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Abstract. Theoretical ideas for deriving singularities of
thermodynamical functions at the second-order phase
transitions in spin systems with weak quenched disorder
are considered. In particular, p-component vector magnets
and the two-dimensional Ising model with disorder in
spin —spin interactions are studied. Generalisation of the
traditional renormalisation-group scheme, which takes into
account nonperturbative spin-glass degrees of freedom, is
proposed. Low-temperature properties and the phase
transition in the Ising systems with quenched random
fields are also considered.

1. Introduction

This review is devoted to the theory of critical phenomena
at the phase transitions of the second order. It is generally
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believed that this part of statistical mechanics is well
understood, at least at the qualitative level. Moreover, it is
one of the few fields where close cooperation with
experiments is possible and in certain cases one is able
to think in terms of the gquantitative correspondence of
experimental results with a theory, and vice versa. In this
sense, it is tempting to conclude that nothing very new
could be expected any more in the world of second-order
phase transitions. One of the main points of the present
review is to demonstrate that this is not so. Life is not so
boring.

The theory of the critical phenomena deals with
macroscopic statistical systems which are close to the
phase transition point, where spontaneous symmetry break-
ing takes place. This situation is characterised by large-scale
instabilities, or fluctuations (unfortunately, these can be
observed even in everyday life). According to the traditional
scaling theory of the second-order phase transitions, the
large-scale fluctuations are characterised by a certain
dominant scale, or the correlation length, R.. The correla-
tion length grows as the critical point is approached, where
it becomes infinite. The large-scale fluctuations lead to
singularities in the macroscopic characteristics of the system
as a whole. These singularities are the main subject of the
theory.

In the studies of the second-order phase transitions, the
systems considered were usually assumed to be perfectly
homogeneous. In real life, however, some defects or
impurities are always present. Therefore, it is natural to
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consider the effect impurities might have on the phase
transition phenomena.

Originally, many years ago, it was generally believed
that impurities either completely destroy the long-range
fluctuations, such that the singularities of the thermody-
namic functions are smoothed out, or can produce only a
shift of a critical point but cannot affect the critical
behaviour itself. Later it was realised that an intermediate
situation is also possible, in which a new critical behaviour,
with new universal critical exponents, is established suffi-
ciently close to the phase transition point. However,
according to the most recent developments in this field,
the situation could appear to be much more sophisticated,
such that completely new types of critical phenomena of the
spin-glass nature could be established near the critical
point. The consideration of the disorder-induced phenom-
ena near the second-order phase transitions is the main
subject of the present review.

To a certain extent, the review is assumed to be of
pedagogical character (it is based on the lecture course for
the students of the Landau Institute). It is supposed to be
self-contained so that the reader is not required to go
through all the references. One of the purposes of the
present review is to introduce the reader to the subject. To
do that, the reader need only understand the basic
principles of statistical mechanics. The only exception is
Section 4, where in certain places the elements of the theory
of replica symmetry breaking of spin-glasses are used
without detailed explanation (the reader may refer, for
example, to Ref. [9]). The calculations, although sometimes
rather tedious (where this cannot be avoided), are made as
elementary as possible, while the emphasis is placed on the
qualitative physical ideas.

Section 2 is devoted to the systematic consideration of
the traditional scaling theory of the critical phenomena,
including e-expansion. This topic has been a part of the
textbooks [1—3] for many years now, so the reader who is
familiar with the subject may easily skip this section.

In Section 3 the concept of quenched disorder is
introduced. Here the physical idea of self-averaging is
discussed and the technical method, known as the ‘replica
method’, is considered in general terms. Besides, in terms of
the renormalisation-group (RG) approach, the traditional
procedure for obtaining a new universal impurity-induced
critical regime is considered for the ferromagnetic spin
vector systems.

In Section 4 we study the renormalisation-group theory
generalised to take into account essentially nonperturbative
phenomena of the spin-glass (SG) nature. It is shown that,
whenever the disorder is relevant for the critical behaviour,
the traditional RG flows, which are usually considered as
describing the disorder-induced universal critical behaviour,
are unstable with respect to the SG-type perturbations. It is
demonstrated that in general there exist no stable fixed
points, and the RG flows lead to the so-called strong-
coupling regime at a finite spatial scale. The physical
consequences of the RG solutions obtained are dis-
cussed. In particular, we argue that the strong-coupling
phenomena discovered indicate the onset of a completely
new SG-type critical behaviour in the close vicinity of the
phase transition.

In Section 5 we consider the critical properties of the
two-dimensional Ising model with impurities. Here the
exact solution for the critical behaviour of the specific

heat is derived, and the phase diagram as well as the results
of the recent numerical simulations are discussed.

Finally, in Section 6 the Ising spin systems with
quenched random fields are considered. These are a type
of statistical model which exhibits qualitatively different
properties from those considered before. The random-field
Ising systems are of special interest for two reasons. First,
because they have many experimentally accessible realisa-
tions and, second, because despite extensive theoretical and
experimental efforts during the last twenty years very little
is understood about their basic properties even at the
qualitative level.

The Conclusions are written to inform the reader of the
main idea of the present review, which is encoded in the
text. It cannot be decoded, however, until the whole review
is carefully studied.

2. Scaling theory of the critical phenomena

2.1 General principles of statistical mechanics

In the most simple terms, the basic statements of statistical
mechanics could be introduced in the following way. Let
the microscopic state of some macroscopic system having
many degrees of freedom be described by the configura-
tions of N variables {s;}, where i =1,2,...,N. The basic
quantity characterising the microscopic states is called the
energy H, and it is defined as a function of all the
microscopic variables {s;}:

H =H(s{,s5,...,5yv) = HJs] .

The microscopic dynamic behaviour of the system is
defined by dynamic differential equations such that, in
general, the energy of the system tends to a minimum.
Besides, it is assumed that no observable system can be
perfectly isolated from the surrounding world, and the
effect of the interaction with the surroundings (the thermal
bath) is believed to produce the so-called thermal noise in
the exact dynamical equations. The thermal (white) noise
acts as random and uncorrelated fluctuations which
produce the randomisation and mixing of the exact
dynamical trajectories of the system.

Let A[s] be some observable quantity. The quantities
which are of interest in statistical mechanics are the
averaged values of the observables. In other words, instead
of studying the exact change in time values A[s(¢)], one
introduces the averaged quantity

(A) = lim ! Jf de’ Afs(t")] .

t—oo 0

Q.1

which could be formally obtained after the observations
during an infinite time period.

The fundamental hypothesis of equilibrium statistical
mechanics lies in the following. It is believed that, owing to
the mixing of the dynamic trajectories, after an infinitely long
observation time, the system in general ‘visits’ its different
microscopic states many times, and therefore the averaged
quantity in Eqn (2.1) could be obtained by averaging over
the ensemble of the states instead of that over the time:

(A) = J ds;dsy... dsy A[s]P(s1, 80, -, Sn) - 2.2)
Here P[s] is the probability distribution function of the
microscopic states of the system. In other words, it is
believed that because of the mixing of the dynamical
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trajectories, instead of solving the exact dynamics, the
system could be statistically described in terms of the
probabilities of its microscopic states given by the function
Pls]. The probability distribution function, whatever it is,
must be normalised:

ds;dsy... dsy P(s1,80,-.., sy)=1. (2.3)

The fundamental quantity of statistical mechanics which
characterises the probability distribution itself is called the
entropy. It is defined as the average of the logarithm of the
distribution function:

S =—(log(P[s])) = —J ds; ds, ... dsy P[s]log(P[s]) . (2.4)

First of all, it is obvious from the above definition that
because of the normalisation (2.3), the entropy is at least
nonnegative. In general, the value of the entropy could tell
to what extent the probability distribution of the system is
‘ordered’. Consider a simple illustrative example. Let the
(discrete) microscopic states of the system be labeled by an
index «, and let us assume that the probability distribution
is such that only L (among all) states have nonzero and
equal probability. Then, as a result of the normalisation
(2.3), the probability of any of these L states must be equal
to 1/L. According to the definition of the entropy, one gets

L
S = —ZPalogPa =logL .
o

Therefore, the broader the distribution (the larger L), the
larger the value of the entropy. On the other hand, the
more concentrated the distribution function is, the smaller
the value of the entropy. In the extreme case, when there is
only one microscopic state occupied by the system, the
entropy is equal to zero. In general, the value of exp(S)
could be interpreted as the average number of the states
occupied by the system with a fairly large probability.

Now let us consider what the general form of the
probability distribution function must be. According to
the basic hypothesis, the average value of the energy of
the system is

E=(H)=) P,H,.

The interaction of the system with the surrounding world
produces the following fundamental effects. First, the
average value of its energy in thermal equilibrium is
conserved. Second, for some reason Nature is constructed
in such a way that, irrespective of the internal structure of
the system, the value of its entropy in the equilibrium state
tries to attain a maximum (bounded by the condition that
the average energy is constant). In a sense, it is natural:
random noise makes the system as disordered as possible.
Let us now consider the value of the probability
distribution function which would maximise the entropy.
To take into account the two constraints—the conserva-
tion of the average energy, Eqn (2.5), and the
normalisation )., P, =1—one can use the method of
the Lagrangian multipliers. Therefore, the following
expression must be maximised with respect to all possible
distributions P,:

Sp, 4Pl = —Z:Pa log(P,) — ﬁ(Zz: P,H, — E)
().

2.5)

(2.6)

where f and y are the Lagrangian multipliers. Variation
with respect to P, gives

1
Py = exp(—pH,) , @D
where
Z = exp(—BH,) =exp(y+1) (XY

is called the partition function, and the parameter f, which
is called the inverse temperature, is defined by the
condition

1

~ > Hyexp(—pH,) =E . (2.9)

o

In practice, however, it is the temperature which is usually
taken as an independent parameter, whereas the average
energy is obtained as a function of the temperature by
Eqn (2.9).

The other fundamental quantity of statistical mechanics
is the free energy defined as follows:

F=E—-TS , (2.10)

where T = 1/f is the temperature. Using Eqn (2.7), one
can easily derive the following basic relations among the
free energy, the partition function, the entropy, and the
average energy

F=-Tlog(Z), (2.11)
oF
S=p 2.12
b a5 (2.12)
0 oF
E=——log(Z)=F —. 2.13
op °eZ) =F+ B g (2.13)
Note that according to the definition given by

Eqn (2.10), the principle of maximum entropy is equivalent
to that of the minimum of the free energy. One can easily
confirm that taking the free energy (instead of the entropy)
as the fundamental quantity, which must be minimal with
respect to all possible distribution functions, the same form
of the probability distribution as given by Eqn (2.7) is
obtained.

2.2 The mean-field approximation
In magnetic materials, the microscopic state of the system
is supposed to be defined by the values of the local spin
magnetisations. In many magnetic systems, the electrons
responsible for the magnetic behaviour are localised near
the atoms of the crystal lattice, and the force which tends
to orient the spins is the (short-range) exchange interaction.
The most popular models which describe this situation
qualitatively are called the Ising models. The microscopic
variables in these systems are the Ising spins g; which by
definition can take only two values: +1 or —1. The
traditional form for the microscopic energy (which from
now on will be called the Hamiltonian) as the function of all
the Ising spins is the following:

H = —%ZJUO';G,‘ —hZai .

(i,.j)

(2.14)

Here the notation (i, j) indicates the summation over all the
lattice sites of the nearest neighbours, J; are the values of
the spin—spin interactions, and % is the external magnetic
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field. If all the values of J; are equal to some positive
constant, then one gets the ferromagnetic Ising model;
otherwise, if all the J; values are equal to some negative
constant, one gets the antiferromagnetic Ising model.

In spite of the apparent simplicity of the [sing model, an
exact solution (which means the calculation of the partition
function and the correlation functions) has been found only
for the one- and two-dimensional systems in the zero
external magnetic field. In all other cases, one needs to
use approximate methods. One of the simplest methods is
called the mean-field approximation. In many cases, this
method gives results which are not too far from the correct
ones, and very often it makes it possible to get some
qualitative understanding of what is going on in the system
under consideration.

The starting point of the mean-field approximation is
the assumption about the structure of the probability
distribution function. It is assumed that the distribution
function in the equilibrium state can be factorised as the
product of the independent distribution functions in the
lattice sites:

1

Plo] = = Xp (—BH[o]) ~ HPi(ai) . (2.15)
The normalised site distribution functions are taken in the
form

1+¢,

Pio) = =

2

1

where ¢; are the parameters which have to be specified.
The factorisation of the distribution function,
Eqn (2.15), means that the average of any product of
any functions at different sites is also factorising on the

product of the independent averages

(Hoi)g(e))) = (F(o:)){s(0))) - @17
where, according to the initial statement (2.15),
(flo)) = 2"5" A1) + 1_24”' A1) 2.18)

In particular, for the average site magnetisations, one easily
gets

(o) =¢; . (2.19)

Therefore, the physical meaning of the parameters {¢;} in
the trial distribution function is that they describe the
average site spin magnetisations. According to the general
principles of statistical mechanics, these parameters must
be such that they would minimise the free energy of the
system.

Using Eqns (2.15) and (2.16) for the entropy and for the
average energy, we get

5 = ~(log(Plo])) = — " (log[Pi(a))])

1

- R[50 S50

(2.20)

1
E=—=2> Jybib—h) ;.

(i,J) i

.21

For the free energy, Eqn (2.10), one obtains

1
F=-3 Z-Iij¢i¢j_hz¢i

(i, J) i
+TZ[1 —;d)i log(l —;(i)i) + ! _zd)" log(1 _2¢i>] .

(2.22)

To be more specific, consider the ferromagnetic system
on the D-dimensional cubic lattice. In this case, all the
spin —spin couplings are equal to some positive constant
J;=J/2D >0 (the factor 1/2D is inserted just for con-
venience), and each site has 2D nearest neighbors. Since the
system is homogeneous, it is natural to expect that all the ¢;
values must be equal to some constant ¢. Then, for the free
energy [Eqn (2.22)], one gets

F 1
VEf(d’) = —§J¢2 —ho

+T[] —;¢ log(l ;d)) + ];d) log(1

—¢
2 9
(2.23)
where V is the volume of the system and f is the density of
the free energy.
The necessary condition for the minimum of f is
d¢ ’
or

—J¢ —h+ T arctanh(¢) =0 . (2.24)

The resulting equation, which defines the order parameter
@, is
¢ = tanh [f(J¢ + h)] .

Note that the minimum of the free energy is conditioned by
dzf/ d(b2 > 0. Using Eqn (2.24), we can reduce this
condition to
] > BJ

1 — ¢ '

Consider first the case of a zero external magnetic field
(h=0). One can easily see that, if T > T, =J, the only
solution of Eqn (2.25) is ¢ =0, and this solution satisfies
condition (2.26). Therefore, at all temperatures higher than
T., the minimum of the free energy is achieved in the state
in which all the site spin magnetisations are zeros.

However, if T < T, then in addition to the solution
¢ =0, Eqn (2.25) (with & = 0) has two nontrivial solutions
¢ =+¢(T) #0. One can easily check that in this tem-
perature region the solution ¢ =0 becomes the maximum
and not the minimum of the free energy, while the true
minima are achieved at ¢ = £¢(T). Therefore, in the low-
temperature region T < T, the free energy has two minima,
which are characterised by nonzero site magnetisations with
opposite signs.

Near T, the magnetisation ¢(7) is small. In this case,
the expansion in powers of ¢ in Eqn (2.25) can be made. In
the leading order in 1= (T/T. — 1), |t| < 1, one gets

¢(T) = const |1:|'/2 , (2.27)
Thus, as T — T., ¢(T) — 0.

(2.25)

(2.26)

7<0.
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The expansion of the free energy Eqn (2.23) as the
function of a small value of ¢ yields

fl¢) = % a +% g0 —h,

where ¢ =T/3, and for simplicity we have taken J =1.
The qualitative shape of f(¢) at T > T, (r >0) and at
T < T, (t<0)isshown in Fig. 1 Note that, since the total
free energy F is proportional to the volume of the system,
the value of the free energy barrier separating the states
with ¢ = +¢(T) at T < T, is also proportional to the
volume of the system. Therefore, in the thermodynamic
limit V — oo (which corresponds to the consideration of
the macroscopic systems) the barrier separating the two
states approaches infinity.

(2.28)

f !
T>T,
T>T,
T<T,

\ /T </TC

Ay

a b
Figure 1. Free energy of the ferromagnetic Ising magnet: (a) in the

zero external magnetic field; (b) in the nonzero magnetic field.

The simple considerations described above demonstrate
on a qualitative level the fundamental phenomenon called
spontaneous symmetry breaking. At the temperature
T =T, the phase transition of the second order occurs,
such that in the low-temperature region 7 <T. the
symmetry with respect to the global change of the signs
of the spins is broken, and the two (instead of one) ground
states appear. These two states differ by the sign of the
average spin magnetisation, and they are separated by the
macroscopic barrier of the free energy.

In a small nonzero magnetic field (k < 1), the qualitative
shape of the free energy is shown in Fig. 1b Near the phase
transition point for the equation df/d¢ =0, one gets

th+gd’ =h. (2.29)

This equation always has nonzero solutions for the order
parameter ¢ at all temperatures. In particular, in the low-
temperature region (t < 0), one finds that

1/2
(ﬂ) i hen).
g 2t
s (2.30)
(@) . > k()
g
where
1
ho(t) = — [1]*/*. (2.31)

NG

For the high-temperature region (t > 0), one finds that
h
; > h < hc(T) ’

(2.32)

h> h(1).

Therefore, at & # 0 the phase transition is ‘smoothed out’
in the temperature interval |t| ~ h*? [Eqn (2.31)] near T..
Thus in systems in a nonzero external field, the sharp phase
transition does not exist.

The physical quantity which describes the reaction of
the system on the infinitely small magnetic field is called
susceptibility. It is defined as follows:

0
X= % .
Oh h=0
According to Eqns (2.30)—(2.32), one finds that near the
critical point the susceptibility becomes divergent:
o, T>T,,

(2.33)

(2.34)

-
§|T| , T<TC

For the nonlinear susceptibility y(%) = 0¢/0h at the critical
point (g_]/2|1:|3/2 < h), we get

x(h) ~h=23 (2.35)

The other basic physical quantity is the specific heat,
which is defined as follows:
o
or?’

For the specific heat near the critical point (in the zero

magnetic field), according to the Eqns (2.27) and (2.28),
one obtains

C=-T (2.36)

1
const = —,
C~ 4

0, T<T..

Of course, all the above cases which were considered in
terms of very primitive mean-field approximations cannot
pretend to give reliable results. Nevertheless, on a qual-
itative level they demonstrate a very important physical
phenomenon: near the point of the second-order phase
transition, at least some of the physical quantities become
singular (or nonanalytic).

Now let us consider one simple and natural improve-
ment of the mean-field theory discussed above.

T>T,,
¢ (2.37)

2.3 The Ginzburg - Landau theory

The apparent defect of the mean-field approximation given
above is that it does not take into account correlations
among spins. This can be easily amended if we are
interested in the studies of only large-scale phenomena,
which will be shown to be responsible for the leading
singularities in the thermodynamical functions. In this case,
the order parameters ¢; are almost spatially homogeneous,
and they can be represented as slowly varying (with small
gradients) functions of the continuous space coordinates.
Then the interaction term in the Hamiltonian (2.14) can be
represented as follows:

1 1 2

330 =3 | 4 {970 + (Vo))
(i, )

The Hamiltonian in which only small spatial fluctuations

of the order parameter are taken into account can be
written as follows:

i = [ S 00 +5 26700 5 68°0) (o) |
(2.39)

(2.38)
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The theory which is based on the above Hamiltonian is
called the Ginzburg—Landau approach. In fact the
Ginzburg—Landau Hamiltonian is nothing but the first
few terms of the expansion in powers of ¢ and V¢. In the
vicinity of the (second-order) phase transition point, where
the order parameter is small and the leading contributions
come from large-scale fluctuations, such an approach
appears to be quite natural.

Consider the contributions caused by small fluctuations
at the background of the homogeneous order parameter

¢0 =V |T|/g’
d(x) = ¢o +o(x),
where ¢(x) < ¢.
For simplicity, let us consider the case of the zero

magnetic field. Then the expansion of the Hamilton-
ian (2.39) to the second order in ¢ yields

(2.40)

1
H=H, +J d’x {5 [Vo(x)]” + |1:|q02(x)} . (2.41)
In terms of the Fourier representation
)= [ 25 gy exp(-ike) 2.42)
x)=|——= xp(—ikx ) , .
¢ (2n)D @ P
one gets
1 de 2 2
H==-|—— (k" +2|t k) +Hg . 243
5 ) g (O +2Dlof + Ho 4
Therefore, for the correlation function
2 Do(k)|o(k)|* exp(—H
[Dow exp (o)
one obtains the following result:
1
Golk) =—5——. 2.45
0( ) k2+2|7.'| ( )
Besides, it is obvious that
(p(k)p(k "))y = Go(k)d(k + k") . (2.46)

Therefore, for the spatial correlation function

Go(x) = ((6(0)9(x))) = (D(0)(x)) — (6(0)){$(x))

d’k .
= (00)0) = [ 555 (o) explir) . 47
we obtain
1
k[P, x| <R (1) =—=—=, (2.48a)
Go(x) ~ 21l
exp % , x| >R.(7). (2.48b)
Here the quantity
R(t) ~ [o]7'/? (2.49)

is called the correlation length.

Thus, the situation near T, (|t| < 1) is as follows. At
scales much greater than the correlation length R (t) > 1,
the fluctuations of the field ¢(x) around its equilibrium
value ¢, (¢ =0 at T>T,, and ¢, =+/|t|/g at T<T,)
become effectively independent (their correlations decay
exponentially [see Eqn (2.48b)]. On the other hand, at scales

much smaller than R (), in the so-called fluctuation region,
the fluctuations of the order parameter are strongly
correlated, and their correlation functions exhibit weak
power-law decay [see Eqn (2.48a)]. Therefore, inside the
fluctuation region at scales < R.(t), the gradient or the
fluctuation term of the Hamiltonian (2.39) becomes crucial
for the theory. At the critical point, the fluctuation region
becomes infinite.

