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Abstract. A state-of-the-art review is given of the 
invest igations of the H u b b a r d model , which is the main 
mode l used in the theory of s trongly correlated electron 
systems. It is shown h o w the main correlat ion effects — the 
m e t a l - i n s u l a t o r phase t ransi t ion, the appea rance of 
localised magnet ic momen t s , and the b r e a k d o w n of the 
F e r m i - liquid behaviour — appear in the case of s t rong 
electron correla t ions when U ~ W, where U is the 
C o u l o m b repulsion pa ramete r and W is the b a n d width . 
Different approaches to the p rob lem, no t based on 
pe r tu rba t ion theory in te rms of the pa rame te r U/W of 
W/U, are presented. A new me thod in the theory of 
s trongly correlated systems, in which the limit of infinite 
number of d imensions of space, d = oo, is the main feature 
of the review. The physical results obta ined by this 
app roach are compared with those deduced by t rad i t iona l 
me thods . A n overview of the behav iour of strongly 
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correlated systems is given for wide ranges of the mode l 
pa rame te r s U and W, and of the electron density n. 

1. Introduction 
1.1 Hamiltonian of the model 
Three paper s [ 1 - 3 ] appeared a lmost s imultaneously and 
independent ly in the early seventies: they p roposed a simple 
mode l of a metal , which has since become the fundamenta l 
mode l in the theory of strongly correlated electron systems 
(SCES). This mode l deals with a single nondegenera te 
energy b a n d of electrons and a local C o u l o m b interact ion. 

The Hami l ton i an of the mode l has just two pa ramete r s : 
the mat r ix element t of an electron j u m p from one site to an 
adjacent site in the lattice and the pa rame te r U represent ing 
the C o l o u m b repulsion of two electrons at one site. In the 
second-quant isa t ion representa t ion this Hami l ton ian can be 
wri t ten in the form 

H = tYictck, + uYinttnii . (1.1) 
ij, a i 

Here , ct and Cia are the F e r m i creat ion and annihi la t ion 
opera to r s for an electron at a site / with a spin cr, and 
nia = C-aCi(T is the number of electrons at this site. 

The mode l p roposed in Refs [ 1 - 3 ] has become k n o w n 
as the H u b b a r d mode l and it has m a d e a fundamenta l 
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cont r ibut ion to the s tudy of the statistical mechanics of such 
a system, a l though the local form of the C o l o u m b inter­
action had been in t roduced earlier by Ande r son for a mode l 
of an impur i ty in a meta l [4]. 

It is wor th ment ion ing also tha t the H u b b a r d mode l is a 
special case of the S h u b i n - V o n s o v s k i i (Wonsowsky) 
mode l [5], pu t forward 30 years earlier t han the mode l 
of Refs [ 1 - 3 ] . The S h u b i n - V o n s o v s k i i mode l takes into 
account not only the C o l o u m b interact ion at one site, bu t 
also the interact ion of electrons at adjacent sites. 

The simplicity and the self-sufficiency of the H a m i l t o n ­
ian (1.1) m a d e the H u b b a r d mode l very popu la r and 
effective in the descript ion of SCES, for which the 
C o l o u m b repulsion pa ramete r U is greater t han or of 
the order of the b a n d width W. In the case of a simple 
cubic lattice, we have W = 2zt, where z is the number of the 
nearest ne ighbours . 

The H u b b a r d mode l is the main work ing mode l in the 
theory of SCES. A m o n g the real objects it best describes 
n a r r o w - b a n d t ransi t ion meta ls and their c o m p o u n d s . In the 
case of these mater ia ls the H u b b a r d mode l is effective: it 
can be used to describe the magnet ic and electric proper t ies 
of such mater ia ls and the re la t ionships between them. 

In the Hami l ton i an (1.1), wri t ten in the site representa­
t ion, the C o u l o m b term is d iagonal , whereas in the Four ie r 
representa t ion the kinetic te rm is d iagonal and it cor re ­
sponds to the b a n d spectrum 

d 
sk = 2 ^ ^ c o s £ a , (1.2) 

a=l 

where d is the dimension of space. 
The diagonal i ty of one or ano ther te rm in the H a m i l ­

ton ian provides an oppor tun i ty of developing pe r tu rba t ion 
theory for two limiting cases: U <^W and U W. They are 
sometimes called the limits of weak and s t rong coupling, 
respectively. 

The in termedia te case when 

Here 

U~ W (1.3) 

is na tura l ly mos t difficult to deal with, a l though physically 
it is the most interest ing because it is in this case tha t the 
correlat ion effects leading to a m e t a l - i n s u l a t o r phase 
t rans i t ion are manifested mos t strongly, localised magnet ic 
m o m e n t s appear , and a s t rong coupl ing forms between the 
behaviour of charge carriers and magnet ic order . 

In an earlier review [6] I discussed in detail two limiting 
cases and I used pe r tu rba t ion theory in te rms of the 
pa ramete r U/W or W/U. In this review I shall concent ra te 
mainly on the in termedia te case, bu t wi thout ext rapola t ion 
from the weak or s t rong coupl ing limits. These limits will be 
discussed briefly before considering the case of in termedia te 
coupling. 

1.2 Weak and strong coupling limits 
In the limit U <^ W our system represents a F e r m i liquid in 
which a long-range magnet ic order m a y appear ; it m a y be 
ferromagnet ic (F) or of the spin density wave (SDW) type 
with the wave vector Q. This is the case of i t inerant 
magnet i sm, wi thout localised magnet ic m o m e n t s . The basic 
expression is tha t for the dynamic magnet ic susceptibility 
considered in the r a n d o m phase approx imat ion ( R P A ) [7], 
i.e. t ak ing account of loop d iagrams 

Xo(4> <») 

+ sk+q -sk-\-i3 
(1.5) 

is the ' ba re ' (unrenormal ised susceptibility of free (band) 
electrons and / ( e ) is the F e r m i dis t r ibut ion function. 

The condi t ions for divergence of #(#, co) at zero 
frequency determine the bounda r i e s of the F phase 
(when # = 0) and of the S D W phase (when q = Q). If 
nest ing occurs, the divergence at q = Q can occur for any U 
and the Nee l t empera tu re of the ant i fer romagnet ic t rans i ­
t ion is 

Wexp I — 
1 

(1.6) 

where P 0 ( A O *s the density of states on the F e r m i surface ( p 
is the chemical potent ia l ) . 

In the case of the spectrum described by expression (1.2) 
the nest ing is complete for Q = (n, n, n)l/a when the b a n d 
is half-filled, i.e. when n = 1, where n is the n u m b e r of 
electrons per one lattice site. Devia t ion from the half-filled 
case destroys nest ing and the Nee l t empera tu re T N falls 
rapidly as \i is varied. 

The bounda r i e s of the ferromagnet ic (F) and ant i fer ro­
magnet ic (A) phases in the (U, n) p lane, which follow from 
the condi t ion of divergence of the static magnet ic suscepti­
bility, are shown in Fig. 1. This d iagram is identical with 
tha t which follows from the mean field approx imat ion 
( M F A ) [8]. In view of the e l e c t r o n - h o l e symmetry, the 

Figure 1. Magnetic phase diagram obtained in the mean field approx­
imation [8], taking account of the existence of the paramagnetic (P), 
ferromagnetic (F), and antiferromagnetic (A) phases: the continuous 
curve represents a second-order phase transition and the dashed curve 
corresponds to a first-order phase transition. 

1 - Ux0(q,co) 
(1.4) 
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pa t t e rn is symmetr ic relative to the poin t n = 1, so tha t we 
shall in future consider only the section 0 < n < 1. 

The p rob lem of appearance of localised magnet ic 
m o m e n t s in the H u b b a r d mode l requires going beyond 
the R P A and M P A approx imat ion . s In the weak coupling 
case this p rob lem has been formulated in te rms of the 
concept of localised spin f luctuations, which has seen rapid 
development in the seventies. The f ramework of wha t is 
k n o w n as the self-consistent theory of spin f luctuat ions 
(discussed in M o r i y a ' s m o n o g r a p h [9]) has m a d e it possible 
to show tha t the magnet ic susceptibility contains , like the 
t empera tu re dependence described by formula (1.4), a 
C u r i e - W e i s s type cont r ibut ion p ropo r t i ona l to l/T, which 
is evidence of the appearance of localised magnet ic 
mom en t s . 

The opposi te l imiting case when U 5> W cor responds to 
a strongly correlated system. W h e n a small pa rame te r W/U 
is used, it is possible to go over from the Hami l ton i an (1.1) 
to the effective Hami l ton i an in wha t is k n o w n as the t-J 
mode l [10], which describes the mo t ion of electrons on a 
lattice when there is no m o r e t han one electron at any one 
site and the effective exchange interact ion between the 
nearest ne ighbours is described by 

Pe r tu rba t ion theory t rea tment in te rms of the pa rame te r 
W/U can be developed for the t-J model . In this case the 
zeroth approx ima t ion deals with single-site a tomic states, 
whereas the kinetic te rm and the effective exchange are 
regarded formally as pe r tu rba t ions [11]. In the half-filled 
case (n = 1) the Hami l ton i an of the t-J mode l reduces to 
the exchange Hami l ton i an in the Heiesenberg model . 

It follows tha t the H u b b a r d mode l describes i t inerant 
magnet i sm in the weak coupl ing limit, and localised 
magnet i sm in the tight coupl ing limit when n = 1. In the 
in termedia te range of electron densities there should be a 
crossover from one case to the other . 

A generalised R P A can be adop ted in the t-J model : it 
involves the summat ion of all the loop d iagrams in which 
the Green lines do no t cor respond to the electrons, as is t rue 
of the R P A approx imat ion , bu t to s trongly correlated 
electrons. The expression for the dynamic magnet ic sus­
ceptibility has the s t ructure of expression (1.4), bu t the 
' ba re ' susceptibility n o w has two componen t s : one of them 
(i t inerant) is given by a formula of the (1.5) type with a 
correlated electron spectrum and the other depends on 
t empera tu re in accordance with the l/T law and takes 
localised magnet ic m o m e n t s into account . 

The C u r i e - W e i s s cont r ibut ion rises steeply at some 
critical electron density nc « 2 / 3 . Therefore, near the 
density nc the system crosses over from i t inerant magne t ­
ism to magnet i sm with dua l behaviour . If n > nc, the system 
apparen t ly is s imultaneously an i t inerant and localised 
magnet ic mater ia l . Fig . 2 shows the magnet ic phase dia­
gram at T = 0 K obta ined at the generalised R P A 
approx imat ion . 

N e a r the poin t n = 1 the Nee l t empera tu re is [12, 13] 

rN =\zJ-l-{\-n)zt . (1.8) 

The first te rm represents the Cur ie t empera tu re of a 
Heisenberg ant i fer romagnet and the second term takes 
account of the mo t ion of holes. Since J <^ t, the Neel 

J jt 

P 

0 2/3 1 
n 

Figure 2. Magnetic phase diagram based on the t-J model and the 
general random phase approximation [11]. 

t empera tu re T N decreases rapidly with deviat ion from the 
case of the half-filled band . 

1.3 Problem of the intermediate coupling 
Between the two limits U <^ W and U 5> W, when the 
H u b b a r d mode l describes a F e r m i liquid in one case and a 
s trongly correlated system in the other , there is a wide 
range of in termedia te values of U in which the behaviour of 
the system is par t icular ly complex. Here , b o t h te rms of the 
Hami l ton i an (1.1) show opposi te tendencies: the kinetic 
te rm cor responds to delocalisation and the C o u l o m b term 
represents localisation of the electron states, so tha t the 
electric and magnet ic proper t ies of the system depend on 
the fine ba lance between these tendencies. 

A m e t a l - i n s u l a t o r phase t ransi t ion occurs in the 
in termedia te range of values of U and the system goes 
over from i t inerant magnet i sm to magnet i sm with localised 
magnet ic momen t s . In the last three decades the p rob lem 
has been the subject of intensive investigations (part icularly 
in connect ion with the h igh- tempera ture superconduct ivi ty 
of copper oxide compounds ) , bu t the outl ines of the 
solut ion of this p rob lem have become clear only very 
recently. It is this c i rcumstance tha t has provided the 
st imulus for wri t ing this review. 

W e shall first list the m e t h o d s used in the analysis of the 
in termedia te case described by formula (1.3) when there is 
no formal small pa ramete r . These m e t h o d s are decoupl ing 
of the equa t ions of mot ion , the mean field approx imat ion 
(d = oo limit) , the functional integral representa t ion, var ia­
t ional me thods , and the me thod of slave bosons and 
fermions. 

This list should be supplemented by the numer ica l 
me thods , par t icular ly by the q u a n t u m M o n t e Car lo 
me thod , and the exact diagonal isa t ion of small clusters, 
and also h igh- tempera ture expansions . All of them are used 
to mon i to r var ious types of analytic approx imat ions . 

H u b b a r d was the first to apply the me thod of decou­
pling of the re ta rded Green functions and to show tha t the 
initial electron energy b a n d splits, because of the C o u l o m b 
repulsion at a site, into two subbands : the lower subband 
corre-sponds to single-particle states, and the upper to pair 
states. 

The simplest decoupling, k n o w n in the l i terature as the 
' H u b b a r d - 1 ' [1], cor responds to the S h u b i n - V o n s o v s k i i 
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result [5]. A m o r e r igorous decoupl ing based on the 'alloy 
ana logy ' (known as the H u b b a r d - 3 approx imat ion [14]) 
leads to the M o t t m e t a l - i n s u l a t o r phase t rans i t ion [15] 
precisely at the critical value of the pa ramete r Uc ~ W. 

The H u b b a r d approx ima t ions [1, 14] are no t fully 
control led and have serious shor tcomings , discussed in 
detail in Section 3 below. However , from the formal po in t 
of view these approx ima t ions are very fruitful and they 
should be regarded as an in terpola t ion between the limits of 
weak and s t rong coupl ing or between two types of electron 
states in the lattice: b a n d and a tomic . 

A n impor t an t b r e a k t h r o u g h in the SCES theory had 
been m a d e recently by Metzner and Vol lhard t [16] by 
considering the limit of infinite number of d imensions in 
space: d = oo. They found tha t m a n y approx ima t ions used 
earlier heuristically in the SCES theory and in tackl ing 
other p rob lems in m a n y - b o d y theories are exact in the limit 
d = oo. This is t rue of the wel l -known coherent po ten t ia l 
approx ima t ion (CPA) , which is an integral pa r t of the 
approx ima te m e t h o d s used in the H u b b a r d mode l and is 
based on the representa t ion of the par t i t ion function by 
functional integrals [17, 18]. 

