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Abstract. Structure formation and autowave processes in
active media far from equilibrium are the subject of a
special division of the theory of nonlinear dynamic systems.
In the present review the protoplasm of amoeboid cells is
considered as an active medium, in which gel-like structures
continuously assemble and disassemble. Local parts of
these structures also spontaneously contract and relax,
causing rather complex circular or shuttle-type flows of sol-
like protoplasm. We consider several mathematical models
of the resulting movements, wherein dissipative structures
and the autowave processes mutually generate each other.
The main quantitative features of the protoplasm dynamics
in Physarum plasmodium are consistent with a model that
postulates the existence of positive feedback between a
local deformation and the free calcium level controlling the
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network contraction. The potentialities of different physical
methods used to determine the values of parameters in the
mathematical models are discussed.

1. Introduction

In recent years, owing to joint efforts of physicists,
mathematicians, chemists, and biologists, autowave phe-
nomena have become the most widely studied dynamic
processes in open nonequilibrum distributed systems [1—6].
Nonlinear interactions between the variables of different
nature evoke a loss of stability of stationary and uniform
conditions when diffusion is taken into account. This
results in the formation of strata in gaseous discharges,
autosolitons in extended semiconducting and magnetic
media, and a variety of flame propagation regimes [7-9].
The more complex the physical objects, the greater is the
diversity of autowaves and self-organising structures. The
autowave chemical reactions as well as numerous phenom-
ena in neurodynamics are remarkable examples [10—12].
As will be shown below, the nonlinear physics of the
self-organisation of protoplasm motility is also based on the
laws of autowave processes. However, in addition to
diffusion, hydrodynamic interaction via streaming proto-
plasm plays an appreciable role in the regulation of
spontaneous intracellular contractions. In this regard the
self-organisation of protoplasm motion combines features
of active multiphase media where autowaves appear and
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systems in which hydrodynamic instabilities arise. In the
present review, using amoeboid cells as an example, we shall
demonstrate how such intracellular self-movements are
organised and what role they play in the mechanisms of
cell migration.

The ability to move is one of the inalienable properties
of all living things on the Earth. For Anton van Leeu-
wenhoek, who invented the microscope and was the first to
observe cell movements, motility was synonymous with life:
‘if it is alive it moves!” All the movements of which living
systems are capable derive from motive activities within
cells or groups of cells. On the cellular level motility is
displayed in most diverse forms. It is not only the
contraction of various types of muscle cells, resulting in
animal locomotion, but also contractile activity of plant
cells, producing, for example, the movement of mimosa
leaves. These are also protoplasmic flows and various types
of intracellular transport, playing an important role in the
exchange and the distribution of substances within cells,
individual movements of subcellular organelles, for example
the periodic pulsation of the cell nucleus, the separation of
chromosomes, division of a cell into two daughter ones, etc.
Mechanical activity is also observed in neurons and is
probably no less important than their electrical activity.

Motility is necessary both for free-living unicellular
organisms to react to the environment (for example by
avoiding toxic substances or, conversely, approaching food)
and for tissue cells in multicellular organisms (for instance
during embryogenesis). All these phenomena are based on
the continuous process of self-organisation of locomotion
and, in the case of amoecboid cells, also on the self-
organisation of the motor apparatus itself. The cell is
considered as an open nonequilibrum thermodynamic
system, in which specialised structures form and collapse
continuously and autowave movements arise.

There are three main mechanisms of cell locomotion,
namely amoeboid, ciliary, and flagellar [13]. Amoeboid
movement is the crawling of cells over a solid surface
with the help of retractable extensions having the common
name of pseudopodia (i.e. false feet). In contrast to
pseudopodia, cilia and flagella are permanent special
organelles allowing the cells to swim. In doing so bacteria
use the rotating flagella whereas protista move in a liquid
with the help of wavy beating of cilia or flagella. These
various forms of locomotion have three common features.
First, the great majority of cell movements is carried out by
a few molecular motors transforming chemical energy into
mechanical work. The working substances of these motors
are pairs of specific macromolecules called contractile
proteins. Three main pairs of the contractile proteins are
known: actin —myosin used in muscles and amoeboid cells,
and tubulin—dynein and tubulin —kinesin both working in
ciliary motion and in the intracellular transport of orga-
nelles. Second, in all motile phenomena the coupled
proteins are sliding past one another rather than contract-
ing. And third, the energetic resources to keep these engines
running are available as a result of direct conversion of
chemical energy of adenosine triphosphate, ATP. Myosin,
dynein, and kinesin are ATPases, i.e. enzymes ensuring
ATP hydrolysis.

The emergence of contractile proteins appears to have
beenoneofthemajorstepsintheevolutionofbiologicalcatalysis,
the central role in which, in the opinion of Blyumenfel’d
[14], should be given to slowly relaxing mechanical changes

in enzymes. The structural and conformational reorganisa-
tions occurring in the contractile proteins are so
pronounced that it is convenient to study the main
principles of enzyme action using them as an example.
Moreover, this fits neatly into the modern ‘protein engine’
concept [15]. Hence, it is quite probable that in living
systems there is no physiological process in which the
contractile proteins do not play an important role.

From the viewpoint of physics the protoplasm of an
amoeboid cell is a truly unique object for the study of self-
organisation in active distributed media. In this review we
shall describe how dissipative structures and autowaves
form in actomyosin solutions and which mechanisms does
amoeboid motility involve. Gel-like structures continuously
form and disappear as a result of assembly and breakup of
the actomyosin network. The local regions of such networks
can spontaneously contract and relax causing complex
circular or back-and-forth flows of a sol-like protoplasm.
The control of these processes is performed by changes of
the system parameters and boundary conditions. Statement
and solution of the problem on establishment of flow in a
closed volume with an active actomyosin medium has some
similarity with the problem of Benard convection in a
viscous liquid layer heated from below. As we shall see, in
the case of amoeboid movement, the concentration of the
chemical regulator of contractile activity plays in some
sense the role of the temperture gradient.

The peculiarity of self-organisation in an active acto-
myosin medium is the coexistence or, to be more exact, the
mutual dependence of stationary spatial patterns or
dissipative structures and self-sustained wave processes.
Before dealing with the modern theory of these processes
we shall discuss briefly the biophysical bases of actin—
myosin interaction and amoeboid cell movement.

2. The basic phenomena of amoeboid motility

2.1 Characteristics of cell locomotion

Apart from proper amoebae many animal cells are capable
under certain conditions of exhibiting the amoeboid
motion. Hence, this type of movement is closely connected
with a wide variety of important biological phenomena. In
particular, it is involved in morphogenesis, i.e. structure
formation during individual development, carcinogenesis,
and immunity. The migrating cell represents a polar
structure, at the front of which is an advancing
pseudopodium. The central and rear parts of the cell are
referred to as body and tail, respectively. At least two
conditions must be met for a cell to move. First, the cell
must be able to form pseudopodia the growth of which is
accompanied by flow of the cell content into their space.
Second, a solid substrate is required to which the
pseudopodia could attach themselves. The shape of the
pseudopodia and specific features of locomotion vary
widely depending on the cell.

Lobopodia—wide blunt extensions—are characteristic
of large fresh-water amoebae [16—18]. A region of clear
ectoplasm free of granules, the so-called hyaline cap, is seen
in their advancing part (Fig. 1). The inner granulated region
of the cell containing the nucleus and other organelles is
named the endoplasm. The endoplasm flows towards the
front of an advancing pseudopodium and immediately
behind the hyaline cap divides into lateral streams. This
region, resembling a fountain, is called the fountain zone. In
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Figure 1. Schematic view of a medial cross-section of Amoeba proteus
(adapted from Ref. [41]): (1) the hyaline cap, (2) the plasma gel sheet,
(3) the gel-like ectoplasmic walls (shaded arca), (4) the sol-like endo-
plasm, (5) the plasma membrane. The arrows show the direction of
flow.

this zone the liquid endoplasm changes into gel-like
ectoplasm, which forms new walls of the cell. In the
hyaline cap there appear circular waves accompanied by
pulsations of cap surface with the period of 10 s [18]. These
pulsations are most probably connected with periodic
detachments of thin layers of cortical gel from the
membrane at the tip of the pseudopodium. Endoplasmic
liquid squeezes through this plasma gel into the hyaline
region and pushes the front edge of the membrane forward.
Contractile proteins contained in the endoplasm serve as
material from which a new gel layer is formed. Then the
cycle is repeated and pulsatory progress of the cell
continues.

Large amoebae that reach about 1 mm in linear size,
such as Amoeba proteus (an amoeba capable of manifesting
different forms) or Chaos-chaos (pay attention to the
‘synergetic’ sense of these old names!), can simultaneously
extend several pseudopodia in different directions. These
extentions compete among themselves and the ones that win
are those which have sensed favorable gradients of chemical
or physical factors: attractants, i.e. substances attracting a
cell, humidity, light intensity, electric fields, etc. As the
velocity of amoeba migration is about 1 pm s~ and that of
protoplasmic flow is about 10 um s7!, these flows are easily
detected under the microscope. In all cases of amoeboid
locomotion the following chronological pattern of cell
motile behaviour can be distinguished: the stage of
pseudopodium protrusion, the stage of its distal attach-
ment, and the stage of body contraction which causes
detachment of the tail [13, 19].

In mammalian cells one can observe pseudopodia of
another type; these are lamellopodia of various shapes.
When cells of the connective tissue, the fibroblasts, spread,
the lamella forms a ring of 1 pm or less in thickness
arranged around the granular endoplasm [20—22]. The
advance of the lamella in the course of spreading or
migration is accompanied by ruffling. That is, local
periodic protraction —retraction movements of the lamella
edge result in the appearance of folds. This activity proceeds
along the leading edge when the cell migrates, or around the
whole perimeter when it spreads [21]. According to
Refs [20, 23] the marginal region of the lamella should
be considered as an excitable medium of spontaneously
active elements. The dynamic competition of various
lamella parts results in the polarisation of the cell which
acquires a triangular shape. The fibroblast extends towards
the active leading edge and the other parts of the lamella

degenerate into a narrow tail zone. Sometimes circular
propagation of contraction waves around the lamella
perimeter is observed. Despite morphological variety the
main physical mechanism is probably quite similar for all
types of amoeboid movement.

As is clear from the above description the locomotion of
amoeboid cells is a complex phenomenon dependent on
coordinated interactions of many biochemical and bio-
physical processes. For its understanding it is necessary
to solve two problems: how the forces for the extension of
pseudopodia are generated and how mechanical and
chemical processes are coordinated.

2.2 The mechanism of active contraction

Investigation of the mechanism of motility in living
substances began from the study of striated muscles, in
which the ability to contract is especially pronounced.
Contractile proteins, actin and myosin, were first isolated
from muscles. These proteins were later found to be present
in the overwhelming majority of eukaryotic cells. Because
of high structural regularity, the muscle is the best object
for studying the mechanism of actin —myosin interaction
[24, 25]. In contrast to striated muscles, which have
permanent fibrils capable of unidirectional contraction
and generation of large forces, the amoeboid cells generate
force using a system of actin- and myosin-containing
filaments able to assemble and to disassemble during the
contraction process.

Actin in nonmuscle cells can exist in two functional
states: as soluble monomers (G-actin) with a molecular
mass of 42 kD, or in polymeric form as double-stranded
filaments (F-actin) of various lengths. The double helix of
F-actin hasa diameter of 5—7 nm and a repeat step of 38 nm.
In some actively moving cells actin can reach 20% —30% of
the total protein content. A very critical factor for the
polymerisation reaction which proceeds in the presence of
ATP bound with monomers is the concentration of G-actin.
The polymer that forms is always in equilibrium with the
actin monomers in accordance with the following equation:

(F-actin), < (F-actin),_, + (G-actin) ,

where n is the number of chains in the polymer. Although
the monomers can be added at either polymer end, one end
is preferred for polymerisation and the other for
depolymerisation. Actin molecules can interact with a
number of so-called actin-binding proteins. Depending on
the actin-binding protein, the patterns of actin arrange-
ments can differ. Some proteins block its polymerisation,
others bring about cross-linking of the actin filaments with
each other or with other cell structures. This converts the
microfilament suspension into a gel network, (Fig. 2) or,
conversely, cuts the filaments onto short fragments leading
to conversion of the gel into a sol. Myosin can also be related
to the class of actin-binding proteins. It interacts only with
the polymeric form of actin that produces motion.
Myosin is a hexamer composed of two heavy chains
(with molecular mass of 200 kD each) and two pairs of light
chains (with molecular mass of 16—22 kD each). The
myosin heavy chains are highly asymmetric with a linear
rod-like segment and a more globular head region. The rod
parts of both heavy chains are coiled into a superhelix so
that both heads appear at one end. Therefore the superhelix
itself is called the tail. The tails of the myosin molecules can
bind to each other and form various bipolar structures. In
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Figure 2. Schematic sketch of the actomyosin network (adapted from
Ref. [31]): (/) myosin oligomers, (2) actin-binding nodes, (3) actin
filaments formed as a result of G-actin polymerisation, (4) the
plasma membrane, (5) adhesive proteins, (6) transmembrane proteins,
(7) G-actin molecules.

nonmuscle cells myosin
oligomers.

