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Abstract. The classical and quantum theories of
synchrotron radiation (SR) are reviewed. A concise history
of the development and discovery of SR, and its
fundamental properties, are given. The emphasis is placed
on the quantum effects: quantum fluctuations of trajec-
tories of electrons, and radiative polarisation of electrons
and positrons in storage rings. The theories of undulator
radiation and radiation in a short magnet are discussed in
brief. Experimental investigations of synchrotron radiation
and its applications in physical experiments are reviewed.

1. Introduction

In 1947, for the first time in history, Floyd Haber—a
young staff member in the laboratory of Professor Pol-
lock —observed radiation emitted by electrons as they
moved circularly in the magnetic field of the chamber of an
accelerator. This occurred during the adjustment of a cyclic
accelerator-synchrotron, which accelerated electrons up to
100 MeV [1, 2]. The radiation was observed as a bright
luminous patch on the background of the chamber of the
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synchrotron. It was clearly visible in daylight. In this way
‘electronic light’ was experimentally seen for the first
time —radiation emitted by relativistic electrons having a
large centripetal acceleration. The radiation was called
synchrotron radiation (SR)f since it was observed for the
first time in a synchrotron.

It is hard to overestimate the importance of SR in our
days: interest is growing incessantly since the radiation
features a rare combination of fundamental properties and
important scientific and technical applications.

It was sheer accident that the SR was observed: the
opaque metallised cover of the chamber was removed to
perform an adjustment and this allowed the light to be seen
outside the chamber.

The discovery and first observations of the synchrotron
radiation were dramatic; its properties seemed mysterious
and unusual at the initial stage of investigations. However,
a number of theoretical studies on the emission of a
relativistic accelerating electron had been carried out
long before the experiment described above.

The first steps in this direction were taken by Lienard
(1898) and Heaviside (1902) [4]. They extended the familiar
Larmor formula for the plane power of a nonrelativistic
electron,

a_E _ 267V

W=— —_—
ot 3¢’

, (1.1)

fThere is another name in the literature—the magnetic breaking
radia-tion. This term is common in astrophysical problems (sce
Ref. [3]).
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to a high-velocity particle. In modern notation it takes the
form

w=2 e (ﬂﬂ>=%e2—y6[ﬁ2—(ﬂ xB)2]

3m2A\ dr dr 3 ¢

(py is the four-dimensional impulse, dt = dt/y is the
intrinsic time, y = E/mc?, and f = v/c). Lienard turned his
attention to the fast growth of losses in the energy of an
electron describing a circle (B L ) of radius R:

2 e
W=3%—B".

T (1.2)

The growth was proportional to the fourth power of the
energy.

Subsequently Schott (1907) made an interesting detailed
study of the radiation an electron emits as it follows a
circular path [5]. Schott’s objective was to explain the
discrete nature of atomic spectra. Based on early models of
the atom and especially on the Saturnian model in which
electrons in an atom move about the positive charge in
circles similar to the rings of Saturn, Schott made an
attempt to calculate the spectrum and the distribution of
spatial radiation of electrons in an atom by the strict
methods of classical electrodynamics. He reckoned the
spectral theory to be the most important issue of the
theory of matter since he believed it to be the way to
the working model of the atom.

The consistency and elegance of the Schott theory are
admirable. However, his attempts to explain the atomic
radiation within the scope of classical physics could not
have met with success. For this reason Schott’s work was
only of academic interest for 40 years and was virtually
forgotten. Their relavance was discovered in new circum-
stances 40 years later when the issue of an emitting charge
moving in a macroscopic trajectory arose.

Of primary interest was the emission of accelerating
electrons in a magnetic field. In 1939 I Ya Pomeranchuk
established the radiative ‘ceiling’ for the energy of electrons
in his attempt to determine the maximal energy the cosmic
charged particles could possess at the Earth’s surface due to
radiative losses in the Earth’s magnetic field [6]. By means
of this estimation, the maximal energy was then predicted
for a betatron—an induction accelerator, in which elec-
trons move in a magnetic field which builds up in time and
is virtually homogeneous along the trajectory of the particle
(D D Ivanenko and I Ya Pomeranchuk) [7]. The existence
of radiative losses in the energy of an electron in the
magnetic field of an accelerator was soon verified in
experiments conducted by Blewett (1946, [8]). He found
that electrons moved in decreasing orbits as their energies
increased: the particles moved in a converging spiral and
ceased to accelerate because of a loss in energy to radiation
(note that the energy, radius of orbit, and magnetic field
strength are related by the equation BE =eHR, see
Ref. [25]).

Blewett’s experiments could be considered to be a proof
of the actual existence of radiation from relativistic charges
and this radiation could even be called the betatron
radiation. However, attempts to visually—directly—
observe this radiation did not meet with success: the search
for radiation in the microwave range (dipole radiation) was
a total failure. This exceptional situation—the energy
losses of electrons was surely observed while the radiation
itself was elusive—dramatically showed that large radiative

losses alone did not uncover the fundamental features of
this extraordinary phenomenon.

Having studied theoretically the spectral distribution of
the radiation power emitted by a circularly moving
relativistic electron, L A Artsimovich and I Ya Pomeran-
chuk found out that the maximal power fell not on the
fundamental frequency (as would be the case for a dipole
radiation), but on its higher harmonics: @ ~ w0y3 [see
Eqn (2.1) below]. For electrons of energy 80—100 MeV,
the radiation ought to be observed not in the microwave
range but in the radiation range of higher multifields, i.e., in
the visible range (1945, Ref. [9]; see also Ref. [10]). This was
revealed in an experiment on the synchrotron in the
USA [1, 2].

It was shown in Ref. [9] that the angular distribution of
the power of synchrotron radiation is highly anisotropic—
it is concentrated in a slender cone of angle o ~ 1/y in the
orbital plane of revolution of the electron and is directed
forward in parallel to its motion. The theoretical study of
the coherence of radiation [9] (this is of especial interest for
the radiation of a cluster of electrons in a betatron, when
they fill almost all the orbit) showed that the coherence
could manifest itself at the lowest frequencies only because
of fluctuations of the current density in a beam for y > 1 —
far from the maximum of the spectral distribution of the
power.

Thus, the qualitative description of the properties of
synchrotron radiation were known before it was observed
for the first time. However, as is noted above, it was
discovered by sheer accident.

The discovery of electronic light in the synchrotron
stimulated further investigations of the SR properties and,
first of all, analysis of the spectral and angular distribution
of the radiation power. This was a complicated problem
since the Schott formulas [5] were inconvenient for describ-
ing the radiation spectrum of a relativistic electron when it
involved the higher harmonics of the frequency of the
circular revolution of the electron. The conventional
approach of expanding the series in terms of multifields
was not applicable to the analysis of the radiation. Then the
asymptotic problem in the radiation spectrum of a rela-
tivistic electron arose for a large relativistic factor y > 1.

V V Vladimirskii [11] successfully applied Airy func-
tions, which had been studied thoroughly by V A Fok,
to describe the radiation spectrum of an electron moving in
a magnetic field. The asymptotical formulas for the spectral
composition of synchrotron radiation were independently
determined in several theoretical studies [I1—15]. They
opened up a possibility for an experimental verification.
Experiments demonstrated a good agreement with the
theory in the visible range [16], the vacuum ultraviolet
range [17], and the x-ray range [18].

The classical theory of SR was then contributed to by
investigations of the polarisation features of SR [19]. It was
established, for example, that SR is elliptically polarised in
general and it is linearly polarised when observed in the
direction close to the orbital plane of revolution. The first
observations of the linear polarisation were made in the
initial studies [2] but the polarisation features of SR were
investigated in detail by the staff members of the Physical
Department of the MSU (Moscow State University) on the
synchrotron in the FIAN (Physical Institute of the
Academy of Sciences) and showed definite agreement
with the theory [20] (see also Ref. [21]).
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Numerous investigations shaped the classical theory of
synchrotron radiation to perfection, and the theory was
included in a variety of monographs [3, 22—-25] and courses
[14, 26, 27]. Synchrotron radiation became important for
astrophysics, in the analysis of nonthermal cosmic radia-
tion. The Swedish scientists Alfven and Herlofson suggested
in 1950 [28] that the nonthermal radiation of our galaxy
could be explained through the mechanism of SR. In Russia
this problem was addressed at the same time by Ginzburg,
Syrovatskii [29], and Shklovskii [30]. The recognition of the
importance of synchrotron radiation, the development of its
theory, and experiments stipulated the outstanding
advances in radioastronomy.

In the last few years the problem has acquired a new and
important feature—synchrotron radiation is used exten-
sively in scientific research. In parallel with our widening
knowledge of the nature of the phenomenon, the objective
of accelerators and storage units of electrons has changed
recently —they have become a major source of synchrotron
radiation which has taken up an independent position in
experimental physics.

The physics of undulator radiation —the radiation of
relativistic electrons as they move in a periodic outer
field —is of utmost importance in experimental applica-
tions of SR. Undulator radiation, which Ginzburg
predicted in 1947 [31], has the same origin as SR and is
similar to it in many aspects. It has attracted considerable
attention lately.

Although the theory of SR seemed to be complete, it
turned out that the electronic light possessed a variety of
fine and interesting properties which the classical theory of
an accelerating charge did not describe: the physical nature
of SR turned out to be richer and the quantum theory had
to be applied for its comprehensive description [22, 24, 25].

The quantum theory of SR [22, 24] helps to explain the
discrete nature of the radiation and its influence on the
trajectory of the particle (the recoil effect). As the theory
shows [32, 67], this influence manifests itself in the quantum
widening of the trajectory of an electron —the particle is
involved in a peculiar Brownian movement and quantum
fluctuations of the trajectory are macroscopic in nature.
The latter fact turned out to be important in the engineering
of accelerator design and storage of electrons.

The quantum theory also made it possible to investigate
the SR emitted by a polarised electron and to investigate the
contribution of the spin of a particle to the radiation power.
The analysis of the spin evolution during synchrotron
radiation revealed the effect of the polarisation of radiation
of electrons and positrons in storage rings [33]. This effect is
of special interest in connection with the problem of how to
create a beam of relativistic particles with an oriented spin.

It should be noted that storage rings in which there was
a possibility to compensate for radiative energy losses
became a unique laboratory for studying quantum
effects, since electrons could circulate for tens of hours
under such conditions, with the average energy remaining
constant. The quantum effects in synchrotrons were also
verified experimentally [27]. Thus, now both classical and
quantum theories of SR are complete and reliable.

v S ~mc?/E

Figure 1. Angular distribution of synchrotron radiation: (a) non-
relativistic motion, f < 1; (b) relativistic motion, § — 1.

2. Review of classical theory

2.1 Features of the radiation from a relativistic electron.
Genetic relationship of synchrotron and undulator
radiation

First of all, let us consider how the angular distribution of
the radiative power and its spectral composition changes in
the case of a relativistic particle. As is known (Larmor), the
spatial distribution of the radiation power of a non-
relativistic electron can be described by a toroid (Fig. 1a)
and, moreover, the radiation peaks in the direction of the
outer magnetic field when the angle Y’ measured from the
velocity vector of the particle is close to 2m.

If the relativistic velocity of the electron is f = v/c — 1,
i.e. y:E/mc2 > 1, then the toroid is strongly deformed
because of the Doppler effect and is elongated in a cone the
axis of which is directed in parallel with the velocity of the
particle (Fig. 1b).

It is convenient to introduce the relativistic transforma-
tion of angles. Let Y’ be the angle in the system of coordi-
nates in which the electron is at rest. Then the angle Y from
which the radiation is observed in the laboratory system of
coordinates is found by means of the aberration formula:

) _ (] _BZ)I/Z sin l/II
Slnl// —W .

Setting /' = m/2 for which the dipole radiation peaks, we
obtain

2
mc

siny =28y = (1- )72 =97 ==
Thus, synchrotron radiation has a pronounced ‘gun’ effect:
it is directed ahead in parallel to the motion of an electron
and is concentrated in a slender cone of angle 8 ~ y~!
(Fig. 1b).

The peculiar features of the spectral composition of SR
can also be readily explained. As a consequence of the gun
effect typical of a single relativistic electron, the observer
registers the radiation as a short impulse when the needle-
shaped ray passes through the point of observation (Fig. 2).
Let the efficient length of the arc along which the radiation
occurs be [ = R8y. The time t' = /¢ for which the electron
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Figure 2. Scheme of observation of synchrotron radiation at a point P.

travels this distance is equal to the duration of the burst of
radiation. However the electromagnetic wave is late at the
point P and the duration of the impulse is

At = (1= pn)t’ =7y72,

in the laboratory system of coordinates.

However a short-time impulse of radiation is incon-
sistent with a narrow spectrum of frequencies (see
Ref. [117]). As is well known in radiotelegraphy, a short
signal always has a wide spectrum.

Thus, a wave packet arrives at the point of observation;
and the intervals Af and Aw which characterise the duration
of the approximate transmitted signal and frequency
composition of the spectrum are related by the equation
AwAt = 1. The observer will register a bunch of harmonics
of the spectrum, including those of the order of the critical
frequency @, ~ Aw = ¢y’ /L.

The two frequency spectra are realisable, depending on
the nature of the motion of a particle in the magnetic field.

(a) Synchrotron radiation. Since the length of the arc
along which the radiation is emitted is equal to
[=R& =Ry~' in this case, the critical frequency
w, ~ Ao = cy3/R = w0y3. Thus, the spectrum involves
the higher harmonics of the fundamental frequency propor-
tional to y3 (see Ref. [9]).