Moreover , the familiar Gutzwiller approx ima t ion [19] 
used in the var ia t ional app roach is also exact in the limit 
d = oo. It has been found tha t in the same limit d = oo the 
H u b b a r d mode l is equivalent to certain auxiliary one -
impur i ty Ander son models and this cor respondence unde r ­
lies the mean field approx imat ion used in the H u b b a r d 
model . This approx ima t ion provides a correct descript ion 
of the m e t a l - i n s u l a t o r t ransi t ion and of b r e a k d o w n of the 
F e r m i liquid behaviour when the pa ramete r U increases. 

The limit of infinite-dimensional space, d = oo, is central 
in the app roach used in the present review. I shall also 
consider systematically all other approaches ment ioned 
above. I shall base this discussion on the methodologica l 
principle, because it is very impor t an t to analyse the 
capabilit ies of each app roach within the limits of its 
validity (none of the approaches is universal) and the 
relat ionship between the var ious p h e n o m e n a such as the 
states of the electron spectrum and the magnet ic order ing. I 
shall leave to Section 7 an a t t empt to out l ine a general 
physical p ic ture of the behaviour of the H u b b a r d mode l on 
the basis of the informat ion obta ined by var ious me thods . 

2. Decoupling of the equations of motion 
2.1 Equations of motion for retarded Green functions 
In his very first invest igations of the correlat ion effects, 
H u b b a r d used the m e t h o d of two- t ime Green functions 
[20, 21], which is par t icular ly convenient when the inter­
action between the part icles is s t rong and there is no small 
pa ramete r associated with this interact ion (U ~ W). In this 
s i tuat ion the infinite chain of equa t ions for the initial 
Green function is frequently decoupled and the m a n y -
part icle Green functions (or correlat ion functions) are 
reduced to simpler forms. Such decoupl ing is usually of 
heurist ic na tu re and is suppor ted by the reasonableness of 
the physical results. 

Fo l lowing H u b b a r d ' s classical t r ea tments [1, 4], let us 
consider the one-part icle re tarded Green function of 
electrons 

G > ) = <<C«,l4>>«, • (2- 1 ) 

The s t andard no ta t ion [21] is used here and later: the 
symbol ((A\B)) is the two- t ime Green function constructed 
from two opera to r s A and B, which depend on t imes t and 
t', respectively; the index co cor responds to the Four ie r 
componen t s in te rms of the var iable t — t'. 

Differentiat ion with respect to t ime t gives a chain of 
equa t ions for the Four ie r t ransform of the function ((A\B)) 
and the first of these equa t ions is 

co{(A\B))m = ([A, B]\ + (([A,H] \B))m . (2.2) 

H e r e [A, B\n = AB — rjBA (where rj can be equal to 1 or — 1 ; 
( . . . ) is the symbol for statistical averaging with the 
Hami l ton i an H; A, H] is the c o m m u t a t o r of A and H. 

The p rocedure of decoupl ing a chain of equa t ions mus t 
be based on some physical considerat ions . H u b b a r d has 
p roposed tha t in the U ~W case one should t ake into 
account exactly the electron correla t ions at one site and to 
t reat the correla t ions at different sites in the single-site 
approx imat ion . 

Ano the r methodologica l aspect involves the use of the 
'alloy ana logy ' in which one considers the lattice mo t ion of 
a given electron from one site to another , which m a y be 
either occupied by another electron (but with the opposi te 
spin!) or m a y be free, as the mo t ion of an electron in a 
disordered alloy consisting of two types of a t o m s a and b. 
The probabi l i ty of occupancy n and n° for a t o m s of a given 
kind is in t roduced and the electron Green function is 
averaged over all the configurat ions. 

In the H u b b a r d mode l it is necessary to in t roduce 
similar quant i t ies : 

a f nia, a = 1, 
a = 2 , ^ } 

where nia is the electron number opera tor for a site / with a 
spin a. These quant i t ies satisfy the condi t ions 

r&t& = 8aen%, $ > t o = 1 - (2.4) 
a 

The second relat ionship in formula (2.4) can be used to 
rewrite the definition of the Green function (2.1) in the 
form [14] 

a 

W e can see here the advantages of the site representa t ion in 
the case of the p rob lem of a lattice with a local interact ion: 
this representa t ion makes it possible to include directly the 
correlat ion of electrons with opposi te spins at a site. 

The equat ion of mo t ion for each of the componen t s in 
the function (2.5) is 

{co-e„){{nl_aCia\c)a))m 

=«^+£'*<<<^i4>>«,} 

+ 5>««_f f - n%)Cia\cl))m + Z ^ t * 

k k 

x{{{ciaCk_aCia\c}a))m + «4 f f C,_ f f C , . f f |4» f f l } • 
(2.6) 

Here e a is the energy of an electron at one a tom for two 
states, i.e. one when the a tom has an electron (with the 
opposi te spin) and the other when the a tom has a free level: 
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(2.7) p(<») = - — I m 

(these energies are measured from the chemical po ten t ia l /n) 
and £± = ± 1 . 

The quan t i ty in E q n (2.6) is the average value of an 
electron at a site /, i.e. {na_a). It is assumed tha t {na_a) is 
independent of /, i.e. tha t the pa ramagne t i c or fe r romag­
netic states are considered. The last two te rms in E q n (2.6) 
t ake account of the correlat ion at different sites. 

At this stage Eqn (2.6) is exact. The two approx ima t ions 
are used widely and they are k n o w n in the l i terature as 
H u b b a r d - 1 and H u b b a r d - 3 (the models are numbered in the 
same way as the first and third paper s [1, 14] in H u b b a r d ' s 
series). 

2.2 Hubbard-1 approximation 
The last two te rms are d ropped from E q n (2.6) in this 
approx imat ion , i.e. the correla t ions at different sites are 
ignored. This gives the following closed equat ion: 

« ^ i 4 » r a 

which after Four ie r t r ans format ion has the solut ion 

^ { ^ • + E ^ ( ( C ^ 4 ) ) . } ' 

Ga,{k,co)=-
1 

where Fq(CO) is given by the relat ionship 

1 ^ n* 1 - n_ 
co - * 

- + -

(2.1 

(2.9) 
Fq(CO) ^ co — sa co + fi co — U + fi 

The quan t i ty sk in the solution (2.8) describes the 
h o p p i n g of an electron from one lattice site to ano ther 
and Fq(CO) takes account of the resonant proper t ies of the 
a tom. It follows from the definition (2.9) tha t the first te rm 
describes a resonance at a free a tomic level and the second 
term represents a resonance at an a tom which a l ready 
conta ins an electron. 

The relative weight of the cont r ibu t ions of these 
resonances is given by the probabi l i ty na of finding an 
electron at a given site. The H u b b a r d - I approx imat ion 
cor responding to the solut ion (2.8) thus describes the 
mo t ion of an electron on a lattice characterised by some 
average dis t r ibut ion of all the other electrons at its sites. 
This is an approx ima t ion of the mean field type. 

The solution (2.8) can be rewri t ten in the form 

PUk) , P2a{k) 
G O ( * , oo) = • + co-Ela(k)+iJ. co - E2a(k) + n ' 

(2.10) 

where 

Ei,ic(k) 

PiMk) = 

sk + U =F \J4 ~ 2ek 1/(1 - 2n_„) + U 

ek - U(l - 2n_a) 
I T 

^s2

k-2skU(\-2n_„) + U2 

(2.11) 

(2.12) 

i.e. when the H u b b a r d - 1 approx ima t ion yields two 
branches of the spectrum ( H u b b a r d subbands) split by 
an a m o u n t of the order of U. This splitting remains finite 
for any C o u l o m b interact ion, no mat te r h o w weak, and 
this is an impor t an t shor tcoming of the H u b b a r d - 1 
approx imat ion . In fact, for a half-filled b a n d in the 
pa ramagne t i c state the density of states 

(2.13) 

is a symmetr ic function. Both subbands are shifted 
symmetrical ly relative to the F e r m i level and , therefore, 
the system is an insulator . It r emains an insulator for any 
value of the pa rame te r U. Therefore, the H u b b a r d - 1 
approx ima t ion does not describe the m e t a l - i n s u l a t o r 
phase t ransi t ion. These shor tcomings are removed in the 
approx ima t ion considered below. 

2.3 Hubbard-3 approximation 
The correlat ion effects at different sites are described by the 
last two te rms of E q n (2.6), bu t these te rms play a 
somewhat different role. In accordance with H u b b a r d ' s 
terminology, they represent the correct ions due to the 
scattering by spin disorder and due to resonance b r o a d ­
ening, caused by the mot ion of electrons with spin a 
[represented by te rms with £ a in E q n (2.6)]. 

W e shall first consider the scattering correct ion. W e 
shall use again the second equali ty in formula (2.4). This 
gives the relat ionship 

« K - . - ^ ) c t e | 4 » f f l 

which makes it possible to include the single-site correla­
t ions. W e shall n o w write down the equa t ions for the 
Green function on the r igh t -hand side of the above 
re la t ionship. If / ^ this relat ionship can yield an 
expression in te rms of the Green function, conta in ing 
the single-band correlat ions: 

{{{nl_a - n%)Cka\cl))m = °k> °" 

xtu{{{nU-n%)Cia\cl))a. 
Here , 

0 1 v e x p [ i f c - ( R j - R j ) ] 

is the Green function used in the site approx ima t ion in 
H u b b a r d - 1 . 

The scattering correct ion in E q n (2.6), found with the 
aid of expression (2.14), yields the term 

where 

kl q Oo-

(2.14) 

k,l v 
G 0(7 ŷrOCT 1 

* - ^ r F - { m ) - G W ) - ( 2 - 1 5 ) 

W e can treat similarly also the last ( resonance) con­
t r ibut ion to E q n (2.6). The result is a closed equat ion , 
which can be wri t ten in the form 

{co-e„){{nl_aCia\cl))m 

= « a _ , { ^ + ^ f , « C t o | 4 ) ) r a } 

-Zxn±aQa(co)((n-_aCia\cl))m 

+ tanZaQa(a>)((nti_aCia\cl))a . (2.16) 
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The quant i ty Qa{co), in t roduced above, has three c o m p o ­
nents : 

Qa(co) = Q'a(co) + QLa(co) + Qfla(co) , (2.17) 

where 

Q-a((0) = -Q'-a(*+ + S- - CO) . (2.18) 

The quant i ty Q'a(co) is ob ta ined from the componen t 
v^(co), defined by formula (2.15), if we m a k e the subst i tu­
t ions 

F 0 * - F * , G ? - G , , , (2.19) 

where Fa and Gu are found in a self-consistent manne r by 
solving Eqn (2.16). W e then have 

1 
Q'_a{co) = F » 

GGn{co) 9 

where 

GS(a>)=-^G(k9a>)9 

G°(k9a>)= — 
1 

F°(co)-ek ' 

co - {nta&_ + nZaE+) - Qa{co) 

(2.20) 

(2.21) 

(2.22) 

F°(co) (co-s_- n±aQa)(co - e + - nZaQa) - n+ariiaC% ' 

(2.23) 

Express ions (2.22) and (2.23) represent the H u b b a r d - 3 
approx imat ion . The function Qa is found by a self-
consistent p rocedure from expressions (2 .17) - (2 .21) . 

The self-consistent p rocedure , involving the subst i tut ion 
described by formula (2.19), has not been even par t ly 
justified, bu t it does lead to the m e t a l - i n s u l a t o r phase 
t ransi t ion. W e shall consider later the physical conse­
quences which follow from the H u b b a r d - 3 
approx imat ion , bu t at this stage we shall reformulate 
our equat ions . 

W e shall write down the main expression (2.22) for the 
Green function in its usua l form by in t roducing the self-
energy pa r t E(CQ) with the aid of the following relat ionship 
(we shall omit the spin index of all the quant i t ies and thus 
consider the pa ramagne t i c phase) : 

F(co) = co — I(co) + \i (2.24) 

Then expression (2 .20) - (2 .22) can be represented in the 
form 

co — sk — Z(co) + \i ' 

Z(co)=g-\co)-GJi\co) . 

(2.25) 

(2.26) 

The above expression conta ins a formally in t roduced 
auxiliary function 

g-lH = -
i 

'©-fl'M+jT ( 2 ' 2 7 ) 

which is governed entirely by the quant i ty Q'(co). This 
quant i ty is found from the system of self-consistent 
equa t ions (2.20) in which use is m a d e of expres­
sions (2.23) and (2.17). 

The equa t ions for the H u b b a r d mode l in the limit of 
infinite dimensional i ty of space have the same form as 
E q n s (2.25) and (2.26). The H u b b a r d - 3 approx imat ion 

leads to the function E(co)9 independent of the wave 
vector, which in the site space cor responds to the local 
form Itj = dijl. This is strictly t rue in the limit d = oo (see 
Section 3). The na tu re of the function (2.27) is the same as 
tha t of the Green function of an auxiliary single-site 
p rob lem characterised by the self-energy Q'(CQ). In the 
H u b b a r d - 3 approx ima t ion the self-energy Q'(co) is found 
from the above self-consistent equat ions . 

W e shall show later, however , tha t the complete system 
of equa t ions (2 .25) - (2 .27) , in which the definitions (2.23) 
and (2.20) are used, does no t cor respond fully to the exact 
equa t ions for the mode l in the limit d = oo, a l though it has 
m a n y features in c o m m o n . Since the d = oo limit cor re ­
sponds approximate ly to the mean field approach , we can 
say tha t the H u b b a r d - 3 theory [14] is simply a var iant of a 
theory of the mean field type. W e shall see later h o w reliable 
is the H u b b a r d - 3 theory [14] and wha t are its shor tcomings . 

H u b b a r d investigated a special case with one electron 
per a tom, i.e. the half-filled case (n = 1). In the p a r a ­
magnet ic phase characterised by = n j = n/2 and when 
the mode l density of states is 

1 

nW 
1 -

W/2 
co <• 

W 
(2.28) 

the main equa t ions (2 .20) - (2 .23) can be solved ana ly t ­
ically. In par t icular , the quant i t ies Gu(co) and Q'(co) can be 
found in te rms of F(co): 

Gu(co) 
1 

71 
F(co) - dF(co) (2.29) 

Subst i tut ing the solution (2.29) in E q n (2.20) and then 
combining it with E q n (2.23), we obta in a cubic equat ion 
for the quant i ty F(co). Depend ing on the value of the 
pa ramete r W/U, there are ranges of co where the solution 
for F(co) has either three real roo t s or one real and two 
complex. In the former case the quasipart ic le density of 
states p(co) vanishes, bu t in the second case it is finite 
(Fig. 3). 

