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Abstract. A review of fundamenta l results on fractal 
s t ructure manifesta t ion in wave processes is presented. 
Elastic proper t ies and dispersion of fractal mater ia ls are 
discussed; their dis t r ibut ion density, and the shape of wave 
functions of their localised elastic oscillations, fractons. 
Examples of their appl icat ion for the explanat ion of 
amorph ic proper t ies of solids are presented. Pa t t e rns of 
wave scat tering and emission by fractal s t ructures are 
examined. Pr incipal m e t h o d s of r a n d o m signal analysis 
employed to reveal different fractal s t ructures associated 
with these signals are described. D a t a on fractal proper t ies 
of wave fields are discussed. 

1. Introduction 
Progress in physics and its appl icat ions is to a large extent 
dependent on the elucidation of the relat ionship between 
the microscopic s t ructure and the macroscopic behaviour 
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of complex systems. Major p rob lems per ta in ing to this 
issue are those to be solved in the f ramework of the 
statistical theory of mat te r , physics of disordered media , 
and the theory of turbulence and diffusion. 

No twi th s t and ing considerable efforts by researchers , 
m a n y of these p rob lems have no t unt i l n o w been com
pletely solved using the t rad i t iona l approaches of statistical 
physics. The assumpt ion of either absolute chaos (ideal gas 
and the classical theory of Brownian mot ion ) or fairly 
ordered features (the theory of crystalline solids) in 
examining var ious media and processes tu rned out to be 
a major prerequisi te for the successful solution of the 
p rob lems . Specifically, the microscopic descript ion of 
disordered media and processes lacking in bo th crystal
like regulari ty and absolute chaos was found to be in the 
main beyond the scope of the canonical statistical theory. 

There are several ways to account for the si tuat ion. To 
begin with, a statistical descript ion can be successful if it is 
based on a limited number of macroscopic variables for 
which the condi t ion of macroscopic causali ty is fulfilled [1]. 
This means tha t variables of this small set must be related to 
one another t h rough dynamica l in teract ions which makes it 
unnecessary to average over microscopic dynamics every 
t ime their changes in different processes need to be 
evaluated. 

A n exhaustive explanat ion of requisites for microscopic 
causali ty to be fulfilled has never been provided. However , it 
is clear tha t the scale of changes in macroscopic variables 
satisfying this condi t ion must be significantly greater than the 
scale of correlat ion between microscopic variables. It is this 
condi t ion tha t fails to be fulfilled in disordered media and 
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processes with the microscopic s t ructure coord ina ted in a 
b r o a d range of scales. A mos t illustrative example of such a 
s i tuat ion is provided by a substance near the type two phase 
t ransi t ion poin t . A m o r p h o u s solids are characterised by 
scales of molecular order within macroscopic zones compr i s 
ing t h o u s a n d s of molecules [2]. The processes of this sort 
include hyd rodynamic turbulence in which correlat ion of 
f luctuation rates is apparen t t h r o u g h o u t the entire range of 
flow scales. 

F o r all tha t , the na tu ra l microscopic s t ructure of m a n y 
irregular objects has the p rope r ty of scale invariance 
(scaling). In this case, the p rob lem of the descript ion of 
disordered media m a y be solved by in t roducing m a c r o 
scopic values dependent on the chosen scale of averaging. 
The scale invariance allows the theory of such media to be 
constructed tak ing advan tage of renormal i sa t ion g roups [3]. 
However , this obviously universal app roach requires 
complicated and t i resome calculat ions. 

M a n d e l b r o t was the first to e labora te the ma themat ica l 
no t ion of fractals in his b o o k s [ 4 - 6 ] | and suggest its 
appl icat ions to the descript ion of the shape of var ious 
objects. This greatly p r o m o t e d model l ing a b r o a d spectrum 
of nontr iv ia l scale-invariant s t ructures . The use of such 
models const i tutes a novel technique for the description of 
disordered s tructures in physics. 

F r ac t a l models are no t always amenab le to analytical 
evaluat ion, bu t they are constructed following very simple 
rules and it is no t difficult to mode l them by computer . 
Exper iments on such computer ised models are n o w widely 
used to obta in deeper insight into the mechanisms of 
irregular processes. It should be emphasised tha t this 
app roach is essentially different from the t rad i t iona l 
m e t h o d s employed in theoret ical physics. The distinction 
is ut ter ly irreducible to the simple difference between the 
numer ica l solut ion of differential equa t ions and their 
analyt ical examinat ion . 

It is pe rhaps for this reason tha t fractal models have 
been used extensively and with an increasing success in 
physical research dur ing the last 1 0 - 1 5 years . F rac t a l 
models are not only applicable to exploring in m o r e detail 
previously described processes and s tructures (e.g. r a n d o m 
walks , linear polymeric molecules) bu t they also provide a 
deeper insight into p h e n o m e n a which it would be impos 
sible to comprehend and quantify using t rad i t iona l 
me thods . 

Mathemat ica l ly , a fractal is a set of po in ts in a metr ic 
space for which it is impossible to est imate any conven
t ional measure with integer dimension, i.e. length, area or 
vo lume (their d imensions are defined by the first, second, 
and third powers of the length respectively). F o r example, 
measurement of the fractal curve length and the area under 
the curve m a y yield an infinite value for the former and zero 
for the latter pa ramete r . This p rob lem can be solved by 
in t roducing the Hausdo r f f measures of any dimension 
(including non-integer ones). The m a x i m u m dimension of 
a Hausdor f f measure which yields a nonzero value on the 
evaluat ion of a set is referred to as the Hausdor f f -
Besicovitch dimension ( H B D ) of this setf. 

fThe term 'fractal' was coined by Mandelbrot by fusing the words 
'fraction' and 'fracture'. Therefore, a fractal is a fractured object with 
fractional dimensionality. 

JA Besicovitch has proved the existence of such dimension. Its exact 
definition is given in Section 2 of the present review. 

At first, M a n d e l b r o t defined the fractal as a scale 
invariant , i.e. self-similar, object with the H B D in excess 
of the topological dimension (1 for a line, 2 for a surface, 
etc.). Later , he described self-affine fractals with in t r ins
ically diverse d imensions [7]. In physics, fractals are 
characterised no t only by H B D bu t also by a number of 
other d imensions which are easy to find in experiments and 
permit a versatile descript ion of the object 's proper t ies 
[ 7 - 9 ] . 

Advances in appl icat ion of fractal models in physics are 
in the first place a t t r ibu tab le to the fact tha t fractal pa t t e rns 
are inherent in a great n u m b e r of processes and structures. 
This is no t a mere chance. M a n y models designed to 
simulate the format ion and the development of disordered 
objects of different na tu re can actually be reduced either to 
the percola t ion t ransi t ion mode l [10] or to the mode l of 
diffusion-limited aggregat ion ( D L A ) [11]. In the former 
case, the final result is a fractal percola t ion cluster whereas 
in the latter a fractal aggregate is formed. Mode l s of m a n y 
disordered processes are based on different var iants of 
r a n d o m walk [9] and dynamic chaos [12, 13] and also 
exhibit fractal proper t ies . As a mat te r of fact, M a n d e l b r o t 
discovered a ma themat ica l expression for a general rule 
per ta in ing to geometr ic proper t ies of the physical world . 

N u m e r o u s publ ished sources concerned with fractals 
and their appl icat ions are current ly available including a 
few b o o k s and reviews in the Russ ian language. Basic 
informat ion for s tudents is best presented in Ref. [8], one of 
the first reviews of the subject in this country , and also in an 
interest ing b o o k by Feder [9]. Ano the r b o o k , Ref. [14], 
wri t ten by an expert in speech acoustics and the use of 
compute r s in acoustics m a y be equally helpful. Genera l 
proper t ies of fractals and m e t h o d s of their compute r 
s imulat ion are tho rough ly examined in Ref. [15]. A 
detailed in t roduct ion to the theory of fractals and examples 
of its specific appl icat ion in physics can be found in 
Refs [10, 11, 1 6 - 2 3 ] . A concise descript ion of different 
models of fractal s t ructures is provided in Section 2 of 
the present review. 

The objective of this review is to appra ise available 
informat ion abou t wave processes in fractal s t ructures on 
the one h a n d and results of the studies on fractal s t ructures 
inherent in wave fields of different na tu re on the other 
hand . 

W a v e processes m a y be arbi t rar i ly categorised into two 
classes. The first one includes wave p ropaga t ion in fractal 
s t ructures when they serve as a med ium in which p r o p a g a 
t ion occurs . The other class of events covers wave scattering 
and emission by fractal s t ructures when waves p r o p a g a t e in 
a uni form med ium conta in ing fractal inhomogenei t ies . 

F r ac t a l proper t ies of wave fields and signals are 
apparen t in different s i tuat ions which m a y also be divided 
into two groups . In b o t h homogeneous or regularly 
inhomogeneous media , fractal proper t ies of wave fields 
are manifested due to nonl inear wave interact ions and 
nonl inear ray dynamics . In statistical wave prob lems , 
fractality is precondi t ioned by diffuse and kinetic processes. 

Studies of wave p h e n o m e n a in fractal mater ia ls da te 
from the work of Alexander et al. [24] and are largely based 
on the no t ion of fractons in t roduced by Alexander and 
Orbach in 1982 [25]: localised oscillations on fractals which 
replace o rd inary p h o n o n states at frequencies greater t han a 
certain t ransi t ion frequency (crossover). The density of 
fracton frequency dis t r ibut ion obeys a power law by vir tue 
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of scale invariance. The exponent is determined by the so-
called fracton (spectral) dimensional i ty which, in the case of 
fractons, plays the role of the space dimension in the low-
frequency asympto te of the density of states. Fu r t h e r 
development of the ideas first pu t forward in Ref. [24] 
eventually culminated with the closed microscopic theory of 
t empera tu re dependences of the rmal conductivi ty, sound 
velocity and absorp t ion in a m o r p h o u s solids [ 2 6 - 2 8 ] . 

The principles of the theory of the rmal proper t ies of 
a m o r p h o u s solids p roposed in Ref. [26] p roved applicable 
no t only to fractal mater ia ls bu t also to any other mater ia l 
with oscillation states localised in a certain range of scales 
[29]. Nevertheless , invest igations into fractal s t ructure 
oscillations appear to have provided a major cont r ibut ion 
to the unde r s t and ing of the mechan isms under ly ing the 
the rmal characterist ics of such media . 

The theory of fractons a long with exper imental studies 
and numer ica l evaluat ion of fractons in real and mode l 
fractal s t ructures is considered in Section 3 of this review. 
The section focuses on the descript ion of elastic oscillations 
in real mater ia ls which accounts for the p rominence given 
to the theory of elastic proper t ies of fractal mater ia ls . 
F r a c t o n characterist ics evaluated in early studies of 
mater ia ls with fractal s t ructure at smaller scales (less 
t han a few micrometers) can be apparen t in bo th na tu ra l 
and artificial fractal s t ructures at a much greater scale. F o r 
this reason, this por t ion of the review should no t be 
regarded as the only possible way to describe fractal 
models of oscillation proper t ies of a m o r p h o u s solids. 
There are other (nonfractal) approaches in this field [2, 
3 0 - 3 2 ] , bu t their analysis is beyond the scope of the present 
communica t ion . 

The theory of fractons appears to provide a compre 
hensive solution to the p rob lem of determining the 
spectrum of mechanica l oscillations and condi t ions of 
wave localisation in fractal mater ia ls . The s t ructure of 
the fractal oscillation spectrum depends on spectral d imen
sion and scales tha t restrict manifes ta t ions of fractal 
proper t ies of a given mater ia l . At greater scales, oscilla
t ions are characterised by a n o r m a l p h o n o n spectrum. In 
the range of fractal s t ructure scales, oscillations occur in the 
form of localised states, i.e. fractons, with the power- law 
density of frequency dis t r ibut ion dependent on spectral 
dimension. At smaller scales, the oscillation spectrum 
depends on the proper t ies of const i tuent part icles of a 
fractal s t ructure. The assessment of spectral dimension is a 
major p rob lem arising in connect ion with pract ical appl ica
t ion of the theory of fractons. The early hypothesis of the 
universal value 4 / 3 for spectral dimension as suggested by 
Alexander and Orbach was not confirmed in later studies. 
The spectral d imension tu rned out to be related to specific 
features of the fractal s t ructure and the na tu re of inter
act ions between its const i tuent elements. This review 
examines pr incipal models s imulat ing elastic proper t ies 
of fractals which have m a n y appl icat ions and give different 
values for fractal dimensional i ty . 

There are very few m e t h o d s current ly used in studies on 
the shape of the fracton wave function. A universally 
accepted too l is the super localised wave function model . 
At the same t ime, results of numer ica l analysis of wave 
function shapes indicate tha t this app roach m a y no t be 
sufficient to elucidate their complicated s t ructure . Hence , 
there is a need for further extensive studies. 

Section 4 of this review discusses wave scat tering and 
emission by fractals. One of the first repor t s devoted to this 
issue, Ref. [33], considered wave scat tering by a r a n d o m 
fractal surface. Such a surface cannot be differentiated, and 
(at var iance with the case of a smooth surface) the angular 
dis t r ibut ion of the dispersed field intensity is no t related to 
the surface slope dis t r ibut ion bu t instead has the form of a 
power law with the exponent determined by the fractal 
dimension of the surface. A similar shape of angular 
dependence was repor ted for small-angle scat tering of 
visible light, x rays or neu t rons by real mater ia ls having 
fractal s t ructure . Measu remen t of angular scattering 
dependences is virtually the sole me thod for the assessment 
of fractal d imension in real mater ia ls . The relat ionship 
between the angular dependence index and the fractal 
dimension is amb iguous and depends on the fractal 
s t ructure mode l being used. The examples include p o r o u s 
mater ia ls with a well-developed in ternal fractal surface [34] 
as well as mater ia ls with the s t ructure of a fractal aggregate 
[35]. 

Examples of wave dissipation listed in the previous 
p a r a g r a p h il lustrate a single-scattering regime. Whenever 
mult iple scattering occurs, the fractal s t ructure of the 
scatterer is much m o r e p rominen t because correlat ion of 
fractal s t ructures in a wide range of scales results in a 
spectrum of collective excitat ions of scatterers tha t resemble 
fractons [36, 37]. This accounts for a marked difference 
between scattering pa t t e rns on fractals and those generated 
by isolated scatterers independent ly distr ibuted in space. In 
the case of resonant scatterers, the shape of the resonance 
absorp t ion curve is dramat ical ly changed in tha t absorp t ion 
decreases slower with tun ing away from the resonance. 
Both the absorp t ion coefficient and the section of wave 
scattered by a fractal s t ructure, calculated per part icle, 
increase. W h e n the fractal d imension is sufficiently low, the 
increase in the scat tering section is so large tha t the 
visibility/invisibility t ransi t ion m a y be involved [37]. The 
ma themat i ca l p rob lem of collective excitation states is very 
similar to tha t of fractons. In the presence of scatterers, the 
s t ructure of the excitation spectrum is also determined by a 
certain factor referred to in Ref. [36] as optical spectral 
dimension. 

Peculiar features of wave emission by fractal s t ructures 
arise even in the simplest case of isolated emit ters showing 
fractal dis t r ibut ion in space, due to the unusua l dis tance 
dependence of the intensity of emission by fractal s t ruc
tures . This fact was used in an a t t empt to explain the well-
k n o w n Olbers p a r a d o x of the br ightness of the night sky 
[38]. M o r e subtle signs of emit ters ' fractality are apparen t in 
associat ion with the aforement ioned effects of collective 
excitation. They have been repor ted to be responsible for 
the enhanced efficacy of heat emission by fractal s t ructures 
per part icle [39]. There is ano ther aspect to the p rob lem: 
f luctuat ions of emission by fractal s t ructures with intrinsic 
correlat ion in a wide range of scales which account for the 
marked ly altered noise characterist ics, including level and 
correlat ion. F r ac t a l models of rock s t ructure and disin
tegrat ion are widely adop ted in seismology where 
f luctuat ions of seismoacoust ic emission m a y pe rhaps be 
used to predict ea r thquakes [40]. 

Section 5 deals with fractal s t ructures in wave fields. 
The wave field s t ructure has a dist inguishing scale, i.e. 
wavelength. The fractal s t ructure implying scale invariance 
m a y be apparen t either on scales greater t han the wav-
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elength or in the presence of a self-similar wave spectrum, 
e.g. s ta t ionary wave turbulence spectra. N o general concept 
(by analogy with the theory of fractons) has so far been 
developed in this field a l though certain per t inent p rob lems 
evidently require in-depth basic studies. 

Primari ly, the p rob lems concern fractal s t ructures 
associated with nonl inear dynamics including spatial 
dynamic chaos in nonl inear wave interact ions [17] and 
ray fractal dynamics in inhomogeneous media [41]. These 
issues have recently been discussed in several review articles 
[17, 41], which is why this section conta ins only casual 
references to them. In fact, it al ludes only to a few works 
tha t describe condi t ions under which the effects of ray 
fractal dynamics m a y occur in the real ocean and those 
necessary for dynamic chaos to form in capillary waves on a 
fluid surface. 

Ano the r class of p rob lems per ta in ing to the manifes ta
t ion of fractal proper t ies is tha t of statistical p rob lems of 
wave dis t r ibut ion. In this area, fractal concepts have never 
been applied to exper imental studies, bu t they m a y be 
in t roduced to highlight novel aspects of certain p h e n o m e n a 
due to the scale invariance of m a n y processes, e.g. 
excitation transfer in resonant media [42, 43] or wave 
beam trajectories in an inhomogeneous med ium [44]. 
Such processes are k n o w n to be associated with a n o m a l o u s 
diffusion in which trajectories display nontr iv ia l fractal 
characterist ics. 

Section 5 conta ins a detailed discussion of fractal 
proper t ies of sea waves. The sea surface (along with 
m o u n t a i n o u s terrain, trees, and coastline) provides an 
example of fractal forms available for day- to-day observa
t ion. The fractal character of this surface is closely related 
to nonl inear wave dynamics . The spectrum of wind waves 
conta ins a self-similar interval characterised by flow from 
short to long waves. The fractal shape of the sea surface is 
ul t imately also associated with the presence of a self-similar 
interval [45]. There are m o r e signs of fractal s t ructures in 
wind-generated waves even t hough they are less conspic
uous . These fractal proper t ies are apparen t on scales which 
greatly exceed the wavelength [46, 47]. Theoret ical explana
t ion for such fractal s t ructures remains to be found. 

A n impor t an t topic of Section 5 in the present review is 
mult ifractal analysis. This issue has been extensively 
discussed in n u m e r o u s b o o k s and review articles [9, 17, 
22, 48, 49]. Our pu rpose was to emphasise the usefulness of 
this app roach for the analysis of wave processes. Appl ica
t ion of mult ifractal analysis to the large-scale s t ructure of 
turbulent pressure pulses has recently been described in 
Ref. [50]. Ano the r example is provided in Ref. [51] which is 
dedicated to the s t ructure of fracton wave functions on a 
percola t ion cluster. 

A variety of fractal approaches to signal analysis are 
current ly available in seismology. Scale invariance is 
intrinsic in m a n y seismic events which can be accounted 
for by the scale-invariant na tu re of dis integrat ion processes 
in general . But this should be the mat te r of a special review. 
The present one examines fractal proper t ies of signals 
generated by seismoacoust ic emission and the possibili ty 
of using them for predict ing ea r thquakes [52]. 

Some aspects of the present communica t ion have 
al ready been discussed in the l i terature. Elastic proper t ies 
and oscillations of fractal clusters as well as scat tering on 
fractals have been reviewed in several pape r s included in 
Ref. [21], a special issue of Physics D [53], and Ref. [10]. 

D a t a on light emission by fractal s t ructures are available 
from Ref. [38]. The aforement ioned review [41] presents 
detailed informat ion abou t fractal s t ructures in light 
dynamics . Spatial chaos in nonl inear wave dynamics is 
described in Ref. [17] in the f ramework of a general 
app roach . A large number of papers on emit tance of 
acoust ic waves by fractal s t ructures are tho rough ly and 
consistently reviewed in Ref. [52] which also conta ins useful 
informat ion abou t fractal processing of acoust ic signals in 
seismology. F r ac t a l studies as applied to acoust ic p rob lems 
have been discussed in Refs [23, 54]. 

2. Fractal structures in physics 
Frac t a l forms available for visual observat ion are surpr is
ingly widespread in na tu re . Classical examples of fractal 
p h e n o m e n a (a tree, a coastl ine or m o u n t a i n o u s relief) [ 3 - 6 ] 
pass from one popu la r b o o k to another . Other fractal 
forms are no t so widely known , e.g. the fracture surface of 
meta l [55] and the surface of rough water [45]. However , 
the fractal forms most interesting as objects of physical 
research can be observed and analysed only with special 
ins t ruments and techniques. They include fractal s t ructures 
of different mater ia ls and those of r a n d o m processes and 
fields. In the latter case, fractal analysis is applied to the 
geometr ic objects tha t are constructed dur ing exper imenta
t ion ra ther t han to the shape of physical bodies , tha t is to 
p lo ts describing processes, d iagrams i l lustrating dis t r ibu
t ion of values in space, sets of meaningful poin ts , and 
trajectories of movement . 

2.1 Structures of matter 
It would hard ly be a gross exaggerat ion to argue tha t a 
substance has fractal s t ructure in a certain range of scales if 
it is no t in gaseous or crystallised state. The first evidence 
of fractal s t ructure was ob ta ined for aggregates of 
microscopic part icles formed from the solid phase in air 
[56]. The au tho r s generated part icles by evapora t ion of 
i ron, zinc, and silicon dioxide from the surface of a heated 
filament followed by vapour condensa t ion on cooling in 
the gas med ium. M e a n part icle size was 35 A. These 
part icles diffused in air and formed aggregates by adhesion. 
The aggregates were then precipi ta ted on a collecting 
element and were assayed for fractal proper t ies by direct 
analysis of electron micrographs . Later studies revealed the 
fractal s t ructure in po lymers [57] and colloid aggregates 
formed by part icles sticking together in colloid solut ions 
[35]. 

The fractal s t ructure of mat te r is mos t readily apparen t 
in unusua l mass dis t r ibut ion pa t t e rns in space. M a s s M of a 
fractal aggregate is related to its size R by 

M=mJ-) , (1) 

where D is the mass fractal d imension smaller than the 
space dimension d while m 0 and a0 are the mass and the 
size of const i tuent particles respectively. Densi ty of mat te r 
p is equally dependent on the size: 

/ R \ D - d 

where p 0 is the density of part icles which form the 
aggregate. W h e n the part icles are packed in a compacted 
s tructure, mass dimension is equivalent to space dimension 
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Figure 1. (a) Fractal cluster obtained by computer simulation of 
diffusion-limited aggregation (DLA) on a plane. The cluster contains 
200 particles, (b) Connecting cluster (dashed line) during percolation 
on a 50 x 50 square lattice. The node problem; concentration p — 0.6, 
critical concentration for the node problem p — 0.5927. Shaded areas 
represent clusters that did not join the connecting cluster. Their size 

appears to vary from that of a single bond to the order of the entire 
lattice. More precisely, the maximum size of the final cluster is the 
largest size of cavities in the connecting cluster which in turn has scale 
£ [see Eqn (15)]. According to Eqn (15), scale £ increases to infinity 
near the percolation threshold and attains the lattice size on a lattice of 
the finite size L. 

D = d and the density is cons tant . F rac t a l aggregates have 
irregular s t ructure (Fig. 1) with long-range correla t ions 
between part icle posi t ions . It is unlikely tha t r a n d o m 
part icle dis t r ibut ion at R > a0 and density (2) might result 
in their b ind ing together to form an aggregate. 

Accord ing to the generally accepted definition, fractals 
are sets of po in t s whose Hausdo r f f -Bes i cov i t ch dimension 
( H B D ) does not coincide with topological dimension. The 
exact definition of H B D is given below. Suppose tha t a set 
is covered with a countab le collection of sets At such tha t 
their diameter d i a m A j (i.e. the largest dis tance between two 
points) does no t exceed certain e. Define mf as the exact 
lower border of sums ^ - ( d i a m A ^ over all possible 
coverings. Assume mp to be the exact upper limit of mf 
for all 8 > 0. Then , by definition, H B D is the exact upper 
b o u n d a r y of such p for which mp > 0. This definition is 
applicable to sets in any metr ic spaces since it requires only 
specification of the distance between poin ts . Defini t ions of 
fractal d imensions actually used in physics refer to objects 
in the Eucl idean space Rd. F r ac t a l dimension of a s t ructure 
m a y be evaluated in different ways. A p a r t from the 
aforement ioned mass dimension, there is box dimension, 
i.e. the exponent which describes h o w the n u m b e r of boxes 
(cubes) covering the fractal depends on their size. Take , 
then, a fractal covered with boxes of size e. Take a sum over 
such a cover by analogy with the sum in the definition of 
H B D . This yields 

}2 ep ~ S - D s p , 

where D is the box dimension. If p > D, the sum tends to 
zero as s —> 0. The finite sum is obta ined at p = D. W h e n 
p < D, the sum is infinite, p = D is the highest p value at 
which the sum exceeds zero. This line of reasoning 
establishes the relat ionship between H B D and box 
dimension and also provides the basis for H B D evaluat ion 
in physical measurements . 

It is wor thwhi le to no te tha t the definition of the 
Hausdor f f dimension p roper is impossible to use in 
physical measurements as it requires tak ing the limit to 
infinitely small volumes. Therefore, t ak ing the limit is 
subst i tuted by measur ing the slopes of straight curves 
which define the above exponents , i.e. mass and b o x 
dimensions . F o r this reason, the physically meaningful 
definition of fractals includes the p rope r ty of self-similar
ity. In mathemat ics , the Hausdor f f dimension can also be 
evaluated for sets lacking in self-similarity. Na tura l ly , the 
p rope r ty of self-similarity has a statistical sense for real 
objects: statistical characterist ics of the fractal s t ructure are 
conserved dur ing similarity t rans format ion . 

