 2 3 , 3 3 , . . . . The role of extended monopo le s in the 
confinement mechanism is n o w under active investigation. 
The results ment ioned above indicate tha t extended 
monopo le s are impor t an t in the case of lattice links of 
finite length (since our results have been obta ined for one 
value of the unrenormal i sed charge g); it is impor t an t to 
k n o w the size of the monopo le s responsible for the 
confinement in the con t inuum limit. These monopo le s 
m a y be finite (of the order of the confinement radius) or 
they m a y be of zero size. 

F ig 12, fully ana logous to Fig. 11, gives the dimension of 
the m o n o p o l e currents as a function of the string tension 
[39]. In this case each cooling step has involved the Abel ian 
project ion, cor responding to the diagonal isa t ion of the 
p laque t te mat r ix Ux^2 described by formula (A.2). Obvi 
ously, in the case of this Abel ian project ion the fractal 
dimension is no t p ropo r t i ona l to the string tension and 
there are serious reasons indicat ing tha t the monopo le s are 
no longer responsible for the confinement. A detailed 
discussion of the special na tu re of the m a x i m u m Abel ian 
project ion is provided in Ref. [48]. It is found tha t in the 
lattice g luodynamics there is an example of an Abel ian 
project ion ( 'min imum Abel ian pro jec t ion ' ) in which the 
confinement is no t due to monopo les , bu t to 'minopoles ' 
which are topological objects constructed from the off-
d iagonal elements of the lattice fields Ux\. W e recall tha t 
the monopo le s are obta ined from the phase of the d iagonal 
elements Ul

x

1^. 
A detailed discussion of the confinement mechanism for 

an a rb i t ra ry Abel ian project ion is outs ide the scope of this 
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Figure 12. Same as in Fig. 11, but monopoles obtained from that 
projection in the SU(2) gluodynamics which corresponds to 
diagonalisation of the plaquette matrix. 

review. It should be po in ted out , however , tha t in general 
b o t h the d iagonal fields Ux

1^ [U( l ) gauge fields] and the off-
d iagonal fields Ux\ [U( l ) mat te r fields] m a y be responsible 
for the confinement [ 4 8 - 5 0 ] . W e can assume tha t there is 
some object responsible for the confinement and described 
in a na tu r a l way in te rms of the SU(2) fields and tha t the 
monopo le s obta ined by the m a x i m u m of Abel ian project ion 
reduce to this object. In the case of other Abel ian 
project ions, this object m a y t ransform into topological 
defects constructed from b o t h the d iagonal and off-
d iagonal elements of the fields Ul

x

1^ and Ux

x\. The mos t 
p robab le candida te [51] is the classical solution of the dyon 
type [ 5 2 - 5 5 ] ; dyons of different sizes can be identified with 
extended monopo le s of different sizes. M y own pre l iminary 
numer ica l experiments have confirmed this behaviour . The 
conclusion tha t follows from this section is as follows: 
a l though m a n y details are still no t clear, it is obvious tha t 
numer ica l investigation of lattice g luodynamics has m a d e it 
possible to establish the general features of the colour 
confinement mechanism: in the m a x i m u m Abel ian projec
t ion the vacuum behaves like a dual superconductor . 

5. Gauge fixing in lattice theories 

The gauge-invar iant quant i t ies are of obvious physical 
interest, bu t there have been a large number of pape r s in 
which lattice gauge fields have been studied in c h r o m o d y -
namics and g luodynamics for a fixed gauge (see, for 
example, Ref. [56] and the l i terature cited there) . The task 
of project ing a non-Abel ian group on an Abel ian one, 
described in the preceding section, is also technically very 
close to gauge fixing. In this section we shall show h o w the 
theory of fractals is applied to the p rob lem of gauge fixing. 

It is quite simple to fix the gauge A 0 = 0 in a lattice 
theory with free b o u n d a r y condi t ions . However , the lattice 
ana logue of the L a n d a u gauge (d^A^ = 0) is not trivial even 
in compact e lectrodynamics, since the p rob lem is strongly 
nonl inear . The correct lattice formulat ion of the L a n d a u 
gauge is the search for the following m a x i m u m : 

D 

max F(x) = ^ReTT(QfUXillQx+(l). (12) 
X X pi=\ 

The differential condi t ion for an ex t remum, cor respond
ing to this m a x i m u m , reduces in the con t inuum limit to 
d^A^ = 0. Condi t ion (12) is nonloca l and in numer ica l 
calculat ions a computer p r o g r a m involves m a n y passes 
t h rough all the po in ts on the lattice with maximisa t ion 
of F(x) at each point ; this means tha t only Qx is varied and 
the remain ing values of Qy (y ^ x) are fixed. The p rocedure 
converges rapidly, bu t it is found tha t at some po in t s x the 
function F(x) is maximised much less satisfactorily t han at 
the majori ty of other po in ts on the lattice. 

