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Abstract. A review of fundamental results on fractal
structure manifestation in wave processes is presented.
Elastic properties and dispersion of fractal materials are
discussed; their distribution density, and the shape of wave
functions of their localised elastic oscillations, fractons.
Examples of their application for the explanation of
amorphic properties of solids are presented. Patterns of
wave scattering and emission by fractal structures are
examined. Principal methods of random signal analysis
employed to reveal different fractal structures associated
with these signals are described. Data on fractal properties
of wave fields are discussed.

1. Introduction

Progress in physics and its applications is to a large extent
dependent on the elucidation of the relationship between
the microscopic structure and the macroscopic behaviour
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of complex systems. Major problems pertaining to this
issue are those to be solved in the framework of the
statistical theory of matter, physics of disordered media,
and the theory of turbulence and diffusion.

Notwithstanding considerable efforts by researchers,
many of these problems have not until now been com-
pletely solved using the traditional approaches of statistical
physics. The assumption of either absolute chaos (ideal gas
and the classical theory of Brownian motion) or fairly
ordered features (the theory of crystalline solids) in
examining various media and processes turned out to be
a major prerequisite for the successful solution of the
problems. Specifically, the microscopic description of
disordered media and processes lacking in both crystal-
like regularity and absolute chaos was found to be in the
main beyond the scope of the canonical statistical theory.

There are several ways to account for the situation. To
begin with, a statistical description can be successful if it is
based on a limited number of macroscopic variables for
which the condition of macroscopic causality is fulfilled [1].
This means that variables of this small set must be related to
one another through dynamical interactions which makes it
unnecessary to average over microscopic dynamics every
time their changes in different processes need to be
evaluated.

An exhaustive explanation of requisites for microscopic
causality to be fulfilled has never been provided. However, it
is clear that the scale of changes in macroscopic variables
satisfying this condition must be significantly greater than the
scale of correlation between microscopic variables. It is this
condition that fails to be fulfilled in disordered media and
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processes with the microscopic structure coordinated in a
broad range of scales. A most illustrative example of such a
situation is provided by a substance near the type two phase
transition point. Amorphous solids are characterised by
scales of molecular order within macroscopic zones compris-
ing thousands of molecules [2]. The processes of this sort
include hydrodynamic turbulence in which correlation of
fluctuation rates is apparent throughout the entire range of
flow scales.

For all that, the natural microscopic structure of many
irregular objects has the property of scale invariance
(scaling). In this case, the problem of the description of
disordered media may be solved by introducing macro-
scopic values dependent on the chosen scale of averaging.
The scale invariance allows the theory of such media to be
constructed taking advantage of renormalisation groups [3].
However, this obviously universal approach requires
complicated and tiresome calculations.

Mandelbrot was the first to elaborate the mathematical
notion of fractals in his books [4—6]f and suggest its
applications to the description of the shape of various
objects. This greatly promoted modelling a broad spectrum
of nontrivial scale-invariant structures. The use of such
models constitutes a novel technique for the description of
disordered structures in physics.

Fractal models are not always amenable to analytical
evaluation, but they are constructed following very simple
rules and it is not difficult to model them by computer.
Experiments on such computerised models are now widely
used to obtain deeper insight into the mechanisms of
irregular processes. It should be emphasised that this
approach is essentially different from the traditional
methods employed in theoretical physics. The distinction
is utterly irreducible to the simple difference between the
numerical solution of differential equations and their
analytical examination.

It is perhaps for this reason that fractal models have
been used extensively and with an increasing success in
physical research during the last 10—15 years. Fractal
models are not only applicable to exploring in more detail
previously described processes and structures (e.g. random
walks, linear polymeric molecules) but they also provide a
deeper insight into phenomena which it would be impos-
sible to comprehend and quantify using traditional
methods.

Mathematically, a fractal is a set of points in a metric
space for which it is impossible to estimate any conven-
tional measure with integer dimension, i.e. length, area or
volume (their dimensions are defined by the first, second,
and third powers of the length respectively). For example,
measurement of the fractal curve length and the area under
the curve may yield an infinite value for the former and zero
for the latter parameter. This problem can be solved by
introducing the Hausdorff measures of any dimension
(including non-integer ones). The maximum dimension of
a Hausdorff measure which yields a nonzero value on the
evaluation of a set is referred to as the Hausdorff—
Besicovitch dimension (HBD) of this setf.