In regular fractals (their mos t widely k n o w n examples 
are the Sierpinski gasket and the K o c h curve), a fragment of 
a certain size is composed of a number of similar bu t 
smaller fragments. The self-similarity dimension is an 
exponent in the dependence of the number of similar 
s t ructura l elements (the large element componen t s ) on 
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their size ra t io . On the one hand , the obvious ana logue of 
the self-similarity dimension for r a n d o m fractals is mass 
dimension. On the other hand , the number of boxes of a 
certain size covering the fractal is equivalent to the number 
of s t ructura l elements of a similar size. Therefore, b o x 
dimension is equal to self-similarity dimension. It m a y be 
concluded tha t all in t roduced dimensions for self-similar 
fractals are identical. Different d imensions m a y no t 
coincide in the case of self-affine fractals (which tu rn 
into themselves on affinity t ransformat ion , i.e. on axial 
extension with different coefficients) [7]. 

One of the most striking manifes ta t ions of fractal 
s t ructure is the existence of solid states of very low 
density. U n d e r certain condi t ions , fractal aggregates can 
jo in together u p o n contact to form gels and aerogels [11]. In 
this s i tuat ion, fractal proper t ies of the s t ructure are 
typically apparen t in a scale range limited from below 
by the size of part icles a0 forming the aggregate and from 
above by the size of initial fractal clusters Such s tructures 
are te rmed uniform clusters. Particles a0 are normal ly sized 
l - 1 0 n m whereas the aggregate size varies from 10 to 
1000 nm. As a rule, fractal d imension lies in the range of 
D = 2-2.9 depending on the regime of aggregate forma
t ion. Evidently, the density of such mater ia l is defined by 

'-"•(sT- i3) 

Therefore, the density of a mater ia l at sufficiently large £ 
values and D < d m a y be significantly lower t han the 
density of each const i tuent part icle taken alone. Such 
mater ia ls are k n o w n to be formed by sintering meta l 
powders . 

Ano the r class of mater ia ls with uni form fractal s t ructure 
is the a m o r p h o u s polymers . Their fractal proper t ies are 
apparen t on scales exceeding the size of monomer i c 
molecules, and are limited from above by a scale of several 
tens of Angs t roms . The shape of the fractal curve is intrinsic 
even in a single linear polymer molecule subject to 
accidental link displacements whereas ramified polymeric 
molecules give rise to lattices resembling those which 
underl ie fractal aggregates of gels composed of m a c r o 
scopic particles. 

F o r a lmost all real fractal mater ia ls , it is possible to 
evaluate the correlat ion density function C(R) ~ 
(p(r + R) p(r)), i.e. the possibili ty (averaged over all 
part icles and dimensions) of finding a part icle at a dis tance 
R from the given one. Clearly, for fractal mater ia ls 

C(R)~RD~d. (4) 

The pr incipal me thod for the evaluat ion of the correla
t ion density function is to measure the angular dependence 
of scattering for waves of an appropr i a t e length. Almos t all 
current ly k n o w n fractal s t ructures are apparen t on scales 
be low one micrometer . Therefore, sufficiently short waves 
beyond the visible wavelength spectrum are suitable for the 
evaluat ion. Usual ly analysis of x-ray or neu t ron scattering 
is used for the purpose . The expression for density 
correlat ion leads directly to the following expression for 
the angular dependence of scat tering intensity: 

I{q) ~ q~D , (5) 

where the absolute value of the wave scattering vector is 
q = 2k s in (0 /2) . Fig. 2 shows results of de te rminat ion of 
the angular dependence of light or x-ray scat tering for a 
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Figure 2. Angular dependence (dependence on scattering wave 
number q) of scattering intensity of light (for wave numbers in the 
range of 0.0001-0.001 1/A) and X-rays (for wave numbers 0 . 0 1 -
0.1 1/A) in SiC>2 colloid aggregates [35]. The entire range of wave 
numbers is overlapped on scattering for two samples of solutions with 
different solvent composition. Crossover from scattering on a fractal 
structure with dimension D = 2 . 1 2 to that on particles with smooth 
surfaces (I ~ q~4) occurs when the scattering wave number is \/a, 
where a — 27 A is the particle size. 

fractal s t ructure formed by S1O2 part icles in a colloid 
solut ion [35]. Accord ing to these da ta , the fractal 
dimension of the system is D = 2.12. 

F o r all tha t , in terpre ta t ion of scat tering da ta is some
wha t ambiguous and involves addi t iona l assumpt ions 
concerning the s t ructure of mat te r . It is necessary to 
distinguish between substances with the mass fractal 
s t ructure similar to tha t of the above aggregates and 
p o r o u s substances with inner fractal surfaces. Such sub
stances differ in te rms of the relat ionship between the 
exponents of angular dependence of scat tering and fractal 
d imensions [58] (this issue is discussed at greater length in 
Section 4). The angular dependence was also repor ted to 
have a power-l ike form in the case of power- law dis t r ibu
t ion of b o t h pores and part icles by size. 

The v o l u m e - d e n s i t y relat ionship accounts for the 
impossibil i ty of us ing con t inuous med ium models in which 
density for physically infinitesimal volumes can be u n a m 
biguously determined. The same is t rue of m a n y other 
pa rame te r s normal ly evaluated to describe media in 
con t inuous med ium models , e.g. elastic modul i , electrical 
conductivi ty, etc. Therefore, b o t h scattering da ta and scale 
dependences of these pa rame te r s are needed to confirm the 
validity of s t ructura l models of fractal mat te r . Proper t ies of 
fractal aggregates appear to be fairly well explained by 
ra ther a simple aggregat ion mode l referred to as diffusion-
limited aggregat ion ( D L A ) which was suggested in 1981 
[59]. F o r m a t i o n of gels and polymers m a y be described by 
the percola t ion t ransi t ion mode l (see Sections 2.3.2 and 
2.3.3). The use of these simple models to s tudy generat ion 
and further g rowth of s t ructures tha t in tu rn give rise to new 
ones of appropr i a t e fractal d imension allowed quant i ta t ive 
character isa t ion of var ious proper t ies of real fractal 
mater ia ls . 
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The p rob lem of fractal aggregates of microscopic 
part icles appears to have direct bear ing on the proper t ies 
of ball l ightning, one of the mos t enigmatic objects of the 
microscopic wor ld [ 6 0 - 6 2 ] . The most adequa te mode l of 
bal l l ightning currently available is the fractal bal l mode l 
which assumes tha t the bal l is an aggregate of fractal 
filaments [62]. F rac t a l filaments are formed of nanomete r 
part icles in a s t rong electric field with a dist inguishing 
direction in the space. This accounts for the difference 
between fractal filaments and aggregates formed under 
isotropic condi t ions . In the absence of the electric field, 
this is a nonequi l ibr ium system with high surface energy 
which m a y be released dur ing a the rmal b low up [62, 63]. 

F r ac t a l proper t ies of mode l s t ructures are directly 
related to the m o d e of their generat ion. Unexpec ted results 
have been obta ined in Ref. [64] where rapid exper imental 
freezing was used to s tudy the geometr ical s t ructure of a 
composi te emulsion obta ined by simple v igorous mixing of 
two liquids. F rac t a l droplet dis t r ibut ion in the dispersed 
phase has been shown to occur in a certain scale range . The 
scale of fractal behaviour is dependent on the fraction of 
occupied vo lume of the dispersed phase . This dependence is 
easy to explain on the assumpt ion tha t droplets in the 
dispersed phase jo in together to form a percola t ion cluster. 
Interestingly, this s t ructure is likely to be preserved in the 
case of casual mo t ion of the droplets . 

The p rope r ty of scale invar iance of f luctuat ions of the 
order pa rame te r dur ing second order phase t rans i t ions 
k n o w n from statistical physics can also be formulated in 
te rms of fractal s t ructure. Nevertheless , a consistent 
statistical app roach to the p rob lem does no t necessarily 
require fractal concepts to be used. The relat ionship 
between fluctuation s t ructure and fractality have recently 
been revealed in Ref. [65]. 

2.2 Structures of processes 
Frac t a l approaches to the analysis of processes are diverse 
because fractal analysis is applicable to a variety of 
geometr ical objects associated with the process. In a 
specific case, the plot for a pa ramete r of the process 
m a y be regarded as fractal. Also, a set of intercept ion 
po in t s where a var iable takes a given value m a y be fractal. 
The square of the ampl i tude of the process m a y be 
considered to be the poin t density with fractal s t ructure on 
the t ime axis. General ly speaking, densities of different 
pa rame te r s which characterise the process can show fractal 
dis t r ibut ion in space and t ime. 

One of the most efficient approaches to fractal analysis 
of processes is based on the assumpt ion tha t the process 
originates from a dynamic system of finite dimension 
exhibit ing chaot ic behaviour . The trajectory of such a 
system in phase space is a fractal set te rmed the s t range 
a t t rac tor . Analysis of the process initiated by such a system 
is based on the Takens a lgor i thm [66] which allows the trail 
of the system in phase space to be reconst ructed from the 
t ime-dependence of a single var iable associated with the 
system. The theoret ical and pract ical aspects of the analysis 
of processes which are due to f inite-dimensional chaot ic 
dynamics are described in detail in n u m e r o u s tex t -books 
and reviews (see for instance Refs [16, 20]). The following is 
a brief discussion of this me thodo logy . 

In accordance with the Takens a lgor i thm, a po in t in 
phase space is identified by a sequence of readings at n t imes 
separated by a fixed interval. The trajectory in phase space 

is formed when the original poin t moves a long the t ime axis. 
The reconst ruct ion a lgor i thm is easy to unde r s t and bear ing 
in mind tha t for the process or iginat ing from a system 
described by an ord inary differential equat ion of the nth 
order, coord ina tes in phase space are defined by a set of 
ampl i tudes and their derivatives of up to the (n — \)th 
order . In the case of discrete t ime-readings, a set of 
ampl i tudes and their (n — \)th derivatives is related to a 
set of n successive readings of the ampl i tude t h rough simple 
nondegenera te t rans format ion . 

Eva lua t ion of the fractal d imension of the trajectory in 
phase space reconst ructed according to the Takens a lgo
r i thm allows characterist ics of the process to be found. In 
the first place, it makes possible the de terminat ion of the 
dimension of the dynamic system. If the n u m b e r of 
successive readings n is be low a certain value, then the 
measured fractal dimension equals n. At higher n, the 
dimension no longer changes with increasing n. This is 
the case when n exceeds 2 d + l , where d is the t rue 
dimension of the trajectory. By const ruct ing the depend
ence of fractal d imension on number n, it is possible to 
obta in the lowest value for the dimension of the dynamic 
system. A fractional fractal dimension suggests the presence 
of a s t range a t t rac tor in its phase space. 

F r ac t a l proper t ies of wave processes are likely to emerge 
if the emit t ing system is governed by chaot ic dynamics . The 
wave ampl i tude m a y be regarded as one of the dynamic 
variables, and fractal analysis m a y be applied to either t ime 
or space-dependent variabil i ty using the above a lgor i thms. 
Examples of dynamic systems with chaot ic dynamics which 
emit waves (sound) are cavitat ion bubbles generated by a 
s t rong sound in water [67, 68] and an e lect rodynamic 
loudspeaker functioning in the nonl inear regime [69]. 

It should be noted tha t the evaluat ion of the fractal 
dimension of a trajectory in phase space reconstructed in 
compliance with the Takens a lgor i thm is strictly speaking 
insufficient for an u n a m b i g u o u s conclusion abou t the finite 
dimensional i ty of the system giving rise to the process . It is 
the case tha t the fractal dimension of the trajectory remains 
constant even in the case of a t ruly chaot ic process with a 
power- law power spectrum, provided the number of r ead
ings n exceeds a critical value [70]. To distinguish such a 
case, one needs to k n o w tha t the signal is generated by a 
dynamic system of finite dimension or have addi t iona l 
measurements made , e.g. the L y a p u n o v n u m b e r s [16], 
which characterise the divergence ra te of trajectories 
s tar t ing from the nea rby po in t s in phase space. The 
finiteness of the L y a p u n o v n u m b e r s indicates the dynamic 
origin of the trajectories. F o r t ruly r a n d o m signals, these 
exponents are infinite. In the wel l -known works [12, 13], 
fractal proper t ies of the phase trajectory were first u n a m 
biguously associated with the presence of a set of posit ive 
L y a p u n o v ' s exponents (the K a p l a n - Y o r k e hypothesis) . 
Resul ts repor ted later in Ref. [70] indicate tha t this 
condi t ion is no t always satisfied. 

M o r e general implicat ions of fractal analysis are 
apparen t in the examinat ion of r a n d o m processes of 
n o n d y n a m i c origin. The t rad i t iona l app roach to the 
analysis of r a n d o m processes is based on the measurement 
of correlat ion functions or of power spectra (reciprocal 
spectra), which is virtually the same. The fundamenta l 
principles of this approach , i.e. the correlat ion theory of 
r a n d o m processes, are strictly mathemat ica l . Correla t ive 
measurements al low de terminat ion of the second m o m e n t s 
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of one and two-poin t probabi l i ty dis t r ibut ions . Beyond the 
Gauss ian processes, the complete statistical descript ion 
requires evaluat ion of probabi l i ty dis t r ibut ions or 
m o m e n t s of higher order if there are any, with an ensuing 
increase in the vo lume of measurements . Tak ing into 
account the thi rd m o m e n t s d e m a n d s tha t three-point 
correla t ions (bi-spectra), be determined. If the fourth 
m o m e n t s are considered, it is necessary to determine 
four-point correla t ions (tri-spectra), etc. Evidently, as the 
order of m o m e n t s t aken into account grows, there are m o r e 
doub t s regarding simplification of the descript ion of 
r a n d o m processes by the use of averaged values. M o r e 
over, high m o m e n t s do no t always have explicit physical 
meaning , unl ike correlat ion functions or power spectra. In 
this context , it is impor t an t to evaluate a small number of 
variables to which it is possible to assign certain sense. Such 
pa rame te r s include fractal d imensions of var ious geometr ic 
objects associated with the signal. This is not a universal 
approach , bu t it m a y be applied to a b r o a d class of 
processes showing the p rope r ty of scale invariance in a 
certain range of pa ramete r s . Besides, dispersion and even 
the very first m o m e n t of a process m a y be nonexis tent in 
some cases of pract ical impor tance when the process is a 
sum of smaller cont r ibu t ions and its probabi l i ty dis t r ibut ion 
is in fact the limit dis t r ibut ion of the sum of r a n d o m values. 
In this sense, the Gauss ian processes represent a specific 
case for which the finite dispersion exists. 

F r ac t a l analysis is equally applicable to Gauss ian 
processes. Even the simplest of the r a n d o m processes, 
i.e. Brownian mot ion , s imulated by a n o r m a l process 
with independent increments (the Wiener process) has 
fractal characterist ics. It is a self-transforming process 
provided t ime and space scales s imultaneously undergo a 
M o l d and Z ^ - f o l d change respectively. The fractal 
dimension of the plot for the Wiener process is D = 3 /2 , 
while the trajectory of the Brownian mot ion on the surface 
and in space has dimension D = 2. M a n d e l b r o t was the first 
to poin t out a b r o a d class of Gauss ian processes exhibit ing 
fractal proper t ies . They show the following dependence of 
increment dispersions on the t ime interval: 

([X(0)-X(t)]2)~t2H , (6) 

where H ^ 1/2 and lies in the interval 0 < H < 1. L o n g 
before the discovery of fractals, processes with p rope r ty (6) 
were recorded by Hurs t in a s tudy of annua l f luctuat ions of 
river flow (see for instance Ref. [9]). The latter au tho r 
found tha t exponent H is the same for different rivers and 
equals 0.73. Exponen t H is te rmed the H u r s t exponent . 
Gauss ian processes with the increment dispersion (6) are 
referred to as processes of generalised Brownian mot ion . 

The local dimensional i ty of the plot for process (6) is 
D = 2 — H whereas the fractal d imension of the trajectory 
of mo t ion in space of dimension N, with the coordina tes 
described by independent processes (6), is given by 

D = mm(N, l/H) . (7) 

This is precisely the case when the trajectory in phase space 
has finite dimension for an infinitely-dimensional system. 

F rac t a l proper t ies of the trajectory for a dynamic system 
exhibit ing chaot ic behaviour are unre la ted to the proper t ies 
of scale invar iance of the signal. Locally self-similar 
doma ins of the a t t rac tor m a y include tempora l ly r emote 
readings. This is the key difference between dynamic chaos 
and t rue r a n d o m signals. F r ac t a l proper t ies of the trajectory 

for a purely r a n d o m process are manifested when the 
process exhibits self-similarity proper t ies . As a rule, they 
occur concurrent ly with a small inner scale t$ and a higher 
outer scale T. In the range of t$ < t < T, scaling proper t ies 
of process increments are apparen t on the t ime interval T : 

([X(t + T)-X(t)]2)~TP . (8) 

A n example of such processes is provided by r a n d o m walks 
(obeying the stable dis t r ibut ion law) on t ime and distance 
scales exceeding the t ime step and the e lementary step of 
the walk respectively. There is a great variety of such 
processes with exponent P differing from P = 1 and even 
exceeding 2 (these processes are referred to as a n o m a l o u s 
diffusion processes). One of the first wave p rob lems 
per ta in ing to a n o m a l o u s diffusion was examined in 
Refs [43, 44]. It concerns excitation transfer in a resonant 
med ium with a uniformly widened line. The probabi l i ty 
dis t r ibut ion of p h o t o n absorp t ion by an a tom after it has 
been emitted by another (excited) a tom has no finite 
dispersion. Accordingly, there is no dispersion of the length 
of the p h o t o n ' s free pa th . In the limit of large distances, 
r a n d o m walks governed by the law of stable dis t r ibut ion 
are described by Eqn (8) with P > 1. 

Var ious fractal s t ructures are inherent in h y d rodynamic 
turbulence. In the first place, this is t rue of the s t ructure of 
energy dissipation fields. M a r k e d intermit tency of an energy 
dissipation field eventually results in the concent ra t ion of 
dissipation in a negligibly small vo lume occupied by 
turbulent mot ion . It ha s been shown tha t the correlat ion 
function of dissipation density has the power- law form [71, 
72]; hence, dissipation concentra tes on a fractal set [73]. The 
dimension of this set is 2 . 6 - 2 . 8 . Later , m o r e accura te 
measurements demons t ra ted tha t the dissipation energy 
field cannot be described by a single fractal dimension, 
and is in fact a mult ifractal [48] (see Section 5 for m o r e 
details abou t multifractals) . The impur i ty concent ra t ion in a 
turbulent flow has been repor ted to have a similar s t ructure 
[74]. Also, fractality is inherent in the interface separat ing 
turbulent and non tu rbu len t regions of the s tream [75] and 
the trajectory of particles in a r a n d o m flow [76]. The large-
scale s t ructure of tu rbulen t currents in the ocean and 
a tmosphere (in excess of the inertial interval) appears to 
have fractal proper t ies [18]. 

2.3 Fractal structure models in physics 
It should be b o r n e in mind tha t the fractal s t ructure of 
mat te r is virtually u n a m e n a b l e to theoret ical investigation 
by convent ional m e t h o d s employed in statistical physics. 
A n exception is p robab ly fractals in r a n d o m walk models 
and in the s t ructure of polymeric chains (the F lo ry theory, 
see for instance Ref. [21]). M a n y basic studies on fractal 
s t ructures are performed using compute r models . F r o m this 
viewpoint , a fractal descript ion of s t ructures m a y be 
considered supplementary to the results obta ined by 
s t andard statistical me thods . On the other hand , advanced 
statistical characterist ics of fractal s t ructures are u n k n o w n . 
This p rob lem can in principle be solved by in t roducing a 
number of Reny i d imensions or by the descript ion of 
fractal s t ructures in te rms of multifractals, which is 
virtually the same. The mos t popu la r models of fractal 
s t ructures in physics are the percola t ion cluster model , the 
mode l of clusters formed by diffusion-limited aggregat ion, 
and r a n d o m walks wi thout intersection. F r ac t a l proper t ies 
of fields and signals are described using r a n d o m walk 
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models , e.g. summarised Brownian mot ion and 'Levi 
flight', leading to processes with fractal t ime and to 
superdiffusion processes. 

2.3.1 Random walks. R a n d o m walk is a ma themat ica l 
mode l to s imulate part icle displacements under the effect of 
r a n d o m forces. It is pe rhaps the simplest and mos t 
advanced mode l in statistical physics leading to fractal 
s t ructures . Plots of part icle shifts versus t ime and 
trajectories are fractal curves. 

Major appl icat ions of the r a n d o m walk mode l include 
the analysis of fractal proper t ies of r a n d o m signals and 
waves. Also, its appl icat ion to the descript ion of fractal 
forms of mater ia l bodies has been repor ted , in the first 
place, to characterise r a n d o m surface reliefs and shapes of 
polymeric molecules. In the latter case, the mode l of 
r a n d o m self-avoiding walks proved especially useful for 
interpret ing exper imental da ta . 

The b roades t class of models current ly in use for 
r a n d o m processes showing fractal behaviour is related to 
the classical Wiener mode l of Brownian mot ion . This mode l 
describes processes for which all pa rame te r s are derived 
from two postula tes : (a) increment of the process dur ing a 
given t ime interval has a n o r m a l dis t r ibut ion of p robab i l 
ities with average zero, (b) increments on nonover lapp ing 
t ime intervals are statistically independent . In this case, the 
mean square of the displacement x for t ime t has the form 

(x2)=KDt, (9) 

where KD is the diffusion coefficient. It is only for this 
process out of all the ones with independent displacements 
tha t the trajectory is con t inuous with uni t probabi l i ty . At 
the same t ime, neither the trajectory nor the plot for the 
Wiener process is subject to differentiation. Expression (9) 
implies self-similarity of the process and the fractal 
proper t ies as described above. 

General isa t ion of the Wiener process leading to other 
fractal events implies cancellat ion of either the condi t ion of 
independent increments on nonintersect ing t ime intervals or 
their n o r m a l dis t r ibut ion. In the former case, processes with 
m e m o r y arise, e.g. so-called generalised Brownian mot ion 
and self-avoiding walks . In the latter case, there are the 
'Levy flight' and superdiffusion processes. 

The n o r m a l dis t r ibut ion of the increments on the 
assumpt ion tha t an increment of the process on the t ime 
interval t satisfies condi t ion (6) (with exponent H differing 
from 1/2) leads to r a n d o m walks with memory . 

A simple mode l displaying such behaviour does no t lead 
beyond the Gauss ian processes. This is the generalised 
Brownian mot ion mode l XH(t) ob ta ined by linear t r a n s 
format ion of the Wiener process Xx/2(t) of the form [9]: 

XH(t)-XH(0)=( K(t-tf)dXl/2(tf) , (10) 
J—oo 

where the kernel has the following power dependence on 
the interval t — t'\ 

K(t-t')~(t-t')H-l/2 (11) 

(with the condi t ion tha t measures are taken to ensure 
convergence of integral (10), for example by restrict ing the 
lower b o u n d ) . It is clear tha t the cont r ibut ion of different 
tempora l ly separated po r t ions of the initial process to the 
generalised Brownian mot ion m a y be either great or small 
depending on the H value. On the assumpt ion tha t 

XH(0) = 0, it immediately follows from expression (6) 
tha t for the long-term correlat ion of the process [9] 

< - ^ ( - ^ ( 0 > = 2 2 » - l _ 1 . ( 1 2 ) 

At H = \/2 ( the Wiener process) , correlat ion is absent . 
There is posit ive correlat ion at H > 1/2 and negative at 
H < 1/2. Therefore, the aim of general isat ion is to neglect 
the assumpt ion of independent increments on self-avoiding 
intervals; in such a case, the process has memory . At 
H > 1/2, the process is persistent whereas at H < 1/2, it is 
antipersistent . 

The p rope r ty of m e m o r y for a generalised Brownian 
process has ano ther useful formulat ion [77]. This s tudy 
examined correlat ion between the sums of signal levels on a 
sequence of two adjacent t ime intervals in relat ion to the 
number of separa t ing intervals. At H < 1/2, the correlat ion 
was low even for ne ighbour ing intervals whereas at 
H > 1/2, it was rx = 22H~l — 1 for the adjacent intervals 
and slowly lowered according to the power law with an 
increase in the number of separat ing intervals. It should be 
emphasised tha t this p rope r ty showed no dependence 
whatever on the summat ion interval. Such a behaviour 
of the sums suggests the possibili ty of a s i tuat ion in which it 
is impossible to obta in reliable da ta on average pa rame te r s 
of the process within a limited per iod of measurements . In 
such a case, de te rminat ion of exponent H is an indispens
able element of the evaluat ion in the statistical proper t ies of 
the process . 

R a n d o m self-avoiding walks retain p rope r ty (6) with 
H < 1, bu t they are no t Gauss ian processes. Such walks 
have m e m o r y of a m o r e complex s t ructure as compared 
with (10), and their increments are not independent . 
However , their fractal characterist ics are the same as in 
generalised Brownian mot ion . The fractal d imension of the 
trajectory is 1 / / / , and the plot d imension is 2 — H. 
Numer i ca l values of H depend on the dimension of space 
d in which the process occurs. Accordingly, for d < 4 
H = 3 / ( d + 2), the fractal d imension of the trajectory is 
D = (d + 2 ) / 3 . The mos t meaningful physical in terpre ta t ion 
of such a process is long polymeric molecule r a n d o m l y 
located in the med ium. The dependence of the molecular 
size on the number of links with due regard for their 
repulsion (absence of intersection) was first derived by 
F lo ry (see Ref. [21]) by the m e t h o d s of statistical physics 
using free energy minimisat ion which included the energy of 
link interact ion. A similar result was obta ined using the 
r a n d o m self-avoiding walk model . This is one of few cases 
where statistical physics explicitly leads to fractal s t ructures . 