By way of example, we shall give the results of Ref. [57] 
in which the L a n d a u gauge has been fixed for fields in three-
dimensional compact e lectrodynamics, derived for a charge 
e2 = 1/2.3 on a lattice of 2 5 3 size. After gauge fixing a 
typical value of the function F(x) is of the order of 0.95. 
However , at 3 % of the po in t s this function is F(x) < 0.77. 
The poin ts at which the gauge fixing is difficult are 
represented in Fig. 13 by small circles, t aken from Ref. 
[57]. De te rmina t ion of the fractal dimension of the regions 
formed by these po in t s shows tha t Df ~ 1. Since in three-
dimensional e lectrodynamics the only k n o w n one-d imen-
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Figure 13. Typical configuration of fields in three-dimensional compact positions of monopoles. The lines represent the Dirac strings which 
electrodynamics on a 2 5 3 lattice. The small dots represent the regions occupy a fixed position for the fixed gauge, 
where the Landau gauge is poorly fixed and the large dots are the 

sional objects are the Di rac strings (which occupy specific 
pos i t ions when the gauge is fixed), it is easy to guess tha t 
these objects are specifically responsible for regions with 
small values of F(x) (i.e. regions where it is difficult to fix 
the gauge). The con t inuous lines in Fig. 13 are the Di rac 
strings, whereas the large dots are monopo le s and an t i -
monopo les . Per iodic b o u n d a r y condi t ions are super imposed 
on the lattice so tha t the Di rac strings, which apparen t ly are 
d iscont inuous , are in fact either closed or they begin at 
monopo le s and end at an t imonopoles . If a D i rac string is 
directed a long the z axis, its vector po ten t ia l in cylindrical 
coordina tes is 

when a m o n o p o l e is located at the origin of the coord ina te 
system, whereas in the case of spherical coordina tes the 
cor responding expression is 

A m o n = ~ l - c o s f l 
r sin 6 

It is clear tha t singularities of the Di rac strings and 
monopo le s hinder gauge fixing. 

T h e L a n d a u gauge has also been investigated on a 
lattice for the SU(3) g luodynamics [56]. The circles in Fig. 
14 give the fractal dimension of the objects formed by the 
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po in t s at which there are difficulties with gauge fixing. A 
calculat ion of the function f(R) based on the function (1) is 
used in the d e p e n d e n c e ! p lot ted in Fig. 14: 

8 In f(R) 
dlnR 

(13) 

In the range R < Rn 1.2, a p la teau with Z) f ~ 1 
clearly visible; at higher values of R the dimension Df t ends 
to the dimension of the lattice, which is 4. This behaviour 
of Df shows tha t there are objects with the dimension close 
to uni ty; the linear size of these objects is less t han 
2^max ~ 2.5. Objects are dis tr ibuted at r a n d o m over a 
lattice and, therefore, if the value of R is large (in excess of 
the linear size of the objects), Z) f t ends to the dimension of 
the lattice, which is 4. The stars in Fig. 14 give the 
dimension Df deduced from formula (13) for po in t s 
scattered at r a n d o m over the lattice. W e can see tha t Df 

increases smooth ly from zero to 4 when R is increased from 
zero to Ri ~ 11.5. There is no p la teau at low values of R 
and when R exceeds the average distance between the 
po in t s (R ^R\\ the value of Z) f becomes approximate ly 
equal to the dimension of the lattice, which is 4. The value 
of Ri from which Z) f begins to reach a p la teau for 
r a n d o m l y scattered poin ts na tura l ly depends on the density 
p of these poin ts . The value of p is selected here so tha t Rx 

is of the order of Rmax. 
In the case of the m a x i m u m Abel ian project ion 

SU(AT) -> [U(\)]N~l [24, 25, 31], discussed in the preceding 
section, there are also regions on a lattice where the 
m a x i m u m described by formula (11) is reached with 
greater difficulty t han for the major i ty of the po in t s on 

dlog(//(r/fl)>/dlog(r/fl) 
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Figure 14. Fractal dimension of regions where the Landau gauge is 
poorly fixed in the SU(3) gluodynamics (O). The line is drawn in the 
part of the plateau that corresponds to D f « 1. Similar results for the 
maximum Abelian projection (x ) have no such plateau. The results for 
randomly distributed points (*) are included for the sake of comparison. 

f In this section we shall assume that each lattice step a is unity. 

the lattice. The dimension of this region is calculated from 
formula (13) and is represented by crosses in Fig. 14. W e can 
see tha t Df behaves in the same way as in the case of a 
r a n d o m dis tr ibut ion. All the results presented in Fig. 14 are 
obta ined in Ref. [56] by an analysis of eight independent 
configura-t ions of SU(3) fields on a lattice of 24 x 40 size 
for g2 = 1 (g is the unrenormal i sed charge on the lattice). 

It therefore follows tha t fixing of the L a n d a u gauge in 
accordance with formula (12) selects certain one-d imen
sional objects in the four-dimensional SU(3) g luodynamics . 
The m a x i m u m Abel ian project ion leads to poin t objects 
scattered at r a n d o m on a lattice. The physical mean ing of 
one-dimensional or po in t objects is no t yet clear. It is 
possible tha t one-dimensional objects are related to the 
confinement dynamics , as shown in Ref. [56], and tha t they 
are sensitive to a the rmal phase t ransi t ion. In the confine
ment phase the tangl ing up of the lines makes the dimension 
of the objects greater t han uni ty (Z)f ~ 1.3 for T ^ Tc) and 
at a phase t rans i t ion poin t the dimension changes abrupt ly 
and becomes Z) f ~ 1 for T ^ Tc. 