In view of similarity of the main contractile proteins of
muscle and nonmuscle cells it can be assumed that the
sliding mechanism observed in muscles operates in non-
muscle cells as well. In amoeboid cells, as a rule, one end of
an actin filament is attached to the cell membrane (or to
another cell organelle) and the other is free. Bipolar myosin
oligomers are interposed between two opposing, and
therefore oppositely polarised, actin filaments. In the
process of interaction the actin filaments slide relative
to myosin and the structures to which they are attached
approach each other. Although the main components
involved in the generation of driving forces are well known
it is much less evident how the filament sliding is connected
with the formation of pseudopodia and their activity.

is able to form only small

2.3 Two hypotheses of amoeboid movement

As early as in the past century, long before the contractile
proteins were discovered, various ideas on the mechanism
of amoeboid movement had been put forward. Later they
were revived in two main, but contradicting each other,
theories of Mast [16] and Allen [17].

According to Mast’s hypothesis, the movement of
amoeba is due to continuous contraction of the ectoplas-
mic tube at the tail, which creates a pressure gradient along
the cell body. The endoplasm is forced to flow towards the
front with the resulting formation of pseudopodia. As
ectoplasm contracts it solidifies, i.e. is converted into
plasmasol. At the front the reverse process occurs: the
endoplasm decreases its forward motion, spreads laterally,
and gelates. Thus an ectoplasmic tube is continuously
destroyed at the tail and rebuilt at the front. According
to this concept the streaming of endoplasm and pseudo-
podium formation are passive events. This hypothesis
dominated for nearly 40 years until a number of findings
accumulated which it could not explain. First of all, a rather
complex system is necessary to control positive taxis. So,

attracting signals should be transmitted from the receptor
sites at the front to the tail region. The tail contraction in
turn would result in stretching all elastic regions rather then
only the frontal zone.

The other idea, suggested by Allen [17], is known as the
hypothesis of contraction in the fountain zone. Allen
ascribed the active properties to the endoplasm, which
according to him consists of an axial gel part and a
more liquid peripheral part. Contractile force acts at the
tip of advancing pseudopodium drawing the viscous endo-
plasm towards the front. Each portion of endoplasm
advances towards the region of contraction, where it
simultaneously contracts, gelates, and becomes inverted
to form the ectoplasmic tube.

These two explanations are not theories, but rather
concepts how an amoeba could move if only a certain
portion of the cell were capable of force generation.
However, the contractile proteins are omnipresent in the
cell, so in order to solve the problem of amoeboid
movement one should elucidate how these proteins are
controlled. It is known that the interaction of actin and
myosin is regulated by calcium ions. Certainly, other large
and small molecules are also involved in their regulation.
Nevertheless, the simplest theory of amoeboid motility and
corresponding mathematical models may be constructed by
considering only the spatiotemporal redistribution of Ca’"
concentration which is an obligatory factor for self-
organisation of intracellular movements.

3. Review of existing theories

The construction of a general quantitative theory of all
events occurring in amoeboid cells is a complex and not yet
completely resolved problem. However, there already exist
a number of physical and mathematical models which
describe the growth of pseudopodia [26 —29], the processes
of interactions of cells with the surface [30], and the
organisation of intracellular movement [9, 3133, 41, 82—
85, 101]. In this section we shall first briefly review the
theories of pseudopodium growth and then describe the
problems of self-organisation of intracellular movements,
which are, from our point of view, the most pithy and
interesting for physicists. We will consider models for two
characteristic cases, namely self-sustained fountain flows
and autowave back and forth (shuttle) streaming of the
protoplasm. In the general case these two forms of motility
can coexist and govern the shift of the cell mass transfer
and be, consequently, an integral part of the migration
mechanism.

Important factors in the organisation of cell locomotion
are gradients of various external stimuli including immune
factors produced within multicellular organisms. It is just
these effects, together with self-action of the cells through the
substances which they secrete into external environment,
that control the properties of the membrane and through it
define the direction of migration [34]. Free-living cells also
react with each other. Such collective phenomena are well
expressed in the development of acrasiamycete Dictyoste-
lium discoideum [9, 35] and in the behaviour of
microorganisms when there is a deficit of food [36].
Therefore, a general model for cell migration should
include a description of intracellular flows, the cell adhe-
sion and detachment, the reception of external factors and,
last, the biochemical procedure of signal transduction from
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receptors to the contractile apparatus and to systems
controlling membrane properties.

3.1 Models for pseudopodium growth

Several mathematical models for pseudopodium growth
have been proposed. The processes of lamellipodium
formation and pulling the cell forward are described in
Refs [26—-28]. It is assumed that local changes in ionic
conditions caused by passive leakage through the leading
membrane trigger the release of calcium ions which activate
solating factors in the cytogel. These molecules sever some
of the gel fibres, leading to partial degradation of the gel
network. This reduces Young’s modulus of the gel,
allowing it to expand osmotically under the influence of
its internal swelling pressure. This extends the leading edge
of the lamella, which when it re-gels adheres to the
substratum via adhesive sites. The calcium release also
triggers the actomyosin gel to actively contract. However,
little contractile stress can be generated until the calcium
ions are resequestered by vesicles in the cytogel and the
network reanneals. Then the gel contracts, and draws the
cell ahead if the contraction is sufficient to break the
posterior attachments to the substrate. Finally, the gel
relaxes to its initial state, and the cycle reinitiates. Thus the
ionic leak triggers a cycle of solation and swelling of the
gel, followed by gelation and contraction. This cycle first
spreads the lamella ahead of the cell, then pulls the cell up
behind the advancing front.

A one-dimensional mathematical model is described in
terms of the following field variables: u(x,?) is the
displacement of a material point in the gel from its initial
position; c¢(x, r) is the concentration of calcium ions; G(x, t)
is the volume fraction of the gel, i.e. the amount of actin
that has been cross-linked into gel; s(x,) is the volume
fraction of sol. This refers to all of the network subunits,
including actin monomers and severed chain fragments, as
well as the various actin-binding proteins. Unfortunately,
Oster and Perelson [28] do not provide an analysis or
numerical solutions of the derived equations.

Careful analysis of another mathematical model is
presented in Ref. [29] devoted to the pseudopodium
protrusion process in leucocytes. However, the central
hypothesis of the theory seems to us to be open to
question. In the proposed model, the pseudopodium is
considered as a porous body made up of an F-actin
network, the pores of which are full of aqueous solu-
tion. Actin monomers are considered as a ‘solute’
transported only by convection and diffusion in the liquid
phase. The pseudopodium grows as actin filaments elongate
at their ends at the tip of the pseudopodium. An essential
concept in Ref. [29] is that the polymerisation of actin
provides the energy for the advance of the front membrane
of the pseudopodium and that the rate of growth of the
pseudopodium is controlled only by actin-binding proteins.
A one-dimensional moving boundary problem based on the
proposed mechanism has been constructed and approximate
solutions have been obtained. According to Ref. [29] this
model is also applicable to the growth of other cellular
systems such as extension of a long actin-filled tube known
as the acrosomal process in sperm cells [37]. The acrosomal
reaction is induced by contact of the sperm with the coat
surrounding an egg. In sea cucumber sperm in less than 10 s
the process can reach more than 90 pm in length —some 15
times as long as the head of the sperm. Through this tube

the nucleus and cytoplasm of the sperm are drawn into the
egg bringing about fertilisation.

There are a few other theoretical works concerned with
this problem [38 —40]. In our opinion the model proposed in
Ref. [39] is more realistic. The authors have provided a
detailed analysis of moving boundary models for extension
of the acrosomal process and have estimated the kinetics of
diffusion-limited actin polymerisation. It has been shown
that actin filament growth occurs too slowly to drive
acrosomal elongation and other forces, such as osmotically
driven water flow through the membrane, must play an
important role in causing the elongation. Actin polymer-
isation is a secondary phenomenon whose function is to
impact an appropriate shape to the growing structure and
stabilise it when the water flow ceases.

The works of Oster and co-authors [37, 38] suggest that
the osmotic pressure arises from reactions at the membrane,
which liberate osmotically active particles, and from the
swelling of the actin gel attached to the membrane. The
acrosomal process elongates under the action of the hydro-
static pressure gradient. The extension force is balanced by
tension in the membrane and drag forces caused by the
movement of the acrosomal membrane through the cell
cytoplasm and through the external medium. During the
acrosomal reaction new plasma membrane is inserted at the
base of the acrosome and thus the membrane tension is
probably negligible. In Refs [38, 40] the authors have
numerically solved the corresponding equations and have
shown that the solutions are in good agreement with
available experimental data. In particular, it has been
shown that the length of the model acrosome grows in
proportion to the square root of time and the predicted rate
of its extension quantitatively agrees with the real one.

3.2 Interaction of cells with substrates
In order to move forward the cell must exert a rearward
force on its surrounding. It is therefore obvious that the
mechanical and chemical properties of the environment will
influence the rate of movement which greatly varies for
different cells. For example, the speed of the fastest-moving
white blood cells, neutrophil leucocytes, is about
30 pm min~', whereas that of fibroblasts is only 40
pm h'. Lymphocytes move slowly over planar sub-
strates, but placed in a three-dimensional network matrix
reach speeds comparable to those of neutrophil leucocytes.
Intuitively, three regimes of motile and adhesive behav-
iour can be envisaged for cell interaction with a substrate.
On a poorly adhering surface a cell may stick so weakly that
no traction is obtained and no net movement occurs.
Alternatively, a cell may attach itself to a well-adhering
surface so strongly that it becomes immobilised. With an
optimum balance of adhesive forces, however, the cell may
be mobile. The speed of cell migration in dependence on its
adhesive properties has been estimated in Ref. [30]. The
model proposed describes the cell cytoskeleton as a complex
network of viscoelastic and contractile elements, relating
intracellular forces to substratum traction forces mediated
by adhesive-receptor bonds with substratum ligands. Net
translocation of the cell requires an asymmetry in the cell -
substratum interaction. Two alternative mechanism for
generating such an asymmetry have been postulated:
spatial distribution of cell surface adhesive receptors or
spatial variation of their affinity with substratum. Numer-
ical solution of the model equations has revealed the
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influence of both mechanical properties of the cell and its
adhesiveness to the substratum on the speed of motion that
is in agreement with experimental data.

3.3 Self-organisation of fountain flows in Amoeba proteus
[t is significant that there are protoplasmic streamings even
when amoeboid cells are immobile. The following two
modes of cytoplasmic motion can occur, preventing the
mass from accumulating in the anterior part of the cell:
either cyclic, reciprocal (shuttle) streaming or continuous,
steady circular flow back and forth, usually in the form of
axisymmetric fountain flow. The shuttle endoplasmic
streamings are most clearly seen in Physarum polycephalum
plasmodium, whereas fountain flows occur in the giant
amoeba, Amoeba proteus.

Below, we will dwell on the theory of fountain flow in
Amoeba proteus (Fig. 1). On the biological level a number
of scenarios have been put forward, whereby fountain flows
and the dynamic equilibrium between gel-like ectoplasm
and sol-like endoplasm in the amoeba are maintained
because of continuous association —dissociation processes
in the actomyosin network as described above. In this
section we shall briefly outline equations of the dynamics of
such processes and basic results stemming from them. In
our opinion the theory of fountain flows advanced by
Dembo [41, 101] is most soundly based.

Following him, we shall regard the protoplasm as
consisting of only two phases: actomyosin networks and
an aqueous solution that fills the rest of the available
volume. For simplicity, our consideration is restricted to
models in which the network phase behaves as an isotropic
viscous or pseudoplastic fluid. The following notation is
used: p is the volume fraction of the network phase; V;* and
V' are the velocity components of the solution and network
phases, respectively. Then, in the Cartesian coordinate
system, (xi, x,, x3), the rate-of-strain tensors for the
network and solution phases will have the form:

EM = ov; +6V,-" ES. = ov;  avy
’ ax/ ’

YT dx; Ox; YT o

The other functions in question will be the pressure of
the solution phase, P(xi, x5, x3, ), and concentration of
the chemical regulator of the contractile activity (say,
calcium ions), c¢(x;, x,, x3, ). Taking into account that
both the Reynolds number for the protoplasm motion and
the volume fraction of the network are very much less than
one, we obtain the following system of equations for the
conservation of mass and momentum of the given biphasic
medium:

ij=1,2,3. (3.

Z_S —0. (3.2a)
T (V) +r. (:20)
% (WME}) +pH(V] — V) — 2% =0, (3:2¢)
a (PMED) +pH (V= VP) —5-(p¥) =0 620)
&_ _%(cv;) +%(5 %) +s . (3.2¢)

Eqns (3.2b) and (3.2¢) represent the balance conditions
for the network density and the concentration of ca’t ions,

respectively, Eqn (3.2a) is the continuity equation for the
solution phase, and Eqns (3.2¢) and (3.2d) are the equations
of motion for the solution and network phases, respectively.
The analysis performed in Ref. [41] has led to the following
expressions for the scalar functions F, H, M, ¥, and S,
which describe, respectively, the rate of network polymer-
isation (or depolymerisation); the specific hydraulic
resistance of the network, used in Darcy’s law for flow
through a porous medium; the specific shear viscosity of the
network, which depends on the number and strength of
crosslinks between actin filaments; the specific contractile
stress in the network; and the rate of increase (or decrease)
of Ca’" concentration within the cytoplasm:

2
FoPe=P K M:unexp<£>’
m Pg

s=-2
‘EC

Here the constant parameters p, and 7, are the volume
fraction of network at chemical equilibrium and the
relaxation time of the polymerisation reaction, respec-
tively. pg is the solution viscosity, m is the permeability
coefficient, and u, is the viscosity of the network. It has
been assumed that contractile stress is a linear function of
the calcium ion concentration with the proportionality
constant ¥,. When calcium ion Ca’"t concentration is
above its threshold c,, the active stress exceeds the swelling
of the network. 7, denotes the characteristic lifetime of the
calcium ions which are also capable of convection and
diffusion in the solution phase with the diffusion constant 0.

