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Abstract. An historical and methodological analysis is  Ritz’s variational method is well known to mathematicians

given of the scientific heritage of the remarkable Swiss
theoretical physicist Walter Ritz (1878 —1909) on the basis
of a study of his complete works edited in 1911. The
general characteristics of Ritz’s works—including the
papers on spectroscopy, the variational method and
electrodynamics—are discussed, and his fundamental
research in the theory of atomic spectra is considered in
detail. The elastic and the magnetic atomic models,
proposed by Ritz to explain the spectral laws and based
on a classical approach, are discussed. It is shown that the
generalised Balmer and Rydberg formulas and the
combination principle, which later became a basis for
the formulation of Bohr’s frequency condition, were
obtained by Ritz as a result of mathematical deductions
from his models and were not of a semi-empirical character
as is usually believed.

1. General characteristics of Ritz’s works

The name of Walter Ritz, a Swiss scientist of the beginning
of the 20th century, needs no special recommendations for
physicists. In spectroscopy, the name of Ritz is connected
primarily with the combination principle which played an
important role in the construction by Niels Bohr in 1913 of
the initial quantum theory of the atom and its spectrum.
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and is successfully applied in theoretical physics; this
method is widely presented not only in the corresponding
monographs and textbooks, but also in encyclopaedic
literature. In accounts of the history of appearance of
relativistic concepts, a postulate contained in Ritz’s works
on the addition of the speed of light with that of its source
(the so-called ballistic hypothesis) is given as a textbook
example of the failure of any attempt to create an
alternative to the special theory of relativity (STR).

At the same time, one may safely assert that the true
nature of the scientific work by Ritz was that of a
remarkable theoretical physicist, his actual role in the
prehistory of theoretical spectroscopy was much more
significant than is usually accepted, and the real scale
and originality of his personality have not yet been given
proper acknowledgement. Grounds for such a statement are
given by an attentive study of the contents of Ritz’s
complete scientific works [1], which runs to more than
500 pages and was edited in 1911 in Paris by the publishers
Gauthier—Villars on the initiative of the Swiss Physical
Society with the active assistance of a group of scientists
from Gottingen, the Institute of France (which unites five
Academies, including the French Academy of ‘Immortals’
and Academy of Sciences) and the Federal Polytechnical
School in Zurich (Switzerland). The book presents a
posthumous edition of the works of the young scientist
who died in 1909 at the age of 31 and actively worked in
science only from 1902 to 1909 (which included a three-
years’ break because of illness). In a brief foreword to the
readers (Avertissement) at the beginning of the book, its
compilers wrote that the Swiss Physical Society ‘not only
intended, by making available scientific papers of a rare
beauty, to draw once more the attention of physicists and
mathematicians to work of a most refined mind (d’un esprit
d’elite)’. It was ‘convinced it was favouring the progress of
Science by facilitating the dissemination of brave new ideas’
(Ref. [1], p. V).

Included amongst Ritz’s works [1] were 25 papers from
1902 -1909 containing his research in three different topics
in physics and mathematics.
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The first of these topics, which was developed by Ritz
during this period, was connected with spectroscopy and
includes 13 papers, beginning with his thesis of 1902 ‘On the
theory of spectral series’ ([1], paper I, p. 1—77), in which for
explanation of regularities in the atomic spectra he used the
elastic atomic model based on classical concepts. The main
part of the thesis, which represented extensive theoretical
research, was published by Ritz as a large paper in 1903 [2].
A short version of the paper [3] and a small paper ‘On the
spectrum of potassium’ [4] were published in the same year.
Ritz subsequently rejected the elastic model and in 1907 he
published two short papers ‘On the origin of spectral series’
[5, 6] in which the idea of the magnetic atomic model (also
based on classical concepts) first appeared. Ritz imple-
mented this idea in 1908 in a large paper entitled ‘Atomic
magnetic fields and spectral series’ [7] devoted to the
magnetic atomic model, and using this model, in the paper
‘On the new law of spectral series (preliminary results)’ [§],
he formulated for the first time the combination principle
for series of atomic spectra as a universal spectroscopic law.
A shorter version of this important paper originally written
in German was also published in 1908 in English [9]. A
general paper in French by Ritz on ‘Linear spectra and
atomic structure’ [10], as well as two short papers ‘On
several anomalous Zeeman effects in the spectrum of
thorium”’ [11] and ‘Series in the spectrum of barium’ [12]
were published by 1909. Ritz’s papers on spectroscopy
constitute about a third of his total work.

The second topic of Ritz’s studies was generically
connected with the mathematical methods applied by
Ritz in his thesis for modelling atomic oscillation frequen-
cies by oscillations of a two-dimensional square plate. He
proposed a new method for solving problems in the calculus
of variations and used it for a number of particular cases. In
1908 he published a long paper ‘On the new method for
solving some variational problems of mathematical physics’
[14], and an extensive publication on an important applica-
tion ofthe new method, ‘Theory ofthe transverse oscillations
of a square plate with free boundaries’ [15], appeared in
1909. These three papers constitute about a quarter of
Ritz’s works.

Finally, the third topic of research was connected with
an attempt by Ritz to reconstruct electrodynamics radically
based on a field approach which was an alternative to the
Maxwellian field-free approach, which went back to Gauss
and Riemann. Nine papers by Ritz (more than a third of his
total work) relate to this topic. From these 8§ were published
in 1908—-1909 and included a very long paper on ‘Critical
studies on general electrodynamics’ [16] and a shorter paper
on the same subject, ‘Critical studies of electrodynamic
theories by J C Maxwell and H-A Lorentz’ [17], the papers
‘On the role of ether in physics’ [18], ‘Gravitation’ and ‘On
the principles of electrodynamics and on black body
radiation theory’ [20]. This paper [20] was criticised by
Einstein in 1909 in his well-known paper ‘On the problem of
radiation’ [21], and Ritz’s paper ‘On the modern state of the
theory of radiation (objections to the paper by A Einstein)’
[22] and a short note under the same title written jointly
with Einstein [23] were devoted to the discussion with
Einstein. The introductory Gottingen talk ‘The relativity
principle in optics’ remained in manuscript form and was
published only in the collected works.

It should be emphasised that the clearly distinguished
peak of Ritz’s scientific activity falls in the last two years of

his life—during 1908 —1909 he published 18 papers
amounting in total to about 400 pages and devoted to
all the three topics of his research.

Ritz’s name acquired wide fame even during his lifetime,
as is shown by the publication of the complete works of the
scientist just after his death, and his works on the
combination principle and the variational method were
generally recognised by his contemporaries. Ritz was highly
esteemed by the spectroscopists Kayser, Runge and
Paschen, by the recognised masters of science such as
the physicist Lorentz and mathematicians Gilbert and
Poincare; Einstein held respectful discussions with him
[21, 23]; his untimely death was bitterly regretted by
such scientists as Rayleigh [24], Sommerfeld (Ref. [25],
p. 286) and Rozhdestvenskii (Ref. [26], p. 8). A detailed
foreword to the works by Ritz was written by the specialist
in magnetism Weiss (Ref. [1], p. VII-XXII) and contained,
in particular, praise for Ritz’s variational method from
Poincare. Acquaintance with Ritz’s works was for Bohr one
of the stimuli for formulating the second postulate of the
initial quantum theory of atoms and spectra—the famous
frequency condition. The quantum interpretation of the
known spectroscopic corrections to spectral terms, studied
by Ritz as early as 1902 in the framework of the pure
classical approach (Rydberg corrections and corrections
introduced by Ritz himself and bearing his name), was a
subject of research by Sommerfeld, Bohr, Schrodinger and
Born later on.

While describing the scientific work of Ritz, it should be
stressed that the modern historiography devoted to him is
extremely scanty. Better known (although it requires a more
precise definition) is the history of Ritz’s variational
method: we note mathematical monographs by Mikhlin
[27] and Gould [28], where interesting (however, somewhat
fragmentary) background information is presented. Ana-
lysis of the elastic and magnetic atomic models proposed by
Ritz to explain spectral regularities is completely absent; the
discovery of the combination principle was not considered.
It is usually accepted to have been empirically established
by Ritz in 1908 (see, for example, the fundamental lectures
on general physics by Sivukhin [29], p. 62, and also
Ref. [30]). Practically no reference is made to Ritz’s works
in the account of the history of electrodynamics, although
they, undoubtedly, are worthy of this. The only publication
in the world which is specifically devoted to his scientific
activity as a whole seems to be an article by the American
science historian Forman published in volume 11 of the
multivolume dictionary of scientific biography edited in
1976 (Ref. [31], p. 475). Regretfully, this excellently written
and very informative essay is as little known to physicists as
the complete works collection [1] itself. In our paper (see
preprint [32]) we will make extensive use of the material
from Forman’s publication, especially the part that con-
cerns Ritz’s biography.

Walter Ritz was born in Sion (Switzerland) on February
22, 1878, to the family of the landscape painter Rafael Ritz.
After having finished college in 1895, he attended a
technical course in a lyceum and in 1897 he entered the
federal polytechnic school in Zurich. Shortly afterwards he
rejected his initial intention to become an engineer and
moved to a mathematical division of the school (one of the
students of which at that time was Albert Einstein). In the
spring of 1901 Ritz moved to Gottingen. Here he studied at
the university mainly with physicists Voigt and Riecke,
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attended lectures by the mathematicians Gilbert and Klein,
the physicist Abraham and other well-known scientists.

In 1902 Ritz carried out his already mentioned thesis
study on the theory of spectra (Ref. [1], c. 1) and defended
the thesis on December 19 of the same year with the highest
acclamation ‘summa cum laude’ (‘with the highest praise’);
the choice of the thesis theme on the theory of spectra
corresponded to the interests of professors Voigt and
Riecke. After having defended the thesis, Ritz went to
Leiden in Holland, meeting on the way (in Hannover) with
Runge to discuss spectroscopic problems. In Leiden for six
weeks Ritz attended lectures and seminars by Lorentz
together with Ehrenfest, whom he met and became friends
with in Gottingen (Ref. [33], p. 32) and whose intellectual
development, as Klein stresses (Ref. [25], p. 165), he very
strongly influenced. Ritz left Leiden, in Forman’s words,
‘little inclined (or not inclined at all) to Lorentz’s view’
(Ref. [31], p. 476).

In May and June 1903, Ritz worked at the Kayser
Institute in Bonn, where the best conditions for spectro-
scopic studies in Germany in those years were created: he
succeeded in detecting experimentally a missing line of the
diffuse series of potassium [4], which he had predicted in his
thesis. At the end of 1903, Ritz moved to Paris and, upon
recommendation by Weiss, was taken on in Cotton’s
laboratory, where he was engaged in making photographic
plates sensitive to the infrared region of the spectrum. The
choice of this particular problem was connected with
importance of studying this spectral band for different
chemical elements.

In July 1904 Ritz had to return to Switzerland because
of a sharp deterioration in his health, and during the
subsequent three years he tried to recover it at diverse
sanatoria. During this period he published nothing but a
short paper on photography in the infrared spectral band
[34]. From the beginning of 1907 Ritz renewed his intensive
scientific activity despite bad health. From September 1907
he worked at Paschen in Tubingen, which was one of the
centres for spectroscopic studies in Germany. In spring
1908 Ritz moved to Gottingen where he was cordially
welcomed at the University and was given a lectureship,
although he had no longer the strength to give lectures. An
introductory lecture prepared by him (Antrittsrede zur
Habilitation) was accepted with kindness by the judging
committee of which Gilbert, Minkowski, Voigt and Runge
(Ref. [1], p. XI) were the members, and was given on March
5, 1909 (Minkowski died shortly before this, on January 12,
1909).

Ritz passed away as a result of tuberculosis on July 7,
1909 1. His obsession with science is characterised by the
words he said that day to a nurse who was taking care of
him: ‘Please, take good care of me, nurse, —it is vital that I
live a few more years for the sake of science’ (ibid.).

tShortly prior to his death Ritz was visited by loffe, a close friend of
Ehrenfest who worked in St Petersburg at that time. Toffe wrote to
Ehrenfest that he had talked with Ritz about many things, including
the theory of quanta, and that Ritz was very grateful for kind regards
from Ehrenfest ([35], p. 264). And in a short time Ehrenfest informed
lIoffe that he had received news from Ritz’s mother about his death: on
July 7 ‘he peacefully passed away because of hemorrhage’. ‘His death
aroused in me above all such a feeling of how, in fact, everything is
simple, how completely cverything is determined’, Ehrenfest wrote
([35], p. 45). In the foreword to the book [35] its compiler V Ya
Frenkel’ notes the friendship of Ehrenfest in Gottingen with ‘the very
talented student from Switzerland, Ritz’.

In all his scientific activity Ritz showed himself to be a
deep theoretical physicist with a subtle understanding of the
physical essence of the problems he studied and handled
brilliantly using mathematical methods.