Let us estimate to what extent the above simple
considerations are correct. Expansion (2.41) could be
used and the result [Eqn (2.48)] justified only if the
characteristic value of the fluctuations ¢ are small in
comparison with the equilibrium value of the order para-
meter ¢,. Since the correlation length R, is the only relevant
spatial scale which exists in the system near the phase
transition point, the characteristic value of the fluctuations
of the order parameter could be estimated as follows:

— 1 —(D—
9 R—uj “x(p(0)p(x)) ~ R
c Jx|<R,

(2.50)

The above simple mean-field estimates for the critical
behaviour are justified only if the value of ¢? is much
smaller than the corresponding value of the order para-
meter ¢3 at equilibrium:

i}
8

Using Eqn (2.49) we find that this condition is satisfied if
|P=92 <1 (2.52)

R;PT? « (2.51)

glr
Therefore if the dimensions of the system are greater than
4, near the phase transition point, T — 0, condition (2.52) is
always satisfied. On the other hand, if the dimensions D are
less than 4, this condition is always violated near the critical
point.

Thus, these simple estimates reveal the following
important points:

(1) If the dimensions D of the considered system are
greater than 4, then its critical behaviour in the vicinity of
the second-order phase transition is described successfully
by the mean-field theory.

(2) If the dimensions of the system are smaller than 4,
then, according to Eqn (2.52), the mean-field approach
gives correct results only in the range of temperatures
not too close to T:

1> 1D, g) =g (1<)

(here it is assumed that g < 1, otherwise there would be no
mean-field critical region |t| < 1 at all). In the close vicinity
of T, |t| €1,, the other (non-Gaussian) type of critical
behaviour can be expected to occur.

(2.53)

2.4 Critical exponents

In general, it is believed that critical behaviour of the
physical quantities near the phase transition point can be
described in terms of the so-called critical exponents. In
particular, for the quantities considered above, the critical
exponents are defined as follows:

—order parameter

bo~ It h<h(x):
by~ h>h(r)

T<0;
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0
— specific heat X = % = J d”x(($(0)(x)))
h=0
Cn~ ™, h<h(1);
i o) ~ RPRZDTN || (2.64)
— susceptibility
_ On the other hand, x ~ |t|™?, which provides Eqn (2.57).
~ lel? .
el h < he(v); The value of the susceptibility, Eqn (2.64), can be
A~ BT s ng(e) estimated in another way:

—correlation function
G(x) ~ x4, (2.54)

where the value of the critical field is h(t) ~| 7 |'/# (this
estimate follows from the comparison of the correlation
lengths in small and in large fields).

In fact, not all the critical exponents listed in Eqn (2.54)
are independent. One could easily derive (see below) the
following relations among them:

x| <R;

«=2—Dv, (2.55)
D+2—

_DAo-n (2.56)
D—-2+4n

y=02-nyv, 2.57)

2W=2—y—ua, (2.58)

2
L 2.
F=p32=4 (2.59)

For 7 exponents there are exist 5 equations, which means
that only two exponents are independent. In other words,
to find all the critical exponents one needs to calculate only
two of them.

In particular, the Ginzburg — Landau mean-field theory
considered above gives v =1/2 and # = 0 [see Eqns (2.48),
(2.49)]. Using Eqns (2.55) — (2.59) we can easily find the rest
of the exponents: a=—(D—4)/2; §=(D+2)/(D—2);
y=1; B=(D—2)/4; and u=1/3. These critical expo-
nents fully describe the critical behaviour of any scalar
field, D-dimensional system with D > 4.

Let us now calculate the relations (2.55) — (2.59).

According to the definition of specific heat,

2,
c=-12

77 (2.60)

one gets
¢ =3[ 4 [ X (#0800 ~ (PN F )]

1

~— (D),
75 (@)

(2.61)

where

@ =J dPx¢?(x) . (2.62)
[x[<R.

According to Eqn (2.39), the equilibrium energy density of

the system (at scales greater than R.) is proportional to

|t|®. Thus, the equilibrium value of (@) is defined by the

condition |t|(®) ~T (T ~ T, =1 in our case). Therefore,

from Eqn (2.61) we get

C~RIPP ~ g2 (2.63)

On the other hand, according to the definition of the
critical exponent &, C ~ |t[™%, and one obtains Eqn (2.55).

Using the definitions of the susceptibility as well as the
critical exponents of the correlation function # and that of
the correlation length v [see Eqn (2.54)], one obtains

1~ REGy ~ [ P

This yields y=Dv—2p. Using Eqn (2.55),
Eqn (2.58).

Now let us define the value of the order parameter in the
region, which is less than the correlation length

The characteristic value of the field ¥ is
Yo =1/ (W)

1/2
~ (Ré’jl - d”x<¢(0)¢(x)>> ~ RV (2.67)

(2.65)

one gets

(2.66)

The critical value of the external field h(7) is defined by
the condition

Vh.~T(=1). (2.68)
Therefore, at this value of the field
R (h) ~ h~2/®0+2) (2.69)

which yields Eqn (2.59).
On the other hand, ¥, ~ ¢yR.. Using condition (2.68),
the result (2.69), and the definition ¢, ~ h]/‘s, one gets

Y, ~ % ~ B0 p72D/(D+2=m) (2.70)
Simple algebra gives the result, which is the same as
Eqn (2.56).

In actual calculations, one usually obtains the critical
exponent of the correlation length v and that of the
correlation function #, while the rest of the exponents
are derived from the relations (2.55) — (2.59) automatically.

2.5 Scaling

The concepts of the critical exponents and the correlation
length are crucial for the theory of the second-order phase
transitions. In the scaling theory of the critical phenomena,
it is implied that R is the only relevant spatial scale which
exists in the system near 7.. As we have seen in the GL
mean-field approach discussed above, at scales smaller than
R, all the spatial correlations are power-like, which means
that at scales much smaller than the correlation length
everything must be scale-invariant. On the other hand, at
the phase transition point the correlation length becomes
infinite. Therefore, the properties of the system at scales
smaller then R, must be equivalent to those of the whole
system at the phase transition point.

The other important consequence of scale invariance
is that the microscopic details of a system (lattice struc-ture,
etc.) should not be expected to affect the critical behaviour.
What may appear to be relevant for the critical properties
of a system are only its ‘global’ characteristics, such as space
dimensionality, topology of the order parameter, etc.
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All the above arguments make a basis for the so-called
scaling hypothesis, according to which the macroscopic
properties of a system at the critical point do not change
after a global change in the spatial scale.

Let us consider, in brief, what the immediate general
consequences of such a statement would be. Let the
Hamiltonian of a system be the following:

H= J dPx {% Vo)) +;hn¢”(x)} .

Here the parameters /i, describe a concrete system under
consideration. In particular: &y = —h is the external field;
h, =1 is the ‘mass’ in the Ginzburg — Landau theory;
hy = g/4; and the rest of the parameters could describe
some other types of interactions.

After the scale transformation

Q.71)

x—ix, A>1, (2.72)
one gets

1 J d’x [V¢(x)]2 — 1 AP2 J d’x [V(i)(ix)]z

2 2 ’

J d’x ¢"(x) — AP J d’x ¢"(Jx) . (2.73)

To leave the gradient term of the Hamiltonian (which is
responsible for the scaling of the correlation functions)
unchanged, one has to rescale the fields

d(Ax) — AP (x) (2.74)
with
D-2
Ay = —— (2.75)

The scale dimensions A, define the critical exponent of the
correlation function

G(x) = ($(0)p(x)) ~ x| .

To leave the Hamiltonian (2.71) unchanged after these
transformations, one must also rescale the parameters 4,

(2.76)

h, — A% h, (2.77)
where
1
4, = 5(2 —n)D+n. (2.78)

The quantities 4, are called the scale dimensions of the
corresponding parameters h,. In particular

1
Ay =4,==D+1,

2.

5 (2.79)
Ay=4,=2, (2.80)
Ay=A4,=4-D . (2.81)

Correspondingly, the rescaled parameters hy, 7;, and g; of
the Ginzburg—Landau Hamiltonian are

hy =A% h, (2.82)
7, =AM, (2.83)
g =Meg. (2.84)

These equations demonstrate the following points.

(1) If the initial value of the ‘mass’ 7 is nonzero, then the
scale transformations make the value of the rescaled 1,
grow, and at the scale

A =R, = || /4 (2.85)
the value of t; becomes of the order of 1. This indicates
that at 4 > R, we are getting out of the scaling region, and
the value R, must be called the correlation length.

Moreover, according to Eqn (2.85), for the critical
exponent of the correlation length we find that

V=—".

1 (2.86)

(2) The value (and the critical exponent) of the critical
field h.(t) can be obtained from Eqns (2.79) and (2.82)
along the same lines:

hy|  =RXh, ~1
J=R,

= he ~ RS~ [g]0/4e (2.87)

(3) If the dimensions D of the system are greater than 4,
then according to Eqns (2.81) and (2.84), 4, <0, and the
rescaled value of the parameter g; tends to zero at infinite
scales. Therefore, the theory becomes asymptotically
Gaussian in this case. That is why the systems with
dimensions D >4 are described correctly by the Ginz-
burg—Landau theory.

On the other hand, at dimensions D <4, 4, >0, and
the rescaled value of g; grows as the scale increases. In this
case, the situation becomes highly nontrivial because the
asymptotic (infinite scale) theory becomes non-Gaussian.
Nevertheless, if the dimensions D are formally taken to be
close to 4, such that the value of ¢ =4 — D is treated as the
small parameter, then the deviation from the Gaussian
theory is also small in ¢ and this allows us to treat such
systems in terms of the perturbation theory (see Sec-
tion 2.6). In the lucky case, if for some reason the series
in ¢ would appear to be ‘good’ and quickly converging, then
one could hope to get the critical exponents close to the real
ones if we set ¢ =1 in the final results.

It is a miracle, but although the actual series in & can by
no means be considered as ‘good’ (it is not even converg-
ing), the results for the critical exponents given by the first
three terms of the series at ¢ = 1 (D = 3) appear to be very
close to the real ones.

2.6 Renormalisation-group approach and ¢-expansion

Let us assume that at large scales the asymptotic theory is
described by the Hamiltonian (2.39) (for simplicity, the
external field 4 is taken to be zero):

i = [ {00 4570 0) + a0} 289)

where the field ¢(x) is supposed to be slowly-varying in
space, such that the Fourier-transformed field ¢(k),

K (k) expikx) |

2.89
lkl<k, (2)° @5

#) = |

has only long-wave components: | k |< ky < 1. The param-
eters of the Hamiltonian are also assumed to be small:
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|t| < 1; g < 1. Correspondingly, the Fourier-transformed
Hamiltonian is

1 J d’k
H, ==
fo 2 k| <kq (Zn)l)

N 1 J dPk, dPk, dPks dPk,
8
4 [k|<ko (2,":)4D

2 2 1 dPk 2
¢ |¢(k)| +§T-[|k|<kom |¢(k)|

X@(k)p(ko)p(ks)P(ks) S(ky + ko + k3 +ky). (2.90)

In the most general terms, the problem is to calculate the
partition function

22 [ﬂ j dd)(k)] exp (1, 14)

(2.91)
k=0

and the corresponding free energy F=—InZ.

The idea of the renormalisation-group (RG) approach is
described below.

In the first step one integrates only over the components
of the field ¢(k) in the limited wave band kg < k < kg,
where 4 < 1. In the result, we get a new Hamiltonian which
would depend on the new cutoffik,:

ko

exp (—H i, [¢]) = [ IT Jdd)(k)} exp(—Hy, [¢]) . (2.92)

k=lk,

It is expected that under certain conditions the new
Hamiltonian Hj [¢] would have a structure similar to
the original one, given by Eqn (2.90):

- 1 D
H/’lku == &(l J d kD
2 k|<iko (270)

K2|o (k)| +% #(2)

dPk 2 1.
ijd““oW |¢(k)| +Zg(l)

XJ dPk, dPk, dPky dPky
|k|<Ako (21c)4D

X@(k1)p(ka)p(ks)p(ka)d(ky +ky+ ks +ky) +(-.0) .
(2.93)

All the additional terms which could appear in HMO[(]S]
after the integration in Eqn (2.92) [denoted by “(...)"] will
be shown to be irrelevant for 1 <1, g<1, A<1, and
¢ = (4—D) < 1. In fact, the leading terms in Eqn (2.93) will
be shown to be large with respect to the parameter
¢&=1In(1/4) > 1, conditioned such that eln(1/4) < 1.

In the second step one makes the inverse scaling
transformation (see Section 2.5) with the aim of restoring
the original cutoffscale kg:

k — Ak,

(Ak) — 0(A) (k) . (2.94)

The parameter 6(4) should be chosen such that the
coefficient of the k*|¢(k)|* term remains the same as in
the original Hamiltonian (2.90):

0 = A= [a(a)] 7 (2.95)

The two steps given above compose the so-called
renormalisation transformation. The renormalised Hamil-
tonian is

® _ 1 J d’k
ko 2 |k|<ku (zn)D

K2|p(k)|*

1

"3

T(R)('l)J d )kD |¢(k)|2

[k|<ko (21t

dPk, dPk, dPky dPk,
(271:)41)

1
— o®)
+78 (i)J

[k|<ko

X(k1)p(ky)p(ks3)p(ks)d(ky + ko + k3 +ky) . (2.96)

This Hamiltonian depends once again on the original
cutoffk,, whereas its parameters are renormalised:

t®) =2172a() " 5(A), (2.97)
gO@) =P am) () . (2.98)
The above RG transformation must be applied

(infinitely) many times, and then the problem is to study
the limiting properties of the renormalised Hamiltonian,
which is expected to describe the asymptotic (infinite scale)
properties of the system. In particular, it is hoped that the
limiting Hamiltonian would arrive at some fixed-point
Hamiltonian H* which would be invariant with respect
to the above RG transformation. The hypothesis about the
existence of the fixed-point (non-Gaussian) Hamiltonian
H*, which would be invariant with respect to the scale
transformations in the critical point, is nothing but a more
conventional formulation of the scaling hypothesis dis-
cussed in the Section 2.5.

Let us consider the RG procedure in some more detail.
To get the RG Eqns (2.97) and (2.98) in explicit form, one
has to obtain the parameters a(4), and 7(4),g(1) by
integrating over the ‘fast’ degrees of freedom in Eqn (2.92).

Let us separate the “fast’ fields (with Aky < |k| < k) and
the ‘slow’ fields (with |k| < Akq) explicitly:

B(x) = d(x) + o(x),

~ d®k - .
x) = jw%m (k) exp(ikr).

(k) exp(ikx) . (2.99)

qP

x) = J 5
Jkeo<|e|<ko (2T0)

Then the Hamiltonian (2.90) can be represented as follows:

Hk“ [(?)7 (0] = H/lko [(hi)]

wa LG Wlewl + v .
2 )ako<il<k, (2m)°
(2.100)
where
Go(k) =k™2, (2.101)
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dPk

ko<l|k|<kq (271:)0

Vib.ol =57 o (b))

dPk, dPk, dPky dPky
| o Fo)FIo (ko)
+¢(k1)p(k2)p(ks)p(ks) + Plk1)(k2)plk3)p(ks)

1 <p(kl)<p<k2)<p(k3)<p(k4)] 8k, + ko + ks +ky) -

4
(2.102)

In standard diagram notations, the interaction term V[J), 1)
is shown in Fig. 2, where the wavy lines represent the ‘slow’
fields ¢, the straight lines represent the ‘fast’ fields ¢, the
solid circle represents the ‘mass’ t, the open circle
represents the interaction vertex g, and at each vertex
the sum of entering ‘impulses’ k is zero.

:-<+::D<+~w06+<?)7+>0<

Figure 2. Diagram representation of the interaction energy V[(}&,(p].

Then,
yields:

exp (—H 3, [9]) = exp (—H 3, [@]) {exp (= V[, ¢]) ) .

where the averaging ((...)

(..)) = [kﬁ j d(p(k)]

k=iko

the integration over the ¢ values, Eqn (2.92),

(2.103)

) is performed as follows:

con| 4| LEGwewP|c.)
2 Jiky <kl <ky (2)° Y
(2.104)
Standard perturbation expansion in V gives
L - I
Hip[8] = Hy [#] + (V) =5 [(VE) = (V)] . (2105)
In terms of the diagrams (Fig. 2) the averaging (...) is just

the pairing of the straight lines. The nonzero contribution
to (V) is shown in Fig. 3, where each closed loop is

D
J d—kDGO(k) ZDS—D/‘E)DJ)(]
Ako<|k|<ko (211',) (211',) (D - 2)

— AP
(2.106)

(here Sp is the surface area of a unit D-dimensional
sphere).

-+ x0 + G0

Figure 3. Diagrammatic representation of the first-order perturbation
contribution (V).

In what follows we are going to study the limiting case
of the small cutoffk, (large spatial scales). Besides, at each
RG step the rescaling parameter 4 will also be assumed to
be small, such that in all the integrations over the ‘internal’
k values (dky < |k| < kg), the ‘external’ k values (|k| < Akg)
could be considered as negligibly small.

The result for the first-order perturbation expansion (V)
consists of three contributions. The diagrams (a) and (c) in
Fig. 3 produce only irrelevant constants (they do not
depend on ¢). The diagram (b) is proportional to |q5( )
and gives the contribution to the mass term, but since this
contribution is proportional to k( ), in the asymptotic
region ko — 0 it could be 1gnored as well. In fact we are
going to look for the contributions, which: (1) do not
depend on the value of the cutoffk,; and (2) are large in the
RG parameter & =In(1/4) > 1.

Consider the second-order perturbation contribution
(V) = (V) — (V) (Fig. 4). Here the diagrams (a), (c),
and (i) give irrelevant constants. The diagrams (d), (g), and
(h) are proportional to the positive power of the cutoffk
and therefore their contribution is small.

The relevant diagrams are (b), (e), and (f). The diagram
(e) is proportional to

J|k|<,1k0 (2m)® |¢( |

xj 4Pk, 4Pk, Go(k1)Go(ks)Go(k + K, + k)
Ako<|k,, 2| <ko

dPk

__J dPk, d°k,
[k|<Ako (2n)D

2
| | Lku<|k,,z|<k“ K3 (k + ky + k,)?

(2.107)

Since k < k; 5, the principal contribution in Eqn (2.107) is
given by the first terms of the expansion in k/k;,

2J dPk Bk 2J dPk, dPk,
g _ 4 xd kg
|k|<Ako (zn)l) Mo<|k|,2|<ko k%k%(kl +k2)2
de ~ 2 2
+3g2J (k) [k
k| <Ako (Zn)l) | |
dPk,dPk
xJ — 2 (2.108)
Ako<lky, ol<ky k2k3 (k1 + ky)

<» -c:ci: o>
~Q—o§{~w~oeow:b::qi

Figure 4. Diagrammatic representation of the second-order perturba-
tion contribution ((V?2)).
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The first contribution in Eqn (2.108) is of the order of
k(()DJ) and is therefore irrelevant. As for the second
contribution, it could be easily checked that at dimensions
D =4 — ¢, where ¢ <€ 1, the integration over k; and k, does
yield the factor proportional to In(1/4) > 1 independent of
the cutoffk. Therefore this diagram gives a finite contribu-
tion of the order of g*In(1/4) into d [Eqn (2.93)]. However,
as will be demonstrated below, the renormalised fixed-point
value of g appears to be of the order of ¢. [t means that the
diagram in Fig. 3e gives the contribution of the order of
&*In(1/A) in @ (which provides the correction of the order of
¢ into the critical exponents). Therefore until we study only
the first order in & corrections, the contribution of the
diagram (e) should not be taken into account:

i=1+0(g)¢, (2.109)
where & =1In(1/4).
Fig. 4b gives the following contribution:
3 J d’k 1 J d’k 2
—gT — = — |p(k
27 Jiko<ii<r, (2m)° K* Jj<ak, 2m)° [0
-1
— g .
27 (em)”  D-4 <k, (27)°
(2.110)

For D =4 — ¢, where ¢ <€ 1, this gives the finite contribu-
tion to the parameter T,

3
T=1—— 1g¢

o3 @.111)

(we have taken Sp_y = 211',2).
For Fig. 4f one gets

9 , J d’k 1
Zg g4x 2
47 Jikg<lii<k, (2m)° K¢

B(k1)p(k2)d(k3)b(ks)

XJ dPk, dPk, dPk; dPk,
Jk|<Ako (211:)4D

_2 ) SD k(()D_4)(l _ 1(074))
38 (2m)” D—4

$k1)p(ka)P(k3)(ks) -

(2.112)

XJ dPky Pk, dPksy dPk,
|k| <Ak (211:)4D

For D =4 — ¢, this gives the following contribution:

s 9 ,
=g — 2E 2.113
=g 8n2&6 ( )

After the operation of rescaling to the original cutoffk,
according to the Eqns (2.97) and (2.98) for the renormalised
parameters T R) and g(R , we get

7R = (1: - % rgf) exp(2€),

9
(&) _ (4
g (x o

g2¢> exp(e€) . (2.114)

When g& < 1 and &£ < 1, these equations can be written as
follows:

in(e®) ~ In(5) = 26 - 5 ¢

9
(R) = $E .
Assuming that the RG procedure is performed con-
tinuously, the evolution (as the scale changes) of the
renormalised parameters could be described in terms of

the differential equations. From Eqns (2.115), one obtains

g —g=¢gl— (2.115)

d
—1 =2——9, 2.116
dé n|T| 8“25 ( )
ds _ 2 g2 (2.117)

dé_gg_8n2g '

The fixed-point solution g*
dg/d& =0, which yields
s

9

is defined by the condition

g (2.118)
Then, from Eqn (2.116) for the scale dimensions 4, we find
that

1

A, =2—<¢.

3 (2.119)

Correspondingly, according to Eqn (2.86) for the critical
exponent v, we obtain
1 1

V==+-—¢.

5+ 13 (2.120)

Since the fixed-point value g* is of the order of e,
according to Eqns (2.109), (2.94), and (2.95) there are no
corrections in the first order in ¢ to the scale dimensions 4
of the field ¢. Accordingly [see Eqns (2.76), and (2.75)], in
the first order in ¢ the critical exponent # [see Eqn (2.54)] of
the correlation function (¢(0)¢(x)) remains zero, as in the
Ginzburg—Landau theory.