(b) Undulator radiation. Another mode of radiation of a
relativistic particle is admissable when the radiation is
observed immediately from along the whole trajectory
(see Fig. 3). In this case, Aw = ¢y*/l,—the maximum falls
on the fundamental and turns out to be proportional to y2,
as a result of the relativistic multiplication of frequency (see
Ref. [10]); [, is the length of the characteristic period of the
undulator.

(¢) Radiation in a short magnet. Of interest is the motion
of an electron in an arc of a circle when 8 < y~'. In this
case, the radiation of an electron beam in a short magnet is
‘white noise’ [34] ranging from zero up to the frequency
w, = ﬁc'y2/10. The spectral properties of this radiation

|nj=1.
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Figure 3. Pattern of emission of an electron: (a) linear undulator;
(b) spiral undulator.

differ greatly from those of synchrotron radiation, espe-
cially in the low-frequency range. Note that the angular
distribution of radiation power is the same for synchrotron
radiation as well as for undulator radiation, and also for the
motion in an arc of a circle in a short magnet.

Thus, the above analysis shows that all of the three
kinds of radiation an electron emits as it moves in a
magnetic field are in the form of genetic relations.

2.2 Schott’s formula, polarisation, and the angular
distribution of radiation power

As is noted above, the problem of radiation from a
relativistic charge moving in a circular orbit was solved for
the first time by Schott. He derived a familiar formula for
the spectral—angular distribution of radiation power

0E &
W=—F= ;fi; dQwW (v, 6) ,

where the differential radiation power is

ezcﬁzvz 2052 . 2 112 .
W(v, 0) = SR [cot 0J,(vBsin 0) + B~J,~(vBsin 0)]

2.1
Here, vis the number of the harmonic of radiation, w = v,
Wy = eocH/E, e = —eq, ¢y > 0 is the charge of an electron,
and J, and J; are the Bessel function and its derivative with
respect to [vf(sin 6)]. Schott’s formula is the exact solution to
the equations of classical electrodynamics for the radiation of
a nonrelativistic electron moving in a circle of radius R.

In applications of the theory of SR the polarisation
properties of the radiation are of extreme importance.
Therefore, first of all I shall dwell on the extended Schott
formula, which accounts for the polarised radiation [19]. In
order to describe a linearly polarised radiation, two
perpendicular unit vectors e, and e; are introduced.
They are orthogonal to the wave vector n’

n’ xj 0

e, =n Xe;, 2.2)

AR A
where j = H/H is the vector parallel to the outer field. The
components ¢ and m of the linear polarisation are
characterised by the direction of the vector of the electric
radiation field (Fig. 1b): E; lies in the orbital plane of
revolution and is directed along the radius to the centre,
and the vector E, is nearly parallel to the outer magnetic
field since n” is nearly perpendicular to H in the relativistic
case.
Then the extended Schott formula (2.1) is [19, 24]

Sl , - . 2
SR [l,,ﬁjv(vﬁ sin 6) + I cot 8, (vf sin 0)] .

2.3)

In this case the power of the o-component of the linear
polarisation of radiation is obtained by putting [, =1,
I, =0 (I, and [; are introduced to simplify the notation)
and the choice [, =0, [;=1 corresponds to the m-
component. Finally, by introducing the vector

We, n(v,0) =

ey = L (ea + ie,,) R
V2
to describe the circulation polarisation, we obtain that the
choice of I, =1, = 1/4/2 corresponds to the clockwise
circular polarisation and I, = —I; = 1/4/2 to the counter-
clockwise polarisation. The total radiation power is a sum
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of polarisations: W =W, 4+ W, =W, +W_,. I draw the
reader’s attention to the fact that SR is fully polarised in
the orbital plane of revolution of an electron since W
vanishes for § =m/2. In the general case of observation,
the synchrotron radiation has an elliptic polarisation the
sign of which changes in going through the orbital plane of
revolution of the particle.

The pronounced linear polarisation of SR becomes
especially clear when one considers the total power of SR:

W, = 2% dQW, (v, ) = (6 + %) %

- i% dew (v, 6) = 2 — §%) % (24
v=1

where W =2e’cfy*/3R?. In addition, W, =7W /8 and
W, = W/8 in the ultrarelativistic case (f — 1).

The polarisation of synchrotron radiation is of especial
interest not only in connection with applications in the
physical experiment under laboratory conditions, but also
in astrophysical observations: the polarisation effect could
be used as a decisive test for determining the nature of the
radiation coming from extraterrestrial sources [28—30]. In
particular, the study of electromagnetic radiation coming
from the crab-like nebula—the gaseous envelope left after
an exploded supernova—met with outstanding success.
The synchrotron origin of the radiation of the crab-like
nebula was established reliably on the basis of measure-
ments of polarisation over the entire range of frequencies —
from the rf to the optical, x-ray, and gamma radiation
(from 107 to 10® Hz) [37-39] (see Ref. [10]).

Then it was found that the crab-like nebula was not
unique —there was a wide class of crab-like analogs, being
remnants of supernovas, which were called plerions [40]. In
line with the studies of polarisation, the radiation of
plerions, the major sources of which are pulsating neutron
stars or pulsars, was also established to be of synchrotron
origin. Thus, synchrotron radiation holds a firm place in
astrophysics, and the importance of its polarisation proper-
ties is quite obvious.

Note also that, as applied to astrophysics, it is
worthwhile to extend Schott’s formula (2.1) to an electron
moving in an helical line, i.e. there is a component of the
velocity vector not only in the direction perpendicular to the
magnetic field v = cf,, but also along the field v = cf.
Since the synchrotron radiation power is invariant, it may
be derived from the Schott formula (2.3) by means of the
Lorentz transform that

2 2 oo T :
_cw szj sin 6d6 3|:laﬁrlv(x)
¢ 3= Jo(1—pBjcost)
; cosB—ﬁ”j 2 )5
T e v(x)] , (25)
where
_ vB sinf
_l—,BHcosG

(see Refs [24, 3] T.

fTRadiation intensity [quantity of energy an observer registers in unit
time #: dI/dQ = d€/dQdr)] should be distinguished from radiation
power (energy a particle emits in a unit time ¢,), dW /dQ = d€/dQdr,,
where £ is the energy of an clectromagnetic wave; and the time
intervals dr and dr, are related by the equation dr = dz,(1 —f-n)
(see [3, 43)).

Now I shall dwell briefly on the angular distribution of
SR power and to this end sum up Eqn (2.3) over the indices
of harmonics v. This sum is calculated exactly [5, 24]:

W(0) = ZW(V 0) = ;2‘/;2 (0), i=o,m,
where
F(0) — 4 +3p%sin’ 0 F (0 _ cos’0(4 + B*sin’ 0)
a()_ 2 . 2 m\5/2° n()_ 2 2 \7/2
(1 —p°sin"0) (1 = p°sin"6)

(2.6)

The needle-shaped character of the synchrotron radiation
(the ‘gun effect’) becomes perfectly clear when the
denominators of the above expressions are considered.
By setting 8 = ©/2 + 8y, the denominators are transformed
to

1—fsin®0=1—pcos’ &y =1 — >+ (8y)’

Then it follows that &y ~ (1 — ﬁ2)]/2 =97 (see Fig. 1b)—
the angle of the radiation cone is a very small quantity.

It is interesting to consider the angular distribution of
radiation power in case of an ultrarelativistic electron when
1 — p? < 1. If we introduce the variable

Bcos®
V= W ~vycosl,
and use Eqns (2.3) and (2.6), we get [24]1

4, 5
Wi (’e ﬁ ! §f1(¢

~ 327R2
where
: 7 ) sY* 64y
L= 12+ 12+ Lil.
! A+y>)7 7 ()T mB YY) T

@2.7)

The index i takes the values i=0 ([, =1, [;=0), i==
(ly=0, ly=1), and i=+1 (ly=1l,=1/V2, Iy =1, =
1/+/2). The plots of the functions f;() are presented in
Fig. 4. It is very clear from the plots that there is a
singularity in the angular distribution of the m-component
of the linear polarisation: the component vanishes in the
orbital plane of revolution of the electron (Y =0). Of

- /o

Ix

1 1
4y —4

Figure 4. Linear (a) and circular (b) polarisations of synchrotron
radiation as functions of the angle of radiation; f, is the sum of two
components.

fThe simplest way to take the integral is to use Schott’s formulaes in
the ultrarelativistic approximation [see Eqn (2.14)].
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Figure 5. Instantancous power distribution of the m-component of
synchrotron radiation (the fourth peak is not shown).

05

Figure 6. (a) Comparison of experimental (dots) and theoretical (lines)
data for the angular distribution of SR power (4=408 nm,
E =250 MeV); (b) components of linear polarisation.

interest here are the angular distributions of polarisation
components of radiation [35, 36]. Omitting the details of
calculation, I wish to draw the reader’s attention to the
plots of the components of polarisation. The spatial
distribution of the m-component presents most interesting
and unexpected features (Fig. 5): it is characteristic of the
m-component that four beams are symmetric about the
velocity vector. The angular distribution of the power is
averaged over the period of revolution of a moving
electron, and two maxima are observed instead of four
(Fig. 6) [36].

2.3 Spectral distribution of the power of synchrotron
radiation. Ultrarelativistic approximation of Schott’s
formulas

The subject of this subsection is the spectral distribution of
synchrotron radiation power. To this end Eqn (2.1) is
integrated with respect to angles [5, 24, 25]. In this case

W) = j sin 04O W (v, 0)
0
_ eepv

=72

[2,3215V(2vﬁ) —(1-p) Kﬁ (%) dx] .(2.8)

This formula was also obtained by Schott [5S]. However,

difficult problems arose in applying his results to
synchrotron radiation.
The point is that Schott considered the spectral

distribution of radiation power in the context of the
atomic model, i.e. as applied to micromotions, in which
the radius of the orbit of an electron is of the order of the
radius of the Bohr orbit. Synchrotron radiation manifests
itself in macroscopic motions when the electron possesses
an ultrarelativistic velocity 1—/32 < 1. Therefore, many
features of synchrotron radiation, especially its spectral
composition, could not be explained directly from the
Schott formulas. But it is important that the formulas
are exact. This made it possible to reveal their contents as
applied to macroscopic motion. It should be stressed that
they could not be applied directly to the theory of SR: the
index of harmonics v, which is very large in the case of
macroscopic motions of an ultrarelativistic particle (v ~ 7°),
appears in the index as well as in the argument of Bessel
functions.

The real progress in studies of synchrotron radiation
was achieved once the ultrarelativistic approximations of
Schott’s formulas were obtained—the formulas were
approximated by means of the Airy functions and their
related modified Bessel functions or McDonald functions.

V V Vladimirskii was the first to describe the spectral—
angular distribution of radiation power by means of the
Airy functions [11]. The general idea of this description
consists in approximating the Bessel functions of large
index and argument n> 1, and 0 <x <1 (see Ref. [14)).
It could be seen from the integral representation of the
Bessel function,

(" . .
J(x) = %J exp[i(ng — x sin @)] do ,
—T

that the integrand is a rapidly oscillating function for
n > 1 and, therefore, only small values of the integration
variable make noticeable contributions to the integral. By
expanding the exponent in the integrand, in terms of
powers of ¢, and extending the limits of integration from
—00 to 00, we obtain

=] en{ifio—x(o-2)] oo
5 e[ ]

since the integral converges rapidly. Here ¢ =1 —x2/n2,
and the Airy function is defined by the integral

P(z) = \/Lﬁ J:o cos(zt +§) dr .

Following the ideas cited above, Vladimirskii obtained
an ultrarelativistic approximation for the spectral —angular
distribution of the synchrotron radiation power [11]. His
result can be presented in the form:

2% o\ 2w, 2/3 2 5.0
ow =22 soael 2 [(22) 07 +2000].

@.11)

2.9)

(2.10)

where

2/3
1)
o, =y, T=y, Y =ycosh, Z:<2a)> (1+7%)
C
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Figure 7. Universal curves for the spectral distribution of synchrotron radiation power [Eqn (2.16)] (a), and for the spectral radiation of a black

body [Eqn (2.18)] (b).

(see also Refs [14, 43]). Here I have introduced other
symbols for Airy functions and made a trivial transforma-
tion of variables.

As a result of the exact integration of Eqn (2.11) with
respect to the angular variable by means of the tables of
Airy functions composed by V A Fok, in Ref. [I11] the
spectral distribution of SR power was portrayed for the
first time as a curve which has a maximum near @ ~ ®,
(Fig. 7).

Another approach to the problem of approximation of
Bessel functions was proposed by A A Sokolov [12] and is
based on the Wentzel—-Kramers—Brillouin method of
quasiclassical quantum mechanics. In this method the
solution is to be sought in the class of Bessel functions
of an imaginary argument with a constant index. This
problem was solved by D D Ivanenko and A A Sokolov in
Ref. [13], where the Bessel function J,(x), 0 <x <n is
expressed in terms of the McDonald function K,/ in the
form

_ Ve n sn _ x?
J,,(x)—n\/gl(m 38 . e=1 )12.

Then the spectral—angular distribution of the power of
synchrotron radiation is presented in the form

2 p2.2
ecpv v
Wo, o0 0) = oo ks (5 )

(2.12)

2
+ 1y cot 0K, 3 G 53/2>] ,(2.13)

where ¢ = 1 — B*sin® 6.