A n o m a l o u s diffusion processes with increments satisfy
ing E q n (8), with ft > 1 (superdiffusion processes), cannot 
be described using the Gauss ian mode l (10). Formal ly , such 
processes are subject to the diffusion equat ion with the 
d isplacement-dependent diffusion coefficient. However , this 
leads to smooth non-fractal trajectories. On the other hand , 
observat ions of turbulent diffusion revealed fractal p rope r 
ties of the par t ic les ' t rajectory [76] which is in conflict with 
the t rad i t iona l descript ion of diffusion. Ref. [76] conta ins 
numer ica l analysis of the mode l of part icle mo t ion in a 
s t ream with the fractal flow function which leads to 
fractality of the par t ic les ' t rajectory. Ano the r app roach 
using a n o m a l o u s diffusion models has been developed in 
Ref. [78]; it is based on the theory of processes with 
s ta t ionary independent bu t non-Gauss i an increments . 
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It has a l ready been ment ioned tha t the Wiener process is 
dist inguished from processes with independent increments . 
The plot (and the trajectory) of this process is con t inuous 
with uni t probabi l i ty . This condi t ion is fulfilled if and only 
if the process is n o r m a l [79]. Neglect of normal i ty of 
increments inevitably results in b roken trajectories. Neve r 
theless, processes with non -Gauss i an increments m a y have 
useful appl icat ions . General ly speaking, the assumpt ion of 
the Gauss ian na tu re of the processes under investigation is 
normal ly based on the use of the central l imiting theorem. A 
r a n d o m process is considered to be a sum of cont r ibu t ions 
of a n u m b e r of r a n d o m items. Owing to this, the Gauss ian 
na tu re of the process follows from the central l imiting 
theorem. However , this is t rue when r a n d o m items are 
dis tr ibuted with finite dispersion. 

Otherwise, the result ing process is no t necessarily a 
Gauss ian one. Levy-type stable dis t r ibut ions [79] const i tute 
a generic class of l imiting dis t r ibut ions (i.e. d is t r ibut ions of 
sums of a large number of independent r a n d o m items) 
showing self-similar proper t ies . Such dis t r ibut ions possess 
the following similarity p roper ty : 

tV«Xl+sl/aX2 = (t + s)l/"X , (13) 

where X, Xi9 X2 are independent variables with similar 
stable dis t r ibut ion, t, s are any posit ive numbers , and the 
label = means tha t r a n d o m values have similar dis t r ibu
t ions. 

Exponen t a lies in the range 0 < a ^ 2. At a = 2, the 
n o r m a l Gauss ian process with finite dispersion occurs; then, 
p rope r ty (13) states the dispersion summat ion rule and is 
equivalent to E q n (9). At a < 2, there is a var iable with 
infinite dispersion, and only m o m e n t s of the order of less 
t han a exist. A r a n d o m walk process with independent 
displacements subject to the Levy dis t r ibut ion law with 
exponent a < 2 is called the 'Levy flight' [78, 80]. D u e to the 
infinite displacement dispersion, measurement of this 
var iable dur ing a finite t ime interval m a y give any result 
(an ana logue is the sum of a divergent series on pe rmu ta t i on 
of its terms) and is therefore unsui table to characterise the 
process . In this s i tuat ion, measurement of fractal dimension 
is crucial. The trail of the Levy flight m a y be represented as 
a set of tu rn ing po in t s connected by rectilinear j u m p s . In 
two-dimens iona l phase space, the trajectory of a part icle 
with the coordina tes described by stable processes with 
exponent a has fractal dimension of the tu rn ing po in t s 
a < 2. W h e n a = 2, the usua l Brownian process takes place 
in which all the po in t s are tu rn ing poin ts since the process is 
con t inuous and the derivative is absent . 

The Levy flight m a y give rise to a mode l of a n o m a l o u s 
diffusion processes with finite dispersions of increments for 
a given t ime interval . F rac t a l proper t ies of the trajectories 
of these processes coincide with those of the Levy flight 
trails [78, 80]. Suppose for example tha t a process is built up 
of independent j u m p s , with the j u m p length hav ing Levy-
type dis t r ibut ion, with j u m p dura t ion dependent on the 
j u m p length and growing with it. Then , the increment 
dispersion within a given t ime interval becomes finite [78], 
the trajectory in phase space preserves its shape, and a new 
fractal object appears : t empora l b reak-po in t s of the 
derivative of the process. This provides an example of a 
process with fractal t ime [80]. F o r processes of this type, the 
exponent in E q n (8) m a y exceed unity. 

2.3.2 Percolation clusters. The term percola t ion (permea
t ion, leakage, filtering) is current ly adop ted in physics to 
denote a certain class of p h e n o m e n a investigated by the 
theory of percola t ion . 

The theory of percola t ion is actually a ma themat ica l 
theory per ta in ing to stochast ic geometry. Major p rob lems 
of the theory of percola t ion are lattice p rob lems of b o n d s 
and nodes . Consider a regular (periodic, with symmetry) 
spatial or flat lattice of nodes each b o u n d to its immedia te 
neghbours . A typical physical mode l is a lattice of 
resistors [81]. W h e n all the resistors are intact , each 
n o d e is electrically connected with an infinite number of 
other nodes , and the lattice possesses finite conductance . 
Suppose tha t a fraction (concentra t ion) 1 — p of r a n d o m 
b o n d s are b roken and the intact b o n d fraction is small. 
Then , lattice conduct ivi ty is zero, tha t is the probabi l i ty for 
a n o d e to be connected with an infinite number of other 
nodes (i.e. to be long to an infinite cluster) is vanishing. This 
probabi l i ty will remain zero unt i l the fraction of intact 
b o n d s 1 — p a m o u n t s to a critical value pc referred to as the 
percola t ion threshold. At p > pc, there is the nonvan ish ing 
probabi l i ty tha t a n o d e belongs to the infinite cluster 
associated with the finite conduc tance of the lattice. The 
p rob lem of de termining the threshold number of intact 
b o n d s is the p rob lem of bond ing . In the n o d e p rob lem, all 
the b o n d s are considered intact while the nodes are 
' damaged ' , tha t is a n u m b e r of r a n d o m l y located nodes 
are nonfunct ioning (i.e. b o n d s arising from such nodes are 
disconnected) . Percola t ion thresholds in the p rob lems of 
b o n d s and nodes are different. Also, the percola t ion 
threshold depends on lattice dimension, the number of 
nearest ne ighbour elements, and, in a b roade r context, the 
s t ructure of e lementary cells in the lattice. 

Nevertheless , different values app roach ing the percola
t ion threshold exhibit surprisingly universal pa t t e rns of 
behaviour . To begin with, a fraction of nodes p^ be longing 
to an infinite cluster above the percola t ion threshold shows 
a universal dependence on the difference between the intact 
b o n d (node) concent ra t ion and the threshold concent ra t ion: 

POO~(P-PC)P , (14) 

or, after in t roduct ion of % = (p — pc)/pc, it is possible to 
wri te down p^ ~ T ^ . Exponen t f$ does no t depend on the 
lattice s t ructure and is determined by the space dimension 
alone. F o r two-dimens ional lattices (5 = 5 /36 and for th ree-
dimensional ones ft = 0.4. 

It t u rns out tha t the infinite cluster above the percola
t ion threshold has fractal s t ructure on scales no t greater 
t han a certain value £. This scale shows a universal 
dependence on the difference between the concent ra t ion 
of intact b o n d s (nodes) p and the threshold value pc: 

£ ~ M ~ V , (15) 
where exponent v, similar to depends only on lattice 
dimension: v = 4 / 3 for a two-dimens ional lattice and 
v = 0.88 for three-dimensional one. Expression (15) is 
equally meaningful for concent ra t ions be low the threshold 
value. In such cases, £ is the characteris t ic size of finite 
clusters. Scale { is infinite on precisely the percola t ion 
threshold, where the concent ra t ion of b o n d s (nodes) 
belonging to the infinite cluster is vanishing. In other 
words , the infinite cluster density is zero as should be 
expected for fractal clusters in agreement with formula (2). 
A b o v e the percola t ion threshold, scale { is finite, and 
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infinite cluster density is determined by the density of 
const i tuent fractal f ragments of this cluster on scale 

P ~ i D ~ d , (16) 

where D is the fractal dimension of the cluster on scales 
be low On the other hand , expression of T from Eqn (15) 
t h rough { and subst i tut ion into E q n (14) yields 

while compar i son of the last expression with Eqn (16) 
allows the equat ion for fractal dimension of cluster D to be 
found in te rms of the universal exponents v and 

D = d - ^ . (17) 

Therefore, fractal dimension is also determined by 
lattice dimension alone and equals 1.89 and 2.54 for 
two-dimens iona l and three-dimensional lattices respec
tively. Fig. lb presents an example of the compute r 
mode l for a percola t ion cluster obta ined for the p rob lem 
of nodes on a square lattice. 

Appl ica t ions of the percola t ion cluster mode l for the 
descript ion of fractal s t ructures of mat te r are diverse. The 
first appl icat ion was suggested by D e Gennes [82]. 

D e Gennes p roposed a simple lattice mode l of po lymer 
isation in solut ions. H e considered m o n o m e r s r a n d o m l y 
located in the nodes of a lattice. The react ion between 
m o n o m e r s in the adjacent nodes resulted in b o n d forma
t ion. Polymer synthesis was exactly ana logous to 
percola t ion t ransi t ion in the p rob lem of nodes and 
occurred when the concent ra t ion of m o n o m e r s reached a 
certain threshold value. M o n o m e r s tha t did no t react 
dur ing the p repa ra t ion of the polymer were washed out . 
Therefore, the result ing polymer molecule had fractal 
s t ructure. This mode l has provided the basis for the 
development of further lattice models s imulat ing proper t ies 
of fractal mater ia ls . 

The percola t ion cluster mode l is universal owing to the 
fact tha t a percola t ion cluster inevitably arises from 
r a n d o m l y dis tr ibuted part icles provided their concen t ra 
t ion is sufficiently high. However , the relative number of 
part icles tha t stick together to form the cluster, which can 
be found from expression (14), is not very large at threshold 
concent ra t ion or near it. R e m o v a l of part icles tha t do no t 
adhere to the cluster results in a t rue fractal s t ructure. 
Ano the r ou tcome of percola t ion t ransi t ion in a nonperco la -
t ion si tuat ion is percola t ion in a concent ra t ion gradient . 
The agent level in the diffusion front changes from zero at a 
dis tance from the source to uni ty close to it. At a certain site 
in the front, the concent ra t ion of the diffusing agent equals 
the threshold concent ra t ion of percola t ion. N e a r this site, 
the agent gives rise to fractal clusters [83]. 

2.3.3 Fractal aggregates. Aggregat ion is one m o r e mecha 
nism for generat ing fractals in mat te r which involves all 
available part icles in the format ion of a fractal s t ructure . 

Rea l fractal aggregates are formed by adhesion of solid 
part icles which arise under appropr i a t e condi t ions in 
solut ions and vapour s of certain substances. The mos t 
il lustrative examples are gel format ion in silicon dioxide 
solut ions and format ion of par t icula te soot in a flame [11]. 

The simplest mode l of fractal aggregate growth is 
diffusion-limited aggregat ion ( D L A ) [59]. The mode l is 
as follows. Suppose tha t a pr imer cluster (or even an 

isolated particle) is placed in a certain vo lume and tha t 
other part icles are injected into the same volume one after 
ano ther to move r a n d o m l y a long the Brownian trajectories. 
Part icles which collide with the cluster adhere to it, and in 
this way the cluster grows. Fig. l a shows a cluster thus 
grown on a surface in a compute r model . 

Ano the r model , i.e. cluster-cluster aggregat ion, pos tu 
lates s imul taneous diffusion of m a n y part icles in a volume. 
The part icles stick together u p o n touch to form n u m e r o u s 
clusters. The clusters thus formed are also involved in 
diffusion and give rise to bigger s t ructures by adhesion. 
General ly speaking, there are a lot of aggregat ion models 
differing in the mo t ion pa t te rns , the l ikelihood of adhesion, 
and the interact ion radius . These models have been 
reviewed in Refs [11, 84]. The c o m m o n feature of all 
such models is tha t the result ing clusters are fractals, 
tha t is statistically self-similar aggregates with noninteger 
fractal dimension. M a s s M(R) of a fractal aggregate in a 
vo lume with rad ius R is defined by Eqn (1). 

Aggregat ion models are categorised on two criteria: the 
shape of trajectories of travell ing part icles and the number 
of clusters involved in the process [11]. 

Us ing the first criterion, aggregat ion is classified as 
arising from rectilinear mo t ion of part icles and from their 
r a n d o m walks . Also, it is possible to in t roduce m a n y 
trajectories with different fractal d imensions in the range 
1 - 2 . Dimens ion 1 cor responds to straight trajectories and 
dimension 2 to Brownian trajectories. 

Based on the second criterion, two extreme cases can be 
dist inguished: particle-cluster aggregat ion and cluster-clus
ter aggregat ion. In the former case, an isolated growing 
cluster is su r rounded by a number of travell ing part icles 
tha t adhere to it on collision. In the latter case, the vo lume 
conta ins m a n y clusters tha t stick together to form bigger 
ones. 

A p a r t from these differences, the probabi l i ty of adhesion 
on touch in all the above processes m a y also differ. Unl ike 
percola t ion models , aggregat ion models do no t imply 
universal dimensional i ty. F rac t a l d imensions of clusters in 
different types of aggregat ion are variable. Moreover , in 
particle-cluster aggregat ion with rectilinear mo t ion of 
part icles, the result ing clusters are no t fractal, and fractal 
d imensions in two-dimens ional and three-dimensional 
spaces are 2 and 3. The smallest fractal d imensions occur 
in cluster-cluster aggregat ion with Brownian mot ion of the 
result ing clusters: 1.44 in the two-dimens iona l and 1.77 in 
the three-dimensional case [11]. 

3. Waves in fractal structures. Fractons 
In the case of real fractal mater ia ls , dispersion relat ions 
and expressions for elastic oscillation density in the fracton 
region ensue from scale dependences of elastic modu l i and 
density of the mater ia ls . Bo th early studies of the fracton 
region of the spectrum and m a n y ongoing numer ica l 
analyses are based on the examinat ion of the mode l 
equat ion for oscillations on fractal node lattices. 

A simple mode l expression for the wave ampl i tude on 
the nodes of a fractal lattice has the form: 

— ^2^ij(uj ~ ui) ' 08) 
j 

where Ktj = 1 if in te rnode b o n d s in the lattice remain intact 
(otherwise Ktj = 0) and a is a d imensional cons tant with the 
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sense of the inverted square of resonant frequency for a 
single b o n d . E q n (18) has been used in m a n y wave studies 
of fractal clusters (using lattice models) . 

In a one-dimensional case, E q n (18) cor responds to the 
k n o w n equat ion for longi tudinal chain oscillations 

fractal is associated with a mean displacement from the 

• 2ut + ut_ 

where the r igh t -hand side is the finite-difference expression 
for the Laplac ian . Certainly, in two-dimens iona l and three-
dimensional cases, the scalar equat ion (18) cannot describe 
lattice oscillations for the general mode l of elastic forces. 
Discussed be low is a mode l of isotropic elastic forces tha t 
allows E q n (18) to be used for the descript ion of elastic 
oscillations for the Car tes ian componen t s of node displace
ments . 

In the two-dimens iona l case, physical mean ing m a y be 
assigned to E q n (18) by assuming tha t masses m are located 
in the nodes of a lattice and each b o n d is a stretched spring 
(string) of length l0 and tensile stress T. If ut is the n o r m a l 
mass displacement with respect to the p lane , then E q n (18) 
describes t ransverse oscillations and the constant is 
a = l0m/T. Such a s i tuat ion m a y become real when all 
the b o n d s are intact , bu t it is not so for fractal clusters. 
Nevertheless , mode l (18) is widely used to s tudy the 
s t ructure of fractal oscillation states and appears to 
provide quali tat ively relevant results. 

3.1 Oscillations and diffusion on fractals 
The very first da ta to characterise eigenoscillations of 
fractals were obta ined by Alexander and Orbach in 1982 
[24]. Their s tudy was based on the ana logy between 
E q n (18) for elastic oscillations of fractals and the equat ion 
for r a n d o m walks , and on the fact tha t diffusion of fractals 
is subject to condi t ion (8) with the exponent ft < 1. 

Suppose tha t pt(t) is the probabi l i ty of finding a 
r a n d o m l y walking part icle in node / at t ime t. Vtj is the 
l ikelihood of t ransi t ion from node / to j for a given t ime 
interval (V = const, if the b o n d is intact and V = 0, if it is 
b roken) . Then , the following equat ion can be deduced for 
Pi(t): 

(19) 

Eigenvalues and eigenvectors of ope ra to r s act ing on pt 

and ut in the r igh t -hand sides of E q n s (18) and (19) 
coincide. In the case of oscillations, the eigenvalues 
cor respond to the squares of fractal oscillation. The 
dis t r ibut ion of the eigenvalues yields the frequency dis
t r ibut ion of oscillation states, and the above analogy with 
diffusion allows this dis t r ibut ion to be found wi thout 
solving the p rob lem of eigenvalues. This app roach has 
long been k n o w n regardless of fractal studies [85]. 

Let us express the solution of Eqn (19) for a walk 
s tar t ing from the /th node (with initial condi t ion 
Pk(Q) = Sik) in t e rms of the eigenvalues Xn and eigenvectors 
cpn = (cpl... cpn

t ...) of the opera to r in the r igh t -hand par t . 
Let us further represent the probabi l i ty of re turn ing back to 
the original n o d e after t ime t in the following form: 

oo oo 

Pa = ^2 e x p AW1 = ^2 e x p (~*nt) ((plf , (20) 
n=l n=l 

where al

n = ^2Sikq>l = cpn

t are coefficients of expansion of 
the initial condi t ion over eigenvectors. On the other hand , 
it is k n o w n (see for instance Ref. [10]) tha t walking on a 

original node r ~ t 1/(2+0) where © > 0 is the a n o m a l o u s 
diffusion exponent (in the case of an o rd inary lattice, 
0 = 0 and r ~ t1^2). A fractal cluster of rad ius r conta ins 
~ rD nodes . At any r after sufficiently long t ime t, the 
probabi l i ty for a part icle to occur in any node at a dis tance 
r from the original one becomes the same. Hence , 

P l , . ( 0 ~ r - D ~ r D / < 2 + e > (21) 

Summat ion of Eqn (20) over all nodes of the cluster and 
compar i son with E q n (21) yields (cpn are normal ised) : 

£ e x p ( - V ) ~ M - D / ( 2 + 0 > . (22) 

Wi th the use of one of the Tauber theorems [79], it 
immediately follows from expression (22) for the dis t r ibu
t ion density of eigenvalues at X -> 0 tha t v(X) ~ )f>/{2+©)-\^ 

F o r oscillations, X = co2 and dl = 2codco. Then, the 
dis t r ibut ion density of oscillation modes versus frequency is 

v H - f l ) 2 ^ 8 ' - 1 . (23) 

Alexander and Orbach found the fractal dimension to 
equal 

2D 
df = - - . (24) 

1 2 + 0 v J 

Frac ta l dimension plays the role of space dimensionali ty in 
a low-frequency asympto te of the density of oscillation 
states. Indeed, from Eqn (24) a k n o w n equali ty © = 0 for the 
density of n o r m a l p h o n o n states on a ^-dimensional lattice 
follows: 

As regards real fractal mater ia ls , there is a m a x i m u m 
scale { which limits the region of fractal behaviour . On 
scales exceeding hence at low frequencies [below a certain 
crossover frequency (oQ(g)\ there is the usua l p h o n o n 
spectrum. At higher frequencies, t ransi t ion (crossover) 
to the fracton spectrum occurs. Tak ing into account the 
fact tha t the number of oscillation modes must be equal to 
the number of part icles in the mater ia l , the following 
expressions can be wri t ten for the density of states v p h 

and Vfr of the p h o n o n and fracton spectra respectively, in a 
uni t vo lume [24]: 

(DU

C 

vfY(co)=N¥dfNa 

•A" 1 

• = N¥df 

(25) 

(26) 

where NF = ( l / £ ) is the n u m b e r of fractal f ragments in a 
vo lume uni t par t ic ipat ing, wi thou t deformat ion, in oscilla
t ions of the p h o n o n spectrum in the capacity of rigid 
part icles, coc is the crossover frequency, Nat = (£,/a)D is the 
number of a toms (particles) of size a in a fractal fragment 
of size and cod = (^/a)D^dicoc is the fracton Debye 
frequency, by definition. The latter equat ion in (26) 
explicitly follows from expressions for Nat and cod. 

As with the usua l Debye frequency for the p h o n o n 
spectrum, the choice of the fracton Debye frequency as the 
integrat ion limit ensures tha t the number of oscillations 
coincides with the number of part icles. In tegra t ion of 
densities (25) and (26) from 0 to coc and from coc to cod 

respectively yields A^p h = N¥ for the to ta l number of 
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Figure 3. Density of oscillation states deduced from formulas (25), 
(26) (dashed line) and from the formula which approximates smooth 
curve transition (solid line). Density is given in arbitrary units, but the 
full number of states is the same for both curves. Frequencies are 
normalised with respect to crossover frequency. 

Figure 4. Triangular Sierpinski gasket. Figures denote nodes used in 
the decimation procedure. 

p h o n o n states and Nfr = N¥ (N 
number of all oscillation states N = A/"ph + N& = N¥Nat, 
i.e. it is the same as the to ta l number of a toms , as 
ant ic ipated. It should be b o r n e in mind tha t according 
to expressions (25) and (26), the density of p h o n o n states at 
crossover frequency coc exceeds the fracton density of states: 

1) for fractons. The Consider E q n (18) for oscillations with frequency co: 

• NF d > v f r = NF df 

because d > df. This m a y result in a peak in the density of 
states near the crossover frequency as shown in Fig. 3. The 
presence of such a peak is no t always possible to confirm in 
experiment , nor does it appear in numer ica l calculat ions of 
the state density using E q n (18). However , analysis of 
exper imental findings based on the t empera tu re depend
ence of aerogel the rmal capaci ty [86] indicates tha t the peak 
must be present . 

The absence of the peak suggests smooth t ransi t ion 
from p h o n o n density (25) to fracton density (26) within a 
certain frequency range . The t ransi t ion approx ima t ion 
common ly used has the form 

( \ = 0 ) 2 

The approx ima te behaviour of the density of states 
unevenly replacing one ano ther at the crossover frequency 
as deduced from this formula and formulas (25) and (26) is 
shown in Fig . 3. It appears tha t b o t h possibilities are 
a t ta ined for different mater ia ls . 

3.2 Fractons on regular fractals. Localisation 
F u r t h e r progress in the unde r s t and ing of eigenstates of 
E q n (18) on fractals is ensured by the analysis of the 
solut ions of this equat ion on a regular fractal, the 
t r iangular 'Sierpinski gasket ' (Fig. 4) [87, 88]. The au tho r s 
used a kind of decimat ion p r o c e d u r e ! which enabled them 
to find analytically the solut ion of Eqn (18) for the case of 
self-similar fractal lattices. 

fDecimation in old Rome was the punishment of each tenth soldier in 
a cohort that betrayed cowardice in the battle. 

(xco2u (27) 

Assume that M / , , uh i = 1, 2, 3 are the oscillation ampl i 
tudes in the nodes labelled 1, 2, 3, l ' , 2 ' , 3f in Fig. 4. Based 
on a por t ion of Eqn (27), the ampl i tudes u[i 2' v m a v D e 

expressed in terms of ampl i tudes u\ 2 , 3 - Subst i tut ion of the 
solution into the remaining Eqn (27) leads to a system of 
equat ions conta ining only ampl i tudes ui9 2 , 3 with the 
renormalised frequency value OLOJ2 = 5aco2 — a 2 co 4 . D u e 
to self-similarity, equat ions for ampl i tudes u\ 2 , 3 describe 
oscillations on precisely the same lattice as the original one. 
F o r an ana logue of the Sierpinski gasket in a space of d-
dimensions (such a figure is composed of ^-dimensional 
te t rahedrons) , it is possible to obta in a general expression 
for renormalised frequency 

aco'2 = (d + 3)aco2 a2co4 (28) 

Evidently, the decimat ion p rocedure m a y be repeated on 
larger scales. In the end, one comes to the following 
conclusion: if there is eigenoscillation with frequency co, 
there mus t be eigenoscillation with frequency cof. C o n c u r 
rently, the number of cluster elements involved in 
oscillations undergoes a ( d + l ) - f o l d change, and the 
following expression [88] is available for spectral d imension: 

_ _ 2 1 n ( < / + l ) 

ln(</ + 3) 
(29) 

The spectrum st ructure defined by the paramet r i sa t ion 
equat ion (28) is very complicated in itself and shows scaling 
proper t ies on the frequency axis. The spectrum consists of 
(5-like peaks which give rise to a complex self-similar 
s t ructure on the frequency axis [87]. Expression (29) is 
fulfilled only for the density of states averaged over 
frequency bands . 

St ructura l analysis of e igenmodes of E q n (27) on the 
Sierpinski carpet accomplished in Ref. [88] demons t ra ted 
tha t all eigenstates are localised. There are two classes of 
localised states. One includes molecular states with a strictly 
limited small number of s t ructura l elements. The other 
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/ = 2.5261 

comprises states with the ampl i tudes differing from zero on 
all the scales and the well-defined localisation length. The 
relative n u m b e r s of states belonging to the two classes for a 
^-dimensional Sierpinski gasket are d/(d+ 1) and l/(d+ 1) 
respectively. 