Numerical solutions of Eqns (3.2)—(3.3) have been
obtained for cytoplasm contained in a fixed right circular
cylinder whose boundary is divided into three natural
surfaces: anterior, posterior, and lateral. Various variants
of boundary conditions can be formulated by introducing
L; and N;, which are tangential and outward-normal
components of a unit vector on the boundary surface.
The solution and network phases are able to slip tangen-
tially with respect to the plasma membrane; therefore ‘slip’
boundary conditions for the tangential velocity components
are:

V=W (c—c,), (3.3)

3.4

If the plasma membrane of the cell is impermeable to the
flux of the solution phase, then the normal condition for
the solution velocity is:

NV =0. (3.5)

The normal boundary condition for the network velocity
was taken to involve sticking to the posterior and lateral
surfaces

NV =0, (3.6)
and no sticking to on the anterior surface
b4

The last expression means that the network movement is
subject to the constraint N;V" <0. Finally, simple
Dirichlet boundary conditions for Ca’t jons on all

boundary surfaces have been used:
¢ = const . 3.7

The key result of Dembo’s work is that he could find a
real and self-consistent parameter combination of the
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Figure 3. The results of computer simulation obtained by Dembo for
his model of self-organising fountain flows in Amo eba proteus (adapted
from Ref. [41]). Each subplot represents the lower half of a medial
section through the cylindrical domain for which calculation has been
per-formed. (a) The distribution of pressure, P (dyn cm_z); (b) the
velocity field of solution phase, V® [pm s7' (c) the distribution of
network volume fraction, p [dimensionless]; (d) the velocity field of
network phase, V" [um 571]; (e) the distribution of contractile activity
regulator, Ca’* [dimensionless]. Corresponding scales are shown on the
left of cach subplot.

minimal model (3.2)—(3.3) which corresponded to exper-
imental findings and most successfully described the self-
organisation of the ectoplasmic wall, the hyaline cap, and
the kinetics of fountain streaming. A low-resolution over-
view of the numerical solution of the minimal model
obtained by Dembo is given in Fig. 3. Each map represents
only the lower half of a medial section through the model
amoeba. Appropriate scales are used to represent: (a) the
distribution of the intracellular pressure, (b) the field of the
phase velocities of solution, (c¢) the distribution of volume
fraction of the network phase, (d) the field of its velocities,
and (e) the distribution of the calcium ion concentration.
One can see a rather sharp gradient of the network density
separating ectoplasm and endoplasm. The ratio of values of
p in the ectoplasm and in the endoplasm amounting to
90% —95% also corresponds to experimental findings.

What is most important is the fact that, because of the
boundary conditions at the anterior surface of the amoeba,
the network phase is poorly anchored to the plasma
membrane and forms a plasma gel sheet which impedes
the flow of cytoplasmic granules into the hyaline area. This
was the most difficult structure to explain theoretically. The
other major result of the simulation is that it predicts a
forward flow of both the solution and the network phases
along the central axis and backward flow predominantly
along the plasma membrane. According to the model the
stationary pressure gradient, produced largely by contrac-
tion of the ectoplasmic tube, is established along the
channel and drives a solution flow toward the anterior.
The forward flow of the network is driven by the motion of
the solution phase, but not vice versa as was hypothesised
by Allen.

The distribution of calcium ions is seen to be diffuse
throughout the length of the amoeba without a significant
anterior —posterior gradient. The calcium concentration is
maximum at the membrane and minimum at the centre. The
final results are little affected by the exact form of positive

Ca”* control on network contractility (linear or nonlinear).
A stable steady state is established within 1 min starting
from the completely uniform distribution (for comparison,
the characteristic times are 7, ~ 1 s and 7, ~ 10 s).

The minimal model (Dembo’s terminology) has made it
possible to calculate the exact spatial distribution of both
the power supplied by network contraction and the power
lost as heat owing to internal viscosity and purely chemical
processes, namely the hydrolysis of ATP during assembly
and disassembly of the actomyosin network. The total rate
at which the actomyosin network of one cell does mechan-
ical work is 235x107 ergs™'. Of this amount
2x 1077 erg s~ is converted to heat due to network
viscosity, 0.34 x 1073 erg s~' is converted to heat by
interphase drag, and a very small amount, about
0.005 x 1073 erg s7!, is converted to heat by solution
viscosity. About 35% of the power is derived from the
small region at the very tip of the ectoplasmic tube, which is
consistent with Allen’s ideas. The heat liberated directly
owing to chemical reactions occurring in the cell is much
greater than the heat generated as a consequence of
mechanical activity. For diverse cells, in general, the energy
expended on maintaining the intracellular flows is signifi-
cantly less than that required for other purposes [42].

As discussed earlier, there are cyclic waves of streaming
associated with entrance of granular endoplasm into the
hyaline cap region. Waves and hyaline cap cycles appear
from their regularity to be autonomous oscillations. Dembo
demonstrated that they can be simulated by his model with
slightly different parameters. In the following, we will show
that such regimes are normal in other amoeboid organisms
[43, 82—-85]. All details including numerical values of the
model parameters and fine colour contour maps can be
found in Refs [41, 101].

Although Dembo’s minimal model successfully explains
the main kinematic features of fountain streaming it has
limitations which, in the first instance, stem from the fixed
spatial domain. For amoeboid locomotion, movement of the
cell boundary is of the essence. Elasticity of the actomyosin
network and pressure gradient changes due to the ectoplasm
deformation must also be taken into account. Below, we shall
show that these factors are crucial for the initiation of shuttle
endoplasmic flows in the plasmodium of another remarkable
organism, myxomicete Physarum polycephalum.

4. Auto-oscillation and biological motility

One of interesting aspects of biological motility is its
oscillatory nature. In this connection it should be
mentioned that the majority of known cell oscillators
have been found in cells with pronounced contractile
activity. This may not only be due to the obviousness of
these oscillations. A wide range of cellular processes can be
involved in generating sustained oscillations [44]. It is
usually supposed that such behaviour results from the
instabilities that exist in metabolic or regulatory systems.
This can result in a locally autonomous chemical
oscillation forcing contraction and coupled in space by
diffusion and convection. On this assumption, the
mechanical organisation of the cell is not taken into
consideration. However, it is know that many enzymes, for
instance glycolytic ones, are tightly connected with a
cytoskeleton, a deformation of which can change their
activity. Turing in his classical work about morphogenesis
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[45] already assumed that the chemical and mechanical
processes in cells could influence each other.

The mechanical base of the cell, the cytoskeleton, is a
complex macroscopic fibrous network attached to the
plasma membrane. The major components of cytoskeleton
are contractile proteins having ATPase activity, so the
cytoskeleton can be considered to be an active distributed
system. Since an enzymatic activity of the protein molecule
depends on its conformation, a forced local deformation
may change the enzymatic activity of the contractile
proteins. This change may result in a change of their
active tension which in turn results in deformation of
the adjacent elements of the mechanochemical system
and so on. Thus, this has an autowave character and is
performed only by the mechanochemical system of the cell.

Mechanical stresses and strains can also change the
conduction of ionic channels in the membranes of the cell
and its organelles [46], which can result in spatio-temporal
redistribution of the concentration of calcium ions. These
findings suggest the existence of some feedback loops which
could be sufficient to bring about auto-oscillations. If so,
the cytoskeleton will be not only an effector system but an
intrinsic part of the cell oscillator. Mechanical stresses affect
the processes of self-organisation in multicellular organisms
[47—-50], in particular morphogenesis [9, 51]. Oscillators
incorporating mechanical elements in feedback loops have
the advantage of long-range hydrodynamic interactions,
which is especially important for large systems with
unexcitable membranes. In addition, in this case the
oscillatory behaviour of a distributed mechanochemical
system could be described by fewer differential equation.

5. Physarum polycephalum plasmodium as an
autowave system

Unique opportunities for studying the problems of
amoeboid motility, the physics of self-organisation, and
mechanochemical auto-oscillations are provided by the
Physarum polycephalum plasmodium. It is a multinuclear
mass of protoplasm, surrounded by a common membrane
and having an amoeboid type of motility. Because of its
large size this huge cell has even been entered in the
Guinness Book of Records. Growing on nutrient substrate
the plasmodium looks like a sheet, the area of which can
reach a square metre or more, and the thickness can attain
2 mm.

The motility of the plasmodium manifests itself as
rhythmic pulsations of the plasmodial body and as vigorous
reciprocating (shuttle) protoplasmic flows. Typically, their
periods are in the range of 1 —5 min. With the exhaustion of
nutrients or with the appearance of gradients of various
chemotactically active stimuli in a solid substratum, the
plasmodium begins to migrate and in the process is organised
into a fan-like front with a network of interconnected veins
(so-called strands) at the back, which resemble blood vessels
of the circulatory system (Fig. 4). The length of major
strands can reach a few tens of centimetres and the diameter
sometimes attains 2 mm. Within the strands and in channels
throughout the frontal sheet, the protoplasm is differentiated
into an outer tube-like gel ectoplasm and a more fluid inner
sol endoplasm. Shuttle streaming is caused by nonstationary
gradients of intracellular pressure generated by periodic
contractions of actomyosin network in the ectoplasm.

Figure 4. Physarum polycephalum plasmodium spreading over the
substratum.

A great body of data on the plasmodial oscillatory
activity has been obtained on isolated protoplasmic strands.
A strand shows no significant rhythmic activity immediately
after it has been excised from the mother plasmodium.
Then, its injured ends are quickly regenerated and it begins
to behave as an independent self-organising organism.
Local regions of the strand begin to contract and relax,
at first irregularly, but in 10-20 min their oscillations
become synchronised and their amplitude increases. In
time, the strand ends develop into frontal zones and a
vigorous shuttle endoplasmic streaming is organised
between them. So a quasi-standing wave of the fundamen-
tal tone arises. Later, one of the competing fronts becomes
the leading front and the other degenerates leading to the
characteristic polar form of migrating plasmodium [34, 52].

The pulsations of plasmodial body have a complex
spatio-temporal organisation. In small plasmodia (5 cm
or less in diameter) there are nearly synchronous and
synphasic radial pulsations of all strands in the plasmodial
network, contraction phases of the strands being coincident
with the expansion phases of the advancing front [53].
Standing waves of higher harmonics can be set up in long
isolated strands [54]. Propagation of peristaltic contractions
has also been observed in such strands [55, 56]. Autowave
motile activity of the plasmodium manifests itself most
vividly in its frontal sheet. For example, quasi-stochastic
oscillations of sheet thickness with their subsequent syn-
chronisation and a wave-like propagation of loops with
velocities of 5—30 pm s~ ' can be observed [54, 57]. Running
waves can be induced artificially by the gradients of
temperature or chemotactically active factors in the sub-
stratum [58]. Sometimes, in the frontal zone there is a
circulation of such waves (circular or spiral waves).

Analysis ofthe wave processes requires a large number of
simultaneous measurements in many points throughout the
plasmodium. As a simple illustration, Fig. 5a shows a one-
dimensional phase diagram of plasmodial thickness changes
at twelve points at different instants. The diagram was
constructed on the basis of movie pictures of a large
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Figure 5. (a) Phase diagram of the contractile activity oscillation
measured along the direction of plasmodial migration. Ordinate:
position of the measurement point. Abscissa: current time. The dark
bars parallel to the time axis represent the contraction phase and the
gaps show relaxation phases. (b) Oscillations of the plasmodium
thickness obtained for the 6th point of measurement. Ordinate:
relative optical density. Abscissa: current time.

plasmodium, migrating on nonnutritive agar gel along a
narrow track bordered by non-adhesive paraffin strips. A
typical record of changes in the image optical density is
shown in Fig. 5b. Inclinations of the continuous lines
connecting the points of the same contraction phases
determine phasic wave velocities which depend on the
plasmodium size. In the given case these velocities reach
2 cm s~ ', that is much more than the average velocity of the
front which is here equal to 8 cm h'.

In parallel with the contractile oscillations in the
plasmodium there also occur simultaneous and synchron-
ous oscillations of the membrane potential, of the
concentrations of Ca’" [59, 60], H* [61], ATP [62], etc.
The question arises whether or not there is a common
mechanism underlying all such oscillatory behaviour, i.e. is
it possible to isolate those processes directly responsible for
generating the rhythm. The important feature of electrical
and chemical oscillations observed in Physarum is that they
are always accompanied by mechanical oscillations but not
vice versa. This might reflect participation of the cytoske-
leton in the feedback loops responsible for auto-oscillations.

One of the striking characteristics of plasmodial strands,
suggesting the existence of some feedback loop which can
be sufficient for causing auto-oscillations, is their strain-
induced activation. When a strand under isometric condi-
tions is quickly stretched by 10% —20% of its length, the
tension and the amplitude of its oscillations conspicuously
increase. Under isotonic conditions, the increase in the load
gives rise to an increase in the amplitude of length
oscillations, which is also proportional to the tension
[63, 64].