Since all the radiation is concentrated mainly near the
orbital plane of revolution of the electron in the ultra-
relativistic case, it is reasonable to introduce a small angle Y
between the orbital plane and the direction of radiation [see
also Eqn (2.7)]:

v = Bcos®  cosf
(1 _ ﬁ2)1/2 \/% ’

and then, taking into consideration that the peak of

radiation falls on large harmonics for ¢y < 1, the sum over v

1
80:]_B2:;a

can be replaced by the integral (the spectrum is close to a
continuous one in the relativistic case). By introducing the
new variable

_ 2vs(3)/2 o

3 [

E)

the total radiation power can be presented in the form

27 >, 00 ,
Wo',n:]6 3 WCJ y dyJ dxp[la(l-ﬂp )K»/3(n)
3 0 w
2
where +hn ¥ ]+‘/’2K1/3(1’I)] , (2.14)
2%
1 4
ViR

is the total energy of radiation of an ultrarelativistic
electron and 5= (y/2) (1 +y*)*?. Then the degree of
linear polarisation is determined by the relation

Wo—We K3sl) = [W3/(+ A K ()
WotWe K350+ [°/(1+47)]K3 5(n)

Note that formula (2.14) is integrated with respect to the

spectrum of the angular distribution of components of

polarisation of SR and with respect to angles to the
spectral composition of radiation [24, 27]:

L £ [(li +15) Jw Ksjs () v o (I = ) Kaps )

T 16w y
(2.15)

P

The spectral distribution of SR power summed up over
polarisations takes the form [13, 15]

ww [, 10 =225 [Ckpmar, 1o

y

where f is a normalised function

Joof dy=1.

0
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Note that formulas (2.11) and (2.14) are identical. It can
readily be established, if one considers the relation between
the Airy and McDonald function, that

12 3/2
z 2z
2(2) = (E) Ky (T) :

[ shall describe in detail the spectral composition of
synchrotron radiation. Strictly speaking, its spectrum is
discrete—this is what attracted Schott’s attention. How-
ever, it contains a large number of separate spectral lines
very close to each other, so that SR possesses a nearly
continuous spectrum in the case of an ultrarelativistic
electron.

Let us consider the behaviour of the universal curve
[Eqn (2.16)], not depending on the energy of an electron
and normalised to unity. Since McDonald functions possess
the asymptotics

1/2
y— _ T .
Ky 0) =2""'T(p)y™”., Ky ()~ (2—> e,
y—0 y—00 y

where I'(p) is a gamma function, the function f(y) is (see
Fig. 7a, Refs [24, 25], and also Ref. [12]) given by

) 1.33y'/3,
JOW) = ,
0.78,/ye”, y—o0.

, 0,
y 2.17)

The power peaks at y = 1/3, i.e., Vyu = 7°/2. Varying the
energy of an electron, one can cover the entire scale of
electromagnetic waves—the spectrum of synchrotron
radiation spans the gap between the infrared and rf
ranges and the vacuum ultraviolet and x-ray ranges.
Thus, synchrotron radiation is a unique source of
electromagnetic waves, important as regards applications
in the physical experiment.

Note also that the spectral distribution of SR power
brings to mind the familiar Planck formula of the spectrum
of radiation of a black body (Fig. 7b):

n (kT) 15 5

= D(y) = — 2
pa) ]5 hzc3 (y) Tt4 ey _ ] E

2(y), (2.18)

where the function @(y) is normalised to unity

(0.9)
J ddy =1,
0

and y = w/wy, @y = kT /h. The comparison of the maxima
of radiations,

black __ kT __ ,.Syn
max _7_ max

¢ 3
=R 7

shows that the synchrotron radiation of electrons of energy
1 GeV is similar to the radiation of a black body of the
efficient (brightness) temperature 7T ~ 10’ K. Another
earthly source of such radiation could be a high-
temperature plasma or a nuclear explosion.

2.4 Experimental research on synchrotron radiation

Theoretical studies stimulated experimental investigations
of synchrotron radiation. After the first visual observation,
Pollock’s team conducted studies into the characteristics of
SR in the visible range of wavelengths, which corresponds
to the energy of electrons in the range 30 to 80 MeV [2]: in
full accord with theoretical predictions, the synchrotron
radiation was concentrated in a slender cone in the orbital

plane of revolution of an electron and was observed as a
dark red patch for electrons of energy 30 MeV and as a
bright white-blue patch for electrons of energy 80 MeV.
This luminescence exceeded daylight in terms of brightness.
All experiments showed a good agreement with the theory.
Ado and Cherenkov investigated the radiation in the visible
range for the energies 150 and 200 MeV on the synchrotron
in the FIAN and came to the same conclusion [16]. The
electronic light offered a direct means of detecting a
particle: it is emitted by the electron itself, which moves in
a magnetic field in vacuum. The electron becomes luminous
in a literal sense [13].

The experimental research of the properties of SR made
rapid progress: in 1956 American physicists made system-
atic studies into radiation in the vacuum ultraviolet range
on the synchrotron at Cornell University [17] and the
radiation was investigated in the x-ray range for electrons
of energy 4—6.3 GeV on the electron synchrotron DESY
(in Germany) [18].

I shall describe briefly the experimental research of the
polarisation of synchrotron radiation. The highly pro-
nounced linear polarisation of SR was revealed in early
observations in 1948 [2]. However, the first quantitative
results were obtained much later. In 1956 a group of
physicists from MSU performed the first systematic
research into the linear polarisation of SR on the synchro-
tron in the FIAN [20]. Their results were corroborated in
experiments on the synchrotron at Cornell University some
time later [21]. At Cornell the elliptic polarisation was
observed for the first time experimentally. Then the
exhaustive research of elliptic polarisation was conducted
on the synchrotron in the FIAN [41]; the polarisation of SR
was also investigated in Frascati (Italy), in Germany (on
DESY), and at the Tomsk Polytechnical Institute on the
synchrotron ‘Sirius’ [42] for electrons of energy 1.5 GeV.

Amongst the variety of recent works, of special interest
is the first measurement of the Stokes parameters which
adequately describe the polarisation structure of synchro-
tron radiation [44]. The Stokes parameters comprise a
complete description of polarisation:

1 Jot+fr
P 3 Jo—In
= = 2.1
P=W ) 0 w 0 s (2.19)
P3 S

where the parameter p; characterises the average circular
polarisation, and p; and p, are associated with the linear
polarisation; W is the total radiation power. The Stokes
parameters in Eqn (2.19) may be chosen as the functions f,
fr» f+1 specified by means of formula (2.7). Note that here
the Stokes parameter p, is zero since the principal axis of
the ellipsoid of polarisation is assumed to refer to the plane
of revolution of the electron, which is the plane of maximal
linear polarisation.

Experimental measurements were performed on the
synchrotron in the FIAN for electrons of energy
600 MeV [44]. The polarisation of SR was studied with
consideration for betatron oscillations of an electron, owing
to which the synchrotron radiation in the orbital plane of
the electron is no longer fully linearly polarised.

Thus, the polarisation properties of synchrotron radia-
tion are well studied both theoretically and experimentally
by now.
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2.5 Undulator radiation

Undulator radiation is attracting the attention of research-
ers more and more. This corresponds to the
electromagnetic radiation of charged particles as they
move in a periodic outer field. This radiation is due to
the centripetal acceleration of particles when their
trajectories bend. Undulator radiation (UR) is similar in
nature to synchrotron radiation —they differ only in the
effective length of the path over which radiation is emitted
(see Figs 2 and 3). Similar to SR, undulator radiation has a
highly pronounced angular trend: it is concentrated in a
slender cone about the velocity vector of an electron and is
directed forward in parallel to the motion of the particle.
The polarisation properties of undulator radiation also
similar to those of synchrotron radiation in many respects.
I want to emphasise that the particle is a relativistic one in
either case: the source of SR is a relativistic electron
moving in a circular orbit, and UR is coupled tightly with
the relativistic velocity of translational motion of a particle.
Thus, undulator and synchrotron radiation have a close
genetic relationship.

In 1947 Ginzburg suggested that relativistic electrons
could radiate in periodic systems [10]. Studying the
possibility of powerful and reliable generators in the
microwave range, he considered the problem of the
radiation of a fast charge in an electric field, which induces
oscillations of the particle in the direction perpendicular to
its forward motion.

The term undulator appeared for the first time in works
of Motz [46, 47], who proposed to let electrons pass through
a successive series of magnetic fields of different polarity
(magnetic undulator). In 1953 SR was experimentally
observed for the first time in the UHF range and in the
optical range with the apparatus he created [48]. The
electromagnetic radiation was generated by relativistic
electrons which were passed through the undulator and
accelerated beforehand by a linear accelerator.

Since electron beams were accelerated by a linear
accelerator, the undulator had to be operated in an impulse
mode; and since electrons passed through the magnetic field
of the apparatus once only, the experimental results were
not reliable. In 1960 Godwin came up with a proposal to
place an undulator in a rectilinear gap between the
synchrotron and the storage ring [49]. When electrons
pass through the undulator repeatedly, the buildup of
the beam over the rectilinear portion of the trajectory of
particles significantly affects the spectrum of SR and can be
used for generating intensive and nearly monochromatic
fluxes of x-ray and ultraviolet radiation.

For the first time, the radiation from the undulator built
in the chamber of an accelerator was observed by a group of
experimentalists from the Physical Department of the M SU
on the synchrotron ‘Pakhra’ (1 GeV) in FIAN [50].

In recent years, undulators have assumed an important
and independent significance in connection with the project
of a free-electron generator of coherent radiation. This
stage in the advancement of technology is in essence the
second birth of undulators, as the properties of coherent
stimulated radiation (free-electron laser or FEL) make
undulators such an important source of radiation that
SR is relegated to the backgroundf.

FIt is not possible to review FELs and related problems in this paper.
For more information on these topics, please refer to the work of
Bessonov on UR and FEL, which has been published recently [52].

[ shall now discuss briefly the properties of undulator
radiation. There are two types of undulators: plain and
spiral. In a plain undulator, the trajectories of particles are
curved lines in a fixed plane, whereas in a spiral undulator
the electrons move in a spiral (a spatial curve)—in both
cases the radiation is emitted immediately along the whole
trajectory of the particle. However, this does not hold for a
wiggler —an undulator with a strong magnetic field.

The spiral undulator received wide acceptance in the
experiment described in Ref. [S1]. The magnetic field in a
spiral undulator varies according to the law
(2.20)

H = | H,sin 2z H,cos 2nz 0
- 0 }'O ) 0 }, B .

0

In such a magnetic field, electrons move in a spiral

r=(Rcoswot, Rsinwyt, Pjct); (2.21)

the radius of the spiral R is related to the transverse
component of the velocity of a particle v, =c¢f, by the
equations

Znﬁ”()
Wy = TO .

The longitudinal and transverse components of the
velocity of an electron /3||c and B¢ are related by the
. 2 2\1/2
equation B = (B +fj) " In what follows, the case of
relativistic electrons when B~ 1, B, <1 is of primary
interest. This definition has to be made more precise. On
introducing the so-called undulator constant

K_Vﬁi_ﬂ_EHolo

- ﬁ” o 2nR o 21tmc2

; (!Holo
R=ELC g =00

g 2mmc?y (222)

into the expression for the longitudinal velocity ﬁ”c,

o) -]

Two types of undulators are distinguished depending on
the value of the undulator constant K. If K < 1, then the
resultant mode is said to be of the undulator type. The case
of K > 1 corresponds to the wiggler mode—the mode of
an undulator with a large magnetic field strength (of order
of 50 kG). The approaches to these two cases are
somewhat different.

Since, as follows from the foundations of electrody-
namics, the radiation is fully specified when the trajectory
of the charge is given, the above case of the radiation of an
electron moving in a homogeneous magnetic field (motion
in a spiral) is a good model for the problem of the radiation
from an electron in a spiral undulator. Then the differential
of the radiation power of a harmonic v inside an elementary
solid angle dQ is written according to Eqn (2.5) as

(2.23)

aw, Fo’fK? , cos — B 2
— =1, J Iy ————J ,(2.24
dQ  2mey*vo, | 7 W)+ B, sin ()| - @224
where
o= vy, = v, sin 0 :Egsine,
1 — Bjjcost 1 —Bjcost y

and /; and [ serve to describe the polarisation properties of
radiation, as described before.

Let us consider the frequency of undulator radiation
given by Eqn (2.4). The quasiclassical spectrum of radiation
of an undulator consists of harmonics @ = vw, of the
fundamental frequency @; = wy/(1 — Bjjcos@). The undu-
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Figure 8. Pattern of clectron radiation in an undulator.

lator radiation turns out to be coloured in various colours,
which depend on the angle 6: the bright patch has all the
colours of the rainbow (in the visible range) — from blue at
the centre of the patch to the dark-red on its periphery. The
fundamental frequency of radiation w, peaks as 6§ — 0, i.e.,
when the radiation is observed along the axis of the
undulator (Fig. 8). In this case, owing to the Doppler
multiplication of frequencies

_ W _ 2y2a)0
1—pBjcosf 1 +4K?>+26

for small 8 — 0 and

o, (2.24a)

. 2V2w0
T14+K2°

Ao(1+K?)
L )

2y?

(]

when the radiation is observed strictly along the axis. It can
be seen from expression (2.24) for the radiation power that
all harmonics vanish as 8 — 0: the entire spectrum of UR
consists of frequencies which are concentrated near the
peak w; [Eqn (2.24a)] (Fig. 9). In order to estimate the
efficient wavelength of UR [ will assume that K =1,
=1lcm,y= 10* (E ~ 1 GeV). It turns out that the peak
of undulator radiation corresponds to the wavelength
A~ 1 A. Thus the macroscopic undulator turns out to be
similar to an atom: it has the capability of generating
electromagnetic radiation in the visible and x-ray ranges of
electromagnetic waves.