Quali tat ively, such a s i tuat ion takes place in the case of 
irregular fractals as well. Figs 5 - 7 show results of n u m e r 
ical evaluat ion of e igenmodes on a fractal cluster obta ined 
by compute r s imulat ion of D L A . Figs 5 a - 5 c are d i ag ram
mat ic representa t ions of the shape of eigenoscillations for 
different frequencies. It can be seen tha t the size of the 
region of localised oscillations increases with decreasing 
frequency. At the same t ime, there is m a r k e d variabil i ty of 
the localisation size for close frequencies. Fig. 6 shows states 
with similar frequencies which are strikingly different in 

te rms of the localisation region size and appear to be long to 
the above two classes of states. Two classes of states in 
numerical ly determined eigenoscillations of a percola t ion 
cluster have also been distinguished in [89]. Fig. 7 shows the 
frequency dis t r ibut ion function of cluster eigenoscillations 
and the cor responding dis t r ibut ion density for the case in 
quest ion. Broken and irregular density is typical of any 
specific example of the cluster, and expression (24) na tura l ly 
refers to averaged density. 

3.3 Elastic properties of fractal materials 
In the general case, elastic oscillations of fractal clusters 
cannot be described by E q n (18). However , the proper t ies 
of the fracton region of the spectrum defined by spectral 
dimension m a y be preserved a l though the fracton d imen-
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Figure 6. Same as in Fig. 5. (a) 'molecular' and (b) 'extensive' 
oscillation states for very close frequencies. Top right: location of 
their centres on the cluster. 

sion is not specified by expression (24) bu t is instead 
derived from var ious models of fractal elastic proper t ies . 
The elastic proper t ies of fractals are impor t an t by 
themselves, and the theory provides a good example of 
the macroscopic descript ion of scale-invariant disordered 
media . 

3.3.1 Scale dependence of elastic models. The pr incipal 
difference between the elastic behaviour of fractal mater ia ls 
and tha t described by the theory of con t inuous elastic 
media can be accounted for by the dependence of elastic 
modu l i on the deformat ion scale. Measu remen t s of elastic 
modu l i using fragments of differently-sized fractal s t ruc
tures are likely to p roduce different results. However , in 
such a general formulat ion as this, it m a y be regarded as a 
distinctive feature of b o t h fractals p roper and a b r o a d class 
of na tu ra l and artificial mater ia ls and devices with 
hierarchical s t ructure [90]. Such a s t ructure is inherent in 

1000 

Figure 7. Eigenoscillation distribution function for the cluster in 
Fig. 5d plotted against frequencies (a) and corresponding distribution 
density of eigenstates (b). 

n a tu ra l and technological composi te mater ia ls , open-work 
metall ic cons t ruc t ions like the Eiffel tower or na tu ra l 
cons t ruc t ions (honeycomb) . On the whole , a hierarchical 
s t ructure such as tha t of composi te mater ia ls is m a d e up of 
elements of smaller scale (e.g. layers) which in tu rn consist 
of even smaller s t ructures (e.g. fibres), etc. Therefore, 
different hierarchical levels m a y have different s t ructure 
(fibres, layers) while the number of levels is not necessarily 
very large (three in the case of the Eiffel tower) . 

F r ac t a l mater ia ls differ from the general case by the 
s t ructura l similarity of levels on different scales in a certain 
scale range . F r a g m e n t s of a mater ia l with sizes lying within 
this range are m a d e up , according to a certain rule, of 
elements of a smaller scale which in tu rn consist, following 
the same rule, of even smaller fragments, etc. Of course, 
self-similarity of real mater ia ls should be unde r s tood in the 
statistical sense. The statistical characterist ics of the 
locat ion of similarly-sized elements in a fragment of a 
greater scale are independent of the absolute scale values 
and determined only by their ra t io . 

Suppose tha t E(l) is the elastic m o d u l u s for a fragment 
of a fractal s t ructure with length / in the fractal range of 
scales. D u e to self-similarity of the s t ructure , the rat io of 
elastic modul i for different scales /, / ' is dependent on the 
scale rat io alone: 

E(l) 
E{V) -fill (30) 
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F o r three diffferent scales /, and ln\ equa t ions 
E(l)/E(l') =f(l/l'), E(l')/E(l") =f(l'/l"), E(l)/E(l") = 
f(l/l") are fulfilled. Therefore, the scale rat io function 
f(x) mus t satisfy the following functional equat ion: 
f(xy) =f(x)f(y). The general solution of the latter 
equat ion has the form of / ( x ) = x _ < % where £ is an 
a rb i t ra ry number . Hence , the equat ion for scale depend
ence of the elastic m o d u l u s E is 

E(U) =XHE(l) , (31) 

if scales XI and / be long to the self-similarity interval. The 
scale dependence of fractal elastic proper t ies is defined by 
the exponent £ which is often te rmed the geometr ic 
exponent of elasticity. Exponen t £ characterises the scale 
dependence of the elastic modu lus , i.e. the relative 
deformat ion to strain ra t io . Rigidi ty of the fragment (the 
force to displacement ra t io) also has scale dependence of 
the form of E q n (31) bu t with a different exponent £ E . It is 
easy to establish the relat ionship between exponents £ and 
£ E for a fractal located (embedded) in a space of dimension 
d. Consider the rigidity of a ^-dimensional cube m a d e up of 
cubes smaller by a factor of two . At a cons tant stress, the 
force increases 2 J _ 1 - f o l d , in p r o p o r t i o n to the area of the 
side faces. The displacement is p ropo r t i ona l to the size and 
increases two-fold while rigidity shows a 2 J _ 2 - f o l d rise. It is 
evident tha t 

(exponents £ and £E are identical in a two-dimens ional 
case). 

Exponen t s £ and £E are determined by the s t ructure of 
the fractal mater ia l and the na tu re of the interact ion forces 
between their elements. These exponents m a y differ even for 
mater ia ls with similar fractal d imensions . 

The power- law dependence of elasticity on the size has 
long been k n o w n for polymeric chains. This is the so-called 
ent ropic elasticity unre la ted to the interact ion between 
chain links. D u e to the fractal s t ructure of polymer 
chains, the line of reasoning followed in the previous 
p a r a g r a p h s equally applies to the present case. F u r t h e r 
discussion does no t concern ent ropic elasticity bu t is 
focused on elasticity of fractal lattices result ing from the 
specified b o n d elasticity. (See Refs [91, 92] for informat ion 
on the theory of ent ropic elasticity of polymer lattices). 

Rea l mater ia ls with fractal s t ructure consist of coupled 
fractal aggregates of size The scale of £ depends on the 
regime of the mater ia l format ion and the na tu re of its 
const i tuent part icles (see Section 2). 

Elastic proper t ies of mater ia ls on scales exceeding ^ are 
described in the con t inuous med ium approx ima t ion and the 
cor responding elastic modu l i are defined by elastic modu l i 
of const i tuent fractal aggregates of the m a x i m u m size 

C o m p u t e r s imulat ion of fractal s t ructure format ion 
proved crucial for the development of lattice models for 
elastic fractal proper t ies [93, 94]. Lat t ice models examine 
per iodic lattices with nodes of definite symmetry (square, 
cubic, t r iangular , etc.). A fractal cluster is obta ined as a 
percola t ion cluster, i.e. an infinite cluster derived from the 
theory of percola t ion on such a lattice (see Section 2, 
Fig. lb ) . B o n d s between const i tuent nodes of the cluster 
are believed to possess elastic proper t ies . Us ing the results 
of the theory of percola t ion, it is easy to obta in charac ter 
istics of the elastic behaviour of fractal clusters. These da ta 
m a y be useful in the analysis of b o t h percola t ion clusters 

and fractal clusters of different na tu re if their fractal 
d imensions coincide. It is wor thy of no te tha t fractal 
clusters of equal dimension m a y differ in other charac ter 
istics, e.g. ramificat ion or the number of nearest ne ighbour 
elements, which sometimes influence their elastic proper t ies . 

If elastic forces in a cluster are active only between 
ne ighbour ing nodes and exhibit linear dependence on their 
relative displacement, the poten t ia l energy of the deformed 
cluster m a y be expressed in the form of the quadra t i c 
combina t ion of the displacement componen t s for all pa i rs 
of adjoining nodes . Elastic proper t ies of fractals were first 
investigated in Ref. [93] where the following var iant of such 
an expression was used for po ten t ia l energy: 

ij 
where ut is the displacement vector of the zth node in the 
lattice, a and ft are cons tants , symbols || and J_ denote 
displacement componen t s a long and across the n o n p e r -
tu rbed direction of an in te rnode bond , Ktj = 1 if nodes / 
and j are connected and Ktj = 0 if there is no connect ion 
between them. 

At a ^ 0 and ft = 0, expression (32) leads to the mode l 
of central forces; if a = it yields an isotropic mode l used 
in the theory of elasticity of crystal solids (the so-called 
Born approx imat ion) . 

The energy m i n i m u m condi t ion (32) gives the system of 
equa t ions for the evaluat ion of the displacement . Effects on 
the system from the outs ide are taken into account in the 
b o u n d a r y condi t ions , and its solut ions al low elastic cluster 
cons tan ts to be determined. 

In the case of a percola t ion cluster, the geometr ical 
exponent £ in t roduced in the previous section can be found 
from the dependence of elastic proper t ies on the relative 
concent ra t ion of intact b o n d s p near the threshold concen
t ra t ion pc (in fact, relative concent ra t ion p is the l ikelihood 
tha t the b o n d is intact) . Clearly, elastic cons tants vanish at 
p < pc. W h e n a = = 1/2, elastic cons tan ts at p > pc for 
mode l (32) are described by a scaling law of the following 
form (see Section 2): 

E(p) ~(P-PC)T • (33) 

Exponen t T unambiguous ly defines the geometric exponent 
£. Consider a percolat ion cluster above the percolat ion 
threshold (a uniform fractal) of size L > £ where £ is the 
earlier deduced size restricting the region of fractal 
behaviour . Rigidi ty of a cluster of size L is expressed in 
terms of tha t of another cluster of size £ (see derivation of 
the relation between exponents £ and £ E ) : 

K(L)=K(t)(±y 2 . (34) 

On the other hand , K(L) = t t where T =p — pc; since £ is 
expressed th rough x in the form of £ = T v where v is the 
critical componen t for £, it is possible to have 

K(£) = ^ - 2 £ - r A = ^-T/v+d-2 = £-cE _ ( 3 5 ) 

The relat ion between £ and T following from E q n s (34) and 
(35) has the form: 

CE =^ + 2-d; £ = £E+d-2 = ^ . (36) 

In an isotropic model , the equil ibrium equa t ions 
[minimum energy E q n s (32)] are the same for all Car tes ian 
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displacement componen t s and coincide with the system of 
Ki rchhof f equa t ions for electric currents in a lattice 
provided shift componen t s are unde r s tood as node p o t e n 
tials and electrical resistances of b o n d s are assumed to be 
equal [82]. It is k n o w n tha t for the resistance of a r a n d o m 
resistant lattice near the percola t ion threshold the following 
rule holds : R ~ (p — pc)~\ where t is the critical exponent . 
Therefore, T = t. F o r two-dimens iona l and three-d imen
sional lattices t is 1.29 and 1.7 respectively, v = 4 / 3 and 
0.88, and CE = 0 . 9 7 and 0.93. 

The isotropic force mode l is hard ly realistic and cannot 
be verified by the results of experiments on the direct 
measurement of elastic modu l i for m a n y real fractal 
mater ia ls . On the other hand , the da ta be low concerning 
spectral d imension and obta ined in neu t ron emission 
experiments indicate the possibili ty of us ing this mode l 
in selected s i tuat ions. 

The central force model , seemingly a m o r e realistic one, 
leads to d is turbance of the elastic coupling, which causes 
the rigidity of an infinite cluster near the percola t ion 
threshold to vanish [93]. N o n z e r o elasticity is manifested 
at p = Pi where the value of pt > pc is higher t han the 
threshold concent ra t ion . However , even in this case, the 
dependence of elastic models on intact b o n d density has a 
form ana logous to E q n (30), with subst i tut ion of pc by p{ 

[93]: 

E(p)~(p-Pl)T' , (37) 

where Tr = 2A and Tf = 4A for two-dimens iona l and 
three-dimensional cases respectively. F o r a t r iangular flat 
lattice, pi = 0.58 (pc = 0.3473) while for a face-centred 
cubic lattice, px = 0.42 (pc = 0.119). F o r the case of an 
o rd inary cubic lattice, expression (37) has no sense at all and 
Pi = 1. In qual i tat ive terms, the central force mode l 
cor responds to a lattice of connected springs which can 
pivot freely while zero elasticity at the percola t ion 
threshold is possible only due to the relative ro ta t ion of 
bonds , wi thou t a change in their length. 

The elastic connectivity condi t ion is fulfilled if elasticity 
is t aken into considerat ion when the angle between b o n d s is 
changed (the so-called bond-bend ing model) . Such a mode l 
has been suggested in Ref. [94]. The expression for po ten t ia l 
energy in this mode l ha s the form 

tf = G £ > ^ + ? £ & 4 l | . (38) 
i ij 

where Scp^ is the change of the angle between b o n d s ji and 
ki be longing to the c o m m o n node /, du^ is the difference 
between displacements of nodes / and j paral lel to b o n d s 

G, Q are elasticity cons tants , and a is the lattice 
constant . In the case of a t o r t ous chain of b o n d s with a 
large n u m b e r of links N bu t wi thout loops, the con t r ibu
t ion of central forces [the second te rm in expression (38)] 
becomes negligibly small, and elastic stiffness of the chain 
is described by a simple expression obta ined in Ref. [94]: 

Here , S_\_ is the rad ius of gyrat ion for the chain in the 
direction perpendicular to the force tha t acts on it. I ts value 
is derived from expression 

1 N 

S I = TJ^2(rN -Ri-i)± > 

where (RN — Ri-i)^ is the project ion of the rad ius vector 
connect ing the beginning of the ith link of the chain with 
the end of the last one on the direction perpendicular to the 
acting force. 

The t ransi t ion from the elastic proper t ies of a one -
dimensional chain to those of fractal clusters in Ref. [94] is 
based on the intuitively explicit suggestion tha t the cluster 's 
softness is dependent only on the cont r ibut ion of singly 
connected channels conta in ing b o n d s . It is shown tha t for 
percola t ion clusters on lattices in Ref. [94], T = 3.6 and 
T = 3.55 for two-dimens ional and three-dimensional la t 
tices respectively. Us ing Eqn (36), the values of £ E are found 
to be 2.75 and 3.13 respectively. 

One of the first experiments to measure elasticity of 
fractal mater ia ls in a b r o a d range of scales was repor ted in 
Ref. [95]. In this study, the au tho r s used mater ia ls obta ined 
by sintering submicron silver powder . The result ing 
mater ia ls differed in te rms of the occupied vo lume fraction 
of the powder ( / ) in the range from 0.06 to 0.291. 
Eva lua t ion of their elasticity E and electric conduc tance 
G gave respective scaling dependencies: 

( T ~ ( / - / C ) ' , E~(f-fc)T , 

where fc w 0.062 is the critical occupied vo lume fraction. 
Exponen t s t = 2.15 ± 0.25 and T = 3.8 ± 0.5 are signifi
cantly different which indicates the inapplicabil i ty of the 
isotropic force model . On the other hand , the threshold 
equali ty suggests dispari ty between the exper imental results 
and those predicted by the model . At the same t ime, the 
numer ica l values of T are in agreement with the mode l [94]. 

In Refs [96, 97], elastic proper t ies of two-dimens iona l 
percola t ion clusters were studied using a simple physical 
mode l of a perforated meta l plate . In Ref. [96], the au tho r s 
m a d e use of r a n d o m l y distr ibuted holes in the nodes of a 
per iodic square lattice and their total ly r a n d o m locat ion 
(cont inual percola t ion) . In these cases, the exponents T of 
the scaling dependence of p la te rigidity on concent ra t ion 
differed. F o r lattice percola t ion, T = 3.5, in accordance 
with the predict ion in Ref. [94], while for cont inual 
percola t ion the same exponent was higher t han T = 5. A 
similar value of T = 4.95 was obta ined in Ref. [97] where 
holes were also r a n d o m l y distr ibuted. The value of 
exponent T for cont inual percola t ion m a y be theoretically 
predicted based on the mode l (38) [98]. In Ref. [99], the 
elasticity of a wire lattice with r a n d o m l y cut b o n d s was 
measured from the resonant frequency of tors ional oscilla
t ions of the cylindrical screen obta ined by folding the 
lattice. Unl ike percola t ion models greatly restricted in 
te rms of the node number as used in Refs [96, 97], the 
wire lattice mode l conta ined several t h o u s a n d s of b o n d s . 
The value of 7 = 3.6 + 0.2 measured in Ref. [99] is in 
excellent agreement with the theoret ical value predicted 
in Ref. [94]. 

Thus , these models m a y be in a sense useful for the 
quant i ta t ive descript ion of elastic proper t ies of percola t ion 
fractal clusters and serve as a basis for determining the 
pa rame te r s of elastic oscillations, at least for the systems 
similar to those investigated in the experiment . 

Resul ts of the invest igations into elastic proper t ies of 
fractals us ing percola t ion models cannot be directly applied 
to aerogels. In the case of aerogels, density dependence 
takes the place of the dependence of elastic proper t ies on a 
rise in concent ra t ion above the threshold level. Aerogels are 
formed by the aggregat ion of submicron part icles of the 
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solid phase which precipi ta te from solut ions of certain 
substances (e.g. AI2O3, SiC>2) if condi t ions permit . Aggrega
t ion results in fractal clusters whose density p is related to 
the cluster size r by (see Section 2) 

P = Po(£f\ (40) 
where D is the cluster fractal dimension (for the k n o w n 
aerogels, D = 1 .7-2 .2) and p0 and r 0 are the density and 
the radius of cluster particles respectively. After a certain 
cluster size R is reached, depending on growth condi t ions , 
the clusters jo in together u p o n contact to form an aerogel 
having density p ~ RD~ . Typical cluster size values in 
aerogels lie in the range of tens and hundreds of 
nanome te r s whereas aerogel density ranges from uni ts to 
tens of g rams per litre [100]. Therefore, an aerogel with 
density p comprises clusters of the size 

V L / ( Z > - 3 ) 

Hence , its Y o u n g ' s m o d u l u s has the form 

E(p)=E0(-f)C,{D 3 ) = £ 0 f f Y , 0 = 
D-3 

(41) 

Exper imenta l da ta on density dependence of Y o u n g ' s 
m o d u l u s for aerogels are repor ted in Refs [100]. Accord ing 
to these da ta , E0 = i o 6 5 8 ± 0 1 8 N m " 1 , ft = 2.8 + 0.2, p 0 = 

0.13 g c m - 1 . Subst i tut ion into E q n (41) of £ values 
obta ined in lattice models and fractal d imension measured 
for aerogels (D = 1.77) yields ft = 1.57 in the isotropic 
mode l ( £ = 1 . 9 3 ) and ft = 3.35 for the mode l of one -
dimensional chains with energy given by E q n (38) 
(£ = 4.13). The latter value is closer to tha t obta ined in 
experiment a l though there are no g rounds to believe tha t 
the theory in Ref. [77] ensures accura te quan t i t a t ion of 
aerogel elastic behaviour . 

Evidently, acoust ic velocity in aerogels also shows a 
power- law dependence on density: 

r ^ ( p ) i 1 / 2 

c(P) 
, / > / 2 - L (42) 

Fig. 8 presents exper imental findings of sound velocity with 
respect to density dependence in aerogels [100, 101]. 

The percola t ion cluster elasticity models discussed 
above evidently can be generalised. Broken b o n d s m a y 
have non-zero elasticity values differing from those a t t r ib 
uted to intact b o n d s . In the limit, it is possible to consider a 
lattice with absolutely rigid intact b o n d s . A m o r e detailed 
numer ica l analysis of the elastic proper t ies of percola t ion 
clusters in the f ramework of such models and the c o m p a r 
ison of its results with exper imental findings have recently 
been repor ted in Ref. [102]. This s tudy indicates tha t 
physical gels (i.e. gels composed of solid macropar t ic les) 
are well-described by the W e b m a n - K a n t o r mode l [94] 
whereas chemical gels (polymers) are bet ter described by 
the central force model . At the same t ime, experiments to 
measure the scaling of the oscillation spectrum of fractal 
mater ia ls by the neu t ron scattering technique as a rule give 
the £ value at var iance with tha t predicted by any of the 
above models . 

It should be emphasised tha t the theory of elasticity as 
described in this section m a y serve as a basis for pract ical 
development of artificial mater ia ls with unusua l oscillation 
proper t ies . 
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Figure 8. The relationship between sound velocity in aerogel and its 
density (o from Ref. [83], + from Ref. [84]). Slopes of the straight lines 
are in the range 0 . 8 - 1 . 3 . 

3.3.2 Nonlinear-elastic properties of fractal clusters. N o n 
linear-elastic proper t ies of fractals are poor ly k n o w n except 
where fractal features of collapse are concerned. Extensive 
studies have recently been devoted to the latter case [103 — 
105]. Non l inea r characterist ics at weak deformat ion are 
impor t an t pr imar i ly for the unde r s t and ing of nonl inear 
wave effects in fractal mater ia ls . It should be emphasised 
tha t nonl inear wave effects in fractals are due no t only to 
nonl inear elasticity bu t also to fractal s t ructure . The fact is 
tha t the spatial d is t r ibut ion of fractal oscillation ampl i tudes 
is no t uni form. Therefore, locally, the square of the 
oscillation ampl i tude m a y significantly exceed the square 
of the average ampl i tude used for the evaluat ion of 
nonl inear effects in h o m o g e n e o u s models of nonun i fo rm 
media [106]. The s t ructure factor also influences the static 
nonl inear elasticity of fractals. 

The simplest app roach to s tudying nonlinear-elast ic 
proper t ies of fractals in the f ramework of lattice models 
m a y be based on the in t roduc t ion of te rms with higher 
powers of 3u and Sep in expressions (32) and (38). F o r the 
case of the central force mode l (neglecting Sep), this 
app roach has recently been employed in Ref. [107] to 
simulate percola t ion on a flat t r iangular lattice. It has 
been shown in a s tudy on elasticity modu l i of the second 
and the thi rd orders [107] tha t power- law dependence of the 
form (37) is also fulfilled, with the exponent Tf w 3.3 ± 0.7 
for the second order m o d u l u s and Tf w 4.3 ± 1 for the thi rd 
order one. 

Nonl inear-e las t ic proper t ies of fractal clusters m a y be 
equally apparen t in the absence of nonl inear i ty . This is 
purely geometr ic b o n d nonl inear i ty similar to the Her t z 
nonl inear i ty of contac ts in solid bodies . W e b m a n analysed 
geometr ic nonl inear i ty for a mode l with elastic energy 
described by expression (38) on the assumpt ion tha t the 
most impor t an t cont r ibut ion was of single chains of b o n d s 
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[108]. In this case, geometr ic nonl inear i ty can be easily 
unde r s tood from the following example. Suppose tha t a 
spring with a large rad ius R is m a d e of another spring with 
a smaller rad ius r r a ther t han of wire. Then , the large spring 
has low rigidity, bu t when it is stretched to a straight line, its 
stiffness is determined by tha t of the smaller spring, i.e. by 
the degree of deformat ion . There is a con t inuous scale range 
of 'coils ' in r a n d o m fractal b o n d chains which results in the 
power- law dependence of rigidity on extension. 

The following expression for the dependence of fractal 
chain rigidity K on extension F in excess of a threshold level 
F was obta ined in Ref. [108]: 

F(D+2)/(D+l) K{F) (43) 

where D is the lattice fractal dimension. The threshold F 
depends on the cluster size as 

F ~ R ^ . 

F o r a percola t ion cluster with scale { of fractal behaviour 
decreasing with the distance from the threshold concen
t ra t ion pc: 

a~\p-pr = *-\ 
the threshold tension appears to g row whereas nonl inear i ty 
decreases at a given strain. The n o n m o n o t o n i c dependence 
of the second-order relative nonl inear m o d u l u s on the 
intact b o n d concent ra t ion when it is significantly higher 
t han the threshold one (as ob ta ined in Ref. [107]) 
quali tat ively cor responds to such nonl inear behaviour . 

Non l inea r elastic proper t ies of aerogels have been 
experimental ly investigated in Ref. [101]. The above exam
ple of a spring is equally applicable to this case. This mode l 
tu rned out to be valid no t only for spreading bu t also for 
compression, i.e. the hardness of undeformed aerogel was 
greater t han tha t of the compressed one. 

3.4 Eigenoscillations of fractal materials 
Dispers ion proper t ies of oscillation states of fractal 
mater ia ls follow from expression (31) for the scale 
dependence of elastic modu l i and from the power- law 
relat ion between the size and the mass of a fractal cluster 
fragment. Consider a fragment of a fractal cluster with size 
/. I ts rigidity K(l) (the force to displacement ra t io) 
undergoes t rans format ion on a change of scale by analogy 
with (31): 

K(M) = RCEK(l) . (44) 

The cluster mass , by definition of fractal dimension Z), 
behaves as 

M(U)=XDM(l) . (45) 

F o r the lowest eigenoscillation frequency of the cluster, it 
m a y be regarded as concentra ted mass and elasticity. Then, 
it follows from Eqns (44) and (45) tha t the scale dependence 
of the oscillation frequency has the form 

co(Xl) = R^+D)/2co(l) . (46) 

Clearly, oscillation frequencies of a cluster with the 
characterist ic scale (wavelength) / smaller t han the cluster 
size show similar behaviour . R o u g h l y speaking, the disper
sion law for fractal oscillations has the form 

a{k)^k^+D)'2, k 
1 
7 ' 

(47) 

which makes fractal oscillations significantly different from 
oscillations of con t inuous elastic media . Indeed, for 
o rd inary media, the scale dependence of elastic modu l i is 
absent , i.e. £ E = —d + 2, and fractal dimension equals space 
dimension D = d while E q n (47) gives the k n o w n expres
sion for acoust ic p h o n o n s : co(k) ~ k. Dens i ty v p h of the 
p h o n o n m o d e dis tr ibut ion by frequency be low the Debye 
frequency for the case of a con t inuous med ium is 
determined by space dimension d in the usua l way, i.e. 
v p h - cod~l. 