Using relations (2.55) — (2.59), one can now easily find
all the other critical exponents

1 1 1 1
= — :1 —_ —_—_— =
o 68’ y +6s, B 3 68,
! (2.121)
6:3+8, ﬂzg

In Table 1 we give the values of the critical exponents in
the first order in ¢ formally continued for dimensions D =3
(¢ =1). These are compared with the corresponding values
given by numerical simulations and the Ginzburg—Landau
theory.

Table 1

Physical quantities g-cxpan- Numerical Ginzburg—
and corresponding sion simulations Landau
critical exponents theory

Specific heat a 0.167 0.125 £0.015 0

Susceptibility y 1167 1.250 £ 0.003 1

Correlation length v 0.583 0.642 £+ 0.003 0.5

Correlation function n 0 0.055 £0.010 0

Order parameters B 0.333 0.312 £0.003 0.5
o 4 5.154+0.02 3
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To obtain results in the second order in &, one proceeds
in a similar way taking into account g diagrams of the next
order (see, for example, Refs [2], [3]).

It is interesting to note that although the RG e
expansion procedure discussed above is mathematically
not well grounded, it provides rather accurate values for
the critical exponents.

2.7 Specific heat singularity in four dimensions

Note also that although in dimensions D =4 the critical

exponent o is zero, it does not necessarily mean that the

specific heat is not singular at the critical point. Actually in

this case, the specific heat is logarithmically (and not

power-law) divergent. As a useful exercise, let us calculate

the specific heat singularity for the four dimensions.
According to the definition of the specific heat [see

Eqns (2.60), (2.61)] we have

of 1

c=-1 =g a [ e (e

:J d*x ({§*(0)§* (x))) . (2.122)
[x|<R(r)

Here the upper cutoffin the spatial integration is taken to
be the correlation length R (t) ~ ||™"/%, since for larger
scales all the correlations decay exponentially. The integral
in Eqn (2.122) can be calculated by summing up the so-
called ‘parquette’ diagrams [4] shown in Fig. 5. The idea of
the ‘parquette’ calculations is that all the contributions from
the ¢* interactions in the correlation function
((¢*(x)p*(x))) can be collected into the masslike vertex

m(&)
]|, 2 2]

4
cn J d k4
K>y (2m) T k>ve kK L 7

2
[ e
E<In(1/7) T

Here the renormalisation of the ‘dressed’ mass m(&) is

(2.123)

defined by the diagram shown in Fig. 5b [also sece
Eqns (2.110) — (2.113)]
D
m<“>=m—3mgj A Gy = m =2 mge,
Meo<lk|<ko (270) 8m
(2.124)

where, as usual, £ =1n(1/4). In differential form

d 3
P m(g) = —¢ 5 m(£)s(C) (2.125)
Gy (k)
m({) m()  m(0) 2(0)
Go(k)
a b

Figure 5. (a) Diagrammatic representation of the specific heat. (b) The
diagram which contributes to the renormalisation of the ‘dressed” mass

m(&).

with the initial conditions m(¢ = 0) = t. The renormalisa-
tion of the interaction parameter g(&) for the dimensions
D =4 is defined by the RG Eqn (2.117) with ¢ =0:

dg(¢) 9

2
=——__g . 2.126
4 e & (3] ( )
The solutions of Eqns (2.125) and (2.126) are
9 -1/3
= ] —_— N
@) =1+ 5% ¢)
9¢g -
() =of 1+ 25 , 2.127
w0 =s(1+55¢) @127)

where g = g(£ = 0). Then for the specific heat, Eqn (2.123),
one gets

d¢
C ~
(<) L<1n(1/r) [1 + (9g/87t2)f]2/3

2 ) 1/3
822 YT
3g 82 1

This result demonstrates that there exists a characteristic
temperature interval

T ex —8—11:2 <1
8 p 9g b

such that at temperatures not too close to T, 7, < [t| < 1,
the system is Gaussian (it does not depend on the non-
Gaussian interaction parameter g):

(2.128)

(2.129)

1
C(t) ~In . (2.130)
This result could be easily obtained just in the framework
of the Gaussian Ginzburg — Landau theory:

@~ [ (FOR@N ~ [ kw49

|k|<1

144

d'k 1

NJ —~In-. (2.131)
Vi ok T

On the other hand, in the close vicinity of the critical point

(T < 1,) the theory becomes non-Gaussian, and the result

for the specific heat becomes less trivial

1 1\
~(gin-) .
c@~y(em1)

Thus although the critical exponent a is zero for the 4-
dimensional system, the specific heat still remains
(logarithmically) divergent at the critical point.

(2.132)

3. Critical behaviour in systems with impurities

3.1 Harris criterion

In the studies of the phase transition phenomena, the
systems considered before were assumed to be perfectly
homogeneous. In real physical systems, however, some
defects or impurities are always present. Therefore, it is
natural to consider what effect the impurities might have
on the phase transition phenomena. As we have seen in
Section 2, the thermodynamics of the second-order phase
transition is dominated by large-scale fluctuations. The
dominant scale, or the correlation length,
R, ~|T/T.—1|"" grows as T approaches the critical
temperature 7., where it becomes infinite. The large-
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scale fluctuations lead to singularities in the thermody-
namical functions as |t|=|T/T.— 1| —0. These
singularities are the main subject of the theory.

If the concentration of impurities is small, their effect on
the critical behaviour remains negligible so long as R, is not
too large, i.e. for T not too close to T.. In this regime, the
critical behaviour will be essentially the same as in the
perfect system. However, as |t] =0 (T — T,) and R,
becomes greater than the average distance between impur-
ities, their influence can become crucial.

As T, is approached, the following change of the scale
takes place. First, the correlation length of the fluctuations
becomes much larger than the lattice spacing, and the
system ‘forgets’ about the lattice. The only relevant scale
that remains in the system in this regime is the correlation
length R (). When we move close to the critical point, R,
grows and becomes larger than the average distance
between the impurities, so that the effective concentration
of impurities, measured with respect to the correlation
length, becomes large. It should be stressed that such a
situation is reached for an arbitrary small initial concen-
tration u. The value of u affects only the width of the
temperature region near 7. in which the effective concen-
tration becomes effectively large. If uR? > 1, there are no
grounds for believing that the effect of impurities will be
small.

Originally, many years ago, it was generally believed
that impurities either completely destroy the long-range
fluctuations, such that the singularities of the thermody-
namical functions are smoothed out [5, 6], or can produce
only a shift of a critical point but cannot affect the critical
behaviour itself, so that the critical exponents remain the
same as in the pure system [7]. Later it was realised that an
intermediate situation is also possible, in which a new
critical behaviour, with new critical exponents, is estab-
lished sufficiently close to the phase transition point [8].
Moreover, a criterion, the so-called Harris criterion, has
also been developed, which makes it possible to predict
qualitatively the effect of impurities by using the critical
exponents of the pure system only [6, 8]. According to this
criterion, the impurities change the critical behaviour only if
the specific heat exponent o of the pure system is greater
than zero (the specific heat of the pure system is divergent at
the critical point). In the opposite case, o < 0 (the specific
heat if finite), the impurities appear to be irrelevant, i.e.
their presence does not affect the critical behaviour.

Let us consider this point in more detail. It would be
natural to assume that, in the q54 Hamiltonian (Section 2.6),
the presence of impurities manifests itself as small random
spatial fluctuations of the reduced transition temperature 7.
Then near the phase transition point, the D-dimensional
Ising-like systems can be described in terms of, for a scalar
field, the Ginzburg—Landau Hamiltonian with a double-
well potential

H = Jdl)x {% [V¢(x)]2 +% [1,' - 81:(x)] ¢2(x) —I—% g¢4(x)} .
3.1)

Here the quenched disorder is described by random
fluctuations of the effective transition temperature 37(x)
whose probability distribution is taken to be symmetric and
Gaussian:

P[31] = p, exp{—ﬁj dPx [81:(x)]2} , (3.2)

where u < 1 is the small parameter which describes the
disorder, and p, is the normalisation constant. For
notational simplicity, we define the sign of d&t(x) in
Eqn (3.1) so that positive fluctuations lead to locally
ordered regions, whose effects are the object of our study.

Configurations of the fields ¢(x) which correspond to
local minima in H satisfy the saddle-point equation

—Ap(x) +1¢(x) + 5’ (x) = r(x)p(x) -

Such localised solutions exist in regions of space where
7 — d7(x) assumes negative values. Clearly, the solutions of
Eqn (3.3) depend on a particular configuration of the
function d7(x) being inhomogeneous. Let us estimate under
which conditions the quenched fluctuations of the effective
transition temperature are the dominant factor for the field
configurations of the local minima.

Let us consider a large region Q; of a linear size L > 1.
The spatially averaged value of the function 37(x) in this
region could be defined as follows:

sr(gL)zLLJ ).
x€£2;,

D

(3.3)

(3.4)

Correspondingly, for the characteristic value of the
temperature fluctuations (averaged over realisations) in
this region, we get

b, = |57() | QN 3.5

Then, the average value of the order parameter ¢(Q;) in
this region can be estimated from the equation
T+ g¢’ =81(Q,) .
One can easily see that if the value of 7 is sufficiently small,
ie. if
3t(Q) >,

(3.6)

3.7
then the solutions of Eqn (3.6) are defined only by the

value of the random temperature

p(@) == [ "

(3.8)
Now let us estimate up to which sizes of locally ordered
regions this may occur. According to Eqn (3.5), the
condition dt; > t yields

1/D
Lt/

2D

L < 3.9
On the other hand, the estimation of the order parameter
in terms of the saddle-point equation (3.6) could be correct
only at scales much larger than the correlation length

R, ~ 1" Thus, one has the lower bound for L:
L>t". (3.10)

Therefore, quenched temperature fluctuations are relevant
when

B LD
or
P <u. (3.12)

According to the scaling relations [see Eqn (2.55)], one has
2 —vD = a. Thus one recovers the Harris criterion: if the
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critical exponent of the specific heat of the pure system is
positive, then in the temperature interval,

t<t,=ul*, (3.13)

the disorder becomes relevant. This argument identifies 1 /o
as the cross-over exponent associated with randomness.
A special consideration is required in the marginal
situation o = 0. This is the case, for instance, for the
four-dimensional ¢4—model (Section 3.3), or for the two-
dimensional Ising model to be studied in Section 5. The
calculations show that, although the critical exponent of the
specific heat remains zero in the impurity models, the
logarithmic singularities are affected by the disorder.

3.2 Self-averaging and the replica method

The main problem in dealing with impurity systems is that
the disorder in their interaction parameters is quenched.
Formally, all the results one may hope to get for the
observable quantities for a given concrete system must
depend on the concrete interaction matrix Jy, i.e. the result
would be defined by a macroscopic number of random
parameters. Apparently, the results of this type are
impossible to calculate and, moreover, they are useless.
Intuitively it is clear, however, that the quantities which are
called the observables should depend on some general
averaged characteristics of the random interactions. This
brings us to the concept of the self-averaging.

Traditional way of reasoning why the self-averaging
phenomenon should occur is as follows. The free energy of
the system is known to be proportional to the volume V of
the system. Therefore, in the thermodynamic limit V — oo,
the main contribution to the free energy must come from
the volume, and not from the boundary, which usually
produces the effects of the next orders in the small
parameter 1/V.

Any macroscopic system could be divided into a
macroscopic number of macroscopic subsystems. Then
the total free energy of the system would consist of the
sum of the free energies of the subsystems, plus the
contribution which comes from the interactions of the
subsystems, at their boundaries. If all the interactions in
the system are short range (which takes place in any normal
system), then the contributions from the mutual inter-
actions of the subsystems are just the boundary effects
which vanish in the thermodynamic limit. Therefore, the
total free energy could be represented as a sum of the
macroscopic number of terms. Each of these terms would be
a random quenched quantity since it contains, as the
parameters, the elements of the random spin—spin inter-
action matrix. Next, in accordance with the law of large
numbers, the sum of many random quantities can be
represented as their average value, obtained from their
statistical distribution, times their number (all this is true,
of course, only under certain requirements on the character-
istics of the statistical distribution). Therefore, the total free
energy of a macroscopic system must be self-averaging over
the realisations of the random interactions in accordance
with their statistical distribution.

The free energy is known to be given by the logarithm of
the partition function. Thus in order to calculate the
observable thermodynamics, one has to average the
logarithm of the partition function over the given distribu-
tion of random J; values after the calculation of the
partition function itself. To perform such a program, the

following technical trick, which is called the replica method,
is used.

Formally, the replicas are introduced as follows. In
order to obtain the physical (self-averaging) free energy of
the quenched random system we have to average the
logarithm of the partition function

F = F_J:—lﬁ, (3.14)

B
where (...) denotes the averaging over random interactions
(J;;) with a given distribution function P[J]:

hz,= (H J dJ,,)P[J] nz,,

(i, )

(3.15)

and the partition function is
Z,= Zexp (—BHIo]) .
a

To perform this procedure of the averaging, the
following trick is invented. Let us consider the integer
power n of the partition function (3.16). This quantity is the
partition function of the n noninteracting identical replicas of
the original system (i.e. having identical fixed spin—spin
couplings J;)

n n N
zZ) = (H Z) exp <BZ ZJ,_-,afaj’) : (3.17)
a=1 o

a=1 i<j

(3.16)

Here the subscript a denotes the replicas. Let us introduce
the quantity

1
F,=——InZ 3.18
=g N7 (3.18)
where
zZ, EZ_j. (3.19)

Now, if a formal limit n — 0 is taken in expression (3.18),
the original expression for the physical free energy (3.14)
will be recovered:

1 R
limF, = —lim — In(Z,) = — lim — 1 nZ
lim F, = —lim =~ In(Z,) = — lim o In[exp(nIn Z,)]

B

:—%mz, =F. (3.20)

Thus, the scheme of the replica method can be described
in the following steps. First, the quantity F, for the integer n
must be calculated. Second, the analytical continuation of
the obtained function of the parameter n should be made
for an arbitrary noninteger n. Finally, the limit n — 0 has to
be taken.

Although this procedure may look rather doubtful at
first, it is actually quite logical. First, if the free energy
appears to be an analytic function of the temperature and
the other parameters ( so that it can be represented as a
series in powers of f§), then the replica method can be easily
proved to be correct in a strict sense. Second, in all cases,
when the calculations can be performed by some other
method, the results of the replica method are confirmed.

One could also introduce replicas in another way as
described in Refs [9], [10]. Let us consider a general spin
system described by some Hamiltonian H[J;0], which
depends on the spin variables {o;} (i=1,...,N) and the
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spin—spin interactions J; (the concrete form of the
Hamiltonian is irrelevant). If the interactions J; are
quenched, the free energy of the system would depend
on the concrete realisation of the J; values

F[J]=—110gZ[J]- (3.21)

B

Now, let us assume that the spin—spin interactions are
partially annealed (i.e. not perfectly quenched), so that they
can also change their values, but the characteristic timescale
of their changes is much larger than the timescale at which
the degrees of freedom of the spin reach thermal equilib-
rium. In this case, the free energy given by Eqn (3.21) would
still make sense, and it would become the energy function
(the Hamiltonian) for the degrees of freedom of Jj;.

Besides, the space in which the interactions J; take their
values should be specified separately. The interactions J;;
could be discrete variables taking on the values £/, or they
could be the continuous variables taking on values in some
restricted interval, or they could be something else. In the
quenched case, this space of J; values is defined by a
statistical distribution function P[J]. In the case of the
partial annealing, this function P[J] has a meaning of the
internal potential for the interactions J;;, which restricts the
space of their values.

Let us now assume that the spin and the degrees of
freedom of the interaction are not thermally equilibrated, so
that the degrees of freedom of the interaction have their
own temperature T, which is different from the tempera-
ture T of the degrees of freedom of the spin. In this case for
the total partition function of the system, we get

Z= JDJP[J] exp(—B'FlI)) = JDJP[J] exp <%, 1ogZ,>

S (3.22)

= [psrvriz,y
where n = T/T'. Correspondingly, the total free energy of
the system would be

F=-T"log{(z[)])"} .

In this way we have arrived at the replica formalism again,
in which the ‘number of replicas’ n =T /T is still the finite
parameter.

To obtain the physical (self-averaging) free energy in the
case of the quenched random interactions J;;, one takes the
limit n — 0. From the point of view of partial annealing,
this situation corresponds to the limit of the infinite
temperature T’ in the system of Ji; values. This is natural
in that in this case the thermodynamics of the degrees of
freedom of the spin has no effect on the distribution of the
spin —spin interactions.

In the case where the degrees of freedom of the spin and
the interaction are thermally equilibrated, 7' =T (n=1),
we arrive at the trivial case of the purely annealed disorder,
irrespective of the difference between the characteristic
timescales of the J;; interactions and the spins. This is
also natural because the thermodynamic description for-
mally corresponds to the infinite times, and the
characteristic timescales of the dynamics of the internal
degrees of freedom become irrelevant.

If n# 0 and n # 1, one gets a situation which could be
called the partial annealing and which is the intermediate
case between quenched disorder and annealed disorder.

(3.23)

3.3 Critical exponents in the ¢4-the0ry with impurities
Consider a general case of a weakly disordered p-
component spin system which, near the critical point in
the continuous limit, can be described by the Hamiltonian
[cf. Eqn (3.1)]:

H[dt,¢] = J dPx {%i[VQ(X)F
[r—ﬁr(x Zd) (x)+- A’Zd’ (x) ¢ (%) } >

lj_

(3.24)
where the random quantity &t(x) is described by the
Gaussian distribution [Eqn (3.2)].

In terms of the replica approach, we have to calculate
the following replica partition function

Z,= UD(bi(x) exp (—H [37, ¢])] '
~ [pse(o) [ty exo (—H @ [or())
[ 533 e

n

[ be(0)] iz[qs?(xﬁ

o 8] })

EDWID
i,j=1 a=

where the superscript a labels the replicas. (Here and in

what follows all irrelevant preexponential factors are

omitted.) After Gaussian integration over dt(x), one gets

:JD¢;’(x)exp<J { ;;[Vcb HEOE
>3 [t

1 a=I

(3.25)

+=71

| —
[
B

+

M“n

1
4

gab[¢§’(x)]2[¢j-’(x)]2}>, (3.26)

1a, b=

i, J

where

8ab = géab —u. (327)

Now we shall calculate the critical exponents by using
the RG procedure developed in Section 2.6 for dimensions
D =4 — ¢ assuming that ¢ € 1. Taking into account the
vector and the replica components, the ¢4 interaction terms
in the Hamiltonian (3.26) can represented in terms of the
diagram shown in Fig. 6.

If we proceed similarly to the calculations of Section 2.6,
we find that the (one-loop) renormalisation of the inter-
action parameters g,, (Fig. 6) are given by the diagrams
shown in Fig. 7. Taking into account corresponding
combinational factors, one obtains the following contribu-
tions:

d’k 1 1

(“)—’82J W)L gy
ab Tho<lk|<ke (211:) 0 ab {72 2



V S Dotsenko

472
ia ia
Ja Ja
Figure 6. Diagrammatic representation of the interaction term
2 2
8anl¢i ()17 ()]
ia ia i ia 7 . ;
1a jbld kc ]H'
) :: :: ) :: 8ab :h : 8ac : 8eb :b
078 g, 8ab b 8aa la / e /
a b c

Figure 7. The diagrams which contribute to the renormalisation of the
interaction terms g(,h[¢j’(x)]2[¢f(x)]2.

O - ewtan| L cw)
b) — = (Gaa + 865)8
2 “ phIsab Ako<|k|<ko (ZTE) 0
1 1 1
= _(gaa + 8bb)8ab ) In 7 5
d’k
© =5 tutan <X Gaw
Z P ) saslil<ta (2m)” o<

1

-2
4
b 1

= o, — In = .
4 3ac3ch8n2 nl

(3.28)

uM: d

The corresponding RG equations are

dg, 1 -
dgb =8a—g [483;) + 2(8aa+ 8bb)8ar+P Z gucgch] -(3.29)

c=1

Taking into account the definition (3.27), one easily gets
two RG equations for two interaction parameters

gzgaa:g_uand 8a#tb = —

g - 1 . 2

€85 [(8+p)g +p(n— )],

du eu —L{(4 +2p)gu— [4+pn—2)]u’} . (3.30)
dé 8n? ' '

In the limit n — 0 we obtain

g - 1 2

—_— = g — —— 8 0" — s

1t = % g (@ +PT —pir]

- [(4+2 Gu— (4—2p)’] . (3.31)
aE P P)8 p)u :
Similarly, the renormalisation of the ‘mass’ term

t[¢p?(x)])* is given by the diagrams shown in Fig. 8. Their
contributions are

d°k 1o
(@) = T8 J k)| ~1gu = In -
“ Vi<l <k (21!:) Go e<l aa g2
1
b — = pT Lea J
®) 2 ; Meo<|k|<ko (2n) 0( )

(3.32)

1 & p
ZEPT;&’M F]n Kl

ia ia ke

: :ia
T . T 8ca ia
ia 8aa ia ke
a b
Figure 8. The diagrams which contribute to the renormalisation of the
‘mass’ term [¢] (x)]>.

Note that the above contributions do not depend on the
replica index a (which for simplicity can be taken to be, for
example, 1).

The corresponding RG equation for the renormalised

‘mass’ T is
l n
— 1 =2—-——|2g g | - 3.33
dé nlt| = ( 8aa +p;gm> (333)
In the limit n — 0 we finally obtain
1
d—é It =2——3[2+p)&E) +pu)], (3.34)

where the renormalised interaction parameters (&) and
u(&) are defined by the Eqns (3.31).

The fixed-point values g* and u* are defined by the
conditions dg*/d€ =0 and du*/d& =0, which according
to Eqns (3.31) yield:

(8+p)§ — pu* = 8n’cg,

(44 2p)gu — (4 — 2p)u* = 8m’eu . (3.35)
These equations have two nontrivial solutions:
2
LI (3.36)
p+38
Fom—L | o2l (p£1). (33
2(p—1) 2(p—1)

The first solution, Eqn (3.36), describes the pure system
without disorder. Using Eqn (3.33) and the relations (2.86)
and (2.55) for the critical exponents of the pure system [we
mark them by the label (0)’] one gets

1 - 2+p
0 * .
Ag)22——8n2(2+P)H(o)=2——8+p ;
11 24p
Sy = f P (3.38)
O~ 40 =27 48+ p)
4—-p
06(0)22—(4—8)V(0)2m8 (339)

By using relations (2.55) — (2.59), we can automatically
obtain the rest of the exponents.