6. Vortices and strings in the XY model 

The monopo le s discussed in the preceding sections are 
po in t objects: their dynamics in the four-dimensional 
spacetime is governed by one-dimensional m o n o p o l e 
world lines. In this section we shall discuss string-like 
objects which cor respond to wor ld surfaces in four-
dimensional spacetime. W e shall consider defects cor re 
sponding to 'global cosmic s tr ings ' [58]. N o n p e r t u r b a t i v e 
investigation of these objects m a y be impor tan t , because 
cosmic strings could be responsible for the following 
scenario of the format ion of galaxies. At high t empera tu res 
(in the early Universe) the U ( l ) symmetry is u n b r o k e n and 
there is a string condensate . This is possible because the 
string tension is zero in this phase and the format ion of a 
closed string does no t require energy. The condensed 
strings form clusters in the Universe and their size is of the 
order of the size of the Universe itself (percolat ion effect). 
A phase t ransi t ion, cor responding to b reak ing of the U ( l ) 
symmetry, occurs when tempera tu res are lowered. A 
nonzero string tension appears and strings become massive 
objects. Tiny closed strings 'col lapse ' and decay into 
Go lds tone bosons . Strings of size of the same order as 
the Universe become 'frozen' and form stable massive 
s t ructures on which accret ion of cosmic dust takes place, 
leading to the format ion of galaxies. The general cause of 
the appearance of topological defects is the compac t n a t u r e 
of the dynamic variables. If in a Z)-dimensional space there 
is a field of d imens ion j k, then the dimension of the 
cor responding defect, existing on a dua l lattice, is 
D - k - 2 [59, 60]. In the XY mode l considered in the 
Append ix the compac t dynamic var iable is the scalar field 
cpt locked to lattice sites / and character ised by k = 0. 
Therefore, as discussed in the Appendix , the dimension j of 
a defect described by formula (A. 13) is zero for D = 2, 1 
for D = 3, and 2 for D = 4. In the case of compact 
e lectrodynamics, we have k = 1 and D = 4 and the 

% We shall discuss here the fields which are antisymmetric tensors of 
rank k; for a scalar field, we have k — 0 and the field is locked to a 
lattice site; in the case of a gauge field associated with an edge, we have 
k — 1; for a 'hyperfield' hflv(x) — —hVfl(x), associated with a plaquette, 
we have k — 2, and so on. 
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dimension of a defect (monopo le current) is unity, as 
expected. The wel l -known B e r e z i n s k i i - K o s t e r l i t z - T h o u -
less t ransi t ion [61, 62] in the two-dimens iona l XY mode l is 
due to zero-dimensional vortices. It will be shown in the 
next section tha t for D = 3 and D = 4 the dynamics of one -
dimensional and two-dimens iona l vortices is also closely 
related to a phase t ransi t ion. 

The lattice XY mode l is a discretised var iant of the 
theory of the scalar field <P with b r o k e n - d o w n global U ( l ) 
symmetry. The poten t ia l in this field theory is A(|<£|2 — @ o ) 2 , 
and, in the limit X —> oo, the radia l pa r t \&\ becomes frozen, 
whereas the remain ing dynamic var iable cp is compact 
[0 = \(pQ\exp(icp)]. In reality, only the kinetic pa r t of the 
field cp remains . The lattice act ion, given by formula (A. 12) 
in the XY mode l represents in fact the kinetic energy of the 
field cp; the cosine in the act ion described by formula (A. 12), 
which takes into account the compac t na tu re of the 
re la t ionship, can be replaced by any 27i-periodic function 
such tha t 

f(x) —> const x x2 . 
x—>0 

The last condi t ion means tha t in the con t inuum limit 
(a —> 0) the lattice act ion S is converted to the con t inuous 
action 

P (ycp)2dDx. 

'G loba l s t r ings ' occur in the scalar theory with b r o k e n -
down global U ( l ) symmetry and these strings cor respond 
exactly to topological defects in the lattice XY model , 
considered in the Appendix . In fact, in going r o u n d the 
string the scalar field 0 acquires an addi t iona l phase 2K 
[58]. This cor responds to going r o u n d on a p laque t te 
(Fig. 15), which leads to a defect with j ^ 0 described by 
formula (A. 13), since cp is the phase of the field (P. 

It follows tha t in the four-dimensional XY mode l the 
topological defects are global strings, whereas in the three-
dimensional XY mode l the topological defects are vortices 
in the three-dimensional scalar theory, such as vortices and 

(P4 

<f>\ 

q>3 

liquid helium be low the X po in t [63, 64]. In the three-
dimensional mode l the defects should be considered also as 
specific configurat ions of spins in a three-dimensional 
crystal. 

W e shall n o w describe the results of numer ica l calcula
t ions carried out in the XY mode l f ramework. F o r D = 3, in 
the mode l given by formula (A. 12), there is a phase 
t rans i t ion when fic w 0.4542 [65, 66], bu t if D = 4, such 
a t rans i t ion occurs for fic w 0.32 [60]. 