In the case of fractal mater ia ls , the si tuat ion is quite 
different. Suppose tha t N(co) is the number of oscillation 
states with frequencies be low co. It follows from Eqn (46) 
tha t fragments of a cluster with size 

-V(CE+D) (48) 

par t ic ipa te in such oscillations wi thou t deformat ion; ra ther 
they shift as a whole . Then, the number of oscillation 
modes at frequencies be low co equals the number of such 
fragments in cluster N¥ while the latter is explicitly 
described by relat ion 

r (49) 

Expression (49) is no th ing other t han the definition of b o x 
fractal d imension. It follows from E q n s (48) and (49) tha t 

N(co)~co2D^+V . 

The density of states is 

(50) 

v(co) ~ CO 2 D / ( C E + D ) - 1 
CO 

df-l (51) 

where d f = 2 D / ( £ E +D) is the spectral or fracton d imen
sion. 

It is wor th no t ing tha t compar i son of E q n s (51) and (24) 
establishes an explicit relat ionship between a n o m a l o u s 
diffusion and geometr ic exponents for elastic modul i . 
However , this relat ion holds only for the isotropic mode l 
of elasticity forces and is obscure in a general case. It is in 
te rms of the characterist ics of r a n d o m walks tha t the 
definition of fracton dimension is given in m a n y publ ished 
sources. It should be b o r n e in mind tha t such a dimension is 
no t always associated with the real fractal oscillation states. 

It follows from relat ion (51) tha t df is total ly determined 
by exponent £ E and the fractal cluster dimension. This 
relat ion is inherent in all models of fractal elastic behaviour , 
bu t different numer ica l values of df tend to character ise 
quali tat ively different behaviour . Indeed, the density of 
states diverges at df < 1. This means [108] tha t a cluster 
loses stability with respect to the rma l f luctuat ions provided 
its size is sufficiently large (i.e. the lowest m o d e frequency is 
small). At the same t ime, the density of states tends to zero 
at df > 1, precisely as it does in the case of o rd inary 
mater ia ls . Exponen t s £ E repor ted in Refs [94, 108] as 
derived from the E q n (38) mode l cor respond to fracton 
dimensions be low uni ty. In this case, there is divergence in 
the density of oscillation states in the low frequency range . 

It is n o w well k n o w n tha t all eigenoscillation states of a 
fractal mater ia l in the fracton spectrum region are localised. 
This agrees with the general effect of wave localisation 
(frequently referred to as the Ande r son localisation) in 
inhomogeneous media with the sole difference tha t i n h o -
mogeneit ies associated with the fractal s t ructure are 
characterised by a wide range of scales and correlat ion 
at greater distances. This should p robab ly m a k e the 
p rob lem of de termining localisation condi t ions and the 
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spectrum of localised states on fractals much m o r e difficult 
t han the p rob lem of localisation in a med ium with n o n -
correlated inhomogenei t ies . However , the intrinsic p rope r ty 
of self-similarity of fractals considerably facilitates the 
solut ion of this p rob lem. 

Simple behav iour determined by crossover frequency 
and spectral dimension is inherent in elastic waves no t only 
in fractal lattices bu t also in con t inuous inhomogeneous 
solids conta in ing mixed por t ions with different elastic 
proper t ies . Such a s i tuat ion is the case for instance in 
solid bodies undergo ing percola t ion phase t rans i t ions [109]. 
In this case, the fractal s t ructure m a y appear in b o u n d 
clusters of those po r t ions of the med ium which exhibit 
similar elasticity. Ref. [110] repor t s the fracton spectrum in 
an artificial longitudinal ly nonun i fo rm waveguide for L a m b 
waves in which inhomogenei t ies display fractal dis t r ibut ion. 

General ly speaking, the shape of localised wave func
t ions in the case of s t rong localisation is determined by 
three scales, viz. wavelength, free p a t h of the wave when 
scattered on inhomogenei t ies , and the localisation scale 
itself. D u e to scale invar iance of fractals for fracton wave 
functions, all these scales are identical and m a y be reduced 
to one for which frequency dependence is described by 
expression (47) [111]. The following mode l of the super-
localised wave function \jj is suggested for the wave function 
shape in Ref. [ I l l ] : 

-D/2 
exp (52) 

where / is the f requency-dependent localisation length, D is 
the fractal dimension, and ds is referred to as the 
super localised exponent . The frequency dependence of 
the localisation length is defined by expression (47). 
Tak ing into account E q n (51) one obta ins 

/ ~ aTdi/D . (53) 

The expression for the wave function in the form of (52) 
follows from the supposi t ion of o rd inary exponent ia l 
dependence of the wave function on the in ternal length 
lm on a fractal; for one-dimensional chains of bonds , 
exponent ds is related to the exponent of a n o m a l o u s 
diffusion in the following way: 

2D 
ds = 2 + 0 = — , 

df 

where df is the fracton dimension est imated from the 
analogy of oscillations and diffusion of fractals. It is 
evident tha t in a general case, the last expression is no t 
fulfilled. However , the fracton wave function mode l (52) is 
widely used for pa ramet r i sa t ion of the results of experi
men ta l and numer ica l studies of localised states of fractals. 

3.5 Experimental studies of fractons 
It can be inferred from the above tha t compute r models of 
fractal clusters allowed the solution of the p rob lem of wave 
localisation in inhomogeneous media with fractal s t ructure 
of inhomogenei t ies . The localisation condi t ion is fulfilled if 
the wave frequency exceeds a certain threshold level, i.e. the 
frequency of crossover, which depends b o t h on the 
m a x i m u m size of the fractal aggregates of which the 
med ium is composed and the speed of longer waves. The 
density of localised states is the power- law function of 
frequency, with the exponent determined by fracton 
dimension. The spatial scale of localisation always shows 

power dependence on frequency, with the exponent 
equivalent to the rat io of spectral dimension to mass 
fractal dimension. 

The objective of exper imental studies is to verify these 
inferences with respect to real mater ia ls . Firs t exper imental 
evidence of the existence of a fracton region in the 
oscillation spectrum with localised states appears to have 
been obta ined in Ref. [24] by the analysis of da ta on 
t empera tu re dependence of heat conduct ivi ty and the rmal 
capacity of a m o r p h o u s solids. Specifically, these proper t ies 
were examined in the t empera tu re range of uni t s to several 
tens of degrees Kelvin at oscillation frequencies 1 0 9 -
1 0 1 2 Hz . 

A rise in the rmal capaci ty with t empera tu re was found 
to be directly related to the frequency dependence of 
oscillation states. Analysis of the the rmal capacity of 
epoxy resin per formed in Ref. [24] demons t ra ted tha t the 
density of states is p ropo r t i ona l to co2 for frequencies in the 
range of hco/kQ < 8 K (this is the n o r m a l p h o n o n density of 
states) and to co for the 8 K < hco/kQ < 50 K range (this 
cor responds to the fracton spectrum with fracton dimension 
df = 2). Es t imat ion of the respective max imal scale of 
fracton clusters yielded £ = 30 A. In Ref. [24], this scale 
was found to be related to the distance between cross-links 
formed by the hardener to connect the pa ren t molecules of 
the epoxy resin. Increasing the a m o u n t of ha rdener m a y be 
expected to diminish the scale and raise the crossover 
frequency, in agreement with exper imental findings. 

The rma l conduc tance of solid dielectrics is a t t r ibu tab le 
to heat transfer by a s t ream of p h o n o n s and is k n o w n to 
depend on b o t h the the rmal capaci ty of p h o n o n gas and the 
length of the p h o n o n free pa th . The length of the free pa th 
is restricted by the nonl inear interact ion between p h o n o n s . 
In a crystalline solid body , heat conduct ivi ty at a t em
pe ra tu re be low several tens of degrees Kelvin grows due to a 
rise in the rmal capaci ty of the p h o n o n gas bu t thereafter 
d rops precipi tously as a result of excitation of h igh-
frequency p h o n o n s and a decrease in their free p a t h caused 
by enhanced nonl inear scattering on high-frequency p h o 
nons . The t empera tu re dependence of heat conduct ivi ty in 
a m o r p h o u s solids is strikingly different from tha t in 
crystals. Fo l lowing a t empera tu re rise of a few degrees 
Kelvin, heat conduct ivi ty a t ta ins a 'p la teau ' level and 
remains practical ly cons tant unt i l the t empera tu re rises 
further to several tens of degrees Kelvin. This causes 
heat conduct ivi ty to g row anew. Fig . 9 presents an example 
of t empera tu re dependences of heat conduct ivi ty in crys
talline qua r t z and qua r t z glass [112]. 

The presence of the p la teau is easy to explain by the fact 
tha t the rmal capacity over this t empera tu re range grows 
due to the involvement of localised modes of the fracton 
region of the spectrum [24]. In other words , Ref. [24] 
indicates tha t da ta on heat conduct ivi ty and the rmal 
capaci ty of a m o r p h o u s solids can be unde r s tood on the 
assumpt ion of the presence of a fracton por t ion of the 
oscillation spectrum and the localisation of fractons. It 
should be noted from the very beginning tha t this is no t the 
sole possible explanat ion. The fractal s t ructure of gels and 
polymers is not quest ioned and it is only na tu ra l to apply 
the theory of fractons to the analysis of their the rmal 
proper t ies . However , s t ructura l studies of glasses failed to 
reveal signs of fractality. A variety of models have been 
suggested to account for the the rmal characterist ics of 
glasses [30]. At present , it is universally accepted [2, 113] 
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Figure 9. Temperature dependences of heat conductivity for 
crystalline quartz (curve 7) and quartz glass (curve 2 ) . Data from 
tables of Ref. [112] were used. Experimental points are denoted by 
labels o and + . The heat conductivity of glass is significantly lower 
than that of crystals which accounts for the different scales of the 
curves. Left and right-hand vertical axes give values for crystals and 
glass respectively. 

tha t glasses also have a region in the oscillation spectrum 
which conta ins localised oscillations with scales of the order 
of ten in te ra tomic distances. The appea rance of such a 
region is believed to be due to the presence of the median 
order in the glass s t ructure. In this context , the fracton 
mode l of oscillation spectra m a y be considered as a specific 
mode l of the median order s t ructure of a m o r p h o u s bodies 
which uses the fractal app roach . 

Direct measurements of the shape and the dis t r ibut ion 
density versus frequency of oscillation states have been 
m a d e in a recent s tudy on an artificial one-dimensional 
fractal s t ructure [110]. This s t ructure was a segment of a 
one-dimensional waveguide for L a m b waves m a d e up of 
rubber and ceramic layers a l ternat ing a long the direction of 
travell ing waves. The centres of the rubber layers were 
located on a straight line as po in t s of a self-similar fractal 
set, C a n t o r dust (Fig. 10). This set had fractal dimension 
0.63 and was obta ined in the following way. The segment 
was divided into three equal pa r t s , the middle par t was 
removed, and the remain ing ones were again each divided 
into two. This p rocedure was repeated till the infinite 
number of steps resulted in a fractal set of po in t s self-
similar on all scales smaller t han the initial length of the 
segment. The experiment described in Ref. [110] used the 
s t ructure which was obta ined after the above p rocedure was 
repeated 4 t imes. As a result, self-similarity was observable 
on scales greater than 3 - 4 of the initial length of the 
segment. The thickness of the rubber layer was less t han 
this size and chosen in such a way as to ensure equali ty of 
dis t r ibut ion t imes in the thinnest layers of rubber and 
ceramics [110]. 

Measu remen t s were per formed in a frequency range of 
10 k H z to 5 M H z . Oscillation pa t t e rns were est imated from 
the n o r m a l displacements of the waveguide surface using a 
laser v ibrometer . Fig. 11 shows est imated and measured 
integral dis t r ibut ion of eigenoscillations by frequency. 
Fig. 10 presents measured oscillation forms cor responding 
to p h o n o n and fracton regions of the spectrum respectively. 
N o r m a l l y p ropaga t i ng modes were excited at low frequen
cies whereas the frequency of 200 k H z was associated with a 

Figure 10. The shape of wave functions for the states of fracton 
(a) and phonon (b) regions of the eigenoscillation spectrum in a 
segment of one-dimensional waveguide with fractal distribution of 
inhomogeneities [110]. Oscillation modes are symmetrical; amplitudes 
are shown on half a specimen. The waveguide is ceramic with rubber 
interlayers. (c) Distribution of inter layers along the waveguide (black 
bars). 

N(f) 

10z -
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Figure 11. Integral frequency distribution of waveguide eigen
oscillations (see Fig. 10) [110]. Points: experimentally determined 
values; solid lines: theoretical values. 

sharp t ransi t ion to fracton behaviour . Oscil lations in this 
pa r t of the spectrum became localised, and the measured 
spectral dimension was df = 0.67. A further rise in fre
quency (to circa 1.5 M H z ) was accompanied by b a c k w a r d 
t rans i t ion to the p h o n o n density of states unt i l in the end (at 
2 M H z ) it again conformed to the initial spectral dimension 
of 0.67. The occurrence of two crossover frequencies m a y be 
accounted for by the fact tha t artificial n o n r a n d o m 
structures do no t exhibit self-similarity at any coefficient 
of scale t rans format ion ; ra ther , they possess the p rope r ty of 
self-similarity only in case of a set of discrete coefficient 
values. 

The very first exper imental s tudy of crossover from the 
p h o n o n spectrum to the fracton one was repor ted in 
Ref. [114]. In this study, u l t r a sound p ropaga t i on experi
men t s were performed in the 1 - 2 0 M H z frequency range 
on sintered copper powder samples with powder diameters 
of 0.5 to 10 um and occupied vo lume fraction from 0.3 to 
0.6. Measu remen t s were m a d e of the var ia t ion with 
frequency of the u l t rasonic a t t enua t ion in copper powder 
sinters. There was a rapid increase in a t t enua t ion at a 
certain frequency coc depending on the occupied vo lume 
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fraction fc. The length of a t t enua t ion at the t ransi t ion 
(crossover) frequency satisfied the scaling relat ion 

' ~ ( / - / c r , 

where exponent v = 0.88, similar to tha t for the correlat ion 
length in a percola t ion cluster, and fc is the critical 
occupied vo lume fraction in the mode l based on percola
t ion th rough a three-dimensional lattice of adjoining 
spheres [81]. The velocity of u l t r a sound also showed 
scaling dependence on the occupied vo lume fraction: 

" - ( / - / o f 7 2 , 

where exponent T = 3.6, in excellent agreement with the 
W e b m a n mode l for elastic proper t ies of fractals [94]. 

The m a x i m u m scale { in gels, polymers , and related 
mater ia ls which restricts the fractal behaviour region does 
no t exceed the length of visible light waves. F o r this reason, 
the analysis of fracton spectra is most effectively performed 
by measur ing R a m a n light scat tering (RLS) spectra and 
inelastic incoherent neu t ron scat tering ( I INS) spectra. 

Wi th the I I N S technique, the scattered neu t ron spectra 
obta ined by either ' t ime-of-flight ' spect rometry or the 
'neut ron spin echo ' me thod provide informat ion abou t 
the density of oscillation states. Because the neu t ron 
wavelength is of the order of in tera tomic distances, 
neu t rons are independent ly scattered on nuclei. The differ
ential section of neu t ron scattering into a single solid angle 
and a single energy interval dcr is related to the density of 
oscillation states v(co) by the following expression: 

< 7 I N C k' N 2 / 1 2 , 2 \ \ V ( C 0 ) t \ , r A s 

d f f = ^ T 4 M ^ e X P ( - 3 ^ J - T " ^ ' ( 5 4 ) 

where cr i n c is the section of incoherent neu t ron scattering on 
nuclei, k and kf are the wave vectors of incoming and 
scattered neu t rons , q = k — kf is the scattering vector, N 
and M are the number and the mass of scattering nuclei 
respectively, (u2) is the mean quadra t i c displacement of 
nuclei, and n(co) is the Bose factor 

n(co) = . ^ . . - 1 . 

Expression (54) is feasible on the assumpt ion of l inearity 
and low ampl i tudes of nuclear oscillations compared with 
those of the neu t ron wavelength. 

At least the scaling proper t ies of oscillation spectra are 
possible to observe using expression (54) with a m i n i m u m 
number of a pr ior i pos tu la tes per ta in ing to the scattering 
mechanism. 

Wi th R L S , the si tuat ion is far m o r e complicated. Light 
undergoes scattering on polarisabil i ty f luctuat ions where its 
interference becomes of greater impor tance . A l though a 
formula similar to (54) is fulfilled 

/(co) ~ C(co) n(co) v(co) , 

the frequency dependence for factor C(co) is largely 
determined by the shape of wave functions of oscillatory 
excitation and the mechanism of R a m a n scattering. In all 
l ikelihood, this dependence is of scaling na tu re for fractal 
mater ia ls even though m o r e reliable da ta are needed to 
suppor t this inference and the p rob lem remains a mat te r of 
ongoing studies [115]. 

General ly speaking, the main ou tcome of exper imental 
studies is tha t oscillation spectra of a m o r p h o u s mater ia ls 

show singularities at frequencies cor responding to scale 
oscillations of the order of several inter molecular distances, 
in conflict with the pos tu la te of total ly chaot ic dis t r ibut ion 
of molecules. The appearance of such singularities can be 
accounted for by the localisation of oscillations leading to 
the redis t r ibut ion of the density of states and its shift to the 
low frequency region. In the case of a m o r p h o u s mater ia ls 
with nonfrac ta l s t ructure of the nearest order , this results in 
the so-called boson peak in the density of oscillation states 
[2, 31 , 113, 116]. This peak reflects the dis t r ibut ion of 
localisation scales near a certain mean scale. Such localised 
states have no self-similar s t ructure and m a y be found in 
glasses and molecular amorphics . 

Local isat ion for mater ia ls with the s t ructure of 'mass 
fractals ' coincides with the self-similarity interval of the 
s t ructure. In this case, the boson peak is replaced by the 
power- law density of states with the exponent determined 
by spectral dimension. (True, experiments have been 
repor ted which indicate a similar s t ructure in glasses 
[117] and the a m o r p h o u s phase of liquid crystals [31]). 

Ear ly studies on the s t ructure of oscil latory states in 
fractal mater ia ls dealt with silica gels [118, 119]. A direct 
analysis of the spectrum of mult iple scat tering was repor ted 
in Ref. [118] for the fracton frequency range of 600 to 5400 
G H z . The au tho r s used ha rd gel (1.7 g e m - 3 ) with the 
proper t ies of a polymer ra ther t han composed of m a c r o 
scopic particles. They obta ined the following form of the 
power- l ike spectrum: 

I (to) ~ co** . 

The frequency dependence of factor C(co) is assessed in 
Ref. [118] on the assumpt ion of incoherent summat ion of 
waves scattered in each poin t of the med ium. F o r scattering 
with frequency shift co, intensities of scattered waves are 
summed over vo lume /(co) = co~d/D filled by the super-
localised fracton wave function. Final ly, expression 
C(co) ~ of for the factor C(co) is obta ined where the 
exponent a = 2ddf/D — d. This expression is most p robab ly 
invalid because summat ion over vo lume for each fracton 
must be per formed for the dissipation ampl i tude and 
followed by the summat ion of light intensities scattered by 
different fractons [120] This and the assumpt ion of the 
super localised form (52) for the fracton wave function 
gives exponent (x = 2ddf/D — \ [120]. F o r this reason, 
est imates of spectral dimension as repor ted in Ref. [118] 
m a y be ques t ioned! . Nevertheless , the presence of the 
scaling componen t in the scat tering spectrum was repor ted 
on the frequency interval of abou t a decade [101]. 

The M a n d e l s t a m m - B r i l l o u i n dissipation spectra in 
aerogels with the density of 103 to 407 kg m - 3 were 
analysed in Ref. [119]. The dependence of the frequency 
shift of scattered light on the dispersion angle leads to the 
dispersion relat ion for p h o n o n s . Exper imenta l findings 
repor ted in Ref. [119] are fairly well described by the 
following formula: 

2vi . nkl 

fThe use of incoherent summation in Ref. [118] allowed experimental 
findings to be used to estimate spectral dimension which proved 
coincident with the value of 4 / 3 , in agreement with the hypothesis of 
the universal character of spectral dimension widely accepted at that 
time. 
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Table. Results of experimental fracton studies 

Object Method D Frequency r a n g e / H z w c / G H z £ / n m w / G H z t DF Ce Reference 

Smoke S i 0 2 I INS 2.5 2.4 x 1 0 1 0 - 2 . 4 x 10 1 2 48 30 (4 nm 480 1.8 0.27 [122] 
particles time-of-flight particles) 2.1 -0 .11 
Epoxy resin I INS — 3 x 10 1 1 — 1.9 x 10 1 2 600 2 — 1.5 — [121] 
S i 0 2 aerogel I INS 2.4 < 1 0 9 - 2 . 5 x 10 1 1 1 11 250 1.3 1.29 [124] 

time-of-flight 2.2 10 2.1 - 0 . 1 
0.8 7 0.9 2.68 

spin echo 3 1.7 0.51 
S i 0 2 in different I INS 2.4 1 0 n - 1 0 1 3 600 0.16f — 1.54 0.72 [125] 
chemical spin echo 2.9 240 0.15 — 1.7 0.51 
structures 2.5 1300 0.19 — 1.22 1.6 
S i 0 2 aerogel I INS 2.2 > 2 x 10 1 0 5.0 ± 1.2 0.12f — 1.45 0.83 [126] 

1.9 10.7 ± 2 0.16 1.69 0.35 
2.2 > 17 0.25 — 

P M M A IINS 2-2.2 2.4 x 1 0 n - 2 . 4 x 10 1 2 ~ 4 8 0 3 2400 1.8 0.23 [120] 
film — — 

massive 1.65 0.45 
deuterated 

fDensity values (g cm ). 
j T h e upper limit of the scaling part of fracton density. 

where length / and sound velocity vt are related to density p 
t h rough the scaling relat ion 

/ ~ p~z, VI ~ px 

with exponents z « 1.57 and x = 1.397. This result m a y be 
interpreted in te rms of localised oscillations with scales 
smaller t han /. Independen t est imates of aerogel fractal 
dimension D = 2.364 yield the Z value coincident with the 
measured one whereas the use of re lat ions like (41) and (51) 
enabled the au tho r s of Ref. [119] to determine spectral 
dimension df= 1.252. Here , the exponent £ E

 w a s found to 
be 2 .41, an in termedia te value between the isotropic force 
mode l and the mode l in Ref. [94]. 

M o r e direct est imates of the fracton region of oscillation 
spectrum were obta ined by different m e t h o d s using aerogels 
and polymers in Refs [120-126] . The I I N S technique was 
employed in Refs [121, 122, 125, 126], R L S in Ref. [123], 
and b o t h m e t h o d s together in Refs [120, 124]. All these 
sources repor t the power- law componen t of oscillation 
states abou t a decade wide. The exponent differs (being 
smaller) from the p h o n o n density spectrum and there is a 
t rans i t ion (crossover) from one type of behaviour to 
ano ther at a certain frequency. F r a c t o n s in po lymers 
were studied in Refs [120, 121, 125]. The crossover 
frequency was found to be a r o u n d 100 G H z and cor re 
sponded to scale £ ^ 2 0 - 3 0 A. Other au tho r s used S1O2 
aerogels and revealed a crossover frequency of 1 to 10 G H z 
cor responding to scale £ ^ 1 0 0 - 1 0 0 0 A. The upper fre
quency in the fracton region of aerogels was shown to be 
dependent on the size of const i tuent part icles in the 
aggregate and approximate ly equivalent to the first long
i tudinal resonance of elastic oscillations of equally-sized 
qua r t z part icles. 

Thus , the s t ructure of the oscillation spectrum of fractal 
mater ia ls is quali tat ively confirmed in experiments on light 
scattering and I I N S . Spectral d imensions and the cor re 
sponding exponents £ E obta ined by the I I N S me thod in 

different studies are listed in the table above. It is clear tha t 
as a rule the results fail to show quant i ta t ive cor respon
dence to any mode l of fractal elastic proper t ies . The 
discrepancy arises for several reasons . Firs t , according to 
Ref. [122], it m a y be ant ic ipated tha t expression (54) is 
inappl icable to the I I N S section because of p ronounced 
anharmonic i ty of oscillations in the fracton region. Differ
ent values of spectral dimension (see the Table) have been 
obta ined in Ref. [122] for different t empera tures , i.e. 
df = 1.8 at 136 K and df = 2.1 at 265 K. The au tho r s of 
the s tudy repor ted in Ref. [124] failed to not ice a t em
pera tu re dependence of spectral dimension bu t revealed its 
dependence on the wave scattering vector q. Based on the 
analysis of da ta obta ined with significantly different 
scattering vectors, the au tho r s of Ref. [124] pos tu la ted 
the presence of oscillations in aerogels governed by differ
ent types of elastic forces. At low frequencies associated 
with smaller spectral d imensions and higher ampli t ides of 
oscillation displacements , a major cont r ibut ion to the I I N S 
spectrum was provided by oscillations with elastic forces, 
described by the W e b m a n mode l [94]. At high frequencies 
where displacements were smaller and spectral d imensions 
higher, the greatest cont r ibu t ion was m a d e by oscillations 
with central elastic forces. On the whole , the I I N S spectrum 
must be described by the sum of cont r ibu t ions of the form 
of Eqn (54) with different average quadra t i c displacements 
and form of density of states. It is also wor th no t ing tha t 
according to Ref. [124], the p roduc t s of wave scattering 
vectors and the displacements are no t very small (a few 
tenths) and, strictly speaking, formula (54) cannot be 
satisfied because it does no t t ake into account te rms of 
the second order in nuclear oscillation displacements . 