Simple analysis of the evolution trajectories defined by
RG Eqns (3.31) near the fixed points given by Eqns (3.36)
and (3.37) shows that the ‘pure’ fixed point [Eqn (3.36)] is
stable only for p > 4. Note that the value of u* in the other
fixed point [Eqn (3.37)] becomes negative for p > 4, which
means that this fixed point becomes essentially nonphysical,
since the parameter u being a mean square value of the
quenched disorder fluctuations is only positively defined.

Thus, the critical behaviour of the p-component vector
system with p >4 is not modified by the presence of
quenched disorder. It should be stressed that this is just
the case when the critical exponent o of the specific heat is
negative [Eqn (3.39)], in accordance with the Harris
criterion (Section 3.1).



Critical phenomena and quenched disorder

473

For p <4, the ‘pure’ fixed point given by Eqn (3.36)
becomes unstable and the critical properties of the system
are defined by the ‘impure’ fixed point given by Eqn (3.37).
Using Eqn (3.33), one gets

1 - 3p
4, =2——[Q+p)F +pu*] =2——L _¢;
: oz (2 +P)E +pu’] TR
1 1 3p
— Ll 3.40
TVEL T T oY (340)
4-p
o=2—(4—-e)y~y———5¢, (3.41)
4= 8(p—1)

where p must be greater than 1. The rest of the exponents
are obtained automatically.

The case of the one-component system, p = 1, requires
more detailed consideration, because for p =1 the equa-
tions (3.31) become degenerate. However, such degeneracy
is the property only of the first order in the & approxima-
tion. It could be proved that by taking into account the next
order in the & diagrams the degeneracy of the RG equations
is removed. It could be shown then that a new ‘impure’
fixed point of the RG equations exists for p = 1 as well, and
in this case the corrections to the critical exponents appear
to be of the order of /¢ [8]. We omit this analysis here
because it is technically much more cumbersome, and on a
qualitative level provides results similar to those obtained
above.

Thus, in agreement with the Harris criterion (Sec-
tion 3.1) in the p-component vector system with p <4,
the critical behaviour is modified by the presence of
quenched disorder. In the vicinity of the critical point, a
new critical regime appears, and it is described by a new set
of (universal) critical exponents. Note that the ‘impure’
critical exponent of the specific heat [Eqn (3.41)] appears to
be negative, unlike that of the pure system. Therefore, the
disorder makes the specific heat finite (although still
singular) at the critical point, unlike the divergent specific
heat of the corresponding pure system.

It should be stressed, however, that because of non-
perturbative spin-glass phenomena, the relevance to real
physics of the approach considered in this Section, although
it is quite elegant and clear, may be questioned (see next
Chapter).

3.4 Critical behaviour of the specific heat in four
dimensions

In the full analogy, with the corresponding considerations
for the pure systems [Eqns (2.122) and (2.123), and
Section 2.6], for the singular part of the specific heat at
D =4, we get

€= J|k|>ﬁ (;1:)(4 Go(k) [mik)]z - -L<In(l/r) ac [@]2 .

(3.42)

Here the renormalisation of the ‘dressed’ mass m(&) is
defined by the ‘parquette’ diagrams of Fig. 8. Accordingly,
the renormalisations of the interaction parameters g(¢) and
u(&) are defined by the RG Eqns (3.31) with ¢ =0:

d

1 -
qE In |m| = T2 [(2+Pp)g+pu], (3.43)
dg I 2
- LI 2 _ 44

du 1 ~ 2

AT [(4+2p)gu— (4 —2p)u’] .
The initial conditions are: m(é = 0) =1, g(& = 0) = g, and
u(é =0) = u.

In the pure system, u = 0, and the solutions for m(&) and

g(&) = g(¢) are

(3.45)

B+p)s ] 8’
4 = 0, ] —— ~Y N
g(%) &0[ R ¢ E%o—> 8+p6
—(2+p)/(8+p)

m(é& — o0) ~ & (3.46)

Integration in Eqn (3.42) yields the following specific heat
singularity:

1\¢-=P)/(8+p)
Cn~ (ln —) . (3.47)

T

For the system with a nonzero impurity interaction
parameter u, one finds the following asymptotic (for
¢ — 00) solutions of the Eqns (3.43) — (3.45)

. P L
8(5)Nn2mf i

m(&) ~ g=3p/Bp-11

» (4=p) .
ué) ~m mé ;

(3.48)

Such solutions exist only for p < 4, otherwise u becomes
formally negative, which is the nonphysical situation.
Actually, in this case the vertex u(£) becomes zero at a
finite scale £, and then the asymptotic solutions for m(¢)
and g(&) coincide with those of the pure system.

The case of the one-component field, p = 1, requires
special consideration. As in the case of dimensions
D =4 —¢ (see above), one has to take into account
second-order loop terms, which makes the analysis rather
cumbersome, and we will not consider it here. On a
qualitative level, however, the results for the specific
heat appear to be similar to those for p < 4: the one-
component system with impurities exhibits a new type of
(logarithmic) singularity.

For p <4, the integration in Eqn (3.42) yields

1\~ ¢/ B(p-1)]
Cr~ (ln —) .

(3.49)
T

It is interesting to note that, although at dimensions
D = 4 the critical exponent a of the specific heat is zero, the
Harris criterion, taken in the generalised form, still works.
Namely, if the specific heat of the pure system is divergent
at the critical point [the case of p <4, Eqn (3.47)], the
impurities appear to be relevant for the critical behaviour,
and change the behaviour of the specific heat into a new
type of (universal) singularity [Eqn (3.49)]. Otherwise, if the
specific heat of the pure system is finite at the critical point
[p > 4, Eqn (3.47)], then the presence of impurities does not
modify the critical behaviour.

4. Spin-glass effects in critical phenomena

4.1 Nonperturbative degrees of freedom
In this section we consider nontrivial spin-glass (SG) effects
produced by weak quenched disorder, which have been
ignored in the previous Section. It will be shown that these
effects could dramatically change the whole physical
scenario of the critical phenomena.

According to the traditional point of view (considered in
the previous Section), the effects produced by weak
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quenched disorder in the critical region could be summa-
rised as follows. If a, the specific heat exponent of the pure
system, is greater than zero (i.e. the specific heat of the pure
system is divergent at the critical point), the disorder is
relevant for critical behaviour, and a new universal critical
regime, with new critical exponents, is established suffi-
ciently close to the phase transition point 1 < 7, = u'* In
contrast, when o < O (the specific heat is finite), the disorder
appears to be irrelevant, i.e. its presence does not affect the
critical behaviour.

Actually, if the disorder is relevant for the critical
behaviour, the situation could appear to be much more
sophisticated. Let us consider the physical motivation of the
traditional RG approach in some more detail.

Near the phase transition point the D-dimensional Ising-
like systems are described in terms of the Ginzburg —
Landau Hamiltonian, of a scalar field, with a double-
well potential

i = [ {300 + 5 [ - 5] ¢0) + a0}
@.1)

Here, as usual, the quenched disorder is described by
random fluctuations of the effective transition temperature
dt(x), whose probability distribution is taken to be
symmetric and Gaussian:

P31 = po exp{—ﬁj dPx [51(x)]2},

where u <€ 1 is the small parameter which describes the
disorder, and p, is the normalisation constant.

Now, if one is interested in the critical properties of the
system, it is necessary to integrate over all local field
configurations up to the scale of the correlation length.
This type of calculation is usually performed with a
renormalisation-group (RG) scheme, which self-consis-
tently takes into account all the fluctuations of the field
on scale lengths up to R..

In order to derive the traditional results for the critical
properties of this system, one can use the usual RG
procedure developed for dimensions D =4 —g, where
¢ <€ 1. Then we find that in the presence of the quenched
disorder the fixed point of the pure system becomes
unstable, and the RG rescaling trajectories arrive at
another (universal) fixed point g, # 0; u, # 0, which yields
the new critical exponents describing the critical properties
of the system with disorder.

However, there exists an important point which is
missing in the traditional approach. Consider the ground
state properties of the system described by the Hamiltonian
Eqn (4.1). Configurations of the fields ¢(x) which corre-
spond to local minima in H satisfy the saddle-point
equation

—AG(x) + [t — Be(x)] $(x) + g (x) = 0.

Clearly, the solutions of these equations depend on a
particular configuration of the function &t(x) being
inhomogeneous. The localised solutions with nonzero
values of ¢ exist in regions of space where t — dt(x) has
negative values. Moreover, one finds a macroscopic number
of local minimum solutions of the saddle-point equation
(4.3). Indeed, for a given realisation of the random function
dt(x), there exist a macroscopic number of spatial ‘islands’
where ©—dt(x) is negative (so that the local effective

4.2)

4.3)

temperature is below T,), and in each of these ‘islands’ one
finds two local minimum configurations of the field: one
which is ‘up’, and another which is ‘down’. These local
minimum energy configurations are separated by finite
energy barriers, whose heights increase as the size of the
‘islands’ are increased.

The problem is that the traditional RG approach is only
a perturbative theory in which the deviations of the field
around the ground state configuration are treated, but it
cannot take into account other local minimum configura-
tions which are ‘beyond barriers’. This problem does not
arise in pure systems, where the solution of the saddle-point
equation is unique. However, in a situation such as that
discussed above, when one gets numerous local minimum
configurations separated by finite barriers, the direct
application of the traditional RG scheme may be ques-
tioned.

In a systematic approach one would like to integrate in
an RG way over fluctuations around the local minimum
configurations. Furthermore, one also has to sum over all
these local minima up to the scale of the correlation length.
In view of the fact that the local minimum configurations
are defined by the random quenched function dz(x) in an
essentially nonlocal way, the possibility of implementing
such a systematic approach successfully seems rather
hopeless.

On the other hand, there exists another technique which
has been developed specifically for dealing with systems
which exhibit numerous local minimum states. It is the
Parisi replica symmetry breaking (RSB) scheme which has
proved to be crucial in the mean-field theory of spin-glasses
(for example, see Ref. [11]). Recent studies show that in
certain cases the RSB approach can also be generalised for
situations where one has to deal with fluctuations as well
[12—14]. Moreover, it has recently been shown that the RSB
technique can be applied successfully for the RG studies of
the critical phenomena in the Sine—Gordon model, where
remarkable instability of the RG flows with respect to the
RSB modes has been discovered [15].

[t can be argued that the summation over multiple local
minimum configurations in the present problem could
provide additional nontrivial RSB interaction potentials
for the fluctuating fields [16]. Let us consider this point in
more detail.

To carry out the appropriate average over quenched
disorder, one can use the standard replica approach
(Section 3.2). This is accomplished by introducing the
replicated partition function Z, = Z"[81] [see Eqn (3.26)]

z,= jD¢a(x>exp{—j e {33 . 0)

a=1

+%rd2;j¢i(x) +% Z gabqbi(x)«bi(x)}} , (4.4)

a, b=1

where
4.5)

is the replica-symmetric (RS) interaction parameter. If one
would start the usual RG procedure for the above replica
Hamiltonian (as is done in the previous Section), then it
would correspond to the perturbation theory around the
homogeneous ground state ¢ = 0.

However, in the situation when there exist numerous
local minimum solutions of the saddle-point equation (4.3),

8ab = géab —u



Critical phenomena and quenched disorder

475

we have to be more careful. Let us denote the local
solutions of Eqn (4.3) by w(i)(x), where i=1,2,...,N,
denotes the ‘islands’ where &t(x) > 1. If the size L, of
an ‘island’, Where [B7(x) — 1] > 0 is not too small, then the
value  of i (x) in this ‘island” should be
~ £[8t(x) — 1:)/;,]1/ , where 37(x) should now be inter-
preted as the value of &t averaged over the region of
size L. Such ‘islands’ occur at a certain finite density per
unit volume. Thus the value of N is macroscopic: Ny = kV,
where V is the volume of the system and « is a constant. An
approximate global extremal solution @(x) is constructed as
the union of all these local solutions, and each local solution
can occur with either sign:

kV
= Zafw(i)(X)»
i=1

where each o; ==+1. Accordingly, the total number of
global solutions must be 2¥. We label these solutions with
a=1, 2,...,K=2"_ As mentioned earlier, it seems
unlikely that an integration over fluctuations around
¢(x) = 0 will include the contributions from the configura-
tions of ¢(x) which are near @(x), since @(x) is ‘beyond a
barrier’, so to speak. Therefore, it seems appropriate to
include separately the contribu-tions from small fluctuations
about each of the many @, (x; 7). Thus we have to sum over
the K global minimum solutions (nonperturbative degrees of
freedom) @, (x;87) and also to integrate over ‘smooth’
fluctuations ¢(x) around them

Z[ot] = JD(p(x Zexp

— [Dotwyexp (~tlgi 7)) x Zigs 1.

Dy [x; dt(x )] (4.6)

H[®D,) + ¢; 1))

4.7

where

Z ;7] = Zexp{

3
_ J dPx [5 gd)%a)(x;ﬁr)(pz(x)

re0 (50| b @y
and H, is the energy of the ath solution.
Next we carry out the appropriate average over
quenched disorder, and for the replica partition function
Z,, we get

= [pseriee [ D, exp{—iﬂ[wu;&]} x Z,l9,;81,

a=1

(4.9)

where the subscript a is a replica index and

> ewf-3on.

. [04;8T] =

0.0l

“<[3
[ 325 st i)+ et i) } .

a

(4.10)

It is clear that, if the saddle-point solution is unique, from
Eqns (4.9) and (4.10) one would obtain the usual RS
representation given by Eqns (4.4) and (4.5). However, in
the case of a macroscopic number of local minimum
solutions, the problem becomes highly nontrivial.

It is obviously hopeless to try and evaluate the replicated
partition function given above systematically. The global
solutions @, are complicated implicit functions of d7(x).
These quantities have fluctuations of two different types. In
the first instance, they depend on the stochastic variables
d7(x). But even when the &t(x) variables are completely
fixed, @, (x) will depend on « (which denotes the possible
ways of constructing the global minimum out of the choices
for the signs {o} of the local minima). A crude way of
treating this situation is to regard the local solutions zp (x)
as if they were random variables, even though &t(x) has
been specified. This randomness, which one can see is not
all that different from that which exists in spin glasses, is the
crucial one. It can be then be shown that, owing to the
interaction of the fluctuating fields with the local minimum
configurations [the term d’%aﬂ)(pi in the Eqn (4.10)], the
summation over solutions in the replica partition function
Z,[@.], Eqn (4.10), could provide the additional nontrivial
RSB potential

2 2
Zgah(pa(pb 5
a, b

in which the matrix g, has the Parisi RSB structure [16].

In this Section we are going to study the critical
properties of weakly disordered systems in terms of the
RG approach, taking into account the possibility of a
general type of RSB potentials for the fluctuating fields.
The idea is that hopefully, as in spin-glasses, this type of
generalised RG scheme self-consistently takes into account
the relevant degrees of freedom coming from the numerous
local minima. In particular, the instability of the traditional
replica-symmetric (RS) fixed points with respect to RSB
indicates that the multiplicity of the local minima can be
relevant for the critical properties in the fluctuation region.

It will be shown (in Section 4.2) that, whenever the
disorder appears to be relevant for the critical behaviour,
the usual RS fixed points (which used to be considered as
providing new universal disorder-induced critical expo-
nents) are unstable with respect to ‘turning on’ an RSB
potential. Moreover, it will be shown that, in the presence
of a general type of RSB potentials, the RG flows actually
lead to the so-called strong-coupling regime at the finite
spatial scale R, ~ exp(l/u) [which corresponds to the
temperature scale 7, ~exp(—1/u)]. At this scale, the
renormalised matrix g, develops strong RSB, and the
values of the interaction parameters are no longer
small [17].

Usually the strong-coupling situation indicates that
certain essentially nonperturbative excitations have to be
taken into account, and it could be argued that in the present
model these are due to exponentially rare ‘instantons’ in the
spatial regions, where the value of 87(x) ~ 1, and the local
value of the field ¢(x) must be ~ £1. (A distant analog of this
situation exists in the two-dimensional Heisenberg model
where the Polyakov renormalisation develops into the
strong-coupling regime at a finite (exponentially large) scale
which is known to be due to the nonlinear localised instanton
solutions [18].)

In Section 4.3 , the physical consequences of the RG
solutions obtained above will be discussed. In particular we
show that, because of the absence of fixed points at the
disorder-dominated scales R > u™"/* (or at the correspond-
ing temperature scales T < ul/“), there must be no simple
scaling of the correlation functions or of other physical
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quantities. Besides, it is shown that the structure of the SG-
type two-points correlation functions is characterised by the
strong RSB, which indicates the onset of a new type of
critical behaviour of the SG type.

The remaining problems as well as future perspectives
are discussed in Section 4.4. Particular attention is given to
the possible relevance of the considered RSB phenomena
for the so-called Griffith phase which is known to exist in a
finite temperature interval above T, [21].

4.2 Replica symmetry breaking in the renormalisation-
group theory

Let us again consider again the p-component ferromagnet
with quenched, random effective temperature fluctuations
described by the usual Ginzburg—Landau Hamiltonian,
Eqn (3.21). In terms of the standard replica approach, after
integration over the disorder variable &t(x) for the
corresponding replica Hamiltonian, we get [see
Eqns (3.26) and (3.27)]

n

Ho=J {%;Z][Vqﬁﬂﬂf ERHICON
+% >y gah[¢?(x)]2[¢?(x)]2} (@11

ij=1a, b=1
where g,, = g0, — u.

Along the lines of the usual rescaling scheme for
dimensions D =4 — ¢ (Section 3.3), one can obtain the
following (one-loop) RG equations for the interaction
parameters g, [see Eqns (3.9)]

dg 1 Y
dgb =6&g — p 4&’3&) + 2(8u0 + 8bb)8ap +ngacgch:| >
(4.12)

c=1

where £ is the standard rescaling parameter.

Changing g, — 8¢y, and 8atb — —Lazp (O that the
off-diagonal elements would be positively defined), and
introducing g = g,,, we get the following RG equations:

dg, . Z
B9 — b4y — (4+20)88u + 482 +D D Sucker (@#D)
di c#a, b
i ) (4.13)
8 g5 32— 2
= E - B+p)E Py g (4.14)

c#l

If one takes the matrix gaf to be replica symmetric, as in
the starting form of Eqn (4.5), then we can recover the
usual RG equations (3.31) for the parameters g and u, and
eventually obtain the old results of Section 3.3 for the fixed
points and the critical exponents. Here we leave aside the
question of how perturbations could arise out of the RS
subspace (see the discussion in Ref. [16]) and formally
consider the RG Eqns (4.13) and (4.14) assuming that
the matrix g,, has a general Parisi RSB structure.

According to the standard technique of the Parisi RSB
algebra (for example, see Refs [9, 11]), in the limit n — O the
matrix g,, is parametrised in terms of its diagonal elements
g and the off-diagonal function g(x) defined in the interval
0 <x < 1. All the operations with the matrices in this
algebra can be performed according to the following simple
rules [12, 19]:

gy — [§56° ()], (4.15)

@)ap = D Zacter = [Ge(x)] (4.16)
c=1

1 X
~ 2
clx) =2 [& - JO dy g(y)]g(X) - JO dy [g(x) —g()]" -
(4.17)
The RS situation corresponds to the case g(x) = const,
independent of x.

Using the above rules from Eqns (4.13) and (4.14), one
gets

d N
0 g(x) = [e— (4+2p)g]g(x) +4¢°(x)
1 X
—2pg(X)J dy g(v) —pJ dy [¢(x) — g(»)]° .(4.18)
0 0
;5 F=ti— B+0)F +pd (4.19)

Usually in the studies of critical behaviour, one tries to
determine the stable fixed-point solutions of the RG
equations. The fixed-point values of the renormalised
interaction parameters are believed to describe the
structure of the asymptotic Hamiltonian which allows us
to calculate the singular part of the free energy, as well as
the other thermodynamic quantities.

From Eqn (4.18), one can easily determine the structure
of the function g(x) at the fixed point, dg(x)/d¢é =0,
dg/d& =0. Taking the derivative over x twice we get,
from Eqn (4.18), g’(x) =0. This means that either the
function g(x) is constant (which is the RS situation), or
it has a step-like structure. It is interesting to note that the
structure of fixed-point equations is similar to that of the
Parisi function g(x) near T, in the Potts spin-glasses [20],
and it is the term g”(x) in Eqn (4.18) which is known to
produce the 1l-step RSB solution there. The numerical
solution of the RG equations given above demonstrates
convincingly that, whenever the trial function g(x) has the
many-step RSB structure, it quickly develops into the 1-step
one, with the coordinate of the step being the most correct
one of the original many-step function.

Let us consider the 1-step RSB statement for the
function g(x):

8o, 0<x<xg,

g(x)—{g]’ ro<r<l. (4.20)
where 0 < xg <1 is the coordinate of the step.

In terms of this statement,from Eqns (4.18) and (4.19)
one easily gets the following fixed-point equations for the
parameters g;, gg, and g:

(4 —2pxo)gs — 2p(1 — x0)g180 — (4 +2p)ggo + 880 =0,
—pxogo + (4 —2p +pxo)gt — (4+2p)gg) + g1 =0,
(4.21)

—pxogo —p(1 —x0)gt + (8 +p)g° —eg=0.

These equations have several nontrivial solutions.
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(1) The RS fixed point which corresponds to the pure
system defined by Eqn (3.36):

1
&+p

g=8=0; g= €. (4.22)
This fixed point (in accordance with the Harris criterion) is
stable for the spin components with p > 4, and it becomes

unstable for those with p < 4.

(2) The disorder-induced RS fixed point given
by Eqns (3.37) (for p > 1):
4-p - p
 — g — _: F—=f— 4.23

This point was usually considered to be the one which
describes the new universal critical behaviour in systems
with impurities. This fixed point has been shown to be
stable (with respect to the RS deviations!) for p < 4, which
is consistent with the Harris criterion. (For p = 1 this fixed
point involves an expansion in powers of (8)]/2, and this
structure is only revealed within a two-loop approxima-
tion.) However, the stability analysis with respect to the
RSB deviations shows that this fixed point is always
unstable [16]. The three eigenvalues of the corresponding
linearised equations near this point are

1 __ (-p) _, (4-p)
2 PETRGon AT TGy

so that one of the eigenvalues is always positive. Therefore
whenever the disorder is relevant for the critical behaviour,
the RSB perturbations must be the dominant factor in the
asymptotic large-scale limit.