Numer i ca l calculat ions show tha t at the critical value 

1.15 (2.30) 

there is a change in the topo logy of the p{co) curve at the 
F e r m i level \i=U/29 which cor responds to the m e t a l -
insulator t ransi t ion. This t ransi t ion is con t inuous . In the 

Up(co) 

0.6 -

0.4 -

0.2 -

W/U = 0.5 

/ / 

1.41 

Figure 3. Quasiparticle density of states calculated for different values 
of W/U when n = 1 [14]. 
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meta l phase the density of states at the F e r m i level obeys 
the law 

r i 3/2 

(2.31) Up(co) oc 
W 

a 
It therefore follows tha t the H u b b a r d - 3 approx imat ion 

describes the phase t ransi t ion from the meta l to the 
insulator phase , predicted by M o t t [15] when the C o u l o m b 
pa ramete r has the value U ~W, which undoub ted ly is the 
major success of this approx ima t ion . However , certain 
difficulties are encountered in the H u b b a r d - 3 and similar 
approx ima t ions [ 2 2 - 2 4 ] . They are related pr imar i ly to the 
b r e a k d o w n of the fundamenta l proper t ies of the Green 
function [25, 26]. 

2.4 Analysis of the simplest approximations 
The correla t ion- induced b a n d splitting, predicted even by 
the H u b b a r d - 1 approx imat ion , is a very interesting result, 
bu t it is unsat isfactory from the physical po in t of view, 
because such splitting occurs for any value of U, no mat te r 
h o w small. Therefore, this splitting does no t p rov ide a 
correct t rans i t ion of the Fermi- l iquid theory. Other 
shor tcomings of this approx ima t ion have been repor ted 
later (b reakdown of the sum rule and dynamic instabili ty of 
the quasipart ic le spectrum), so tha t it cannot be used to 
calculate the t h e r m o d y n a m i c proper t ies of the model . The 
H u b b a r d - 1 approx ima t ion is the rmodynamica l ly uns tab le 
even near the half-filled configurat ion. Ano the r shor t ­
coming is the absence of quasipart ic le decay. 

The H u b b a r d - 3 approx ima t ion is physically m o r e 
at t ract ive, because it leads to the b a n d splitting only if 
U is sufficiently large. Moreover , quasipart icles decay. 
However , we can easily see tha t the decay is p ropo r t i ona l 
to Im Gu and , therefore, it is finite over the whole spectrum, 
including the F e r m i level. This means tha t there is no j u m p 
in the dis t r ibut ion of the part icle number on the 'Fe rmi 
surface ' , i.e. there is no F e r m i surface. 

In other words , the H u b b a r d - 3 approx imat ion describes 
non-Fermi- l iquid behaviour of the system t h r o u g h o u t the 
full r ange of the pa ramete r s . Therefore, as in H u b b a r d - 1 , 
there is no going to the limit when the values of U are small. 
It is also found tha t the theory of the H u b b a r d - 3 
approx ima t ion is no t fully self-consistent and the results 
of a de terminat ion of the t he rmodynamic quant i t ies depend 
on the calculat ion me thod [27, 28]. 

The analyt ic proper t ies of the Green functions are 
different for H u b b a r d - 1 and H u b b a r d - 3 . In fact, in the 
former case the Green function has poles on the real axis 
(corresponding to two H u b b a r d subbands) , whereas in the 
latter case (Hubba rd -3 ) there is a cut on this axis. The 
analytic behaviour of the re ta rded Green function has no t 
yet been proved for the upper half-plane, bu t it can be 
pos tu la ted because the approx ima t ion itself is ana logous to 
the coherent po ten t ia l approx ima t ion in the theory of 
b ina ry alloys and the Green function in this theory is 
analytic [29]. 

In any case, the publ ished invest igations of the H u b ­
bard-3 approx imat ion , including numer ica l calculat ions, 
have no t revealed b r e a k d o w n of the analytic proper t ies . 
However , in a related p rob lem of the s-d model , in which 
the technique of decoupl ing of the Green functions is used 
in the spirit of the self-consistent H u b b a r d approx imat ion , 
it has been found [27, 28] tha t such b r e a k d o w n m a y occur 
for some types of self-consistency which are simpler t h a n 

those used in the H u b b a r d - 3 approx imat ion . In par t icular , 
a cut m a y appear on the imaginary axis in the upper half-
p lane and this unavo idab ly leads to b r e a k d o w n of the sum 
rule. Therefore, caut ion is necessary when self-consistent 
p rocedures are used in the technique of decoupl ing of the 
Green functions. 

The s t ructure of the density of states p(co) co r respond­
ing to the H u b b a r d - 3 approx ima t ion consists of jus t two 
smoothed-ou t peaks free of the Van H o v e singularities. 
This occurs because H u b b a r d - 3 ignores the correct ions tha t 
depend on the F e r m i dis t r ibut ion functions and can thus 
result in the failure of the rigid b a n d pa t te rn , i.e. it m a y lead 
to a singularity of p(co) of, for example, K o n d o effect type. 
In Section 3 we shall show tha t a consistent mean field 
theory (i.e. the limit d = oo) makes it possible to t ake 
account of such effects and then the density of states p{co) 
has a m o r e complex s t ructure which reflects K o n d o 
singularities on the F e r m i surface. 

3. Limit of infinite-dimensional space 
3.1 Hubbard model in the limit d — oo 
A few years ago Metzner and Vol lhardt [16] in t roduced the 
limit of infinite dimensional i ty of space d = oo for a 
s trongly correlated electron lattice. They demons t ra ted tha t 
in the limit d = oo all the calculat ions based on the 
H u b b a r d mode l are greatly simplified and yet all the 
essential features of the mode l are re ta ined. This has 
s t imulated an e n o r m o u s n u m b e r of invest igations tha t have 
led, in par t icular , to the development of r igorous mean 
field approx imat ion ( M F A ) for different models of strongly 
correlated systems. 

Calcula t ions are simplified in the d = oo limit because 
the self-energy of an electron becomes d iagonal in the site 
representa t ion: 

î/M = Sij • (3.1) 

In other words , we can assume tha t the function I is 
independent of the q u a s i m o m e n t u m and is only the 
function of the frequency. It is also found tha t in all the 
vertex pa r t s of d iagrams we can ignore the law of 
conservat ion of q u a s i m o m e n t u m , i.e. we can replace the 
relevant 3 function with uni ty [30]. 

In the limit d = oo we need to scale appropr ia te ly the 
pa rame te r s of the Hami l ton ian . The idea of us ing the limit 
d = oo in the SCES theory goes back to the statistical 
mechanics in the Ising model , in which it p roposed — in the 
case of many-d imens iona l space — to scale up the exchange 
pa ramete r / = J*/z (here /* = const and z is the number of 
nearest ne ighbours , which tends to the limit z —> oo, if 
d —> oo). It is only this scaling tha t ensures a finite exchange 
energy density. 

In the H u b b a r d Hami l ton i an (1.1) the quant i ty U is a 
local pa ramete r , which is independent of its envi ronment 
and, therefore, it should no t be scaled u p . However , the 
mat r ix element of an electron j u m p must be scaled up in the 
following way [16]: 

t = 
2Vd ' 

t = const (3.2) 

In the case of a ^-dimensional hypercubic lattice with 
the electron spectrum 

(3.3) 
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the density of states p0(co) ob ta ined in the limit d = oo is 
Gauss ian [16]: 

P o ( r a ) = v ^ e x p ( " ^ ) • ( 3 4 ) 

The mean-squa re value of the energy e^, averaged for this 
density, is t*2, i.e. it is finite in the limit d —> oo, which 
justifies the selection of scaling described by formula (3.2). 
It also agrees with the c i rcumstance tha t if U t, the 
effective exchange integral for the nearest ne ighbours obeys 
J ~ t2/U ~ 1/z, as expected for the exchange Hami l ton ian . 

Therefore, in the limit d = oo, all the Van H o v e 
singularities of the density of states disappear , which 
distinguishes this limit from the finite number of d imen­
sions d = 2 or 3. Ano the r difference is tha t the spectrum 
described by expression (3.4) is no t bounded , in contras t to 
the b a n d spectrum for a lattice of finite d imensions . These 
two circumstances are u n i m p o r t a n t from the theoret ical 
po in t of view. The mos t impor t an t characterist ic of the limit 
d = oo is the local na tu re of the self-energy. 

It follows from the scaling of the h o p p i n g paramete r , 
described by formula (3.2) tha t the dependence, on d, of the 
single-particle Green function for a lattice Gjj(z) is 
governed, in the limit d = oo, by the 'd is tance ' between 
the sites / and j : 

yfd. 

\H\ 
(3.5) 

where the coordina tes of the sites are expressed in te rms of 
the lattice pa ramete r . In par t icular , for the nearest 
ne ighbours we have Gy ~d~ll2. 

In accordance with the general concept of statistical 
mechanics , the limit d = oo cor responds to the mean field 
theory, which is no t trivial in the H u b b a r d model . W e shall 
n o w consider several versions of this theory. I ts formulat ion 
is closely related to the coherent po ten t ia l approx imat ion , 
which we shall n o w consider. This makes it possible to 
relate the H u b b a r d - 3 approx ima t ion to the limit d = oo. 

3.2 Coherent potential approximation for disordered 
systems 
In some approaches employed in the SCES theory 
(decoupling of the Green functions and functional 
in tegrat ion) , successful use has been m a d e of the 'alloy 
ana logy ' between the mot ion of an electron over the lattice 
sites, which are occupied by electrons with one or the other 
spin or ienta t ion, and the mo t ion of an electron in a 
disordered b inary alloy. In the latter case the Green 
function of an electron can be calculated in the coherent 
po ten t ia l approx ima t ion (CPA) . 

The central feature of this me thod is the assumpt ion 
tha t the self-energy of an electron can be regarded as 
d iagonal in the site representa t ion [32, 35], i.e. 

(3.6) 

This relat ionship applies specifically in the limit d = oo. It 
therefore becomes clear tha t the C P A is exact in the 
infinite-dimensional limit. Recogni t ion of this fact has 
m a d e it possible to develop the mean field approx imat ion 
for the H u b b a r d model , which is exact in the limit d = oo. 

W e can unde r s t and bet ter the mean ing of the limit 
d = oo in the theory of interact ing electrons if we consider 
first the cor responding limit for a system of nonin te rac t ing 

electrons moving on a lattice with a r a n d o m a tomic 
potent ia l : 

H = t^2c}cj + ^2vini (3.7) 

(the spin indices are omit ted, because Vt is independent of 
spin). 

W e shall denote the conf igurat ional averaging of 
r a n d o m quant i t ies by (. . . ) a v . The task is to calculate 
the quant i ty ( G ) a v , where G is the one-electron Green 
function cor responding to the Hami l ton i an (1.1). In the site 
represent-a t ion the Green function G obeys the equat ion 

G = G° + G°VG (3.8) 

W e shall in t roduce the self-energy I of an electron in an 
effective med ium described by the average Green function, 
using the relat ionship 

(G)m = (G0-1-I)-1 . (3.9) 

W e n o w have to find self-consistently the energy Z. 
If we combine expressions (3.8) and (3.9), we can 

represent G in the form 

G = ( G ) a v + ( G ) a v T ( G ) a v , 

where 

T = 
V - I 

l-(V-Z)(G)t 

(3.10) 

(3.11) 

is the T mat r ix . Expression (3.10) is no t self-contradictory 
if we assume tha t (T ) a v = 0. 

In the limit d = oo, the self-energy pa r t Itj is d iagonal in 
the site representa t ion and it is independent of k in the 
m o m e n t u m representa t ion . Therefore, it follows from 
relat ionship (3.9) tha t 

(G(co))m=GUco-Z) , (3.12) 

where 

N ^ c o - s k 

de Po(fi) (3.13) 

is the single-site Green function of an ideal lattice and p 0 ( 8 ) 
is the density of electron states in this lattice. 

W e shall n o w write down the final equat ion for the 
effective self-energy par t : 

Vt - Z(o>) 
0 . (3.14) 

This is the main equat ion in the C P A approach . It is exact 
in the limit d = oo. 

The free energy F can be wri t ten as a sum of three 
cont r ibut ions : the free energy F m e d of an effective h o m o ­
geneous med ium, from which it is necessary to subtract the 
self-energy Ft at a site /, and to replace it with the energy 
characterised by the to ta l potent ia l Vt at a site /, which is 
averaged over the configurat ions. The sum is thus 

F — Fmed - Ft + {F( ) a v , 

where 

med -T-£[G\k,icok)-Z]-

(3.15) 

(3.16) 
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F, = -T Tr l ^ G , . ) - 1 , (3.17) 

F( = -T Tr In [ ( G , ) " 1 - Vt - Z] . (3.18) 

In t roduc t ion of a local effective p ropaga to r , 

g-1 = (gu);J+z, (3.19) 

makes it possible to represent the free energy in the form 

F = -T Tr | | d e p 0 ( e ) ln(iG)* + /x - I - s) 

l n ^ - ^ + ^ n ^ - y ^ L J • (3-20) 

Min imisa t ion of the functional (3.20) by means of the 
condi t ion bF/bQ~l = 0 yields the equat ion 

1 
g-z \s-Vi 

I 
(3.21) 

which together with Eqn (3.19) determines the value of Z. 
E q n (3.21) is identical with the equat ion (3.14) identified 
earlier. E q n s (3.19) and (3.21) have to be solved by 
i terat ion. E q n (3.21) is used to find Z for a given value 
of Q. Then Eqn (3.19) is applied to obta in a new value of 
g~l. This value is then subst i tuted in E q n (3.21) and so on, 
unt i l self-consistent solut ions are obta ined. E q n s (3.19) and 
(3.21) are equa t ions of the mean field theory for the 
Hami l ton i an (3.7). They are exact in the limit d = oo. 

The cor responding equa t ions for the H u b b a r d mode l 
can be obta ined by the same scheme. Comple te analogy 
between the mode l represented by Eqn (3.7) and the 
H u b b a r d mode l requires a somewhat different (and fairly 
formal) representa t ion of the cont r ibut ion F[ to the free 
energy [33]: 

F! = -T I n Z ' (3.22) 

Here , Z / is the par t i t ion function, defined with the aid of 
the act ion s!: 

S/ = Tr ̂ <Gfi>-V„ - Tr ^ ( V , - - Z)*n , 

(3.23) 

(3.24) 

where xjj and are the G r a s s m a n n variables. 
Expression (3.24) has the form of a Lagrang ian . Since 

this expression is bilinear in \j/ and the functional 
integral (3.23) is readily calculated and the result is 
expression (3.18) for F[. A simple general isat ion of expres­
sions (3.23) and (3.24) gives the free energy for the mode l of 
interact ing electrons. 