To sum up , the fracton spectrum da ta obta ined by the 
I I N S me thod only quali tat ively suppor t the theory of 
elasticity for fractal mater ia ls . It was shown above tha t 
the same refers to the R L S me thod . 
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3.6 Numerical fracton studies 
As a rule, numer ica l studies consider equa t ions in the form 
of Eqn (18) on a percola t ion cluster [51, 89, 1 2 7 - 1 3 0 ] . It is 
wor thwhi le to no te tha t in spite of the simple s t ructure of 
E q n (18), numer ica l s tudy of it is by no means a simple 
task because an investigation into fracton proper t ies , 
especially fracton density of states, on r a n d o m fractal 
lattices requires a large number of lattice nodes to be 
considered. At the same t ime, the dimension of the p rob lem 
of eigenvalues is equivalent to the number of part icles. The 
p rob lem of eigenvalues with a dimension of several tens of 
t h o u s a n d s is very difficult to solve even if up - to -da te 
compute r s are used. F o r this reason, a r o u n d a b o u t 
app roach is normal ly used [128, 129] no twi ths tand ing 
several works repor t ing direct d iagonal isa t ion of the 
opera tor mat r ix in Eqn (18) [130, 51]. 

Numer i ca l studies confirm the crossover from of the 
p h o n o n spectrum to the fracton one. The power- law form 
of the density of states has been verified in a frequency 
range of at least two decades and the spectral dimension 
proved to be 4 / 3 , in agreement with the predict ion in 
Ref. [25] for E q n (18) on a percola t ion cluster. State 
localisation of the fracton spectrum in the form of 
E q n (52) m a y be just as well ob ta ined in numer ica l studies 
a l though concrete values of the super localised exponent 
vary in different papers . F o r example, a high value of the 
super localised exponent ds = 2.3 has been obta ined in 
Ref. [127] whereas superlocal isat ion was al together absent 
in Refs [128, 129]; herein ds = 1. The reason for this is most 
likely to be tha t the ampl i tude of localised wave functions 
on r a n d o m fractals is characterised by a highly nonun i fo rm 
and r a n d o m dis t r ibut ion within the localisation rad ius (see 
Figs 5 and 6). Therefore, different m e t h o d s used in 
Refs [128 -130] to evaluate its mean dis t r ibut ion in space 
might give different results. F o r m (52) for the wave function 
appears to have the sense of a certain averaged quant i ty . 
This p rob lem was par t ly clarified in Ref. [51] where 
intermit tency of the wave function ampl i tude in space 
was investigated. This work demons t ra ted tha t the square 
of the fracton wave function ampl i tude on a percola t ion 
cluster had a mult ifractal dis t r ibut ion. Therefore, evalu
at ion of the m o m e n t s of different order m a y yield different 
values of the superlocalisat ion exponent . Also, Ref. [72] 
repor t s the presence of molecular states on b o t h percola t ion 
clusters and regular fractals (see Section 3.2). 

3.7 Nonlinear phonon interactions with fractons 
and thermal conductivity of amorphous bodies 
It has a l ready been ment ioned tha t the t empera tu re 
dependence of heat conduct ivi ty of a m o r p h o u s bodies is 
strikingly different from tha t of crystals. This difference 
can be accounted for by the presence of the p la teau several 
tens of kelvins wide and the growth of the rmal conduct ivi ty 
above the p la teau with a rise of t empera tu re (see Fig. 9). 
The p la teau t empera tu re range precisely cor responds to 
excitation of a region of the localised oscillation spectrum. 
This is equally t rue of b o t h fractal mater ia ls and glasses. 

The a rguments tha t follow are no t restricted to the 
fracton oscillation spectrum but are also applicable to the 
explanat ion of t empera tu re dependence of the rmal con
ductivity of any a m o r p h o u s mater ia l [29]. However , it was 
the theory of fractons tha t served as a basis for the bet ter 
unde r s t and ing of the heat conduc tance mechanism in 
a m o r p h o u s bodies . 

Figure 12. Diagrammatic representation of nonlinear interaction 
between phonons (—>) and fractons (=>). (a) Two phonons give rise 
to a fracton of summed frequency, (b) A phonon is absorbed by a 
fracton which results in fracton formation with summed frequency 
[26]. 

The presence of the p la teau is easy to explain by tak ing 
into account the fact tha t tha t localised states (referred to as 
fractons below) (1) do no t par t ic ipa te in heat transfer and 
(2) effectively restrict the length of the p h o n o n s ' free pa th . 
The fact is tha t , due to localisation of oscillations, the 
possibili ty for nonl inear in teract ions between fractons and 
p h o n o n s to t ake place is no t limited to the condi t ions of 
spatial synchronism. A p h o n o n is scattered on a fracton 
serving in the capaci ty of a compac t scatterer. In a 
quadra t i c approx imat ion , processes of two types are 
conceivable [26]: those involving two p h o n o n s and one 
fracton (two p h o n o n s give rise to a fracton with a 
generalised frequency) and processes in which only two 
fractons par t ic ipa te (a p h o n o n is absorbed by a fracton with 
a change in the former ' s frequency) (Fig. 12). Both 
processes restrict the length of the p h o n o n free pa th , 
and the latter is responsible for the rise in heat conduct ivi ty 
above the p la teau level. The following mechanism for the 
heat conduct ivi ty growth has been suggested in [26]. 
In terac t ion with p h o n o n s by the second mechanism results 
in energy dissipation over var ious localised states accom
panied by its transfer in space. Exci ta t ion of an increasingly 
number of fractons with rising t empera tu re leads to a rise in 
heat conduct ivi ty above the p la teau . The au tho r s of 
Ref. [27] m a d e an accura te calculat ion of the t empera tu re 
dependence of heat conduct ivi ty tak ing into account 
in teract ions between fractons and p h o n o n s . M a t r i x ele
ment s of these interact ions were est imated in Ref. [27] using 
the expression for the fracton wave function in the form of 
E q n (52). The results of the calculat ion were expressed in 
directly measurab le variables and found to be in perfect 
agreement with exper imental da ta . It was demons t ra ted in 
Ref. [29] tha t there is no need to use a specific expression 
for the wave function of localised states and their spectral 
density. It p roves sufficient to assume localisation of 
oscillations with the frequency exceeding a certain cross
over frequency. 

Peculiar features of the nonl inear f r ac ton /phonon 
interact ions can be manifested in a variety of ways no t 
necessarily associated with the rmal proper t ies of a m o r 
p h o u s bodies . The absence of the requi rement for spatial 
synchronism is in itself unusua l in t rad i t iona l nonl inear 
acoustics and there m a y be interesting possibilities for its 
appl icat ion. A n example of a s tudy in this field m a y be 
found in Ref. [131] where the nonl inear interact ion between 
fractons and p h o n o n s was investigated in the system 
previously surveyed in Ref. [110] (see Section 3.5). It was 
experimental ly found in Ref. [131] tha t the threshold 
pa ramet r i c generat ion in such a system was 5 - 7 t imes 
lower than in either a uni form or a p e r i o d i c a l l y n o n u n i -
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form waveguide. The initial frequency lay in the fracton 
range, and the oscillation m o d e was parametr ica l ly excited 
in the p h o n o n region of the spectrum. W a v e functions 
par t ic ipa t ing in m o d e interact ions are shown in Fig. 10. 
Analysis m a d e in Ref. [131] demons t ra ted tha t a decrease in 
the threshold pa ramet r i c generat ion in a fractal system was 
a t t r ibu tab le to the existence near the half-frequency of 
modes with overlap integrals between wave functions of 
interact ing modes tha t are higher t han overlap integrals in 
the case of a h o m o g e n e o u s or periodically inhomogeneous 
waveguide. 

3.8 Fluctuations of elastic properties in a homogeneous 
fractal 
It has been shown in the foregoing review tha t in such 
mater ia ls as h o m o g e n e o u s fractals, elastic modu l i and 
hence the elastic wave dis t r ibut ion ra te on large scales are 
determined by the scale dependent elastic modu l i of the 
fractal clusters of which the mater ia l is composed . Because 
cluster format ion is a r a n d o m process, it is clear tha t b o t h 
the cluster size and the elastic characterist ics of the mater ia l 
must undergo r a n d o m fluctuat ions in space. To our 
knowledge, there have been no comprehensive studies on 
cluster size f luctuat ions in gels. As for percola t ion clusters 
near the percola t ion threshold , it is k n o w n tha t they 
possess the so-called super-lacunarity p rope r ty [9]. The 
number of nodes S in a cluster of size L is defined by 
expression 

and its dispersion has the form of (S2) — (S)2 ~ L2D, i.e. 
relative f luctuat ions near the t rans i t ion poin t do no t 
decrease with increasing cluster size. 

This p rope r ty plays an impor t an t role in se ismoacous-
tics. A mode l has been suggested in which the growth of 
strain in rocks leading to ea r thquakes is assumed to be 
ana logous to percola t ion t ransi t ion. Increased concent ra 
t ion of isolated consol idat ion foci in the rock leads to the 
format ion of clusters of increasing size which eventually 
results in percola t ion t rans i t ion and a subsequent g rowth of 
the scale of a strain focus [52]. Sound velocity f luctuat ions 
in inhomogeneous media with such percola t ion t ransi t ion 
have been investigated in Ref. [132]. It ha s been shown 
using the mode l of quas id imensional chains tha t fluctu
at ions of sound velocity c display critical behaviour and 
unl imited growth near the t ransi t ion point : 

(P-PCTX 

Exponen t x is expressed in te rms of the lattice dimension d 
and the critical index v of the t rans i t ion as 

x = dv — 1 . 

On the whole , the na tu re of f luctuat ions of elastic 
proper t ies of fractal mater ia ls is poor ly under s tood , and 
we did not find ano ther s tudy dedicated to this p rob lem. 

4. Wave emission and scattering by fractal-like 
structures 
The proper t ies of the fracton region in the elastic 
oscillation spectrum per ta in either to small scales (several 
tens of Angs t roms) in real mater ia ls or to artificial fractal 
s t ructures. Peculiar features of wave emission or scattering 

by fractal objects can become manifest under na tu ra l 
condi t ions and in the macroscopic scale region. The 
fractal s t ructure is intrinsic in the dis t r ibut ion of eddies 
and impuri t ies in a turbulent flow [18, 74], the sea surface 
[45], front percola t ion t h rough a r a n d o m p o r o u s fluid 
med ium [83], and regions of concent ra ted strain in geologic 
rocks [52]. The fractal proper t ies of soot part icles have a 
ma rked effect on b o t h absorp t ion and scattering of light in 
the a tmosphere . One and the same par t icula te mass causes 
low-level scattering and absorp t ion in a compac t cluster 
and much greater scat tering and absorp t ion sections in a 
fractal one [133]. The most conspicuous manifes ta t ions of 
fractality dur ing wave scattering have been repor ted in the 
case of mult iple scat tering [36, 37] a l though its selected 
features are apparen t even in a single scat tering episode. 

4.1 Wave scattering by fractal surfaces 
Angula r dis t r ibut ion of wave intensity dur ing scat tering by 
a large-scale smooth irregular surface is determined by the 
surface slope dis t r ibut ion. The fractal surface is not subject 
to differentiation and has no well-defined slope. Moreover , 
fractality suggests the existence of irregularit ies on all scales 
including some tha t exceed the length of the wave being 
scattered. Therefore, neither the tangent ia l p lane a p p r o x 
imat ion nor the low excitation m e t h o d is applicable to the 
evaluat ion of the scattered field. There is no acceptable 
ra t ionale for a general solut ion of the p rob lem. The very 
first work in this field, Ref. [33], used the phase screen 
approx imat ion ; in other words , it examined diffraction of a 
wave tha t passed th rough a thin phase screen with the 
optical width dis t r ibut ion kh(x) ra ther t han u n d e r t o o k to 
solve the p rob lem of wave scattering on a rough surface 
h(x). 

In the Fresnel approx imat ion , the applicabil i ty of which 
is confirmed by computa t ion , the expression for the wave 
ampl i tude xjj at dis tance z from the phase screen has the 
form 

\j/(x9 z) = exp if kz 
iTZZj 

1 / 2 

x | d x ' exp j | - [lh(x ')z - (x - xf)2] j . (55) 

Here , k is the wave n u m b e r and x is the coord ina te directed 
a long the surface. 

The s tudy in Ref. [33] considered a surface with one -
dimensional i rregulari ty having the s t ructure of a Gauss ian 
fractal (the plot of generalised Brownian mot ion ) with the 
s t ructure function in the form of Eqn (6). Because such a 
surface is self-affine ra ther t han self-similar, it is possible to 
derive a characterist ic scale as follows: 

{[h(x + L ) -h(x)]2) =L2 (56) 

Loosely speaking, scale L (sometimes called topothesy) is 
the distance at which surface slopes (Ah/Ax) tend to unity. 
In te rms of topothesy , the s t ructure function (6) m a y be 
rewri t ten as 

{[h(i + x ) - h ( ^ ] 2 ) = L 2 ^ x 2H (57) 

It follows from expression (57) tha t at L < x the slopes are 
smaller t han uni ty (0 < H < 1) whereas at L > x, they 
exceed unity. 
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The Gauss ian dis t r ibut ion h(x) permi ts simple calcula
t ion of the ampl i tude correlat ion function [33]: 

R(x)=(W, z ) z ) ) = e x p - ^ k 2 L 2 ^ \ x \ 2 H 

(58) 

Angula r dis t r ibut ion of wave intensity is defined by the 
Four ie r t r ans format ion of the correlat ion function (58): 

/ (s in 9) = ^R(x) exp(i?cx) dx 

= y \ dx' exp 
k J 

-2(kL) (59) 

where k = k sin 9. The last equat ion in (59) is obta ined by 
the subst i tut ion x' = kx. It is wor thwhi le to no te tha t the 
angular dis t r ibut ion of intensity as a function of sin 9 
formally coincides with the density of the Levy-type stable 
dis t r ibut ion with pa ramete r a = 2H [79] (see Section 2.3.1). 
At large angles, d is t r ibut ion (59) decreases with increasing 
angle as (sin 9)~2H~l; at smaller angles, the intensity is 
relatively stable. The exponent in the angular dependence 
can be expressed t h rough the fractal surface dimension 
—2H — 1 = 2D — 5. The angle separat ing these extreme 
cases is easy to determine from E q n (59). It is specified by 
an explicit condi t ion 

(kL)-{1-H)/H sin9 ~ 1 . (60) 

In te rpre ta t ion of the latter condi t ion is simple. Since 
exponent H does no t exceed unity, the angle tha t limits the 
region of cons tancy of angular dis t r ibut ion increases with 
growing kL, i.e. as the wavelength decreases with respect to 
topothesy . Such behaviour cor responds , according to 
E q n (57), to an increase in the surface slope with 
decreasing scale of the surface under examinat ion , which 
cor responds to a decrease in the incident wavelength. 

The fractal surface is in termedia te between an ord inary 
smooth surface and a dis t r ibut ion of mass in a volume. 
Therefore, ano ther feasible app roach to the evaluat ion of 
scattering characterist ics on the fractal surface is based on 
the theory of vo lume wave scattering [34]. 

4.2 Single scattering on fractals and the Fourier 
transformation of fractals 
The angular dependence of the intensity of single scattering 
on inhomogenei t ies of the refractive index is defined by the 
k n o w n expression 

I(q) ~ ^(s(r)s(r + rf))exv(-iq-rf)dV (61) 

where the scattering vector \q\ is determined by the 
scattering angle 8 and the incident wavelength X 

| f | = T a n - , 

while the correlat ion function of the refractive index 
f luctuat ions is p ropo r t i ona l to tha t of the cluster density: 

< £ (r)e(r + r ' ) > ~ < p ( r ) p ( r + r ' ) > , 

which, in the case of fractal clusters, is directly defined by 
its fractal d imension D: 

(p(r)p(r + r'))~\r' 

where d is the embedding space dimension. It follows from 
expressions (61) and (62) tha t for the angular dependence 
of scattering intensity 

-d . (63) 

I(q) is the scattering intensity into a single solid angle at an 
angle 9 to the direction of the incident wave. 

Na tura l ly , for real fractals, relat ion (62) is fulfilled in a 
limited scale range a0 < r < accordingly, relat ion (63) is 
fulfilled for l / £ < q < l/a0. The angular dependence I(q) is 
m o r e exactly expressed as the p roduc t of form factor F(q) 
and s t ructure factor S(q): I = FS [134]. The form factor 
cor responds to angular dependence of the intensity in 
scattering on individual elements, i.e. part icles which 
p roduce a fractal cluster when they stick together u p o n 
contact . The form factor t u rns to zero at q —> \/a0 whereas 
the s t ructure factor has the form S(q) ~ q~D. At q <̂  l/a0, 
the form factor is approximate ly constant , and expression 
(63) is obta ined for scattering intensity. 

General ly speaking, the angular dependence charac ter 
ised by expression (63) is no t a specific p rope r ty of 
scattering on fractal objects. A similar angular dependence 
m a y be associated with singularities of dielectric permi t t iv
ity r a n d o m l y and independent ly located in po in t s rt in the 
form [135]: 

e ( r - r ; ) = 8 0 ( r - r f ) a (64) 

The angular dependence of scattering intensity on each 
diffusor has the form 

-2{aL+d) 

(62) 

This expression also holds for the envelope of angular 
dependence of scattering intensity on a r a n d o m l y located set 
of scatterers. It is clear tha t such a set is no t necessarily 
fractal for the simple reason tha t the Poisson law of 
dis t r ibut ion over space implies the presence of a scale tha t 
d is turbs scale invar iance and is determined by the average 
difference between the scatterers. The angular dependence of 
each individual member of a set of scatterers is b roken as a 
result of r a n d o m interference of the fields of isolated 
scatterers. The same refers to scatterers in the form of 
E q n (64) and also to scattering on fractals. In such cases, the 
differences m a y be expected to appear in the fine s t ructure of 
angular dependence relat ions. A comprehensive formulat ion 
of these differences remains to be developed. In Ref. [134], 
Four ie r t r ans format ion of regular fractals has been studied. 
It has been demons t ra ted tha t the fine s t ructure of angular 
dependence is scale-invariant with respect to extension a long 
axis q. In other words , the angular dependence is subject to 
the relat ion 

s{yq)=y-Ds(q), 

while expression (63) is satisfied for the angular dependence 
(S(q)) ~ q~D averaged in certain intervals of q values. At 
the same t ime, for r a n d o m scales, the scale invariance of 
the fine s t ructure is likely to have statistical sense. 

It should be emphasised tha t for a set of scatterers in the 
form of E q n (64), there is a power- law form (63) of the 
angular dependence of scattering for each individual 
scatterer. In contras t , in the case of scattering on frac
tals, the dependence (63) occurs as a result of interference of 
the fields scattered on the part icles of which the cluster is 
composed . The correlat ion is especially p r o n o u n c e d as 
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regards characterist ics of mult iple scattering on fractals and 
will be discussed in the following section. 

Ano the r example of scat tering on a nonfracta l object 
with angular dependence of intensity E q n (63) is provided 
by the case where the scatterer conta ins pores or part icles 
with the power- law size dis t r ibut ion [136]. If the po re or 
part icle size dis t r ibut ion P(r) in scale ranges comparab le 
with the scattered wavelength has the form P(r) ~ r~ 7 , the 
angular dependence of intensity / is also described by the 
power law I(q) = q~x with the exponent x = 7 — y. 

The relat ionship between angular dependence and 
fractal d imension dur ing scattering on a fractal object 
differs from E q n (63) when the scatterer has a fractal 
surface. Suppose tha t the surface separates bodies with 
similar refractive indices, unl ike the si tuat ion considered in 
the previous section. Then , expressions (61) and (62) m a y be 
used to evaluate the angular dependence of scattering. 
However , the relat ionship between the density correlat ion 
function and the fractal s t ructure in this case will be 
different from tha t in the mass fractal case. 

Let us est imate the mean probabi l i ty of finding a filled 
vo lume at a distance r from the occupied poin t for a b o d y 
with a fractal surface of dimension D. It m a y be expressed 
as a sum of a d is tance- independent par t for the po in ts 
located at a dis tance larger t han r from the surface and a 
dis tance-dependent par t for the po in t s near the surface. The 
vo lume filled up by the latter po in t s can be est imated in 
te rms of the vo lume Vs of the covering of the r-sized cube 
surface. It follows from the definition of fractal dimension 
tha t Vs = N0r _ D , where N0 is a cons tant . If p(r, x) is the 
probabi l i ty of finding a part icle at distance r from another 
part icle si tuated at dis tance x < r from the surface, 
averaging this probabi l i ty over r gives the following 
expression for the correlat ion sought [34]: 

y-V v 1 r 
C(r)=^—^ + ^-^p(r,x)dx. (65) 

The average from p{r, x) mus t no t depend on r. Therefore 

C(r) = 1 - const x r3~D . 

Subst i tut ion of this expression into E q n (61) yields the 
angular dependence of scat tering intensity in the form 

/(*) = i-{6-D)-
F o r surface fractal dimension lying in the range of 2 - 3 , 

the angular dependence exponent is in the range 3 - 4 which 
does not overlap the range 0 - 3 of the exponent for mass 
fractals. Therefore, these s i tuat ions are easy to distinguish 
in experiments . 

4.3 Multiple scattering on fractals 
Specific features of mult iple scat tering on fractals can be 
accounted for by a slowly decreasing correlat ion of part icle 
density and its theoret ical analysis is based on the p rope r ty 
of self-dependence. F rac t a l effects in mult iple scattering are 
apparen t even when it occurs on fractal clusters with size 
smaller than the wavelength [36]. This can be accounted for 
by the effect of correlat ion of part icle posi t ions in the 
cluster on fields imposed u p o n isolated part icles on 
rescat ter ing of an incident wave by other cluster particles. 

Suppose tha t a wave with the ampl i tude q>° falls on a set 
of scatterers si tuated in a space region which is compact 
with respect to the wavelength. In this case, for a set of 
responses of individual scatterers xt (e.g. dipole m o m e n t s , 

ampl i tude of vo lume f luctuat ions for monopo les , etc. 
depending on the na tu re of b o t h the waves and the 
scatterers), the following system of equa t ions m a y be 
wri t ten which takes into account in teract ions between 
scatterers: 

*i = Xorf + Xo ̂ 2 f (rv)xJ ' (66) 
¥j 

where Xo is the f requency-dependent coefficient of the 
scatterer response to the external field, f(rtj) is the function 
of rad ius vector rtj connect ing the iih and the jth scatterers. 
This function determines the field imposed by one scatterer 
on ano ther (f~ l/rtj for monopo les ; in the case of dipoles, 
xt are the vectors and / is the tensor function ~ V r | ) -
E q n (66) m a y be wri t ten in the mat r ix form 

x — Xo<P° + XoWx. F o r a compacted cluster, mat r ix W is 
really a symmetr ic mat r ix diagonal isable by means of 
o r thogona l t r ans format ion in the form of 

UWU T = d i ag (u ; n ) , UU T = 1 . 

Then , the solution of E q n (66) has the form 

x = U T diag [ — — ) Uq>° , (67) 
\z - wnJ 

or 

X I = Y^»>j(Z-WN)~l(Pj > 

where u\ are the componen t s of eigenvectors cor responding 
to eigenvalues wn and z = A + i3 = Xo~l is the var iable 
inverted with respect to the response of an individual 
scatterer. F o r a resonant diffusor, A cor responds to 
wi thdrawal from the resonant frequency and 3 to the 
inverse resonance quali ty. If an isolated part icle (A 3) is 
far from the resonance , E q n (67) gives the following 
expression for the imaginary componen t of the averaged 
response (polarisabili ty) of a part icle in a cluster: 

lmX(A) ~ (^Y^ululSiA - wn)^ . (68) 

This means tha t the frequency dependence of the response 
is determined by the dis t r ibut ion of eigenvalues of mat r ix 
W. Since functions f(r) rapidly decrease with growing 
distance, the mat r ix W s t ructure for a fractal cluster 
resembles the s t ructure of the opera tor mat r ix from 
E q n (18) for elastic oscillations. The dis t r ibut ion of 
eigenvalues of this opera to r ha s the form of a power 
law which is determined by spectral d imension. It m a y be 
supposed tha t a similar s i tuat ion also takes place in the 
case in quest ion. A n d this is really t rue . The s tudy [36] 
dealt with polarisabi l i ty and absorp t ion of a fractal cluster 
composed of m o n o m e r s with the d i p o l e - d i p o l e interact ion 
on optical frequencies. The au tho r s obta ined the power law 
form of the dis t r ibut ion of eigenvalues v(co) and of the 
p r o p o r t i o n a l to imaginary componen t of the cluster 's 
response to relative tun ing A of the incident wave 
frequency away from the resonant frequency of an 
individual part icle: 

I m x ( ^ l ) = | v ( ^ l ) ~ ^ - 1 , (69) 

where d0 is an ana logue of spectral dimension referred to in 
[36] as opt ical spectral d imension. Ref. [36] repor t s the 
numer ica l value of d 0 which lies in the range of 0 . 3 - 0 . 6 . In 
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other words , the frequency dependence of the part icle 's 
response in a cluster is al together different from the 
resonance curve for an isolated part icle in tha t absorp t ion 
of an incident wave remains high at a large distance from 
the resonance where it bu t slowly decreases with further 
de tuning of resonant frequency, in accordance with the 
power law. In such a case, eigenvectors of u cor respond to 
the collective excited states of part icles (fracton analogues) 
in the cluster. Their spatial vo lume exhibits power- law 
dependence on the degree of wi thdrawal / ~ Aa. However , 
the exponent a is related to optical spectral dimension in a 
different way compared with the exponent in the dispersion 
relat ion for fractons (53). Ref. [36] repor t s the following 
relat ion: a = d 0 — 1/(3 — D). 