(3) The 1-step RSB fixed point [16]:

4—p )
16(p—1) —=pxo(8+p)
p(1 —xo)
16(p—1) —pxo(8 +p)

This fixed point can be shown to be stable (within 1-step
RSB subspace!) for

l]Z—

g8 =0;, g =¢

i=c¢ (4.24)

I<p<4,

16(p—1)
p&+p)

In particular, x.(p=2)=4/5; x.(p=3)=32/33; and
x.(p=4)=1. Using the result given by Eqn (4.24), one
can easily obtain the corresponding critical exponents,
which become nonuniversal, as they are dependent on the
starting parameter x (see Section 4.3). Note that in addition
to the fixed points listed above, there exist several other 1-
step RSB solutions which are either unstable or unphysical.

The problem, however, is that if the parameter x, of the
starting function g(x;&=0) (or more generally, the coor-
dinate of the most correct step of the many-step starting
function) is taken to be beyond the stability interval, such
that x.(p) < x¢ < 1, then there exist no stable fixed points of
the RG Eqns (4.18) and (4.19). One faces the same situation
also in the case of a general continuous starting function
g(x;& =0). Moreover, according to Eqn (4.25) there exist
no stable fixed points out of the RS subspace in the most
interesting Ising case, where p = 1.

Unlike in the RS situation for p = 1, where one finds the
stable (~+/¢) fixed point in the two-loop RG equations, in

0<xg<x/(p)= (4.25)

the case adding from the next order terms in the RG
equations does not cure the problem. In the RSB case
considered above, one finds that in the two-loop RG
equations the values of the parameters in the fixed point
are formally of the order of one, and this indicates that we
are entering the strong-coupling regime where all the orders
of the RG become relevant.

Nevertheless, to get at least some information about the
physics behind this instability phenomena, one can proceed
to analyse the actual evolution of the above one-loop RG
equations given above. The scale evolution of the para-
meters of the Hamiltonian would still adequately describe
the properties of the system until we reach a critical scale &,,
at which the strong-coupling regime begins.

The evolution of the renormalised function g(x; &) can
be analysed both numerically and analytically. It can be
shown (see Ref. [17]) that, when p <4, for a general
continuous starting function g(x;& = 0) = go(x) the renor-
malised function g(x;&) tends to zero everywhere in the
interval 0 <x <[l —A¢] whereas in the narrow (scale-
dependent) interval A& near x =1 the values of the
function g(x;&) increase:

u
M (1—x) <AL,
g8~ 1 (1< (4.26)
0, (1-x)>A¢,
- 1
g(&) ~uln 1——145 s 4.27)
where
AE ~ (1 — ué) . (4.28)

Here a is a positive nonuniversal constant, and the critical
scale &, is defined by the condition that the values of the
renormalised parameters are of the order of 1:
(1 —u&,) ~u, or & ~ 1/u. Correspondingly, the spatial
scale at which the system enters the strong-coupling regime
is

1

R, ~ exp - (4.29)
Note that the value of this scale is much greater than the
usual crossover scale ~ u~*/" (where a and v are the specific
heat and the correlation length of the pure system,
respectively), at which the disorder becomes relevant for
the critical behaviour.

According to the above result, the value of the narrow
band near x =1, where the function g(x;&) is formally
divergent, is Al ~ (1 —ué) »u <1 as £ —¢,.

Besides, it can also be shown that the value of the
integral

70 = [ a0

becomes formally divergent logarithmically as & — &,:

(&) ~uln —— (4.30)

1 —ué

Qualitatively similar asymptotic behaviour for g(x; &) is
obtained for the case when the starting function go(x) has
the 1-step RSB structure [Eqn (4.20)], and the coordinate of
the step x, is in the instability region (or for any x, in the
Ising case p=1):
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81(0)
I —(4—=2p+pxo)g(0)¢
0, 0<x<uxg.

Here g,(0) = (£ =0) ~u, and the coefficient (4 —2p+
pxg) is always positive. In this case again, the system enters
into the strong-coupling regime at scales & ~ 1/u.

Note that the above asymptotics do not explicitly
involve €. In fact, the role of the parameter ¢ > 0 is to
‘push’ the RG trajectories out of the trivial Gaussian fixed
point g = 0, g = 0. Thus the value of ¢, as well as the values
of the starting parameters go(x), o, defines a scale at which
the solutions finally enter the above asymptotic regime.
When ¢ < 0 (above dimensions 4) the Gaussian fixed point
is stable; on the other hand, the strong-coupling asympto-
tics still exist in this case as well, separated from the trivial
one by a finite (depending on the value of &) barrier.
Therefore although infinitely small disorder remains irrel-
evant for the critical behaviour above dimensionality of 4, if
the disorder is strong enough (bigger than some value
depending on the ¢ threshold) the RG trajectories could
enter the strong-coupling regime again.

Xo<x <1,

g(x; &) ~ @31)

4.3 Scaling properties and replica symmetry breaking
4.3.1 Spatial and temperature scales
The renormalisation of the mass term

LG

is described by the following RG equation [see Eqn (3.33)]:

d_i Int=2— [(2 +p g-i-p;gw} . (4.32)
Changing (as in the Section 4.2) g, — 8m’g,, and
g#b — —gu in the Parisi representation, we get:

1
LRI [CRRP LR IERCSE] TEY
0

¢
(&) =1 exp{zc ~ [} anle+ e + peen) } . (434)

where g(n) and g(n) = jol dx g(x;n) are the solutions of the
RG equations given in the the previous Section.

Let us first consider the traditional (replica-symmetric)
situation. The RS interaction parameters g(£) and g(¢&)
approach the fixed-point values g, and g, (which are of the
order of ¢), and then for the dependence of the renormalised
mass t(&), according to Eqn (4.34), one gets

(&) = 1o exp(4:L), (4.35)
where
4, =2—[2+p)g. +pg] - (4.36)

At the scale &, such that t(£.) approaches the order of 1,
the system gets out of the scaling region. Since the RG
scale parameter £ = In R, where R is the spatial scale, this
defines the correlation length R, as a function of the
reduced temperature t,. According to Eqn (4.35), one
obtains

R.(t9) ~ 15", 4.37)

where v =1/4, is the critical exponent of the correlation
length.

Actually if the starting value of the disorder parameter
g(¢ =0) = u is much smaller than the starting value of the
pure system interaction g(& = 0) =g, the situation is a
little bit more complicated. In this case, the RG flow for
g(&) first arrives at the fixed point g’ of the pure system
as if the disorder perturbation did not exist. Then, since the
fixed point of the pure system is unstable with respect to the
disorder perturbations, at scales bigger than a certain
disorder-dependent scale &, the RG trajectories eventually
arrive at the stable (universal) disorder-induced fixed point
(84, g+)- According to the traditional theory [8], it is known
that &, ~ (v/oz) In(1/u). The corresponding spatial scale is
R,~u Vs 1, and it is big in comparison with the small
parameter u. Coming back to the scaling behaviour of the
mass parameter t(&), Eqn (4.35), we see that if the value of
the temperature 7, is such that (&) reaches the order of 1
before the crossover scale &, is reached, then for the scaling
behaviour of the correlation length (as well as for other
thermodynamic quantities) one finds essentially the result
R (t9) ~ T(;V(‘"“”) of the pure system. However, the critical
behaviour of the pure system is observed only until
R. < R,, which imposes the following restriction on the
temperature parameter: 7, > u'l* = 7,. In other words, at
temperatures not too close to T, 7, < 79 < 1, the presence
of disorder is irrelevant for the critical behaviour.

On the other hand, if 7y < 7, (in the close vicinity of 7))
the RG trajectories for g(€) and g(&) arrive (after crossover)
at a new (universal) disorder-induced fixed point (g,, g.),
and the scaling of the correlation length (as well as other
thermodynamic quantities), according to Eqns (4.36), and
(4.37), is controlled by a new universal critical exponent v
which is defined by the RS fixed point (g., g«), Eqn (3.39),
of the random system.

Consider now the situation if the RSB scenario
occurred. Again if the disorder parameter u is small, in
the temperature interval 7, <€ 15 < 1, the critical behaviour
is controlled essentially by the fixed point of the pure
system, and the presence of disorder is irrelevant. For the
same reasons as discussed above, the system exits the
scaling regime [t(£) approaches the order of one] before
the disorder parameters start ‘pushing’ the RG trajectories
out of the fixed point of the pure system.

However, at temperatures 7, <7, the situation is
completely different from the RS case. If the RG trajec-
tories arrive at the l-step RSB fixed point, Eqn (4.24) (in
the 1 < p < 4 case), then according to the standard scaling
relations for the critical exponent of the correlation length,
one finds:

11 3p(1 —xy)
V) =3 1) —pro(p 7 8)

Thus depending on the value of the starting parameter x,
one finds a whole spectrum of the critical exponents.
Therefore, unlike in the traditional point of view described
in Section 3.3, the critical properties become nonuniversal,
as they are dependent on the concrete statistical properties
of the disorder involved. However, this result is not the
only consequence of RSB. More essential effects can be
observed in the scaling properties of the spatial correlation
functions (see below).

In the Ising case, p =1, as well as in the systems with
1 <p <4 for a general starting RSB function go(x), the

(4.38)
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consequences of RSB appear to be much more dramatic.
Here, at scales & > £, (although still £ < £, ~ 1/u) accord-
ing to the solutions (4.26) and (4.31) the parameters g(¢&)
and g(x; &) do not arrive at any fixed point, and they keep
evolving as the scale & increases. Therefore, in this case,
according to Eqn (4.34), the correlation length (defined, as
usual, by the condition that the renormalised t(¢)
approaches the order of 1) is defined by the following
nontrivial equation:

21nRC—J
0

InR,

dn[(2+p)&(n) +p(n)] = lnfl—0 . (439)
Thus as the temperature becomes sufficiently close to 7' (in
the disorder-dominated region 1, < 1,), there will be no
usual scaling dependence of the correlation length (as well as
of other thermodynamic quantities).

Finally, as the temperature parameter 1, becomes
smaller and smaller, what happens is that at scale
(&, =InR, ~1/u we enter the strong-coupling regime
[such that the parameters g(&) and g(x;&) are no longer
small], while the renormalised mass t(&) still remains small.
The corresponding crossover temperature scale is

const
T, ~exp| — p .

In the close vicinity of T, at T < t,, the situation is that at
large scales the interaction parameters of the asymptotic
(zero-mass) Hamiltonian are no longer small, and the
properties of the system cannot be analysed in terms of the
simple one-loop RG approach. Nevertheless, the qualita-
tive structure of the asymptotic Hamiltonian allows us to
argue that in the temperature interval T €, near T, the
properties of the system should be essentially SG-like. The
point is that it is the parameter describing the disorder,
g(x; &), which is the most divergent.

In a sense, here the problem is qualitatively reduced
back to the original one with strong disorder at the critical
point. It does not seem probable, however, that the state of
the system will be described by the nonzero true SG order
parameter Q,, = (¢,¢,) (which would mean real SG
freezing). Otherwise there must exist a finite value of 7
at which a real thermodynamic phase transition into the SG
phase takes place, whereas we observe only the crossover
temperature ,, at which a change of critical regime occurs.

It seems more realistic to expect that at scales ~ &, the
RG trajectories finally arrive at a fixed point characterised
by values of the interaction parameters which are no longer
small and by strong RSB. Then, the SG-like behaviour of
the system near T, will be characterised by highly nontrivial
critical properties exhibiting strong RSB phenomena.

(4.40)

4.3.2 Correlation functions
Consider the scaling properties of the spin-glass-type
connected correlation function:

K(R) = (($(0)p(R)) — ($(0)}(#(R)))’

2
= ((¢(0)p(R))) . (4.41)
In terms of the replica formalism we get:
. 1 -
K(R) = lim m;m(m , (4.42)

where

K (R) = ((8,(0)$,(0)8, (R)$y(R))) -

In terms of the standard RG formalism for the replica
correlation function K,,(R), we find that

(4.43)

Ka(R) ~ [Go(R)]* [Za(R)]” (4.44)
where
Go(R) =R~ 7% (4.45)

is the free-field correlation function, and in the one-loop
approximation the scaling of the mass-like object Z,,(R)
(with a # b) is defined by the RG equation:

d
d_éln Z (&) =284 (&)

Here g,4,(£) > 0 is the solution of the corresponding RG
equations (4.13) and (4.14); £ =InR; and Z,,(0) = 1.
For the correlation function (4.44) one finds:

(4.46)

InR
2
K (R) ~ [Go(R)] exp [4 JO ngab(C)} . (4.47)
Similarly, in the Parisi representation, where
8upp(&) — g(x;&) and K,z (R) — K(x;R), one gets
In R
K(x;R) ~ [Go(R)]” exp [4J dé g(x;é)] . (4.48)
0

To understand the effects of RSB more clearly let us
again consider the situation in the traditional RS case. Here
(for p<4) one finds that the interaction parameter
Zupp(&) = u(&) arrives at the RS fixed point

4 —
—e P

16(p—1)
and according to Eqns (4.42) and (4.47), one obtains the
simple scaling

K (R) ~ RTPEDH

Uy

(4.49)

with the universal disorder-induced critical exponent
4—
Y
4p—1)
In the case of the I-step RSB fixed point, Eqn (4.24), the
situation is somewhat more complicated. Here we find that

the correlation function K(x;R) also has the 1-RSB
structure:

(4.50)

) Ko(R); 0<x<xg,
K(x;R) {KI(R); ro<x<l. (4.51)
where (in the first order in §)
Ko(R) ~ RO = GY(R) ,
Ki(R) ~ RT2P721H 0 (4.52)

with the nonuniversal critical exponent 6, zgg explicitly
depending on the coordinate of the step xg:

Oirsp = ¢ 4(4 —p) .
) 16(p — 1) = pxo(8 +p)

Since the critical exponent 6, zgp is positive, the leading

(4.53)

contribution to the ‘observable’ quantity K(R)
= ((¢(0)$(R)))*, Eqn (4.42), is given by K;(R):
K(R) ~ (1 —x0)K{(R) + xoKo(R) ~ R™XP=D¥b0ssn (4 54)
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But the difference between the 1-RSB and the RS cases
manifests itself not only in the result that the critical
exponent 6 of the correlation function K(R) ceases to be
universal. According to the traditional SG philosophy [11],
the result that the scaling of the RSB correlation function
K. (R) or K(x;R) does depend on the replica indices (a, b)
or the replica parameter x, Eqn (4.51), indicates that, in
different measurements of the correlation function for the
same realisation of the quenched disorder, one is going to
obtain different results, Ko(R) or K;(R), with the prob-
abilities defined by the value of x,.

In real experiments, however, one is dealing with the
quantities averaged in space. In particular, for the two-
point correlation functions the measurable quantity is
obtained by integration over the two points, such that
the distance R between them is fixed. Of course, the result
obtained in this way must be equivalent simply to K(R),
Eqn (4.54), found by formal averaging over different
realisations of disorder, and different scalings Ko(R) and
Ki(R) cannot be observed in this way.

Nevertheless, for a somewhat different scheme of the
measurements the qualitative difference with the RS
situation can be observed. In spin glasses it is generally
believed that RSB can be interpreted as factorisation of the
phase space into a (ultrametric) hierarchy of ‘valleys’, or
pure states of local minima separated by macroscopic
barriers. Although in the present case the local minimum
configurations responsible for the RSB cannot be separated
by infinite barriers, it would be natural to interpret the
phenomenon observed as effective factorisation of the phase
space into a hierarchy of valleys separated by finite barriers.
In this situation, one could expect that besides the usual
critical slowing down (corresponding to the relaxation
inside one valley), relaxation times which are qualitatively
much bigger would be required for overcoming barriers
separated by different valleys. Therefore, the traditional
measurements of the observables in ‘thermal equilibrium’
can in fact correspond to the equilibration within one valley
only, and not to the true thermal equilibrium. Then in
different measurements (for the same sample) one could be
effectively ‘trapped’ in different valleys.

To check whether the above speculations are correct or
not, as in spin-glasses, one can invent traditional ‘overlap’
quantities which could hopefully reveal the existence of the
multiple valley structures. For instance, one can introduce
the spatially averaged quantity for pairs of different
realisations of the disorder:

Ky(R) = [ g8l + ) (P0IB0+ B)), . 459)

where i and j denote different realisations, and it is assumed
that the measurable thermal average corresponds to a
particular valley, and not to the true thermal average. If the
RS situation occurs (so that only one global valley exists),
then for different pairs of realisations one will obtain the
same result given by Eqn (4.49). On the other hand, in the
case of the 1-RSB, according to the general theory of RSB
[11], after obtaining statistics over pairs of realisations for
K;(R) one has to get the result Ky(R) with the probability
xo, and K;(R) with the probability (1 —x,).

Consider finally what would be the situation if a general
type of RSB takes place. According to the qualitative
solution given by Eqns (4.26) and (4.27), the function

g(x;&) does not arrive at any fixed point at scales
&> &, ~ (v/a)In(1/u). Therefore, at the disorder-domi-
nated scales R >R, ~ /"> 1, there must be no
scaling behaviour of the correlation function K(R). Near
the critical scale &, ~ 1/u, the qualitative behaviour of the
solution g(x; &) is given by Eqn (4.26). Therefore, according
to Eqn (4.48), near the critical scale R, ~ exp(1/u), for the
correlation function K(x;R) one obtains:

K(x;R)
{R—zw—2>(1 —ulnR)™ =K (R), (1—-x)<AR,
R =G((R)=K,, (1—x)>AR,
(4.56)

where AR = (1 —ulnR) »u <1 as R —»R,.

At the critical scale we have (1 —ulnR,)~u, and
according to Eqn (4.56) the shape of the replica function
K(x;R) must be ‘quasi-l-step™

u_4”exp [—@] =K{, (1-x)<u,
K(x;R,) ~
exp[—@]zlﬁ, (1-x)>u.
(4.57)

According to the above discussion of the observable
quantities for the l-step RSB case, the result given by
Eqn (4.57) could be measured for the spatially averaged
overlaps of the correlation functions K;(R), Eqn (4.55), for
the statistics of pairs of realisations of the disorder. Then,
for the correlation function K;(R) one is expected to obtain
the value K; with the small probability «, and the value K|,
with the probability (1 — ). Although both values K7 and
K; are expected to be exponentially small, their ratio
K}/K§ ~ u™* must be large.

Finally, at scales R > R, we enter the strong-coupling
regime, where the simple one-loop RG approach can no
longer be used.

4.3.3 Specific heat
According to the standard procedure, the leading singu-
larity of the specific heat can be calculated as follows:

Cn j PR{POFR) — (FONGR)] . (@58)

In terms of the RG scheme for the correlation function,

W(R) = (¢*(0)¢*(R)) — (¢°(0))(¢*(R)) (4.59)
we get
W(R) = (Go(R))*m*(R) , (4.60)

where Gy(R) = R™®P? is the freefield two-point correla-
tion function, and the mass-like object m(R) is given by the
solution of the following (one-loop) RG equation [compare
with Eqn (4.33)]:

i]nm(é):— (2+p)§(é‘)—pigm(é) -

4.61
i > .61)

Here, as usual, £ =In R, and the renormalised interaction
parameters g(£) and g,,(£) are the solutions of the replica
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RG equations (4.13) and (4.14). In the Parisi representa-
tion, g, (&) — g(x; &), one gets:

m(R)

— exp [—(2 +p) LR 4EF(2) —pj:R déj

0

1

dx g(X;é)] :

(4.62)

Then, after simple transformations for the singular part of
the specific heat, Eqn (4.58), we get:

 max ¢ ¢
e~ [ acerw [sé—z<z+p)j anitn) 2| dn?(ﬂ)],

0 0 0
(4.63)

where g(n) = jol dx g(x;n). The infrared cutoff &,,, in
Eqn (4.63) is the scale at which the system comes out of the
scaling regime.

Usually &, is the scale at which the renormalised mass
7(£), Eqn (4.34), approaches the order of I, and if the
traditional scaling situation takes place, one finds that
émax ~ ln(l/TO)'

Again, let us first consider the situation in the tradi-
tional RS case. Here at scales &> &, ~In(1/u) fwhich
correspond to the temperature region 7, <1, ~ u"’%) the
renormalised parameters g(n) and g(&) arrive at the
universal fixed point g =¢[p/16(p — 1)],
g« = &[4 —p/16(p — 1)] given by Eqn (4.23); and accord-
ing to Eqn (4.63) for the singular part of the specific heat we
find that

In(1/7)
Cla)~ [ deexp{&fs -2+ )i — 202.])

NTS(“*P)/“(P*]) ) (464)

So that in the close vicinity of 7, one would expect to
observe new universal disorder-induced critical behaviour
with a negative specific heat critical exponent
a=—¢e(4—p)/4(p—1), Eqn (3.40) (unlike positive a in
the corresponding pure system).

Similarly, if the scenario with the stable 1-step RSB
fixed points takes place, then one finds that the specific heat
critical exponent a(xy) becomes nonuniversal, and depends
explicitly on the coordinate of the step x, [16]:

1, (=P —pxj)
2 16(p—1) —pxo(p+8)

Again (as for the critical exponent of the correlation
length), depending on the value of the parameter x,, one
finds a whole spectrum of the critical exponents. In
particular, the possible values of the specific heat critical
exponent appear to be in the following band:

a(xg) = (4.65)

—o0 < afxg) < —¢ (4.66)

The upper limit for a(xy) is achieved in the RS limit
xo— 0, and it coincides with the wusual RS result,
Eqn (3.41). On the other hand, as x, tends to the ‘border
of stability” x.(p) of the 1-step RSB fixed point, formally
the specific heat critical exponent tends to —oo.