3.3 Reduction of the Hubbard model in the limit d = oo 
to the one-impurity Anderson model 
The single-site act ion for the Hami l ton i an (1.1) should be 
wri t ten in the form [33] 

-U f d T ^ ( T ) ^ t ( T ) ^ ( T ) ^ ( T ) , (3.25) 
Jo 

where = 1/kT and k is the Bo l t zmann cons tant . 

The par t i t ion function Z / can be calculated with the aid 
of the H u b b a r d - St ra tonovich formula 

exp a = dx exp ( — T l x 2 — 2y/%ax) , (3.26) 

which t ransforms an exponent ia l function with a quadra t i c 
opera tor to an exponent ia l function with a linear opera tor . 

The identi ty 

nnnu = \ + naf ~ - naf] 
can be used to t ransform the exponent ia l function in the 
expression for Z / into a functional integral in te rms of 
classical fields £ ( t ) and rf(r), which describe f luctuat ions of 
the charge and spin densities, respectively: 

x [ i ^ T ) ( ^ ( T ) + ^ ( T ) ) + y / ( T ) ( ^ ( T ) - ^ ( T ) ) ] 1.(3.27) 

Expans ion of the fields £ ( t ) and rj(j) as a Four ie r series 
in te rms of discrete frequencies cok gives the final expression 
for Z / as a functional integral in te rms of the fields and 

Z / = I 81/8f exp ft O] > 
1 oo 

5 / = - o X)(̂  + ^ ) + T r l n 

(3.28) 

(3.29) 

H e r e £ and rj are infinite-series matr ices with the elements 
Ln = €m-n> Vmn = *lm-n> a n d Sa1 i s t h e following d iagonal 
matr ix : 

The to ta l free energy has three cont r ibut ions , as in 
Ref. [59]: 

F = -T TY< d e p 0 ( e ) ln (icon + \i - Za - e) 

- l n ^ - ^ j J - r i n Z / , (3.30) 

where the effective local p r o p a g a t o r is 

S a l = 4r[°>-^(o)] + • (3.31) 

Differentiat ion of E q n (3.31) with respect to g~l gives 
the following equat ion for the self-energy par t Za\ 

1 1 

g-\iton)-za(iton) \[g-1- y/u/2p(<rii + iZ)l nn/ 

(3.32) 

Here , the symbol ( . . . ) represents averaging (functional 
in tegrat ion) over the variables rj and 

1 
(...) ̂  z; J 

8i/8f...exp(5/[i/, fl) 

file:///s-Vi
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E q n s (3.31) and (3.32) are self-consistent equa t ions for 
de terminat ion of the quant i t ies Za and Q~l. They can be 
solved by i terat ion. A given value of Q~l is used in 
E q n (3.32) to find Za. Then , the new value of Z is used 
in E q n (3.31) to calculate Q~l, and the process is repeated. 

E q n s (3.31) and (3.32) have similar s t ructures to 
E q n s (3.19) and (3.21) used in the mode l described by 
E q n (3.7). In bo th models , averaging over Z is carried out 
on the r igh t -hand sides of the equat ions : in one case the 
averaging is over configurat ions of the local fields Vt with a 
certain given dis t r ibut ion function, and in the other case the 
averaging is over an infinite set of f luctuation fields rjv and 
£ v , which are characterised by discrete frequencies cov. 

There is however an impor t an t difference between the 
two models : for a system of nonin te rac t ing electrons in a 
disordered med ium all the functions Q~l(co) and Z(co) have 
the same frequency. In E q n (3.32) for a system of inter­
acting electrons the frequencies are intermingled. Therefore, 
the dynamics of the H u b b a r d mode l in the limit d = oo is 
nontr iv ia l even in the static case when rjv = £ v = 0 for v ^ 0. 

E q n s (3.31) and (3.32) represent the t ruly t h e r m o d y -
namical ly self-consistent mean field theory for the H u b b a r d 
model . It is exact in the zeroth approx ima t ion in te rms of 
the pa ramete r 1/z. The theory is valid for an arb i t ra ry 
pa ramete r U and an arb i t ra ry electron density n. It differs 
funda-mental ly from other self-consistent approaches , for 
example those of the H a r t r e e - F o c k type which are always 
of limited validity in the space of the pa rame te r s of the 
system. 

Two quant i t ies in this theory, Za and Qa, represent a 
h o m o g e n e o u s effective med ium. The mean field exerted on 
an electron by other electrons is represented by Za, whereas 
Qa determines the exact local p ropaga to r : 

(3.33) 

W e can see tha t in the limit d = oo we face the p rob lem 
of the interact ion of electrons at one site immersed in a 
system of effectively nonin te rac t ing electrons. The solution 
of this p rob lem requires calculat ion of the th i rd-order 
cont r ibut ion to the free energy described by expres­
sion (3.30). I ts calculat ion, i.e. effective averaging of the 
r igh t -hand side of Eqn (3.32), presents the greatest diffi­
culty in this theory. It is because of this cont r ibu t ion tha t 
the H u b b a r d mode l cannot be solved analytically in the 
limit d = oo. 

Only the exact equa t ions (3.31) and (3.32) are obta ined 
in the limit d = oo and the p rob lem is thus reduced to tha t 
of numer ica l calculat ions. However , in pract ice it is m o r e 
convenient to proceed differently. It is possible to reduce 
the p rob lem of a lattice with local in teract ions ( H u b b a r d 
model ) to the p rob lem of a single impur i ty immersed in a 
specially selected system of nonin te rac t ing electrons in the 
same lattice. This app roach h a d been suggested s imulta­
neously in Refs [ 3 4 - 3 6 ] . 

Let us go back to Eqn (3.25) for the single-site act ion. 
The quant i ty Q0 is no t yet determined. In the t r ea tment 
discussed earlier it has been found by minimisat ion of the 
free energy. However , here we shall proceed differently. W e 
shall consider E q n (3.25) as represent ing the act ion in the 
case of a single-impurity p rob lem in a certain mode l 
(Anderson mode l [4] or Wolff mode l [37]). This act ion 
can be used to calculate the electron Green function for an 
auxiliary single-impurity p rob lem G i m p ( k o n , Q~l) and its 

self-energy pa r t Z i m p ( k o n , Q~ ) with a given ba re Green 
function Q. 

If we identify G i m p and Z-imv^a with, respectively, the local 
Green function Git and the self-energy Z in the H u b b a r d 
model , we can write down an equat ion for self-consistent 
de te rminat ion of the quan t i ty Q: 

1 

g-[ -Z 
de Po(fi) 

icon + \x - Z • 
(3.34) 

The new refined value of Q can be used to solve again the 
auxiliary single-impurity p rob lem, i.e. it can be used to find 
G and Z, and then E q n (3.4) gives the new value of Q. This 
i terat ion p rocedure has to be repeated unt i l a stable (self-
consistent) result is obta ined. 

It is possible to adop t also a different app roach which 
can be used to s tudy the qual i ta t ive na tu re of the solution of 
the equa t ions in the H u b b a r d mode l when d = oo. This can 
be done with the aid of the ba re Green function in single-
impur i ty models . In the Ande r son model , we have 

g-l(co) = co-ed + V2^ de 
co — e 

(3.35) 

where 

V2A(s)=n^2vk

2d(s-

sd is the energy of a level d of an impur i ty a tom, and Vk is 
the s-d hybr idisa t ion pa ramete r . In the Wolff model , we 
find tha t 

-'<->-J de 
21(e) 

(3.36) 

It follows tha t in the limit d = oo the H u b b a r d mode l 
reduces to one of the models for an impur i ty a tom in a 
lattice. The ba re Green function Qa for the single-impurity 
p rob lem takes account of all the effective interact ions of an 
electron at an impur i ty site with the rest of the crystal lattice. 

The single-impurity Ander son mode l cannot be solved 
exactly, bu t one can use the results of its r enormal i sa t ion-
group analysis [38]. Depend ing on the rat io of the main 
pa rame te r s Ed and A (Ed is the renormal ised energy of the d 
level and A is the width of this level), three types of F e r m i -
liquid behaviour m a y be expected in the Ande r son model . 
They cor respond to three types of Fermi- l iquid behaviour 
in the H u b b a r d model , described below. 

(1) If Ed/A <̂  — 1, then near the half-filled configura­
t ion the density of states p(to) ob ta ined in the Ander son 
mode l has a three-peak s tructure: a n a r r o w quasistat ic peak 
( S u h l - A b r i k o s o v resonance) of width Tk ( K o n d o t empera ­
ture) and two satellite peaks . In the H u b b a r d mode l they 
cor respond to the second H u b b a r d subband for part icles 
(upper satellite) and holes (lower satellite). This is the case 
of localised magnet ic mo men t s . The spin dynamics involves 
f luctuat ions between the states | j ) and | j ) at a site. 

(2) If \Ed/A \ < 1, we are dealing with the mixed-valence 
case, when t rans i t ions between the following three states are 
impor tan t : |0), | j ) and The density of states p(co) has 
two peaks : a b roadened quasipart icle peak and a satellite; in 
the H u b b a r d mode l this cor responds to two fairly wide 
H u b b a r d subbands . 

(3) Finally, when EdjA > 1, the density of states p(a>) 
has one b roadened peak. It should cor respond to an unspli t 
subband in the H u b b a r d model . 
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3.4 Properties of the Hubbard model in the limit d — oo 
Numer i ca l calculat ions based on the a lgor i thm described 
by E q n (3.4), which includes calculat ions based on an 
auxiliary single-impurity p rob lem, confirm the above -
described quali tat ive pa t t e rn of the s t ructure of the 
spectrum in the H u b b a r d mode l considered in the mean 
field approx ima t ion [ 2 4 - 4 1 , 43, 44]. Figs 4 and 5 i l lustrate 
the three types of the F e r m i liquid behaviour , which 
appears in the H u b b a r d mode l for a half-filled b a n d when 
U is increased. 

The results presented in Fig. 4 represent the solution of 
the single-impurity Ander son mode l p rob lem by the q u a n -

U = 0 

Figure 4. Spectral density of the local Green function Gu(co) in the 
Hubbard model, obtained in the mean field approximation for various 
values of U when n = 1 [34]. 

U= 1 

•2.7 

;*3 

».4 

4 

co 

Figure 5. Same as in Fig. 4 [42]. 

turn M o n t e Car lo me thod , which is exact bu t cannot be 
used at low tempera tu res [34]. The results in Fig. 5 were 
obta ined for T = 0 by combina t ion of the q u a n t u m 
M o n t e Car lo me thod and several series found by p e r t u r b a ­
t ion theory in te rms of the pa ramete r U [42]. In contras t to 
Ref. [34], the solution given in Ref. [42] has a gap 
cor responding to the m e t a l - i n s u l a t o r t rans i t ion and it 
also predicts an in termedia te case between the meta l and 
insulator states. 

The ampl i tude of the n a r r o w central peak varies as U 
rises to its critical value Uc, when a gap appears in the 
spectrum and the central peak d isappears abrupt ly . There ­
fore, if d = oo and T = 0, the H u b b a r d mode l predicts a 
g radua l m e t a l - i n s u l a t o r t ransi t ion. The numer ica l results 
of Refs [34, 42] had been supplemented by a simple analyt ic 
calculat ion [41], which helps to unde r s t and the physics of 
the p h e n o m e n a . The three peak s t ructure of the local 
density of states can be approx imated by a ba re Green 
function of the type 

WA 
co co + iA sgn co 

(3.37) 

Then , as A —> 0, we find tha t A —> 01m£(co) does indeed 
describe a 5-like peak of width A at the poin t co = 0 and 
two satellite peaks at po in t s co = =bco0, where 
col — WA — A2/2. In this way the ba re Green function Q 
is renormal ised by the quan t i ty A, which should be found 
from the self-consistency equat ion (3.34) by an i terat ion 
process . 

If the self-energy Z i m p ( c o ) is calculated first, the i terat ion 
process can be represented by 

An+\ 

The above system of nonl inear equa t ions has two fixed 
poin ts : 

2 -

A* • 2W 

. 0 , 

1 - ^ u<uc 

u > u c . 

(3.38) 

The regions of stability are separated by the critical 
value Uc = 3W. The zero fixed poin t cor responds to an 
insulator and the nonzero poin t represents a metal . Since it 
follows from the definition of the Green function (3.37) tha t 
for co < A, we have 

W 
RQZ(CO) w — co , 

A 

it follows tha t for the meta l phase the Migda l pa ramete r in 
the vicinity of the phase t ransi t ion is 

Z « 1 - (0 . (3.39) 

It follows tha t as the phase t ransi t ion is approached 
from the \ow-U side, the system remains a F e r m i liquid and 
it gradual ly t ransforms into an insulator . These heurist ic 
results are confirmed by numer ica l solut ions of the exact 
equa t ions in the H u b b a r d mode l for d = oo [42] (Fig. 6). 

In the limit d = oo the magnet ic proper t ies of the 
H u b b a r d mode l for the half-filled case exhibit charac ter ­
istics of a localised ant i fer romagnet , which is to be expected. 
A numer ica l calculat ion of the static magnet ic susceptibility 
for the wave vector q = Q at different t empera tu res reveals 
a divergence when a certain poin t T N is 
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Figure 6. Band rilling nc as a function of e near the Fermi energy, 
calculated for various values of U when n = 1 [42]. 
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Figure 7. Local magnetic moment and the Neel temperature, plotted 
as a function of the parameter U for n = 1 [44]. 

app roached [35, 44]. 
susceptibility is 

x ( e ) c x ( r - r N ) " 

F o r £/ = 1.5, the static magnet ic 

(3.40) 

where T N = 0.0866 ± 0.0003, and v = 0.99 ± 0.05. There ­
fore, the Cur ie law is satisfied here, as in the case of the 
isotropic Heisenberg mode l with an infinite number of 
nearest ne ighbours . 

The behaviour of the Neel t empera tu re T N is p lot ted as 
a function of the pa ramete r U in Fig. 7. At low values of U 
the Neel t empera tu re T N is exponential ly small, which 
agrees with the pe r tu rba t ion theory results [45]. At very 
high values of U the Neel t empera tu re obeys T N oc l/U, 
which is in agreement with the wel l -known results [45]. 
Fig. 7 includes also the results of a numer ica l calculat ion of 
the case when d = 3, which show tha t the limit of infinite 
d imensions of space d = oo is very close to the real 
d imensions . 