The term ‘fractal’ was coined by Mandelbrot by fusing the words
‘fraction” and ‘fracture’. Therefore, a fractal is a fractured object with
fractional dimensionality.

1A Besicovitch has proved the existence of such dimension. Its exact
definition is given in Section 2 of the present review.

At first, Mandelbrot defined the fractal as a scale
invariant, i.e. self-similar, object with the HBD in excess
of the topological dimension (1 for a line, 2 for a surface,
etc.). Later, he described self-affine fractals with intrins-
ically diverse dimensions [7]. In physics, fractals are
characterised not only by HBD but also by a number of
other dimensions which are easy to find in experiments and
permit a versatile description of the object’s properties
[7-9].

Advances in application of fractal models in physics are
in the first place attributable to the fact that fractal patterns
are inherent in a great number of processes and structures.
This is not a mere chance. Many models designed to
simulate the formation and the development of disordered
objects of different nature can actually be reduced either to
the percolation transition model [10] or to the model of
diffusion-limited aggregation (DLA) [11]. In the former
case, the final result is a fractal percolation cluster whereas
in the latter a fractal aggregate is formed. Models of many
disordered processes are based on different variants of
random walk [9] and dynamic chaos [12, 13] and also
exhibit fractal properties. As a matter of fact, Mandelbrot
discovered a mathematical expression for a general rule
pertaining to geometric properties of the physical world.

Numerous published sources concerned with fractals
and their applications are currently available including a
few books and reviews in the Russian language. Basic
information for students is best presented in Ref. [§], one of
the first reviews of the subject in this country, and also in an
interesting book by Feder [9]. Another book, Ref. [14],
written by an expert in speech acoustics and the use of
computers in acoustics may be equally helpful. General
properties of fractals and methods of their computer
simulation are thoroughly examined in Ref. [15]. A
detailed introduction to the theory of fractals and examples
of its specific application in physics can be found in
Refs [10, 11, 16—-23]. A concise description of different
models of fractal structures is provided in Section 2 of
the present review.

The objective of this review is to appraise available
information about wave processes in fractal structures on
the one hand and results of the studies on fractal structures
inherent in wave fields of different nature on the other
hand.

Wave processes may be arbitrarily categorised into two
classes. The first one includes wave propagation in fractal
structures when they serve as a medium in which propaga-
tion occurs. The other class of events covers wave scattering
and emission by fractal structures when waves propagate in
a uniform medium containing fractal inhomogeneities.

Fractal properties of wave fields and signals are
apparent in different situations which may also be divided
into two groups. In both homogeneous or regularly
inhomogeneous media, fractal properties of wave fields
are manifested due to nonlinear wave interactions and
nonlinear ray dynamics. In statistical wave problems,
fractality is preconditioned by diffuse and kinetic processes.

Studies of wave phenomena in fractal materials date
from the work of Alexander et al. [24] and are largely based
on the notion of fractons introduced by Alexander and
Orbach in 1982 [25]: localised oscillations on fractals which
replace ordinary phonon states at frequencies greater than a
certain transition frequency (crossover). The density of
fracton frequency distribution obeys a power law by virtue
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of scale invariance. The exponent is determined by the so-
called fracton (spectral) dimensionality which, in the case of
fractons, plays the role of the space dimension in the low-
frequency asymptote of the density of states. Further
development of the ideas first put forward in Ref. [24]
eventually culminated with the closed microscopic theory of
temperature dependences of thermal conductivity, sound
velocity and absorption in amorphous solids [26—28].

The principles of the theory of thermal properties of
amorphous solids proposed in Ref. [26] proved applicable
not only to fractal materials but also to any other material
with oscillation states localised in a certain range of scales
[29]. Nevertheless, investigations into fractal structure
oscillations appear to have provided a major contribution
to the understanding of the mechanisms underlying the
thermal characteristics of such media.