Below we will consider in detail the spectroscopic studies
by Ritz and his closely connected attempts to construct
atomic models, first elastic, and then magnetic. Such a
choice is dictated by the large contribution by Ritz towards
establishing the most important spectroscopic laws. An
examination of this contribution is especially important
because that aspect of Ritz’s research, which turned out to
be the most significant for modern physics development,
has obtained quite insufficient interpretation in the litera-
ture both in physics and in scientific history. The lack of
proper attention from physicists and historians of science to
this line of Ritz’s research is undoubtedly connected with
the fact that his approach was fully classical, and the
subsequent development of the quantum theory of atomic
spectra, it would seem, should have rendered his theoretical
arguments completely invalid. But nevertheless the aston-
ishing, although now little known, fact remains that Ritz
managed to construct mathematical models, from which
one can logically derive, as natural consequences, analytical
expressions for the spectral terms and their differences
which not only excellently fitted the experiments, but
were also confirmed later on by the quantum theory.

We will not consider in detail Ritz’s studies on the
variational method and electrodynamics. As for the varia-
tional method, it should be noted that this aspect of the
widely known work by Ritz characterises him primarily as a
mathematician and it is treated in scientific literature in
some detail, in particular in monographs (see, e.g., the well-
known book by Kantorovich and Krylov [36]). Here we will
restrict ourselves to a short consideration of some questions
concerning the history of the creation of this method, as
well as the question of its originality. As is known, the basic
idea of applying the variational method to solving the
problem of integration with given initial and boundary
conditions consists in its substitution by the problem of
finding a function that provides an extremum to a certain
integral. Dirichlet [37] was the progenitor of such an
approach. However, general attention to the variational
method was drawn after Ritz’s classical papers had
appeared in 1908 and 1909 [13—15], the history of which
is quite interesting [31]. At the end of 1904 the Paris
Academy of Sciences instituted a prize for the best study
on the improvement in some important respect of the
theory of analysis connected with the equilibrium of a
plate in a hard frame, which was very close to the
mathematical problems that Ritz had solved in his
thesis. Ritz quickly carried out the study to obtain the
announced prize, but the representative judges, including
Poincare, completely ignored his work. After the papers [13,
14] were published in 1908, Ritz’s variational method
induced such a rapid and positive resonance that in April
1909 Poincare sought out Ritz in Gottingen to apologise to
him on behalf of the Paris Academy for the admitted
injustice and to inform him of the intention of the Academy
to award him the prize that year. This prize was awarded to
Ritz only after his death (Ref. [1], p. X; Ref. [31], p. 438).

Ritz proposed a general method applicable to a much
wider field than the problem initially set. The efficiency of
this method was convincingly demonstrated by Ritz for
four particular examples. The first coincided with the
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competitive theme announced by the Paris Academy; the
others were: solution of the Dirichlet problem in its classical
formulation (i.e. the search for a harmonic function with
values specified at the boundary of a given region),
application of the method to ordinary differential equa-
tions with variable coefficients, and finally the application
of the method to oscillations of a string. Ritz’s method was
rapidly adopted and became an effective tool in different
fields of mathematical and theoretical physics; it was widely
used for calculating the physical characteristics of quantum
mechanical systems (Refs [38, 39]). This method was the
basis of the new approach to applied mathematics. We note
the further evaluation given by Poincare (see Ref. [1],
p. XV, XVI), who stressed that ‘this is the method of an
engineer’. To conclude, we note that the question about the
degree of originality of Ritz’s approach itself is interesting
in the purely historical aspect, as no single point of view
about this exists in the literature. The prevailing standpoint
is that according to which Ritz’s individual authorship is
unreservedly accepted. On the other hand, there are some
sources where Rayleigh is also called the author of the
approach (Rayleigh —Ritz method). Moreover, it is known
that Rayleigh himself directly claimed priority in formulat-
ing the variational method, and in a paper in 1911 [24] he,
while greatly praising the ‘remarkable memoir by Ritz’, also
wondered that ‘Ritz should consider his method as new’
(Ref. [24], p. 226). Then Rayleigh makes reference to a
number of his own papers (Refs [40—42]). A thorough
analysis of all the papers cited by Rayleigh shows that the
starting point of his approach is the same basic idea as was
used by Ritz for reducing a variational problem to the more
simple problem of a function extremum. However, Rayleigh
limited himself to oscillation problems, whereas Ritz
formulated the mathematical problem in a general form.

That Ritz came to the variational method formulation
fully independently of Rayleigh is shown by the absence of
references to Rayleigh’s works in his papers. Taking into
account Ritz’s extreme punctiliousness in making references
to literature sources and his respect for Rayleigh’s scientific
authority, one should conclude that Ritz was not
acquainted with Rayleigh’s method and came to the
principal idea of the method quite independently of
Rayleigh; this was made clear by Courant in his paper
[43]. It seems that the most accurate estimate of the real
relationship between Rayleigh’s and Ritz’s approaches is
contained in Mikhlin’s monographs. He wrote that ‘in
application to the problems of oscillations the method of
Ritz is a far-reaching generalisation of the ‘Rayleigh
method” (Ref. [27], p. 15).

The analysis of questions connected with Ritz’s works
on electrodynamics is important when characterising him as
a theoretical physicist and requires a special and more
detailed investigation. Such a study was undertaken by two
of the authors (L M Tomil’chik and M A El’yashevich)f,
and here it is necessary to emphasise that one cannot agree
with the purely negative assessment of Ritz’s studies on
electrodynamics, which constitute a very significant part of
his scientific heritage. Now one can say with confidence that
such an assessment, which is widespread in the literature, is
only partially correct. Usually attention is exclusively fixed
on the point of Ritz’s general concept which is connected
with denying one of the basic postulates of special relativity

FThe results of this study will be published in a separate paper.

theory, the principle of the independence of light speed
from the source velocity. The ballistic hypothesis by Ritz
indeed turned out to be incorrect and was refuted by direct
experiment. A detailed analysis of the numerous important
difficulties that arise in electrodynamics and optics if this
hypothesis is accepted is contained in the classical mono-
graph by Pauli on the theory of relativity [44]. Pauli’s
critical remarks relate to an ‘emission’ approach, and
giving an account of Ritz’s theoretical concept was not
his intention. In fact, Ritz obtained his results by using a
different method from that discussed by Pauli; most
important is that the research program Ritz tried to carry
out remained beyond the scope of that discussion. This
program contained a number of significant aspects that
were not logically connected to the ballistic hypothesis at
all, and it had quite a rich historical tradition based on a
field-free approach that was an alternative to the Maxwel-
lian one and took retardation into account. This approach
goes back to Gauss [45] and Riemann [46] and later on, in
the middle of the 20th century, was used by Feynman, and
proved itself quite viable in general (see ‘Nobel Lecture’ by
Feynman [47] and in particular papers by Wheeler and
Feynman [48, 49]). The field-free approach was developed
further in subsequent years (see, for example, monograph
[50]). In Ritz’s studies on electrodynamics one can clearly
distinguish the critical and constructive parts, each of which
is worth further historical and methodological analysis.
Such an analysis, however, is beyond the scope of the
present review.

In what follows we will not concern ourselves with
Ritz’s studies on the variational method and electrody-
namics but will focus on his spectroscopic investigations. To
understand the role of these studies by Ritz, one needs to
understand the state of theoretical spectroscopy at the
beginning of his scientific career (1902); Section 2 is
devoted to this, and is similar to the authors’ paper on
‘Rydberg and the development of atomic spectroscopy’ [51].
The main sections are 3 and 4. Ritz’s thesis on the theory of
spectral series and the elastic atomic model developed by
him are given, and Section 4 is devoted to his magnetic
atomic model and the combination principle. Section 5
contains a short general conclusion.

2. The state of theoretical spectroscopy at the
beginning of the 20th century

After the invention of spectral analysis in 1859 by Bunsen
and Kirchhoff, extensive experimental data were sampled
for the atomic spectra in which spectral series are
observed —sequences of spectral lines converging towards
certain limits (in the scale of wavelengths 4 or wave
numbers v=1/A)f. As is known (see, for example,
Ref. [52]), series structure was detected for hydrogen
(Balmer series) and for alkaline, alkaline-earth and other
elements (the characteristic principal, sharp and diffuse
series). Towards 1902, the beginning of Ritz’s scientific
career, the data on atomic spectral series were put in
systematic form by the Swedish scientist Rydberg, on the
one hand, and by the German spectroscopists Kayser and

$In what follows we denote by v (as is accepted in spectroscopy) both
the wave number (usually expressed in cm™') and the frequency
v=c/A (expressed in inverse seconds, s7h, where ¢ is the speed of
light.
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Runge, on the other hand, on the basis of formulas found
by them, which were of a sufficiently general character and
correct to a high degree of accuracy (especially those by
Kayser and Runge). The decisive role was played here by
Rydberg’s study (in the introduction we have already made
reference to the authors’ paper [S1] where a detailed
analysis of Rydberg’s contribution to progress in atomic
spectroscopy was given). In his fundamental work of 1890
[53], Rydberg represented for the first time the wave
numbers of the spectral lines as the difference between two
terms (two spectral terms, in the modern terminology).
These terms have the form

T, =— (M)
(m + )

where m is a positive integer increasing from some small
fixed value to oo, N is a universal constant (named after
Rydberg and presently denoted by R), and u (the Rydberg
correction) is a constant peculiar to a certain spectral series
(in particular, for main, sharp, or diffuse series) of the
given element and equal to zero for hydrogen. The general
formula proposed by Rydberg for the lines from spectral
series can be written as [see Ref. [S1], formula (13)]:

v 1 T N N

4 " " (m, +H|)2 (my +H2)2
At constant m; and variable m, one gets a specific spectral
series, lines of which converge towards some boundary as
m, — 0. In case of hydrogen (u; = u, =0) at m; =2 and
my, =3, 4, 5, ... one obtains a formula for the well-known
Balmer series, and for arbitrary m; and m, —the so-called
generalised Balmer formula:

1 1

v=N (m% m%) . 3)
These were subsequently presented in this form by Ritz in
his thesis (Ref. [1], p. 13) and other papers (with notations
m; =n and m, = m). Expression (2) should be considered
as an initial formulation of the combination principle,
which was given in a more general form by Ritz (see
Section 4).

For the spectral series Kayser and Runge proposed an
alternative formula of the form

@

vzéza—l—bm_z—l—cm_4 R @)
containing three constants a, b, and ¢ peculiar to a certain
series of the given element.

A very significant point is that Rydberg formulated the
program for establishing a general relation between the
spectral characteristics of matter and its internal structure
and implemented it as a solution to the problem of putting
the spectroscopic material into systematic order in the
framework of some semi-empirical scheme, which bears,
nevertheless, a quite simple and universal character (see
Ref. [51], p. 149 for more detail). He discussed it with
Kayser and Runge, who objected in principal to the
desirability of a search for a universal function and
proposed as a unique criterion of the correctness of the
formula more precise reproduction of the experimental
data. Rydberg proved to be right, and the deep physical
meaning of his results became clear, as is known, much
later, only in 1913, as a result of the development by Bohr
of the quantum theory of the atom and its spectrum, when a

proportionality of the spectral terms to the atomic quantum
state energies was established and the frequency condition
was formulated based on relationship (2)t.

The studies by Rydberg were the accomplishment, at the
end of the 19th century, of the first stage in establishing
spectral regularities. It was characterised by the search for
some sufficiently general dependences by means of ordering
the experimental data on the grounds of empirical and semi-
empirical schemes. As we will see below, the second period
of establishing such regularities, which was connected with
attempts to model them theoretically, was completed in the
first decade of the 20th century by Ritz, who, unlike
Rydberg with his semi-empirical approach, obtained his
results using the particular theoretical models.

To understand Ritz’s studies on theoretical spectro-
scopy, one needs to understand, as we already mentioned in
the introduction, the state of the field of spectroscopy at the
beginning of his career in 1902. At that time, the general
situation in the theory of interaction of electromagnetic
radiation with matter was characterised by the complete
absence of any serious theoretical test, which would allow
one to estimate correctly the regularities found in the
atomic spectra and, in particular, to make a choice between
Rydberg’s formulas and those of Kayser and Runge.

Although an adequate physical explanation of the
empirical regularities in the atomic spectra and their
connection with the structure of matter became possible,
as we well know, only on the basis of quantum ideas, the
rich history of attempts to describe these phenomena
classically is very instructive. The theoretical investigations
of Ritz, who managed to come to a number of new and
principally correct conclusions while remaining fully within
classical physics, without any doubt, have a quite excep-
tional place.

The first attempts to explain the spectral regularities
theoretically were undertaken as early as the end of the
1870s. They, however, were unsuccessful due to the absence
at that time of adequate physical ideas about the nature of
optical radiation and atomic structure. The recognition of
Maxwell’s electromagnetic theory by the scientific com-
munity at the end of the 19th century and the discovery of
the electron, the appearance of the electronic theory of
Lorentz and its impressive success in explaining the Zeeman
effect provided quite new opportunities for theoretical
explanation of the spectral regularities.

The laws of electricity and magnetism are known to be
adequately expressed by Maxwellian electrodynamics [55,
56], the theory of which was completed at the beginning of
the 1870s. The most important consequences of his theory
were the establishment of the electromagnetic nature of
light and the prediction of electromagnetic waves. However,
for almost two decades the ideas and results of Maxwell did
not attract the proper attention of scientists and only after
the famous studies by Hertz at the end of the 1880s on the
experimental discovery of electromagnetic waves [57] (see
also Ref. [58], p. 203-231) was the significance of the

fSubsequently, in his unpublished autobiography, Kayser recollected
with regret that he and Runge ‘missed a real key to understanding the
line series from the point of view of the atomic structure. This was
achieved for the first time by Rydberg owing to a clever idea to
represent the spectral line frequency as a difference between two terms’
{Ref. [54], p. 138, Herzberg’s obituary on Heinrich Kayser (1853 —
1940)}.
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electromagnetic theory valued at its true worth. As was
noted in 1931 by Bohr in his report ‘Maxwell and modern
theoretical physics’ devoted to the centennial of the
scientist, ‘the theory of Maxwell was not only exceptionally
fruitful in interpreting the phenomena, but also gave as
much as can be given by any theory; namely, it selected
certain assumptions and governed its development beyond
the limits of its initial applicability’. Then Bohr stressed that
using ‘ideas by Maxwell in atomic theory ... constitutes a
whole chapter in physics’ (Ref. [59], p. 72).