F o r D = 3 and D = 4 the fractal proper t ies of vortices 
and strings are exactly the same as in the case of m o n o p o l e 
lines in e lectrodynamics (Section 3) and in g luodynamics 
(Section 4). Below the phase t rans i t ion (/? < /?c) the 
dimension is nontr ivial . F o r wor ld surfaces of strings we 
have Df > 2, whereas for vortices, we obta in Z)f > 1; if 

> /? c , b o t h vortices and strings form clusters with a simple 
geometry: Df = 2 for the wor ld surfaces of strings (4DXY) 
and Df = 1 for the vortices (3DXY) [60, 67]. The percola t ion 
proper t ies of defects in the XY mode l are also fully 
ana logous to the proper t ies of monopo les : if < /? c , there 
is a finite probabi l i ty tha t two po in t s are connected by a 
vor tex line if D = 3 or by a wor ld surface of a string if 
D = 4, provided tha t the distance between the investigated 
po in t s tends to infinity. If ft > /? c , this probabi l i ty is zero. 
G r a p h s of the dependences of the fractal dimension of 
defects on and on the magn i tude of the condensa te C on 
are given in Refs [60, 67] and they are fully ana logous to 
those shown in Figs 7 and 8. In the region of a phase 
t ransi t ion a complete reconst ruct ion of the geometry of 
clusters formed by defects takes place. W e shall describe the 
proper t ies of clusters which are formed by closed surfaces 
(world surfaces of strings) on a two-dimens ional lattice. If 
is close to zero, the probabi l i ty tha t a given p laque t te 
belongs to the world surface of a string is approximate ly 1/ 
6. On a lattice there is an even larger cluster with a 
mul t i tude of a rms and there are also t iny clusters 
(satellites) which have the topology of a sphere (for 
simplicity, they will be simply called spheres). The surface 
of the spheres is of the order of 0 . 1 % of the surface of a 
large cluster. The individual satellites with a nonzero 
number of a rms (for example, tori) are observed with 
the probabi l i ty less than 10~ 5 . The surface area of a large 
cluster and the number of a rms b o t h decrease when is 
increased. The si tuat ion in the vicinity of a phase t ransi t ion 
characterised by ^ /?c is as follows. A large percola t ion 
cluster is still the only one and its surface area is 
approximate ly half tha t for ft = 0. The satellites have a 
surface area equal to abou t 3 % of the area of the large 
cluster. The p r o b a b i l i t y ! tha t a m o n g the satellites there is 
an object with the topo logy of a to rus is approximate ly 0.1. 
The si tuat ion changes considerably for ft > fic. There is no 
separate large cluster with the linear dimensions of the 
order of the lattice size. There are m a n y objects with the 
topo logy of a to rus and the to ta l area of all the clusters falls 
rapidly with increase in 

The numer ica l characterist ics of the cluster geometry 
can be determined by using the da ta for the average number 
of a rms . The number of a rms g is related to the Euler 
number 

(p2 NE=2-2g, (14) 

Figure 15. Plaquette and scalar variables ( p t . 
f All the probabilities are given for a lattice of size 10 4 . 
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Figure 16. Average number of arms on world surfaces of global strings, 
weighted in proport ion to the areas of these surfaces. 

which is easily calculated in our case: 

NE=np-ne + ns; (15) 

here nv is the number of p laquet tes , ne is the n u m b e r of 
links, and ns is the n u m b e r of sites forming the investigated 
surface. Fig . 16, t aken from Ref. [60], gives the dependence 
of the n u m b e r of a rms on the ' reciprocal t e m p e r a t u r e ' 
The number of a rms is t aken with a weight p ropo r t i ona l to 
the area of a given surface: 

/ „ ) = S i M i (16) 

where the sums in the n u m e r a t o r and denomina to r are 
calculated over all the clusters tha t be long to different 
configurat ions of the fields cp, found by the M o n t e Car lo 
me thod for each value of gt is the n u m b e r of a rms in a 
given cluster; St is the surface area of this cluster. A factor 
inversely p ropo r t i ona l to the lattice vo lume (V = L 4 ) is 
included to m a k e the results ob ta ined for lattices of 
different sizes directly comparab le . Fig. 16 gives the results 
of calculat ions for a lattice of 8 4 size; for each value of ft an 
investigation has been m a d e of 20 statistically independent 
field configurat ions. It is evident from this figure tha t in 
the 'h igh- tempera ture p h a s e ' (/? < /?c) the surfaces have a 
nontr iv ia l topology, with a large n u m b e r of a rms , and the 
quant i ty (g) differs considerably from zero. This behaviour 
of the surfaces cor responds to zero string tension, leading 
to the format ion of a string condensa te when ft < fic. 

It therefore follows tha t an investigation of defects in 
three-dimensional and four-dimensional XY models shows 
tha t be low a phase t ransi t ion (/? < /?c) the defects condense, 
as indicated by their percola t ion proper t ies , fractal d imen
sion, and geometr ic s t ructure . 