The theory of fractons along with experimental studies
and numerical evaluation of fractons in real and model
fractal structures is considered in Section 3 of this review.
The section focuses on the description of elastic oscillations
in real materials which accounts for the prominence given
to the theory of elastic properties of fractal materials.
Fracton characteristics evaluated in early studies of
materials with fractal structure at smaller scales (less
than a few micrometers) can be apparent in both natural
and artificial fractal structures at a much greater scale. For
this reason, this portion of the review should not be
regarded as the only possible way to describe fractal
models of oscillation properties of amorphous solids.
There are other (nonfractal) approaches in this field [2,
30—32], but their analysis is beyond the scope of the present
communication.

The theory of fractons appears to provide a compre-
hensive solution to the problem of determining the
spectrum of mechanical oscillations and conditions of
wave localisation in fractal materials. The structure of
the fractal oscillation spectrum depends on spectral dimen-
sion and scales that restrict manifestations of fractal
properties of a given material. At greater scales, oscilla-
tions are characterised by a normal phonon spectrum. In
the range of fractal structure scales, oscillations occur in the
form of localised states, i.e. fractons, with the power-law
density of frequency distribution dependent on spectral
dimension. At smaller scales, the oscillation spectrum
depends on the properties of constituent particles of a
fractal structure. The assessment of spectral dimension is a
major problem arising in connection with practical applica-
tion of the theory of fractons. The early hypothesis of the
universal value 4/3 for spectral dimension as suggested by
Alexander and Orbach was not confirmed in later studies.
The spectral dimension turned out to be related to specific
features of the fractal structure and the nature of inter-
actions between its constituent elements. This review
examines principal models simulating elastic properties
of fractals which have many applications and give different
values for fractal dimensionality.

There are very few methods currently used in studies on
the shape of the fracton wave function. A universally
accepted tool is the superlocalised wave function model.
At the same time, results of numerical analysis of wave
function shapes indicate that this approach may not be
sufficient to elucidate their complicated structure. Hence,
there is a need for further extensive studies.

Section 4 of this review discusses wave scattering and
emission by fractals. One of the first reports devoted to this
issue, Ref. [33], considered wave scattering by a random
fractal surface. Such a surface cannot be differentiated, and
(at variance with the case of a smooth surface) the angular
distribution of the dispersed field intensity is not related to
the surface slope distribution but instead has the form of a
power law with the exponent determined by the fractal
dimension of the surface. A similar shape of angular
dependence was reported for small-angle scattering of
visible light, x rays or neutrons by real materials having
fractal structure. Measurement of angular scattering
dependences is virtually the sole method for the assessment
of fractal dimension in real materials. The relationship
between the angular dependence index and the fractal
dimension is ambiguous and depends on the fractal
structure model being used. The examples include porous
materials with a well-developed internal fractal surface [34]
as well as materials with the structure of a fractal aggregate
[35]

Examples of wave dissipation listed in the previous
paragraph illustrate a single-scattering regime. Whenever
multiple scattering occurs, the fractal structure of the
scatterer is much more prominent because correlation of
fractal structures in a wide range of scales results in a
spectrum of collective excitations of scatterers that resemble
fractons [36, 37]. This accounts for a marked difference
between scattering patterns on fractals and those generated
by isolated scatterers independently distributed in space. In
the case of resonant scatterers, the shape of the resonance
absorption curve is dramatically changed in that absorption
decreases slower with tuning away from the resonance.
Both the absorption coefficient and the section of wave
scattered by a fractal structure, calculated per particle,
increase. When the fractal dimension is sufficiently low, the
increase in the scattering section is so large that the
visibility/invisibility transition may be involved [37]. The
mathematical problem of collective excitation states is very
similar to that of fractons. In the presence of scatterers, the
structure of the excitation spectrum is also determined by a
certain factor referred to in Ref. [36] as optical spectral
dimension.