Eruptions of the endoplasm after strand punctures
indirectly indicate the existence of hydrostatic pressure
and hence of tension in the ectoplasm attached to the
plasma membrane. As the cell membranes are well perme-
able to water, osmotic forces should come into play in the

maintenance of intracellular pressure. The complex of
cytoskeleton and plasma membrane in the broad sense is
a unitary system capable of storing a great deal of
mechanical energy. The elasto-osmotic parameters of the
plasmodium have been estimated by Lairand et al. [65, 66].
In particular, for plasmodia adapted to water, the osmot-
ically active concentration was shown to average 70 mos M.
The osmotic pressure corresponding to this value is equal to
1.7x10° dyn cm™. A marked decrease in the elasticity and
viscosity of the strands, observed after their treatment with
strong attractants, causes a drop in the intracellular
pressure along with a decrease in both the amplitude
and the period of motive force oscillations [67—69].
Data obtained in these experiments give a lower estimate

for the intraplasmodial pressure value as about
10* dyn em ™.
If the reception of attractants results in a local

relaxation of the ectoplasm, the existence of turgor
pressure could explain the directed endoplasmic flow
into forming pseudopodium and essentially simplify the
problem of how cell migration is controlled. In this event
the cell orientation will occur not because of local active
contraction, as Mast’s and Allen’s models postulate, but
because of maintenance of global cell tones and a local
decrease of elasticity in the place where the new front
should form. The latter can be caused by attractant binding
to receptor and subsequent activation of actin-modulating
proteins.

The essential role of the plasmodial cytoskeleton in the
observed autowave phenomena is also indicated by data on
the synchronisation of auto-oscillations throughout the
plasmodium. The synchronisation is not connected with
electrical phenomena, as it does in excitable tissues [70, 71].
The necessary condition for synchronisation has been
shown to be the pressure of shuttle endoplasmic streaming
[72—75]. This key circumstance should be taken into
account in the mathematical modeling of autowave motil-
ity in the Physarum plasmodium.

6. Mathematical model for plasmodial autowave
motility

6.1 Hydrodynamic equations for protoplasm motion

in plasmodial strands

Mathematical models for shuttle streaming in isolated
plasmodial strands were first proposed for a dumbbell-
shaped fragment [76—78]. These discrete models describe
the movements of viscous liquid between two volumes
coupled by a rigid tube. Here we consider one- and two-
dimensional distributed models, which are considerably
closer to real objects, that is an isolated long plasmodial
strand [79-83] and a plasmodial sheet [84] (a form
characteristic of early stages of plasmodium spreading).
In all cases the longitudinal deformation of ectoplasm is
assumed to be impossible because of strong adhesion of the
cell to the underlying substratum.

The protoplasmic strand is considered as a long cylin-
drical tube filled with an incompressible endoplasm.
Actomyosin fibrils are homogeneously distributed in the
ectoplasmic wall and attached to the membrane. The
interaction of actin and myosin can be regulated by
many factors, but for simplicity we shall consider only
calcium ions. It is assumed that there is a sufficient local
supply of ATP. A spontaneous increase in Ca’" ion
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concentration in some section of the strand causes a local
ectoplasm contraction. This leads to a decrease in strand
diameter and pumping of endoplasm into the neighbouring
regions. Stretching the ectoplasmic walls in these parts of
the strand is assumed here to promote an increase in Ca’"
ion concentration. In this way conditions for a new active
contraction are created, but now in the sections adjacent to
the original contraction, and so on. Under certain boundary
conditions this autowave process can results in travelling or
standing waves of radial ectoplasm contractions and in
periodic flows of endoplasm. To elucidate this possibility it
is necessary to express the above description in mathemat-
ical terms.

Let us consider nonstationary axisymmetric flow of
an incompressible viscous (in the first approximation
Newtonian) fluid in a long cylindrical tube with a
viscoelastic impermeable active wall (Fig. 6a). As the
Reynolds number for this case is very small (Re ~ 107°),
the endoplasm streaming may be described by the equation
for Poiseuille flow in a tube with a gently varying radius:

op_ uy

0z R?

Here V(z, t) is the velocity of endoplasm averaged over
the cross section of the strand lumen, P(z, ¢) is the intra-
cellular pressure, u is the endoplasm viscosity, and R is the
mean radius of the strand.

To find the relationship between V(z, ) and small
deviations, x(z, t), of the radius from its mean value
(x € R) we write down the continuity equation:

o, 10
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where v, and v, are the longitudinal and radial components
of endoplasm velocity, respectively. Integrating this
equation over the cross-sectional area of the strand
lumen and taking into account the fact that typical

6.1)

6.2)

Figure 6. Schematic sketch of a protoplasmic strand (a), and of the
whole plasmodium at the carly stage of spreading (b): (1) the
ectoplasm, (2) the endoplasm.

lengths of autowaves observed in the plasmodium are
much greater than its characteristic thickness, 1* > R, we
obtain:
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where
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V(z, t) = s Jo 2nrv dr .
Differentiating Eqn (6.1) with respect to z and introducing
expression (6.3) we obtain:

op _lopor
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Further, neglecting the radial inertial forces acting on
the wall element and nonuniformity in the distribution of
stresses and strains across the wall thickness we find the
expression connecting x(z, ) with the active component of
the intracellular pressure. Rheological properties of the wall
will be described on the basis of the analog model scheme in
Fig. 12. Experimental justification for choosing this scheme
is given below in Section 7. The behaviour of this scheme is
described by the following equation connecting the total
tangential stress averaged across the wall thickness, o, with
the active stress, g, generated by actomyosin interactions
and the passive stress, o,,, dependent on relative deforma-
tions, ¢ of the elastic (E;, E,) and viscous (1) elements:

6.4)

(6.5)
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where t; =n/E, and t, = y(1/E, + 1/E,) are the charac-
teristic relaxation times.

When the ratio of the wall thickness, A, to the strand
radius is small, then x(z, t) = Re(z, t) and the intracellular
pressure and its active component are equal to P(z, t) =
o(z, t)h/R and P,(z, t) = os(z, 1)h/R, respectively. Taking
this into account we differentiate Eqn (6.5) twice with
respect to z and introducing expression (6.4) we obtain
an equation governing radial contraction of the strand:

+E> +17
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The order of this equation is reduced if 7, =0 (or
E, — ), i.e. if the passive viscoelastic properties of the
wall are represented by the Kelvin rheological model. In this
case an expression for intracellular pressure in dependence
on the wall parameters is of the simple form [85]:

E]/’l 11/1 Ox
P(Z’t):Fx—FFE—i_PA(Z’I). (67)
Accordingly, within this approximation, Eqn (6.6)
becomes:
l()_ua_x_ﬂ Ox E_|I162_x a2PA (6.8)
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Eqns (6.6) and (6.8) can be complemented by terms
allowing for viscoelastic forces exerted along the strand wall
which is attached to the underlying substratum and is in
tension. This gives rise to an additional passive pressure in
expression (6.7). For small, radially symmetrical deforma-
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tions of the strand it can be written as the following
approximation:

n'l x " o' O
2nR 0t0z*  2mR 072

_E'Td%
"~ 2mR 37t

P'(z, 1) (6.9)

Here E' and 5’ are Young’s modulus and viscosity
coefficient of the wall for longitudinal deformations,
respectively, 1 :nRh3/6 is the moment of inertia of the
wall section, ¢’ =2rRAE’e’ is the longitudinal tension of
the strand, where &’ is the longitudinal deformation of the
wall. Since &’ can reach 0.1 in practice, the last term in
expression (6.9) is of primary importance.

We shall restrict our consideration to the conditions
corresponding to fixed plasmodial boundaries. In the case
of isolated strand fragments of constant length, L, and with
closed boundaries it follows that:
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This expression in combination with Eqn (6.7) allows us to
write the boundary conditions as:
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The following simplified boundary conditions [85] can
also be used:
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0; (6.12)

this corresponds to the experimental finding that the
standing wave along the strand is cosine-shaped with
antinodes at the ends of the strand. In the case of a circular
strand of length L, the boundary conditions are:

Ox _ Ox
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6.2 Two-dimensional model of the plasmodium
Plasmodium spreading on a surface can be represented as a
viscoelastic porous round plate whose diameter is much
greater then its thickness (Fig. 6b) [84]. The pores—
stochastically distributed channels in which the endoplasm
streams—form within the ectoplasmic gel containing
actomyosin.

Flows through porous medium are described by Darcy’s
law:

2
v="gp.
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Here V(t, z;,z,) is the horizontal endoplasm velocity
averaged over the vertical coordinate x, P(t, zy, z,) is
the intracellular pressure, H(t, z;, z,) is the plate thickness,
m = const > 0 is the porosity coefficient equal to the ratio
of pore volume to plate volume, p is the endoplasm
viscosity. Further, using the same line of reasoning as for
deriving the equations for the strand we can obtain in the
Kelvin approximation an equation for a plasmodium in the
shape of a two-dimensional thin plate:

(6.14)
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Here x(t, 21, 20) = Hy — H(t, 21, 22), Hy = const > 0 is the
plasmodium film thickness in the absence of stresses. The
boundary conditions for the two-dimensional case are:
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Where S is the outer boundary of the plasmodial sheet.

6.3 Equations for the active stress and the controlling
chain
Since the main contractile proteins of plasmodium and
muscles are very similar, it can be assumed that the
qualitative features of their biochemical behaviour are very
much alike and that the mechanochemical cycle in the
plasmodium also consists of many elementary stages of
interaction of actin and myosin with low-molecular-mass
components and with each other [24, 25, 85]. Fig. 7 shows
a simplified scheme where only two mechanically important
states of myosin oligomers (dimers) are considered, namely
the free state (detached dimers) and the bound state
(myosin heads attached to two oppositely polarised actin
filaments). When new ATP molecules are hydrolysed, this
cycle is repeated over and over again, and when myosin
oligomers are abundant in fibrillar space, the sliding of
actin filaments becomes macroscopic. Such a mechano-
chemical cycle can be represented as follows:
k|
A+M «k:’ N .

The corresponding kinetic equation will then have the
form:

Z—IZ = kiam —kon ,
where ki and k, denote the effective rate constants for the
formation and dissociation of actomyosin complexes,
respectively. a(z, t), m(z, t), and n(z, t) are the numbers
of myosin-binding centres on actin filaments (A), and of
free (M) and bound (N) myosin dimers, respectively.
Obviously a = ay — n, m = my — n, where a, and m, are the
total numbers of A and M, respectively. It is known that
for the Physarum plasmodium ay > mq [86]; hence one may
assume a = ay. As distinct from the theory of muscle
contraction [24], inhibiting cross-bridges are ignored in this
simplified consideration; the active stress g, will then be

(6.17)

Figure 7. A simplified representation of the mechanochemical cycle in
the Physarum plasmodium: (/) the free myosin dimer, (2), (3) the
dimers attached to the actin filaments, (4) the actin filaments, (5) the
myosin-binding centres of the actin filaments.
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proportional to n, and the following equation for the
tangential active stress can be obtained from Eqn (6.17):

Ys —ki(oy — 00) ka0 - (©.19)
where k; = k{ay, and g, is the maximum active stress which
occurs when all myosin oligomers participate simultane-
ously in force generation.

It is now well established that the rhythmic contractions
in the Physarum plasmodium are accompanied by syn-
chronous oscillations of calcium ion concentration [59, 60].
Calcium control of the actin—myosin interaction can be
ensured by making the rate constant k; in Eqn (6.18)
dependent on Ca’" ion concentration. It is known that
the dependence of contractile activity in plasmodial strands
on free calcium concentration has a threshold character [87,
88]. Yoshimoto and Kamiya [88] observed that the active
stationary tension of the strand starts to increase at the
Ca’t concentration of ¢ =6x% 10® M and reaches
maximum at ¢, = 107/ M. Therefore, we can represent
k, as a function:

ky =k f(c),

where ¢ denotes the Ca’* concentration. The appearance of
the dimensionless function of activation f(c) is shown in
Fig. 8. Taking account of expression (6.19) we can rewrite
Eqn (6.18) for thin-wall strands as:

opr
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(6.19)

(6.20)

where Py = 0oh/R is the maximum active component of
intracellular pressure.

The simplest equation coupling mechanical strain and
calcium homeostasis (feedback loop equation) is:

Oc

o
Here ¢, is the maximum Ca’" concentration for the case
when all calcium ions are released from their storages. It is
assumed that the rate of Ca®" inflow into the fibrillar space
increases linearly with x, and that sequestration of calcium
ions into the storages obeys first-order kinetics. For
simplicity, we have not taken into account diffusion and
drift of Ca’" ijons with endoplasmic streaming and
confined ourselves to elucidating the possibility of only
hydrodynamic interaction between different sections of the
strand. As the concentration of calcium ions oscillates
within a narrow interval ¢; < ¢ < ¢, (see Fig. 8), Eqn (6.21)
can be simplified:

%
ot

It should be noted that more complex models for
calcium regulation [76, 77] have been proposed. In these
models, in addition to control via mechanical strain,
calcium-induced Ca®" release and the drift of calcium
ions with endoplasmic flow are considered. Recently
calcium ion oscillations have been modeled purely on
the basis of biochemical reactions. From our viewpoint
the replacement of Eqn (6.21) by a system of kinetic
equations for biochemical reactions is quite possible. But
whatever the model the influence of mechanical stresses on
these reactions taken into account.

k3x(co — ¢) — kye . 6.21)

= k3x - k4C . (622)
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Figure 8. Activation function, f(c), (curve 1) and its approximation at
¢; < ¢ < ¢y by a polynomial of the third degree (curve 2).