7. Conclusions 

This review concentra tes on the proper t ies of topological 
defects, with the exception of Section 2, where a m o r e 
s t andard p rob lem of the fractal d imension of doma ins near 
a phase t ransi t ion is considered. In addi t ion to the fractal 
proper t ies ment ioned in the title, the review deals also with 
the percola t ion of clusters and their geometr ic charac ter 
istics (the Euler number for the world surfaces of strings). 
The main conclusion which can be d rawn from the 
repor ted results is tha t all these characterist ics are highly 
sensitive to a phase t rans i t ion and tha t their behaviour is 
different in different phases . It can be shown tha t the main 
cont r ibut ion to the condensa te C described by the function 
(7) comes from te rms p ropo r t i ona l to 1//? be low the phase 
t rans i t ion and te rms p ropo r t i ona l to exp( — cfi) above the 
t ransi t ion. This behaviour is typical also of the fractal 
d imensions of defect clusters and of the number of a rms on 
the world surfaces of strings. 

There is a well-developed analytic theory of Abel ian 
topological defects (monopoles , vortices, and strings) [20, 
59, 60, 68, 69, 70, 71]. In par t icular , it is possible to wri te 
down explicitly the opera to r s represent ing creat ion of a 
topological defect, in spite of the fact tha t the const ruct ion 
of such nonloca l opera to r s is far from trivial. A brief 
descript ion of such const ruct ion will n o w be given. It is 
useful to recall the opera tor of creat ion of a charged part icle 
p roposed by D i r ac [72]. The gauge t rans format ion of the 
opera tor of the charged field of mat te r is 
4>'(x) = cf>(x) exp[ia(x)]. It is possible to p ropose the 
following gauge- invar iant opera tor : 

0 c ( x ) = ( / ) ( x ) e x p | i | ^ ( x - v ) A , ( v ) d v J . (17) 

Here , Bk is a Green function such tha t dkBk = 5(x) ; is a 
gauge field which changes as a result of gauge t r ans fo rma
t ions as follows: A^fx) = A^fx) + d^afx). It is obvious tha t 
4>c(x) is a gauge-invariant opera tor describing a charge 
su r rounded by a C o u l o m b cloud of p h o t o n s . The 
m o n o p o l e creat ion opera to r can be derived [68, 69] by 
crossover from compact e lectrodynamics to a dua l theory 
which represents some limiting case of the Abel ian Higgs 
model . The mat te r fields n o w carry a magnet ic charge and 
appl icat ion of the Di rac formula (17) to these fields, 
followed by re tu rn from the dua l to the initial theory, gives 
the m o n o p o l e creat ion opera tor . 

Ano the r example is the creat ion opera to r of an 
A b r i k o s o v - N i e l s e n - O l e s e n string in the Abel ian Higgs 
model . A string carries a closed magnet ic flux and initially 
we need to cross over again to the dua l theory, which 
includes gauge and hypergauge fieldsf. F o r m a t i o n of a 
Wilson loop Wc from a dual - theory gauge field creates a 
magnet ic flux a long a con tour C. The opera tor Wc is 
gauge-invariant , bu t no t hyper gauge-in var iant . A deriva
t ion similar to tha t described by the D i r ac formula (17) 
yields a hyper gauge-in var iant opera tor in the dua l theory . It 
is shown in Ref. [71] tha t this opera tor is the creat ion 
opera tor of an A b r i k o s o v - N i e l s e n - O l e s e n string on a 
con tour C. If in this derivat ion the electric charge is 
assumed to be zero, the result is the creat ion opera tor 

f A hypergauge field — —hVfl is a field whose Lagrangian is invariant 
under hypergauge transformations —> + d^Xv ~ ^vX^ where Xp is 
the hypergauge transformation parameter. 
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of a global str ing [70] discussed in Section 6. A m o r e 
detailed description of analytic approaches to topological 
defects is outs ide the scope of this review. 

P robab ly the most useful appl icat ion of the theory of 
fractals has been in the study of the mechanism of 
confinement in SU(2) g luodynamics . The similarity of 
the proper t ies of m o n o p o l e currents in SU(2) g luody
namics and in compac t e lectrodynamics shows tha t in 
the m a x i m u m Abel ian project ion of the SU(2) theory 
the confinement is due to a condensa te of monopo le s 
and the vacuum has a p rope r ty similar to a dua l super
conduc tor . As poin ted out at the end of Section 4, in spite 
of the fact tha t the overall confinement scenario is n o w 
under s tood , there are m a n y specific unsolved prob lems . F o r 
example, there is an infinite number of SU(2)—>U(1) 
project ions and in the case of some project ions the 
confinement is not due to monopo les , bu t due to other 
topological defects (minopoles) [48]. One can consider 
monopo le s of finite size (extended monopoles ) and the 
size of monopo le s responsible for the confinement is no t yet 
clear. 
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Appendix. Brief introduction to lattice theories 

This Append ix gives the main definitions from the theory 
of a field on a lattice. I am aware tha t a reader completely 
unacqua in ted with lattice theories can find this i n t roduc 
t ion insufficient and tha t unde r s t and ing of the details of 
this review will require recourse to the b o o k by Creu tz [73] 
or to the review by M a k e e n k o [74]. A reader fully 
conversant with lattice theories can ignore this Appendix . 