The angular distribution of the radiation power of an
undulator will now be discussed. The analysis of the angular
distribution of the power shows that almost all radiation of
a spiral undulator is concentrated within an angle
0 =0, + 860, where 80 ~ 1/y and sin8, = K/y. For K < 1
(undulator) the angle of the cone of radiation is found in the
same way as in the case of SR. For large K > 1 (wiggler) the
angular distribution is somewhat different (Fig. 10). How-
ever, the angular distribution of the radiation power of a
relativistic charge is generally the same.

The polarisation properties of radiation of an electron in
a spiral undulator are similar to the properties of synchro-
tron radiation. This similarity of polarisation properties
follows from the solution to the problem on the polarised
radiation the moving relativistic charges emit in the
magnetic field of an arbitrary configuration (see Ref. [53]).

The angle 6 in expression (2.24) is a small quantity when
the undulator radiation is observed near the axis of the
undulator. Therefore

aw, o’ K’
dQ  2mcytvo,

14K — 0
14+ K2 4+926°

2
J2(x) (za + 1 ) , (2.25)

dw
P (arbitrary units)

0.2 0.5 1.0 X

Figure 9. Spectral composition of undulator radiation for different
values of the constant K; x = a)/2y2w0.

Figure 10. Polar diagram of the angular distribution of undulator
radiation power for different values of the undulator constant K.

according to the asymptotics of Bessel functions of the
small arguments. Hence, the polarisation of UR is strictly
linear for angles 6 = v/1 + K?/y. Only the o-component is
emitted; this turns to be circularly polarised in a clockwise
direction for angles 6§ = 0 (the radiation is viewed along the
axis of the undulator), and I, = [, = 1/+/2. The sign of the
circular polarisation changes when the direction of current
in the windings of a solenoid changes. Thus, a spiral
undulator is a powerful source of circularly polarised
radiation. Note that a plain undulator has distinct
polarisation properties: the radiation turns out to be
linearly polarised}, when it is viewed along the axis of
the plain undulator. The generation of the circularly
polarised radiation in a spiral undulator and linearly
polarised radiation in a plain undulator opens up
possibilities for applying UR in the physical experiment,
since the problem is of polarisation control as well as of the
source of polarised radiation.

[ wish to draw the reader’s attention to an important
fact: an actual undulator has a finite length. Let the length
of an undulator be L = NJ,, where N is the number of
periodic elements (see Fig. 8). Then the total energy of

FA detailed presentation of issues associated with undulators may be
found in Refs [52, 54].
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radiation of an electron in a finite undulator can be written
in the form:

dwUR _ﬁ232K2w2N2 sin z 21,2
iQdo v )

Y ew] z
1 + K2 _,))202)2
Xl +l, ————— , 2.26
(a’ T 1+ K2 + '))202 ( )
where
: w
w0:21tﬁ||li0, z=N1t<m—]—v> .

We come back to Eqn (2.25) as N — oo, as

The radiation of an electron turns out to be strongly
collimated in a finite undulator: the angular directivity of
radiation is greatly amplified by a large number of periodic
elements. In fact if one restricts oneself to the peak
radiation at the fundamental frequency (v=1), and
considers the undulator constant to be a small quantity
(K < 1), then

1 +°6°
Z =Nn[%— 1] ENny202 R
2y w,

whence it follows that the radiation is almost concentrated
in a slender cone of angle 8= 1/y3/N. This sharp
directivity of UR is an important property of undula-
tors, as regards their applications in physical
experimentation.

The narrowing of the cone of radiation emitted by
electrons in an undulator with a large number of periods
(N ~100) is physically associated with the interference of
electromagnetic waves. The cone of radiation of an electron
which makes one oscillation has the angle 86 = 1/y. If the
electron makes N phase-coherent oscillations, the radiation
fields interfere and, as a result, the radiation is concen-
trated —the radiative cone is sharpened.

Undulator radiation has other advantages in compar-
ison with SR when one considers the total energy of
radiation. Let us consider the energy of radiation of an
electron in an undulator when the UR is viewed along the
axis of the undulator (6 = 0) at the fundamental frequency
(w = w;). Then it follows from Eqn (2.26) that

- ANy Kk \2
o=0, ¢ 1+K%)

0=0

quR
dodQ

The energy peaks for K =1 (i.e., the undulator is a wiggler)
and

dWos  N?e%’
dwdQ  2¢

Let us compare the previous expression with the energy
of the synchrotron radiation emitted by an electron in one
turn, as it moves in the plane of revolution. According to
Eqn (2.14)

dWSR B 3(32’}72 « X 2
dodQ a2 7¥\2)|

y = 0/, Oy = 3w,y° /2. The function yK;3(y/2) reaches
a maximum for y ~ 1. Then the expression for the SR
power is

AWy ., 3¢%7°

dodQ ~ 4nic

Thus, if the number of periods of an undulator is N > 1
(N ~100), then its radiation power greatly exceeds the SR
power. The concentration of the energy of radiation by
means of a wiggler is the most important property of the
undulator —this opens up new possibilities for applying SR
as a tool in physical and technological research. Therefore
the functions of the storage ring have changed and its
primary objective is to obtain relativistic electrons which
emit light by means of a wiggler.

Here we omit quantum effects in the radiation of a
wiggler.

2.6 Radiation of an electron in a short magnet.
Formation of synchrotron radiation

The radiation of electrons moving in systems of the ‘short
magnet’ type has a number of peculiarities which are of
practical importance as well as of theoretical interest. The
simplest example of the motion of an electron in a short
magnet is its motion in an arc of a circle, provided that the
arc is small enough. In this example, all important
properties of the radiation emitted by an electron when
it moves in a short magnet of an arbitrary structure are
apparent (see Refs [55, 56]).

Assume that an electron moves in a straight line with a
constant velocity v = ¢f in absolute value up to an instant
of time. Then, under the action of external forces it
describes an arc of a circle of radius R with an angle
2a, and again proceeds in a straight line (Fig. 11). The angle
of deviation a is assumed to be small and & < 1/y = mc? /E.

Figure 11. Motion of electrons in an arc of a circle.

Using the conventional methods of classical electro-
dynamics, we can present the spectral—angular distribution
of the total energy &€ for the motion in question as follows:

d€=WTF d¢qdQ, F=F,+F,, dQ=sinf6dfde
(2.27)

(see Ref. [56]), where T = 2a/w,, wy = cf/R, ¢ = w/wy, W
is the synchrotron radiation power specified by means of
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formula (1.2). The function Fg, , is related to the
polarisation components of radiation f, and f; by the
equation

3 .2
"= Tomay Jo, x| > (2.28)
where
_ P+ cosx — u )
Jfo = ——— exp(—igy) dx ,
oz P*(x)
_ P+ gin x )
Jao= COSQJ —— exp(—igy) dx ,
g—a P (x)
and p(x)=1—pcosx, Y(x)=x—pusinx, p=pPsin,

y=E/mc” is a relativistic factor. In these formulas @ is
the radiation frequency and the angles 6, ¢ specify the
direction in which radiation propagates.

The analysis of these formulas [56] shows that the
general rules for the angular distribution of radiation
power in a short magnet are the same as those for the
synchrotron radiation. This may be verified by integrating
Eqns (2.27) and (2.28) with respect to the spectrum: the
radiation is directed ahead, in parallel to the motion of the
charge and is concentrated in a slender cone of angle
80 ~ 1/y (as is the case for SR). It is interesting to note
that the formulas coincide with the expressions for the
instantaneous distribution of synchrotron radiation power
as oo — 0.

The polarisation properties also coincide: Eqn (2.27)
integrates with respect to angles and frequencies to

S 00
W, ,[:—:J dqii;dQFa T (2.29)
b T 0 k)
and
2 2
2_
Wa:()—;ﬁ W, W.= 8B W .

However, there are great distinctions between synchro-
tron radiation and the electron radiation in a short magnet.
First of all, there is the way in which low-frequency
radiation is generated as electrons move in an arc of a
circle. If an electron moves in an arc of a small angle
a < 1/y, then it follows from Eqn (2.28) that

342 & {sin [agp(9)] }2
agp(o) '

(2.30)

T emi(e)]

where A, = fsinf —cos¢p, A, =cosfOsin¢@. Clearly, the
radiation peaks at w=0 and the spectral—angular
distribution decreases progressively to zero (x ™) as
the frequency increases. Moreover, the effective width of
the spectrum is
oo T _ nepy’

w(i—p)
where [ is the length of the arc. Thus, the effective width of
‘white noise’ is Aw in a ‘short magnet’. If /=210-100 cm,
then the spectrum of the white noise extends from zero up
to the ultraviolet range for an electron of energy 1 GeV.
Note that the fundamental distinguishing feature of the
radiation in a short magnet is that the radiation peaks at
the zero frequency —these are the so-called ‘strange
electromagnetic waves’ (see Refs [52, 54]). In this respect,
the radiation in a short magnet differs from most processes

2.31)

of radiation in which the energy of radiation reduces to
zero as the frequency of radiation tends to zero. For
example, in the case of synchrotron radiation the power
turns to zero as @ — 0 (see Fig. 7).

A closer analysis of Ref. [56] shows that the relative
contribution of the low frequencies in radiation decreases
on an increase in the angle of the arc, and the maximum in
the spectrum shifts to short waves as a increases. It is
interesting that there is no radiation of the ‘zero’ frequency
when an electron moves in a circle (a = 2m).

In connection with the peculiar features of the spectral
composition of the radiation of a charge moving in an arc
of a circle, it is worth noting the bending or magnetic drift
radiation familiar in the astrophysical applications. It is
emitted by a charge which moves along the lines of force of
an inhomogeneous magnetic field. Omitting the detailed
analysis of the radiation, we should note that, although the
spectral composition of this radiation is usually thought to
be analogous to the spectral composition of SR, it can be
somewhat different in the low-frequency range since the arc
in which an electron moves is finite.

Let us consider the radiation when an electron makes an
integral number of turns and how the synchrotron radiation
occurs. Let now a=Nm. In this case, following the
approach discussed above [see Eqns (2.27), (2.28)], we have

d€ = WTg y(¢)GdqdQ, (2.32)

where the quantity G is associated with the Anger and
Weber functions J,(x) and E,(x), x =g¢gfsinf. It is
essential that the number of turns N made by the
electron over a circular path appears only in the factor
sin*(nN,,)
N sin(ng)
The rest of expression (2.32) is independent of N and
coincides with the spectral—angular distribution of the
radiation of an electron which makes one full turn. The full
expression for function G may be found in Ref. [56] and
also in Ref. [55].

Expression (2.32) makes it possible to trace how the
spectrum of SR is formed as N — oco. On going over to the
limit

gv(q) =

Jim gnlq) = n;w 3(q—n),

we find that the Schott formula follows from Eqn (2.32)
for a finite, but very large, number of turns [34]:

E & io:nz [ﬁQJ,,'2(nﬁsin 0)
n=1

dW = lim ==
NgnooT 2mR?

+cot? 073 (B sin 0)] . (2.33)

Anger functions convert into Bessel functions of integer
indices and the spectral—angular distribution of radiation
power is given by the familiar expressions which are true
for synchrotron radiation.

2.7 Coherent synchrotron radiation of a cluster of
electrons

The classical theory of SR developed as a theory of
radiation of one electron moving in an angular trajectory in
a homogeneous magnetic field. Although 10'2—10"
particles simultaneously emit radiation in accelerators
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and storage rings, and either fill the entire orbit (betatron)
or are clustered in bunches (synchrotron, storage rings), the
conclusions of the theory have been reliably verified in
experiments. The interference of electromagnetic waves
emitted by individual electrons can affect the total
radiation power—coherent SR can be emitted.

The first person to consider the problem of coherent
radiation was Schott himself in his early studies of the
Saturnian model of an atom. The model presumed that a
large number of electrons move simultaneously in a closed
orbit. Studying the radiation of a cluster of electrons
uniformly distributed along the circle, Schott came to
the conclusion that the classical model of an atom is
inconsistent, since the conclusions of the theory were
contradictory to the observed data [5].

Much later, in connection with the advances in cyclic
accelerators, the studies of coherence were resumed: of
interest were the spectrum of synchrotron radiation and its
power [58 —60] and also the screening effect of the walls of
the accelerator chamber [61, 62]. It was presumed that the
radiation is emitted by separate clusters of particles of a
finite expansion, with different values of the form factor
which characterises the distribution of particles in the
cluster.

Let us consider when the coherent radiation from
electrons, which is distributed uniformly over the entire
orbit, is possible. Let the ratio of the index of harmonics v
and the number of electrons N be equal to s. Then the
radiation power differs from the radiation power of one
electron W (v) [Eqn (2.8)] in terms of the coherence factor
Sy (see Refs [5, 25]):

Wy(v)=SyW(), Sy=N+ Z cos[v(lpj—lpjr)] ,

J=1,j'=1
G#i")
(2.34)

where ¥; is the initial phase of the jth electron. If electrons
are spread chaotically then Sy = N and the radiation is
coherent. If particles are distributed uniformly, then

w=>w,,
s

where

PeBN3s 25N B
B pprevp - =) [ o
0

(2.35)

(see Ref. [5]). In the nonrelativistic approximation (f — 0),
the radiation peaks for one electron only (N = 1), since the
contribution of the other particles is suppressed:

28NN + 1) -
;K‘B T R*2N + 1)(2N)! WA

W, =

In another—ultrarelativistic— approximation (I — % < 1)

B cegNs J°° 2 3/2 (2.36)

= — K5 dx, =— Ns
s TCR2\/§ S/J(x) X K 3 €

There are two limiting cases for the quantity . In the first,
kK < 1. This corresponds to small concentrations of
electrons and also relates to the long-wavelength part of
the spectrum of SR since

K

3 _ 3
V:SN<§803/2:§ 3.