Having accepted the hypothesis of the existence of
discrete electric charges in the structure of matter, Lorentz
suggested extrapolating Maxwell’s equations to the micro-
scopic level, that is, using De Broglie’s words, to consider
the theory by Maxwell as ‘applicable to describing atomic
phenomena’ (Ref. [60], p. 61). In 1892 in the fundamental
paper ‘The electromagnetic theory by Maxwell and its
applications to moving bodies’ (see Ref. [61], p. 164—
343), Lorentz presented his basic physical assumptions as
follows: ‘It would be enough to admit..., that all heavy
bodies contain many small particles which are charged
positively or negatively, and that the electric phenomena are
caused by the replacement of these particles. According to
this point of view, the electric charge is produced by an
excess of particles with charge of a definite sign’ (Ref. [61],
p. 228).

The first serious success of Lorentz’s theory, which was
named the electronic theory after the discovery of the
electron (before this he had called it ionic), was the
explanation of the dispersion laws interpreted at that
time in terms of elasticity theory. For example, by
developing Fresnel’s idea of taking into account the
influence of molecules of matter on the ether particles,
Cauchy as early as in 1835 [62] proposed a variant of the
formula that expressed the dependence of the refraction
coefficient of matter »n on the wavelength,
n=A+B/}+CJA +..., where A is the wavelength in
vacuum, A, B, C are constants to be found experimentally
for specific matter. This work is of definite interest as the
historically first demonstration of the wave theory’s ability
to explain the dispersion of light. The discovery of the
anomalous dispersion (F Le Roux, 1862, Ref. [63]), and the
further investigation, using the crossed prisms method, of
this phenomenon connected with light absorption
(A Kundt, 1971, Ref. [64]) allowed Sellmeyer in 1872
[65] to give a complete theory based on the idea of
interaction between the medium and ether molecules. A
feature of Sellmeyer’s theory was the assumption that the
molecules had frequencies of oscillation characteristic to a
given material, from which the refraction coefficient’s
dependence on frequency arose. On the basis of the
electronic theory, Lorentz was able to determine the
form of the dispersion curves by solving the quantum
mechanical problem for the motion of a quasi-elastically
coupled electric charge (taking account of decay) under a
forcing action caused by the external electric field of a
monochromatic wave of light, harmonically dependent on
time (see his works, in particular the 1898 papers on
‘Optical phenomena connected with the charge and mass
of ions’, I, I [66], p. 17—40).

A particularly significant result of Lorentz’s studies was
the development, on the basis of the electronic theory, of
the classical theory of the splitting of atomic spectral lines in
a magnetic field —the most important spectroscopic effect

discovered by the Dutch physicist Zeeman in 1896—1897
which immediately caused large interest and was named
after him. An important stage in the development of
theoretical spectroscopy was the explanation by Lorentz
of the peculiarities in the Zeeman effect. This demonstrated
the capabilities of the classical electronic theory, on the one
hand, and its limitations, on the other hand. It is worth
considering the history of the discovery and explanation of
the Zeeman effect, which played a large role in the
formation of quantum atomic theory and quantum mechan-
ics.

As is known, the first experiment to show the connec-
tion between optical and electromagnetic phenomena was
the discovery in 1845 of the rotation of the plane of light
polarisation in optically inactive media under the action of
a magnetic field —the magneto-optical Faraday effect [67].
This discovery stimulated further researches in the field of
magneto-optics and electro-optics, one of the results of
which was the discovery in 1877 of the magneto-optical
effect of the rotation of the plane of light polarisation
during reflection about the magnetic pole by Kerr [68]
(before this, in 1875, Kerr discovered the well known
electro-optical effect of birefringence in an electric field
[69], which was also named after him). As early as in 1862,
Faraday studied the effect of a magnetic field on the
spectral lines of alkaline metals in a flame (those were
his very last experiments), but discovered no effect [70],
owing to the insufficient resolution of his spectral apparatus
for the magnetic fields he used in his experiments. Maxwell
wrote about these experiments in 1878 in his article about
Faraday for Encyclopaedia Britannica [71]: ‘..we will
mention that in 1862 he chose the question of the
connection between magnetism and light as the subject
of his very last work. He tried, unsuccessfully, to discover
changes in the spectral lines of a flame under the influence
of a strong magnet’ (Ref. [71], p. 216).

Zeeman, who worked at Kamerling-Onnes’s laboratory
in Leiden, in the 1890s studied in detail the magneto-optical
effect of Kerr and tried also to verify whether a magnetic
field influenced the spectrum of a flame, but with a negative
result [72]. However, then he became acquainted with the
paper by Maxwell [71] about Faraday and resumed the
experiments. At the very beginning of his first paper in
English (March 1897) about the new phenomenon he had
discovered, ‘On the effect of magnetism on the nature of
light emitted by matter’ [73]f, Zeeman wrote: ‘If Faraday
considered the above relationship possible, then it may
worth repeating the experiment with the excellent experi-
mental equipment of modern spectroscopy’. Zeeman’s
experiment was successful —he discovered a noticeable
broadening of the sodium D line in a flame placed between
magnetic poles. It is this result that was reported to the
Amsterdam Academy of Sciences by Kamerling-Onnes on
October 31, 1896, and Lorentz, who was present at this
session, in a few days was able not only to give an
explanation for the new effect, but also to predict a
number of important characteristics, including the polar-
isation of the broadened line wings. The essence of this
explanation was formulated by Lorentz himself (at the
beginning of the paper ‘The magnetic field effect on the

tBefore this, on October 31 and November 28, 1896, Zeeman
published two communications in Dutch, which were presented to
the Amsterdam Academy of Science [74].
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emission of light’ [75]) as follows: ‘If one spectral line only is
considered, it is sufficient to assume that each luminous
molecule (or atom) contains only one mobile ion, which is
subjected, once it leaves its equilibrium state, to the action
of a force tending to return it back to the initial state; this
force is proportional to the displacement but is independent
of its direction. All motions of such an ion can be
decomposed into linear oscillations directed along the field
lines, and rotational oscillations in planes perpendicular to
these lines. The magnetic field does not change the period of
the first of these oscillations, but, in contrast, increases the
period of the second ones or decreases it depending on the
direction of the rotation.” It follows from this that by
making longitudinal observations (along the field) one
should detect a doublet with two shifted components
circularly polarised in opposite directions, and by trans-
verse observing (perpendicular to the field)—a triplet with
the central unshifted component linearly polarised parallel
to the field, and two shifted extreme components linearly
polarised perpendicular to the field. For a partial splitting
the wings of the spectral lines broadened by the field should
be polarised appropriately. In Ref. [73] Zeeman, having
presented his first results on the spectral line broadening of
sodium in a magnetic field, wrote ‘Professor Lorentz... has
immediately informed me kindly about the way in which,
according to his theory, the motion of an ion in a magnetic
field should be calculated, and pointed out to me that, if the
explanation that follows from his theory is correct, the line
wings in the spectrum must be polarised. The value of the
broadening can then be used for the determination of the
charge to mass ratio, which in his theory should be ascribed
to the particle exciting the oscillation of light. The above
mentioned remarkable conclusion by Professor Lorentz
about the polarisation of magnetically broadened lines I
found to be fully confirmed by the experiment...” . Zeeman
describes this experiment, and before this he presents for the
first time the Lorentzian classical theory of motion of a
quasi-elastically coupled charged particle in a magnetic
field, leading to normal splitting—a distance (in the
frequency scale) between the shifted and undisplaced
components, —equal to

eH
"~ 4mmge”’

Vo (5)
where H is the magnetic field, e and m are the charge and
mass of the oscillating particle, and c is the speed of light.
At the end of paper [73] Zeeman gives a correct estimate of
the quantity e/my. The paper is dated 1897%.

In subsequent studies Zeeman managed to discover the
spectral line splitting, doublets and triplets, and to measure
its value for a number of atoms [76]. The e/m ratio turned
out to be approximately coincident with the same ratio for
the electron, which was discovered in 1897, and the
direction of circular polarisation of the shifted doublet
components was evidence for the negative sign of the
charged particlef. Based on the results of Zeeman and

t In the appendix to Ref. [73] of February 1897, Zeeman makes
reference to an ecarlier book [70] unknown to him about Faraday’s
life and his studies in 1862, as well as to works of other scientists who
tried to discover the effect of the magnetic ficld on spectral lines.

1 In Ref. [73] (in the note on page 58) Zeeman firstly determined this
sign incorrectly as positive, however by the first of the studies [76] he
had corrected his mistake.

other scientists who studied the effect experimentally, the
most important conclusion was that the oscillating particles
in atoms were electrons and, thus, that electrons were a
constituent of atoms. It was at that time Lorentz’s theory
was renamed ‘electronic’ instead of ‘ionic’.

We stress that after Zeeman’s discovery dozens of
papers were published devoted to experimental and theo-
retical studies of the new effect. Among the experimental
studies we note the paper by Michelson [77], who obtained
the full splitting of the sodium lines for the first time using
an interferometer for comparatively weak fields. Among the
theoretical papers, we note an important paper by Larmor
‘On the theory of magnetic influence on spectra and on the
emission of moving ions’ [78]. The paper showed that the
magnetic field effect for a charged particle moving in an
atom on a closed orbit is reduced to the previous motion of
the particle relative to a coordinate frame that rotates with
a constant angular velocity around the field direction
(Larmor precession).

As a result of numerous experimental studies of the
Zeeman effect, it was clear already by 1902 that only certain
spectral lines produced triplets with the splitting
value (5)—this case, which is consistent with Lorentz’s
theory for oscillations of a separate, elastically connected
electron, was named the normal Zeeman effect. For some
lines, triplet splitting is observed (the ordinary Zeeman
effect, according to modern terminology), with a splitting
value different from (5), in particular, twice as high in
certain cases. However, splitting into more than three
components is observed most frequently (the complex
Zeeman effect, in modern terminology), with a symmetric
splitting pattern and conserved polarisation properties, as a
rule, and the triplet components are split, in turn, by
separate equally spaced components. The Zeeman effect
which is not the normal one is called the anomalous one;
Lorentz and other theoreticians tried to explain it (a major
part of the paper by Lorentz [75] was devoted to this).
However, the correct explanation of the anomalous Zeeman
effect was possible only on the basis of quantum theory.
Bohr with his atomic theory succeeded in interpreting this
effect as a result of quantum transitions between combined
energy levels which split differently in a magnetic field, but
only after the spin of electron had been discovered in 1924
did that explanation obtain a solid base.

Preston [79] and other scientists established an impor-
tant connection between the Zeeman effect and series
regularities. It proved to be the case that all spectral lines
from the same series of a given element and from the
analogous series of other elements were characterised by
the same picture of Zeeman splitting: the same number of
components and spacing between them (in the frequency
scale; the so-called Preston’s rule). In his Nobel prize lecture
in December 1902 [80]§, Lorentz spoke about the failure of

§Lorentz together with Zeeman were awarded the Nobel prize in
physics ‘for discovering the influence of magnetism on radiation
processes’ (this was the second Nobel prize in physics; the first one
was awarded to Rontgen ‘for discovering the rays named after him’ in
1901). We note that according to the initial ‘Application rules’ for the
prize, it can be awarded only for experimental research, so the
corresponding item in the ‘Rules’ was urgently changed by the
Swedish Academy of Sciences, and since then the prizes have been
awarded for theoretical studies as well. Sce, for example, Ref. [72], p.
48.
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the attempts to explain the anomalous Zeeman effect and
about the prospects for theoretical spectroscopy: ‘I am sure
that the theory will achieve significant success only when it
applies not only to a separate spectral line, but to the whole
sample of lines for a chemical element. The different forms of
the Zeeman effect will be fruitfully studied only when at last
we are in a position to justify theoretically the spectral
structure, only then and not earlier. [ say moreover: in the
future, studies of regularities in spectra and of the Zeeman
effect must be carried out together. Thus they will lead to the
theory of light propagation, which is one of the most noble
purposes to be achieved by modern physics’. The prediction
by Lorentz was fully justified, and Ritz, in trying to solve
theoretical spectroscopy problems on the basis of classical
ideas (which failed), turned his attention to the anomalous
Zeeman effect theory, as well as attempts to explain the
spectral regularities (see Section 4).

Precisely at the beginning of the 20th century favourable
conditions arose for attempts to explain the spectral
regularities. Kayser’s review of 1902, which is contained
in the second volume of his multivolume work on spectro-
scopy [81], provides a sufficiently full representation of the
theoretical approaches to spectroscopy to justify such an
explanation. In Chapter 8 on ‘Regularities in spectra’
(Ref. [81], p. 467—609), a special section on ‘Theoretical
studies’ is devoted to the attempts to explain the spectral
regularities (Ref. [81], p. 596 —609)9%.