The main idea behind the lattice theory is the crossover 
from an infinite-dimensional functional integral in imag
inary t ime to a finite-dimensional integral . This is done by 
splitting the four-dimensional (or, in general , Z)-dimen-
sional) spacetime into a lattice. A lattice in a D-dimens iona l 
Eucl idean space consists of sites (points) , links, p laquet tes 
(unit squares) , uni t cubes, and Z)-dimensional uni t 
hypercubes . It is easy to see tha t on a lattice with per iodic 
b o u n d a r y condi t ions the to ta l number of sites is LD if on 
each of the coord ina te axes there are L sites. Such a 
lattice ha s DLD l inks (from each site one can see D l inks 
in the posit ive directions), [D(D — \)/2]LD p laquet tes , and 
[D(D — l)...(D—d + \)/d)]LD uni t objects of the d imen
sion d. D y n a m i c variables (analogues of con t inuous fields), 
which can be n u m b e r s or group elements, m a y be a t tached 
to sites, links, p laquet tes , etc. The classical (and mos t 
e lementary) example is the Ising mode l in which the 
dynamic variables cr, assuming the values + 1 , are a t tached 
to the lattice sites. In general , scalars cpx are a t tached to the 

lattice sites (x is the coord ina te of a site). Vectors Ux^ are 
at tached to links, where x is the coord ina te of the beginning 
of a link and \i is its direction. Ant i symmetr ic tensors , such 
as the field s trength tensor , cor respond to p laquet tes and 
have two directions and a coordina te : 9X^V. 

The act ion in the theory of a field on a lattice can be 
described by an expression which, in the limit when the 
lattice link a t ends to z e r o , | tends to the classical expression 
for the act ion. The simplest var iant involves replacement of 
the derivatives with finite differences on a lattice and 
subst i tut ion of the summat ion over the whole lattice in 
place of the integrat ion over the whole space. Ca re is needed 
in formulat ion of a gauge theory on a lattice. The p rob lem 
is this: if a discrete ana logue of the con t inuous action is 
simply wri t ten down, the gauge invariance is lost and this 
m a y have serious consequences. F o r example, g luodynamics 
then loses the colour confinement p rope r ty [75, 76]. 

The initial var iant of the lattice action for gauge fields 
[19, 77] can be wri t ten in a gauge-invar iant manner : 

5 = / ' ( 1 - £ ^ R e T r t / ^ v ) . 

\ X,fl>V J 

(A . l ) 

Here , the summat ion is carried out over all the plaquet tes , 
Uxflv is the p laque t te variable, 

(A.2) 

ft is a uni t vector directed a long the \i axis, and the dynamic 
var iable UxpL a t tached to a lattice link is an N x N mat r ix 
and belongs to the gauge group representa t ion G. The 
relat ionship with the gauge field A^, which cor responds 
to the algebra of G, is 

(A.3) 

where g is the unrenormal i sed charge in this theory. 
If the above expression is subst i tuted in formula (A . l ) , if 

the term leading in a is retained, and if summat ion is 
replaced with integrat ion, then for ft = 2N/g2 the act ion is 

•8 V A, 
(A.4) 

i.e. the lattice act ion of formula ( A . l ) reduces in the 
con t inuous limit to the s tandard act ion of gauge fields. 

The generat ing functional in q u a n t u m gluodynamics is 

Z = (A.5) 

where DU = Ylx ^ dUxfi is the integral over all the 
dynamic variables. The act ion S described by formula 
( A . l ) is invar iant under the gauge t rans format ions 

U^ = QxUXillQt+ll9 (A.6) 
where Qx is a mat r ix of gauge t rans format ions a t tached to 
a site x. F o r m u l a (A.5) is gauge invar iant if the integrat ion 
measure has the following proper t ies : dUxpL = dUxflVi = 
dV2Ux^, for arb i t ra ry values of Vx and V2, i.e. dUx^ is 

f In this review the system of units is that generally employed and 
characterised by a — 1, if it does not hinder understanding of the subject 
in hand. Sometimes, for the sake of clarity, a is left in the formulas. 
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the H a a r measure for the group G. In the con t inuum limit 
(a —> 0), appl icat ion of formula (A.3) readily demons t ra tes 
tha t formula (A.6) describes an o rd inary gauge t ransfor 
mat ion : 

-> Q+AliQ + - Q+ d^Q. 

The act ion described by formula (A . l ) is no t un ique : 
there is an infinite number of gauge- invar iant act ions on a 
lattice which in the con t inuum limit reduce to the 
Y a n g - M i l l s act ion. It is no t a trivial result tha t in the 
q u a n t u m con t inuum limit all the numerical ly investigated 
act ions have the same (within the limits of statistical errors) 
effect in q u a n t u m gluodynamics . This p rope r ty of 'un i 
versali ty ' can be demons t ra ted theoretical ly for 
g luodynamics with a large number of colours [78]. 

One of the main mot ives for the formula t ion of lattice 
gauge series has been the hope of ob ta in ing physical results 
in the form of a series in te rms of the reciprocal charge (1 /g) 
and no t as a s t andard pe r tu rba t ion- theory series in te rms of 
g. The existence of the confinement of colour charges has 
been demons t ra ted [19] in the leading order of the s t rong-
coupl ing expansion in te rms of l/g. Subsequent theoret ical 
and numer ica l invest igations have led to the conclusion tha t 
this result p robab ly does not apply in the con t inuum limit. 
Nevertheless , it has proved tha t the lattice formulat ion 
makes it possible to obta in physical results (at least when 
supercomputers are used) . In reality, up to the early eighties 
it has been difficult to see h o w the F e y n m a n pa th integral 
in field theory can be investigated numerical ly. The 
unexpected success achieved by Creutz (as described in 
his b o o k [73] and in the l i terature there) in the generat ion of 
lattice gauge theories by the M o n t e Car lo me thod has 
created a new t rend in the physics of s t rong interact ions, 
which is numer ica l s imulat ion of q u a n t u m c h r o m o d y -
namics . The decisive technical aspect has been the use of 
the M o n t e Car lo me thod , which involves the following 
o p e r a t i o n s . ! 