Then

32B32cr(2/3)N*(sN)'/
W, = . (2.37)
TR>V/3

Thus, the coherence of SR is possible for low frequencies of
radiation (w < w.). In the second limiting case of the
electron concentration N being equal to (E/mc?)’ (the
short-wave part of the spectrum), all the radiation turns
out to be suppressed to a large extent:

2 N/AN3 o 1/2

N°V/sN 2

w, = £ N VsV exp<__sN83/z> .
V2nR? 3

The case in which electrons uniformly fill the orbit was
discussed in connection with possible losses of the energy of
particles in a betatron. Concerns were voiced that the
radiation from the electrons would be suppressed in the
betatron owing to its coherence. However, the analysis of
the problem Artsimovich and Pomeranchuk carried out [9],
and also the decisive experiment of Blewett, showed that the
process is not coherent, at least at the peak of radiation. It
was also noted [9] that fluctuations of the density prevent
particles from filling the orbit regularly.

In contrast to the case in a betatron, electrons do not fill
the entire orbit in a synchrotron (or in a storage ring) but
move in separate bunches (see, for example, Ref. [25]). In
this case, the coherence factor can be presented in the form

Sy=N+NN-=1)f,.

(2.38)

The radiation is fully coherent for f, = 1 and is incoherent
for f, =0.

Assuming that electrons in a bunch are symmetric about
a centre (at the zero azimuth), the function f, is given by [25]

fi= UZ w(e) cos(ve) dfpr . (2.39)

where w(¢) is the probability that electrons are in orbit in
the angular range from ¢ to ¢ + dg. In particular, if the
distribution follows the Gauss law, then

o) =5 e (- %)

2 2
f, = exp (— %) :

The SR power is the sum of the coherent and incoherent
summands:

W, = Wincoh(v) + Wcoh(v) — W(V)N + W(V)szv ,

It is seen from the last formula that the maximal
coherent radiation manifests itself in the range of wav-
elengths of the order of the size of the bunch, v ~ 1/a (the
low-frequency range). The radiation power is integrated
with respect to all harmonics to

FeN (V3/a)*Pr?(2/3)
R2m\/3 x 21/3 B

whence it follows that the coherent radiation power is
independent of the energy of a particle in the long-wave
range of radiation of a bunch of an angular expansion o
(see Refs [58, 60]). The recent observations of coherent
synchrotron radiation [63, 112, 113] provide, however,
reasons to further investigate the dependence of the
phenomenon on the shape and sizes of a bunch (see
Refs [64, 65, 111]).

N2t

W eoh — (2.40)
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Thus, the electron radiation is incoherent in the
synchrotron at least in the high-frequency range —this is
the reason why experimentalists are satisfied with the theory
of radiation from one electron: the total power of SR is
proportional to the number of electrons. However, the
coherent radiation may be observed in the low-frequency
range, especially in the rf range. This is the case when
electrons move in bunches the sizes of which are compar-
able with the wavelength of radiation: the radiation can
increase drastically in this case.

The coherent SR in the rf range aroused interest in
connection with the observed rf radiation coming from
pulsars [66]. The estimated radiation power suggests that
the rf radiation is coherent and is emitted by clustered
charges rotating near the surface of a pulsar. Owing to this
relation, a storage ring in which electrons move in separate
clusters is considered as the laboratory model of a radiating
pulsar.

3. Review of the quantum theory of synchrotron
radiation

3.1 Limits of the classical theory
The classical theory is based on the assumption that
radiation is a continuous process. The initial estimates of
the limits in which the classical theory is applicable
validated that such an approach was reasonable for
studying SR as a physical phenomenon up to very high
energies, which would be unattainable in accelerators even
in the foreseeable future. In fact, in general one would
expect that the classical theory of radiation of a classical
charge is valid until the energy of an emitted photon
&, = liw = v, is small in comparison with the energy of
the electron g, < E [11] (see also Refs [15, 60]). Evaluating
the energy of a photon at the peak of the radiation, one
could obtain a criterion for the classical theory to be true
for synchrotron radiation as an estimate for the energy
E < Eyp, where

£ o (mcR 12

1/2 = mc ( 7 )

Then this criterion was corroborated by considerations of
invariance: the SR power being an invariant should depend
on invariant parameters only, one of which is the dynamic
invariant

=~ 10°MeV .

1

. _H E
x_mCHO

2 E \?
—(F™ = — =[— 3.1
(Pn) = - 2 (E/) 3.1

where F* is the tensor of the electromagnetic field, p, is the
four-dimensional impulse, and H, is the Schwinger
magnetic field.

However, it was then found out that the criterion y < 1
did not cover all discrete features of synchrotron radiation
[32, 67]. It refers to the influence of discrete radiation on the
trajectory of a moving particle.

Since the energy of an emitted photon is large enough at
the maximum of the SR spectrum, g, ~ hw0y3, the number
of photons an electron emits in a turn is finite and is equal
to

N W _&E
T eyl me?

In order to make the role of discreteness of radiation more

clear, it is worthwhile to find the length of the path (in cm)
an electron travels without emitting a high-energy photon
g, 3 W Hy 349x10°

E:—_
W 2me? H H

The previous expression depends solely on the magnetic
field strength H, and it follows from it, for the values
~ 10* G typical of accelerators and storage rings, that one
power photon is emitted on average over the path of ~
30 cm.

The discrete nature of radiation here is an important
factor. It can tell on the trajectory of the particle, causing
quantum fluctuations as a result of the recoil an electron
experiences when it emits a photon (for details, see
Section 4). Of special interest here is the motion of
electrons in synchrotrons or storage rings. Since outer
sources compensate for energy radiative losses, the quan-
tum effects of fluctuations of the trajectory are observed
when the radius is constant (on average). The storage ring
opens up new possibilities for investigating quantum
fluctuations of the trajectory of an electron experimentally.

[f the invariant dynamic parameter y takes a large value
(high energies, an extremal field), this opens up a new area
of physical phenomena—ultraquantum physics. In this
region (y = 1), the classical theory is completely out of
place; the strict quantum theory should be applied.

3.2 The method of exact solutions. Quantum states of an
electron in a magnetic field

It proved worthwhile to develop the quantum theory of
synchrotron radiation on the basis of quantum relativistic
mechanics and quantum electrodynamics, applying the so-
called ‘method of exact solutions’ [24, 25]. In this case the
wave function which describes the quantum state of an
electron obeys the Dirac equation:

oY
ot

where

in - — [c(a-ﬁ) +p3mc2] P, (3.2)

P =iV - (A% 4%
-

refers to the outer magnetic field which is considered
exactly, and A% to the quantum transverse radiation field.
Here « and p; are the Dirac matrices of four rows, and the
wave function ¥ has four components (for details see
Ref. [24]). Processes in which an electron in the bound state
is involved when it interacts with the radiation field are
considered by using the perturbation theory. In the
perturbation theory, all expansions are made in terms of
the full system of the exact solutions to the Dirac equation
with an outer field (the Furry representation [68]).

Such an approach made it possible to predict and reveal
a variety of new physical features of SR: quantum
fluctuations of the trajectory of an electron when it moves
in a cyclic accelerator and storage rings, the radiative
polarisation effect for electrons and positrons, the peculiar
features of synchrotron radiation in strong and very strong
magnetic fields, and a number of others (see
Refs [24, 25, 69]).

Before studying spin effects it is worthwhile to introduce
the polarisation operator,

pcP _ psmc’ P(Z -P)
E E(E + mc?)

0=p% + , 33)
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which goes into the Pauli spin operator in the system in
which the electron is at rest. This operator is a relativistic
analog of the Pauli spin,

éléj— jé,Zleykék, 012:1,

3.4

and its component parallel to the magnetic field com-
mutates with the Hamiltonian Eqn (3.2). This makes it
possible to decouple the solution to the Dirac equation in
spin states.

Given the homogeneous magnetic field H = (0, 0, H),
and imposing the condition

0¥ =¥ (3.5)

on the wave function [Eqn (3.2)], we can introduce the
‘fourth’ quantum number { = +£1. It characterises the
transverse polarisation: { = 1 in the forward direction and
{ = —1 in the backward direction.

Note that the issue of whether the spin can be measured
independently of the orbital motion of a particle is
somewhat difficult in Dirac’s relativistic theory since the
electrons execute a ‘twitching motion’ (Zitterbewegung)
owing to the interference of their charge-conjugate
states. The result is that only the full moment is preserved
in the Dirac theory. The unit polarisation operator
[Eqn (3.3)] (the ‘true’ spin operator) opens up a possibility
to measure the spin independently since it commutates with
the Hamiltonian (see also Refs [24, 57)).

Omitting the details of solving the Dirac equation (3.2)
(it is described in detail in Refs [24, 25]) [ want only to
emphasise that the quantum state of an electron in a
magnetic field H = (0, 0, H) is specified by the set of
four quantum numbers: n is the energy number, s is the
radial number, k3 is the projection of the impulse onto the
direction of the field, and { is the projection of the spin onto
the direction of the field. In this case, the energy of an
electron takes the form:

E = (mc* + 1PK3 + 2eq Helin)' (3.6)
If an electron executes a macroscopic motion, then the
energy number s takes a very large value and the energy
spectrum is continuous. In the nonrelativistic approxima-
tion, formula (3.6) describes the familiar Landau levels and
also involves the kinetic energy of the motion of an
electron along the field. Note that the energy spectrum
given by Eqn (3.6) is degenerate with respect to the spin
and to the radial number s. Taking into consideration the
anomalous magnetic moment eliminates the spin degenera-
tion and the energy spectrum takes the form (see Ref. [70])

2 1/2
H
E=mc2<<%> +{[1+H—0(2n+c+1)]
1/2
+C£”_”°}2
Hy 2p
where

2
=t (14 )i Ho= Loft
# Ho 2nhc)’ O 2me

The ground state (n=0, k3 =0) [see Eqn (3.6)] corre-
sponds to the spin oriented in the opposite direction of the
magnetic field ({ = —1).

(3.7)

The quantum numbers n and s are related to the radius
of the orbit of an electron and the quadratic fluctuation of
the radius:

n+s+1/2 s+1/2
) =Ty - g =T
Yo Yo
_afl
Yo = 2 3.8)

The electrons are localised near the orbital plane of
revolution for an extremely strong magnetic field since

H
R— [E_T [nHo
Yo mc H
and the radius of the orbit is of the order of the Compton
wavelength in weakly excited states as H — H,.

3.3 Quantum features of synchrotron radiation power

Restricting myself to the above remarks I move on to
discuss synchrotron radiation. By the use of rather
conventional methods [24, 35], the expression for the
synchrotron radiation power can be obtained in the form

2
W= %VZCJ 4218 (1c = 1) @Iy (x) (3.9)
where
E, —Ey x> sin® 0 ,
CK;,,/:T, XZT, v=n—n.

It is taken into consideration in summing over k5 that the
component of the impulse parallel to the field is preserved.
The radial factor I%,(x) appearing in the formula for the
radiation power is a Laguerre function, which is related to
the Laguerre polynomials Q3™ (x) by the equation

exp (— %) X672 o 4 (x) .

The function @ depends on the elements of the Dirac
matrix and is expressed in terms of the Laguerre functions
I (x), which are approximated by McDonald functions
K3 by analogy with the classical theory of SR (see
Refs [24, 35]). Thus, the integral under the summation sign
in (3.9) is the power of radiation electrons emit in
transitions n — ', s — s with the spin flip { — 7.

Making necessary manipulations, integrating with
respect to angles and summing over the polarisation states
of the radiation field, we find the following expression for
the spectral distribution of the synchrotron radiation power
[24, 271

Iy (x ) = 0

sly'!

(3.10)

— cl M ooy—dy )
RN ZJO (1 +&) I (x) F(y) (3.11)
where
1 ! 00 |
F= +2CC [2(] +fy)J K5/3(x)dx+§f2y21(2/3()’)
y

L2+ E)EK s (y)]

2 2[00+ 1K1 0)]
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Here the argument x of the function /2, takes the form
v=n—n" upon changing the summation over y for
integration with respect to the variable

. 51)’2
X ="
(1+&)
[t follows from Eqn (3.11) that the probability of

spontaneous transitions of an electron is a function of
two parameterst:

3H E 3 3(EY\ 5 (meR\'?
é—zﬂ—om—ﬂﬁ(‘m)  Fap=me ( G ) ’
(3.12)

o _OH (E PLO(EN L o (meRY
'S8 H, \m?) T8 \E5) 0 T \Ta '

We shall return to the parameter &, later. Now I want only
to note that the SR power depends solely on one invariant
parameter x since the sum over the radial quantum number

Zli\"(x) =1

is equal to unity. Thus, the limits in which the classical
theory was predicted to be applicable [11] were strictly
borne out by the quantum theory. Note that this refers,
however, to the SR power only.