The most interest ing result of mult iple scattering on 
fractal clusters is the enhanced local field f luctuation 
observed in Ref. [36]. E q n s (67) and (69) give the following 
expression for the magnif icat ion of the field square 
averaged over cluster part icles: 

G = ^ ~ I | ^ + 1 . (70) 
\<P°\ 3 

This is a high value for large degrees of relative de tuning 
which m a y result in a significant increase in nonl inear 
effects dur ing the interact ion between an incoming wave 
and a cluster. This observat ion agrees with exper imental 
findings per t inent to p h o t o m o d i f i c a t i o n | of fractal clusters 
at intensities of light falling below the threshold level. In 
this case, the effect is caused by enhanced local f luctuat ions 
of the field. Evidently, this increment is a universal wave 
effect which is certain to have the mos t conspicuous 
manifes ta t ion in nonl inear in teract ions between waves of 
different na tu re . 

The analogy of collective excitat ions of part icles dur ing 
mult iple wave scat tering on a compact fractal cluster can be 
accounted for by the fact tha t phase shifts in Eqn (66) are 
neglected when part icle fields affecting a given part icle are 
considered. W h e n the phase is t aken into account , mat r ix W 
becomes complex and even loses the p rope r ty of self-
coupl ing which makes the p rob lem far m o r e complicated 
and difficult to solve. The d iagrammat ic technique developed 
in Ref. [137] has been used in Ref. [37] to examine mult iple 
scattering by a fractal cluster of meta l part icles with dipole 
surface resonance . Scat ter ing was analysed tak ing into 
considerat ion phase shifts. Calcula t ions were m a d e with 
due regard for correlat ion of the par t ic les ' pos i t ions in the 
cluster in order to enhance the probabi l i ty of construct ive 
interference of waves scattered over different channels and 
the appearance of a similar effect of s t rong local field 
f luctuat ions. The s tudy [37] demons t ra ted the existence of a 
critical cluster fractal d imension 3 /2 , such tha t clusters of 
lower dimension underwen t a huge increase in the scattering 
section. In Ref. [37], this effect was te rmed v is ib i l i ty -
invisibility phase t ransi t ion. However , the au tho r s did 
no t offer any quali tat ive in terpre ta t ion of such a sharp 
t ransi t ion. Clearly, correlat ion of the par t ic les ' pos i t ions 
grows with falling fractal dimension a l though this g rowth is 
qui te smooth . The cause behind the appearance of the 
t rans i t ion at fractal dimension D = 3/2 can p robab ly be 

fPhotomodification of clusters of small metal particles consists of 
burning out some of them by means of heat generation induced by 
absorption of an incident wave. 

unde r s tood from the following considerat ions . A cluster of 
size r conta ins rD part icles and ~ r2D cor responding rad ius 
vectors which connect the part icles in pairs . These vectors 
or iginate from one poin t and occupy a region of size ~ r. At 
D > 3 /2 , the number of rad ius vectors grows faster t han the 
cube of the size; actually, they m a y be considered to occupy 
the whole region. The si tuat ion is quali tat ively different at 
D < 3 /2 since the number of vectors grows m o r e slowly 
than the volume, and they occupy zero vo lume at large r. 
Assuming mult iple scat tering to be the ray walking from 
one part icle to another , the case of D < 3 / 2 is reflected in 
marked restrict ion of possible walk steps (possible steps 
occupy a set of zero measure) . Obviously, this leads to a 
sharp increase in the possibili ty of construct ive interference 
of b e a m s tha t have covered different distances. 

The p rob lem of scat tering on fractal part icles is solved 
in Ref. [133] with regard to mult iple scattering bu t in the 
self-coordinated field approx imat ion . Frac ta l i ty is t aken 
into considerat ion by means of the power- law al terat ion of 
density with increasing distance from the centre of the 
aggregate. Even this approx ima t ion indicates the growth of 
the scat tering amplification factor with decreasing fractal 
dimension. 

4.4 Wave emission by fractal objects 
Rad ia t i on fractal effects m a y t ake place even in a set of 
independent po in t sources of rad ia t ion showing fractal 
dis t r ibut ion in the space. Consider their cont r ibut ion to the 
intensity of emission from the sphere of rad ius R with its 
centre at the observat ion poin t . In the case of fractal 
dis t r ibut ion with dimension Z), the number of such sources 
on the sphere is described by the expression 

N ~ R D , (71) 

each source cont r ibut ing to the to ta l intensity in p ropo r t i on 
to l/R2. Hence , the to ta l intensity is 

/ - RD~2 . (72) 

Given the uni form dis t r ibut ion of sources, D = 2 and the 
to ta l intensity does not depend on the distance whereas in 
the case of fractal dis t r ibut ion, D < 2 and the intensity falls 
with increasing distance. 

Expression (72) under the assumpt ion of fractal dis
t r ibut ion of stars and galaxies m a y be used to find a 
solut ion for the wel l -known Olbers p a r a d o x of night-sky 
luminosi ty [39]. If the Universe is considered infinite, 
in tegrat ion of Eqn (72) over distances yields an infinite 
result. On the cont rary , dis t r ibut ion over spheres with 
sufficiently small fractal dimension gives a finite result 
even if the Universe is infinite. 

It is wor thwhi le to no te tha t the presently available da ta 
suggest a fractal dis t r ibut ion of galaxies on scales of up to 
100 M p c , with the mass fractal dimension D = 1.2 [138]. 
Cor respond ing to such pa t t e rns is dis t r ibut ion over spheres 
with dimension Ds = D — 1. This results in the following 
distance dependence for the to ta l intensity: 7 ~ / ? ~ 1 8 ; its 
integral over distances is J I dR ~ R~0-*. Therefore, fractal
ity m a y well be supposed to cont r ibute to the luminosi ty of 
the night sky. 

There are m o r e aspects as regards fractal effects in wave 
emission. H e a t rad ia t ion by fractal aggregates has been 
investigated in Ref. [38]. Localised collective states dis
cussed in the previous section are responsible for 
abnormal ly high absorp t ion if calculated per aggregate 



Fractals in wave processes 375 

part icle. Hence , a n o m a l o u s heat emission per uni t mass of 
the aggregate. 

This result has been obta ined in Ref. [38] based on m o r e 
trivial considerat ions . The au thor suggested tha t the 
b o u n d a r y condi t ions for the waves emitted from the cluster 
surface are coincident with the condi t ions for a con t inuous 
part icle when its heat rad ia t ion is no t different from tha t of 
the cluster conta in ing (r/r0)3~D t imes fewer part icles (r, r 0 

be ing the size of the cluster and its const i tuent elements 
respectively and D is the fractal dimension) . R a d i a t i o n of 
the cluster per part icle is higher. 

Ano the r manifes ta t ion of fractal s t ructure par t ic ipa t ion 
in rad ia t ion is associated with its f luctuat ions when 
p roduced by fractal systems. Such p h e n o m e n a have been 
examined in the context of seismology in Refs [40, 52] 
which are concerned with the role of acoust ic emission 
f luctuat ions in the processes of rock res t ructur ing. One of 
the models used in Ref. [40] is related to the percola t ion 
mode l of front diffusion. Concen t ra t ion of an agent in the 
diffusion front changes from zero at a distance from the 
source to uni ty near it. There is a front region where the 
diffusing agent concent ra t ion is equivalent to the threshold 
percola t ion level. In proximi ty to this site, the diffusing 
agent tends to form fractal clusters [83]. This results in a 
change of the coherent vo lume filled by the agent due to 
differently sized m a t u r e clusters jo in ing the front and 
leaving it ra ther t han the mot ion of individual particles. 
This process is accompanied by the so-called geometr ic 
noise general characterist ics of which have been investigated 
in Ref. [83]. 

It is impor t an t tha t this is an universal effect which does 
no t require special condi t ions for the format ion of fractal 
objects. It is due solely to diffusion and m a y be noticed on 
examining waves of different na tu re . F o r example, the 
au tho r s of Re f [139] studied pressure f luctuat ions dur ing 
the slow invasion of a r a n d o m p o r o u s med ium by a heavy 
fluid. This percola t ion was of a diffusive na tu re which 
favoured condi t ions for the p roduc t ion of fractal geometr ic 
noise. 

5. Fractal structures in wave fields 
There is no well-developed me thodo logy in this area of 
research. A great variety of geometr ic objects m a y be 
associated with wave fields, viz. spatial dis t r ibut ion of field 
intensity, wave shape, rad ia t ion pa t te rns , etc. A s tudy of 
fractal s t ructures in wave fields as well as in r a n d o m 
processes (see Section 2.2) m a y be useful for the concise 
descript ion of fields with the complicated s t ructure 
necessary to unde r s t and nonl inear wave processes or 
charac-terist ics of na tu ra l noise. 

The presence of the dist inguished scale (wavelength) in 
wave fields is an impor t an t l imitat ion on the manifesta t ion 
of fractal proper t ies . Given a b r o a d wave spectrum, they are 
apparen t as fractal s t ructure of the wave shape in the self-
similar region of the spectrum. In the general case, fractality 
m a y be observed on scales exceeding the characterist ic 
wavelength, tha t is in the ray s t ructure or the large-scale 
dis t r ibut ion of field intensity. 

This section presents a descript ion of results obta ined in 
different studies concerning fractal s t ructures in wave fields 
and discusses a p romis ing general app roach to the analysis 
of signals and waves based on the use of the mult ifractal 
model . 

5.1 Multifractals and analysis of signals 
A mult ifractal is a un ion of fractal sets having different 
dimensions. A detailed descript ion of multifractals and 
relevant no t ions is given in Ref. [9] and Ref. [48]. 

Mult i f racta l analysis m a y provide nontr iv ia l da ta 
applicable to a wide range of objects no t restricted to 
self-similar ones or even to fractals. The mos t impor t an t 
componen t of the analysis is the examinat ion of the Renyi 
Dq d imensions of different orders . F o r objects regarded as 
self-similar in the n a r r o w sense of the word , all these 
dimensions are similar and equivalent to the fractal 
dimension D0. Consider m o m e n t s of poin t dis t r ibut ion 
density at an object: 

N(L) 

as related to the b reak ing scale of object /. Then, it follows 
from the definition of the Reny i dimensions tha t 

Mq{l) ~ l^q) = l q D ^ = lqD° , (74) 

where the last equa t ion is fulfilled for self-similar objects. 
In other words , function cp(q) for self-similar objects is 
linear. This inference does no t hold for a general case. 
However , an object can be described in te rms of the 
mult ifractal mode l provided scaling (74) with a certain 
function cp(q) still exists. Suppose tha t an object can be 
b roken up into complexes of fractal sets with dimension 
/ ( a ) near which densities exhibit a power- law dependence 
on the cell size in the form of (/) ~ / a . Then, m o m e n t s of 
dis t r ibut ion density m a y be expressed in the following way: 

Mq_x{l) ~ JVa-/(a)da . (75) 

The integral at small / m a y be obta ined by the 'pass ' 
me thod . At the saddle po in t a , 

fa ( ? 6 ) 

u u l a = a 

and the integral is given by expression lq(*~f^\ Hence , 
functions / ( a ) and Dq are related t h rough the Legendre 
t rans format ion (q — \)Dq = qot —f(jx). 

The mult ifractal mode l has the most explicit sense when 
applied to the analysis of signals (fields) in the quant i ta t ive 
descript ion of dis t r ibut ion of singularities of signals n o n -
differentiable in an infinite n u m b e r of poin ts . A n example 
of such a signal is provided by the Wiener process with no 
derivative at any point . Na tura l ly , the no t ion of n o n -
differentiability in appl icat ion to real physical signals 
m a y be discussed only with respect to a certain range of 
scales which exceed a selected min imal scale. F o r instance, 
in the case of spatial dependence of turbulent flow velocity, 
such scales are those in excess of the internal K o l m o g o r o v 
turbulence scale. 

Suppose there is a d iscont inuous process x(t) with 
singularities of the derivative. Also suppose tha t the square 
of the difference between signal values in adjacent po in t s 
near the singularities shows power- law behaviour when 
distances between the po in t s are changed: 

| x ( 0 - x ( ; + T ) | 2 ~ T 2 A • (77) 

This relat ion cor responds to the presence of a po in t of 
singularity of the Hoelder derivative of the a order [8]. At 
the po in t s where the derivative is d iscont inuous , a = 1, 
while the quan t i ty a > 1 cor responds to the po in t s with 
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zero derivative, a l though the second derivative m a y have a 
break . Specifically, a = 1/2 for all po in t s of the Wiener 
process . F u r t h e r suppose tha t the po in t s with a definite 
exponent a const i tute a fractal set with dimension / ( a ) ; 
then, the following expression can be wri t ten for the 
s t ructure function of the process of order q, by analogy 
with (75): 

< | * M - * ( * + T ) | * > : 
R <Z«-/(a) d a ^ T**-M 

where 

da 

Therefore, if s t ructure functions of the s tudy process of 
different orders show power dependence on the interval in 
the form of T 9 ^ , the mult ifractal mode l for the dis t r ibut ion 
of singularities of the signal derivative m a y be adop ted . 
Func t i on / ( a ) is ob ta ined in the form of the Legendre 
t rans format ion of the derivative <p(q). 

F u n c t i o n / ( a ) , commonly referred to as the singularity 
spectrum, has recently been used by m a n y au thors . Unl ike 
the power spectrum and correlat ion functions of the process, 
the singularity spectrum bears informat ion abou t its local 
s t ructure useful for dist inguishing between signals of differ
ent origin. Also, it is wor th no t ing tha t mult ifractal analysis 
gives a meaningful s u m m a r y of da ta on different order 
m o m e n t s of the two-poin t dis t r ibut ion of process 
probabil i t ies . 

The mult ifractal mode l appears to have been applied 
first to the descript ion of the s t ructure of turbulent flow 
velocity in the inertial scale interval [140, 141]. The 
spectrum of velocity singularities thus obta ined permi ts 
one m o r e impor t an t in terpre ta t ion . In agreement with the 
K o l m o g o r o v theory, the velocity difference in po in t s 
located at distance r is related to energy dissipation (e r) 
averaged over the vo lume of size r by the following 
expression: 

Aur = « 8 r ) r ) 1 / 3 . 

Assuming (e r) to be independent of the averaging volume, 
it is possible to obta in for s t ructure velocity functions 

<|A«r |0- RP/3 

with the singularity spectrum being degenerate to a poin t . 
Exper imenta l studies indicate tha t this relat ion is no t 
fulfilled. Hence , energy dissipation is no t uniformly 
dis tr ibuted in space; its dis t r ibut ion m a y be described 
using the mult ifractal model , similar to the dis t r ibut ion of 
velocity singularities. In other words , mult ifractals m a y be 
useful to characterise an intermit tency of energy dissipation 
fields which was previously described in te rms of a 
l ogonorma l dis t r ibut ion. It is clear tha t the mult ifractal 
mode l is applicable to the analysis of intermit tent pa t t e rns 
of any density dis t r ibut ion b o t h in space and t ime. In this 
case, the integral of such density is regarded as a 
mult ifractal measure . Wi th this measure being taken as a 
nondifferentiable function, its singularity spectrum coin
cides with tha t of the cor responding density. A n y signal or 
its ins tan taneous power m a y be viewed as a density on the 
t ime axis suitable for mult ifractal analysis. 

Such an app roach has been employed in Ref. [50] to 
analyse periwall pressure pulses tha t are k n o w n to occur in 
a turbulent flow in a pipe. The analysis of the process in 
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Figure 13. (a) Multifractal process obtained with the model described 
in Ref. [140]. (b) The square of periwall pressure pulses in a turbulent 
flow averaged over intervals 1.6 x 1 0 - 4 s [50]. Probe size 1 cm, flow 
velocity 10 m s - 1 . (c) The square of white noise with normal amplitude 
distribution. The horizontal axis gives reading numbers, and the 
vertical axis represents conventional units. 

Ref. [50] was performed on t imes exceeding its correlat ion 
scale; it is on such scales tha t intermit tence of the process 
acquires mult ifractal s t ructure. It was also essential tha t 
direct measurements demons t ra ted tha t the energy singu
larity spectrum of the process was independent of flow 
velocity. Indeed, the singularity spectrum reflects the 
s t ructure ra ther t han energy characterist ics of the process . 

A simple mult ifractal mode l has been p roposed in 
Ref. [142]. Suppose tha t a segment of the ampl i tude is 
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initially equal to a. Divide the segment into two new ones 
and r a n d o m l y ascribe ampl i tudes pa and (1 — p)a to either 
half. Repea t the p rocedure over and over an infinite number 
of t imes. The resul tant density has the mult ifractal 
singularity spectrum. The process simulated by this mode l 
is i l lustrated in Fig. 13a. Fig. 13b shows the change with 
t ime of the pressure squared dur ing near-wall tu rbulent 
pulsa t ion. F o r compar i son , the square of Gauss ian white 
noise is presented in Fig. 13c. Fig. 14 demons t ra tes 
singularity spectra for these processes. It can be seen 
tha t the singularity spectrum for the Gauss ian noise 
concentra tes near the poin t f=l, a = 1. Exper imenta l ly 
measured po in t s of the singularity spectrum for pressure 
pulses were found to fit the curve well for the singularity 
spectrum of the simulated process with p = 0.7. Also, 
similar in termit tent pa t t e rns of s imulated and real p r o c 
esses are directly apparen t from the figures (Fig. 13a,b). 

The appl icat ion of mult ifractal analysis to the ampl i tude 
dis t r ibut ion of fracton wave functions on a percola t ion 
cluster is described in Ref. [51]. The au tho r s used mul t i -
fractal analysis to examine the density equivalent to the 
squared ampl i tude of the eigenfunction for E q n (18) on a 
percola t ion cluster. The cluster was obta ined by simulat ing 
percola t ion at the threshold node concent ra t ion on a 
64 x 64 square lattice. Wave functions were derived by 
means of direct numer ica l evaluat ion of eigenvectors of the 
equat ion . The s tudy revealed the power- law behaviour of 
values Mq ob ta ined with formula (73) in the range q = 5 -
10. F o r eigenfunctions on the full square lattice, the 
exponent cp(q) from E q n (74) had the simple form of 
cp(q) = 2q. This dependence changed for fractons, first, 
because wave functions were fixed on a fractal, second, 
because the wave functions had highly irregular s t ructure. 
At q = — 1 , cp(q) = —1.9 was obta ined and repor ted to be 
equal to the fractal dimension of a percola t ion cluster, as 
expected [43]. F o r other q values, equali ty cp(q) = qD0 is no 
longer fulfilled which can be accounted for by the m a r k e d 
intermit tency of wave functions within a cluster. The 
dis t r ibut ion of wave function ampl i tudes is characterised 
by the nontr iv ia l singularity s p e c t r u m / ( a ) . This spectrum 
displays weak frequency dependence, bu t its general 
s t ructure is the same regardless of frequency (Fig. 15). 
To begin with, / (a) is smaller t han the cluster dimension 
/(a) = 1 .5-1 .6 at a = 2 cor responding to the po in t s on a 
cluster with the n o r m a l smooth ampl i tude dis t r ibut ion. This 
means tha t the po in t s with smooth behaviour of the wave 
function occupy only a small po r t ion of cluster nodes , the 
smaller the higher characteris t ic localisation scale. Neve r 
theless, s p e c t r u m / ( a ) is rapidly diminished at a < 2, tha t is 
the number of po in ts where the ampl i tude shows a b n o r 
mally fast g rowth undergoes a further decrease. However , 
the major i ty of the po in t s occur at a > 2. In the range of 
a = 2 - 5 , the singularity spectrum approaches the constant 
v a l u e / ( a ) = 1.9 equal to the cluster dimension D0. There 
fore, the wave function ampl i tude is subnormal ly small for 
a lmost all po in ts of the cluster. It should be noted tha t Mq 

at q = 0 is directly related to the process of nonl inear 
excitation of fractons with double frequency. The singu
larity spectrum indicates tha t the nonl inear source of 
fractons with double frequency is largely located in tha t 
por t ion of the cluster where fractal dimension is smaller 
t han tha t of the whole cluster. This is supposed to have a 
ma rked effect on the generat ion of ha rmonics by fractons. 

Figure 14. Singularity spectra of processes shown in Figs 13a-13c . 
The solid line is the singularity spectrum of the model process, crosses 
show the experimental spectrum of pressure pulsation [50], and the 
dotted line represents white noise with normal amplitude distribution. 
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Figure 15. Fracton singularity spectrum on a percolation cluster [51]. 

5.2 Fractal ray structure 
Frac t a l s t ructures are k n o w n to associate with rays which 
p r o p a g a t e in a longitudinal ly nonun i fo rm waveguide. 
F r ac t a l s t ructures arise due to nonl inear i ty of ray 
equat ions . Studies on the effects of nonl inear ray dynamics 
are based on the representa t ion of ray equa t ions in the 
Hami l ton i an form and the analogy with the results of 
nonl inear Hami l ton i an dynamics [143, 41]. 

In longitudinal ly h o m o g e n e o u s waveguides, rays 
undergo per iodic oscillations relative to the axis bu t do 
no t leave the waveguide. R a y capture is due either to the 
effect of the reflecting walls or to the nonun i fo rm cross 
dis t r ibut ion of the refractive index. The length of a ray cycle 
is determined by the initial angle of slope relative to the 
waveguide axis. R a y t r app ing in nonl inear resonances is 
possible in the presence of longi tudinal inhomogenei t ies 
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(wall roughness , axial oscillations, changes of refractive 
index). There are two types of ray behaviour which lead to 
fractal s t ructures . In the absence of over lapping nonl inear 
resonances , ray dynamics are no t chaotic , and fractality is a 
p rope r ty of the resonance s t ructure . 

It has been shown using the mode l of an acoustic 
waveguide in a shallow sea with a periodically irregular 
b o t t o m [144] tha t ray p ropaga t ion in a longitudinal ly 
inhomogeneous waveguide m a y result in the si tuat ion 
when the dependence of spatial ray frequency (inverse 
cycle length) on the angle of depar tu re is a fractal 
measure . This curve has zero derivative almost t h r o u g h o u t 
its length with the exception of the fractal set of poin ts . 
Frac ta l i ty is also manifest in the dependence of p ropaga t ion 
t ime on the angle of depar tu re which is obviously respon
sible for the fractal na tu re of an impulse signal dur ing its 
p ropaga t i on in the waveguide. 

A uniformly occupied waveguide with absolutely reflect
ing walls has been examined in Ref. [144]. One of its walls 
was flat whereas the other had per iodic irregularit ies of the 
form 

4b 

where b and L are the ampl i tude and the irregulari ty per iod 
respectively while £ = z/L is the fractional pa r t of the 
longi tudinal coord ina te z normal ised on the per iod. The 
depth of the waveguide at b = 0 is h. In such a waveguide, 
travell ing rays are al ternately reflected from the walls. R a y 
p ropaga t i on m a y be described by a nonl inear representa
t ion which defines b o t h the angle and the longi tudinal 
coord ina te of ray reflection from the flat wall via the angle 
and the coord ina te of the previous reflection from the flat 
wall. Assuming tha t the ampl i tude of irregularit ies 
vanishes, the ray cycle length Z), i.e. the distance between 
two subsequent reflections from the wall, is cons tant and 
equals D = 2h cot 0O> where 0 O is the initial outlet angle of 
the ray. Irregulari t ies have m a r k e d effect on the rays in 
nonl inear resonance with the per iod of irregularity. F o r 
certain integers m and n, this means the fulfillment of 
equali ty 2nn/D = 2%m/L or 

tan 9\ (m, n) m 2h 
n L 

(78) 

which main ta ins resonance between irregulari ty ha rmon ics 
and ray trajectory. The rays with angle of depar tu re near 
one of the resonance angles 9^' ^ are involved in the 
resonance and have similar average per iods of reflection 
and p ropaga t i on t imes. Fig. 16a il lustrates the dependence 
of the ray oscillation spatial frequency K on the angle of 
depar tu re 90 [144]. This curve consists of steps with a 
cons tant K value which are located near the resonant angle 
of depar tures . The step dis t r ibut ion with respect to the 
angle of depar tu re is fractal in tha t the number of intervals 
between steps N(r) shows the power- law dependence on 
resolut ion r when the resolut ion over the angle increases. 
This implies fractal dis t r ibut ion of singularities of a 
derivative curve (see Section 5.1). Frac ta l i ty is also 
i l lustrated by two inserts in Fig. 16 which represent an 
enlarged por t ion of the curve and the plot of N(r) 
dependence. Fig. 16b shows a similar stepwise dependence 
of the ray length (time of signal p ropaga t ion a long the ray). 

The fractal s t ructure of nonl inear ray resonance follows 
from E q n (78). Fig. 17 demons t ra tes the dis t r ibut ion of 

Figure 16. (a) Dependence of ray oscillation spatial frequency on the 
angle of the ray leaving the source [144]. Angle step 0.01. The insertion 
shows the enlarged portion of the plot inside the rectangle; angular 
step 0.001. Characteristics of the waveguide: h/L = 1/3, b/L = 0 . 0 0 1 . 
(b) Dependence of ray length (excepting the distance along the wave
guide z) on the angle of departure [144]. Characteristics of the 
waveguide: h/L = 1/3, b/L = 0.005. 