Fig . 7 gives also the dependence on U of the rms 
localised m o m e n t 

« m 2 ) ) 1 / 2 = « ( « T -n.f))1'2 = (1 - 2 ( « r n i } ) 1 / 2 . (3.41) 

W h e n the pa ramete r U is varied from 0 to infinity, the 
localised m o m e n t ( ( m 2 ) ) 1 ^ 2 varies from 0.5 to 1. The 
behav iour of ( ( m 2 ) ) 1 ' 2 is correlated with the dependence of 
T N on U: the Neel t empera tu re passes t h rough a m a x i m u m 
exactly where the localised m o m e n t begins to sa tura te . 

The Neel t empera tu re T N begins to fall steeply away 
from the half-filled case. The critical values of the p a r a ­
meter U cor responding to the appearance of a divergence in 
the ant i ferromagnet ic susceptibility are p lo t ted in Fig. 8. 
However , in the case of the ferromagnet ic susceptibility no 
divergence has been found for any of the pa rame te r s used in 
the calculat ions. 

The change in the spectral or density of states p(co) as a 
result of deviat ion from the half -band filling is p lot ted in 
Fig. 9 for U = 4, which cor responds to the insulator state 
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Figure 8. Critical values of U at which a divergence appears in the 
magnetic susceptibility, plotted as a function of the electron density n 
(/? = 16) in units of the band width [44]. 

when n = 1. The insulator gap in the spectrum disappears 
away from n = 1 and it is replaced by a central peak of 
ampl i tude which increases at the expense of the ampl i tudes 
of the satellites. The same peak arises as a result of cooling 
(Fig. 10). In this range of t empera tu res the ampl i tude of the 
peak is a function of ln T. 

On the other hand , the large satellite peaks cor respond­
ing to t rans i t ions accompanied by a reduct ion in the charge 
( t ransi t ions to a site and from a site) change little with 
t empera tu re . The quasipart ic le peak associated with the 
scattering of an electron on the F e r m i surface by spin 
f luctuat ions increases considerably in ampl i tude as a result 
of cooling, exactly as in the K o n d o effect. A Kondo- l ike 
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p(co) 

—4 —2 0 2 4 6 Figure 11. Phase diagram in the (T, U) plane, obtained in the 
Hubbard model for d = oo, n = 1 [43]. 

co 

Figure 9. Evolution of the density of states as a result of deviation 
from the half-filled band case, plotted for ft = 7.2 and U = 4. The inset 
is the dependence of the chemical potential on the electron density. 
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Figure 10. Evolution of a resonance peak on the Fermi surface 
plotted as a function of temperature for U = 4 and w = 0.94 [44]. 

resonance on the F e r m i surface of such a system should give 
rise to significant anomal ies of t h e r m o d y n a m i c and t r a n s ­
por t proper t ies , such as the specific heat , electric resistance, 
optical conductivi ty, etc. [43]. 

In this section we have thus demons t ra ted tha t in the 
limit of infinite dimensional i ty of space the H u b b a r d mode l 
is equivalent to the single-impurity Ande r son mode l with 
specially selected characterist ics. The behaviour of the 
H u b b a r d mode l is governed by the physical proper t ies 
of the single-impurity Ande r son model , which have been 
investigated quite thoroughly . 

W e have found tha t in the limit d = oo the H u b b a r d 
mode l predicts the m e t a l - i n s u l a t o r phase t ransi t ion near 
the half-filling of the relevant b a n d . If U is sufficiently large, 
ant i ferromagnet ic order ing with localised magnet ic 
m o m e n t s appears in the insulator phase . The meta l phase 

exhibits Fermi- l iquid behaviour of heavy electrons, the 
mass of which increases on app roach to the b o u n d a r y of 
the insulator phase . 

The expected phase d iagram for the half-filled case is 
presented in Fig. 11 where the roughly est imated region of 
the t rans i t ion from the meta l (M) to the insulator (I) phase 
is shown shaded. This region represents evidently a semi-
metallic state with the rmodynamica l ly excited carriers. 

Devia t ion from the high-filled case results in rapid 
replacement of the insulator by the meta l phase with 
enhanced Fermi- l iquid pa ramete r s . In par t icular , low-
tempera tu re n a r r o w resonances appear on the F e r m i 
surface and they cor respond to the K o n d o screening of 
localised magnet ic mo men t s . The ant i ferromagnet ic o rder ­
ing is suppressed on deviat ion from n = 1. If n ^ 0.8, such a 
system behaves as an o rd inary F e r m i liquid. 

It should be stressed tha t in the limit d = oo we can 
derive the exact equat ion for the H u b b a r d model , a l though 
in the derivat ion of the solution it is necessary to solve 
numerical ly the auxiliary p rob lem of the single-impurity 
Ande r son model . If this is done , then the result is the exact 
mean field theory for the H u b b a r d model . It follows that , at 
least in principle, we k n o w the exact solut ions of the mode l 
in two limiting cases: d = 1 [46, 47] and d = oo. 

This gives rise to a na tu ra l quest ion: h o w close is the 
behav iour of the mode l for d = 3 to the case when d = oo? 
There is as yet no complete answer to this quest ion, bu t the 
experience accumula ted in studies of strongly correlated 
systems in the limit d = oo allows us to conclude tha t even 
the three dimensions of real space (d = 3) can be regarded 
as a very high number of such dimensions . Some c o m p a r ­
isons of the results of calculat ions for d = oo and d = 3 
confirm this (see, for example, Fig. 7). 

3.5 Breakdown of the Fermi-liquid behaviour of the 
model 
The q u a n t u m M o n t e Car lo me thod has been used above in 
presenta t ion of the exact, in the limit d = oo, theory needed 
in the solution of the effective single-impurity p rob lem. 
Since in numer ica l calculat ions one deals with discrete 
M a t s u b a r a frequencies con = 2%nT, this q u a n t u m m e t h o d 
has a limit on the low- tempera ture side. The need to carry 
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out numer ica l calculat ions of cont inua t ion from the 
imaginary to the real axis increases the calculat ion 
difficulties. Therefore, it is necessary to look for new 
approx ima te calculat ion schemes. 

The E d w a r d s - H e r t z approx imat ion ( E H A ) [48] has 
proved very effective. These au tho r s developed an inter­
po la t ion scheme exact in the two limits: in the a tomic limit 
(t —> 0) and in the limit of free electrons (U —> 0). E d w a r d s 
and Her t z used this approx ima t ion to reveal b r e a k d o w n of 
the Fermi- l iquid behaviour of the electron states at inter­
media te values of U. 

Recently, Wermbte r and Czycholl [49] pu t forward an 
improved version of the E H A m e t h o d and carried out 
detailed calculat ions of p(co), ImZ(co) , ReZ(co) for a wide 
range of the pa rame te r s U, n and T. As a result of their 
investigation the physical p ic ture of the t rans i t ion of such a 
system, due to var ia t ion of U or n, from the Fermi- l iquid 
behav iour to the insulator phase across a region of n o n -
Fermi- l iquid states has become much clearer. W e shall n o w 
give the main results of Refs [48, 49]. 

W e shall consider again the limit d = oo. The single-site 
Green function of the system Giia(co), which for brevity will 
be denoted by Ga(co), can be expressed in te rms of the 
density of states p0(co) of nonin te rac t ing electrons by means 
of the relat ionship 

Ga(co) = de Po(e) (3-42) 
co — Za{co) — s ' 

Fol lowing Ref. [49], we shall represent the self-energy 
pa r t in the form 

\-[U-Za{coj\Ga{co) 

depoa(8)/(e) • 

(3.43) 

(3.44) 

Here , pa(co) = — (1 /tt) Im Ga(co) is the density of states 
deduced tak ing into account the interact ion of electrons 
and the quant i ty Ga(co) should be defined addit ional ly. W e 
no te tha t if Ga(co) is replaced with Ga(co), expression (3.43) 
reduces to the equat ion obta ined in the C P A app rox ima­
t ion, cor responding to the 'alloy ana logy ' in the H u b b a r d 
mode l ( H u b b a r d - 3 approx imat ion) . 

Fo l lowing the ideas of E d w a r d s and Her t z [48], it is 
necessary to select Ga(co) so tha t expression (3.43) reduces 
in the a tomic limit to the expression obta ined by the C P A 
me thod and in the limit C/ —> 0 it becomes the wel l -known 
expression for the self-energy obta ined from s tandard 
pe r tu rba t ion theory. 

It is easily shown tha t bo th limits are satisfied if Ga(co) is 
selected in the form 

Ga{co) de- Po(fi) 
•Za{co)+Ea-B 

(3.45) 

P o M = TT x f da>2 da>3 

n_a{\ - n_a) J 
x p° , ( g > i - E_a) pQ_a{oo2 - E_a) pl(co3 - Ea) 

X {/K)[l -fM] +f(cD3)[f(cD2) -/(CO,)]} 

x 8(co + coi — co2 — 003) • (3.46) 

Here , the shift Ea, leading to an effective a tomic level for 

the o electrons, can be calculated in a self-consistent 
manne r from the condi t ion 

dco pa(co) f(co) = &<op0

a(<o-Eo)f(<o) . (3.47) 

Since in the a tomic limit the density of states pa(co) 
becomes the 8 function, formula (3.46) reduces to 
pa(co) = p0((D — Ea) and we then obta in from expres­
sion (3.45) the following: 

Ga{(o) = G°[co- Za(co)] =Ga{(D) , 

which gives the C P A result ( H u b b a r d - 3 approx imat ion) . 
On the other hand , if expression (3.43) is expanded in 

powers of the pa ramete r U, the result is 

Za(a>) = Un_a + U2n_a{\ - n_a) Ga(co) , (3.48) 

which — subject to the definitions (3.45) and (3.46) — 
reduces to the pe r tu rba t ion theory result. E q n s ( 3 . 4 2 ) -
(3.47) should be solved by in terpola t ion with the aid of a 
Gauss ian ba r e density of states p0(co). 

The results of numer ica l calculat ions carried out on the 
basis of the E H A me thod are presented in Figs 1 2 - 1 4 . The 
first two figures give the H u b b a r d mode l results for the 
half-filled case. Fig. 12 shows h o w the density of states 
evolves for different values of the pa rame te r U. At low 
values of U, par t icular ly for U = 0.5, the function p(to) 
differs little from a Gauss ian curve centred at co = 0. As U 
increases, the peak p(co) becomes deformed and shifts to the 
right, bu t in such a way tha t its ampl i tude [representing the 
density of states p(p) at the F e r m i level fi = U/2] r emains 
constant r ight up to U = 2. 

The ampl i tude of the peak decreases in the range U > 2. 
A further increase in U results in the replacement of the 
peak with a dip and a bell-shape region, cor responding to 
the upper H u b b a r d subband , forming gradual ly to the right 
of the dip. The lower and upper H u b b a r d subbands move 
apar t for U > 4. Therefore, var ia t ion of U induces the 
F e r m i t rans i t ion from the meta l to the insulator state. 

The inset in Fig. 12 gives the density of states p(p) at 
the F e r m i level as a function of U. In the range 2 < U < 4 
the system remains a metal , bu t its proper t ies are very 
different from those of a F e r m i liquid. 

Figure 12. Density of states plotted, plotted as a function of co for 
different values of U when n = 1, T = 0 [53]. The inset shows how the 
density of states on the Fermi surface depends on U. 
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Figure 13. Imaginary part of the self-energy lmI(co), plotted for 
different values of U when n = 1 and T = 0 [53]. 

Calcula t ions show tha t if U > 2, the imaginary pa r t of 
the self-energy Im I (co) remains finite at the F e r m i level, 
increases with increase in U, diverges as [ / « 4 , and then 
vanishes (Fig. 13). Since in the Fermi- l iquid case we can 
expect Im Z(co) oc (co — fi)2 near the F e r m i level, such 
behaviour implies b r e a k d o w n of the Fermi- l iquid picture. 
A calculat ion of the real pa r t of the self-energy ReZ(co) 
shows tha t for U w 4 the quasipart icle mass m* jm diverges 
and an insulator gap appears at the F e r m i level. 

It follows tha t the E H A me thod predicts a con t inuous 
evolut ion from the meta l phase to the insulator via an 
in termedia te region of a non-Fermi- l iquid metall ic state. A 
compar i son of the E H A results with the 'exact ' calculat ions 
based on the q u a n t u m M o n t e Car lo me thod in the limit 
d = oo shows tha t the E d w a r d s - H e r t z approx ima te 
app roach ensures a semiquant i ta t ive agreement in a wide 
range of pa rame te r s and tempera tures . 

Very interest ing results are obta ined by the E H A 
me thod limit when n < 1 (Fig. 14). Devia t ion from the 
half-filled case rapidly deforms the density of states p(co) 
from its initial Gauss ian profile to a double-peak shape, 
cor responding to two H u b b a r d subbands . W h e n n is 
reduced, the density of states at the F e r m i level reaches 

Figure 14. Density of states plotted for different values of w when 
U = 3 and T = 0 [53]. 

U/2W 

Figure 15. Phase diagram in the (U, n) plane obtained in the Hubbard 
model when T = 0 K [48]. 

values expected for an uncorre la ted system and we again 
have Fermi- l iquid behaviour . At high values of U this 
occurs at lower electron densities. 

It therefore follows tha t at T = 0 we obta in a phase 
d iagram shown in the (U, n) p lane in Fig. 15. The 
con t inuous curve, calculated in the mode l of a semielliptic 
density of states [48], determines the region of Fermi- l iquid 
behav iour of the system. The dashed curve in this figure 
represents the schematic b o u n d a r y of the ant i fer romagnet ic 
phase . 

Magne t i c order ing appears at n = 1 for all values of U. 
This implies complete nesting. In region I the ant i fer ro-
magnet i sm appears in the Fermi- l iquid phase . Region II 
cor responds to a disordered metall ic (but no t Fermi- l iquid) 
phase . In the rest of the phase d iagram the an t i fe r romagnet -
ism appears par t ly in the meta l and par t ly in the insulator . 

It is work no t ing the connect ion between two p h e n o m ­
ena: the appearance of localised magnet ic m o m e n t s and 
non-Fermi- l iquid behaviour . In the Fermi- l iquid region 
there are no localised magnet ic mo men t s . They appear 
when U ^ 2, g row rapidly with increase in U, and give rise 
first to a non-Fermi- l iquid metallic state and then (for 
U ^ 4 ) to an insulat ing state. 