In the general RSB case, the situation is completely
different. Here in the disorder-dominated region
1, < 7o <u’/* (which corresponds to scales &, < & < &),

the RG trajectories of the interaction parameters g(&) and
g(&) do not arrive at any fixed point, and according to
Eqn (4.64) one finds that the specific heat becomes a
complicated function of the temperature parameter Tt
which does not have the traditional scaling form.
Finally, in the SG-like region in the close vicinity of T,
where the interaction parameters ¢ and g are finite, one
finds that the integral over & in Eqn (4.63) is convergent (so
that the upper cutoff scale £, becomes irrelevant). Thus,
in this case one obtains the result that the ‘would-be
singular part’ of the specific heat remains finite in the
temperature interval ~ 7, around T, so that the specific
heat becomes nonsingular at the phase transition point.

4.4 Discussion

According to the results obtained in this Section, we can
conclude that spontaneous replica symmetry breaking
coming from the interaction of the fluctuations with the
multiple local minimum solutions of the mean-field
equations has a dramatic effect on the renormalisation
group flows and on the critical properties. In systems with
the number of spin components p < 4, the traditional RG
flows at dimensions D =4 — ¢, which are usually consid-
ered as describing the disorder-induced universal critical
behaviour, appear to be unstable with respect to the RSB
potentials as found in spin glasses. For a general type of
the Parisi RSB structures, there exist no stable fixed points,
and the RG flows lead to the strong-coupling regime at the
finite scale R, ~ exp(1/u), where u is the small parameter
describing the disorder. Unlike the systems with 1 < p < 4,
where there exist stable fixed points having l-step RSB
structures [Eqn (4.24)], in the Ising case, p = 1, there exist
no stable fixed points, and any RSB interactions lead to the
strong-coupling regime.

There exists another general problem which may appear
to be interconnected with the RSB phenomena considered
in this Section. The problem is related to the existence of the
so-called Griffith phase [21] in a finite temperature interval
above T,. Numerous experiments for various disordered
systems [22], as well as numerical simulations for the three-
dimensional random bonds Ising model [23], clearly
demonstrate that in the temperature interval 7, < T < T
(in the high temperature phase), the time correlations decay
as ~ exp|—(¢/7)"] instead of the usual exponential relaxa-
tion law ~ exp(—t/t), as it should be in the ordinary
paramagnetic phase. Moreover, it is claimed that the
parameter A is the temperature-dependent exponent, as it
is a finite value (less than unity) at 7 = T, and increases
monotonically up to A = 1at T = T,. The temperature T is
claimed to coincide with the phase transition point of the
corresponding pure system.

This phenomenon clearly demonstrates the existence of
numerous metastable states separated by finite barriers,
their values forming infinite continuous spectra, and it
could be interconnected with a general idea that the critical
phenomena should be described in terms of an infinite
hierarchy of correlation lengths and critical exponents [24].

On the other hand, if there is RSB in the fourth-order
potential in the problem considered in this Section, one
could identify a phase with a different symmetry than the
conventional paramagnetic phase, and thus there would
have to be a temperature Trgg at which this change in
symmetry occurs. Actually, the RSB situation is the
property of the statistics of the saddle-point solutions
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only, and it is clear that for sufficiently large values of t
there must be no RSB. Therefore, one can try to solve the
problem of summing over saddle-point solutions for
arbitrary 7, with the aim of finding a finite value of 7,
at which the RSB solution for this problem disappears. Of
course, in general this problem is very difficult to solve, but
one can easily obtain an estimate for the value of 7,
(assuming that at T =0 the RSB situation takes place).
According to the qualitative study of this problem in
Ref. [16], the RSB solution can occur only when the
effective interactions between the ‘islands’ (where the
system is effectively below T.) are no longer small. The
‘islands’ are the regions where 8t(r) > 1. Because the
distribution of the random function &t(r) is Gaussian,
the average distance between the ‘islands’ will be of the
order of exp(—7°/u), so that the ‘islands’ become suffi-
ciently remote at t>4/u. The interaction between the
‘islands’ decreases exponentially with their separation.
Therefore at 7> +/u they must be interacting weakly,
and there must be no RSB.

Note now that the shift of 7, with respect to the
corresponding pure system is also of the order of +/u.
On the other hand, the existence of local solutions to the
mean-field equations is reminiscent of the Griffith phase
which is claimed to be observed in the temperature interval
between the temperature 7, of the disordered system and T,
of the corresponding pure system. On these grounds it is
tempting to associate the (hypothetical) RSB transition in
the statistics of the saddle-point solutions with the Griffith
transition. Correspondingly, it would also be natural to
suggest that RSB phenomena discovered in the scaling
properties of weakly disordered systems could be associated
with the Griffith effects.

The other key question which remains unanswered is
whether or not the obtained strong-coupling phenomena in
the RG flows can be interpreted as the onset of a kind of
spin-glass phase near T.. Since it is the RSB interaction
parameter describing disorder, g(x;&), which is the most
divergent, it is tempting to argue that, in the temperature
interval 7 < 7, ~ exp(—1/u) near T, the properties of the
system should be essentially SG-like.

It should be stressed, however, that in the present study
we observe only the crossover temperature t,, at which the
change in the critical regime occurs, and it is hardly possible
to associate this temperature with any kind of phase
transition. Therefore, if the RSB effects could indeed
provide any kind of true thermodynamic order para-
meter, then this must be true in a complete temperature
interval where the RSB potentials exist.

The true spin-glass order (in the traditional sense) arises
from the onset of the nonzero order parameter Q. (x) =
(hu(x)¢y(x)); a#b, and, at least for the infinite-range
model, Q,, develops the hierarchical dependence on replica
indices [11]. In the present problem we find that only the
coupling matrix g, for the fluctuating fields develops a
strong RSB structure and its elements are no longer small at
the finite scale. Therefore, it seems more realistic to
interpret RSB strong-coupling phenomena discovered in
the RG as a completely new type of the critical behaviour
characterised by strong SG effects in the scaling properties
rather than in the ground state.

5. Two-dimensional Ising model with impurities

5.1 Two-dimensional Ising systems

In the general theory of phase transitions the two-
dimensional (2D) Ising model plays the prominent role,
as it is the simplest nontrivial lattice model with a known
exact solution [25]. It is natural to ask, therefore, what the
effects of the impurities are in this particular case. As for
the Harris criterion (Section 3.1), the 2D Ising model
constitutes a special case, because the specific heat
exponent o« =0 in this model. However, speaking intui-
tively, we could expect that, as in the case of the vector
field model in four dimensions (Section 3.3), the effect of
impurities could be predicted on a qualitative level.
Although the critical exponent « is zero, the specific
heat of the 2D Ising model is (logarithmically) divergent at
the critical point. Therefore, we should expect the critical
behaviour of this system to be strongly affected by the
impurities.

Indeed, the exact solution for the critical behaviour of
the specific heat of the 2D Ising model with a small
concentration ¢ <1 of impurities [26] (see Section 4.3
below) yields the following result for the singular part of
the specific heat:

T <L <1,
1 1
—ln(ln—), T <",
¢ T

where T° ~ exp(—const/c) is the temperature scale at which
a crossover from one critical behaviour to another takes
place.

Thus, in the 2D Ising model, as well as in the four-
dimentional vector field system, the impurities are in fact
‘relevant variables’. Unlike the vector field model, the
specific heat of the 2D impurity Ising magnet remains
divergent at T, though the singularity is weakened by
impurities. Another important property of the 2D Ising
model is that, unlike in the ¢4—theory near four dimensions
(Section 4), the spin-glass RSB phenomena appear to be
irrelevant for the critical behaviour. Thus, the result given
by Eqn (5.1) for the leading singularity of the specific heat
of the weakly disordered 2D Ising system must be exact.

In this section the emphasis is laid not on the exact
lattice expressions, but on their large-scale asymptotics, i.e.
we will be interested mainly in the critical long-range
behaviour because only that is interesting for the general
theory of phase transitions. It is well known that in the
critical region the 2D Ising model can be reduced to the
free-fermion theory [27]. In Section 4.2 this reduction will
be demonstrated in very simple terms by means of the
Grassman variables technique. The operator language or
the transfer matrix formalism will not be used, as they are
not symmetric enough to be applied to the model with
impurities. The resulting continuum theory, to which the
exact lattice impurity model is equivalent in the critical
region, appears to be simple enough, and in it the critical
behaviour of the specific heat can be determined exactly
(Section 4.3).

The results of the recent numerical simulations are
briefly described in Section 4.4. The general structure of
the disordered 2D Ising model is considered in Section 4.5.

1
In—,
T

C(x) ~ 5.1
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5.2 The fermion solution
The partition function of the pure 2D Ising model is given
by

zZ = Zexp <ﬁZoxox+u> . (5.2)

a Xy U

Here {0, = £1} are the Ising spins defined at lattice sites
of a simple square lattice; x are integer-valued coordinates
of the lattice sites; and u =1, 2 are basic vectors of the
lattice.

This partition function can be rewritten as follows:

z = [[exr{Boco.iu}

g X, H

= Z H(cosh B+0.0,, sinhf)

c X, 4

= (cosh )" Z H(l +0,0,4,4) ,

o X, 1

(5.3)

where V is the total number of the lattice bonds, and
A = tanh B. Expanding the product over the lattice bonds in
Eqn (5.3) and averaging over the g values, we obtain the
following representation for the partition function (the
high-temperature expansion):

Z = (cosh B)” Z(X)L” .

P

The summation here is over configurations of closed paths
‘P drawn on lattice links (Fig. 9), and Lp is the total length
of paths in a particular configuration P.

(5.4)

Figure 9. Closed paths entering the high-temperature expansion of the
partition function of the 2D Ising model.

The summation in Eqn (5.4) could be performed exactly,
and these calculations constitute the classical exact solution
for the 2D Ising model found by Sherman and Vdovichenko
[28]. This solution is well described in detail in textbooks (for
example, see Ref. [29]), and we will not discuss it here.

Let us now consider an alternative approach to the
calculations of the partition function in terms of the so-
called Grassmann variables (for detailed treatment of this
new mathematics see Ref. [30]). The Grassmann variables
were first used for the 2D Ising model by Hurst and Green
[31], and this approach was later developed by a number of
authors [32] (see also Ref. [26]). It appears that technically
this method enables the equations to be obtained in a very
simple way. We shall describe this formalism, recover the
equation for the partition function [Eqn (5.4)], and intro-
duce some new notations which will be useful for the
problem with impurities.

Let us introduce the four-component Grassmann
variables {Y*(x)} defined at the lattice sites {x}, where
the superscript o = 1, 2, 3, 4 indicates the four directions on
the 2D square lattice (such that 3 = —1 and 4 = —2). All the
{Y*(x)} variables and all their differentials {dy*(x)} are
anticommutative variables. By definition,

VWP () = PN ) |
[V ()] =0,
Ay (x) dyP (y) = — dyP () dy*(x)

Ay ()P () = 9P () dy*(x) (5.5)
and the integration rules are defined as follows:

[ @ =0,

[ @) == [wre) avr = 1. (5.6

Let us consider the following partition function defined
as an integral over all the Grassmann variables of the 2D
lattice system:

Z= JD!// exp(A[Y]) . (5.7)

In this case, the integration measure Dy and the action
A[Y] are defined as follows:

Dy = [J[—dv' (x) dy? (x) dy’ (x) dy (x))] (5.8)

AW = =53 POV +5 AP +a)pbe) (59

The ‘conjugated’ variables J(x) are defined as follows:

Ve A (e L (5.10)
where
0o 1 1 1
. -1 0 1 1
C=1_1 21 o0 1]
-1 =1 =1 0
0 -1 1 -1
NIRRT/ B B
=1, 1 o -l (5.11)
1 =1 1 0

The vector matrix p in Eqn (5.9) is defined as follows:

1 00 0 01 0 0

. 1 00 0 01 0 0

p= 00000l (o1 00|
100 0 000 0
000 0 00 0 —1
001 0 000 0
001 0" 000 1 (.12)
001 0 000 1
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More explicitly for the action A[], Eqn (5.9), one gets:

AW = —3 YWY + 34D e+ p ()

= 210 )+ (Y 0) 9 Y ()

HU Y () + PO () + 9 ()Y (x)]
+,1Z W+ DY () +§t (e + 297 ()] .(5.13)

Using the rules (5.5) and (5.6), we can easily check by
direct calculations that the integration in Eqn (5.7) with the
integration measure [Eqn (5.8)] reproduces the high-
temperature expansion of the partition function
[Eqn (5.4)] 2D Ising model with A = tanh .

Let us consider the Green function:

GH*(x,x")=2z"" JDt//exp(A W)Y )PP’y . (5.14)

Simple (although a little cumbersome) calculations yield:

G (x,x") =2 ATGP (x =y, x") + 6, w87, (515
where A = > P> y
11 0 —1
A= (1)} : (]) (5.16)
101 1

If we perform a Fourier transform of equation (5.15), it
acquires the following matrix form:
1

Gk)=[1-14®K)] ", (5.17)
where
A(k) =) exp(—ika)p,
exp(—ik;)  exp(—ik,) 0 —exp(iky)
_ | exp(—iki) exp(—iky) exp(ik;) 0
a 0 exp(—ik,) exp(ik;)  exp(iks)
—exp(—ik;) 0 exp(ik;)  exp(ik,)
(5.18)

It is obvious from Eqn (5.17) that, if one of the eigenvalues
of the matrix A4 (k) becomes unity, it signals a singularity.
To find this point we first put the space momentum k =0
(which corresponds to the infinite spatial scale).

The four-valued indices of the Green function G* are
related to four possible directions on a square lattice.
Therefore, the idea is to perform the Fourier transform
over these angular degrees of freedom. One can easily check
that the matrix A (0) is diagonalised in the following
representation'

1 1
exp| £i r exp| £i 3_1t
1 4 1 4
‘/’il/z 5| exp ( g) > ‘//i3/2 5 | exp (j: 3;)
3 9
exp < Zn) _exp (j: Zn) |

(5.19)

The transform matrix from the initial representation to the
angular momentum (or spinor) representation, with the
basic vectors given above, has the form:

(5.20)
In this representation, we get
AA(0) = A0 A(0)T
V2 +1 0 0 0
0 V2+1 0 0
=1 (5.21
0 0 —V2+1 0 (5-21)
0 0 0 —V2+1

There is a singularity in Eqn (5.17) (at K — 0) when one
of the eigenvalues of AA’ becomes unity. From Eqn (5.21)
we can easily find the critical point of the 2D Ising model:

1
V2417

Another important point which follows from these
considerations is that, for the critical fluctuations in the
vicinity of the critical point, only states ¥4/, (with the
eigenvalues ~ 1) are important. Indeed it is easily checked
(see below) that the correlation radius for ¥/, goes to
infinity as 4 — 4., whereas the correlations for .5, are
confined to lattice sizes.

Now, to describe the critical long-range fluctuations,
which are responsible for the singularities in the thermo-
dynamic functions, we can expand Eqn (5.17) near the
point A =/.. Using the explicit expression (5.18), and
retaining only the first powers of |k| and (41— A4.)/A.,
one gets:

A =tanh f, = (5.22)

r - i,?] rfili};kz .—ik? _r—ili]/;ikz
GA(k) N 21(2 T—ik ;lkv T — 1k2 ‘E+l’i/§lkw 1k|
=74 ik vhik ik oy ik, +iky
Sl V2 o] V2
_% ik, % T+ ik,
(5.23)
Here
A =det[i — 24 (k)] = 2227 + k) (5.24)
and
A—A
= 2(1—0) . (5.25)
C

In the spinor representation given by Eqn (5.19), the
asymptotic expression for Eqn (5.23) simplifies to the
following compact form:

Gy (k) =U7"'Gk)U
T lk] — k2 0 0
2 lk] —+ k2 T 0 0
~=wf | o S (5.26)
0 0 0 0
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The zero components here are ~ |k|27 7>. The nonzero each loop entering with a weight
block can be represented as:
e if [[4.2P) . (5.36)
Sk)=2——7 (5.27) P
Ttk where ®(P) is a product ordered along the path P of
Here matrices {p}:
k=kij +kaps (5.28) oP) =[5 (5.37)
10 1 |0 i (5.29) P
L oo T 0]" ' The same representation for the partition function follows

Eqn (5.27) is the Green function of the free (real) spinor
field in two Euclidean dimensions described by the
Lagrangian:

Ayly] = —% J d2x (Wéw + rw) (5.30)

where ¥ = Y¥s, and $s = P19,
Using Eqn (5.30), one immediately finds the logarithmic
singularity of the specific heat of the 2D Ising model:

Z~ JDn//exp(Asp[M) ~ [det(z +8)] % ;

Fr—InZ ~ —Trln (1 +90)

1
z—Jd2kln(1:2+|k|2)N—IZInH. (5.31)
Hence
2
1
C~ -4 F(t) ~In — (5.32)

dr? 7|

5.3 Critical behaviour in the impurity model
We turn now to the model with impurity bonds. In this
Section we shall determine the critical behaviour of the
specific heat in the critical regime of the impurity.

The partition function of the 2D Ising model with
impurity bonds is given by:

2(8) = Zp{ﬁzfaa} ,

where the coupling constant J,, on a particular lattice
bond (x,p) is equal to the regular value J with probability
(1 —¢), and to the impurity value J’ # J with probability c.
We impose no restriction on J' but we shall require ¢ < 1,
so that the concentration of impurities is assumed to be
small.

The Grassmann variables technique described in the
previous Section can be applied to the model with random
lattice couplings as well. In this representation, the partition
function [Eqn (5.33)] is given by:

29 = [pyes -3 X F (v

(5.33)

+%;MW (x +n) ﬁ,n//(x)} , (5.34)

where

P A=tanh (BJ), with probability (1 —c), (5.35)
47 1 A =tanh (BJ'), with probability c. '

It is easy to check by direct expansion in powers of the
second term in Eqn (5.34) that the partition function can be
represented as a sum over configurations of closed loops,

from the high-temperature expansion of Eqn (5.33).

Proceeding along these lines and averaging over the
disorder in the couplings, one could finally obtain the exact
continuum-limit representation for the free energy of the
impurity model (see Ref. [26]). Here, however, we shall
consider a more intuitive and much more simplified
approach, which nevertheless provides the same results
as the exact one. This approach is based on the natural
assumption that in the continuum limit representation in
terms of the free-fermion fields (see previous Section), the
disorder in the couplings manifests itself as a small spatial
disorder in the effective critical temperature 7 in the mass
term of the spinor Lagrangian Eqn (5.30). Therefore, the
starting point for further considerations of the impurity
model will be the assumption that its continuum limit
representation is described by the following spinor Lagran-
gian:

Ay [ 87(2)] = —H Ce{Fou + o+ 50T} - 538)

Here the quenched random variable 8t(x) is assumed to be
described by simple Gaussian distribution:

P[5e(x)] = H{ﬁexp [_[5%12)]2]} :

X
where the small parameter u € 1 is proportional to the
concentration of impurities.
Then, the self-averaging free energy can be obtained in
terms of the traditional replica approach (Section 3.2):

1

(5.39)

—_— 1
F=F[ot(x)] = 3 lim — In(z,) , (5.40)
where
Z,=2Z"
— [pse) j D yP[51(x)]
! 2 - TaA.a a.a
X exp (‘ZJ d x;{t// 8y + [1+8c(x) |y v })
(5.41)
is the replica partition function and the superscript
a=1,2,...,n denotes the replicas.
Simple Gaussian integration over dt(x) yields:
Z,= D exn(a,0) (5.4
where
| ——
al == [ @[3 S+ ow
a=1
1 N — T3
——u Tyt (5.43)
4 a,b=1
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Note that rigorous perturbative consideration of the
original lattice problem [26] yields the same result for
the effective continuous limit Lagrangian [Eqn (5.43)], in
which
/ 2
R (S V2 S 4
[1+1/2v20 — )]

where
Ao =tanh B, J=vV2—1,

A, =tanh B, J’ . (5.45)
The spinor field theory with the four-fermion inter-
action [Eqn (5.43)] obtained above can be renormalised in
two dimensions, just as the vector field theory with the
interaction q54 can be renormalised in four dimensions
(Section 2.6).
Indeed, after the scale transformation (see Section 2.5),

x—=Ax (A>1), (5.46)
one gets
[ axpe)0x) = 271 [ @iy i)
o @x [P [Fwe)
. mj P [P )] [Faw()] . (547)

To leave the gradient term of the Hamiltonian (which is
responsible for the scaling of the correlation functions)
unchanged, one has to rescale the fields:

Y(Ax) — A My(x) , (5.48)
with
4y = DT_I (5.49)

The scale dimension 4, defines the critical exponent of
the correlation function:

G(x) = (YO (x)) ~ ||| = Ix|7". (5.50)

To leave the Hamiltonian Eqn (5.43) unchanged after these
transformations, one has to rescale the parameter u:

u— A, (5.51)
where
A, =2-D. (5.52)

Therefore, the scale dimension A4, of the four-fermion
interaction term is zero in two dimensions, just as the scale
dimension of the ¢* interaction term is zero in four
dimensions.

We shall see below that the renormalisation equations
lead to the ‘zero-charge’ asymptotics for the charge u and
the mass 7. In this lucky case, the critical behaviour can be
found by the renormalisation-group methods or, in the
same way, the main singularities of the thermodynamic
functions can be found by summing up the ‘parquette’
diagrams of the theory [Eqn (5.43)] (cf. Section 2.6)

Let us renormalise the charge u and the mass 7. The
diagrammatic __representation ~ of  the interaction
u[ YW ()] WP ()] and the mass <[§7(r )y (x)]

terms are shown in Fig. 10.

—u@) ) et =)

Figure 10. Diagrammatic  representation of  the  interaction

ulr® () ()] [P ()Y’ (x)] and the mass t[° (x)y*(x)] terms.

It should be stressed that the model under consideration
is described in terms of real fermions, and although we are
using (just for convenience) the notation of the conjugated
fields , they are not independent variables: Y = yj5. For
this reason the fermion lines in the diagrammatic repre-
sentation are not ‘directed’. Actually, the interaction term,
see Fig. 10, can be represented explicitly in terms of only
one two-component fermion (anticommuting) field:
wppsyiys. Therefore, the diagonals in the replica
(a = b) interaction terms are identical and equal to zero.

Proceeding in a similar way to the calculations of
Section 3.3, one then finds that the renormalisations of
the parameter u are provided only by the diagram shown in
Fig. 11c, whereas the first two diagrams, Figs 11a and 11b,
are identical and equal to zero. For the same reason, the
renormalisation of the mass term is provided only by the
diagram shown in Fig. 12b, while the diagram in Fig. 12a is
Zero.

d\./a\./a “ . 4 <h a> :C <b
M ;
b b b a a b “ c b
a b c

Figure 11. Diagrams which contribute to the renormalisation of the

interaction term u[{f®(x )y (x) [ (x )y (x)].