Kayser subdivided all the known theoretical studies on
atomic spectra into two large groups: the first of them
contained attempts to describe quantitatively the observed
regularities in the real spectra; the second one included the
studies aimed at explaining the most general qualitative
similarities—such as dependences like 1/n* and the
presence of the series limits—using elastic analogies.

Kayser related the works by Larmor, Hershel, Jeans and
Sutherland to the first group. Their sources go back to
Stoney’s paper ‘On the reason for discontinuous spectra of
gases’ [82]. It should be said that the approaches used by
these authors strongly differ from each other.

For example, Larmor [78], by analogy with the Zeeman
effect, tried to connect the presence of spectral doublets
with a mutual influence of positive and negative charges in
the atom.

Herschel [83], using the acoustic analogy of a model of a
sound resonator, showed that one can obtain an expression
apparently similar to the formula for the Balmer series by a
particular choice of the parameters of the model. However,
the attempts to use that analogy for spectral series
complicated the model to such an extent that it was
impossible to interpret.

Starting with the electronic theory, Jeans [84] modelled
the atom as a series of concentric layers, of alternating sign.
Each layer consisted of particles of the same charge. He
showed that in each of such layers two types of oscillations
emerged, giving rise to series with an infinite number of
lines converging at a particular point in the spectrum. The
number of such series formed is equal to twice the number
of envelopes. Although such a representation allowed him
to reproduce individual spectral features qualitatively, a
shortcoming of the model which could not be overcome was

tWe note that the concluding Chapter IX ‘Oscillations of light in the
magnetic ficld” was devoted to the Zeeman effect (Ref. [81], p. 613 —
672).

the complete indeterminacy in choosing the number of
layers, and the number, sizes and mutual positions of
separate particles inside each layer. It is not surprising
that comparison of the theoretical conclusions with indi-
vidual spectra was not made.

The model of Sutherland [85] was a peculiar hybrid of
elastic and electromagnetic ideas. According to Sutherland,
there was a heavy elastic mass in the atomic centre, in which
standing oscillations were excited. Positive and negative
charges, rotating around the mass, gained energy by
encountering nodes of these oscillations, which resulted
in light radiation. This model, as far as one can judge from
Kayser’s assessment (Ref. [81], p. 603), was not taken
seriously by his contemporaries, but it is interesting
because it demonstrates very clearly the degree of artifi-
ciality of the assumptions used in attempts to explain the
spectra in the framework of classical physics.

The second group of theoretical approaches to the
description of spectral regularities took the form of
searching for bodies or systems of bodies whose oscilla-
tions would reproduce the observed spectral structure. The
early attempts of such a kind were connected with names of
Cornu [86] and Loschmidt [§7]. Cornu considered a cylinder
with a diameter commensurate with its length as the source
of the oscillations; Loschmidt—a hollow sphere. In both
cases the desired result was not achieved. Subsequent
development of this approach occurred in the 1890s. The
works by Fitzgerald [88], Schuster [§9] and Rayleigh [90, 91]
are characterised by the common idea that in order to
reproduce the spectral boundary, the rate of propagation in
the model bodies and systems should depend on the length.
However, the result was reached here at the expense of
introducing a number of special assumptions, and in
particular, by the introduction of a particular system of
bodies for each spectral line. Another principal defect of
that approach, which was noted for the first time by
Rayleigh, was that the classical dynamics of oscillations
led of necessity to relations that were quadratic and not
linear in frequency. As became clear later, this was a general
problem and was the principal restriction on the possibil-
ities of using arbitrary mechanical models to explain the
optical spectra.

Kolacek [92] considered electromagnetic oscillations in a
conducting polarising sphere embedded in a dielectric ether.
He discovered that these oscillations produced double line
series with constant or diminishing differences, which
turned out to be comparable with the spectral series of
the alkaline metals.

In 1890, a paper by Riecke [93] appeared in which he
noted that in order to reproduce an unlimited number of
oscillations, one could use a model which was continuous at
least in one dimension. Riecke suggested the idea of
standing oscillations in a circular ring. Below we will
return to this idea, since it served as one of the starting
points of the initial theoretical constructions by Ritz.

In total, the numerous attempts to explain the empirical
spectral laws using the theory of elasticity and classical
electrodynamics did not lead to significant success. Poin-
care, in his report of 1904 on ‘The current state and future
prospects of mathematical physics’ (reprinted in Ref. [94]),
pointed directly to the principal character of the difficulties
arising. During his discussion of the approaches to the
theory of the dynamics of electrons in the section on
‘Electrons and spectra’, he wrote that ‘among the ways
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leading to a theory, there is one, which was somewhat
neglected, although it belongs to those which promise the
most unexpected things’. And further: ‘The point is that the
spectral emission lines are generated by the motion of
electrons, as is proved by the Zeeman effect: this is what is
oscillating in a glowing body, undergoes magnetic effects,
and is thus electrified. This is a very important starting
point, but no-one has gone further yet. Why are the spectral
lines distributed according to a precise rule? The experi-
menters have studied these rules in the smallest details, and
they are very precise and comparatively simple. The first
studies of these distributions included an idea about the
harmonic relationships encountered in the acoustics; how-
ever, the difference proved to be significant; not only are the
frequencies not sequential multiples of the same number,
but here we find nothing corresponding to those trans-
cendental equations to which many problems of
mathematical physics lead, such as, for example, the
problem of oscillations of an elastic body of arbitrary
form and Fourier’s problem of solid body cooling. The
spectral line rules are more simple, but their nature is quite
different; I will restrict myself to only one example of such a
difference: for high order harmonics, the number of
oscillations leads to a finite limit instead of increasing
infinitely. These phenomena have not been explained yet,
and | believe that here we deal with one of the most
important mysteries of nature.” (Ref. [94], p. 249).

At the beginning of the 20th century, there was first of
all no clarity in understanding the radiation mechanism. In
trying to draw the researchers’ attention to that problem,
Kayser wrote in his report ‘Development of modern
spectroscopy’ [95]: ‘The ubiquitous light ether is sprinkled
with molecules and atoms. Subjected to some motions, they
induce waves in the light ether, which spread out in all
directions and are interpreted by us as rays independently of
whether the molecules themselves or their constituent parts,
or electric charges, so-called electrons, which are on these
molecules or inside them, are oscillating. The wavelength of
the rays ... directly depends on the motions of the
oscillating corpuscles, the centres of radiation...’
(Ref. [95], p. 4). A unique relationship between the fre-
quency of radiation and the oscillation frequency for the
emitters, whose existence followed from the Maxwell
equations, required there to be a correspondence between
the number of emission centres and the number of lines in
the spectra. Meanwhile, the observed abundance of those
lines unavoidably led to unjustified complications in inter-
pretations of the structure of the atom considered as the
emitter. ‘It is impossible to accept that there should be so
many different particles in one atom, each of them emitting
one line; we must suppose that each emission centre
undergoes a complex motion, which, when dispersed by
a prism or a grating, yields a whole sample of spectral lines’,
Kayser writes further (Ref. [95], p. 5).

In fact, by the beginning of the 20th century, two
reasons were already known in mathematical physics which
made the problem of adequate theoretical description of the
observed spectral regularities principally unsolvable in the
framework of classical ideas.

Firstly, one of the main difficulties, which we have
already mentioned above and to which Rayleigh [90] had
turned his attention, was that any model of an elastically or
quasi-clastically bound electron, unavoidably led, in solving
the mechanical equations, to expressions containing the

square of the frequency, whereas the simple rules for the
atomic spectra are linear with respect to frequency.

Secondly, as was stressed by Poincare as early as in 1894
[96], in solving the well-known differential equation
Au+ku= 0, which is the basis for oscillation problems
in the theory of elasticity and in electrodynamics, there are
no boundary conditions which can make the eigenvalue
series reach a limit at a final value, which is in contradiction
with experimental data (see the extract from a later paper
by Poincare [94] cited above).

Such was the state of the theoretical basis of atomic
spectroscopy at the beginning of the 20th century, about
which Bohr gave a resume (in the report of 1954 on
‘Discovery of spectral laws by Rydberg’): ‘... searches for
a mechanism that could explain the spectral regulari-
ties, ... have run across difficulties which seemed
insurmountable. Here, it is especially relevant to keep in
mind Rayleigh’s remark that any analysis of normal types
of oscillations of a stable mechanical system leads to
relationships between squares of frequencies and not
between the frequencies themselves’ (Ref. [59], p. 473).

It was in this situation that Ritz undertook the most
thorough-going and far-reaching attempts to describe
theoretically the spectral regularities in the framework of
classical ideas. As we have already emphasised, this
important part of his research activity was, in fact, not
referred to in the historical scientific literature. We will
consider the pertinent studies by Ritz starting with his thesis
of 1902.

3. Ritz’s thesis on spectral series theory and his
elastic atomic model

The thesis by Ritz (Ref. [1], p. 1-77) deserves a thorough
analysis; its main part was published in Annalen der
Physik [2].

It can be seen from the introduction that Ritz definitely
understood the principal character of the difficulties
described above, which were encountered while trying to
explain the observed atomic spectral features. Under the
conditions where the basic mechanics and electrodynamics
equations could not successfully be used to calculate the
spectrum, and ‘from the oscillation frequencies of a
completely unknown system one cannot conclude anything
definite about its law of its motion as yet..’. Ritz
formulated the problem as follows: ‘While relying upon
mechanics and electrodynamics as much as possible, it is
necessary to point out physically meaningful mathematical
operations, the interpretation of which as oscillations of an
appropriate ‘model’ should lead to the spectral series laws;
it should allow one to improve the empirical formulas, to
put them in a unique order and to discover new rules’
(Ref. [1], p. 3).

It is important to emphasise that it is obvious from his
setting of the problem that Ritz was trying not so much to
explain the spectral regularities as to provide a unified
theoretical description. Such a setting of the problem turned
out to be quite justified, since all the subsequent successes of
Ritz’s approach proved to be connected with the use of
purely mathematical properties of his model. The attempts
to obtain a physical interpretation of the corresponding
mathematical structures, naturally, did not lead, and as we
know now, cannot lead to a positive result.
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The informative part of Ritz’s thesis starts with a
thorough analysis of the contemporary state of spectro-
scopy, its empirical laws and attempts to model them
theoretically. Here he demonstrates an exclusively pro-
found and multilateral acquaintance with the problem.
In particular, he knew all Rydberg’s publications very
well beginning with the seminal paper of 1890 [53], papers
of 1896 and 1897 [97, 98] and the concluding review of 1900
[99], a series of articles ‘On the spectra of elements’ 1889 —
1892 by Kayser and Runge [100], and a fundamental
treatise by Kayser on spectroscopy, which constitutes the
second volume of Handbuch der Spektroskopie [81].

As a result of thorough consideration of the question of
using Rydberg’s formulas, on the one hand, and Kayser and
Runge’s ones, on the other hand, Ritz gave a well-defined
preference, as a unique basis for the description of linear
spectra, to Rydberg’s results, which were based on
representation of the wave numbers using equation (2)
which has a clearly expressed ‘differential’ structure.

Ritz especially stresses the correctness of a statement
contained in the works of the Swedish scientist about the
coincidence between boundaries for the sharp (second
auxiliary) and the diffuse (first auxiliary) series, and the
conclusion made by Rydberg about the numerical coinci-
dence of wave numbers for the first lines of the main and
the sharp series (see Ref. [S51], p. 152).

Ritz pays special attention to the question of the
universality of the spectral constant deduced by Ryd-

berg. As Ritz points outf, Rydberg compares the
formula for spectral series written in the form
1 B
F=AF—. ©)
A (n+u)’

where A, B, u are constants, 4 is the wavelength and »n is an
integer number, with Balmer’s formula for the hydrogen
spectral series, and draws a conclusion about the universal
character of the constant B. As a result, a two-parametric
expression with the constants A and p arises, which
describes the spectral series.

Meanwhile, the experimental data of that time did not
show any evidence at all in favour of the universality of the
constant B. For small n, small deviations from Rydberg’s
formula were observed, and a three-parametric formula
proposed by Kayser and Runge and written by Ritz as

%:a'+b'n_2+c'n_4 s @)
where a’, b’, ¢’ are independent empirical constants, gave a
much better correspondence with experiment.