Let us assume tha t we need to calculate a quan t i ty 
(which is an ana logue of a q u a n t u m average) 

V n ; / Jexp[-S(l/)]d« 
(A.7) 

where J du is a f inite-dimensional integral. If po in ts are 
scattered at r a n d o m over the integrat ion doma in (one set of 
po in t s Ut is called a configurat ion) , then 

(W) 
, E £ I * W , - ) e x p [ - S ( £ / , - ) ] 

E L « p [ -S (£/,-)] 
(A.8) 

where the equali ty cor responds to the limit in which the 
number of configurat ions N t ends to infinity. The p roposed 
p rocedure m a y prove extremely slowly converging in 
numer ica l calculat ions. The reason for this is the presence 
of an exponent ia l function in the sums in formula (A.8), 

f The idea of applying stochastic methods to solve the Schrodinger 
equation was evidently first put forward by Fermi, who pointed out that 
the equation for diffusion with absorption is equivalent to the 
Schrodinger equation in imaginary time. Fermi was then engaged on the 
Los Alamos Project, where von Neumann was also working, and the latter 
proposed the excellent Monte Carlo method for the calculation of neutron 
scattering. F ermi's comment had not been published but it is mentioned in 
Ref. [79]. 

bu t for r a n d o m Ut the major i ty of configurat ions will be 
exponential ly suppressed. The convergence can be 
improved by scattering the configurat ions so tha t their 
dis t r ibut ion is characterised by the following probabi l i ty 
density: 

P(U) 
exp[ -S(E/ ) ] 

' J exp [ - 5 (U)] du ' 

where we n o w have 

<^)>«jv5>(" . - ) . 

(A.9) 

(A. 10) 
i=l 

and there are no exponential ly small factors. This m e t h o d 
can be used to carry out calculat ions on sufficiently large 
lattices: for example, Fig. 14 in Section 5 is derived for the 
SU(2) g luodynamics on a lattice of 24 x 40 size; the 
number of links on this lattice is N\ = 4 x 2 4 3 x 40 and a 
triple integral is calculated for each link [because there are 
three group SU(2) generators] . This gives an integral of 
multiplicity 3N± = 6 635 520. Integrals of this multiplicity 
have been calculated successfully not only because of 
appl icat ion of the tho rough ly tested M o n t e Car lo me thods , 
bu t also because the physically interest ing quant i t ies are 
no t s trongly non loca l and are averaged over the whole 
vo lume of the lattice. 

The first quest ion which arises in an analysis of the 
numer ica l da ta is: h o w are the results obta ined related to 
the con t inuum limit? The con t inuum limit is tha t at which 
the discrete s t ructure of a lattice is no longer felt and the 
finite vo lume of the lattice has no influence. F r o m the poin t 
of view of lattice theory such a limit should cor respond to 
the po in t s at which second-order phase t rans i t ions occur. 
On app roach to these po in t s the correlat ion length { tends 
to infinity when expressed in lattice uni ts : £/a —> oo (a is the 
length of a lattice link), so tha t the physical quant i t ies 
expressed in te rms of { are insensitive to the lattice step a; in 
other words , we have effectively the si tuat ion in which 
a —> 0. The length of a lattice link in the SU(AT) lattice gauge 
theory when the unrenormal i sed charge g is sufficiently 
small can be described as follows in te rms of the lattice 
t runca t ion pa ramete r A L \ 

5 1 / 1 2 1 
1 24tc2 

11 N< exp< -
\2KZ 

R 2 N 

P = — 
g 
(AM) 

This expression is simply a two- loop var iant of the 
expression for asymptot ic freedom: 

g> = 1 

* c\n(p/A)9 

where instead of the external m o m e n t u m p we have the 
reciprocal of the length of a lattice link I/a. It is evident 
from formula (A. 11) tha t a —> 0 when g —> 0, i.e. the 
con t inuum limit of the theory is reached. However , 
numer ica l calculat ions cannot be carried out for a value 
of g which is too small since, in order to have a finite 
physical vo lume of the lattice (V = L4a4), we need to 
consider lattices with increasing n u m b e r s of sites (L oc I/a) 
on app roach to the limit a —> 0. However , the number of 
the dynamic variables (p ropor t iona l to L 4 ) is limited by the 
compute r power . This leads to the p rob lem of de te rmina-
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t ion of whether the con t inuum limit has been reached in a 
specific calculat ion. Since the only d imensional pa ramete r 
in this theory is the length of a lattice link, the dimensional 
quant i t ies are expressed only in te rms of this length. 