Expression (3.11) is exact: it allows any values of the
parameter & = 3y/2, including x > 1, which are realisable in
the physics of neutron stars where the magnetic field
strength is close to the critical H,. In addition, the formula
for the radiation power involves the contribution of
radiation which is accompanied by the flip of the spin
(spin—flip transitions) when ¢’ =—{. As follows from
Eqn (3.11), the probabilities of such transitions are propor-
tional to the square of the Planck constant: A%,

Since the SR power depends explicitly on the orientation
of the spin of an electron, the radiation accompanied by the
flip of a spin affects the orientation of the spin and
stimulates the directed process of polarisation of the
electron beam. In addition, there is a spin dependence in
the formula for the SR power, which enters the terms which
are independent of the flip of a spin. This is not only of
theoretical interest. In fact, given a small invariant para-
meter ¢ it follows from Eqn (3.11) that the spectral
distribution of the synchrotron radiation power of a
polarised electron beam takes the form

Wpol _ Wcl%i JO |:(] bl 36}7) Jy K5/3(x) dx

fCéyKl/s(y)] ydy. (3.13)

Note that Bordovitsyn [76] made a large advance in
interpreting quantum corrections to the classical expression
for the SR power [76]. He showed, in particular, that the
quantum correction in formula (3.13) involves contribu-
tions from the interference of the radiation from electron,
charge, and the spin magnetic moment of electron. Clearly,
the difference between the expressions for the radiation

1The probability of spontancous transitions can be found by dividing
the integrand in Eqn (3.11) by the energy of a quantum of the electro-
magnetic field 7Ziw.

power of polarised and nonpolarised (spin averaged)
electron beams takes the form

00
Wpol _ Wnonpol — _CCW cl JO Qsp(y) dy ,

where

, 93

() =22 K10
Since this expression is related directly to the polarisation
of an electron beam ¢, the difference WP — W nompol — yysp
may be called the ‘spin light’. Experimentally a non-
polarised electron beam can be obtained from a polarised
electron beam by putting a depolariser in the chamber of a
storage ring.

The radiation W* is linearly polarised —only the o-
component is emitted. The ‘spin light’ has a peculiar
spectral distribution power: the maximum is shifted to
the  high-frequency range and is reached at
y =0/, =2 1.6, whereas the maximum in the SR spec-
trum falls on y = 0.3 (here w,, = 3wy’ /2).

In contrast to the SR spectrum (see Eqn 2.17) the
spectral distribution of the ‘spin light” power has the form:

PP (y) ov3 [272°r( /37, y—o,
P (y) = 2V
8t | \/r/2y e,y - .

The associated curves are shown in Fig. 12. The ratio of
the radiation power of the ‘spin light’ and the classical
expression has the form:

sp 0 -
AW®(y) = »;dgi = [C1&vK 13(v) U Ks/z(x)dx]
,
=Ly, y>1.

Here |{| characterises the degree of polarisation of an
electron beam in the combined quantum state: |{| = P.

£SR@SP
0.6 -

0.3

0 0.6 1.2 1.8 24 3.0
y
Figure 12. Spectral distribution of SR power (fSR) and ‘spin light’

(¢SP).
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Thus, this offers a new possibility for visual observation
of the polarisation characteristics of an electron beam by
determining the SR power at a fixed spectral frequency (see
Ref. [72]). The experiment which was performed in the
Institute of Nuclear Physics, Siberian Branch of USSR
Academy of Science [72], can be considered as a first visual
observation of radiation which is directly associated with
electron spin.

Further, the expression for the SR power can be found by
summing up over the polarisation states of an electron:

we 23 [ s | Ko

W =
8t Jo (1+¢&y y

2.2

+€y

mkzﬁ(y)] - (3.14)

The SR power which is uniformly applicable for any values
of the parameter ¢ was calculated exactly by Bagrov [73].
Here I cite two limiting cases in the form of asymptotic
expansions. First, let us consider the case of a small
invariant parameter; & < 1, i.e., the quantum corrections to
the classical radiation formula are

553 , 6

3 4 5
—TC‘F E+.l.

w=wd [1 = (3.15)
This correction was found up to a linear term in Ref. [74]
and was then corroborated by Schwinger for spinless
particles [75].

In the second limiting case, &> 1 (high energies,
extremely large magnetic fields), the formula for the SR
power differs drastically from the classical one (the ultra-
quantum limit)

8/3
WUQ:WCI[Z— r<g>]¢*“/3, E> 1 (3.16)

9 3

[24, 77, 79]t. In the ultraquantum limit the principal term
of the radiation power is of quantum nature. Therefore
transition to the classical approximation is impossible.

[t is characteristic that in the ultrarelativistic limit the
spectrum is terminated at the frequency wh = E/fi < o,

and does not reach the classical critical frequency

ol S (EY
max TR \me?)

This follows immediately from the formula for the classical
frequency of radiation (see Ref. [35]):

3 3 Ymax
=— _—
2 T4 &y

Of some interest is the radiation of weakly excited
electrons (low-energy levels) in a strong magnetic field.
It is peculiar for such a problem that the energy spectrum of
an electron is discrete (‘quantising’ magnetic field). If

~1.

wm ax y max

TThis result was also obtained by V I Ritus in Ref. [79] in the crossed
field model (H = E, H L E). Although an eclectron behaves differently
in magnetic and crossed fields, certain results on synchrotron radiation
power coincide since the radiation is emitted over a very small portion
of the trajectory. This is true, however, only for the quasiclassical
motion of an electron (large quantum numbers) when the energy
spectrum is continuous. The crossed field model is no longer
acceptable for small quantum numbers (‘quantising magnetic field’).

electrons move perpendicularly to the field (k3 =0), the
energy

1/2

H

E = mc? (l + 2/1—)
Hy

takes essentially discrete values for n~ 1,2, ....

In this case, only numerical methods are applicable. It
turns out that the probability of spontaneous transitions
depends no longer on the orientation of the spin of an
electron and the probability of a transition with a change in
the spin orientation is the same as that with no change of
polarisation.

The radiation powers of the ¢ and ® components of
the linear polarisation take the forms W, =0.742W and
W, =0.258 W, where

HoY o
W =0453|—| W°

(see Ref. [78]). Thus, the expression for the radiation power
W differs from the classical formula by the invariant factor

/"—lLF F* = iz
TAHM \Hy)

This result does not coincide with those obtained not only
in the classical theory, but also in the ultraquantum case of
an excited electron moving in a very strong field.

3.4 Quantum fluctuations of the trajectory of an electron
The quantum theory of synchrotron radiation deserves the
credit for the discovery of a new physical phenomenon:
that the radiation perturbs the trajectory of a particle
because of its discrete nature. This influence manifests itself
even for energies

mcR 1/
")

E>E|/5:m02(

(of several hundreds of MeV): quantum effects become an
important factor which affects the dynamics of an electron.
As a result, the recoil gives impetus to the excitation of
radial degrees of freedom of an electron, and the trajectory
of the particle suffers a quantum widening.

The quantum theory of an electron moving in synchro-
tron radiation conditions was first used to analyse the radial
factor If.sr(x) [see Eqn (3.9)], entering the expressions for the
radiation power and for the probability of quantum
transitions, and accounting for the fluctuation nature of
excitation of radial degrees of freedom of an electron which
are characterised by the number s. The stochastic character
of excitation is particularly striking under the assumption
that the centre of the orbit of an electron coincides with the
origin of coordinates at the initial instance and, therefore,
s =0. Then the radial factor

—x s
e X

%
Ié.s’(x) = J ) ]

TS

takes the form of the common Poisson distribution. In the
classical limit (i — 0), the argument x vanishes. Therefore

P,
11141’.1'(1) I 0s' (x) = 60\1 .
and in the general case

LT?) I 31\" (X ) = 5&;" s
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i.e., the radial number does not vary in the classical limit.
Then from the standpoint of the classical theory, radiation
causes a shortening of the radius of the orbit of an electron
which is compensated by the outer high-frequency electric
field in a synchrotron and a storage ring. Thus, quantum
fluctuations of the radius of the orbit of an electron cannot
be considered as a ‘quantum correction’. This is a new,
proper quantum physical phenomenon (see Refs [32, 67,
25]).

The quantum number s which characterises the quad-
ratic fluctuation of the radius of the orbit of an electron
[Eqn (3.8)] can be found as follows. Using Eqn (3.9) to
determine the probability of quantum transitions per unit
time, we can write it in the form:

\/§e2 00 5
B e — K 1y A
Wy ZTl'ﬁR\/% ‘L 5/3 (X) dx (y) > (3.17)
where g = 1 — f°. Then, considering
D =10 =y,
s
we have
ds 55 & (EY
Bl S = I (3.18)
dt 48+/3 mcR?* \mc
or
d-— 55 & n (EY
— A= —_[= ] ; 3.19
dt 48+/3 mc mcR (ch) (3.19)

the bar indicates the average value of the quantity. Thus,
the stochastic process of radiation suggests a formula
typical of the Brownian motion provided that the average
energy of an electron is constant. This formula accounts for
the action of random forces on the particle: x> = 2Dt,
where D is the diffusion coefficient (see Ref. [80]). The
quantum effect of the ‘widening orbit” [Eqn (3.19)]
predicted by the author together with Sokolov [32, 67]
can be interpreted as a macroscopic manifestation of
quantum fluctuations of radiation caused by discrete
emission of photons and the recoil an electron experi-
ences. In the radial direction, electrons move in accordance
with quantum laws, whereas the motion along the circle is
of a classical nature (a ‘macroatom’). Such a pattern of
motion is realisable only if the average energy of an
electron is constant when the radiative energy losses of the
particle are compensated by an outer source.

The situation is, however, different when the radiative
losses of an electron are not compensated. This is the case,
for example, in the astrophysical conditions or, especially,
in the magnetosphere of a pulsar. It is interesting that an
equilibrium is established as a result of two processes—the
radiative shortening of the radius of the orbit of an electron
and the growth of the quadratic fluctuation. Since

—  2ch 1
RP=""(n+s+=],
(!OH <n Tt 2>

it may be found that
d , 2ch (dn ds
SR (224N
dr eoH <dt + dt)
where the derivative ds/dr is specified by means of

formula (3.18), and the principal quantum number n
varies with energy:

(3.20)

d H, EW
—n=—— —.
dt H (mc-2)2

Then it follows from Eqn (3.20) that dRz/dt = 0 provided
that the radius is minimal:

55 n (EY
324/3 mc (mc2> '
This expression is similar to the corresponding expres-
sion in the case of an electron moving in the focusing
magnetic field of a storage ring when radiative damping
forces (damping effect) act in parallel with the quantum
widening of the trajectory of a particle and the amplitude of

the oscillations of an electron is at a minimum (see
Section 4).

Ry = (3.21)

3.5 Effect of radiative polarisation of electrons and
positrons in storage rings

The effect is that the spins of particles are oriented in the
same way under the influence of synchrotron radiation
when they circulate in storage rings for a long time. This
effect of radiative polarisation was predicted by the author
[81] and strictly established together with Sokolov with the
use of the exact solutions to the Dirac equations [82] (see
also Refs [35, 83]).

The probability of quantum transitions accompanied by
spin flips can be calculated with Eqn (3.11). The calculation
shows that the probability still depends on the spin
orientation and upon integration with respect to angles
and to the spectrum:

1 8v/3
W= (14022 3.22
w ZT< 3l ) , (:2)
where the polarisation time 7 has the form
2 2\2 3

: H
T= % B (me” —0) (3.23)

15 mce? E H

It follows that radiation induces electrons to transit
predominantly in states with a spin oriented in the
direction opposite to that of the magnetic field [81].
Positrons have the opposite spin orientation. States with a
predominant spin orientation match the minimal potential
energy of particles, the magnetic moment of which is
n = —(eohi/2mc) € in the magnetic field U = (—e/|e|) u-H.

Omitting the details of the kinetics of the polarisation
process (see Refs [82, 35] and turning our attention to an
ensemble of particles, we can characterise the polarisation
of a beam of particles by the average value {(¢r) = (),
bearing in mind that the electron goes into the combined
state as a result of interaction with the electromagnetic field.
Then

do oy / 10— 1
Ecm—;(c —Qw ——2;@) ,
whence it follows thatt

0 :—%g [1 —exp(—%)] .

The extreme degree of polarisation is P(co) = 8/3/15 =
0.924 (for t > 1).

(3.24)

fThis result was later obtained by Baier and Katkov [84] and by
Schwinger [85].
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The estimate for the polarisation time shows that the effect
of radiative polarisation is accessible for observation in
magnetic fields which are typical of accelerators only if the
particles circulate in the magnetic field for a long time
(about 1 hour). Storage rings provide a means for this
possibility. Although there are effects depolarising the beam
in an actual storage ring, the effect of radiative polarisation
exists and provides a unique capability for creating
polarisation beams of high-energy electrons and positrons.

The effect of radiative polarisation was experimentally
observed in the USSR, France, Germany, USA, Japan, and
Switzerland in storage rings with electrons of energy 1-
50 GeV (see Ref. [83]).

3.6 Stimulated synchrotron radiation.

Cyclotron resonance maser

In this section, we will study the induced quantum
transitions of electrons under the action of the outer
field of an electromagnetic wave by using methods of
quantum theory (see Ref. [25]). The induced amplification
and generation of electromagnetic waves are possible not
only in atomic and molecular systems but also when
electron beams move in an outer electromagnetic field. In
contrast to induced quantum transitions in atomic and
molecular systems, where electrons are in bound states,
particles are ‘quasifree’ when they move in an outer
electromagnetic field, and their energy spectrum is virtually
quasicontinuous. So, for example, in the problem of an
electron moving in an homogeneous magnetic field, only
the motion in the plane perpendicular to the magnetic field
(Landau levels) is quantised while the motion along the
field is free. Quantum generators, whose ‘working body’ is
an electron beam moving in an outer magnetic field (for
example, in the field of an undulator), were called free-
electron (not bound in an atom) lasers.

The detailed description of free-electron lasers goes
beyond the scope of this review (see Refs [52, 100]).
Here I shall only discuss the problem of how a cyclotron
resonance maser (a CRM) can be realised. The solution can
be obtained by means of the quantum theory of SR.