However, Ritz draws attention to the fact that in the
region of applicability of Rydberg’s formula, the second
parameter in the Kayser—Runge expression (i.e. b')
remains almost constant, whereas the values of ¢’ and ¢’
strongly vary from series to series. He concludes that it is
necessary to maintain the general structure of Rydberg’s
formula (6) with the universal constant B, which he
subsequently denotes as N; to achieve an agreement with
experiment for small n, Ritz suggests improving this
formula by introducing a dependence of the parameter u
on the integer number n. He finds a particular shape of that
dependence, as well as a justification of the universality of

tHere and below we mainly use the notation used in the original
papers by Ritz.

the Rydberg constant N, in the framework of his theoretical
model. He writes about his improved formula: ‘As I
anticipated, I note that for the small ordinal numbers,
the much more accurate formulas | derived on theoretical
grounds give a much better agreement of Rydberg’s rules
with experiment: for all elements for which both series are
known, the extrapolated main line of the second auxiliary
series proves to be in the immediate proximity of the main line
of the principal series...’ (Ref. [1], p.12) (italics by Ritz).
By analysing the regularities found by Rydberg, Ritz
derives a generalised Balmer formula for all series of the
hydrogen atom, which can be written in the formi
1 m* —n’ N 1 1 3
YTaT n?m? (112 m2> ’ ®
and he refers to the fact that Balmer considered his formula
as a partial case of the expression 1/4 = N(m* — n?)/m*n’.
Using expression (8) and taking into account the character-
istic structure (2) of the series formulas, Ritz came to a

general conclusion that, according to Rydberg, ‘... series

formulas, properly speaking, should be written with two

arbitrary integer numbers’ (Ref. [1], p. 13) (italics by Ritz).
Additionally, based on formula (8), Ritz managed to
predict for hydrogen, apart from the already known
Balmer series (n =2), the existence of other series lying
in the ultraviolet and infrared spectral bands. Subse-
quently, the series with n =1 were discovered by Lyman
[101] in the far ultraviolet region (which is referred to by
Ritz in Ref. [7]; see Ref. [1], p. 105), and the series with
n =3 was discovered by Paschen [102] in the far infrared
band in accordance with Ritz’s prediction (see Ref. [1],
p. 581). For alkaline metals, too, Ritz predicted the
existence of spectral lines which were experimentally
discovered later; one of them was found by Ritz himself
in the spectrum of potassium in 1903 [4], as was mentioned
earlier.

The idea that series formulas should be written with two
arbitrary integer numbers was very important for Ritz, as it
decisively influenced the choice of mathematical model
used. Here, one should note the undoubted influence
on Ritz of the works by Professor Riecke [93], Ritz’s
teacher. The point is not only that in a short review of
the known theoretical attempts the results of Riecke are
clearly distinguished by Ritz. More important is that Ritz
used some significant features of Riecke’s approach in his
finished plan.

Riecke noted that if in the problem of natural oscilla-
tions of an elastic ring one requires that for partial solutions
of the form

fi(@, t) = sin2nvt sinme ,
fo(@, t) = cos2mvtsinme , ©9)
(where f; and f, are small reciprocally perpendicular elastic

shifts and m is the number of node points on the ring), a
dependence of the frequency on the integer number m

1 He also gives a formula with half-integer numbers

for series of the ionised helium atom, which were attributed to the
hydrogen atom at that time (see Ref. [S1], p. 153).
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arises, which corresponds to Kayser and Runge’s formula
(4), then the functions f; and f, will satisfy the following
systems of two S5th order equations:

of _ hH  h
- — 7= b —=—cf, =0 R
000" “ogt T B P
ofh , 8, 2f
: ———-b ——+cfi=0. 10
300" ¢ gt P B TN (19)
The inversion of system (10) into an identity by

substituting expressions (9) under condition (4) is straight-
forwardly verified. We note that f; and f, separately satisfy
a 10th order differential equation.

Obviously, in the framework of such an approach the
use of the Rydberg formula (and not of Kayser and Runge’s
one) naturally led Ritz to the assumption that ‘the linear
spectra are due to the natural oscillations of two-dimensional
structures’ (Ref. [1], p. 18) (italics by Ritz). The idea thus
arose of  using an analogue model of an elastic membrane
which is characterised by having a two-fold infinite number
of node points.

We stress that Ritz was the first researcher to draw
attention to the fact that the determination of spectral line
frequencies as functions of independent integer numbers
should be used in the process of choosing a model for the
emitter. In his thesis he calls this feature the ‘two-fold
infinite number of lines’ (Ref. [1], p. 17).

[t is interesting to note that after the Bohr’s theory the
presentation of an analogous starting idea (the double
enumeration of each frequency in the spectrum) served
for Heisenberg as a starting point for the matrix formula-
tion of quantum mechanics.

The partial solutions of the form (9) in the case of
oscillations of a square membrane of side 2a fixed at its
perimeter, which satisfy the necessary boundary conditions,
for small shifts of the membrane’s points perpendicular to
its plane xy, are written by Ritz as follows:

. . mx . 0W
flx, y, 1) =Asin(2nvt 4+ ¢) sinm — sinn aay
a a

an
In the ordinary case when the potential energy of the
membrane is proportional to its area, the equation for
oscillations has a standard form

1 8°f

- —=—-Af=0, 12

b or? / (12
where A = 8 /ox? + 9% /0y? is a two-dimensional Laplacian
and b is the square of the expansion velocity for surface
elastic waves. By substituting expression (11) into this

equation the following dependence for v arises:
2
w) =b (E> (m* +n?) .
a

This dependence, however, is completely different from the
empirical spectral rule (8). A significant difference between
formulas (8) and (13), which both depend on two integer
numbers m and nt, is that (Ref. [1], p. 13):

1. With infinitely increasing m and n the frequency v in
(13) tends to infinity, whereas it tends to a finite limit in (8).

(13)

tSuch a dependence, as Ritz stresses, is connected with the partial
solutions (11) common for both the cases (13) and (8) containing only
sines and cosines while the roots of more complex transcendental
functions are absent (Ref. [1], p. 13).

2. Formula (13) contains squares of the frequency v,
whereas formula (8) only contains its first power.

3. Formula (13) is symmetric with respect to m and n,
whereas formula (8) is not.

Later on, Ritz uses the fact that solution (11) satisfies
the following 10th order equation (Ref. [1], p. 29):

0" flx, v, 1)
or? ox*oy*

provided that condition (8) is fulfilled. In Eqn (14) p is
the membrane’s surface mass density and 7 is a constant
entering the potential energy of the membrane. Ritz
reaches this equation as a result of a difficult calculation
of the system’s choice of potential energy, making use of
the variational principle (see below, the end of Section 3).
Here, an important step to obtain the required dependence
(8) for v is a substitution of the two-dimensional Laplacian
A =9 /ox? + 8% /oy? symmetric relative to x and y, which
enters Eqn (12) and acts on function f(x,y,?), by a
nonsymmetric operator (with respect to x and y)
AN =0%/ox? —9%/0y*. That substitution leads to non-
symmetry of formula (8) relative to m and n, which is
fundamental to the whole of Ritz’s approachf. With such a
modified mathematical model, the Rydberg constant from
Eqn (8) is expressed in terms of the model parameters —p, ©
and the length a (which is a half of the membrane’s side
length) according to the formula

v L (2" &
T 2me \ p e

which guarantees the universal nature of this constant. The
spectra of different elements are produced by varying
the boundary conditions. For example, the requirement
that the boundary is rigidly fixed (i.e. f(Za,y,t) =
flx, £a, 1) =0) leads exactly to the generalised Balmer
formula (8). The rejection of this condition while
preserving the periodicity requirement of the solution
yields the Rydberg formula (2). It was the analysis of
nonzero boundary conditions that led Ritz to a significant
improvement of Rydberg’s formula by establishing a clear
dependence of corrections u on integer number.

It is very instructive to follow Ritz’s study to this point,
which is the most important from the point of view of the
significance of the final result. Ritz uses here the classical
results of Poincare [103] on the theory of asymptotic
representations of periodical solutions to linear differential
equations. Firstly, he notes that the basic equation has such
solutions, for which the frequencies are determined by the
formula v ~ (1/k* — 1/1?) in the case of noninteger ok and
l. Secondly, he shows that there are such solutions for which
the following expressions hold (Ref. [1], p. 50):

a(k)sinka + (k) coska =0  (for all y),
a’()sinla+ B'()cosla=0 (for all x),

+320°AN f(x, y, 1) =0 (14)

(16)

an

{Before this substitution, Ritz reached the equation (Ref. [1], p. 22)

alof(x7 )Y7 t)

320°AAf(x, v, 1) =0,
P araniayt T2 MMy 1)

1%
which satisfies the condition for the frequency v to tend to its finite
limit with infinitely increasing m and n, and contains its first power.
However, this condition is symmetric with respect to m and n, i.e. only
two significant features of the regularity (8) considered above are
fulfilled. The third one arises only by substituting A by A’.
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where a(k), a'(l), B(k), B'(I) are some functions of k and /.
From here originate the relationships that hold at the
boundary of the square for x and y, respectively:

tan ka = —%: y(k)
tan la = £ Q) y'(D) . (18)

0N

Ritz distinguishes a particular class of boundary condi-
tions, for which

lim (k) = const #0 . (19)
k—o00

Then it is easy to show that the following boundary
condition must be approximately valid for large k

sin(ka — Cy) =0  (const =tan Cy) , (20)
from which we get

ka — Cy=mm , (21
or

p="m, G (22)

a a

which obviously lead to a term of Rydberg’s type

1 1 C

ST, p= (23)

k= (m+p) m

If one takes account of the next terms in the series
expansion of the function y(k), a relationship arises
C,

C
kuzmn+C0+71+k—2+..., (24)
or approximately

C26{2

(mm+ Co)’

C]a
mm + CO

ka =mn+ Cy + +... (25)

A special choice of boundary condition enables one to
obtain a function y(k) whose expansion will contain only
even negative powers of k. Ritz analyses exactly such a case
as an illustration, using the simpler example of an
analogous one-dimensional problem, in which the order
of the equation used is not 10, as in the main problem, but
only 6.

On the basis of such analysis, Ritz comes to the
conclusion that Rydberg’s formula (2), where N is a
universal constant and yu; and u, are numerical para-
meters, is reproduced in the framework of his theoretical
approach only for large m and n. The parameters u; and p,
are essentially identified with the first constant terms in the
asymptotic expansions of the functions p(k), y'(l). An
inherent possibility of generalisation of Rydberg’s formu-
las to the case of small m and n involves taking into account
the subsequent terms of the expansion.

Ritz especially stressed that ‘The Rydberg formula for
small m and n needs to be corrected, not by changing the
coefficient N, as has been done until now, but by substituting
for u, and p, by expansions in series’ (Ref. [1], p. 51) (italics
by Ritz).

From the formal point of view, improvement of the
Rydberg formula (2) was obtained by substituting for the
parameters y; and u, expressions like

b c b’ d

m-i-ll_‘_(m—i-ﬂ)2 o ﬂ+(m+/1)2 (m+u)4'
(26)

n+

By comparing the results with experiment, Ritz selected
the form

N 1 1
(m+p+b/m?)?  (n4u +b'/n?)?

@7

The characteristic correction for series is not now a
constant, as in Rydberg’s work, but has become a function
of an integer. Note that a dependence for series corrections
on an integer number precisely of that kind was justified by
the quantum theory later on.

Ritz writes series formulas for individual series when m
is fixed and n is arbitrary in the form

N

V=A———. 28
(n+u+b/n2) ()
He also widely uses an alternative form
N
v=A— (29)

[n—i—oz—i—ﬂ(A —v)]2 '

where a, B, A are constants. Both formulas are equivalent
to an accuracy of the third order in n.

The form (29) is interesting because it is this form that
was reproduced later by Bohr—Sommerfeld’s quantum
theory.

It is known that the explanation of the mechanism of
line formation in the hydrogen spectrum given in 1913 was
naturally carried over to other atoms as well by considering
movement of an ‘optical electron’ in a central force field,
which can be considered Coulomb at a sufficiently great
distance from the atomic shell. In that case the dependence
of the stationary state energy on the integer number n is
conserved:

R ch

E,=- )

n n2

(30)

where n =1, 2, 3,..., R is the Rydberg constant (in the
modern notation), c is the speed of light and 4 is the Planck
constant. The existence of numerous series in hydrogen-like
spectra, each of which is more or less similar to the
corresponding hydrogen series, was explained only in 1915
when Sommerfeld introduced the azimuthal quantum
number k determining the angular momentum quantisa-
tion (and connected with the orbital quantum number [/ by
the relationship k =14 1), after which a comparison was
made between the values k = 1, 2 and 3 for the sharp, main
and diffuse series and s, p and d terms, respectively. In the
course of his attempt to estimate the term values for
hydrogen-like spectra, Sommerfeld [104] obtained the
formula (where Z is the atomic number)

R heZ?
[n+a(k) + b(k)E]*

E(n, k) =— (€2))
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which, as is easy to see, corresponds to expression (29)
found by Ritzt. Here, together with the dependence on the
principal quantum number n, there was a dependence on &,
which was explained later on the basis of the idea of
motion of an ‘optical electron’ in a field with a strong
influence on the shell of the atom. The field potential can
be represented by the series

ez a a\’ a’
U(r):—T[l+C1;+C2(;) + G (;) +"']’
(32)

where r is the distance from the electron to the nucleus.

The selection rule for k (i.e. Ak = %1), established by
Bohr in 1918, was very important, as it justified the simple
explanation of spectral series.

In 1921, attempts were made firstly by Schrodinger [106]
and then by Bohr [107] to interpret Rydberg’s correction as
a difference n — n* by comparing Sommerfeld’s theoretical
formula written in the form

72
E—_ R heZ ’ 33)

n:«2

(where n* is an ‘effective quantum number’ differing from
an integer by some constant), with an expression of the
form
72
E= —%Zz , 34)
(n+ )
where p is a constant Rydberg’s series correction. The
results were confirmed by the computations contained in
lectures on atomic mechanics given by Born in Gottingen
in 1923 -1924 [28].