The simplest and the mos t t ho rough ly investigated 
physical quant i ty found by numer ica l s imulat ion of lattice 
gauge theories is wha t is k n o w n as the string tension a. This 
quant i ty determines the force of interact ion between a 
qua rk and an an t iquark , b o t h of which are infinitely heavy 
and are separated by an infinite distance. Since the act ion 
defined by formula (A . l ) and the generat ing functional of 
formula (A.5) do no t contain d imensional quant i t ies in 
gluodynamics , numer ica l calculat ions are used to find no t 
the string tension a bu t the dimensionless quant i ty % = aa1. 
T h a n k s to formula (A. 11), the dependence of % on the 
unrenormal i sed charge g is k n o w n in the con t inuum limit 
and such a dependence has indeed been observed in 
numer ica l experiments . The p rocedure described above 
represents a s t andard check for the existence of the 
con t inuum limit in lattice theories [73]. 

Topologica l defects, which are monopo les , vortices, and 
strings, are discussed in Sections 3 - 6 above. W e shall n o w 
consider the simplest topological defect which appears in 
the XY model . In this mode l the act ion is. 

s = pJ2C0S(<Px - <Px+a) > (A-12) 

where the cons tant ft represents the reciprocal of 
t empera tu re ; the summat ion is carried out over all the 
lattice links, which are defined by a site x and a direction \i\ 
the dynamic variables q>x, defined at the lattice sites, are 
compact : — K < cpx ^ K. The cosine in formula (A. 12) can 
be replaced by any 27i-periodic function because this does 
no t affect in any quali tat ive way the dynamic proper t ies of 
the model . There are topological excitat ions in this mode l 
and they are defined as follows. Let us consider an 
elementary p laque t te (Fig. 15) and let us assume tha t 
compact dynamic variables cpt (i = 1 , . . . ,4) are a t tached to 
the sites of this p laquet te . Let us calculate the quan t i ty 

V = I {[<Pi ~ (Pihn + [<Pi ~ < ? 3 k 
7 1 (A.13) 

+ [<P3 ~ (PaIik + Wa ~ < P i k ) > 

where [(x]2n denotes calculat ion of the quant i ty a modu lo 
2n: 

[(x]2n = a + 2np, — 7i < ( a + 2np) ^ K . 

It therefore follows tha t links 12, 23, 34, and 41 correspond 
to integral variables pi,...9pA, in te rms of which *j can be 
expressed as follows: 

*J=P\+Pl+P3+PA (A.14) 

If*/ ^ 0, we can say tha t there is a dislocation which in the 
two-dimens iona l mode l should be a t t r ibuted to the centre 
of the investigated p laquet te . In the three-dimensional 
mode l a dislocation should be a t t r ibuted to a link in a dua l 
l a t t i ce ! and this link is perpendicular to the p laque t te and 
passes t h rough its centre. In the four-dimensional space a 

f A dual lattice is defined as follows. The initial lattice is displaced by half 
a step (a/2) along the positive direction of axis 1, axis 2, axis D. In this 
way the sites in the dual lattice are at the centres of elementary D-
dimensional hypercubes of the original lattice. 

dislocation is a t t r ibuted to a p laque t te in a dua l lattice 
which is perpendicular to the initial p laque t te and passes 
t h rough its centre. Therefore, a dislocation is on a dua l 
lattice and we shall use the no ta t ion *j and no t simply j . 

Therefore, from a given configurat ion of fields cp we 
can select dis locat ions of */'. The currents *j have two 
remarkab le proper t ies . Firs t , there is a law of conservat ion 
as a result of which the lines formed on a dua l lattice by the 
currents *j are closed in the three-dimensional model . In the 
four-dimensional mode l the currents *j form closed sur
faces. This law of conservat ion is the lattice ana logue [60, 
70] of the law of conservat ion of the current cor responding 
to a topological defect. 

F o r D = 3, the dislocat ions of *j are vortices similar to 
the vortices in super fluid hel ium and for D = 4 the 
plaquet tes on a dua l lattice with *j ̂  0 are the world 
surfaces of closed 'global s t r ings ' [58]. The physical 
mean ing of *j is discussed in greater detail in Section 6. 

A second impor t an t p rope r ty of *j is the topological 
na tu re of the excitat ions which lead to *j ̂  0. This is 
obvious if only because the integral number of *j can be 
derived from con t inuous variables cpt. This means tha t a 
sufficiently small bu t finite var ia t ion of cpt does no t alter */', 
i.e. *j is a topological charge. The explicit example in Fig. 15 
is as follows: cpx= cp2 = 0, cp2 = —cp3 = —n + S, then */* = 1, 
if 0 < 3 < K/2. 

A str iking i l lustration of the connect ion between a 
topological defect and a physical effect is the role of 
vortices in the dynamics of a phase t rans i t ion in the 
two-dimens iona l XY mode l [20, 61 , 62]. In Section 6 we 
discussed the proper t ies of vortices in the three-dimensional 
and four-dimensional XY models . The monopo le s discussed 
in Sections 3 - 5 , like the vortices, are topological defects in 
Abel ian theories. The only difference is tha t the vortices are 
formed from variables cp a t tached to the lattice sites and 
monopo le s are formed from vector fields a t tached to the 
lattice links. There is a formalism of differential forms on a 
lattice [59, 60, 70] which can be used to describe topological 
defects in a universal manner . 
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