A n a t t empt has recently been m a d e to justify the E H A 
in te rms of the s tandard d iagram technique [50]. The main 
task has been to derive a functional E[G], the existence of 
which would imply tha t this approx ima t ion is of the 
'conserving ' type [51, 52]. However , such a function has 
no t been found and the p rob lem of justification of the E H A 
me thod or of correct ing it requires a separate investigation. 
Some aspects of the theory considered in the limit d = oo 
and a compar i son with the pe r tu rba t ion theory results can 
be found in Refs [ 5 4 - 6 1 ] . 

4. Functional integration method 
4.1 Static limit and the coherent potential approximation 
The first successful theories of the magnet ic behav iour of 
the H u b b a r d mode l in a wide range of the pa rame te r s U 
and n have been based on the representa t ion of the 
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par t i t ion function Z by a functional integral and on the use 
of the static approx imat ion [62-65]. The me thod is related 
to tha t described in Ref. [66], which is based on the single-
impur i ty Ande r son mode l [4]. This representa t ion has been 
used in the preceding section for the single-site model . 

In general isat ion of E q n (3.28) to a complete lattice the 
par t i t ion function Z can be represented by a functional 
integral in te rms of rj and 

Z = Z 0 U o £ e x p { - l £ ( £ + f £ ) + T r l n ( l - G ° V ) } . 
v n=—oo ' 

(4.1) 

Here , in tegrat ion is carried out in te rms of the fields of rjin 

and £ i n , so tha t 

i 

H = dffco ]J d \ n , d2rjin = d ( R e rjin) d ( Im rjin) 

(and similarly for 8^ ) . 
The t race in the a rgument of the exponent ia l function 

in E q n (4.1) applies to all the states which are characterised 
by an index represent ing the site, frequency, and spin; the 
opera tor V is d iagonal ; here, 

(4.2) 

(r\t and ^ are matr ices of the frequency indices m and n) 
and Z 0 is the par t i t ion function for electrons in the absence 
of the interact ion. 

The p rob lem of calculat ion of the par t i t ion function Z 
can be reduced in fact to calculation of the single-electron 
Green function G = (1 — G°V)G° in an a rb i t ra ry f luctuat­
ing external field (which is locally inhomogeneous and 
depends on t ime) and to averaging of the Gauss ian 
dis t r ibut ion function over these fields. 

In the static approx imat ion , Eqn (4.1) is simplified by 
d ropp ing from the t race all the componen t s of the fields of 
rjin and £ i n , except rji0 and £ i 0 cor responding to zero 
frequency (we shall denote the last two simply by r\t and 

In the remain ing functional integral the integrat ion with 
respect to the charge fields ^ is carried out by the s ta t ionary 
phase m e t h o d on the assumpt ion tha t the frequencies of 
these fields are higher t han f luctuat ions of the spin field. As 
a result, we obta in the par t i t ion function in the form of a 
functional integral with respect to the field rjt: 

Zstat = Zo | [] Sffc exp I - ± n] + Tr ln (1 - G°V) J , 
(4.3) 

where V'ia = ^U/2fi a^. 
Appl ica t ion of the C P A to the quant i ty 1 — G°Vf makes 

it possible to represent the functional integral (4.3) as a 
p roduc t of simple integrals, each applicable to a single site: 

Here , 

v co,n a ) 

(4.4) 
is the dis t r ibut ion function of the fields rjt. 

In expression (4.4) the Green function Qa represents the 
effective med ium and in the C P A method it is found from 
expressions (3.19) and (3.21); P is the normal i sa t ion vector. 
The averages 

• J d i f P f a ) ^ , (t]2) = J d j / P f a ) , / 2 (4.5) 

• n . fyiP(rii) 

determine the spon taneous m o m e n t m and the localised 
m o m e n t at an a tom ( ( m 2 ) ) 1 ^ 2 . 

Therefore, in the static approx ima t ion the p rob lem 
reduces to calculat ion of the Green function Qa by the 
C P A me thod and subsequent calculat ion of the field 
dis t r ibut ion function P(rj). This p rob lem should be solved 
numerical ly. W e shall see later tha t the static approx imat ion 
links well the two limits: U 5> W and U <^ W, i.e. the theory 
is in the na tu re of in terpola t ion between the limit of 
localised magnet ic m o m e n t s and tha t of i t inerant magne t ­
ism. 

The static approx imat ion works well at high t empera ­
tures , bu t gives rise to difficulties at low tempera tures . F o r 
example, there are p rob lems with a n u m b e r of t h e r m o ­
dynamic proper t ies at T = 0, since [64] 

_ ) m _ o , ( c ^ - o . ( s ^ - o . 

However , the above relat ionships are obeyed if the C P A 
me thod is replaced by the R P A [67]. 

The static approx ima t ion does not include spin-wave 
excitat ions and it overest imates the difference between the 
energies of the ferromagnet ic and pa ramagne t i c states [64] 
because correla t ions are ignored. This shor tcoming can be 
avoided by including correla t ions with the aid of the 
Gutzwiller var ia t ional app roach [2, 19]. This leads to the 
theory given in Ref. [64] in which the free energy at T = 0 
gives rise to a correlated g round state and which in the limit 
T —> oo yields results identical with those obta ined in the 
static approx ima t ion . 

4.2 Numerical calculation for the half-filled band case 
Figs 16-18 give the results of calculat ions of the magnet ic 
proper t ies of the H u b b a r d mode l for a simple cubic lattice 
with the half-filled b a n d (n = 1). The calculat ions were 
carried out on the basis of the static approx ima t ion (dashed 
curves) and tak ing account of the dynamic correct ions in 
the var ia t ional me thod (cont inuous curves). Different 
symbols are used in these figures to represent the results 
of a numer ica l calculat ion carried out for small clusters in 
accordance with the q u a n t u m M o n t e Car lo me thod . The 
g round state of the system for n = 1 is a Nee l ant i fer ro-
magne t . 

The sublatt ice magnet i sa t ion and the rms magnet ic 
m o m e n t at a site are plot ted as a function of the pa ramete r 
U in Fig. 16. W e can see tha t an increase in U increases the 
magnet i sa t ion from 0 to 1 (in te rms of the Bohr magne tons ) 
and goes over smooth ly to a Heisenberg magnet ic mater ia l 
with the a tomic spin 5 = 1/2 in the limit U —> oo. The 
localised m o m e n t varies fastest in the range where U ~ W. 
The results obta ined by the two calculat ion m e t h o d s differ 
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Figure 16. Sublattice magnetisation (m) and the localised moment 
( ( m 2 ) ) 1 / 2 calculated in the Hubbard model for n = 1 and T = 0 [64]. 
The dashed curve represents the static approximation and the 
continuous curve includes the dynamic corrections [65]. The circles 
represent calculations carried out for small clusters [68]. 

only slightly and they are close to the results of calculat ions 
carried out for small clusters (represented by circles) [68]. In 
contras t to the magnet i sa t ion (m), the localised m o m e n t 
( ( m 2 ) ) 1 / 2 depends weakly on U. 

The next two figures give the t empera tu re dependences 
of the magnet ic proper t ies . The phase d iagram in the (T, U) 
plane is given in Fig. 17. A con t inuous or dashed curve 
separates the ant i ferromagnet ic phase (A) from two p a r a ­
magnet ic phases : meta l (PM) and insulator (PI). The curve 
separat ing the pa ramagne t i c and ant i ferromagnet ic phases 
is deduced from calculat ions of the Nee l t empera tu re for 
different values of2U/W and the curve separa t ing the meta l 
and insulator phases is found from vanishing of the gap in 
the electron spectrum. This curve has no t been calculated 
inside the ant i fer romagnet ic phase region. 

The dot ted curves separate the bounda r i e s of the 
ant i ferromagnet ic phase deduced by the H a r t r e e - F o c k 

2T/W 

1 2 3 4 5 
2U/W 

Figure 17. Phase diagram in the (T, U) plane, showing antiferro­
magnetic phase (A), the paramagnetic metal phase (PM), and the 
paramagnetic insulator phase (PI) [65]. The continuous and dashed 
curves have the same meaning as in Fig. 16; the dotted curves are 
explained in the text; the circles represent calculations for small 
clusters [69]. 

2T/W 

Figure 18. Temperature dependences of the reciprocal magnetic 
susceptibility of the antiferromagnetic phase, calculated for different 
values of 2U/W [65]. The continuous and dashed curves have the same 
meaning as in Fig. 16; points of different shapes are the results of 
calculations for small clusters [69]. 

( H F ) approx imat ion , for the case of low values U <^ W9 

and the molecular field ( M F ) approx ima t ion for the case of 
high values U P W. A con t inuous or dashed curve in 
Fig. 17 links these two limits. Therefore, the C P A theory 
is of the in terpola t ion type. The large discrepancy between 
the results of this theory and those obta ined by small-cluster 
calculat ions is a t t r ibuted to the size effects [65]. 

The t empera tu re dependence of the reciprocal magnet ic 
susceptibility is linear in a wide range of t empera tures . The 
C u r i e - W e i s s behaviour of the susceptibility is evidence of 
the existence of localised magnet ic momen t s , which depend 
weakly on t empera tu re . This is confirmed by a direct 
calculat ion ( ( m 2 ) ) 1 ^ 2 for different values of T. 

Fig. 18 gives the results calculated for different values of 
the pa ramete r 2U/W. In the limit of high U, these results 
agree with those obta ined in the molecular field a p p r o x ­
imat ion, and for low values of U, they agree with the 
H a r t r e e - F o c k approx imat ion . The magnet ic behaviour of 
the mode l for n = 1 is evidently relatively insensitive to the 
ba re density of states in the electron spectrum. F o r example, 
in the case of a semielliptic density of states the magnet ic 
phase d iagram remains the same as in Fig. 17 [70]. 

These results demons t ra t e tha t the simple theory relying 
on the static approx ima t ion and the C P A me thod is no t 
very sensitive to the electron correlat ions. However , this 
conclusion m a y have to be modified greatly away from the 
half-filled b a n d case, because the correla t ions can then be 
much m o r e impor tan t . 

5 . Variational methods 

5.1 Gutzwiller wave function 

The var ia t ional m e t h o d s are par t icular ly effective in 
statistical physics p rob lems , when regular pe r tu rba t ion 
theory cannot be used. A test wave function IJ/Q can be used 
to take account of the correlat ion effects in a purely 
intuitive manne r and the g round-s ta te energy can be found 
by varying the average energy 
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(5.1) 

over the free pa rame te r s tha t occur in \j/0. 
Gutzwiller had suggested [2] tha t , in the H u b b a r d 

model , IJ/Q should be selected in the form 

= I I [1 - (1 - «)^>J |0> = ^ | 0 > , (5.2) 

where |0) is the ' v acuum ' wave function; Dt = n^n^, 
D = Ylini\nil> i-e- D *s t n e e lectron-pair n u m b e r opera tor 
for the lattice sites; 0 < g < 1 is the var ia t ional pa ramete r . 
A system of nonin te rac t ing electrons cor responds to g = 1. 
The value g = 0 cor responds to U = oo when all the states 
with a pair at each site are ignored. 

It follows tha t the in termedia te values of the var ia t ional 
pa ramete r g cor respond to states with the finite number of 
pai rs in the system (which will be denoted by Nci). 
However , we can see from expression (5.2) tha t the 
probabi l i ty of finding such states decreases rapidly with 
increase in their number id is the average number of sites 
occupied by pairs) . 

The wave function (5.2) takes account globally of the 
reduct ion in the probabi l i ty of occurrence of states with a 
large number of pairs . It has been found (see, for example, 
Ref. [71]) tha t such a simple me thod of including the 
correlat ion effects gives results, par t icular ly in calculat ion 
of the g round-s ta te energy. 

The na tu re of the g round state determines selection of 
the ' v acuum ' wave function in expression (5.2). In the case 
of the pa ramagne t i c phase the function |0) is selected in the 
form of the 'Fermi-sea ' wave function: 

|0> = I l 4 > a c > . 
ka 

(5.3) 

Here , |vac) is the wave function of t rue vacuum. 
If the symmetry of the g round state is b roken , |0) is 

selected to be the wave function in the H a r t r e e - F o c k 
approx imat ion . F o r example, for the ant i ferromagnet ic 
state with the wave vector Q the ' v acuum ' wave function 
is 

Y[[ukala + ffvkak+Qa ] l v a c > > (5.4) 

where uk and vk are the wel l -known coefficients of the u-v 
t r ans format ion . 

W e shall consider the pa ramagne t i c g round state. The 
energy E0 is the function of the average number J of pairs . 
It is represented by a sum of two terms: the poten t ia l energy 
Ud, which increases with increase in J, and the kinetic 
energy which decreases with increase in d. There is a certain 
op t imal value of d, found by differentiation of the average 
energy (5.1) with respect to the pa rame te r d. The var ia t ional 
pa ramete r g is then related to d by [71] 

2 d(\ — ftj — ftj + d) 

(n t -d)(n[-d) 
(5.5) 

In the pa ramagne t i c phase the average n u m b e r of electrons 
per site is =n^= n/2. 

The values of and (or of the magnet i sa t ion 
m = — ?Zj) should be found for the ferromagnet ic phase 
by var ia t ion of the energy (5.1), together with the quant i ty d. 
The energy of the ant i fer romagnet ic g round state (5.4) 
should be varied in te rms of the sublatt ice magnet i sa t ion 
m and the gap A in the electron spectrum, which occurs in the 

coefficients of the u-v t r ans format ion . In this case the 
quant i t ies g and J are l inked by a relat ionship of the (5.5) 
type [72]. 

5.2 Gutzwiller approximation 
Gutzwiller calculated the g round-s ta te energy [19] with the 
aid of the wave function (5.1). The n u m b e r of the spin 
configurat ions was found by a classical combina tor ia l 
me thod . This heurist ic app roach had no justif ication unt i l 
it was shown tha t the Gutzwiller approx imat ion cor re ­
sponds exactly to calculat ion of the energy with the wave 
function (5.1) in the limit d=oo [72, 76]. W e can thus see 
tha t one again the limit d = oo is impor t an t in de te rmina­
t ion of the relat ionship between the var ious approaches 
used in the SCES theory. 

The results of calculat ions of the g round-s ta te energy in 
the limit d = oo [ 7 2 - 7 6 ] will n o w be discussed briefly. The 
quant i ty (xjj^Hxjjwas calculated by a d iagram technique in 
te rms of the pa ramete r 1 — g2. This has proved to be the 
s t andard technique for the Green functions, bu t wi thout 
account for the dynamics . 