Born represents n* in the form n* = n+ & + &,/n* + ...
where 8; = p is Rydberg’s correction and d,/n* = b/n* [see
(28)] are Ritz’s corrections. He shows that if one takes into
account the influence of the first additional term in the
expansion of the potential energy

&zC 1 a
ror

on the term value, then Rydberg’s correction is
01 = —ZCy/k; taking account of the second additional
term

_ezzC] a .
r r

yields d; = —Z2C2/k3, respectively. It is essential that the
deviation from the integer number n by an amount ¢
depends on k and the greater k is, the smaller its value. In
fact, this is connected with the influence of the atomic shell
electrons on the ‘optical electron’, which leads to some
divergence of the field from the Coulomb value.

If one takes into account the third term
expansion,

&ZC,

= ()

then by solving the problem of the motion of an electron in
that central field we get n* in the form n* = n+ 9, + 8, /n%,
where d; = —3ZJC3/k5 is Rydberg’s correction which was

in the

FThis circumstance was clearly noted by Sommerfeld [104] (see also
Ref. [105], p. 80).

discussed above; 8,/n® = Z>C;/2k’n? is Ritz’s correction
which was introduced for the first time, as we have seen, in
his thesis long before it obtained the correct theoretical
justification.

As a result of comparison with experiment, it turned out
that the most significant additional term in the expansion of
the potential energy (32) is the quantity (—e’ZC5/r)(a/r)’,
which has an obvious physical interpretation. For example,
if one assumes the shell is not absolutely rigid but undergoes
a deformation in the field of the ‘optical electron’, this term
is modelled by an induced electric dipole producing a
potential —ae®/2r*, where a is the frame polarisability of
the shell (see Ref. [108], p. 169).

An adequate theoretical treatment of the dependence of
the series corrections on the integer number n given by
Sommerfeld [104], Schrodinger [106], Bohr [107] and Born
[108] is known to be possible only on the basis of quantum
theory. Nevertheless, it is important to note that a rule of
such form was used by Ritz in his approach as a
theoretically justified statement, as it arose as a result of
solving some oscillation problem. An external justification
for the correctness of the result obtained was that the
apparent improvement to the Rydberg formula was
experimentally verified with a high degree of accuracy.
Ritz’s priority in these questions was well known to
Sommerfeld and to Bohr, who make reference to him
directly in their works.

At the same time, the contemporary physical and
historical scientific literature [109, 110] somewhat under-
estimates the contribution by Ritz towards the
establishment of that rule. For example, while Born in
his ‘Lectures on atomic mechanics’ widely uses such terms
as ‘Rydberg—Ritz’s formula’ and ‘Ritz’s correction’” when
describing spectra, the corresponding sections of Frish’s
fundamental monograph Optical Atomic Spectra contain
only references to Rydberg even in those cases when the
modifications of his formulas made specifically by Ritz are
discussed (Ref. [109], p. 12).

It seems that on the basis of such ‘discrimination’ rests a
general tendency, characteristic of contemporary physical
thought as a whole, to underestimate the theoretical status
of the principal spectroscopic laws that have quantum
nature but were initially established prior to the formula-
tion of modern quantum atomic theory.

As we have already noted in Ref. [S1], the formulas
suggested by Rydberg should not be treated as purely
empirical. This applies to Ritz in even greater degree. It
is not possible to ignore the fact that his approach
contained the original and to a significant degree the
theoretical ground for both the Rydberg formulas and
also their modification, which was suggested by Ritz
himself. It is due to this fact that the model by Ritz,
despite its physical inconsistency, which was cleared up
afterwards, succeeded in playing an important heuristic role
in establishing spectral laws and in further systematisation
of empirical data.

It should be noted that two lines are presented in Ritz’s
thesis which are extremely interesting in a mathematical
sense, but far from the equivalent from the point of view of
their application to the real problem of describing the
observed spectral regularities.

The first of them, which contains the analysis of the
boundary conditions, turned out to be very productive,
because it led to an improvement of Rydberg’s formula.
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The second line of Ritz’s investigations is connected
with the search for an appropriate physical interpretation
for the mathematical model he constructed. The use of the
variational principle underlies this part of Ritz’s work.
Here, the main problem is in choosing a proper expression
for the system’s potential energy. The part of the Lagrange
function corresponding to the kinetic energy is given and is
determined by the relation

_p (6./")2

T 2\ot)

where p is the membrane’s surface mass density, f(x, v, ) is
the amplitude of displacement of its points.

It is known that the ordinary equations for elastic
oscillations of a membrane can be obtained using the
variational principle under the assumption that the poten-
tial energy density is directly proportional to the
membrane’s surface. The approach used by Ritz to
determine the form of the action functional for the
variational problem he set seemed to be very unusual.
First of all, in order to describe the surface forces Ritz was
forced to fit quite complex and not obvious analytical
structures with nothing in common with the usual expres-
sion for elastic forces. Such a procedure in itself required
extraordinary mathematical intuition.

The second interesting feature of Ritz’s approach is that
by choosing the Lagrangian form, he started from an
analogy with Maxwellian electrodynamics, in which
Lagrange’s function of density of the electromagnetic field
has the form £ = (H2 —E2)/8ﬂ:, which, in turn, leads to a
known expression for the familiar energy density of the field
E= (H* +E?)/8m.

As a result, Ritz writes down the initial functional as
follows:

M |p ary )
=[]z &) -]

Here ds is an element of the area of the membrane and the
quantity @ is defined by the relation

B(x, v, 1) zr” ds[(x —¥) _%]

x [(y =)= %} A

Eyin

(3%)

(36)

where 7 is a constant, A’ = 0?/dx> — 8°/dy>. An external
analogy between expression (35) and the Maxwellian case
is obvious, and Ritz further stresses this once more after
computing the expression for the energy of the considered
system, which naturally has the form

=[[of G+

At this point in his thesis Ritz writes: ‘If one introduces the
quantities A = (p/2)1/2 (0f/0t), ® =B to describe a state,
then the analogy between the expression obtained here for
the energy II(A2 + B2) ds and the expression valid for the
electromagnetic energy of the ether, becomes striking’
(Ref. [1], p. 32) (italics by Ritz).

Although this analogy turned out to be purely formal
and led to no informative results later on, nevertheless the
use of it by Ritz is notable enough, since, on the one hand, it

(37

characterises the peculiarities of his scientific thinking style,
and on the other hand, proves his thorough acquaintance
with the basis of Maxwell’s electrodynamic theory at that
time (1902).

Returning to consideration of the constructive part of
this section of Ritz’s thesis, we note that the required 10th
order equation (14) cannot be obtained from the functional
(35) in the form of a Euler—Lagrange equation. However,
by means of a sophisticated analysis of the problem taking
account of the boundary conditions Ritz shows that
definition (36) gives rise to the equation

o'
0x20y?
For the desired function f and an auxiliary quantity ¥
defined by the relation
o'y
ax20y?
using the conventional variational procedure, one obtains
the following 2nd order equation
o’f
Par

=4tA'f. (38)

40 , (39)

+2tAP=0. (40)
It is easy to verify that this equation, making use of
Eqns (38) and (39) is fully equivalent to the fundamental
10th order equation (14) used by Ritz for obtaining
spectral formulas of the Balmer type. By requiring the
solution at the membrane’s boundary to vanish, one
obtains expression (16) for the Rydberg constant. As
was already stressed, the value of N is determined only by
the model parameters (p, 7, a), which is proof of its
universality in the framework of the approach used. It is
easy to see, however, that the whole procedure, irreproach-
able in mathematical rigour, has not led, and as we know
today, could not lead to the correct physical result. Indeed,
it can be seen from equation (40) that a quantity

F=—-2tA'¥Y (41)

plays the role of the force density at the point (x, y) of the
membrane. Quite obviously, such a ‘force’ determined by
the use of expressions (36) and (38) does not permit a
reasonable physical interpretation.

It is beyond doubt, however, that this part of the thesis
was important in the development of Ritz’s research which
culminated in the derivation of a widely known variational
method called after him (see Section 1).

4. The magnetic atomic model and the
combination principle

The next important stage in Ritz’s scientific career in the
field of spectroscopy is connected with his attempts to
construct a magnetic atomic model. Undoubtedly, the idea
of using magnetic forces to explain the linear spectral
structure arose as a result of a thorough analysis by Ritz of
the unsuccessful attempts to use elastic models for this
purpose.

For equations of mathematical physics the traditional
presence of the second derivative with respect to time
automatically yielded relations containing the square of
the frequency. A procedure for obtaining the required
dependences in the framework of the elastic model by
means of taking the root necessarily led to the introduction
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of higher derivatives with respect to the coordinates and a
change in the type of equation (from two-dimensional
Laplacian A to the hyperbolic operator A’). Naturally,
such exotic structures did not have a reasonable physical
interpretation. The results of his attempts in this area were
summarised by Ritz himself in the paper of 1908 on
‘Magnetic atomic field and spectral series’ [7] as follows:
‘The author studied some of the cases corresponding to
series laws (Ref. [1], paper I, p. 1; Ann. Phys. 12 (1903);
extract from his PhD thesis). It is likely that the complexity
of the assumptions required, for which it is impossible to
find a satisfactory physical interpretation, makes it neces-
sary to reject the theory given there ...’ (the note at the
beginning of Ref. [7]).

Furthermore, Ritz emphasises that the differential
equations of the 1st order with respect to time (which
lead to relations for the frequency v and not for its square
v?) can be derived if one assumes that ‘the acting forces
depend not on the position of the parts of the system but on
the velocities’ (Ref. [1], p. 99). Ritz points out that this is
the case for magnetic forces and that ‘the assumption of
intense magnetic fields ... can hardly be avoided’ (ibid.)¥. “...
It is possible that oscillations in the spectral series are
produced by purely magnetic forces, and it should be shown
later on that this assumption leads in a simple way to
understanding the spectral series laws and anomalous
Zeeman effects’, he writes (ibid., italics by Ritz).

It should be noted that Ritz did not immediately have
the idea of treating spectral lines arising as a result of
Zeeman splitting of a special sort. For example, his thesis
mentions (Ref. [1], p. 15) the paper by Larmor [78] where
the similarity of natural spectral doublets and triplets with
those of the Zeeman effect is noted. However, judging by
critical commentary by Ritz at this point, he did not take
this idea seriously at that time. Perhaps, such a position was
also caused by some prejudice Ritz had at that time,
according to Forman’s evidence (Ref. [31], p. 476), about
Lorentz’s electronic theory. At the same time, as follows
from the appendix to the thesis devoted to the problem
under study as a whole (Ref. [1], p. 75—77), Ritz hoped that
this problem would be solved by combining elastic models
with electrodynamic ones (for example, considering oscil-
lating continuum structures with a continuum charge
distribution).

[t is interesting to follow the thinking that led Ritz to the
magnetic atomic model. During the five year period that
came after his thesis, up to the paper of 1908 [7] which
contained the first detailed attempt to apply this model,
Ritz published five small papers. Two of them [3, 4]
published in 1903 are a natural continuation of his thesis
and contain no new ideas. The third one [34] is devoted to a
particular question of the manufacture of photoplates
sensitive in the infrared band. In contrast, in two short
communications of 1907 [5, 6] following immediately one
after another (and presented to the Paris Academy of
Sciences in March and July, respectively), a quite new
point appears in his research program. Here, for the first
time, a new physical mechanism for linear spectra was put
forward based on the identification of each spectral
frequency with one of Larmor’s, produced by a field of

TWe note that the magnetic Lorentz force was the only nondissipative
force known in physics at that time; it causes, in particular, the
Zeeman effect.

appropriate configuration. However, Ritz initially imple-
ments this idea in the spirit of the synthesis of elastic and
electromagnetic concepts outlined in his thesis. In the first
of the publications [5] he uses the model of an elastically
distorted electrically charged filament fixed at the endpoints
and in the middle and rotating with a constant angular
velocity w around the axis connecting its stable points

(Fig. 1).

o(x)

tana—d—
T dx

Figure 1.

Let T be the tension coefficient equal to the modulus of
the force acting tangentially per unit length at each point of
the filament, then |[F| =T. It is seen from Fig. 1 that the
normal component of the tension force acting on an
element dx is determined by the expression

. N do d’e
dF, = d(Fsina) = T d(tana) = Td(dx) =T 2 dx
(42)

for small angles a. It is easy to see that the centripetal force
acting on this element perpendicular to the axis x is
dF,, = —pw’ @ dx, where p is the linear mass density of the
filament. The condition dF, = dF., yields a differential
equation
2
Q + k2(p =0,

dx? “3)

where k2 :pwz/T. The solution to this equation is well
known to have the form

o(x) = A sinkx + B coskx, (44)

and by using the natural boundary conditions ¢(0) =0 at
the point C and ¢(/) = ¢(—!) =0 at the points A and B,
respectively, the relations typical for such problems are
obtained:

kl =mn  for the point B,

—kl =nn  for the point A . (45)

(The situation shown in Fig. 1 corresponds to the case
m =1, n =2). From this, for the tension on the sides of the
points A and B one gets, respectively f

tlt is interesting that from a formal mathematical point of view this
result originates in the same way as the energy quantisation in an
infinitely deep one-dimensional potential well obtained using the
corresponding Schrodinger equation. In both cases, a one-dimensional
problem of standing oscillations with identical boundary conditions is
considered. The difference in the physical nature of the oscillating
processes is evident from the fact that the parameter of the problem,
which is energy for the quantum mechanical case, is the inverse tension
coefficient for Ritz’s case.
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Now, if one imagines that the point C to which the
tension forces are applied from the sides of points A and B
is able to move along x, this displacement will be due to the
action of a force proportional to the difference
T =T, —Ty and, hence, to the quantity (1/n* —1/m?).
Furthermore, Ritz gives qualitative arguments in favour of
the idea that both the electric polarisation of the system and
the magnetic field along the axis will be proportional to this
quantity, which naturally leads to a Balmer-type formula.
One may suppose that Ritz was immediately struck by the
artificial character of such a mechanism of formation for a
magnetic field of the required configuration. In any case,
already in the subsequent short communication presented
to the Paris Academy of Sciences four months later [6], the
elastic filament is completely absent, and the magnetic field
source is taken as a specially chosen linear chain of
magnetic dipoles composed of eclementary magnetic
charges. Ritz develops precisely this idea in detail in
Ref. [7].