6.4 Linear analysis of equations of motion

To summarise briefly, basic equations (6.6) [or (6.8)],
(6.20), (6.21) [or (6.22)] with boundary conditions (6.11),
(6.12) [or (6.13)] describe the distributed auto-oscillations
of x, P4, and c in the long fragment of (or circular) strand,
whereas basic equations (6.15), (6.20), (6.21) [or (6.22)]
with boundary conditions (6.16) describe those in the
spreading plasmodium.

The mathematical problems connected with proofs of
the existence and uniqueness of the solution of the system of
equations are considered by Pavlov and Potapov [90, 91],
where the authors also extend the equations given above to
the case where the coefficients are functions of the
coordinates and time. All this has allowed us to obtain
a number of interesting results adequately explaining
biological properties of the Physarum polycephalum plas-
modium.

Some of the approximate solutions of the basic system of
equations have been obtained in the following manner [82 —
85]:

1. Steady state (stationary) solutions X, P,, ¢ for both
the one-dimensional strand and the two-dimensional
plasmodial sheet have been found. They are defined by
the following system of nonlinear algebraic equations:

Eh _ -
727 +Pr=Pr,
k1f(@) Po = (ki f(©) + k2 )Pa =0, (6.23)
k3¥ —k4c=0
Here P, is an integration parameter defining an intra-

cellular hydrostatic pressure which at the given boundary
conditions does not depend on z. The necessary condition
for the existence of a hydrostatic pressure in the cell is an
osmotic inequality between the surrounding fluid and the
interior of the cell [65, 66].

The cell adjusting its water content can change P, and
consequently i, P,, € In radiophysical terms, the cell
chooses a working point on the characteristic function

flc) (Fig. 8). When f(c¢) is a monotonously increasing

function and P, is constant then Eqns (6.23) have a unique
and spatially uniform solution, that is, X, ﬁA, ¢ are real
constants.

2. The stability of the stationary solution of the
linearised system has been investigated. Small wave-like
perturbations have been introduced:



The physical bases of cell movement. The mechanisms of self-organisation of amoeboid motility 533

1(2/cm’2

10* |

10—4 | |
1078 1077 107° 107°

k;/M em~!§7!

Figure 9. (a) The boundaries of the loss-of-stability regions for models
of the fourth (/) and the third (2) order. The square of the wave
number, K2, is plotted against the parameter of positive feedback, ;.
Self-excitation conditions of autowaves are fulfilled to the right. The
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dashed curve shows the upper limit for the wave number when
Eqn (6.9) is taken into account. (b) Dependence of the square of the
frequency, *, on K2, corresponding to the boundaries of stability loss
shown by curves / and 2 in (a).

X ic_ o
Py | =|Pa|+ |B]| exp(pt)cos(Kz)
c c b

for the strand, and

X X o
Py | =|Pal|+ |B]| exp(pt)cos(Kiz;)cos(Kyz,)
c c V

for the sheet. In the latter case cylindrical coordinates can
also be used. Here a <%, B<Ps, y<¢ Then, the
dispersion equation coupling the complex frequency, p,
and the square of the wave number, K> = K> + K3, can be
written as:

app* +a\p® + ayp® +azp+a, =0, (6.24)
where
16
dy = _u T] s

R

16 e
a; = 1’,th +T'u{] +'L'] [k]f((,) +k2 +k4]},

gy = {Elh + k[l £@) + ey + Ky }K2
16
+7ﬂ{k1f(5) +ky + kg + T1ky [k f(©) +kz]},

az = {Elh[klf(z') + ky + ka] + nhky [k, () + ko]

kikoksf (C)

+7 — =
Vi f (@) + ks

16
R%}K2 +—F ka1 £@) + )]

4y = {Elhk4 [k1£(€) + k2] +% R2PO}K2 '

Analysis of this equation as well as of the dispersion
equation of a lower order corresponding to the Kelvin
approximation (t; = 0) has shown that in such systems, in
accordance with the Routh—Hurwitz criterion, only an

oscillatory instability is possible and the condition for self-
excitation is given by:

ajara; — aoag — a%a4 <0.

(6.25)

The arrangement of increment regions (Rep =0) is
shown in Fig. 9a for those cases which have been realised
in practice. Here, k5 is chosen as the parameter defining the
positive feedback level. Typical values of other parameters
involved in the model are presented in Refs [83, 85]. More
general conditions for autowave excitation are given in
Ref. [43]. Fig. 9b shows the dependence of w = (Im p)2 on
K? obtained for both systems when Rep = 0, that is, at the
boundary of the loss of stability.

The following conclusions can be drawn from the linear
analysis:

1. The boundary between the stability region and the
increment region as well as the dependence of w® on K? for
the simplified system are not very different from those for
more complex models. Therefore, having regard to the low
accuracy of parameter measurements in living systems, the
simplified equations (6.8) and (6.15) are quite adequate for
most cases.

2. The increment region is bounded from above and the
upper limit for the wave number can be obtained when
elastic forces acting along the strand walls [see Eqn (6.9)]
are taken into account.

3. The oscillation frequency is weakly dependent on the
wave number when the system is in the vicinity of the
excitation threshold. For a typical strand (R = 0.25 mm
and L =0.3-60 cm as an example), the oscillation period
lies within the range 60—600 s. This range is the same as
that shown by plasmodial strands in vivo.

6.5 Quasi-harmonic autowaves

If the linear theory permits the existence of only one
wavelength with a growing amplitude, then unstable spatial
mode loops appear at the ends of the isolated strand.
Application of the Bogolyubov—Mitropolskii method in
combination with the Bubnov-—Galerkin procedure has
allowed us to derive equations for slowly varying
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amplitudes and phases, and to obtain the following
approximate expression for the frequency of mode n:
ol — En(0.5k, + ky + ky4)
§ nh+ 16u/RK2

+(0.5k, + ko )ky

E

From this expression we notice that the dependence of
w, on K,=mn/L (n=1,2,3...) 1is weak as
nh > l6u/RKﬁ. In addition, according to this method a
linear approximation can be used to definite the threshold
of autowave excitation. Numerical estimates of the oscilla-
tion period and the amplitude as well as the phase shifts
between the variables in question, x(z, ), ¢(z, t), Pa(z, t),
are in good agreement with experimental data.

6.6 Wave automodulation and quasi-stochastic regimes
As previously noted, behaviour of the plasmodium is not
limited only to quasi-harmonic standing autowaves in the
strands. Periodic contractile activity, appearing in the
frontal sheet both of spreading plasmodia and of other
amoeboid cells [20, 92], travels around the whole cell
periphery and has a fundamental period of about 2 min. A
‘second’ rhythm of the activity with a period of 10—20 min
frequently occurs. This manifests itself in modulation of the
auto-oscillation (Fig. 10a). With the help of time lapse
cinematography of migrating plasmodium we also observed
that different parts of the frontal zone undergo successive
extensive protrusions with a period of the second rhythm.
These effects are described by computer simulations of the
basic model for both the long strand and the plasmodial
sheet.

The numerical simulation shown in Fig. 10b illustrates a
standing wave in the strand when the linear analysis allows
the existence of the first four unstable modes. The temporal
oscillations of all variables differ considerably from har-
monic oscillations. Their modulation is observed as a result
of nonlinear interactions between the modes. The spatial
pattern at fixed times shows that the amplitude of radial
deviations, which is small in the middle part of the strand
increases stepwise at its ends. The sharp loops seem to be
precursors of the new frontal zones always occurring in
excised real strands. The shape of the standing wave favours
the ‘two-compartment’ mechanism of shuttle streaming.
The flow velocity at each instant is practically constant
along the middle part of the strand.

Autowaves in a circular strand for the case of instability
of the first two spatial harmonics are shown in Fig. 10c.
The quasi-stochastic character of the auto-oscillation
depends on the form of the initial distributions. The
boundary conditions obviously provide a wide diversity
of possible regimes (from ‘zero’ tone to quasi-stochastic
fluctuations). Fig. 11 shows the surface dynamics (the
thickness changes) of a two-dimensional plasmodial disk-
like sheet [93]. Its behaviour may also exhibit a wide variety
of wave forms, because all the model solutions, rotated by
any angle around the disk axis, are equally valid.

Another way of explaining a rotating lamellipodial
protrusion wave around the cell periphery has been
suggested by Alt [92, 94]. In contrast to ours, his model
system does not need any additional control of contractility
by calcium ions. The propagated autowave is induced by
interaction of only two essential variables describing the
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Figure 10. Real and simulated auto-oscillations in a strand fragment:
(a) Typical pattern of modulated oscillations of the counter-pressure,
AP, applied to keep protoplasm in the central part of the strand at rest
(from Ref. [112]). (b) Solutions of the model in the case of excitation
of the first four modes. (c) Solutions for the case of excitation of the
first two modes, but for the circular strand. (/) Oscillations of x(z, 1),
Pa(z, 1), and ¢(z, 1) in the section z =7 =0.15L, (2) distributions of
x(z, 1) at fixed instants (obtained at 20 s intervals).

radial extension, L(¢, t), of the cell periphery and the
density, n(e, t), of the underlying cortical actomyosin
layer. One important feature of the system on the unit
circle is that stationary patterns might appear, but are
stable only up to rotational shifts. To explain that
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Figure 11. Surface dynamics of a spreading plasmodium at a small (a)
and large (b) number of excited spatial harmonics for a system close to
the boundary of the stability region.

protrusion patterns are shifted circumferentially the author
introduces stochastic perturbations of the equation system.
Noteworthy also are the recent works devoted to the
appearance of mechanochemical waves on the surface of
fertilised eggs. The propagation of surface contraction
waves from the site of fertilisation is most pronounced
in frog eggs [95]. Theoretical models have been constructed
for the wave of calcium release that follows fertilisation and
stimulates the contraction wave [96, 97].

The next step in the development of the models should
include free moving boundary conditions, which could
bring about an advance towards a consistent theory of
amoeboid motility. Namely, the integration of the models
of endoplasm streaming and pseudopodium extension with

the models of autowave motility and regulation of cell
migration by internal and external factors will allow the
construction of a comprehensive theory of cell locomotion.
At the same time such a theory should make it possible to
explain nonautonomous regimes, when the cell as a whole is
subjected to different external effects. Some examples of
such a nonautonomous behaviour are considered below.

7. Physical methods for cell movement research

7.1 Cell tensiometry

A single cell is considered to be a rather difficult object for
mechanical studies by the existing experimental techniques.
The size of the majority of cells and, particularly, their
local parts that are of interest to us is very small. The
deformation fields are difficult to measure with sufficient
accuracy by optical techniques because of light diffraction.
In addition, the forces required to deform the cell are also
small and difficult to control and measure. Over many
years, for cell mechanics studies the methods of micro-
pipette aspiration and compression between two plates
have been applied. Glass microneedles and magnetic
particles have been also used in the determination of
mechanical properties of cellular components [98]. A high-
resolution optical trap technique has recently been devised,
which allows direct measurement of force and displacement
that result from the interaction of a single myosin molecule
with a single actin filament [99]. It has been shown that
discrete stepwise movements averaging 1l nm are seen
under conditions of low load, and single force transients
averaging (3—4) x 1072 pN are measured under isometric
condition. These magnitudes are consistent with predic-
tions of the theoretical models of muscle contraction [24].
Nevertheless, the mechanical study on a single cell remains
a problem to be solved. In any event, the mechanical
properties of cells are much less investigated than, for
example, their electrical characteristics. In this respect,
Physarum plasmodial strands, owing to their large sizes
offer a wunique opportunity for the investigation of
mechanical and thermodynamic aspects of nonmuscle
motility.

Plasmodial viscoelastic properties and their dependence
on deformation at different phases of auto-oscillation were
determined on the basis of the transient tension responses of
the strand to rapid 1% length shortening [85, 100]. Such
deformations do not cause a permanent change in the
behaviour of the protoplasmic strands. The dynamics of
responses could be divided into two phases. The initial force
change occurred simultaneously with the applied length
change and hence was an elastic response. After the step
had been completed, there was a partial recovery towards
the original tension level. This phase of the tension recovery
was well fitted by a single exponential curve with a time
constant of about 2 s (the regression coefficient was found
to be 0.9988 £+ 0.0007). Because the plasmodial strands are
characterised by an inherent nonstationary tension, it is
difficult to determine exactly the asymptotic value of force
corresponding to the termination of recovery phase and
needed for the calculation of viscoelastisity. Therefore,
short (about 1 s) rectangular impulses of deformation
were used. This time interval is much shorter than the
period of auto-oscillations and the coefficients of stiffness
and viscosity thus obtained may be considered as corre-
sponding to a certain phase of auto-oscillations.
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Figure 12. A rheological model of the strand wall and its response to a
short deformation impulse.
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The character of force responses allows us to depict the
viscoelastic properties of the strand by the rheological
model shown in Fig. 12. Solution of the simple differential
equation describing the behaviour of this model on the
application of a short rectangular impulse of deformation
yields the following formulae for the calculation of the
characteristics in question. The time constant 7 is deter-
mined from the expression:

At
T=—
In(1+ F},/F}))

where At is the duration of the deformation impulse, F};
and F), are the time derivatives of the force at the

(7.1

beginning and the end of the deformation impulse,
respectively. The stiffness coefficients are:
AF At AF

E,=—11 - E,=——-FE 2

2 A[[ —|—exp( r>]’ 1= A 2 (7.2)

where AF is the force step in response to the length change
Al. The viscosity coefficient is

n=FEy.