The pe r tu rba t ion- theory series can be expressed in te rms 
of the ze ro th -approx imat ion functions: 

4 , (5.6) 

In the case of high d imensions d of space the behaviour of 
the series (as functions of the distance between the sites) is 
determined by an asymptot ic expression of the type (3.5). It 
then follows tha t in the limit d = oo the irreducible self-
energy par t is local, i.e. 

^ija — °ij^iia (5.7) 

The sum of all the irreducible d iagrams obta ined in the 
limit d = oo can be expressed in te rms of the exact 
correlat ion function PHfT: 

^ iirr ' 
1 

2P 
l - 0 + 4 ( l - g 2 ) P , „ P , . _ ( 7 

T h e matr ices Pa and Pa are then related by 

P. . 
1 

. p0 _ i _ p0c p0 

(5.8) 

(5.9) 

(5.10) 

In the case of a t ransla t ional ly invar iant system the 
quant i ty S*ia = S* is found from Eqns (5 .8 ) - (5 .10) and it 
can be expressed in te rms of the average n u m b e r (per site) 
na of electrons with the spin cr: 

Ea-^E2

a-A{\-g2){\-na)na 

2 ( 1 - # 0 

where 

Ea=\-{\-g2)(na-n_a) . 

Calculat ion of the average energy (5.1) gives 

(5.11) 

N 

Here , 

St 

0+J i -s: 

(5.12) 

(5.13) 
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d = 
2 S* 

l - g 2 1 
(5.14) 

where s0(T is the kinetic energy (per one lattice site) of 
nonin te rac t ing electrons. 

Expression (5.12), together with formulas (5.13) and 
(5.14), gives the energy of the investigated system as a 
function of the pa rame te r s np and g. Min imisa t ion in 
te rms of these pa rame te r s can give the g round-s ta te energy 
E0. 

In the Four ie r space the quant i ty P® represents the 
number rpka of part icles with the m o m e n t u m k. Therefore, it 
follows from E q n (5.10) tha t in the g round state the 
quant i ty Sa is a d iscont inuous function of the m o m e n t u m : 

k < kF(T, 
•s* (5.15) 

k > k¥(T. 

Consequent ly , the dis t r ibut ion function of the part icle 
m o m e n t a has a j u m p of the quant i ty qa at k = &F ( T , which is 
given by formula (5.13). Therefore, in the limit d = oo, the 
H u b b a r d mode l energy is expressed in te rms of the average 
number of pai rs and the j u m p of the m o m e n t u m on the 
F e r m i surface. 

It is r emarkab le tha t expression (5.12) is identical with 
the result ob ta ined in the Gutzwiller approx imat ion , i.e. this 
approx ima t ion is exact in the limit d = oo. In the general 
case (without assumpt ion of t rans la t iona l invariance), we 
find tha t expression (5.12) becomes [74] 

(5.16) 

which conta ins the local quant i t ies dt and qia, given by 
formulas (5.14) and (5.13) with the local quant i t ies nia and 
S*a. The theory can be generalised so as to yield correct ions 
in the form of an expansion in the powers near the limit 
d = oo [76]. 

A calculat ion in accordance with the theoret ical for­
mulas gives, in the limit d = oo, results which are in 
excellent agreement with those calculated for d = 2 by 
the q u a n t u m M o n t e Car lo me thod . The agreement is 

U/t 

10 12 14 16 
1+ -H + I 

0.4 0.6 1.0 g 

Figure 19. Comparison of the calculations, carried out in the 
Gutzwiller approximation (dashed curve) and taking account of the 
\/d corrections (continuous curves), with the calculations carried out 
by the quantum Monte Carlo method (crosses) for: (a) the average 
number of pairs; (b) the ground-state energy in the two-dimensional 
Hubbard model [76]. 

even better for d = 3. It is evident from Fig. 19 tha t 
even for d = 2 the correct ions p ropo r t i ona l to \/d are 
very small, i.e. the Gutzwiller approx ima t ion gives a very 
accura te value of the g round-s ta te energy and this energy is 
no t very sensitive to the dimensional i ty d of space. 

A compar i son of the energies of the pa ramagne t i c , 
ferromagnetic , and ant i ferromagnet ic phases makes it 
possible to construct the phase d iagram in the (U, n) 
plane (Fig. 20). The dashed curves represent the b o u n d a ­
ries of the phases deduced on the assumpt ion tha t b o t h 
magnetical ly ordered phases are homogeneous . If we 
assume the possibility of the existence of i nhomogeneous 
phases , then these bounda r i e s change to the con t inuous 
curves in Fig. 20. 

U/y/2t* 
25 \ \ 
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1 - n 

Figure 20. Magnetic phase diagram (continuous curves) at 
I = 0 K [77]. The dashed curves represent the phase diagram in 
which only the homogeneous states are considered. 

It is found tha t the appearance of an ant i fer romagnet ic 
phase with small ferromagnet ic inclusions is favoured by 
energy considerat ions . The possibili ty of the appearance of 
such mixed phases has been studied in detail on the basis of 
the H u b b a r d mode l [ 7 8 - 8 2 ] . 

The magnet ic phase d iagram shown in Fig. 20 was 
determined [77] m a k i n g use of the Gauss ian density of 
states in the ba re spectrum (3.4) cor responding to the limit 
d = oo. Therefore, the quant i ty U in Fig . 20 is in uni t s of t*. 
Var ia t iona l approaches have been used also in the inves­
t igat ions of the ferromagnet ic state in the H u b b a r d 
mode l [83, 84]. 

6. Method of slave bosons and fermions 
6 . 1 1 operators 
U n d e r the condi t ions of a s t rong C o u l o m b interact ion 
(U t) the C o u l o m b term can be used as the zero th-
approx ima t ion Hami l ton ian . Since the interact ion of 
electrons is considered in the H u b b a r d mode l for jus t 
one site, the ze ro th -approx imat ion p rob lem reduces to the 
single-site p rob lem and it can be solved exactly quite 
readily. In this s i tuat ion it is convenient to use the basis 

P (|/0), | / + ) , | f - ) , | f2» (6.1) 
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of localised a tomic functions at a site describing states free 
of electrons, those with one electron, and with an electron 
pair , respectively. 

The t rans i t ions between var ious states are described by 
4 x 4 matr ices cor responding to the H u b b a r d X ope ra ­
tors [85] 

X?* = \ip)(iq\. 

All the elements of such a mat r ix vanish, apar t from one 
which is at the poin t of intersection of the pth r o w and the 
qth co lumn, and which is equal to 1. 

The t ransi t ion from a state \iq) the a state \ip) can alter 
the n u m b e r of electrons at a site by one or two, or it m a y 
leave this number unchanged . This means tha t some of the 
independent Xpq ope ra to r s are Fermi- l ike ( / o p e r a t o r s ) and 
some are Bose-like (b opera tors ) : 

f(X°% Xa\ Xa\ X2a), b X~+, X 2 0 , X 0 2 ) , (6.2) 

whereas four opera to r s are diagonal : 

x0 0, x + + , x - 9 X22 . 

Obviously, a p roduc t of two X ope ra to r s is also an X 
opera tor or it vanishes in accordance with the rule 

XrsXpq = 3SDXrq (6.3) 

The above rule can be used to form a c o m m u t a t o r or an 
an t i commuta to r of two X opera tors : 

[xr, Xf* ] ± = dy [dspx;i ± 5rqXfs ] . (6.4) 

It is unde r s tood tha t a c o m m u t a t o r is used in the case of 
the b ope ra to r s and an an t i commuta to r for t h e / o p e r a t o r s . 

The X ope ra to r s obey the following identity: 

xf° + ̂ x r + x 2 2 = 1 (6.5) 

which represents completeness of the single-site states 
described by the basis (6.1). The X ope ra to r s can be 
expressed in te rms of the F e r m i opera to r s by the following 
relat ionships: 

xT = (i - «,t)(i - « a ) , x r = ̂ ( l - «,•_„). 

X? = «,t«a , X? = a[(l - n,-_„), X? = ca\_ank 

v er, -er t v 20 t t (6.6) 

[The conjugate opera to r s are found from the rule 
\xpqy =xqp.] 

It follows from the rela t ionships (6.6) tha t xf and X2a 

are Fermi- l ike opera tors . Their linear combina t ion can be 
used to describe the F e r m i opera to r s themselves: 

at=xf+aX1

i<- (6.7) 

The Hami l ton i an (1.1) of the SCES mode l (including 
the chemical po ten t ia l p) expressed in te rms of the X 
opera to r s is 

H = ^2{-pX++ - pXr + (U - 2p)X22} 
i 

+t^{{xr+xn(xr+xJ-2) 
+ (X-°-X?+)(X°--XJ

+2)} . (6.8) 

It is r emarkab le tha t in this representa t ion the C o u l o m b 
term, which is quar t ic in te rms of the F e r m i opera tors , 
becomes linear in the X ope ra to r s and the kinetic energy 
becomes a quadra t i c form of these opera to rs . All the 
advantages of the X ope ra to r s follow from this l inearisa­
t ion of the C o u l o m b term. 

The Hami l t on i an (6.8) can be used to develop a regular 
theory of pe r tu rba t ions in powers of t/U in the form of a 
d iagram technique for the X ope ra to r s [24, 86]. This is 
described briefly in m y earlier review [6] and we shall no t 
deal with the subject here. Since the algebra of the X 
opera to r s is fairly complex, the d iagram technique involving 
them is far from simple, a l though it has certain advantages . 

Here , other approaches will be considered and in these 
approaches the X ope ra to r s are expressed in te rms of 
p roduc t s of the usua l F e r m i and Bose opera tors . Such 
representa t ions comprise the technique of slave bosons and 
fermions, first presented in Refs [87, 88] for other models . 

6.2 Boson and fermion representation of X operators 
There are m a n y different representa t ions of this k ind. They 
can be obta ined m a k i n g use of the following general 
relat ionship between the Xpq ope ra to r s and the cor respond­
ing Xpq matr ix : 

Xpq = il/jxpqil/i , (6.9) 

where ^ is a four -component co lumn composed of the 
F e r m i and Bose annihi la t ion opera to rs . 

Let us consider first the limiting case of the H u b b a r d 
model , which is the t-J mode l in which only three states at 
a site are taken into account : |/0), | /+ ) , |/—). Selecting \jjt in 
the form 

4 = (*?, ft 4 ) . 
where bj is a Bose opera tor and f}a is a F e r m i opera tor , 
we find from the relat ionship (6.9) tha t 

xf = b!fia, x+-=4fa, (6.10) 

which satisfies the t ranspos i t ion relat ionships for the X 
opera to r s subject to the addi t iona l condi t ion: 

A 

This is k n o w n as the slave boson representa t ion . 
If \l/t is selected in the form 

the result is the slave fermion representa t ion 

(6.11) 

X?=f}bic X +- = blbi 

subject to the addi t iona l condi t ion 

(6.12) 

(6.13) 

In bo th cases a slave part icle (boson or fermion) has no 
other index, apar t from tha t identifying the site. 

In the H u b b a r d mode l we can use, for example, the 
following representa t ion in te rms of slave bosons [89]: 

(6.14) 

x r = eU-
JIA •> 

x r 

x r = d)fia, x r = ft f 
J I(jJ 1(7 

xf = ejd,, x r 
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subject to the addi t iona l condi t ion 

eUi+dUi + ^2fific = l • (6.15) 
a 

Here , the Bose opera to r s e\ and dj create states |/0) with 
an empty site and \i2) with a pair , and the F e r m i opera tor 
f\a creates a state \ia) with one electron per site: 

|i0)=et |vac), | i f f > = / J | v a c ) , | G ) = ^ | v a c ) , (6.16) 

where |vac) is the wave function of complete vacuum. 
It is suggested in Ref. [90] tha t the basis functions can be 

wri t ten down with the aid of four slave bosons : 

|/0) = eJ|vac), \ia) =/M|vac>, |i2) = 4 4 ^ l v a c ) • 
(6.17) 

This selection of the basis functions leads to a more complex 
(and not bilinear) X opera tor representat ion. The following 
condi t ions should then be satisfied to guarantee the absence 
of nonphysical states: 

eUi+^2pLput+d)di = 1 

a 

fifiv=ptpi*+dUi = 0 • 
(6.18) 

The Hami l ton i an (1.1) in the (6.17) representa t ion is 

(6.19) 

where 

••eiPia+p\-adi 
It follows tha t the C o u l o m b par t of the Hami l t on i an 

is d iagonal , bu t all the difficulties are transferred to the 
kinetic par t , which n o w has the form of the f e r m i o n - b o s o n 
interact ion. This s i tuat ion is typical when different r epre ­
sentat ions of the X ope ra to r s are used, a l though the kinetic 
energy can assume a variety of forms. 

There is an extensive l i terature on the use of the 
technique of slave b o s o n s and fermions in the H u b b a r d 
and t-J models (see, for example, Refs [91-98] ) , pa r t i c ­
ularly near the half-filled configurat ion. A compar i son of 
the results obta ined with the aid of slave bosons and 
fermions in the t-J mode l is m a d e in Ref. [96]. There is 
no general prescr ipt ion for selection of a specific representa­
t ion. 

6.3 Effect of constraints 
W h e n the X ope ra to r s are expressed in te rms of the 
fermion Bose opera tors , the p rob lem is reduced to the 
m e t h o d s of s tandard pe r tu rba t ion theory for the F e r m i and 
Bose systems, bu t a new difficulty then arises: it is 
necessary to take account of addi t iona l condi t ions or 
const ra in ts of the type described by representa t ions of the 
(6.14) and (6.18) type, which remove nonphys ica l states, i.e. 
which re turn the extended Hilber t space to its initial state. 

Cons t ra in t s are usually t aken into account by means of 
Lagrang ian multipliers, which are used to wri te down the 
expressions for the par t i t ion function represent ing a 
functional integral in te rms of the F e r m i and Bose 
fields. F o r example, in the case of the Hami l ton i an in 
the form (6.19) the integrat ion with respect to the G ra s s -
m a n variables yields the following functional integral in 
te rms of the Bose fields eh p^, p^, and dt [90]: 

Z = 

where 

be 8/? j 8/? j bd Y[ S^ia exp ( I t S ( t ) (6.20) 

+^d}(^+u+ii-^yi-ii 

+ Tr ln (6.21) 

Here , kt and Xia are the Lagrang ian mult ipl iers for the first 
and second equa t ions in the system (6.18). The const ra ints 
of the system (6.18) are local and, therefore, kt and Xia 

depend on the site number /. However , they are independent 
of the second variable t , because b o t h const ra in ts (6.18) 
c o m m u t e with the Hami l ton i an (6.19). 