Peculiar features of wave emission by fractal structures
arise even in the simplest case of isolated emitters showing
fractal distribution in space, due to the unusual distance
dependence of the intensity of emission by fractal struc-
tures. This fact was used in an attempt to explain the well-
known Olbers paradox of the brightness of the night sky
[38]. More subtle signs of emitters’ fractality are apparent in
association with the aforementioned effects of collective
excitation. They have been reported to be responsible for
the enhanced efficacy of heat emission by fractal structures
per particle [39]. There is another aspect to the problem:
fluctuations of emission by fractal structures with intrinsic
correlation in a wide range of scales which account for the
markedly altered noise characteristics, including level and
correlation. Fractal models of rock structure and disin-
tegration are widely adopted in seismology where
fluctuations of seismoacoustic emission may perhaps be
used to predict earthquakes [40].

Section 5 deals with fractal structures in wave fields.
The wave field structure has a distinguishing scale, i.e.
wavelength. The fractal structure implying scale invariance
may be apparent either on scales greater than the wav-
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elength or in the presence of a self-similar wave spectrum,
e.g. stationary wave turbulence spectra. No general concept
(by analogy with the theory of fractons) has so far been
developed in this field although certain pertinent problems
evidently require in-depth basic studies.

Primarily, the problems concern fractal structures
associated with nonlinear dynamics including spatial
dynamic chaos in nonlinear wave interactions [17] and
ray fractal dynamics in inhomogeneous media [41]. These
issues have recently been discussed in several review articles
[17, 41], which is why this section contains only casual
references to them. In fact, it alludes only to a few works
that describe conditions under which the effects of ray
fractal dynamics may occur in the real ocean and those
necessary for dynamic chaos to form in capillary waves on a
fluid surface.

Another class of problems pertaining to the manifesta-
tion of fractal properties is that of statistical problems of
wave distribution. In this area, fractal concepts have never
been applied to experimental studies, but they may be
introduced to highlight novel aspects of certain phenomena
due to the scale invariance of many processes, e.g.
excitation transfer in resonant media [42, 43] or wave
beam trajectories in an inhomogeneous medium [44].
Such processes are known to be associated with anomalous
diffusion in which trajectories display nontrivial fractal
characteristics.

Section 5 contains a detailed discussion of fractal
properties of sea waves. The sea surface (along with
mountainous terrain, trees, and coastline) provides an
example of fractal forms available for day-to-day observa-
tion. The fractal character of this surface is closely related
to nonlinear wave dynamics. The spectrum of wind waves
contains a self-similar interval characterised by flow from
short to long waves. The fractal shape of the sea surface is
ultimately also associated with the presence of a self-similar
interval [45]. There are more signs of fractal structures in
wind-generated waves even though they are less conspic-
uous. These fractal properties are apparent on scales which
greatly exceed the wavelength [46, 47]. Theoretical explana-
tion for such fractal structures remains to be found.

An important topic of Section 5 in the present review is
multifractal analysis. This issue has been extensively
discussed in numerous books and review articles [9, 17,
22, 48, 49]. Our purpose was to emphasise the usefulness of
this approach for the analysis of wave processes. Applica-
tion of multifractal analysis to the large-scale structure of
turbulent pressure pulses has recently been described in
Ref. [50]. Another example is provided in Ref. [S1] which is
dedicated to the structure of fracton wave functions on a
percolation cluster.

A variety of fractal approaches to signal analysis are
currently available in seismology. Scale invariance is
intrinsic in many seismic events which can be accounted
for by the scale-invariant nature of disintegration processes
in general. But this should be the matter of a special review.
The present one examines fractal properties of signals
generated by seismoacoustic emission and the possibility
of using them for predicting earthquakes [52].

Some aspects of the present communication have
already been discussed in the literature. Elastic properties
and oscillations of fractal clusters as well as scattering on
fractals have been reviewed in several papers included in
Ref. [21], a special issue of Physics D [53], and Ref. [10].

Data on light emission by fractal structures are available
from Ref. [38]. The aforementioned review [41] presents
detailed information about fractal structures in light
dynamics. Spatial chaos in nonlinear wave dynamics is
described in Ref. [17] in the framework of a general
approach. A large number of papers on emittance of
acoustic waves by fractal structures are thoroughly and
consistently reviewed in Ref. [52] which also contains useful
information about fractal processing of acoustic signals in
seismology. Fractal studies as applied to acoustic problems
have been discussed in Refs [23, 54].