Fig. 13 shows the time courses of the longitudinal
isometric force and the viscoelastic characteristics of the
strand during one auto-oscillation period. They are seen
to change synchronously; periodic elasticity oscillations
observed earlier [63, 64, 102] are accounted for by the
oscillations of the stiffness coefficient E; alone. The value of
the stiffness coefficient E, is independent of the strand
activity phase and seems to characterise purely the passive
properties of the strand. It is noteworthy that the relation-
ship between the instantaneous stiffness and the isometric
force generated by the strand is linear. After the strand
activation caused by 20 % stepwise stretching, the stiffness
coefficient E; increases within several seconds so that its
new values fall again along the same straight line. The
elastic modulus is apparently proportional to the number of
cross-linkages in the network of actin filaments, and hence
the variation of E; reflects the changes in the number of
actomyosin complexes.

If we assume that the longitudinal force is determined
only by the stress in the wall whose thickness amounts to
10% of the strand diameter, the stiffness and viscosity
coefficients can be converted into the respective moduli of
the ectoplasm. Thus the longitudinal Young’s modulus
calculated from the data in Fig. 13 isabout5 x 10° dyn cm™>
in the phase of maximum relaxation of the strand and about
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Figure 13. Spontaneous changes of force F and mechanical parameters
Ey, n, E, of the strand during one auto-oscillation period. The length
and diameter of the strand are 5 and 0.7 mm, respectively.

5% 10° dyn cm™? in the phase of maximum contraction.
The respective values of the viscosity coefficient in these
phases of auto-oscillations are equal to about 2 X 10° and
4 % 10° P. To model a plasmodial migration, the rheolog-
ical scheme should be supplemented with an appropriate
viscosity element. The viscosity value, determined by the
time of relaxation of the average level of strand tension, is
of the order of 10° P. On a time scale comparable to the
auto-oscillation period this element may be neglected.

In the model (6.6) or (6.15), (6.20), (6.21) derived above
we have assumed to a first approximation that the
ectoplasm is isotropic and that the modulus values
calculated for the phase of maximum relaxation corre-
spond to the passive properties of the strand. The modulus
augmentation is considered to be an attribute of the active
element shown in Fig. 12.

7.2 Laser Doppler anemometry
The techniques of quasi-elastic laser light scattering
spectroscopy have been applied widely for the study of
dynamic characteristics of biological objects, in particular
for the measurements of diffusion coefficients and
velocities of directed movements (for example blood
flow, bacterial motion, and intracellular protoplasm
streaming) [103]. We shall focus here only on laser
Doppler anemometry (LDA) which was used for the
first time in 1974 by Mustacich and Ware [104] to study
intracellular motility.

We know that the frequency of light scattered on a
moving particle shifts, owing to the Doppler effect, by the
value:

Awp = (V, AK) , (7.3)

where V is the particle velocity vector, AK is the difference
between the wave vectors of incident and scattered light.
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Hence the Doppler frequency shift and the velocity of the
particle are linearly related and the coefficient of
proportionality depends only on the geometry of the
optical scheme. The main difficulties with the use of LDA
for measurements on cells are as follows: (i) the velocities
of particles can be very small (a few micrometres per
second); (ii) the measurement volume from which the
scattered light is collected can contain many dissimilar
particles moving with different velocities; (iii) owing to the
heterogeneity of the cell material the laser beam can partly
lose coherence; (iv) as the Awp value can be of the order of
1 Hz, the output signal is mixed with low-frequency noises
which modulate the intensity of the laser beam. In the
general case the spectrum of the LDA output signal
(without taking into account noise components) is given by
the formula [105]:

S(w) = z(e)JW(IVI)So (W) v

Here I(6) is the index of laser beam scattering from the cell
wall, 0 is the angle of scattering, W(|V|) is the function of
the velocity distribution of the scatterers in the channel, r;
is the radius of correlation of probing wave within the
measurement volume, S, is the Fourier image of the
correlation function of the probing wave field within the
channel. Thus the resulting spectrum represents a super-
position of the broadened spectra obtained from individual
particles. The degree of spectrum broadening is determined
by the time-of-flight, T = r; /V, through the region within
which the field of the probing wave is spatially coherent. It
should be also emphasised that intracellular flows are
nonstationary. For example, for Physarum the flow
velocity must be measured several times during a single
period lasting only 1-3 min.

Therefore, the simplest one-beam scheme gives an
output signal whose power may be thought of as being
proportional only to an effective value of the velocity
modulus (Fig. 14). At the same time, such a form of
P(t) allows the value of the period to be determined
with good accuracy and therefore also the values of the
time intervals t; and 1,(7; +1t, =T ), when endoplasm
streams in one or the other direction. This has allowed
us to determine quickly and reliably the dependences of the
period on temperature, light, etc. The results presented in
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Figure 14. Oscillations of LD A signal power at the integrator output.

Section 8 were obtained by this very simple scheme. It
should be mentioned that a multichannel LDA has been
designed on the basis of several one-beam schemes operated
in parallel [106].

Studying intracellular movements imposes the following
demands on LDA:

1. Measurement of flow velocities from a few to several
hundred micrometres per second.

2. Space resolution down to 5 pm.

3. Real-time measurement of velocities of nonstationary
flow.

4. The
I mW m™2.

5. Wavelength 4 = 600 nm (its influence on cells is much
less than that of the blue—green part of the spectrum).

6. Computer control and data processing. Compatibility
with instruments measuring voltage, membrane potential,
etc.

intensity of probing radiation less than

7.3 Laser Doppler microscope

Laser Doppler microscopes, LDM, designed in several
countries [107, 108] satisfy the listed requirements in many
respects. We shall describe here the sign-sensitive scanning
LDM devised by A V Priezzhev,V N Glontyand,S G Pros-
kurin at the Physical Faculty of Moscow University on the
basis of the luminescence microscope YUMAM-R1 [103,
109—-111].

The beam generated by the He—Ne laser (LG-79-1,
output of 10—15 mW) is split into two similar beams and
directed into acousto-optical modulators (AOM) operating
in the Bragg regime. Beams corresponding to +1
diffraction order are used at their output. The excitation
frequencies of AOM generators are f; =50 MHz and

f2 =f1 + Af, where Af =1 kHz. With the aid of a focusing

system the beams are made to intersect inside a transparent
living object and form the measurement volume. Within the
measurement volume there appears a travelling interference
pattern. A computer-controlled motor attached to a
thermostatted stage permits scanning the object in the
horizontal direction. When a scatterer crosses the inter-
ference bands, the Doppler shift, Awp, depends on the
direction of motion, which permits sign-sensitive recording
of the scatterer velocity. Such records are not affected by
low-frequency laser noises. Using different objectives one
can obtain characteristic sizes of the measurement volume
in the range of 5—10 pm. In addition, the distribution of
scatterer concentrations across the stream can be obtained
from measurements of the Doppler signal intensity.

With the aid of the LDM it has been possible to
investigate nonstationary protoplasm streams with veloc-
ities as low as a few micrometres per second (Fig. 15a). The
data can be subjected to additional computer processing
and presented in a convenient form (Fig. 15b). In this way
non-Newtonian velocity profiles of shuttle protoplasmic
flows in the plasmodial strands have been determined
(Fig. 16).

In principle, departures of the profile from parabolic
shape can be taken into account in the construction of
mathematical models. Analysis of the intensities of Doppler
spectrum components has shown that the scatterer dis-
tribution density is nearly uniform across the channel. Some
of these results could be obtained with the aid of other,
much more cumbersome techniques. For example, a photo-
frame taken with light-microscope magnification at long
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Figure 15. (a) Doppler spectra representing the velocity resolution of
LDM. A scattering film has been used as the object. Peaks correspond
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Figure 16. Profiles of endoplasm flow velocity obtained by scanning a
plasmodial strand at different times.

exposure could be used [112] to measure velocities by
processing trace lengths of separate moving particles.
However, this does not compare with the simplicity and
convenience of the LDM use. The determination of velocity
with the help of LDM can be made simultaneously with
diameter measurements of several strand sections and with
monitoring of the force generated by the strand [52, 56].

Below we shall describe the motile responses of
Physarum polycephalum plasmodium to various external
influences revealed with the use of this technique. The study
of nonstationary effects allows us to understand how this
remarkable self-organising living machine operates and to
refine further the corresponding mathematical models. We
shall begin the description with the influence of temperature
on the plasmodial motive behaviour.

8. Nonstationary external influences
as a way of studying oscillatory motility

8.1 Synchronisation of shuttle protoplasmic movement

by periodical changes of the temperature gradient

It is well known that protein molecules and living cells
maintain their capability for normal functioning over a
temperature range from 10 to 40 °C. The Physarum
plasmodium reacts to temperature variations in the
environment by changes in the oscillatory contractile
activity and the velocity of protoplasm flow. In the
presence of a spatial temperature gradient it changes the
direction of its movement [58, 112]. As the temperature is
increased the period of shuttle streaming decreases.
Wohlfarth-Bottermann investigated the dependence of
the auto-oscillation period on temperature with the aid
of tensiometry [113] and Kolin’ko et al. [114] have taken a
further look at this dependence using LDA (Fig. 17). They
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Figure 17. Temperature dependence of the contractile oscillation
period. Circles mark the averaged period values with standard
deviations shown by vertical bars. Triangles show data obtained in
Ref. [113].
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have also determined the kinetics of changes of the shuttle
flow period occurring in response to temperature shifts
applied externally.

Study of the time course of the auto-oscillation period
after stepwise changes in temperature has led to the
following results [114]: (i) the period of plasmodial
oscillator reacts to temperature shifts practically at once;
(ii) as the temperature drops from 21 to 17 °C the period
passes through a large maximum and reaches a stationary
level in about 1h, whereas when the temperature is
increased it reaches a stationary level in as little as 3
min. These data were interpreted on the assumption that
sharp cooling enhances gelation which could be the reason
for the initial increase in the period duration. The
subsequent prolonged decrease in the period duration
down to values corresponding to the new stationary regime
can be ascribed to the activation of proteins capable of
inhibiting actin polymerisation or/and gel formation proc-
esses.

As is evident from the foregoing, the plasmodial strand
is an autowave system in which periodical changes of the
gradient of intracellular pressure cause shuttle protoplasmic
streaming. Because the spatially nonuniform temperature
conditions affect gradients of the intracellular pressure,
rhythmical changes in the temperature gradient would act
as an application of a periodic gradient of intracellular
pressure. Such an influence has been found to result in the
entrainment of autowave flows [114]. This process is
demonstrated in Fig. 18. A plasmodial strand was placed
in a two-compartment thermostat so that each end was
located in one of the compartments. The mean temperature
in the compartments was maintained at around 19 °C. The
maximal value of the temperature gradient in an oscillation
cycle was equal to 0.5°C em™'. The period of the
temperature gradient oscillation changed discretely with
a 10 s step in 40 min. It is seen that the entrainment is
attained when the period 7 =100 s and 7 =110 s (as well
as at any periods inside this interval), but at 7 = 120 s the
entrainment is no longer observed. So, the plasmodium
represents a peculiar autowave system capable of entrain-
ment by external periodic influences. It should be noted that
the plasmodial oscillator is also capable of pulling the
frequency of periodically applied external pressure gradient

0 20 40 60 80 100 120
t/min

Figure 18. Entrainment of the flow velocity oscillations by a
periodically changing temperature gradient. Experimental points
connected by lines correspond to instantaneous values of the velocity
oscillation period. Dashed lines indicate the duration and the period of
the temperature oscillation. At 7 =100 s and 110 s the entrainment is
seen to occur but at 7 = 120 s a beat-like frequency modulation arises.

[74]. The experiments carried out with LD A have also shown
that two interconnected protoplasmic strands having differ-
ent initial frequencies synchronise through the protoplasm
flow [34, 52]. Unfortunately, mathematical models of the
synchronisation are not yet available.

8.2 The effect of light on plasmodium autowave regimes
Thousands of studies are devoted to the effect of light on
photosynthesising plant cells and retina photoreceptors.
Photoreactions of cells that lack a sensory mechanism of so
high a degree of perfection have been much Iless
investigated. Large intensities and high doses of illumina-
tions induce damage and often lead to cell death, whereas
low doses control a variety of behavioural reactions.
Among other responses, amoeboid cells are capable of
exhibiting phototaxis. It is expressed in their migration
along the gradient of light intensity. Cells are most sensitive
to the blue part of the spectrum. However, the mechanism
of blue light photoreception remains obscure [115]. For the
light-induced motile response of Physarum plasmodium
such is indeed the case [116 —118], though it is known that
the period of shuttle streaming changes considerably on
modification of the light regime [119]. It should be
mentioned that this response is very specific with respect
to the spectrum of the applied light [120, 121], which
provides an opportunity for studying the photoreception
mechanism.