Figure 17. Distribution of resonance angles of departure derived from 
Eqn (78) taking into consideration the first eight harmonics (a) and the 
first 32 harmonics (b). 
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solut ions of the second equat ion in (78) with respect to the 
angle of depar ture . Fig. 17a presents solut ions with regard 
for resonances up to the eighth h a r m o n i c (m ^ 8, n ^ 8). 
Solut ions t ak ing into considerat ion resonances up to the 
32nd h a r m o n i c are shown in Fig. 17b. Compar i son of 
Figs 17 and 16a indicates tha t the b roades t ranges of 
nonl inear resonance capture cor respond to the angle of 
depar tu re in which a few resonances coincide. C o m p a r i s o n 
of Figs 17a and 17b reveals the self-similar s t ructure of 
resonances . The n u m b e r of resonances grows with increas
ing ha rmon ic number equivalent to increasing resolut ion 
over the angle. The dis t r ibut ion of separate resonance 
g roups for a large number of ha rmonics is similar to the 
resonance dis t r ibut ion in the entire range of angles for a 
smaller n u m b e r of ha rmonics . 

Resonance over lapping results in chaot ic ray dynamics 
with the result ing fractal proper t ies of the phase pic ture 
typical of chaos . So far as rays in a waveguide are 
concerned, this m a y be reflected in the ray dis t r ibut ion 
density in the 'angle of slope relative to the a x i s - t r a n s v e r s e 
coord ina te ' p lane . Chao t ic behaviour of rays in an acoust ic 
waveguide in a shallow sea with periodically rough b o t t o m 
was investigated in Ref. [144]; it was shown to arise at 
sufficiently small angles of depar tu re of rays . Cond i t ions for 
the format ion of chaot ic ray dynamics in deep-water ocean 
waveguides appear to have been examined first in 
Ref. [145]. This si tuat ion is of special interest from the 
viewpoint of the theory of wave p ropaga t i on in na tu ra l 
media , and it seems appropr i a t e to discuss it at greater 
length proceeding from a recent s tudy [146]. Studies of 
chaot ic ray dynamics are based on e ikonal equa t ions in the 
Hami l t on i an form, e.g. 

dz = a / / dp = _M 

dr dp ' dr dz 

where z is the depth, r is the distance, and p is the slip angle 
tangent 

H(z, p, r) = 0 . 5 / + V(Z, r) ; 

V ( z , r ) = 0 . 5 J l - ^ } + # ( z , r) (80) 

Here , c 0 is the basic acoust ic velocity at a selected level, C(Z) 
is the unpe r tu rbed acoustic speed profile, and g(Z, r) is the 
excitation describing the longi tudinal nonuni formi ty of the 
wave-guide. A necessary condi t ion for the chaot ic ray 
behaviour is local instabili ty of the solut ions of Eqns (79). 
Accord ing to Ref. [146], the criterion of such instabili ty has 
the form 

CL 

Hz)] 
c(z) 

d2C(z) / 8c (z ) 
dz2 dz + • 

2g(z, r) 
dz2 

< 0 . (81) 

Analysis of condi t ion (81) as performed in Ref. [146] 
indicates tha t it is readily fulfilled in the case of a small 
longi tudinal pe r tu rba t ion (caused, for instance, by inner 
waves in the ocean) provided the underwate r acoust ic 
channel has two axes. This inference is confirmed by the 
numer ica l solut ion of Eqns (79) for a typical acoust ic 
channel in the N o r t h Atlant ic . Therefore, b o t h ray chaos 
and fractal signal proper t ies m a y prove typical of sea 
acoustics at least. 

The above results characterise two-dimens iona l wave
guides with one-dimensional longi tudinal inhomogenei ty . 

The si tuat ion is strikingly different in three-dimensional 
p rob lems if two-dimens iona l inhomogenei t ies are taken into 
considerat ion. Specifically, diffusion in the phase space 
becomes possible, i.e. the so-called Arno ld diffusion. 
Three-d imensional effects have recently been examined in 
Ref. [147] based on the mode l of the nea r -bo t tom ocean 
waveguide on a rough b o t t o m . R a y diffusion is quali tat ively 
reflected in r a n d o m changes of ray p ropaga t i on directed 
a long the trail in the hor izon ta l p lane , any direction being 
possible including the reverse one. 

It should be emphasised tha t fractal ray dynamics 
( including chaos) do no t arise in r a n d o m l y inhomogeneous 
media . Longi tud ina l pe r tu rba t ions m a y have a quite regular 
character . The following section reviews selected statistical 
wave p rob lems in which fractal s t ructures m a y appear . 

5.3 Wave superdiffusion 
It should in the first place be noted tha t the diffusion 
approx ima t ion for the description of ray p ropaga t ion in a 
r a n d o m med ium obta inab le from E q n (79) with the shor t -
range correlated r a n d o m index of refraction V(Z, r) [148] 
does not yield fractal ray trajectories. It explicitly ensues 
from the first equat ion of (79) which describes differ-
entiable trajectories. 

W a v e diffusion also occurs in the general case of 
dis t r ibut ion in r a n d o m l y nonun i fo rm media with small-
scale inhomogenei t ies . A diffusive na tu re is repor ted to be 
inherent in b o t h the shift and the widening of a wave beam 
in such a med ium, with inhomogenei t ies smooth ly changing 
longi tudinal ly and shor t - range correlated transversal ly 
relative to the direction of wave p ropaga t ion . In this 
case, a parabol ic equat ion m a y be used to describe the 
wave field. A numer ica l s tudy of t ransverse displacements 
and widening of a wave beam p ropaga t i ng in such a 
med ium has been repor ted in Ref. [44]. The au tho r s 
analysed the following mode l equat ion for changes of 
wave ampl i tude \j/ a long the discrete longi tudinal coord i 
na te t: 

4 c ^ ( * ) +r(x, t)vi//t(x) 

where x are the t ransverse coordinates , r(x, t) is a r a n d o m 
quant i ty which adop t s equ iprobable values 1 and —l,v has 
the sense of inhomogenei ty ampl i tude . The s tudy evaluated 
the displacement of the centre of the t ransmi t ted beam xc 

and beam widening Ax. 
In the three-dimensional case at v < 2, dependencies 

xc ~ t \ Ax ~ tv' are fulfilled where v = v' = 1/2. At u > 2, 
there is a qual i tat ive change in the behaviour of these 
variables. Specifically, a simple diffuse displacement of the 
beam is replaced by superdiffusion with exponent v = 0.67. 
Conversely, the beam widening becomes slower (yf = 0.45). 
In the two-dimens iona l case, superdiffusion occurs at any 
ampl i tude of inhomogenei t ies , with v = 0.75, v ' = l / 2 . v 
values suggest the fractal character of the b e a m trajectory 
(see Section 2). However , to the best of our knowledge, 
there have been no studies in which wave p ropaga t ion in a 
r a n d o m med ium was considered from this po in t of view. It 
is wor thwhi le to no te tha t the fractal wave s t ructure in a 
r a n d o m med ium m a y lead to fractal s t ructures arising as a 
result of wave effects on the med ium. Al though the current 
theory of wave p ropaga t i on in r a n d o m media works well 
wi thout fractal no t ions , the fractal analysis of result ing 
fields m a y be expected to prov ide novel informat ion. 
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Ano the r statistical wave p rob lem which is likely to lead 
to fractal s t ructure per ta ins to excitation transfer in a t w o -
level resonant med ium with a uniformly widened t ransi t ion 
[42, 43]. Exci ta t ion of such med ium from an external source 
F(r) results in a dis t r ibut ion n(r) of the excited level 
concent ra t ion which is induced due to excitation transfer 
by p h o t o n s emitted dur ing t ransi t ion. The emitted p h o t o n s 
are dis tr ibuted in a certain frequency range as a conse
quence of level widening and have different d is t r ibut ions of 
free p a t h t imes unt i l they are captured by another resonance 
centre. It has been shown tha t the result ing dis t r ibut ion of 
the excitation transfer distance has no finite dispersion, 
which accounts for its Levy-type stable dis t r ibut ion in the 
limit of large distances [43]. In this work , the process of 
excitation transfer is described by the following equat ion: 

n(r) =F(r) + ^K(r-r')n(r')W' , 

where the kernel K has , at large distances, asymptot ics 

The probabi l is t ic in terpre ta t ion of the transfer equat ion 
gives an asymptot ic for the probabi l i ty dis t r ibut ion of 
excitation transfer distances in the form of l/r~l~2y 

cor responding to the stable dis t r ibut ion with exponent 
a = 2y (see Section 2.3). Intr insic t rajectory fractal p r o p e r 
ties of the 'Levy flight' mus t be equally apparen t in the 
described process . 

There are far m o r e examples of statistical wave 
p rob lems with a possibili ty of fractal s t ructure manifes ta
t ion, besides the two above, and further studies in this field 
are certain to provide new and interest ing results. 

5.4 Dynamic chaos in nonlinear wave fields 
The examples of fractal s t ructure format ion in wave fields 
examined in the two previous sections i l lustrate linear wave 
processes in inhomogeneous media . Non l inea r wave 
interact ions m a y equally result in the appearance of 
fractal s t ructures in a h o m o g e n e o u s medium. Here , the 
most extensive studies were carried out to investigate 
dynamic chaos and the associated fractal s t ructure of phase 
trajectories. Detai led reviews of these p rob lems m a y be 
found in Refs [17, 149, 150]. Some processes leading to 
dynamic chaos in nonl inear wave fields are examined 
below. 

Infini te-dimensional wave systems m a y be reduced to 
finite-dimensional dynamic systems by in t roducing envel
ope ampl i tudes of a small number of interact ing quas i -
m o n o c h r o m a t i c waves. A ra ther general mechanism unde r 
lying the dynamic chaot ic behaviour of the ampl i tudes of 
interact ing waves is related to decay instability. It includes 
pa ramet r i c excitation of low-frequency waves in the field of 
a high-frequency wave. One of the signs of such instabili ty 
appears to be directly related to turbulent t ransi t ion in the 
b o u n d a r y layer [151 -153] . It is k n o w n tha t turbulent 
t ransi t ion in the b o u n d a r y layer originates as the format ion 
of T o l m i n - S c h l i c h t i n g (TS) waves. As soon as the 
Reyno lds number exceeds a critical excitation level of 
the flow (TS wave), wave n u m b e r s within a certain range 
start increasing downs t ream. This process involves wave 
n u m b e r s larger t han a certain fixed value. A n exper imental 
s tudy of the nonl inear evolut ion of an artificially excited 
increasing TS wave [151] revealed early excitation of 

subharmonics followed by the induct ion of a wide spec
t rum of low-frequency pe r tu rba t ion componen t s showing 
stability in a linear approx imat ion . These events precede 
turbulent t ransi t ion. 

Calcula t ions repor ted in Ref. [152] confirmed the 
feasibility of subha rmon ic instability. A later s tudy [153] 
demons t ra ted the possibili ty of cascade excitation of 
subharmonics . This indicates tha t the process of lami
n a r - t u r b u l e n t t rans i t ion in the b o u n d a r y layer m a y be 
ana logous to a t ransi t ion to chaos t h rough doubl ing the 
per iod. 

Exper imenta l measurements of t rajectory dimension for 
the mo t ion in the b o u n d a r y layer using the Takens 
a lgor i thm [154] showed tha t at the early stochast ic 
stages, the mo t ion m a y be described by the finite-dimen
sional dynamic system. 

Cer ta in p h e n o m e n a associated with interact ion between 
waves and pa ramet r i c excitation of subharmonics are 
described by equa t ions for slow ampl i tudes reminiscent 
of the wel l -known Loren tz mode l [149]. These p h e n o m e n a 
include, a m o n g others , the effect of second h a r m o n i c 
generat ion in a disequil ibrated med ium which amplifies 
the ha rmon ic and the interact ion between ion sound and 
p lasma waves following pa ramet r i c excitation. 

Chao t i c behav iour is also manifested in the case of 
forced high-frequency wave scattering on a low-frequency 
wave ( M a n d e l s t a m m - B r i l l o u i n scattering) [155]. Here , the 
chaot ic regime is due to the nonloca l interact ion at weak 
a t t enua t ion of the acoust ic wave when its ampl i tude m a y be 
so large tha t the sound self-effect causes phase d is turbance 
of resonance. 

The general app roach to dis tr ibuted systems with 
chaot ic dynamics is based on equa t ions for pe r tu rba t ion 
ampl i tudes in the med ium resembling the G i n z b u r g -
L a n d a u equat ion and m a y be applied to a b r o a d class 
of wave and nonwave p rob lems [17, 150]. This app roach is 
based on the possibili ty of identifying ra ther weakly inter
acting nonl inear s t ructures dis tr ibuted in space or their 
defects. Their collective dynamics are described by a discrete 
ana logue of the G i n z b u r g - L a n d a u equat ion and result in 
f inite-dimensional spatial chaos . 

A n example of such behaviour of the wave field is 
examined b o t h experimental ly and theoretical ly in 
Refs [156, 157]. These studies m a d e use of the F a r a d a y 
ripple, i.e. the system of parametr ica l ly excited capillary 
waves generated on the water surface in a vessel with an 
oscillating b o t t o m . W h e n the vibra t ion ampl i tude of the 
b o t t o m was small, it was possible to observe generat ion of a 
regular wave s t ructure with square cells formed by pai rs of 
waves p ropaga t ing in opposi te directions. A n increase in the 
vibra t ion ampl i tude resulted in m o d u l a t o r y instabili ty and 
format ion of the regular per iodic s t ructure of a modu la t i on 
wave of the p r imary lattice. Fu r t h e r g rowth of the v ibra t ion 
ampl i tude caused defects in the modu la t i on s t ructure and 
chaot ic pa t t e rns in its mot ion . 

5.5 Fractal structures in wind waves on the sea surface 
Wind waves in the sea provide addi t iona l examples of 
fractal s t ructures in wave fields. They m a y also be 
associated with ray chaos [158]. F rac t a l characterist ics 
are intrinsic in the shape of the rough sea surface with b o t h 
directed [159] and r a n d o m [45] waves. The latter work 
studied power- law flow spectra of wind waves with 
exponents / ? = l l / 3 and 4 for gravity waves and 
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P = 17/6 for capillary ones. The au tho r s evaluated fractal 
d imensions of the curves describing the change with t ime of 
elevations in a poin t and the curves tha t describe rises 
a long the surface section by a vertical p lane . The curve tha t 
described the t ime-course of elevations for gravity waves 
was no t fractal in itself, bu t its derivative possessed the 
p rope r ty of fractality and had dimensions 5 /3 and 3 /2 for 
exponents ft = 11/3 and ft = 4 respectively. The curve with 
respect to t ime for capillary waves tu rned out to be fractal 
and had dimension 13/12. The surface sectioned by the 
vertical p lane was represented by a fractal curve for bo th 
exponents in the gravity wave spectrum, the respective 
dimensions being 4 / 3 and 5/4 . The spatial curve for 
capillary waves was lacking in fractality while its derivative 
(surface slope) was a fractal with dimension 13/8. The 
range of fractal behaviour scales was na tura l ly restricted by 
the correlat ion radius of the t roubled surface. It should be 
no ted in this context tha t wave dispersion over the sea 
surface is actually scattering on a fractal. 

Ano the r app roach to the analysis of fractal proper t ies of 
sea-surface elevation has been repor ted in Ref. [160]. Us ing 
the Takens a lgor i thm, the au tho r s measured the a t t rac tor 
dimension in phase space. The dimension of the a t t rac tor 
showed a tendency towards a decreased growth ra te with 
increasing space dimension. However , the numer ica l mode l 
of r a n d o m signal with the spectrum derived from measured 
values exhibited similar behaviour . It was concluded tha t 
the sea surface elevation was not control led by a finite-
dimensional dynamic system with a s t range a t t rac tor . 

F r ac t a l proper t ies of the sea surface on scales exceeding 
the r ipple correlat ion radius have been examined in 
Refs [46, 47]. Analysis of aerial p h o t o g r a p h s in Ref. [46] 
revealed a fractal dis t r ibut ion of wave collapse zones over 
the surface with fractal d imension 1/2. Studies using a 
scanning laser locator [47] demons t ra ted fractality of a 
mir ror -po in t dis t r ibut ion a long the t i m e - s p a c e line p r o 
duced by the ship when underway . The fractal dimension 
was found to be 0.8. Bo th paper s repor t manifes ta t ion of 
fractal proper t ies on scales of at least up to ten t imes the 
correlat ion rad ius of the t roubled surface. Measu remen t s 
were m a d e in the t ropical areas of the open ocean in the 
At lant ic where the t rade-wind main ta ined s ta t ionary agi ta
t ion dur ing a few successive days. Capi l lary r ipple intensity 
was recorded for m a n y hou r s a long the vessel's course using 
a scanning laser locator . 

Fig. 18 demons t ra tes the sampled spatial spectrum of 
the pa ramete r measured in the above study. The analysis 
was performed by averaging over frequency b a n d s as 
described in Ref. [134] (see Section 4.2). The results 
obta ined in different s tudy areas and under different 
wind condi t ions are shown in Fig. 19. All the records 
revealed power- law averaged spectra with practical ly the 
same exponent in the range of scales from 40 m to 1.6 k m 
which lay beyond the limits of r ipple correlat ion scales. 
Such universal behaviour suggests tha t large-scale fractal 
variabil i ty of the r ipple is characterist ic of weak wave 
turbulence for waves with a nondecay ing spectrum, a 
mode l describing the growth and the s ta t ionary spectra 
of wind agi ta t ion. 

5.6 Fractal analysis of signals in seismology 
A variety of similarity laws in seismology are k n o w n to be 
fulfilled in a wide range of scales. They include the 
G u t e n b e r g - R i c h t e r law [161] for the scaling dependence of 
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Figure 18. Sampled spectrum of large-scale variability of the intensity 
of a capillary-gravity ripple obtained by laser scanning [47]. The 
number of reflections was measured by surface scanning with a thin 
laser beam. Spectra were measured on board a ship underway at 8 
m s _ 1 , frequency of 1 Hz corresponds to the spatial scale of 8 m. 

recurrence frequency on the ea r thquake energy class and 
the K n o p o f f - K a g a n law [162] for the dis t r ibut ion of t ime 
intervals between events. These laws are repor ted to be 
fulfilled for dis integrat ion processes even if their scale is 
smaller than tha t of ea r thquakes . A recent work [163] 
investigated acoust ic emission dur ing b r e a k d o w n of a 
hydrogen-sa tura ted meta l sample. The sample was sat
u ra ted at high t empera tu re and destroyed (microcracking) 
after cooling. The s tudy p roduced informat ion abou t the 
dis t r ibut ion of the ampl i tudes of acoust ic emission 
impulses in the form of N(Af > A) = A~0'9 and showed 
tha t this dependence was fulfilled on the interval of 
ampl i tudes over two orders of magni tude . This is one of 
the ways to represent the G u t e n b e r g - R i c h t e r law. 

The G u t e n b e r g - R i c h t e r law m a y be explained in te rms 
of lattice models for elastic bodies [103, 164]. Such models 
m a k e use of an expression for elastic forces in a lattice [e.g. 
E q n s (32), (38)] and in t roduce the rule to select and destroy 
lattice sites when their deformat ion exceeds a certain critical 
level. Also, these models s imulate fractal dis t r ibut ion of the 
damaged par t s . 

Dis t r ibu t ion analysis of ea r thquake h y p o c e n t r e s | based 
on the results of a field s tudy [156] revealed fractal pa t te rns , 
with fractal d imension of —1.9. Similar results were 
obta ined by simulat ion on a lattice using the elasticity 
mode l (38) [165] in which values of elastic cons tants were 
r a n d o m and exhibited a power- law dis t r ibut ion. 

F r ac t a l proper t ies are also inherent in signals of 
seismoacoust ic emission dur ing per iods between ear th
quakes . Such signals were examined in detail in Refs [40, 
52]. Fig. 20 shows results of fractal analysis of envelopes of 
seismoacoust ic emission signals in different frequency 
bands . It i l lustrates the dependence of the H u r s t exponent 
H and fractal dimension of the curve D_ on interval lengths 
being examined (expressed t h rough the number of readings 
k). The relat ion between the Hur s t exponent and the fractal 

fEar thquake epicentres are distributed over the surface while 
hypocentres are located in the crust. Hypocentres lie at some depth 
beneath epicentres. 
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Figure 19. Spectra of ripple variability averaged over frequency bands 4 x 10 3 Hz. Labels denote different experiments. Scaling takes place on 
the spatial interval 4 0 - 4 0 0 m (0 .2-0 .02 Hz). 

d imension is fulfilled, tha t is the process m a y be simulated 
by generalised Brownian mot ion . The measurements 
indicate the occurrence of crossover from the behaviour 
with the Hur s t exponent H = 0 . 4 - 0 . 6 , at a certain interval 
length. Refs [40, 52] offer the following in terpre ta t ion of 
this p h e n o m e n o n . Sources of seismoacoust ic emission are 
supposed to be rock repacking fronts, i.e. sites where 
t rans i t ion from the loose rock s t ructure to the compact 
one occurs under the effect of strain. The po re concen t ra 
t ion in such sites undergoes spatial a l terat ion unt i l it reaches 
the percola t ion threshold in a certain place. Therefore, the 
repacking front s t ructure m a y be described by the mode l of 
percola t ion in a concent ra t ion gradient [83]. In this model , 
clusters of different size are formed at those sites of the 
front where concent ra t ion is close to the critical level such 
tha t the n u m b e r of part icles in the front is subject to 
f luctuat ions as a result of cluster a t t achment and de tach
ment . F o r this reason, f luctuat ions on a certain t ime 
interval behave like a Brownian process with the H u r s t 
exponent 1/2; the H u r s t exponent vanishes at larger 
intervals. 

F o r the pu rpose of compar i son with Fig. 20, Fig. 21 
presents the results of numer ica l evaluat ion of the s t ructure 
function for part icle number f luctuat ions in the diffusion 
front for different concent ra t ion gradients [83]. Evidently, 
p lo ts in Figs 20 and 21 quali tat ively coincide. 

R o c k res t ruc tur ing is completed with the app roach ing 
ea r thquake which must result in quali tat ive changes in the 
s t ructure of signals of seismoacoust ic emission. These 

changes can be identified by measur ing the fractal d imen
sion. D r a m a t i c changes in signal fractal d imension with the 
app roach of an ea r thquake were confirmed by experiment 
[52]. 

6. Conclusions 
There is hard ly a field in physics where wave theory is no t 
exploited for one or ano ther purpose . This s ta tement refers 
to basic and even m o r e so to applied physical research. 
Physics owes to wave theory m a n y impor t an t results and 
advanced methodology . However , basic concepts of the 
wave theory are based on the models for con t inuous media 
and use the ma themat i ca l a p p a r a t u s largely intended for 
opera t ions with smooth functions of t ime and space. This 
explains why fractal models in t roduce quali tat ive changes 
in the m e t h o d s employed in wave studies. The use of fractal 
models in this area is by no means confined to exposit ion 
of k n o w n facts in a new fashion. 

The theory of fractons on which the present review has 
largely focused has actually been designed to solve the 
p rob lem of wave p ropaga t ion in inhomogeneous and 
disordered media which cannot be described by models 
for con t inuous media . The concepts of effective refractive 
index and effective compress ion m a k e no sense if applied to 
such media . In principle, the no t ion of fractons ensures an 
identical app roach to the p rob lem of elastic wave p r o p a g a 
t ion in the fractal lattice and tha t of mult iple scattering on 
fractal aggregates. Bo th p rob lems deal with the scale-
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Figure 20. Structure function and envelope plot length of the signal of 
seismoacoustic emission in different frequency bands depending on the 
interval length [40, 52]. The plot length is assessed by measuring the 
length of the broken line with different link lengths. Dependence of the 
measured line length on the length of links suggests fractality of the 
plot while the slope of this dependence gives the fractal dimension. 

invar iant spectrum of excitat ions of a med ium which is 
believed to be responsible for wave processes. 

A m o r e specific p rob lem of concrete spectral dimension 
values has no t unt i l n o w been completely solved. In the first 
place, there is a discrepancy between exper imental da ta on 
neu t ron scat tering and values predicted by elastic fractal 
models which are fairly well confirmed in experiments with 
larger-scale objects. 

A n impor t an t aspect of findings available in the frame
work of the theory of fractons concerns prospects of their 
pract ical appl icat ion, pr imari ly the development of ma te r i 
als with unusua l wave characterist ics. The intuitive 
app roach evolved in t rad i t iona l wave theory sometimes 
fails to serve the purpose , and applied studies using it m a y 
br ing abou t quite unexpected results. 

Studies of fractal s t ructures in wave fields do no t always 
yield such new results as the theory of fractons. Neve r 
theless, considerable progress has been m a d e in this field. In 
the first place, mult ifractal analysis allows for the descr ip
t ion of intermit tent field s tructures . Unl ike the power 

Figure 21. Structure functions I2 = ([N(t) - N(0)] ) for fluctuations 
of the particle number in the diffusion front for different values of the 
inverted concentration gradient. Results of numerical calculations 
reported in Ref. [83]. 

spectrum or correl-at ion function of the process, the 
singularity spectrum bears informat ion abou t the local 
s t ructure of the process which facilitates differentiation 
between signals of different origin. Also, mult ifractal 
analysis provides concise meaningful characterist ics of 
m o m e n t s of different order for the two-poin t dis t r ibut ions 
of process probabil i t ies . F r ac t a l proper t ies of ray dynamics 
are equally impor t an t for the unde r s t and ing of wave 
dis t r ibut ion in na tu ra l media . F rac ta l s are believed to 
al low the most na tu r a l app roach to the description of 
such a var iable and intr iguing p h e n o m e n o n as wind-
generated waves. Moreover , the appl icat ion of fractal 
analysis to seismoacoustics m a y prove useful for the 
development of new m e t h o d s for ea r thquake p rognos t ica 
t ion. 
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