The following considerations form the basis of Ritz’s
magnetic atomic model. If two magnetic poles are posi-
tioned as shown in Fig. 2, the magnetic field H at point P is

1 1 1
oyl -ed)

AT TMATR
Obviously, exactly the same field will be created by a chain
of magnets arranged as shown in Fig. 3. If the number of
elementary magnets is n — 2, the length of each of them is

a, the distance to the point P is r; = 2a; then for the field H
we have

u 1 1
H:;(z—z‘;>-

In the general case when the number of elementary
magnets is n —m, r| = ma, r, = (n — m)a, one obtains

ufl 1
H:?(P_n_z)'

Now, if one puts at point P a charge undergoing periodic
small amplitude motions in the plane perpendicular to the
dipole axis, it will be embedded into an almost homoge-
neous field determined by formula (49), and taking into
account the relation between the field and frequency (5)

(47)

(48)

(49)

v=eH/(4nmyc) (as for the Zeeman effect), for the
frequency spectrum we find an expression
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ue 1 1

v= dmgca® (m2 n2) ’ (50)
which reproduces the generalised Balmer formula (8).

Obviously, under such an approach the length and
number of the elementary magnets are variable parameters
of the model. In particular, in order to obtain Rydberg’s
correction in this framework, it is sufficient to change the
length of one of the extreme elements of the chain.

Thus, if the first elementary magnet has a length distinct
from a and equal to (1 4+ a)a = a/2, keeping the distance r
the same, we obtain a new series having a common
boundary with the previous one, whose frequencies are
determined by the expression (¢ = —1/2)

ue 1 1

V= Anmyca’ [22 (n— ]/2)2] ' Gh
This formula corresponds to the Pickering series, which, as
is known, had been erroneously ascribed to hydrogen until
1913 (see Ref. [51], p. 153, for more detail).

In the general case, parameter « is arbitrary, i.e. r; = ma
and r, = (n+a)a. Then we come to an expression corre-
sponding to the general Rydberg formula

1 1
vV=N|—w—-——=|,
[m2 (n+ oc)z]
where N is the Rydberg constant expressed in terms of the
model parameters as follows:

(52)

ue
N dnmgca®’ (53)

To obtain the next corrections, it is sufficient to assume
that the length of the second (the third etc.) magnet differs
from that of the subsequent ones, which are equal to each
other. For example, to interpret Ritz’s correction in the
framework of this model, the assumption was made that the
length of the second magnet differs from a (and from
(14 a)a).

Thus, the magnetic model not only reproduced the
shape of the known spectral formulas, including (28)
and (29), but also confirmed the presence of series having
certain limits, and, in Ritz’s opinion, taking account of the
formulas which ‘corresponded very precisely to experiment’,
contained proof of the universal character of the Rydberg
constant (Ref. [1], p. 101).

[t is also important to note that in the magnetic model
Ritz, undoubtedly, saw the basis for a theoretical explana-
tion of the combination principle. Indeed, in the framework
of that model, each of the two terms in the expression which
determines the spectral line frequency represents the
contribution of one of the poles. Therefore, the different
combinations of spectral terms are a simple consequence of
the possible variations of the radiation locations of the
poles inside the atom. Ritz stressed this point in Ref. [8] (see
below).

The attempt by Ritz to use the magnetic atomic model
to explain the anomalous Zeeman effect, which more than
half of his paper of January 1908 is devoted to, is also of
significant interest. At that time, extensive experimental
data were stored on Zeeman splitting, and along with the
confirmation of Preston’s rule (on the identical splitting for
all members of one spectral series and analogous series of
different elements; see above) the important Runge’s rule
was established [111]. According to this rule, for complex
splitting, the spacings v’ (in the frequency scale) between the
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components (relating them to the same magnetic field value)
are rational fractions of the normal splitting v, determined
by formula (5), and the denominators of these fractions are
small integer numbers. For example, the sodium D, line is
split into six equally spaced components with a distance
between them of (2/3) v,.

Ritz’s approach to the anomalous Zeeman effect is
based on the following considerations. Because according
to the magnetic model each spectral line in the absence of
the magnetic field H is itself a result of Zeeman splitting
owing to the action of the inner magnetic field H,, the
general picture of the effect represents a result of super-
position of the these two fields. Here Ritz takes into
account that the intrinsic magnetic field H, is higher (by
the order of 104) than the external field H used for Zeeman
effect studies, which is tens of thousands of Gauss.

If the fields H, and H are parallel or antiparallel to each
other, ultimately, according to Ritz, two frequencies
v=e(Hy+ H)/(4nmyc) naturally appear, which corre-
spond to two circularly polarised components observed
along the field direction with a split twice as high as the
normal one.

In order to describe the phenomenon as a whole, Ritz
supposes that in the general case the sources of the internal
atomic field can undergo rotational motions that result in
precession of the field H, around the external magnetic field
direction.

The next assumption by Ritz is the periodicity condition
for this motion, which is expressed by the fact that the sines
and cosines of Euler’s angles connecting the two coordinate
frames are directed along H, and H, respectively, and
become periodic functions of time which can be represented
by Fourier series.

In the general case, such splitting should lead to an
unlimited number of components, which, of course, does
not correspond to observations. Agreement between theory
and experiment on this point has been achieved by taking
account of the strong dependence of the intensity on the
number of harmonics. For example, according to Ritz’s
estimate, only those lines that have a certain minimum
intensity can be observed to split.

On the grounds of the assumptions made, Ritz was able
to explain Runge’s rule as a result of the frequencies of two
rotational periodic motions being in rational proportion.
He considered a number of specific cases of a complex
picture of Zeeman splitting, in particular, the spectral lines
of neon and mercury.

Ritz was certain that his scheme for the explanation of
the anomalous Zeeman effect had an advantage over
Lorentz’s approach. Lorentz tried, beginning with
Ref. [75], to explain this effect by internal atomic inter-
actions. Like other theoreticians, however, he did not
consider the series structure of spectra. Ritz especially
emphasised the point that his model of the molecular field
H, was not only suitable ‘for a much larger range than
Lorentz’s hypothesis, ... for representation of the Zeeman
effect phenomena in their great diversity and with their
characteristic features,... but is also able to explain the
series laws—the problem which Lorentz completely
ignored’ (Ref. [1], p. 132).

Now we know that the explanation of the series
structure is connected not with magnetic, but electrostatic
interactions within an atom, but Ritz’s idea of considering
the precession of magnetic momenta turned out to be

correct with regard to the spin and orbital magnetic
momenta of electrons. It should be specially noted that
here once again appeared the characteristic of the whole of
Ritz’s scientific career: the ability to anticipate correct
physical results on the basis of theoretical methods
inadequate to the problem.

In the case under consideration, despite the physical
inconsistency of Ritz’s theoretical approach to the anom-
alous Zeeman effect, his scheme of explanation contained
an important constructive element—the idea that the
precession of the internal atomic magnetic momenta
around the external magnetic field direction underlies the
phenomenon. In our opinion, this fact is interesting despite
the obvious point that the internal atomic magnetic
moment in Ritz’s magnetic atomic model has nothing in
common with the actual magnetic momenta of real atoms
and their structural constituents (nuclei and electrons).

It seems certain that Ritz himself understood the
artificial character of the magnetic model and the necessity
of bringing together additional physical arguments and
specific ideas about atomic structure. In particular, he
wrote: ‘... from the point of view of electronic theory,
one cannot essentially object to the assumptions made, at
least in principle. Of course, the required distribution of
electricity is not a simple one. However, we do not
completely know a priori whether the simple laws of
molecular interactions relate to the electronic density or
to the forces acting... And since the full theory of linear
atomic spectra seems to be impossible to obtain without
special assumptions about atomic structure, from the
gnoseological point of view it is an advantage rather
than a shortcoming of this hypothesis that it does not
require an assumption about the form of the electrons the
atom appears to be constructed from, and operates only
with intervals or distances which are thought to be rigid.
However, in questions of such a kind, where it is hardly
possible to make any conclusion about the reason for the
action and, on the one hand, the observed facts differ from
all known phenomena and are very complicated, and on the
other hand, there is such great uncertainty in the assump-
tions, one can hardly expect that an inclusion [of these facts]
into our conventional range of perceptions that is satisfac-
tory in all respects is possible; moreover, it will be difficult
to unify opinion about what to consider as a ‘satisfactory
explanation’ in that case’ (Ref. [1], p. 110).

In trying to find a physical motivation for the magnetic
model, Ritz made use of the familiar ideas on equivalency
of looped currents and permanent magnets, and proved the
corresponding theorems using mathematical methods of
potential theory. He also understood that in order to
provide stability to such structures, forces that are non-
electric in origin are required.

It seems certain that Ritz’s magnetic model was inspired
by the general increase in interest in the problem of
magnetism which was characteristic of the physics of the
beginning of the 20th century.

If one studies the extensive physical literature of that
time, both technical and popular, concerning the problem
of atomic structure (see, for example, Refs [112, 113]), an
interesting feature becomes apparent. Practically every such
publication contains references to the experiments per-
formed by Mayer as early as 1897 [114]. The essence of
these very simple but now completely forgotten experiments
is the following.
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Mayer used a system of floats each of which was a cork
circle pierced in the middle by a long thin magnetised
needle. The floats were placed on the water surface in such a
way that the poles of all the needle-like magnets were
oriented in the same direction. Naturally, in the absence of
any external magnetic field the floats tended to withdraw
from each other as far as possible. However, under the
influence of a magnetic field created by suspending the pole
of a large magnet above the floats, of opposite sign to the
poles of the magnetised needles that are above the water
surface, the floats come closer by forming some stable
configuration of a regular form. For example, three floats
take up positions in the corners of an equilateral triangle,
four—in the corners of a square; with an increasing
number of floats the picture becomes more complicated
but keeps the same structure (see Ref. [114]). These quite
effective results did not attract attention until Thomson’s
atomic model [115] was developed shortly after the
discovery of the electron, advancing the fundamental
problem of equilibrium electronic configurations inside
the atom. Then, interest in the results of Mayer’s experi-
ments, which were used as an extremely visual physical
analogy, illustrating the possibility of the formation and the
specific forms of such configurations, increased dramat-
ically.

Important steps that led to the understanding of the
nature of magnetic phenomena took place at that time. In
1895 Pierre Curie published the results of his famous
experimental study [116] of the dependence of diamag-
netic, paramagnetic and ferromagnetic properties of matter
on temperature. Then in 1905 the classical work by
Langevin [117] appeared, in which he attempted to explain
the magnetic properties of diamagnetic and paramagnetic
materials on the basis of the electronic theory. Studies by
Weiss [118] reported in 1907 allowed the description of
some features of ferromagnetic behaviour using the idea of
an internal magnetic field (‘Weiss’s field’). We note that
Weiss assumed the existence of an elementary magnetic
charge or magneton, similar in concept to the elementary
electric charge, the electron.

Thus, the idea of the possibility of using elementary
magnets as constituents of atomic structure may have
appeared quite natural to the ‘scientific community’ of
the beginning of the 20th century.

Of course, the atomic magnetic model itself seems today
nothing but a historical curiosity. But one should bear in
mind that it played an important role in the general context
of Ritz’s research as a kind of theoretical basis for
justification of the combination principle. It is known
that in the history of physics Ritz’s name is associated
primarily with that spectroscopic law. For the spectral
series, this principle, in fact, was contained, although in
partial form, in Rydberg’s fundamental work of 1890 [53]
[see Eqn (2)]. As has already been mentioned, Ritz must
have been well acquainted with this work, since in his thesis
as well as in subsequent papers he repeatedly cites Rydberg.
The paper by Ritz ‘On the new law for spectral lines’ [§],
where the combination principle was presented as a
spectroscopic law, begins with an analysis of the differ-
ential structure of spectral formulas and contains a
reference to Rydberg’s paper [99]. Therefore, one should
consider that the statement, widely spread in the literature
of scientific history and even in the literature of physics,
that Ritz came to the combination principle independently

of Rydberg, does not correspond to the reality. Never-
theless, the significance of Ritz’s contribution to this
problem is beyond doubt.