Let us consider the induced radiation of an electron
moving in a constant and homogeneous magnetic field in
the presence of an outer electromagnetic wave. Then the
expression for the probability of induced transitions can be

presented as the product w,, = N(@) w’, where w’’, is the

nn'

probability of spontaneous transitions and N(w) is the
number of photons in the volume L>. The last quantity is
related to the outer electromagnetic wave strength by the
equation:

& hoN(w)

dn L3
If the outer wave propagates at an angle 6 to the z axis,
then the expression for the probability of induced
transitions can be reduced to the form [35]

negEc?

nn' — ﬁ2(1)2

(18, + [ cos*0) g(@. ) . (3.25)

where fiw,, =E, —E,, and the function g(w, @,y)
characterises the Lorentz width of the spectral line:

T

1
T 1+ (o] —a))2 '

g(w’ wnn’) = (3.26)

Here 7 is a characteristic finite lifetime of an electron in the
excited state. It corresponds to the effective time in which
the particle traverses the magnetic field. Note that the
function g(w, w,,) is normalised to unity:

(0.9)
J g(w, w,y)do=1.
—00

If the lifetime of an electron in a state with the energy E, is
large enough, then g(w, w,,) goes into the delta function:

lim g(w’ wrm’) = 5((0 - wnn’) .

T—00

Let us turn our attention to the energy spectrum of an
electron moving in a homogeneous magnetic field. For
simplicity I shall consider the motion of an electron in the
orbital plane, and neglect the recoil along the field when a
photon is emitted. This assumption makes it possible to
describe the fundamental features of the maser effect in a
simple form.

Under these conditions, the expression for the energy
spectrum is

hQ
E, = (m*c¢* + 2ne0th)l/2 = mc? + th(l — 2n

W) , (3.28)
where Q =e¢yH/mc is the cyclotron frequency. In the
expansion of the square root, relativistic corrections to the
Landau energy levels are accurate to Bz. The discrete
character of the energy spectrum manifests itself but in a
weak form under conditions typical of an electron moving
in an orbit of a macroscopic radius: the distance between
adjacent energy levels (An=1) is

AE = mc? m_c2 i s
E H,
and the energy spectrum is virtually continuous.

In such problems the outer radiation cannot be chosen
to be localised in frequency. Therefore, three adjacent
levels, E, and E, ., are to be considered. They correspond
to absorption (E,;) and emission (E,_;) of a photon. It is
important that the coherent amplification is impossible in
the case of an equidistant spectrum (nonrelativistic approx-
imation)—photons of the outer magnetic field are only
absorbed.

However, the relativistic corrections [Eqn (3.28)] change
the situation: quantum transitions with emission w,_ ,_; and
absorption ®, ,4; of a photon have distinct resonance
frequencies:

hQ
mn,nq:l:Q 1—2

enE1)] . (3.29)

mc?
This offers new opportunities for amplifying an outer
electromagnetic wave. Given, in particular, that o, ,_; = Q
we have |@,, 1| =2 — Q,, where , = K /mc?.

[t suffices to take the elements of the Dirac matrices | |
and |&,| in the dipole approximation:

hQ

2mc?

@1 = Bl =5 [(1+ 18y, e + 180,01 ]

Then the overall energy of the stimulated radiation and
absorption is

W= h(wn, n—1 Wy, n—1 — |wn, n+1 | W, n+l)

202 2 2
:_eOSQr(l—;—cos 0) o(x) |
me
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where
1 2% - Ox
PD(x) = =Qr, 3.30
O ] LR e N R SR
and
2nhQ2
x =21(Q —w), ﬁ2:n2.
mc

Hence it follows that, if the levels are equidistant (f = 0),
then the system always absorbs the energy from the
electromagnetic wave since W < 0. Formula (3.30) was first
obtained by Schneider [93]. When the resonance is violated
(0 > Q), the second term in the function @(x) can become
negative and its absolute value can be greater than unity.
Then the system of electrons in the magnetic field is a
source of coherent radiation (Fig. 13). This idea provides
the theoretical foundation for the cyclotron resonance
maser [94, 95].

n—+v
n
n—v
1 1 1
-6 6 8 X

Figure 13. (a) Three-level system describing interaction of electrons
with the radiation field at frequencies close to vw.. (b) Absorption
curves for electrons in a magnetic field H = 10, for 6 = x/2.

Note that the maser effect can also be obtained at the
higher harmonics of the fundamental frequency for elec-
trons of high energies in the relativistic case [96]:

_4/3 (32521'('2 4/3 mC2 2
W =0.506v —F 1 —-0.726v 0 .(3.31)

Hence it follows that radiation dominates over absorption
for harmonics v < \/Vpax, Where vy, = (E/mc*)’ is the
index of harmonics corresponding to the maximum in the
synchrotron radiation spectrum.

The problem of a cyclotron radiation maser described
above can be solved by methods of the classical theory [97].

However the processes of induced radiation and absorption
cannot be split within the framework of the classical theory:
they must be considered as a whole. In this respect, the
quantum theory has certain advantages (see Refs [25, 27]).

4. Influence of synchrotron radiation on the
dynamics of electrons in cyclic accelerators and
storage rings

The phenomenon of quantum fluctuations of the trajectory
of an electron moving in a magnetic field is of fundamental
importance in the analysis of the stability of motion of
particles in a cyclic accelerator and, in particular, in a
storage ring. The magnetic field in such apparatus not only
induces an electron to move in a circle of a constant radius
but also possesses focusing properties. The field which has
these properties helps to return the particle to stationary
orbits [24, 25, 86]. If the field has the form H = H(R/r)?
near a stationary orbit, then electrons subjected to random
deviations will be engaged in betatron oscillations: the
frequency of radial oscillations will be equal to
o, = wyy/1 —¢q, and that of vertical oscillations will be
®, = Wy4/q, where wy = eocH /E = c/R. Given an index of
decrease of the field (¢) less than unity (weak focusing), the
orbit is stable in either direction. (The letter ¢ is chosen to
designate the index of decrease of the field since its
common letter is used to designate the principal quantum
number.) The case of strong focusing |¢| > 1 is not
considered here.

Synchrotron radiation is an important factor which
determines the dynamics of particles in an accelerator
and in a storage unit. It is sufficient to recall the fate of
the betatron [7]. SR induces large radiative energy losses
and the radius of the orbit shortens. This sets a physical
limit on the induction method of acceleration, which is
conditioned by the disturbance of the stability of motion of
electrons.

In a synchrotron the radiative losses of the energy of a
particle are compensated by an outer source—a periodic
magnetic field which is tangential to the trajectory—and
the radius of the orbit of an electron is constant since
BE = ¢yHR. The focusing properties of the magnetic field
provide for stability of the motion of a particle in a circle of
a stationary radius.

However, the radiative shortening of the radius of the
orbit of an electron is not the only role of SR. The general
analysis of the stability of motion with regard to SR leads to
an interesting observation: an electron simultaneously
experiences the action of classical radiative damping
forces, which drastically decreases the amplitude of beta-
tron oscillations (see the works of Kolomenskii, Lebedev,
Orlov, and Tarasov [86]), and of quantum fluctuation
forces, which result in quantum widening of the orbit
[32, 67]. As a result, the amplitude of betatron oscillations
assumes a steady value in the course of time. This value is a
peculiar compromise of radiative damping of oscillations
and their quantum excitations.

The strict solution to the problem of how quantum
fluctuations of SR affect the motion of electrons in a
homogeneous focusing magnetic field was obtained by
Gutbrod [87] (see also Refs [88, 24, 25]). He showed, by
the method of exact solutions to the Klein—Gordon
equation (a spinless electron), that the square of the
amplitude of radial oscillation,
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" eoHR/1—¢
changes in time in accordance with the law
da> 55 & i <E>5 ,  qW
= i RS
dt  24+/3 mc(1 —g)* mcR \mc? (1—9q)E
4.1
and, similarly, that the amplitude of vertical oscillations
b =272 changes in accordance with the law
w_ 13 & n (EY LW
dr 244/3 mcq mcR \mc? E -~
Here W is the synchrotron radiation power and ¢ is the
index of decrease of the magnetic field. Note that Eqn (4.1)
goes into formula (3.19) in the case of an homogeneous
magnetic field (¢ = 0).
It is seen from the time dependencies of the squares of
amplitudes of radial and vertical betatron oscillations that,

if the quantum excitation were absent, the classical radiative
damping with the damping decrement

% %
9 r

a* =2x2 =2(F - R)’

4.2)

""1—¢q E’ * E
would stop betatron oscillations and strongly compress the
entire bunch of electrons. Then the radiation would be
strongly coherent and the normal operation of an
accelerator or a storage ring of electrons would be
upset: a prolonged circulation of electrons in the magnetic
field would be impossible in essence. This would set a
physical limit on a synchrotron or a storage ring.

However, quantum fluctuations of the trajectory of a
particle prevent the bunch from being compressed. As a
result, the amplitude of oscillations takes a fixed value once
the equilibrium of two processes—the classical radiative
damping (the damping effect) and quantum excitation —is
established:

55 1 RAE [ EYV

2

= =), 43

= o5 T e (o) 43)
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bl =—r — —. 4.4

est 16\/§ g mc ( )

Note that quantum fluctuations affect radial betatron
oscillations to a greater extent. As a result, the electron
beam is compressed vertically and elongated radially.

Let us consider now how SR affects the dynamics of
electrons in a storage ring, when particles move in it for a
long time (tens of hours) and preserve their energy (their
radiative losses are compensated by the outer electric field).
We shall use the classical Dirac—Lorentz equation,

(4.5)

. e .
mxt =-x,F*" +F~ .
¢
in which the radiative friction force in the relativistic case
of interest to us has the form

ko S

ey
ad = 733 X'x,, 4.6)
where the dots indicate derivatives with respect to the
intrinsic time. Then the Dirac—Lorentz notion takes the

form

d (E
—(—v> Y By —

4.7
A c .7)

v
C2 :

in its common three-dimensional notation. Here the electric
field E .y, compensates for energy losses and provides for
a constant energy. Although Eqn (4.7) fully describes the
motion of electrons in a storage ring, it does not account
for the quantum fluctuations of radiation.

In particular, Eqn (4.7) is followed by the equation of
betatron oscillations:

f+li+w*x=0, x=r—R. 4.8)

Thus, synchrotron radiation manifests itself as a factor
which contributes to steadying the motion of a particle [86].
As noted above, the classical force of radiative friction
[Eqn (4.6)] does not give a full description of the dynamics
of an electron. The operation of a storage ring will be upset
abruptly after a time t~ 1/I,, as a consequence of
compression of the electron beam and very strong
coherent radiation (this time is equal to 107 s for
electrons of energy 1 GeV).

The reason is that expression (4.6) for the force of
radiative friction does not account for the quantum nature
of synchrotron radiation —the discrete character of photon
emission. [t is a pity that this most important factor has not
been reflected in the review [89] dedicated, in particular, to
equations of motion of particles with consideration for the
radiative force of friction.

In view of the known complexity of the quantum theory,
several authors (Sands [90], Kolomenskii and Lebedev [86],
see also Ref. [88]) proposed models which add the classical
expression for the radiative friction force to the quantum
fluctuation force. So, for example, the expression for the
fluctuation force F responsible for quantum fluctuations
can be chosen in the form [88, 25]

i :%Z St—1).

and then the equation for betatron radial oscillations
becomes inhomogeneous:

(4.9)

F4+Ti+wx=F". (4.10)

Its right-hand side accounts for discrete properties of
synchrotron radiation. Note that, unlike the classical
formula for the force of radiative friction [Eqn (4.6)]f,
the fluctuation force given by Eqn (4.9) is introduced
here for the sake of the model only. The extent to which
this model is true can be seen from comparison with the
exact quantum calculation [86].

The general solution of Eqn (4.10) can be presented in
the form (see Ref. [25])

—s A
(-7 =% [1 —exp(—F,t)] , @.11)
where the quantity
2 5
A= e o (E 4.12)
48\/§(] _q)2 mec mcR \mc?

characterises the change in the quadratic fluctuation of
radius due to the quantum widening of the trajectory; this
formula is substituted into Eqn (3.19) for ¢ = 0 (homoge-
neous field).

FThe expression for radiative friction force [Eqn (4.6)] was obtained by
Dirac [91] under the assumption that an electron experiences the action
of the field equal to half the difference between the lagging and leading
fields created by the particle in motion.
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Of interest are two limiting cases. First I shall dwell on the
case of small times: 7 € 1/I,. Then

(x—%) =Ar . (4.13)

The particle moves in the classical trajectory and
executes harmonic damping oscillations. Quantum fluctu-
ations result in the quantum widening of this trajectory
(Fig. 14). Moreover, the widening of the trajectory is
similar to the law of Brownian motion for the time
t<1/I, (t=1/T, ~ 1072 sec):

(x —%)* =2Dt.
It is important that quantum fluctuations responsible for

widening trajectory cannot be eliminated in principle since
they cannot be described by a continuous law.

(x—%)°

t<1/r

t>1/I

Figure 14. Quantum widening of the amplitude of damping betatron
oscillations.

In another limiting case of + > 1/I,, it follows from

Eqn (4.11) that
A

) _Aa
(x —x) oo T

(4.14)

Moreover, the motion of the particle no longer depends
on the initial amplitude of oscillations. The time © = 1/T,
characterises the time for which the information about the
initial state of the system is forgotten. As a result, the
steady-state value of the quadratic fluctuation is estab-
lished:

—F5 55 1 RE [(EYV
x—x)=——-———]) .
3243 q(1 —¢q) mc (mc2>
This quantity is essential in determining the sizes of the
cross-section of the beam (emittance) and is quantum in
nature.