<

a a

a b

Figure 12. Diagrams which contribute to the renormalisation of the
mass term [ (x)y“(x)].

The internal lines in Figs 11 and 12 represent the
massless free-fermion Green function [cf. Eqns (5.27),
(5.28)]:

A ok

Sab 1 |k|2 6ab .
Taking into account the corresponding combinatorial
factors, one easily obtains the following RG transforma-
tion for the scale-dependent interaction parameter u(4) and
mass parameter t(4):

(5.53)

2
u® ) = u+2(n— 2)u2J d k2 TrS*(k), (5.54)
Ako<|k|<ko (21t)
®) &’k
() =14+2(n—Nut > TrS°(k) . (5.55)
Ako<|k|<kq (ZTE)
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After a simple integration of Eqn (5.55), one gets the
following RG equations (in the limit n — 0):

d 2,
G (@) =——u(f), (5.56)
Snt(®) =~ u(?) (5.57)
iz - u&), .
where, as usual, £ =In(1/4) is the RG parameter.
These equations can be solved easily and yield:
(5] - (5.58)
wl) =—7—5—, .
1+ (2u/m)é
T
7(¢) = (5.59)

[1+ (u/m) ]

where u=u(é=0) and t=1(£=0). For large scales

(€ — o),

1 1
u() ~-—-0, 1(&)~—4=—-0.
¢ Y3
The critical behaviour of a model with the ‘zero-charge’
renormalisation can be studied exactly by the RG methods.
Using standard procedure one obtains for the singular part
of the specific heat (cf. Section 3.3):

S [0
ce) = 2,[|k|>|r| (2n)? s (k)[ T ]

1 r(é)]z
= dée—=== .
4n .L<In(l/|7:|) é[ T

Here the mass is taken to be dependent on the scale, in
accordance with Eqn (5.59):

(5.60)

(5.61)

2 -1
2
[r—é)] - (1 +—”é> . (5.62)
T T
Simple calculations yield
1 2u 1
Ct)x—In|l4+—1In—] . 5.63
(7) g, [ + —n |17|] (5.63)

From Eqn (5.63) we see that in the temperature range
1, <17 < 1, where

T
Ty ~ €Xp (_Z> s

the specific heat has the well-known logarithmic behaviour
of the pure 2D Ising model: C(z) ~ In (1/|z|). However, in
the vicinity of the phase transition point, at |7| < 7,, the
specific heat exhibits different (universal) behaviour,

1 1
C ~—1 In —
®~ “(“m)’

which is still singular, although the singularity is now
weaker.

Note that the critical exponent of the two-point
correlation function in the 2D Ising model is not modified
by the presence of disorder [33]:
—1/4

(5.64)

(5.65)

(000.) ~ Ix] (5.66)

This result is also confirmed convincingly by recent
numerical simulations [36]—[38].

Note finally that the effects of replica symmetry break-
ing (Section 4) in the present case appear to be irrelevant.

The corresponding calculations, although straightforward,
are rather cumbersome and we will not reproduce them
here. On the other hand, in the 2D Potts systems the
disorder-induced RSB effects can be shown to be relevant
and provide the existence of a nontrivial stable fixed point
with a continuous RSB (for details see Ref. [34]).

5.4 Numerical simulations
In recent years, extensive numerical investigations on
special-purpose computers [35] have been conducted,
with the aim of checking the theoretical results derived
for the 2D Ising model with impurity bonds [36, 37, 38].
In these studies, the calculations were performed for the
model defined on a square lattice of L X L spins with the
Hamiltonian

H=-—
(B

Jijo-io-j N (567)
)

where the ferromagnetic couplings J; between spins o; and
o; of the nearest neighbour are independent random
variables taking two values J and J' with probabilities
1 —u and u, repectively.

Since the critical behaviour of the impurity is believed
to be universal and independent of the concentration of
impurities, it is much more convenient in numerical
experiments to assume the concentration u to be large.
The point is that, according to the theory discussed in the
previous section, the parameter u defines the temperature
t,(u) and  correspondingly  the  spatial  scale
L, (u) ~exp(const/u), Eqn (5.64), at which the crossover
to the critical behaviour of the impurity takes place. At
small concentrations, the crossover scale L, is exponentially
large and it becomes inaccessible in numerical experiments
for finite systems. On the other hand, if both coupling
constants J and J’ are ferromagnetic, then even for a finite
concentration of impurity bonds the ferromagnetic ground
state (and the ferromagnetic phase transition) is not
destroyed, whereas the crossover scale L, can be expected
not to be very large.

Here we shall review only one set of numerical studies in
which quite convincing results for the specific heat
singularity have been obtained [37]. The model with the
concentration of the impurities u = 1/2 has been studied. In
this particular case, the model given by Eqn (5.67) appears
to be ‘self-dual’, and its critical temperature can be
determined exactly from the equation [39]:

tanh (B, J) = exp(=2B8.J") .

In the Monte Carlo simulations a cluster-flip algorithm
formulated by Swendsen and Wang [40] was used; this
algorithm overcomes the difficulty of critical slowing down.
In one Monte Carlo sweep, the spin configuration is
decomposed into clusters constructed stochastically by
connecting neighboring spins of equal sign with the
probability [1 —exp(—2pJ;)]. Each cluster is then flipped
with a probability 1/2. At T. and for large lattices, the
relaxation to equilibrium for this algorithm appears to be
much faster than for the standard single-spin-flip dynamics.

Technically it is much more convenient to calculate the
maximum value of the specific heat as the function of the
size of the system, instead of the direct dependence of the
specific heat on the reduced temperature 7. Since the
temperature and spatial scales are in one-to-one correspon-
dence [R(t) ~ 7' in the 2D Ising model], the minimum

(5.68)
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possible value for 7 in a finite system of size L is Ty, ~ L~
Therefore, the maximum value of the specific heat in the
system which exhibits the critical behaviour C(t) must be of
the order of C(L™"). Then, according to Eqn (5.63), the size
dependence of the specific heat in the critical regime of the
impurity, in the case of the 2D Ising model, can be expected
to be as follows:

C(L)=Cy+C In(1+bInL), (5.69)

where C, and C; are some constants, and b=1/InL,,
where L, is the impurity crossover length, which is of a
finite size.

In general terms, the calculation procedure is as follows.
First, one calculates the energy:

(H) = —é (Zfij<0i"./)> .

(is j)

(5.70)

where (...) denotes the thermal (Monte Carlo) average.

Then the specific heat is obtained from the energy
fluctuations:

C(L) =L*((H?) — (H)?) . (5.71)
The simulations were performed for various ratios

r=J'/J=1/10, 1/4, 1/2, and 1. The system sizes ranged
up to 600 x 600.

Figure 13 displays the data for the critical specific heat,
as determined from Eqn (5.71) at r =1/10, 1/4, 1/2, and 1,
plotted against the logarithm of L. For the sake of clarity,
the vertical axis has been scaled differently for various r.

0.6 -

04 -

02 |-

10° 10! 10° 10°
L

Figure 13. The specific heat C at the critical temperature plotted as a
function of the logarithm of size L. The curves are: (1) the exact
asymptotic result for the pure system r=1; (2) r=1/2 with fitting
parameters Cy = 0.048, C; =15.7,b =0.085; (3) r=1/4 with fitting
parameters Cy = 0.048, C; =2.04,b=0.35; (4) r=1/10 with fitting
parameters Cy = —0.28, C; = 0.224,b = 8.8.

For the perfect model, » =1, the deviations from the
exactly known asymptotic behaviour are obviously rather
small for L > 16, in agreement with the analytic results on
the corrections to scaling [41]. At r = 1/2, the size depend-
ence data for L < 128 are still in the perfect Ising regime,
where C ~InL. At r =1/4 and r = 1/10, strong deviations

from the logarithmic size dependence occur, reflecting the
crossover to the randomness-dominated region for suffi-
ciently large values of L.

In Fig. 14 the same data are shown plotted against
In(InL). A strong upwards curvature is evident for r =1
and 1/2, indicating the logarithmic increase. In notable
contrast, the data for r = 1/4 approach a straight line for
moderate values of L, and those for r = 1/10 seem to satisfy
such behaviour even for small sizes, L > 4. From fits to
Eqn (5.69), one obtains L,=16+4 at r=1/4, and
L,=2+1 at r=1/10. The general trends are certainly
clear, and confirm the expected crossover to a doubly
logarithmic increase of C in the randomness-dominated
region sets for smaller sizes L, as r decreases.

Finally, in Fig. 15 the same data for r = 1/4 are plotted
against In(1 + bIn L) and exhibit a perfectly straight line for
all values of L.

08 |-

0.6 -

04 +

02

] 1 1 ] ]
04 0.8 1.2 1.6 2.0

In(InL)

Figure 14. The same sct of data as in Fig. 13, but in this case plotted
against In(In L).

0.2 0.4 0.6 0.8 1.0 1.2
In(1+bInL)

Figure 15. The same set of data as in Fig. 13 for r = 1/4, in this case
plotted against In(1 +b1InL) with b = 0.35.
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Therefore, in accordance with the analytical predictions
of the renormalisation-group calculations (section 4.3), the
results obtained in the Monte Carlo simulations provide
convincing evidence for the onset of a new randomness-
dominated critical regime. Besides, evidence is provided for
a In(InL) dependence in the behaviour of the specific heat
at the critical point for sufficiently large system sizes.

5.5 General structure of the phase diagram

Let us consider a general structure of the phase diagram of
the Ising spin systems with impurities. Apparently, in a
ferromagnetic system with antiferromagnetic or broken
impurity bonds, as the concentration u of the impurities
increases, the ferromagnetic phase transition temperature
T.(u) decreases. Then, at some finite concentration u, the
ferromagnetic ground state could be completely destroyed,
and correspondingly the phase transition temperature
should turn to zero: T (u,) =0. On the basis of these
general arguments, one could guess that the qualitative
phase diagram of such systems looks like that shown in
Fig. 16 (for details, see Refs [42], [43]). To the right of the
line T(u), the system is either in the paramagnetic state (at
temperatures which are high enough) or in the spin-glass
state [44]. The second possibility depends, however, on the
dimensionality of the system; at D = 2 the spin-glass state
is believed to be unstable at any nonzero temperature [45].

0 U, 172 u

Figure 16. A naive phase diagram of a ferromagnetic system diluted
by antiferromagnetic or broken couplings.

The critical phenomena considered in Section 4.3
formally correspond to the limit of small concentrations
of impurities, i.e. they describe the properties of the phase
transition near the upper left-hand side of the line 7.(u) in
Fig. 16. Nevertheless, the results obtained for the impurity-
dominated critical regime appear to be universal, as they are
independent of the concentration of impurities (as well as of
the values of the impurity bonds). They make it possible to
believe that the critical phenomena in the vicinity of the
phase transition line T .(u) must be the same for other
concentrations which are not small. The only parameter
which does depend on the impurity concentration is the
value of the temperature interval near T.(u), 7,(u), where
the impurity-dominated critical phenomena occur. Accord-
ing to the analytic theory of Section 5.3, the value of this
interval shrinks to Zero as u—0:

T, (u) ~ exp(—const/u) — 0. At finite concentrations, this
temperature interval becomes  formally finite, which
indicates that the whole critical region near 7 (u) must
be described by the critical regime of the impurity.

On the other hand, it is generally believed [42] that the
bottom-right part of the phase transition line T (u) (the
region near the critical concentration u = u., T < 1) belongs
to another universality class, which is different from the
ferromagnetic phase transition at u < 1. For example, it is
obvious that in magnets with broken impurity bonds the
phase transition as a function of the concentration (at 7 <€ 1)
at u =u, must be of the kind of percolation transition
which has nothing to do with the temperature of the
ferromagnetic transition. It means that there must be a
special point (T*, u*) on the line T (u) which separates two
different critical regimes.

Actually, there does exist a special line, the so-called
Nishimori line T (u) [46], which crosses the line T (u) at the
point (T*,c¢*) (Fig. 17). There is no real phase transition at
the Nishimori line. Formally it is special only in a sense that
everywhere on the line the free energy as well as some other
thermodynamic quantities appear to be analytic functions
of the temperature and the concentration. Moreover, an
explicit expression for free energy in the case of the
Nishimori line can be obtained for arbitrary 7 and u for
any dimensions. In fact, it makes the structure of the phase
diagram much less trivial than that shown in Fig. 16. Let us
consider this point in more detail.

For the sake of simplicity, let us consider the Ising
ferromagnet,

H==Y J00;,
(i J)
defined at a lattice with arbitrary structure. The ferromag-
netic spin—spin couplings J; are equal to 1, while the
impurity antiferromagnetic ones are equal to —1, so that
the statistical distribution of the J;; values can be defined as
follows:

Pl = H[(l —w)d(Jy;— ) +ud(J;+1)] ,
{

i J)

(5.72)

(5.73)

where u is the concentration of the impurity bonds.
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Figure 17. Phasc diagram of the Ising ferromagnet diluted by

antiferromagnetic couplings; Ty («) is the Nishimori line.
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One can easily check that the statistical averaging over
configurations of the J; values,

= > I -wsu; -

1) +ud(Jy;+ D](..) .

Ji==£1 (i, j)
(5.74)
can be rewritten as follows:
= Z [2 cosh B(u)] o exp [ﬁ(u) ZJ"-/] (..,
Ji=%1 {iy J
(5.75)

where Ny, is the total number of bonds in the system, and
the impurity parameter S(u) is defined by the equation

exp[-2B()] =

. (5.76)
1 —u

For given values of the temperature 7 and the
concentration u, the average energy of the system is defined
as follows:

E(u,T) = (H)
= —[2cosh B(u)]_N" Z exp[ Bu) ZJU]

Jij=%1 (is )

) (ZJ,,U a> exp (ﬁzf,, )

o==%1 (iy J)
Z exp (BZJU»O',» aj)
o==+1

{iy J)

X

. (5.77)

It is obvious that the system under consideration is
invariant under the local ‘gauge’ transformations:
g, — 0;5; ,

Ji =Ty (5.78)

SiSj s

for arbitrary s; = 1. Using the above gauge invariance,
the following trick can be performed. Let us redefine the
variables in Eqn (5.77) according to Eqn (5.78) (which
should leave the value of E unchanged), and then let us
‘average’ the obtained expression obtained for E over all
configurations of s;:

E(c,T) = —[2 cosh B(u)] “Neg=N

x 3 {Zexp[ﬁ@ S s ]}

Ji=£1 Ls=%1 {, )

5 (See) oo (130

o=£1 Mi, j) (is J)

> exp (13 Y Jio i"j)

o=%1 [o%

. (5.79)

One can easily see that the expression in Eqn (5.79),
{Z exp [ﬁ(u S ]} = Z[B(). 1] .

s=%£1 (iy J)
is the partition function of the system at the temperature
B(u). Therefore, if f(u) = f the partition function (at the
temperature f) in the denominator in Eqn (5.79)
cancelled by the partition function [Eqn (5.80)]. In this
case, the value of the average energy E (as well as the free
energy) can be calculated explicitly:

(5.80)

E(c, T) = —[2cosh ﬁ(u

]2 N Z (ZJ’JG a)
=+10==£1 \(j, j)

X eXp (ﬁzjijaiaj) = —[2cosh B(u) ]szf’\’

<l"j)

xi [ Z Z exp (ﬁzfijaiai>]
aﬁ Jij=%1 o==1 (iy J) .

= —Ny tanh f(u) = =Ny, [I — 2u(T)] . (5.81)

The internal energy obtained is analytic for all values of the
temperature and the concentration.

The above result is valid at the Nishimori line Ty ()
defined by the condition B(u) =

2
In[(1—u)/u]
This line is shown qualitatively in Fig. 17. It starts for the
zero concentration (pure system) at 7 =0, and for u — 1/2
(completely disordered system) Ty — oc.

Apparently, the Nishimori line must cross the phase
transition line T'.(«). This creates rather a peculiar situation,
because at the line of the phase transition the thermody-
namic functions should be nonanalytic (for details, see
Ref. [46]). Actually, this crossection point, (T,,u,), is
argued to be the multicritical point at which the para-
magnetic, ferromagnetic, and spin-glass phases merge [47]

For the Ising models of this type it can also be proved
rigorously [46] that the ferromagnetic phase does not exist
for u > u,, where u, is the point at which the Nishimori line
crosses the boundary between the paramagnetic and the
ordered phases T.(u) (Fig. 17). (It means that the structure
of the naive phase diagram shown in Fig.16 is in general not
quite correct.)

To prove this statement let us consider the following
two-point correlation function:

G(x) =

1

T (1) = (5.82)

(000 )5 (5.83)

where (...); denotes the thermal average for a given
temperature .

Using once again the trick with the gauge transforma-
tion [Eqn (5.78)] for the correlation function [Eqn (5.83)]

one gets:
G(x) = [2cosh B(u)]iN" Z exp [Zi(u) Zjij]
Ji==1 {i, )
Z(O’OO' exp <BZJ,,U 0'>
o T )
Z exp( Z],/O' a)
o=%1 (iy )

= [2cosh f(u)] “Nop=N

x 3 (ss)) exp[ﬁ(u D s ]

Jij=%1 s==%1 (is J)

™ (600, ) exp (/321,,0 o>

o=%1
Z exp( ZJ,, >
o==1 (iy J)

= [2cosh B(u)] ~Nop=N

I O3t

s'=%1J;==%1 (i, J)

X

X<(S0Sx >/'3(u)<(0'06x >/3 = <S0SX)B(M) <600'x>ﬁ -(5-84)
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Thus, the absolute value of the correlation function given
by Eqn (5.83) satisfies the condition

1G()| = {000 )] < [(s05:) 50| - (5.85)
since the absolute value of any Ising (Jg| = 1) correlation
function does not exceed one.

Therefore the absolute value of the two-point correla-
tion function calculated at the temperature 7 and the
impurity concentration u# do not exceed the average of
the absolute value of the corresponding correlation function
calculated at the Nishimori line at the same concentration.
This quantity in the long-range limit |x| — oo vanishes if the
corresponding point on the Nishimori line is in the
paramagnetic phase, which takes place for all concentra-
tions u > u,. On the other hand, the value of the correlation
function G(x) in the limit |x| — oo becomes the square of
the ferromagnetic magnetisation: G(|x| — o0) = m*(T, u).
Thus, the above simple arguments prove that m(T,u) =0
for u > u,.

The boundary line between the ferromagnetic and
nonferromagnetic (spin-glass) phases is vertical to the
concentration axis, as in Fig. 17 [46], although the exis-
tence of the reentrant phenomena cannot in general be
excluded.

6. The Ising systems with quenched
random fields

6.1 The model
In the previous sections we have considered the spin
systems in which the quenched disorder was introduced in
the form of random fluctuations in the spin—spin inter-
actions. There exists another class of statistical models in
which the disorder is present in the form of random
magnetic fields. This type of disorder is essentially different
from that with fluctuating interactions, since external
magnetic fields break the symmetry with respect to the
change of the signs of the spins.

In the most simplified form, the random-field spin
systems could be qualitatively described by the following
Ising Hamiltonian:

N
H=-— ZO’I‘O'j — Z/’ll‘ci,
i

<iFEj>

6.1)

where the Ising spins {o; = £1} are placed in the vertices of
a D-dimensional lattice with the ferromagnetic interactions
between the nearest neighbours, and the quenched random
fields {h;} are described by the symmetric Gaussian
distribution:

N 2

1 h;
Plh] = H[W exp(—%)], hy<1. (62)
0

1

The best-studied experimentally accessible realisations
of systems of this type are the site-diluted antiferromagnets
in a homogeneous magnetic field [48]. On a qualitative
level, this could be understood as follows. An ordinary
ordered antiferromagnetic system in the ground state is
described by the two sublattices A and B, with magnetisa-
tions which are equal in magnitude and opposite in sign.
Dilution means that some of the spins chosen at random are
removed from both sublattices. In the zero external

magnetic field, the dilution alone does not break symmetry
between the two ground states 0, = —ag = £1. However, if
the external magnetic field 4 is nonzero, then an isolated
missing spin on the sublattice A provides the energy
difference 2k  between the two ground states
op = —0g =41, and o5, = —agg = —1.

Another example is absorbed monolayers with two
ground states on impure substrates [49]. Here if one of
the substrate lattice sites is occupied by a quenched
impurity, it prevents additional occupation of this site,
which effectively acts as a local symmetry breaking field.

Other realisations are binary liquids in porous media
[50], and diluted frustrated antiferromagnets [51].

6.2 General arguments

Despite extensive theoretical and experimental efforts
during the last twenty years (for reviews see, for
example, Ref. [52]), there are few reliable statements for
the problem of the random-field Ising model.

According to simple physical arguments by Imry and
Ma [53], one would expect that the dimensions above which
the ferromagnetic ground state is stable at low temperatures
(it is called the lower critical dimension) must be equal to 2.
(Note that, for the Ising systems without random fields, the
lower critical dimension is 1.) Indeed, if we try to reverse a
large region Q of linear size L, there are two competing
effects: the gain in energy due to the alignment with the
random magnetic field E,, and the loss of energy due to the
creation of an interface E;. The first effect scales as follows:

—12
a~[(n)] - (Sm)~men e

ieQ i, jEQ

The second effect is the energy of a domain wall, which
is proportional to the square of the boundary of the
region Q:

E;~L®7) (6.4)
These estimates show that at dimensions 2 or lower for
arbitrary small (but nonzero) values of the field A, the two
energies become comparable for sufficiently large sizes L,
and no spontaneous magnetisation should be present. On
the other hand, at dimensions greater than 2, the energy at
the interface E is always greater than that at E),. Therefore
this effect should not destroy the long-range order and a
ferromagnetic transition should be present. This naive (but
physically correct) argument was later confirmed by a
rigorous proof by Imbrie [54].

On the other hand, a perturbative study of the phase
transition shows that, as far as the leading large-scale
divergences are concerned, the strange phenomenon of a
dimensional reduction is present, such that the critical
exponents of the system in dimensions D are the same
as those of the ferromagnetic system without random fields
in dimension D —2 [55] This result would imply that the
lower critical dimension is 3, in contradiction with the
results obtained rigorously.