Fig. 19 shows changes in the period of flow velocity
oscillations in response to laser illumination of various
wave-lengths. The data were obtained with the aid of LD A
[121]. It is seen from these curves that about 1 h after the
start of light exposure an adaptation occurs manifesting
itself in the return of the period value to that observed in
darkness. The kinetics of the response exhibit a series of
well-defined local maxima, which are only weakly depend-
ent on the wavelength of illumination. It follows from the
insert in Fig. 19a that the integral effect has a maximum at
A =460nm. Similar responses are formed in many other
cells [122]. The curves of evolution of the auto-oscillation
period at various durations of the light exposure are shown
in Fig. 19b. The important feature of these dependences is
that the period duration decreases below the control value
when the illumination is cut off. In the next paragraph we
shall formulate a mathematical model that offers some
explanation of the observed effects and may give an impetus
to new experiments on the amoeboid cell photoreactions.

8.3 Mathematical model of a nonautonomous system

Equations (6.8) (6.20) (6.22) describing the endoplasmic
autowave flow in plasmodial strands will form the basis for
the nonautonomous model. Effective parameters of the
model k; (i = 1—4) can be dependent on the kinetics of many
biochemical processes. They control the period of shuttle
protoplasmic streaming when all the other parameters are
constant [see Eqn (6.26)]. The first step of modeling made by
Pavlov et al. [123] was the elucidation of the quantitative
dependences the auto-oscillation period, obtained by a
computer simulation of the basic model, on the values of
these parameters. The parameter values were chosen in such
a way that the condition of self-excitation for the first spatial
mode would remain in force. The parameter k; responsible
for the startup of the actomyosin complex formation has the
strongest influence on the auto-oscillation period. A
preliminary computer experiment has shown that a stepwise
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Figure 20. Evolution of the parameter k;(f) in time, found on
A—5min modeling the plasmodium photoreaction.
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takes for the intracellular medium to acidify [121]. An

Figure 19. Changes in the auto-oscillation period of the plasmodium:
(a) on continuous illumination by monochromatic light [the insert
shows the dependence of the integral effect—the area under the
curve A(r)—on the emission wavelength]; (b) at different durations
of illumination and 4 =465.8 nm. The arrows indicate the instants of
switching off the light; #=0 corresponds to the beginning of
illumination. T, is the averaged period before the illumination. T is
the current period. The irradiance at the sample was 4 W m~2.

change in k; results in fast (over one period) establishment
of a new oscillation frequency. Therefore, it was postulated
that a time-dependent function k;(¢) could be found which
would define the required change in the period duration as
the time-dependent coefficient of the basic system. This was
attempted with the help of squared spline approximation of
the photoreaction curve at 4 = 465.8 nm shown in Fig. 19a
and of the function Ty(k;). The results are shown in Fig. 20.

Then, as a first approximation, we tried to adopt such a
scheme of biochemical processes (beginning with an
excitation of plasmodial photoreceptory pigment and
ending with the change in activator concentration propor-
tional to k) which could ensure the required dependence.
Certainly, other variants cannot be excluded, but in any
case modeling allows one to check whether the suggested
scheme is realistic, thus leading to more effective experi-
mental search. It is obvious that the function k; can in turn
be approximated by the following expansion:

adaptation under the effect of light is also observed in the
plasmodium and many other cells sensitised by various
dyes [122].

The most plausible hypothesis is that, excited by light
and interacting with membrane proteins, an endogenous
plasmodial photoreceptor (putatively of flavin nature [124])
promotes the production of special metabolites—second
messengers. Cyclic nucleotides are most likely to be involved
in this process as the second messengers [125, 126]. In this
model we assumed that the protoplasm acidification or cyclic
nucleotides decrease k; and possibly have an influence on
other k;. As the function k(¢) has along with the exponen-
tially dampingterms a periodically varying one, it isnecessary
to assume the existence of an activator —the second vari-
able—connected with the inhibitor so that auto-oscillations
would arise. As all ‘dramatis personae’ are not yet exactly
known, the following system of kinetic equations may be
suggested:

ay] t
o =apDoexp|—=) —any; —any2,
t T

Oy t

a—::“ZODO eXp (‘;) +anyr (8.2)
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yi(0) =31, ¥2(0) =7, ki(0)=k;.
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Figure 21. The predictions of the linearised model for the changes in
the auto-oscillation period in response to a continuous light
illumination of the plasmodium (curve /) and in response to a 5 min
illumination pulse (curve 2).

Here ¥, and y, are the concentrations of the activator and
the inhibitor in darkness, respectively. y; and y, are their
deviations from y; and y, under illumination. D, denotes
the photoreceptor activity and 7 is its relaxation time. The
coefficients «;y and a,, depend on the radiation wave-
length. The first two equations in (8.2) can be considered as
a linear analog of Volterra’s population model. The third
equation is an analog of Michaelis—Menton kinetics for an
enzyme —substrate —inhibitor system describing the trans-
formation of ‘substrate’ y; into ‘product’ k; with the
participation of inhibitor y,.

Without light there is a stationary regime. All the
derivatives are equal to zero and the value of k; determines
the auto-oscillation period in darkness. Curve / in Fig. 21
describes a light-induced change of the period duration
simulated by our basic model (6.8) (6.20) (6.22) in the case
when the parameter k() is defined by the linearised system
(8.2). This solution is quite satisfactorily fitted to the
experimental data shown in Fig. 19a. In addition the
linearised model qualitatively describes changes in the
oscillation period under brief light illumination (compare
curve 2 in Fig. 21 with the curves in Fig. 19b). It should be
emphasised that, in spite of satisfactory results obtained by
the linear approach, the choice of an appropriate nonlinear
model remains ambiguous and new experiments with living
plasmodia are required. For example, light illumination
could be applied simultaneously with substances which
change this or another stage of plasmodial photoreac-
tion. Although solutions of the linearised model (8.2) are
physically plausible only for the case of small deviations of
y; and y, from the stationary values, nevertheless the
possibility to explain satisfactorily new nontrivial oscilla-
tory regimes in the cell motile behaviour counts in favour of
the elaborated model.

9. Conclusion

[t can be seen that at present the theory of amoeboid
motility is constructed only in fragments. A major problem
to be tackled in the nearest future is the integration of
separate models into a single mathematical description
covering both the self-organisation of intracellular move-
ments and the cell migration. It is impossible here to
dispense with the principles of directional movement
control developed in the theories of cell-to-cell communi-
cations and self-organisation of collective behaviour in cell
populations. The state of researches in this field has been
described in a recent review [127]. It should be remembered
that the majority of animal tissue cells exhibit the amoeboid
type of motility, so elucidating physical principles of their
locomotion is of importance both for the theory and for
medical applications. It is essential to make progress in the
understanding the self-organisation of processes in acto-
myosin networks. It is necessary to realise the important
role of strains and stresses in the control of cell motility
and elucidate the interplay between this kind of control and
other cell regulatory pathways. From the synergetic
viewpoint the exciting problem is how the optimal form
of migrating amoeboid cells is attained and which
intracellular parameters define this process. For modeling
this kind of patterning it is necessary to find an optimality
criterion which could be formulated in the context of the
theory of open nonequilibrium systems.

For experimental studies of cell motility new opportun-
ities have appeared with the advent of confocal microscopy,
fluorescent probes, optoelectronic amplifiers, holography,
and other optical techniques. Worthy of mention is also a
new promising method of laser phasic microscopy [128].
The use of these methods could be combined with the laser
Doppler technique which enables the dynamic character-
istics of protoplasmic flows to be measured. The use of new
empirically determined parameters will provide much scope
for improvement of the existing mathematical models and
further development of the theory.

Acknowledgements. We are grateful to the Russian
Foundation for Fundamental Research for financial
support (Grant No. 94-04-12233) and to Dr Micah Dembo
(Theoretical Division, Los Alamos National Laboratory,
USA) for reading the manuscript and helpful remarks.

References

1. Nicolis G, Prigogine | Self-Organization in Non-equilibrium
Sy stems (New York: Wiley, 1977)

2. Haken H Advanced Synergetics. Instability Hierarchy in
Self-Organizing Systems and Devices (Berlin: Springer, 1983)

3. Ebeling W St rukturbildung bei Irreversiblen Prozessen (Leipzig:
Teubner, 1976)

4, Vasil’ev V A, Romanovskii Yu M, Yakhno V G Avtovolnovye
Protsessy (Autowave Processes) (Moscow: Nauka, 1987)

S. Klimontovich Yu L Statistical Theory of Open Systems: A
Unified Approach to Kinetic Systems (Dordrecht: Kluwer, 1995)

6. Kadomtsev B B Usp. Fiz. Nauk 165 449 (1994) [Phys. Usp. 37
425 (1994)]

7. Zhabotinskii A M Kontsentratsionnye Avtokolebaniya (Concen-
tration Auto-oscillations) (Moscow: Nauka, 1974)

8. Ivanitskii G R, Krinskii V 1, Sel’kov E E Matematicheskay a
Biofizika Kletki (Mathematical Biophysics of the Cell)
(Moscow: Nauka, 1978)



542

Yu M Romanovskii, V A Teplov

16.
17.
18.
19.

20.

21.
22.
23.
24.

25.
26.
27.
28.
29.
30.

31.

32.

33.
34.

35.

36.

37.
38.

39.

40.
41.

42.

43.

45.

Belintsev B N Fizicheskie Osnovy Biologicheskogo Formoobra-
zovaniya (Physical Bases of Biological Pattern Formation)
(Moscow: Nauka, 1991)

Akhromeeva T C, Kurdyumov S P, Malinetskii G G,
Samarskii A A Nestatsionarnye Struktury i Diffuzionnyi Khaos
(Nonstationary Structures and Diffusive Chaos) (Moscow:
Nauka, 1992)

Kerner B S, Osipov V V Avrosolitony (Autosolitons) (Moscow:
Nauka, 1991)

Karlov N V, Kirichenko N A, Luk’yanchuk B S Lazernaya
Te rmokhimiya (Laser Thermochemistry) (Moscow: Nauka,
1992)

Lackiec J] M Cell Movement and Cell Behaviour (London: Allen
& Unwin, 1986)

Blyumenfel’d L A Problemy Biologicheskoi Fiziki (Problems of
Biological Physics) (Moscow: Nauka, 1977)

Chernavskii D S, Khurgin Yu I, Shnol” S E Mol. Biol.

(Mo scow) 1 419 (1967); 20 13 (1987)

Mast S O J. Morphol. Physiol. 41 347 (1926)

Allen R D Cell 2 135 (1961)

Grebecki A Intern. Rev. Cytol. 148 37 (1994)

Trinkaus J P Cells into Organs (Englewood Cliffs, NJ: Prentice-
Hall, 1984)

Smolyaninov V V, Bliokh Zh L, in Nemyshechnye Formy
Podvizhnosti (Nonmusclar Forms of Motility) Ed. G M Frank
(Pushchino: NTsBI Akad. Nauk SSSR, 1976) p. S
Abercrombic M, Heaysman J E, Pegrum S M Exp. Cell Res.
67 359 (1971)

Vasiliev Ju M, Gelfand T M, in Locomotion of Tissue Cells
(Ciba Found. Symp., 1973) Vol. 14, p. 311

Weiss P Exp. Cell Res. Suppl. 8 260 (1961)

Deshcherevskii V 1 Mat ematicheskie Mod eli M yshechnogo

So krashcheniya (Mathematical Models of Muscle Contraction)
(Moscow: Nauka, 1977)

Bagshaw B Muscle Contraction (London: Chapman Hall, 1993)
Oster G F, Odell G M Physica D 12 333 (1984)

Oster G F J. Embryol. Exp. Morph. Suppl. 83 329 (1984)
Oster G F, Perelson A S J. Math. Biol. 21 383 (1985)

Zhu C, Skalak R Biophys. J. 54 1115 (1988)

Dimilla P A, Barbee K, Lauffenburger D A Biophys. J. 60 15
(1991)

Dembo M, Harlow F, Alt W, in Cell Surface Dynamics.
Concepts and Models (Eds S Parleston, Ch DeLisi, F M
Wiegel) (New York: Marcel Dekker, 1984) p. 495

Alt W, in Biomechanics of Active Movement and Deformation of
Cells (Ed. N Akkas) (Berlin: Springer, 1990) p. 403

Evans E Biophys. J. 64 1306 (1993)

Beylina S 1, Matveeva N B, Priezzhev A V, Romanovsky Yu
M, Sukhorukov A P, Teplov V A, in Self-Organization.
Autowaves and Structures far from Equilibrium (Ed. V [
Krinsky) (Berlin: Springer, 1984) p. 218

Potapova O O, Beilina S I, Zaikin A N, in Teoreticheskie i
Mat ematicheskie Problemy M orfogeneza (Theoretical and
Mathematical Problems of Morphogenesis) (Ed. A T Zotin)
(Moscow: Nauka, 1987) p. 86

Ivanitskii G R, Medvinskii A B, Tsyganov M A Usp. Fiz.
Nauk 161 13 (1991) [Sov. Phys. Usp. 34 (4) 289 (1991)]

Oster G F, Perelson A S J. Cell Sci. Suppl. 8 35 (1987)

Oster G F, Perelson A S, Tilney L G J. Math. Biol. 15 259
(1982)

Perelson A S, Coutsias E A J. Math. Biol. 23 361 (1986)
Tilney L G, Inone S J. Cell Biol. 93 820 (1982)

Dembo M Biophys. J. 55 1053 (1989); Dembo M, in Bio-
mechanics of Active M ovement and Division of Cells NATO ASI
Ser. H: Cell Biology, 84 (Ed. N Akkas) (Berlin: Springer, 1994)
p. 231

Romanovskii Yu M, Chernyaeva E B, in Termodinamika
Neobratimyk h Protsessov (Thermodynamics of Irreversible
Processes) (Ed. A I Lopushanskaya) (Moscow: Nauka, 1987) p.
152

Romanovskii Yu M Mat. Model. (Mo scow) 8 3 (1993)
Wohlfarth-Bottermann K E J. Exp. Biol. 81 15 (1979)

Turing A M Philos. Trans. R. Soc. Lond. B 237 37 (1952)

46.