In work with the functional integral (6.20) the first 
approx ima t ion can be the saddle poin t approx imat ion , in 
which it is assumed tha t the Bose fields and the Lagrang ian 
mult ipl iers are independent of the site and t ime. This 
implies the static approx ima t ion in te rms of the Bose 
fields and the replacement of local const ra in ts with global 
ones, i.e. those which are satisfied only on the average. 

The static approx ima t ion leads to the following expres­
sion for the free energy / = —kT In Z/N: 

f = Ud2 - T ^ f d 8 p o ( « 0 l n { 1 + e x p [ - / J f a „ c - fi + 4 ] } 

+ + e 2 + d 2 ~ l ) " £ W + d2) , (6.22) 

where qa = {z\aZia). In the pa ramagne t i c case when the 
b a n d is half-filled (n = 1, p=U/2), minimisa t ion with 
respect to X and Xa gives the free energy as a function of 
just one pa ramete r d. At T = 0, we find tha t 

f=2q | d e p 0 ( e ) sf(qs) + Ud2 

where 

q = M2{\ - 2d2) 

(6.23) 

(6.24) 

The integral with respect to s in E q n (6.23) represents 
the average kinetic energy of electrons. Therefore, 
E q n (6.23) is identical with expression (5.12) if the pair 
density d2 = J is in t roduced. W e thus obta in a r emarkab le 
result: the saddle po in t approx ima t ion in a functional 
integral represent ing the par t i t ion function in the H u b b a r d 
mode l with the aid of slave bosons at T = 0, equivalent to 
the Gutzwiller approx imat ion k n o w n to be exact in the limit 
d = oo. 

Inclusion of the mean field f luctuat ions in a functional 
integral makes it possible to provide a theoret ical t r ea tment 
in which a strongly correlated system is described by boson 
and fermion fields coupled to one ano ther by gauge fields, 
which t ake const ra in ts into account [82, 92]. This app roach 
has been used intensively in recent years in the s tudy of the 
t r anspor t proper t ies of SCES, the st imulus being provided 
by the a n o m a l o u s behaviour of h igh- tempera ture super­
conduc to r s in the n o r m a l metall ic phase , par t icular ly by the 
linear dependence of the electric resistance on T. 
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7. Main correlation effects 

Several m e t h o d s for investigating the H u b b a r d mode l in 
the s t rong correlat ion case (U ^ W) are described above. 
They should be supplemented by m e t h o d s relying exclu­
sively on compute r calculat ions (h igh- tempera ture 
expansions , d iagonal isa t ion of small clusters), the results 
of which can be used to check approx ima te analyt ic 
approaches . 

All the listed approaches (with the exception of the 
d = oo limit, which is discussed separately later) yield 
limited informat ion on the physical proper t ies of the 
main mode l in the SCES theory. A compar i son of 
individual , frequently mosaic-l ike, results makes it possible 
to reconstruct the pa t t e rn of the most impor t an t correlat ion 
effects in the behaviour of the model . 

7.1 M e t a l - i n s u l a t o r phase transition 
The m e t a l - i n s u l a t o r phase t ransi t ion, predicted intuitively 
by M o t t , was first confirmed by H u b b a r d over th i r ty years 
ago on the basis of the 'alloy ana logy ' , i.e. in the spirit of 
the C P A me thod . H u b b a r d demons t ra ted tha t at some 
critical value Uc ~ W a gap appears in the middle of a 
b a n d in the initial electron spectrum, so tha t in the half-
filled case the system becomes an insulator . 

A consistent mean field theory, based on considerat ion 
of the limit d = oo, shows tha t the pa t t e rn predicted by 
H u b b a r d is far too simplistic. In fact, in the half-filled case 
an increase in U gradual ly gives rise to a gap , bu t there is 
ano ther effect: a sharp quasipart ic le peak appears at the 
F e r m i level and it cor responds to the S u h l - A n d e r s o n 
resonance due to the scattering of electrons by localised 
spin f luctuat ions. The effect of t empera tu re on this peak is 
similar to tha t in the K o n d o effect. 

The existence of a sharp quasipart ic le peak governs the 
t r anspor t proper t ies of the system in the metallic phase . 
U n d e r these condi t ions such behaviour of the H u b b a r d 
mode l cor responds to the behaviour of an effective single-
impur i ty Ande r son mode l to which the H u b b a r d mode l 
reduces in the limit d = oo. 

The latest invest igat ions [105] show tha t the m e t a l -
insulator phase t rans i t ion should be of the first order . 
Fig. 21 shows the H u b b a r d - m o d e l phase d iagram obta ined 
in the limit d = oo for the half-filled b a n d case. This 
d iagram is based on calculat ions carried out for a mode l 

Figure 21. Phase diagram in the (T, U) plane calculated for the Bethe 
lattice on the assumption that d = oo and n = 1 [105]. 

density of states in the initial b a n d described by a semicircle. 
This is k n o w n to cor respond to the Bethe lattice in which 
each a tom has z nearest ne ighbours which are in no way 
coupled to one another . 

In the case of the Bethe lattice it is possible to t ransform 
analytically the self-consistency equa t ions (3 .33) - (3 .35) of 
the mean field theory. This simplifies greatly the subsequent 
numer ica l solut ion. As a result, the appl icat ion of the 
q u a n t u m M o n t e Car lo me thod to the cor responding one -
dimensional Ande r son p rob lem makes it possible to deal 
with lower t empera tures . 

It is found tha t at T = 0 the self-consistency equa t ions 
have two different solutions, which coexist in the interval 
Uci < U < Uc2. One of them cor responds to the meta l 
phase and the other to the insulator phase ; the po in t s 
Uci and Uc2 cor respond to the absolute loss of stability by 
the insulator and meta l phases . At a finite t empera tu re this 
interval becomes na r rower and contrac ts to a poin t 
(represented by the square in Fig. 21). 

Inside the tr iangle formed by the two dot ted lines and 
the abscissa there is a line of the first-order phase 
t rans i t ions which is found by equat ing the energies of 
the meta l and insulator phases . In the shaded regions (at 
higher tempera tures ) the two phases coexist and this makes 
possible a con t inuous crossover from one phase to the 
other . The bounda r i e s of this region cor respond to second-
order phase t ransi t ions . The curve represent ing the an t i ­
ferromagnet ic phase t ransi t ion lies above the m e t a l -
insulator phase t ransi t ion line. 

On the whole , the phase d iagram shown in Fig. 21 
resembles tha t predicted earlier [43] and shown in Fig. 11. 
Al though the m e t a l - i n s u l a t o r phase t ransi t ion is well 
unde r s tood in the specific half-filled case, there are 
relatively few results for the m o r e general case when the 
b a n d is no t half-filled. 

7.2 Breakdown of the Fermi-liquid behaviour 
The quest ion of evolut ion of the na tu re of single-particle 
states of the meta l phase has no t yet been answered 
unambiguous ly . A complete pa t t e rn would identify the 
na tu re of the quasipart icle spectrum at each poin t in the 
three-dimensional space of the pa rame te r s (U, n, T). At 
present , we k n o w only some sections formed by the (U, n) 
planes at T = 0 or by the (U, T) p lanes at n=\. The 
major i ty of the results have been obta ined in the mean field 
approx ima t ion (d=oo). 

Fig. 6 shows the change in the quasipart icle dis t r ibut ion 
function near the F e r m i level in the half-filled case. A n 
increase in U reduces cont inuously the j u m p at the F e r m i 
level to zero, which is evidence of a con t inuous reduct ion in 
the ampl i tude Z of the coherent state and of the divergence 
of the effective mass m*. However , the Fermi- l iquid 
behav iour is re tained right up to a certain critical value 
Uc, at which the insulator state appears as a result of a 
second-order phase t ransi t ion. 

The same conclusion follows from a qual i ta t ive analysis 
of the self-consistency equa t ions [41] presented above. On 
the other hand , according to the E d w a r d s - H e r t z inter­
po la t ion app roach [48, 49], which is no t based on the 
d = oo limit, the imaginary pa r t of the quasipart ic le self-
energy does not vanish on the F e r m i surface in a certain 
interval of the values of U, indicat ing b r e a k d o w n of the 
Fermi- l iquid behav iour in the meta l phase (see Fig. 13). 
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A deviat ion from the half-filled b a n d case reduces the 
region with the non-Fermi- l iquid behav iour and the p r o p e r ­
ties of the F e r m i liquid are quite rapidly restored (Fig. 15). 
The p rob lem of crossover from the Fermi- l iquid behaviour 
to s t rong electron correla t ions in a meta l as U is increased 
or as the half-filled b a n d case is approached , is only 
outl ined above and u n d o u b t e d l y should be investigated 
further. 

7.3 Crossover from itinerant magnetism to magnetism 
with localised magnetic moments 
This p rob lem has been discussed first in the l i terature in 
te rms of localised spin f luctuations, s tar t ing from the weak 
coupl ing limit [9]. The next stage has been the use of the 
static approx imat ion in the functional in tegrat ion tech­
n ique (Section 4 in this review). 

Figs 1 6 - 1 8 show the pa t t e rn of the magnet ic behaviour 
of the mode l in the half-filled b a n d case, ob ta ined in the 
static approx imat ion by slow var ia t ion of ( ( m 2 ) ) 1 ^ 2 in 
Fig. 16 and by the C u r i e - W e i s s cont r ibu t ion to the 
magnet ic susceptibility (Fig. 18). It follows from Fig. 17 
tha t the Neel t empera tu re T N , considered as a function of 
the C o u l o m b interact ion U, has a m i n i m u m at U ~ W. The 
T^(U) curve links expressions (1.6) and (1.7) represent ing 
T N in the weak and s t rong coupl ing limits. 

The results of the static approx ima t ion are thus of 
in terpola t ion na tu re . These results are suppor ted qual i ta ­
tively by a m o r e r igorous app roach cor responding to the 
d = oo limit in which the dynamics of the system is t aken 
into account (Figs 7 and 8). 

Two p rob lems are the most pressing: 
(1) H o w does the crossover from i t inerant to localised 

magnet i sm occur when the electron density n is varied? 
(2) H o w is the magnet ic behav iour crossover related to 

the crossover of the electronic proper t ies from the F e r m i -
liquid to the non-Fermi- l iquid behav iour? 

A clear solut ion has no t yet been obta ined to either of 
the p rob lems . In the first case this is because the a t tent ion 
of researchers has been concent ra ted mainly on the 
behav iour of the mode l near the half-filled state (in 
connect ion with the p rob lem of h igh- tempera ture super­
conductors ) . 

The second p rob lem is intrinsically complex and 
invest igations of the quasipart ic le spectrum mode l itself 
have just begun. One of the latest results is the phase 
d iagram presented in Fig. 15. Phase d iagrams of this type 
should be supplemented by identifying the regions where 
the magnet ic-behaviour crossover takes place. 

A n a t t empt has been m a d e to establish the magnet ic 
crossover when the electron density is varied and to 
discover the relat ionship between the magnet ic and elec­
t ron crossovers in the limit of s t rong electron correlat ion 
(U 5> W) within the f ramework of the t-J mode l [11 - 1 3 ] . 

8. Conclusions 
The overall conclusion of this review can be stated as 
follows. The d = oo limit provides the mos t universal and 
effective me thod for investigating the H u b b a r d model . It 
makes it possible to formulate the mean field ap p ro x i ma­
t ion for s trongly interact ing fermions, which is correct from 
the poin t of view of requi rements of statistical mechanics . 

The main equa t ions in this approx ima t ion yield the 
correct results in the limits U <̂  W and U 5> W. These 

equa t ions are valid for any values of the pa rame te r s U, W, 
and the electron density n. In the d = oo limit the statistical 
mechanics of the H u b b a r d mode l on a lattice reduces to the 
statistical mechanics of an auxiliary single-impurity A n d e r ­
son mode l (with specially selected parameters ) , which has 
wel l -known solut ions. 

In the d = oo limit the H u b b a r d mode l describes the 
most impor t an t a m o n g the correlat ion effects: the m e t a l -
insulator t ransi t ion, the crossover from i t inerant magnet i sm 
to localised magnet ic m o m e n t s , the b r e a k d o w n of the 
Fermi- l iquid behaviour near the bounda r i e s of the 
m e t a l - i n s u l a t o r phase t ransi t ion. 

In a compar i son of the results of the theory in the limit 
d = oo with numer ica l calculat ions, carried out for d = 3 
and d = 2 by the q u a n t u m M o n t e Car lo me thod or by the 
me thod of exact d iagonal isa t ion of small clusters, it was 
demons t ra ted tha t in m a n y cases the agreement between the 
results is no t only quali tat ive, bu t even quant i ta t ive . 
Na tura l ly , the d = oo limit, cor responding to the mean 
field approx imat ion , cannot describe the dynamics of 
f luctuat ions such as spin waves in a magnetical ly ordered 
phase . However , there are ways for including correct ions of 
the order of \/d, which m a k e it possible to solve p rob lems 
of this k ind. 

Unfor tuna te ly , in the d = oo limit the mean field theory 
deals with consistency equa t ions requir ing a large vo lume of 
compute r calculat ions. Fu r t h e r investigations of this type 
should be accompanied by development of app rox ima te 
analytic m e t h o d s for solving these equat ions , which need to 
be only quali tat ive. A recent paper [106] repor t s an 
investigation of this type. 

The d = oo limit has been used also in other models 
employed in the theory of s trongly correlated systems, for 
example, in the t-J mode l [107, 108], in the Ande r son 
lattice [109], and in the extended H u b b a r d models [11, 110, 
112]. It has recently been applied to models with disorder. 
F o r example, interference of the effects of the s t rong 
C o u l o m b interact ion and of disorder in the m e t a l - i n s u ­
lator phase t ransi t ion, i.e. the relat ionship between the M o t t 
and Ande r son electron localisation mechanisms, has been 
studied in the H u b b a r d mode l with disorder. 

In t roduc t ion of the d = oo limit into the theory of 
s trongly correlated systems has given a new impetus to 
the physics of this system. The si tuat ion n o w resembles the 
familiar state twenty years ago, when the impor t an t role of 
the d = 4 dimensional i ty in the theory of second-order 
phase t rans i t ions has become unde r s tood and the s 
expansion has been p roposed , provid ing a universal 
me thod for investigating systems with strongly interact ing 
f luctuat ions. 
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