In fact, the procedure of summing up the leading large-
scale divergences could give the correct result only if the
Hamiltonian in the presence of the magnetic field has one
minimum. In this case, the dimensional reduction can be
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rigorously shown to be exact by the use of supersymmetric
arguments [56].

However, as soon as the temperature is close enough to
the critical point, as well as in a low temperature region,
there are values of the magnetic field for which the free
energy has more than one minimum (this phenomenon is
similar to that considered in Section 4). In this situation,
there is no reason to believe that the supersymmetric
approach should give the correct results and therefore
the dimensional reduction is not justified. This is not
surprising because the dimensional reduction completely
misses the appearance of Griffith’s singularities [21].

Recently it has also been shown that the existence of
more that one solution of the stationary equations in the
presence of random fields is related, in the replica approach,
to the existence of new instanton-type solutions of the
mean-field equations which are not invariant under transla-
tions in replica space [57].

6.3 Griffith phenomena in the low-temperature region

In this section, simple physical arguments will be used to
demonstrate the origin of the Griffith singularities in the
thermodynamical functions in the low-temperature
(ordered) phase in the temperature region hi <T <1 for
the dimensions D < 3 [58]. This nonperturbative contribu-
tion to the thermodynamics will be shown to come from
rare, large spin clusters having a characteristic size
~V/T/hy with magnetisation opposite to the ferromag-
netic background, and which are the local minima of the
free energy.

If the dimensions of the system are greater than 2,
then the spin configuration of the ground state is
ferromagnetic. The thermal excitations are the spin
clusters with the magnetisation opposite to the back-
ground. If the linear size L of such a cluster is large,
then (in the continuous limit) the energy of this thermal
excitation could be estimated as follows:

E(L) ~ L°'—v(L), (6.5)
where
V(L) :J dPx h(x) . (6.6)
|x|<L

The statistical distribution of the energy function V(L)
[which is the energy of the spin cluster of the size L in the
random field A(x)] is:

PV(L)] = JDh(x) exp[ 2 J dPx hz(x)]

xH{ﬁ“l - dPx h(x) — v(L)” 6.7)

(here and in what follows all types of preexponential
factors are omitted). For future calculations it will be more
convenient to deal with the quenched function V(L)
instead of with A(x). One can easily derive an explicit
expression for the distribution function P[V(L)], Eqn (6.7)
(for the sake of simplicity, the parameter L is first taken to
be discrete):

X —00

+liL<lxl<Ll+l 4h(s) <i:; §j> }
_ (HJ+°° déi> eXp{_izijfiV(Lf)

w)(5e) )

_% h% Z(LIH -
— V(L]

V(L,H
_exp{ 2/122 ,_H—LD

2
}. (6.8)
Making L continuous again, we finally get:

PVL) :{17 [t i [0 } 69

Since the probability of the flips of big spin clusters is
exponentially small, their contributions to the partition
function could be assumed to be independent (it is assumed
that such clusters are noninteracting, as they are very far
from each other). Then, their contribution to the total free
energy could be obtained from the statistical averaging of
the free energy of one isolated cluster:

AF = —T [HJ dV(L)] P[V(L)]

L

xlog(l+J dLexp{ﬁ[V(L L“—']}>.(6.10)

Here the factor under the logarithm is the partition
function obtained as a sum over all the sizes of the
flipped cluster (the factor 1 is the contribution of the
ordered state, which is the state without the flipped
cluster).

The idea of the calculations of the free energy given
above is described below. Since at dimensions D > 2 the
energy E(L) =LP~' — V(L) is on average a function that
increases with L, it would be reasonable to expect that the
deep local minima (if any) of this function are well
separated and the values of the energies at these minima
increase with the size L. For this reason, let us assume that
the leading contribution in the integration over the sizes of
the clusters in Eqn (6.10) comes only from one (if any)
deepest local minimum of the function L?~' — V(L) [for a
given realisation of the quenched function V(L)].

Again, in view of the fact that the energy
E(L)=L""" -~ V(L) is a function of L, the sufficiency
condition for existence of a minimum somewhere above

[ ae] {% [ @t
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a given size L is:
dv(r) D2
>(D—-1)L .
dL ( )
By the use of the above assumptions, the contribution to
the free energy from the flipped clusters, Eqn (6.10), could
be estimated as follows:

6.11)

dv(L)
dL

00 —+00
AF:—TJ dLJ dVPL(V)P[ > (D —1)L"?

1

—00

xlog{l +exp[B(V—LD_])]} , (6.12)

where P, (V) is the probability of a given value of the
energy vV at a given size L, and
P[dV(L)/dL > (D —1)L”7?] is the probability that con-
dition (6.11) is satisfied at the unit length for the given size
L.

According to Eqn (6.6), V2(L) ~ h3L” (for large values
of L). Since the distribution P, (V) is expected to be
Gaussian, one gets:

V2
PL(V) :exp(—m> .
0

Note that the above result could also be obtained by
integrating the general distribution function P[V(L)],
Eqn (6.9), over all the ‘trajectories’ V(L) with the fixed
value V(L) =V at the given length L.

The value of the probability
P[dV(L)/dL > (D — 1)L7?] could also be obtained by
integrating P[V(L)] over all the functions V(L) conditioned
by dV(L)/dL > (D — 1)L”72 (at the given value of L ). It is
clear, however, that—with exponential accuracy—the
result of such an integration is defined only by the lower
bound (D —1)LP7? for the derivative dV(L)/dL (at the
given length L) in Eqn (6.9). Therefore, one gets:

dv(L) 1

(6.13)

P dL > (D — 1)L072:| ~ exp{—m
2;D-3
x[(D — 1)L“—2]2} = exp [—%} . (6.14)
2h3

Note the important property of the energy E(L), which
follows from Eqns (6.13) — (6.14): although at dimensions
D > 2 the function E(L) increases with L, the probability
of finding a local minimum of this function at dimensions
D < 3 also increases with L. It is the competition of these
two effects which produces the nontrivial contribution to
be calculated below.

In the low-temperature limit, 7 <1 (although still
T >h(2)), the contribution to the free energy, Eqn (6.12),
could be divided into two separate parts:

AF:AFl + AF2 N

v (D- 1)2LD3]

00
AF, ~—-T| dL dv - —
] J ,[V>L”-' P [ 2n3LP 2h}

1

X log{l + exp[B(V —LD_])]} >

v: (D-— 1)2LD_3]

00
AF, ~—-T | dL dv — —
? J .[V<L”" P [ 2n3LP 2h}

xlog{l —I—exp[ﬁ(V—LD*')]} . (6.15)

The first part is the contribution from the minima which
have negative energies (the excitations which produce the
gain in energy with respect to the ordered state). Here the
main contribution in the integration over V comes from the
limit V = L', and in the leading order one gets:

LD72 (D— ])ZLD73
2m3 2m3

00

AF| ~ —TJ dL exp [— (6.16)

1
For dimensions D > 2, the leading contribution to AF,
comes from L ~ 1, and this takes us back to the Imry and
Ma [53] arguments that there are no flipped large spin
clusters which would produce the gain in energy with
respect to the ordered state.

The second contribution in Eqn (6.15) comes from the
local minima which have positive energies. These could
contribute to the free energy only as thermal excitations at
nonzero temperatures. In the low-temperature limit f > 1,
one could approximate:

log{l + exp [ﬁ(V — LDf])]} ~ exp [—ﬁ(LDfI - V)],(6.17)
where L~ > V. Then for AF,, one gets:

00 LI)—I
AF, ~ —TJ dLJ dv

1 —00

Vi (D —1)’LP3

- vV —BLP7Y| . (6.18
LD A ©.18)

X exp [—

The main contribution in this integral also comes from the
‘trivial’ region L ~ 1, V ~ Bh3, which corresponds to the
‘elementary excitations’ at scales of the lattice spacing.

However, if the temperature is not too low, ,Bhf) < 1and
D < 3, there exists another nontrivial contribution which
comes from the vicinity of the saddle point:

V. = (Bh)LY .

(D —1)(3-D)]""
L,= [ 2812 ] >1, 6.19)
which is separated from the region L ~ 1,V ~ i} by a
large barrier. Note that the condition of integration in
Eqn (6.18), V, < Lo, according to Eqn (6.19) is satisfied
for L, < 1/Bh§, which is correct only if fhg < 1.

For the contribution to the free energy at this saddle-
point, one gets:

const _
AP, ~oxp |~ (pi) "
0

(6.20)
where

t=1D+ 1) - )22 R 6.21
const =3 (0 + )0~ (325) L 6
The result [Eqn (6.20)] demonstrates that, in addition to
the usual thermal excitations in the vicinity of the ordered
state (which could be taken into account by the traditional
perturbation theory), owing to the interaction with the
random fields there exist essentially nonperturbative large-
scale thermal excitations which produce exponentially
small nonanalytic contributions to the thermodynamics.
These excitations are large spin clusters with the magne-
tisation opposite to the background which are the local
energy minima. At finite temperatures, such that
h: < T <1, the characteristic size of the clusters giving
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the leading contribution to the free
L, ~ T/hy> 1.

This phenomenon, although it seems to produce a
negligibly small contribution to the thermodynamical
functions, could be extremely important for understanding
the dynamical relaxation processes. The large clusters with
reversed magnetisation are the local minima and are
separated from the ground state by large energy barriers,
and this could produce the essential slowing down of the
relaxation (see, for example, Ref. [59]). In particular, the
characteristic ‘saddle-point’ clusters [Eqn (6.19)] with the
size L,(T) ~ +/T/hy> 1 are separated from the ground
state by the energy Dbarrier of the order of
V,r~ (ﬁl’lé)_(D_Q)/2 > 1, and the corresponding character-
istic relaxation time at low temperatures can be expected to
be exponentially large:

o(T) ~ exp BB ] > 1.

energy is

(6.22)

However, in order to describe the temporal asymptotics of
the relaxation processes, one needs to know the spectrum of
the relaxation times (or the energy barriers), and this would
require more special consideration.

Unfortunately, the results obtained in this Section
cannot be applied directly for dimensions D =3, which
appears to be marginal for the considered phenomena (at
dimensions D >3 this type of nonperturbative effect is
absent). At D = 3 all those simple estimates for the energies
and probabilities of the cluster excitations which have been
used in this section [in particular, Eqn (6.14)] do not work,
and a much more detailed analysis is required.

On the other hand, it seems quite reasonable to expect
that the results obtained are correct for dimensions D = 2,
regardless of the fact that the long-range order in not stable
there. The point is that at D =2 the correlation length at
which the long-range order is destroyed is exponentially
large in the parameter 1/hg, whereas the characteristic size
of the spin clusters considered here is only the power of the
parameter 1/hy. Therefore, at the scales at which the
Griffith singularities [Eqn (6.20)] appear, the system is
still effectively ordered at D = 2.

6.4 The phase transition
The nature of the phase transition in the random-field Ising
model is still a mystery. The only reliable fact about it is
that the upper critical dimensionality (the dimensionality
above which the critical phenomena are described by the
mean-field theory, Section 2.3) for this phase transition is
equal to 6 (unlike in pure systems where it is equal to 4).
Let us consider this point in some more detail.

Near the phase transition, the random-field Ising model
can be described in terms of the scalar field Ginzburg —
Landau Hamiltonian with the double-well potential:

= [ @[SV + 300 0) — hote) + o'
(6.23)

where quenched random fields h(x) are assumed to be
described by the symmetric Gaussian distribution with the
mean square equal to h(2).

Ground state configurations of the fields ¢(x) are
defined by the saddle-point equation:

—Ap(x) + 1d(x) + g (x) = h(x) . (6.24)

In the usual RG approach for the phase transition in the
pure systems [i(x) = 0], one constructs the perturbation
theory over large-scale deviations of the background
homogeneous solution of the above equation,
oo =+/|tl/g, T <0 or ¢y =0, >0 (Section 2.6).

Apparently, the solutions of equation (6.24) with
nonzero h(x) may essentially depend on a particular
configuration of the quenched fields being nonhomoge-
neous. Let us estimate the conditions under which the
external fields become the dominant factor for the ground
state configurations.

Let us consider a large region Q; of a linear size L > 1.
An average value of the field in this region could be defined
as follows:

1

hQ,) = L—DJ_ . dPxh(x) . (6.25)

Correspondingly, for the characteristic value of the field
h(Q,) (averaged over realisations) one gets:

w = [P@)]
1/2

- h
D D_/ 7 _ 0
L,x’eﬂ,_ d”x d”x " h(x)h(x") =7

1
TP

(6.26)

The average value of the order parameter ¢(2,) in a given
region €; can be estimated from the following equation:

9+ > = h(Q,) . (6.27)
The solutions of this equation are:
h(Q
$(20) = b + gl;f R CAR LG (6.28)
o 1/3
$(Qy) ~ [%] . () > [ (6.29)

In the first case, Eqn (6.28), the external fields can be
considered as small perturbations, whereas in the second
case, Eqn (6.29), the external fields are the dominant factor
and the solution for the order parameter does not depend
on the temperature parameter 7.

Now let us estimate up to which characteristic sizes of
the clusters the external fields could dominate. According to
Eqn (6.26), the condition h(€;) > 7°/%, Eqn (6.29), yields:

2P

L <.
|T|)/D

(6.30)
On the other hand, the estimation of the order parameter
in terms of the equilibrium equation (6.27) could be correct
only for scales much greater than the size of the fluctuation
region, which is equal to the correlation length R, ~ |t|™".
Thus, one has the lower bound for L:

L> ™. (6.31)

Therefore the situation when the external fields become the
dominant factor could exist in the region of parameters
defined by the condition

o, P
7| < 7P (6.32)
or
[t P < h} . (6.33)
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Such a region of temperatures near T, exists only if: 2 7}
& P ¢ Y h<hc(r):—,/| . (6.37)
vD <3 . (6.34) 33\ g

In this case, the temperature interval near T in which the
order parameter configurations are defined mainly by the
random fields is

T (hg) ~ 1/ TP (6.35)

Outside this interval, 7> t,, the external fields can be
considered as small perturbations to the usual critical
phenomena.

In the mean-field theory (which correctly describes the
phase transition in the pure system for D >4), v=1/2.
Thus, according to condition (6.34), the above nontrivial
temperature interval 7, exists only at dimensions D < 6.
Correspondingly, at dimensions D > 6 the phase transition
is correctly described by the usual mean-field theory.

What is going on in the close vicinity of the phase
transition point, © < 7,(hy), at dimensions D < 6 is not
known. The only concrete statement for the critical
behaviour in the random field D-dimensional Ising model
worked out some years ago claims that its critical exponents
coincide with those of the pure (D — 2)-dimensional system
[55]. Unfortunately, although it is very elegant, this state-
ment is wrong for the reasons mentioned in Section 6.2.

Indeed, let us turn back to the order parameter saddle-
point equation (6.24). There exist strong indications both
theoretical [57, 58, 60] and numerical [61] in favour of the
possibility of the existence of many (macroscopic number)
solutions of this equation. Moreover, according to the
numerical studies [61] there exists another critical tempera-
ture T, above T, such that at temperatures 7 > T, the
solution of the saddle-point equation (6.24) is unique (this
region corresponds to the usual paramagnetic phase), while
at T < T, multiple solutions appear, and only below T the
onset of the long-range magnetic order takes place. All these
solutions must essentially depend on a particular configura-
tion of the quenched fields being nonhomogeneous. In such a
situation the usual RG approach, at least in its traditional
form (which is nothing else but the perturbation theory)
cannot be used.

It seems probable that we could find here again a
completely new type of critical phenomenon of the spin-
glass nature similar to that discussed in Section 4. As in spin
glasses [9, 11] one could find here numerous disorder-
dependent local energy minima. Unlike in spin glasses,
however, these minima are most probably separated by
finite energy barriers. Therefore, it is hardly possible to
expect the existence of the real spin-glass phase near T..
Nevertheless, it is widely believed that there must be a kind
of ‘glassy’ phase in a small finite temperature interval,
which separates the real paramagnetic state at high
temperatures from the ferromagnetic one at low tempera-
tures [62, 63].

One can also consider the following qualitative argu-
ments. Actually, multiple global solutions of the saddle-
point equation can appear due to the double-well structure
of the local potential:

| T B

U(#) =57¢" + 380" —hd(x) (6.36)
This potential has two minima only: one for 7 < 0 and the
other for the values of the field & which are not too large.
Therefore

At 7<0 the global solutions corresponding to the
ferromagnetic state appear. The spatial density of the
‘islands’ where the condition (6.37) is fulfilled can be
estimated as follows:
2
> . (6.38)

1 +h,
=——| dhexp|——
p V2mh,, J —h, P < 2k

Taking into account Eqn (6.37) one gets:

1 /|T|3 241/3
R L 1 o
h(] g < > |1'-| < (Aho) >

|1'|3> 231/3
1—exp(—— ~1 s ()
Zghf)

p~ (6.39)

In the second case in Eqn (6.39), the average distance
between the ‘islands’ approaches the order of one, such
that they interact strongly. It is only in this situation that it
would be natural to expect that the ferromagnetic solution
must be the global minimum. Indeed, for the energy
[Eqn (6.23)] of the ferromagnetic state ¢, = {/|t|/g, one
obtains E; = —12/4g. On the other hand, a simple estimate
for the characteristic energy of the disordered (field-
defined) solution P(x) ~ [n(x)/g]'" yields:
E, ~ —(hg/g)'ﬁ. Thus, the ferromagnetic solution attains
the global minimum only for |z| < 1, ~ (gh3)'"/°.

According to the above qualitative arguments, when the
temperature is lowered the following physical phenomenon
is expected to take place. At temperatures above 7 = 0, the
disordered local minimum solution must be unique. It is
only below 7 =0 that multiple local minimum solutions
appear. Simultaneously the ferromagnetic solutions appear
below this point, although its energy is higher than the
typical energy of the disordered solutions. According to
these speculations, the point 7 = 0 should be associated to
the temperature 7, mentioned above and not to the
ferromagnetic transition temperature 7,. On further low-
ering the temperature down to ~ (gh(z))'/3, the interaction
among the local minimum solutions is no longer small, and
this may produce the nontrivial spin-glass effects discussed
in Section 4. At temperatures of the same order, the
ferromagnetic state attains the global minimum, so that

. . 21/3
somewhere in that temperature region at T, ~ T, — (ghj)
the ferromagnetic phase transition takes place. In the low-
temperature ferromagnetic phase, random fields also
produce multiple local minimum states (due to large spin
cluster flips), although here these are higher in energy than
the ordered state, so that they can produce only Griffith
singularities (considered in Section 6.3) and anomalously
slow relaxations.

In the situation when the thermodynamics is defined by
numerous disorder-dependent local energy minima, the
most developed technique, which makes it possible to
perform actual calculations, is the Parisi replica symmetry
breaking (RSB) scheme (see Section 4). It is now many
years since the possibility of RSB in the random-field Ising
systems was first discussed [63, 64]. Recently the RSB
technique has been successfully applied for the statistics
of random manifolds [12], as well as for the m-component
(m > 1) spin systems with random fields [13]. In the second
case, it has been rigorously proved that the usual scaling
replica-symmetric solution is unstable with respect to RSB
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at the phase transition point. Moreover, recent studies of
the D-dimensional random-field Ising systems, made in
terms of the Legendre transforms and the general scaling
arguments, demonstrate that for D <6 in a finite tem-
perature interval near T, a new type of critical regime is
established, which is characterised by explicit RSB in the
scaling of the correlation functions [65].

7. Conclusions

In this extensive review | have considered the problem of
the effects produced by weak quenched disorder in
statistical spin systems. The idea was to demonstrate on
a qualitative rather than quantitative level the existing
basic theoretical approaches and concepts. That is why the
considerations were restricted by the simplest statistical
models, and most of the details of the theoretical and
experimental studies were not discussed.

The key problem which still remains unsolved is whether
or not the obtained strong-coupling phenomena in the RG
flows could be interpreted as the onset of a type of spin-
glass phase in a narrow temperature interval near 7. In
spin glasses it is generally believed that RSB phenomena
can be interpreted as a factorisation of the phase space into
the (ultrametric) hierarchy of ‘valleys’, or local minimum
pure states, separated by macroscopic (infinite) barriers.
Although in the systems considered here the local minimum
configurations responsible for RSB are not likely to be
separated by infinite barriers, it would be natural to
interpret the phenomenon obtained as effective factorisa-
tion of the phase space into a hierarchy of valleys separated
by finite barriers. Since the only relevant scale in the critical
region is the correlation length, the maximum energy
barriers must be proportional to R?(t), and they become
divergent as the critical temperature is approached. In this
situation, one could expect that besides the usual critical
slowing down (corresponding to the relaxation inside one
valley) qualitatively much greater (exponentially large)
relaxation times would be required for overcoming the
barriers separating different valleys. Therefore the tradi-
tional measurements (made at finite equilibration times) can
actually correspond to the equilibration within one valley
only, and not to the true thermal equilibrium. Then in a
close vicinity of the critical point, different measurements of
the critical properties of, for example, spatial correlation
functions (in the same sample) would exhibit different
results, as if the state of the system become effectively
‘trapped’ in different valleys.

In any case, this phenomenon clearly demonstrates the
existence of numerous metastable states forming infinite
continuous spectra, and it could be interconnected with a
general idea that the critical phenomena should be
described in terms of an infinite hierarchy of correlation
lengths and critical exponents. Unfortunately owing to the
present state of knowledge in this field it is very difficult to
hypothesise what the systematic approach for solving this
type of problem should be.

It is now many years since, after the work of L D Lan-
dau and K G Wilson, the theory of the second-order phase
transitions has become quite respectable and well-estab-
lished science. It is generally believed that no bright
qualitative breakthrough can be expected in this field
any more, and that the only remaining problems relate

to the progressively more exact calculations of the critical
exponents.

In a sense, the theory of the disorder-induced critical
phenomena has tried to attain a similar status. However,
recent developments in this field clearly indicate the
existence of a qualitatively new physical phenomenon,
which goes well beyond the traditional concepts of the
scaling theory. It seems as if we are close to a breakthrough
to a new level of understanding of the critical phenomena in
weakly disordered materials. I do believe so. This is in fact
the main reason why the present review has been written.
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