The generic connection between Rydberg’s and Ritz’s
results relating to spectral systematisation was directly
noted by Bohr in 1913 in the first part of his trilogy on
the structure of atoms and molecules (Ref. [119], p. 84) and
in a more developed form in his paper ‘On the spectrum of
hydrogen’ (Ref. [119], p. 152). However, Bohr stresses here
the principal difference in the theoretical status of the
combination principle which results from Rydberg’s
approach, on the one hand, and Ritz’s, on the other.
For example, Bohr writes ‘Rydberg had proved already
in his first paper that simple relations exist between the
constants of different spectral series. These rules were
generalised by Ritz into the so-called combination princi-
ple’ (Ref. [119], p. 153). In other words, the generalising
character of Ritz’s formulation seems to be obvious to
Bohr.

The text of the paper by Ritz ‘On the new law for
spectral series’ [8] (dated June 1908) demonstrates exactly
what Bohr means by the generalisation of Rydberg’s
approach. As the basis of consideration, Ritz uses the
series formula (29) obtained in his thesis, introducing the
following designation for a term:

N
(m+ o+ (BN/m?) = (2aBN/m3) +...)"

(m, a, B) = (54)

Ritz began by showing that this formula can describe all
the relations between different spectral series of a chemical
element proposed by Rydberg, by making the correspond-
ing identification of the parameters a, f with empirical
constants. For example, a =p, f == for the principal
series; o« = s, B = o for the second auxiliary (sharp) series;
oa=d, p=20 for the first auxiliary (diffuse) series. All the
frequencies for these series are described, according to Ritz,
by the following formulas:

v= (1,5, s, 0)— (m, p, m) (principal series) ,
v=(2, p, ®) — (m, d, §) (diffuse series),

v=(2, p, &) — (m, s, ) (sharp series) . (55)

The major part of Ref. [8] is devoted to a demonstration
that using formulas of this kind one can describe practically
all the series of alkaline and alkaline-earth elements known
at that time without involving any new constantsy.

Ritz confirms the possibility of representing wave
numbers as a difference of two terms using much more
extensive experimental data than Rydberg.

Of special importance is that he clearly treats such a
representation as some universal spectroscopic law. This is
shown, in particular, by the introduction of the term
‘combination principle’. It is without doubt that the
magnetic atomic model played here an important heuristic
role here.

TNote that in the paper ‘On the spectra of alkaline metals’ of March
1908 Ritz, relying upon the series formulas of Rydberg, gave an
interpretation of the K, Rb and Cs spectra discovered shortly before
by Bergman in the red and infrared spectral bands, and showed the
erroncous approach of Runge, Ref. [121], who proposed another
interpretation. In paper [8] Ritz gives a reference to his paper [120].
Now we know this series corresponds to d — f type transitions.
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Thus, in the concluding part of the introductory section
to his article, Ritz writes: ‘In the paper [7] which recently
appeared I showed that one can indicate the simplest
systems whose energy is purely electromagnetic and which
yield the Balmer formula, the series laws, anomalous
Zeeman effects etc.” (Ref. [1], p. 147). And further: ‘For
all spectra the atomic magnetic field can be considered as
being induced by two poles of opposite signs; each of the
two terms in (m, o, B) — (n, a’, B') represents the influence
of one pole; for example, in the case of hydrogen they are
equidistantly located on a straight line. The interchange of
these positions corresponds to the combination principle. In
a more general form one can apparently suppose that the
simple laws are connected with the location of these poles
inside the atom’ (Ref. [1], p. 147 —148; italics by Ritz).

In analysing Ritz’s works on the combination principle,
it is essential to consider the question of the formulation of
this principle in Ritz’s papers themselves. The usual
reference is to his article of 1908 [8], or more precisely,
to the author’s summary attached. In our opinion, however,
there are more than sufficient grounds to doubt the
correctness of that reference. The point is that the article
itself has the subtitle ‘Preliminary communication’, from
which it follows that Ritz definitely counted on publishing
some more general material on this subject. It is difficult to
judge how legitimate is the treatment of that assertion
contained in the author’s summary attached to the article,
and usually it is cited (moreover, in a somewhat abbreviated
form) in literature as a general formulation of the
combination principle.

It should be taken into account that the paper was
published in Physikalische Ze itschrift without this text. The
author’s summary itself was found among Ritz’s papers
after his death and was placed as an appendix to the
corresponding paper in the posthumous edition [1] of his
works in 1911 (see the compilers’ note on p. 162).

Although the purpose of that extract was unclear, its
general sense had something in common with the article by
Ritz so that unification of the texts in the complete works
seems quite appropriate. However, the citation of Ritz’s
paper of 1908 as a reference where the formulation of the
combination principle is given cannot be justified. It is
interesting to compare the complete text of the correspond-
ing statement from the author’s summary with the citation
given by Jemmer [110].

In the original, the phrase reads as follows: ‘By
combining, by means of adding or subtracting, either the
series formulas themselves or constants entering into them,
one can construct new formulas which allow one to
compute new lines of the alkaline metals discovered by
Lenard and others during recent years and which also make
possible far-reaching applications to other elements, in
particular He’ (Ref. [1], p. 162).

Jemmer writes: ‘By combining (adding or subtracting)
either the formulas for series themselves or constants
entering into them, one can construct the formulas that
allow one to express fully some newly discovered lines
through the known earlier ones’ (Ref. [110], the note on
p. 77 with reference to Refs [8] and [9]).

It is clear that Ritz writes about an unconditional
application of the combination procedure to alkaline metal
lines and the possibility of its use for the spectra of other
elements. In the quotation given by Jemmer, this reference
to specific spectra, as well as the possibility of further

generalisation of the approach, are completely omitted,
which results in the statement acquiring a status of
universality absent in the original.

In fact, the most extended and comprehensive formula-
tion of the combination principle is given by Ritz in his
general review of 1909 on ‘Linear spectra and the structure
of atoms’ (Ref. [10], paper XI in [1]). It is difficult to judge
to what extent this review can be considered as a completion
of that ‘preliminary communication’ [8], which was pub-
lished by Ritz in 1908. Perhaps, the initial plans were
significantly altered by that tragic “Zeitnot’ which accom-
panied the scientist in the last year of his life. In any case,
the two publications on that subject are chronologically
immediately next to each other. One cannot agree with
Forman in assessing this review as a ‘semi-popular article’
(Ref. [31], p. 479) and simultaneously should note that
Forman does not cite Ritz’s original formulations fully
nor in the context of the review itself.

The general review by Ritz [8] contains a quite rigorous,
although mostly qualitative presentation of the problem
outlined by the title ‘on the basis of the magnetic model’.
The review comprises five small sections.

1. Generalisations. New empirical laws. 2. Hypothesis
of atomic fields. 3. Hydrogen spectra. Series. 4. Anomalous
Zeeman effects. 5. Other methods of explanation. Conclu-
sions.

The first section is of special interest. Ritz performs a
short analysis of spectral regularities on the basis of
Balmer’s, Rydberg’s and his own formulas. The section
is ended by the following general conclusion: ‘... it is seen
that:

1. Simple rules always depend on 1/4, i.e. the frequency;

2. On infinitely increasing one or another of the
integers, the frequencies obtained tend to a limit;

3. Each of the two terms of the formula is independent
to a certain extent, and the spectral lines are obtained by
combining such terms’ (Ref. [1], p. 173).

One can partially agree with Forman in that the
combination principle ‘was not formulated too precisely’
(Ref. [31], p.479). However, as it seems to us, the
formulation given in the appendix to the review cited
above may lay claim to the status of authorship both
owing to its generality and because it belongs fully to Ritz
and was published by him.

Thus, the confirmation of the combination principle as a
general spectroscopic law seems quite natural in Ritz’s
approach if one takes into account that, by relying upon
the magnetic atomic model, Ritz considered the formulas he
used not as empirically established, as in Rydberg’s case,
but as theoretically justified relationships. The works by
Rydberg, as we mentioned in Section 2, completed, at the
end of the 19th century, the first stage in establishing
spectral regularities on the basis of empirical and semi-
empirical schemes. The works by Ritz should be considered
as a completion, in the first decade of the 20th century, of
attempts to provide theoretical justification for such
regularities on the basis of classical ideas. The approach
by Ritz is that of a typical theoretical physicist.

Unfortunately, this important part of Ritz’s career is
very poorly described by the historical scientific literature.
The paper by Forman [31] makes up that deficiency to a
certain but quite insufficient extent. It should be stressed
that Bohr was undoubtedly well acquainted with Ritz’s
studies, and in particular, with the intimate connection
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between the magnetic atomic model and the justification of
the combination principle. It is no mere chance that in his
report of 1954 on ‘The discovery of the spectral laws by
Rydberg’ dedicated to Rydberg’s centennial [122], Bohr
gave an extensive appraisal of this direction of Ritz’s
investigations (see the authors’ paper [51], p. 1557), during
which Bohr stresses the ingenuity of Ritz’s attempts to
explain the spectral rules on the basis of the idea of atomic
magnetic fields, and the failure of these attempts. Bohr
specially notes the establishment by Ritz in 1908 of ‘a
general law, known now as Rydberg-Ritz’s combination
principle, according to which the wave number for any
spectral line can be represented in the form v=T; —T,,
where 7| and T, are two terms from a sample of terms
characteristic for the given atom’ (Ref. [59], p. 473). It is
quite clear that Bohr’s appraisal did not have a retro-
spective character, but reflected his reaction to Ritz’s works
at the time he was developing the quantum theory of atomic
spectra. As is well known, in an interview Bohr gave to
Rosenfeld and Kun shortly before his death (see Ref. [123],
p. 172), he said that at the beginning of 1913 “... [ found the
hydrogen spectrum. [ had just been reading Stark’s book
and at that moment [ felt that now we see just how the
spectrum arises’. The story goes that Bohr found out about
Balmer’s formula for the first time and read a book by
Stark ‘Principles of Atomic Dynamics’, part II, ‘Elementary
Processes of Radiation’ [124]. In Stark’s book ‘Structural
Characteristics of Optical Frequencies’, the section ‘Spec-
tral series’, chapter II, considered in detail the Balmer series
and spectral line series according to Rydberg and Ritz,
whose papers are properly referenced. In particular, Stark
writes about the spectral formulas of Rydberg such as
v =v(n, ) — v(m, k) depending on two variable integers n
and m and cites the paper by Ritz ‘On the new law for
spectral series’, noting that ‘this is a contribution by Ritz [§]
towards understanding the actual meaning of Rydberg’s
ideas’ (Ref. [124], p. 51).

The important role Ritz’s works on the combination
principle played when Bohr formulated his famous fre-
quency condition in the first part of his ‘trilogy’ (Ref. [119],
p. 90-91; see also Bohr’s paper ‘On the spectrum of
hydrogen’, [119], p.160), is not in doubt. At the same
time, it is natural to assume that Bohr’s knowledge of Ritz’s
attempts to model the spectral laws theoretically on the
basis of classical ideas strengthened Bohr’s conviction of the
inapplicability of this method for describing atomic
structure and its interaction with radiation.

5. Conclusion

The range and standard of Ritz’s scientific research, as well
as his substantial contribution to the development of
physics and mathematics, all provide grounds to speak of
him as one of the outstanding representatives of the
generation of theoretical physicists which included Ein-
stein, Bohr and Ehrenfest. Ritz’s studies in atomic
spectroscopy completed the pre-quantum development
period of one of the most important topics in physics at
the beginning of the 20th century.

In the field of atomic spectroscopy, Ritz’s first con-
tribution was in obtaining the correct series formulas,

tNote that in that article Ref. [5] to Bohr’s report (as well as Refs [6]
and [7]) were omitted from the list of references.

including the corrections, and in establishing their univer-
sal applicability in all the range of the optical spectrum
available at that time. The second very important result was
the formulation of the combination principle as a general
spectroscopic law. The spectroscopic works by Ritz,
especially his thesis, include all necessary criteria of a
developed theoretical study: clear statement of the prob-
lem, resonance choice of the initial model, logical use of the
mathematical methods which were developed. Therefore the
fact that the well-known Balmer’s and Rydberg’s series
formulas, as well as a generalisation of the latter found by
Ritz himself, appeared as a purely mathematical conse-
quence of the model in use, gave them definite theoretical
status. It was after Ritz’s studies that the use of formulas
with a fixed differential structure and a characteristic
dependence of each of the two terms on the square of
an integer became the conventional means for describing
the observed spectral regularities, which, in turn, stimulated
the appearance of Bohr’s initial quantum theory with its
frequency condition.

Ritz did not use quantum ideas at all; his studies were
based exclusively on the ideas and methods of classical
physics, which, certainly, made the basis of his theory
inadequate for the physical problem he was considering.
However, in his works he succeeded in expressing a number
of physical concepts which were refined and fully correct
qualitatively, and separate details of his approach strikingly
anticipated some features of the quantum description.

All of that, in our opinion, shows that Ritz’s premature
decease undoubtedly deprived physics of a possible active
developer of the atomic quantum theory. Exactly this idea
was expressed by Sommerfeld in a letter to Ehrenfest on
November 16, 1916, concerning quantum problems on
which, as is well known, he was actively engaged at that
time. In that letter, having expressed deep regret for Ritz’s
early death, Sommerfeld in wrote particular: ‘... his rich
imagination, his enthusiasm to master the problem, not
hampered by a too critical approach, would be very
appropriate here’ (see Ref. [25], p. 291).

It appears certain that the fundamental works by Ritz
on atomic spectra theory deserve to take their proper place
in the history of physics.

The authors feel deeply indebted to E A Tolkachov for
numerous constructive discussions of the problems touched
upon in the present article.
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