47.
48.

49.

50.

SI.

52.

53.
54.
55.
56.
57.
58.

59.

60.

61.
62.

63.

65.

66.

67.

68.

69.

70.
71.

72.

73.
74.
75.
76.

71.
78.
79.

80.
81.

Kirber M T, Walsh Jr J V, Singer J I PfluSgers Arch.

412 339 (1988)

Kolega J J. Cell Biol. 102 1400 (1986)

Sandy I R, Meghji S, Farndale R W, Meikle M C Biochem.
Biophys. Acta 1010 265 (1989)

Ben—Zc’ev A, in Cell and Muscle Mot ility (Ed. J] W Shay)
(New York: Plenum, 1985) Vol. 6, p. 23

Barany K, Rokolya A, Barany M Biochem. Biophys. Res.
Commun. 260 7126 (1988)

Belousov L 'V Biologicheskii Morfogenez (Biological Morpho-
genesis) (Moscow: Moscow University Press, 1987)

Teplov V A, Beilina S I, Evdokimov M V, Priezzhev A V,
Romanovskii Yu M, in Avtovolnovye Protsessy v Sistemakh s
Diffuziei (Autowave Processes in Systems with Diffusion)
(Ed. M T Grekhova) (Gorky: IPF Akad. Nauk SSSR, 1981)
p. 190

Grebecki A, Cieslawska M Cytobiologie 17 335 (1978)
Stewart P A, Stewart B 1 Exp. Cell Res. 17 44 (1959)
Stewart P A, Stewart B 1 Nature (L ondon) 192 1206 (1961)
Ermakov V G, Priezzhev A V Biofizika 29 100 (1984)
Baranowski Z, in Ref. [20] p. 47

Hejnowicz Z, Wohlfarth-Bottermann K E Planta 150 144
(1980)

Teplov V A, Matveeva N B, Zinchenko V P, in Biofizika
Zhivoi Kletki (Biophysics of the Living Cell) (Ed. G M Frank)
(Pushchino: NTsBI Akad. Nauk SSSR, 1973) Vol. 4, p. 110
Kuroda R, Hatano S, Hiramoto Y, Kuroda H Protoplasma
Suppl. 1 72 (1988)

Nakamura S, Kamiya N Cell Struct. Funct. 10 133 (1985)
Ueda T, Matsumoto K, Akitaya T, Kobatake Y Exp. Cell Res.
162 486 (1986)

Kamiya N, Yoshimoto Y, in Aspects of Cellular and Mol ecular
Physiology (Ed. K Hamaguchi) (Tokyo: University of Tokyo
Press, 1972) p. 167

Teplov V A, Budnitskii A A, in Ref. [59] p. 165

Lairand D B, Matveeva N B, Teplov V A, The Analysis of
Protoplasm Mov ement in the M yxomicete Plasmodium.
Intracellular Hydrostatic Pressure and Its Role in the Protoplasm
Mov ement paper No. 2001-70 deposited in VINITI, Moscow,
1970 [in Russian]

Layrand D B, Matveeva N B, Teplov V A, Beylina S I Acta
Protozool. 11 339 (1972)

Matveeva N B, Beilina S I, Teplov V A, Lairand D B,
Lednev V V Regulation of Taxis in Myx omicete Plasmodium
paper No. 2112-81 deposited in VINITI, Moscow, 1981

[in Russian]

Matveeva N B, Beilina S I, Teplov V A, Lairand D B, in
Nemys hechnye Dvigatel’nye Systemy (Nonmuscle Motile Sys-
tems) (Moscow: Nauka, 1981) p. 155

Teplov V A, Beylina S I, Matveeva N B, Layrand D B, in
Progress in Protozoology (Warsaw, 1981) p. 363

Yoshimoto Y, Kamiya N Protoplasma 95 89 (1978)
Achenbach U, Wohlfarth-Bottermann K E Planta 151 574
(1981)

Achenbach U, Wohlfarth-Bottermann K E Planta 151 584
(1981)

Yoshimoto Y, Kamiya N Protoplasma 95 89 (1978)
Kishimoto U J. Gen. Physiol. 41 1205 (1958)

Baranowski Z, Teplov V A Cell Biol. Int. Rep. 16 1091 (1992)
Arkhangel’skaya T A, Barch G, Kolin’ko V G, Romanovskii Yu
M, in Dinamika Kletochnykh Populatsii (Dynamics of Cellular
Populations) (Gorky: Gorky State University Press, 1984) p. 98
Odell G M J. Embryol. Exp. Morphol. Suppl. 83 261 (1984)
Oster G F, Odell G M Cell Motility 4 469 (1984)
Romanovskii Yu M, Teplov V A, in Mat ematicheskie Mek ha-
nizmy Tubulentnosti (Mathematical Mechanisms of Turbulence)
(Kiev: IM Akad. Nauk Ukr. SSR, 1986) p. 103

Romanovskii Yu M, Khors N P Biofizika 27 707 (1982)
Vasilyev V. A, Romanovsky Yu M, Chernavsky D S, Yakhno
V G Autowave Processes in Kinetic Systems. Spatial and
Temporal Self-Organization in Physics, Chemistry, Biology and
Me dicine (Dordrecht: Reidel, 1987)



The physical bases of cell movement. The mechanisms of self-organisation of amoeboid motility

543

82.

83.

84.

85.

86.
87.
88.
89.
90.
91.

92.

93.

94.
95.

96.

97.

98.

99.

100.
101.
102.
103.

104.
105.
106.

107.

108.

109.

110.

111.

112.
113.
114.

Romanovsky Yu M, Teplov V A, in Thermodynamics and
Pattern Formation in Biology (Eds I Lamprecht, A I Zotin)
(Berlin: De Gruyter, 1988) p. 395

Teplov V A, Romanovsky Yu M, Latushkin O A Biosystems
24 269 (1991)

Latushkin O A, Netrebko N B, Romanovsky Yu M, Teplov V
A, in Kollektivhaya Dinamika Vozbuzhdenii i Strukturoobrazo-
vaniya v Biologicheskikh Tkanyakh (Collective Dynamics of
Excitations and Pattern Formation in Biological Tissues) (Ed.
V G Yakhno) (Gorky: IPF Akad. Nauk SSSR, 1988) p. 109
Teplov V' A, Romanovsky Yu M Me khanokhimicheskie
Raspredelennye Avtokolebaniya v Kletochnoi Podvizhnosti.
Avtovolnovye Yavleniya v Sok ratitel’noi Ak tivnosti Plazmodiya
Physarum polycephalum (Mechanochemical Distributed Auto-
oscillations in Cell Motility. Autowave Phenomena in Con-
tractile Activity of Physarum polycephalum Plasmodium)
(Pushchino: NTsBI Akad. Nauk SSSR, 1987)

Kessler D, Nachmias V T, Loewy A G J. Cell Biol. 69 393
(1976)

Ueda T, Goetz von Olenhusen K, Wohlfarth-Bottermann K E
Cytobiologie 18 76 (1978)

Yoshimoto Y, Kamiya N Cell Struct. Funct. 9 135 (1984)
Smith D A, Saldana R Biophys. J. 61 368 (1992)

Pavlov D A, Potapov M M Vestn. Mosk. Univ. Vy chisl.

Mat em. Kibern. 1 10 (1994)

Pavlov D A, Potapov M M Vest. Mosk. Univ. Vychisl. Matem.
Kibern. 2 62 (1995)

Alt W, Tranquillo R T, in Proceedings of the 2 European
Conference on Mat hematics Applied in Biology and Me dicine
(Lyon: World Scientific, 1995) (in press)

Pavlov D A, Romanovsky Yu M, Teplov V A, in Biological
Motility (Pushchino: Sci. Centre RAS Press, 1994) p. 258

Alt W, in Ref. [93] p. 61

Bozhkova V P, Voronov D A, Romanovskii Yu M Biofizika
38 267 (1993)

Cheer A, Vincent J P, Nuccitelli R, Oster G J. Theor. Biol.
124 377 (1987)

Bozhkova V P, Voronov D A, Romanovsky Yu M,

Yagodkin Yu Yu, in Ref. [93] p. 237

Evans E, Skalak R Me chanics and Thermodynamics of
Biomembranes (Boca Raton, FL: CRC Press, 1980)

Finer J T, Simmons R M, Spudich I A Nature (L ondon) 368
113 (1994)

Teplov V A Protoplasma Suppl. 1 81 (1988)

Dembo M, Harlow F Biophys. J. 50 109 (1986)

Teplov V A, in Ref. [84] p. 56

Priezzhev A V, Tuchin V V, Shubochkin L T Lazernaya
Diagnostika v Biologii i M editsine (Laser Diagnostics in Biology
and Medicine) (Moscow: Nauka, 1989)

Mustacich R 'V, Ware B R Phys. Rev. Lett. 33 617 (1974)
Evdokimov M V, Kolin’ko V G, Poroshina M Yu, Priezzhev A
V Kvant. Elektron. 12 2052 (1985)

Evdokimov M V, Priezzhev A V, Romanovsky Yu M Avto-
metriya 3 61 (1982)

Johnson R P C, Dumdar G R A, Ross D A, in Laser
Scattering Spectroscopy of Biological Objects (Eds ] Stepanck,
P Anzenbacher, B Selacek) (Amsterdam: Elsevier, 1987) p. 531
Tanaka I, Nishio I, Peetermans J, Gorti S, in Laser Applica-
tions in Life Sciences (Eds S A Akhmanov, M Yu Poroshina,
N I Koroteev, B Toleutaev) [Proc. SPIE 1403 280 (1990)]
Priezzhev A V, Proskurin S G, in Laser Interferometry IV:
Computer-Aided Interferometry [Proc. SPIE 1553 502 (1992)]
Glonty V N, Priezzhev A V, Proskurin S G, Romanovsky Yu
M, in Optics in Medicine, Biology and Environmental Research
(Eds Gert von Bally, Shyam Khanna) (Amsterdam: Elsevier,
1993) p. 161

Glonty V N Priezzhev A V, Romanovskii Yu M, in Lazery v
Narodnom Khozyaistve (Lasers in National Economy) (Moscow:
MDNTP, 1988) p. 92

Kamiya N Protoplasmic Streaming (Vienna: Springer, 1959)
Wohlfarth-Bottermann K E J. Exp. Biol. 67 49 (1977)
Kolin’ko V G, Arkhangel’skaya T A, Romanovsky Yu M
Studia Biophys. 106 215 (1985)

115.

116.

117.
118.

119.

120.

121.

122.

123.

124.

125.
126.

127.

128.

Kritskii M S, Chernysheva E K, in Mol ekulyarnye Me khanizmy
Biologicheskogo Deistviya Opticheskogo Izlucheniya (Molecular
Mechanisms of Biological Action of Optical Radiation)

(Ed. A B Rubin) (Moscow: Nauka, 1988 ) p. 212
Schreckenbach T, in Blue Light Effects in Biological Systems
(Ed. H Senger) (Berlin: Springer, 1984) p. 463
Wohlfarth-Bottermann K E Physarum Newsletter 22 1 (1990)
Rakoczy L, in Blue Light Syndrome (Ed. H Senger) (Berlin:
Springer, 1984) p. 570

Baranowski Z, Shraiden Z, Wohlfarth-Bottermann K E Cell
Biol. Inter. Rep. 6 859 (1982)

Wohlfarth-Bottermann K E, Block I Cell Biol. Inter. Rep. 5
365 (1981)

Poroshina M Yu, Priezzhev A V, Romanovskii Yu M Biofizika
34 980 (1989)

Belenikina N S, Strakhovkaya M G, Freikin G Ya J. Photo-
chem. Photobiol. 10 51 (1991)

Pavlov D A, Potapov M M, Romanovsky Yu M, in Ref. [93]
p. 72

Blue Light Effects in Biological Systems (Ed. H Senger)
(Berlin: Springer, 1984)

Daniel I W J. Cell Biol. 87 23a (1980)

Ueda T, Mori Y, Nikagaki I, Kobatake Y Photochem. Photo-
biol. 47 271 (1988)

Ivanitskii G R, Medvinskii A B Tsyganov M A Usp. Fiz. Nauk
164 1041 (1994) [Phys.-Usp. 37 961 (1994)]

Tychinsky V, Norina S, Odintsov A, Popp F, Vyshenskaya T,
in Cell and Biotissue Optics (Ed. V V Tuchin) [Proc. SPIE
2110 129 (1990)]