In the first experimental studies of the quantum proper-
ties of SR, quantum fluctuations were indirectly observed
on the electron synchrotron in the California Institute of
Technology [90]. There were problems in starting up the
accelerator when attempts were made to achieve the rating
energy of electrons of 1.2 GeV, because of quantum
excitations of phase oscillations. The study of the dynamics
of an electron beam was performed by means of the
technique of rapid photography of synchrotron radiation

(4.15)

in the FIAN on the synchrotrons in which the electron
energies were 280 and 680 MeV [92]. The evolution of the
luminous patch was presented in a series of photographs.
The patches characterised the betatron oscillations of an
electron and their changes during the course of a cycle of
acceleration. The damping effect and the quantum widening
of the trajectory were observed (Fig. 15). Using the same
technique, Vorob’ev et al. performed studies in the Tomsk
Polytechnical Institute on the synchrotron ‘Sirius’ for an
electron energy of 1.5 GeV [42]. All the experiments
supported the theoretical conclusions. It was also estab-
lished that the focusing of a beam should be sharpened and
that the field should have larger gradients (close focusing),
in order to make the advance of the accelerating technique
into the region of energies of more than |g| > 1 possible.
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Figure 15. Time dependence of the mean square amplitude of radial
betatron oscillations of electrons for the synchrotron ‘FIAN-680
MeV’: (1) experimental data; (2) theoretical data; (3) variations in the
magnetic field.

5. Synchrotron radiation in physical
experimentation

For a long time, synchrotron radiation was considered to
be a nuisance in the operation of a cyclic accelerator: the
reason was that it set a radiative ‘ceiling’ to the operation
of a betatron [7]. Radiative losses of energy imposed a
fundamental restriction on the inductive method of
acceleration of electrons. Therefore, a new acceleration
technique was adopted upon the discovery of automatic
phase stabilisation (Wecksler, McMillan)—a synchrotron
in which energy losses are compensated for. However, even
early studies of the properties of SR [2, 16—18] attracted
the attention of experimentalists and soon aroused an
interest in SR as a new source of radiation.

In the 1960s the first laboratories of synchrotron
radiation appeared with the object of finding an applica-
tion for SR in the physical experiment. This special
attention to the new source of radiation was due to its
peculiar properties: a wide spectral range on the scale of
electromagnetic waves from the infrared radiation to the x-
ray radiation; sharp collimination because of which the
brightness of radiation was very high; high power; and
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natural polarisation typical of this source. Of great
importance was the fact that all properties of SR were
fully described theoretically. This made it possible to
calculate its characteristic with a high degree of precisiont.

The 1980s were marked by a vigorous growth of a
number of investigations in which SR was used, and by
advances in new types of specialised sources of radiation.
During these years scientific research centres of synchrotron
radiation appeared. They were equipped with sources of
SR, free-clectron lasers (FELs), wigglers, systems of
undulators, and auxiliary facilities built in the chamber
of a storage ring. In Russia, centres of synchrotron
radiation were established in the Institute of Nuclear
Physics in Novosibirsk, in the P N Lebedev Physical
Institute (FIAN), and in the I V Kurchatov Institute of
Atomic Energy. Today scientific research using synchrotron
radiation receives a wide acceptance all over the world: in
the USA, FRG, Italy, Japan, United Kingdom, France,
Switzerland and other countries}.

The successful application of SR in the physical
experiment had a pronounced effect on the progress of
physics of atoms and molecules and also of physics of the
solid body. It is impossible to cover all these issues in our
review in any detail since they constitute a vast problem,
which isin itself of interest. Fortunately there isno need for it
since the issues related to applications of SR in the physical
experiment are considered in detail in specific literature. So,
for example, the review of Curdling was dedicated in
particular to the application of SR in atomic spectroscopy
(see Ref. [98]); Koch and Sonntag reviewed applications of
SR in molecular spectroscopy; and Ling reviewed the
spectroscopy of solid bodies (see Ref. [98]). Applications
of SR in studies of the luminescence of crystals were
considered in the monograph [25] and, finally, the review
of Haensel is dedicated to applications of SR in studies of
optical properties of alkali halide compounds (see Ref. [99]
and also Refs [105—108]).

It should be stressed that synchrotron radiation pos-
sesses a number of benefits in comparison with other
sources used in spectroscopy. Kulipanov and Shkrinskii
cited a set of formulas handy for practical calculations and
evaluations of SR as a source in the review [105] (see also
Refs [25, 27]). So, for example, the spectral brightness of a
source,

NP d*

— .1
Bi=dras dQdi/i’ G-

is of significant importance for practical purposes. The
brightness is the number of photons N which have been
emitted for one second from a unit area of a source S into a
unit solid angle Q in a given spectral band di/A. It is a
function of the size of the electron beam and of the angular
spread of particles in the beam:

FIn 1968 a channel of vacuum ultraviolet synchrotron radiation was
built in the synchrotron ‘FIAN C-60’ under the supervision of V V
Mikhailin.

fIn the same period, a laboratory was established in the Physics
Depart- ment of Moscow State University (under the supervision of
the author and V V Mikhailin), which united theoreticians and
experiment-alists for theoretical analysis and applications of
synchrotron radiation. The laboratory collaborated with the Physical
Institute of the Academy of Science, the Institute of Atomic Energy,
the Institute of Nuclear Physics, Siberian Branch of the USSR

N,

B, = .
YT A Ayl + (86,7

(5.2)

Here N, is the spectral flux of photons, Ax and Az are the
effective sizes of the beam (horizontal and vertical), ¥, is
the angular divergence of SR, and A, is the vertical
angular spread of electrons in the beam.

The brightness of a source specifies the maximal
attainable wavelength resolution and also the exposure
time (biology, x-ray lithography). Therefore, one of the
major aims in designing sources of SR is to attain a
brightness as high as possible.

Note that SR is virtually a unique source of high-
intensity radiation in the range 200—500 A. In the short-
wavelength range of the vacuum ultraviolet radiation and in
the soft x-ray range, the power of the radiation emitted by
electrons of energy of several GeV exceeds the power of
radiation available from x-ray tubes by several orders of
magnitude [25, 27].

Of special importance is the application of SR in
experiments in the soft x-ray range of radiation, in which
its power exceeds several times that of all other sources of x-
ray radiation. It should be added that SR has an advantage
over other sources since it allows for continuous adjustment
of the wavelength of radiation, especially for application of
long-wavelength x-ray radiation.

This peculiar feature of SR opened up a possibility for
its application in biology, in the study of structures of
biopolymers. The reduction of the exposure time, and the
preservation of the object of investigation from being
destroyed because of a much smaller radiative load
make SR irreplaceable in studies of biological structures
(see Ref. [25]).

The last few years have been marked by the successful
application of SR in medicine, particularly in angiography
by x-ray techniques. There is a possibility of obtaining more
information when a smaller radiative load is applied to a
patient. In 1986 Winick conducted angiographic inspection
of a man in the Stanford Laboratory of SR (earlier such
inspections were conducted on animals only) (see Refs [25,
103, 104].

SR has been applied in microlithograpy for obtaining
elements of microschemes used in modern semiconductor
devices. The unique properties of SR —sharp directivity,
large power in the x-ray range—make it possible to
improve the quality of elements of microschemes and to
obtain new elements in microelectronics (see Refs [25, 109]).

I will now draw the reader’s attention to new possibil-
ities of experiments centered around the direct visual
observation of ‘electronic light’ [25, 100]. This refers to
the observation of an electron beam when it passes through
an accelerating cycle or moves in a storage ring. As noted
above, an outstanding success was the experimental
examination of the dynamics of betatron oscillations of
electrons in the presence of forces of radiative damping and
quantum fluctuations [41, 101].

The basis for visual observation of dynamics of an
electron beam is the high-speed photography of synchro-
tron radiation emitted from an electron beam, followed by
the processing of photographs. High-speed photography of
an electron beam for purposes of analysis of its dynamics
was first performed by Pollock’s group on the synchrotron
‘General Electric-70 M eV’ [2], and then this technique was
developed by Ado [102] and also in a series of studies
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performed under the supervision of Korolev on the
synchrotrons ‘FIAN-280 MeV’ and ‘FIAN-680 MeV’
[92]. The analysis of photographs obtained in the experi-
ments mentioned above restored the full history of
evolution of betatron oscillations under the action of
forces of radiative damping and quantum fluctuations
[41, 92]. I want to emphasise that the source of information
about the motion of an electron was the particle itself
through emitted electromagnetic waves— ‘luminous elec-
tron’ (for details, see Ref. [25]).

I shall describe in detail several new possibilities of
applying SR in experiments, centred around the radiation
of an electron having an oriented spin. Under the condi-
tions typical of the magnetic field of accelerators and
storage rings, the dynamic parameter

_H P
Hy mc

[see Eqn (3.1)] is still a small quantity and the quantum
effects of synchrotron radiation manifest themselves as
small contributions on the background of the classical
formulas for radiation. Nevertheless the radiation of an
electron beam with an oriented spin has interesting
features. As mentioned earlier, there is an addition 4 to
the power of radiation in the short-wavelength range of the
spectrum of SR. This addition is due to polarisation of the
electron beam [{| = |({)]:

3 H

A= |l o

where y=E/mc?, y =w/w, > 1. In other words, the
additional power of SR is proportional to the magnetic
field strength, energy, and degree of polarisation of the
electron beam for a fixed wavelength. The quantity 4 can
be considered as the jump of the radiation energy upon
turning on the depolariser which destroys the spin
orientation.

This method of observation of spin dependence of SR
was for the first time applied in the Institute of Nuclear
Physics, the Siberian Branch of the USSR Academy of
Science in Novosibirsk [72]. The jump of the radiation
energy 4 was determined by comparing the powers of SR of
the two clusters of particles—polarised and nonpolarised
(one of the clusters was exposed to selective depolarisation).
The results obtained showed a good agreement with the
theory of the radiative polarisation effect for electrons and
positrons in storage rings [81, 82].

Note that the observer’s instrument has no direct
influence on the particle in the above experiments (as
was the case, for example, in the experiments of Stern
and Gerlach). Here the source of information about the
spin orientation is the electron itself: it emits SR which
depends on the spin properties of the particle. The
experiment on observation of spin dependence of SR
presents new insights on the problem on measuring the
spin of a free (not bound in an atom) electron.

As noted above, electrons and positrons moving in
storage rings are polarised by synchrotron radiation. The
interaction of opposing polarised beams of particles is of
the utmost importance in experiments in the field of high
energy physics. However, these issues are beyond the scope
of our review (see Ref. [25]).

In conclusion I shall describe briefly ways in which SR
sources can be improved. One of the crucial problems is

how the brightness of a source can be increased. The term
brightness is understood to refer to the number of photons
which are emitted in one second from a unit area of an
extended source into a unit solid angle. One way of
increasing the brightness is to create a storage ring of
small emittance—the emittance is a characteristic of a
beam of particles, and is given by & = ngf, where ¢ is the
Gaussian size of the beam in meters, and 6 is the angle of
the cone of radiation in radians. In advanced modern
sources, the small emittance is achieved through the strong
focusing of a beam of particles, combined with systems of
permanent magnets of multiperiodic undulators (note that
the angular size of the cone of radiation is the quantity
80 ~ 1/(yv/N) for an undulator made up of N sections of
magnets).

Further, it is clear that the brightness of a source
depends primarily on the radiation power. Of interest in
this context are coherent bunches of electrons clustered at
distances less than the wavelength of their radiation. As
noted in the early work [10], in this case coherence would
make it possible to increase the radiation drastically since
the bunch of electrons behaves as an effective charge
eof = Noe (N, is the number of electrons in the bunch).

The creation of such coherent bunches is a very
complicated problem, even in the microwave range. So
far as the possibility of clustering electrons in bunches of the
size of the order of the optical wavelength was concerned,
the difficulties seemed to be insurmountable.

At present, it is established that in the theory of free
electron lasers, which considers the interaction of an
electron beam in an undulator with an electromagnetic
wave, there is a mechanism of self-modulation of an
electron beam. Electrons are clustered in the longitudinal
direction and form coherent bunches of length of the order
of the optical wavelength.

The mechanism of self-modulation of an electron beam
is similar to some extent to the clustering of electrons in a
synchrotron under the combined action of the leading
magnetic field of the accelerator and the vortical high-
frequency field accelerating the particles (the self-modula-
tion principle of Wecksler and McMillan). As a result of
their action, the electron beam is divided into bunches the
length of which is a function of parameters of the high-
frequency electric field.

[t is interesting that particles are clustered in the free-
electron laser even if an outer electromagnetic wave is
absent —the ‘trigger’ wave of spontaneous radiation plays
its role. The self-amplification of spontaneous radiation is
one of the important properties of the undulator. When
electrons pass through a large-length undulator, there is no
interference initially and the total radiation power is
proportional to the number of particles W' =N, W.
Then the clustering mechanism comes into play, and the
radiation of a cluster of electrons becomes coherent. The
spontaneous radiation amplifies itself and the radiation
power is now proportional to N% because of the inter-
ference: W °%! = N2W . This self-amplification phenomenon
provides the grounds for a special ‘strong’ source of
radiation —a large-length undulator.

The coherence problems of synchrotron radiation have
recently attracted the attention not only of theoreticians but
also of experimentalists [111 —114].
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6. Conclusions

I would like to say that synchrotron radiation has not only
won recognition in physical experiments of the present time
but will still be an experimental tool in the future.

In The Thousand and One Nights, there is a story about a
boy named Aladdin and a magic lamp. The boy found a
magic lamp and, when he rubbed it slightly with a pinch of
sand, there appeared an enormous genie and said, ‘[ am at
your disposal, I am your slave”. The electronic light burst
out of the chamber of an accelerator in 1947 and since then
synchrotron radiation, like the genie in Aladdin’s magic
lamp, has shown the way to knowledge in various fields of
science.
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