2. Fractal structures in physics

Fractal forms available for visual observation are surpris-
ingly widespread in nature. Classical examples of fractal
phenomena (a tree, a coastline or mountainous relief) [3 —6]
pass from one popular book to another. Other fractal
forms are not so widely known, e.g. the fracture surface of
metal [55] and the surface of rough water [45]. However,
the fractal forms most interesting as objects of physical
research can be observed and analysed only with special
instruments and techniques. They include fractal structures
of different materials and those of random processes and
fields. In the latter case, fractal analysis is applied to the
geometric objects that are constructed during experimenta-
tion rather than to the shape of physical bodies, that is to
plots describing processes, diagrams illustrating distribu-
tion of values in space, sets of meaningful points, and
trajectories of movement.

2.1 Structures of matter
It would hardly be a gross exaggeration to argue that a
substance has fractal structure in a certain range of scales if
it is not in gaseous or crystallised state. The first evidence
of fractal structure was obtained for aggregates of
microscopic particles formed from the solid phase in air
[56]. The authors generated particles by evaporation of
iron, zinc, and silicon dioxide from the surface of a heated
filament followed by vapour condensation on cooling in
the gas medium. Mean particle size was 35 A. These
particles diffused in air and formed aggregates by adhesion.
The aggregates were then precipitated on a collecting
element and were assayed for fractal properties by direct
analysis of electron micrographs. Later studies revealed the
fractal structure in polymers [57] and colloid aggregates
formed by particles sticking together in colloid solutions
[35]

The fractal structure of matter is most readily apparent
in unusual mass distribution patterns in space. Mass M ofa
fractal aggregate is related to its size R by

D

where D is the mass fractal dimension smaller than the
space dimension d while m and q, are the mass and the
size of constituent particles respectively. Density of matter
p is equally dependent on the size:

D—d
p=po (:io) : @

where p, is the density of particles which form the
aggregate. When the particles are packed in a compacted
structure, mass dimension is equivalent to space dimension
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Figure 1. (a) Fractal cluster obtained by computer simulation of
diffusion-limited aggregation (DLA) on a plane. The cluster contains
200 particles. (b) Connecting cluster (dashed line) during percolation
on a 50 x 50 square lattice. The node problem; concentration p = 0.6,
critical concentration for the node problem p = 0.5927. Shaded areas
represent clusters that did not join the connecting cluster. Their size

appears to vary from that of a single bond to the order of the entire
lattice. More precisely, the maximum size of the final cluster is the
largest size of cavities in the connecting cluster which in turn has scale
& [see Eqn (15)]. According to Eqn (15), scale & increases to infinity
near the percolation threshold and attains the lattice size on a lattice of
the finite size L.

D = d and the density is constant. Fractal aggregates have
irregular structure (Fig. 1) with long-range correlations
between particle positions. It is unlikely that random
particle distribution at R > ay and density (2) might result
in their binding together to form an aggregate.

According to the generally accepted definition, fractals
are sets of points whose Hausdorff—Besicovitch dimension
(HBD) does not coincide with topological dimension. The
exact definition of HBD is given below. Suppose that a set
is covered with a countable collection of sets A; such that
their diameter diam A; (i.e. the largest distance between two
points) does not exceed certain & Define mf as the exact
lower border of sums > ,(diamA;)” over all possible
coverings. Assume m, to be the exact upper limit of m/
for all ¢ > 0. Then, by definition, HBD is the exact upper
boundary of such p for which m, > 0. This definition is
applicable to sets in any metric spaces since it requires only
specification of the distance between points. Definitions of
fractal dimensions actually used in physics refer to objects
in the Euclidean space RY. Fractal dimension of a structure
may be evaluated in different ways. Apart from the
aforementioned mass dimension, there is box dimension,
i.e. the exponent which describes how the number of boxes
(cubes) covering the fractal depends on their size. Take,
then, a fractal covered with boxes of size €. Take a sum over
such a cover by analogy with the sum in the definition of
HBD. This yields

E g ~ e PeP |

where D is the box dimension. If p > D, the sum tends to
zero as ¢ — 0. The finite sum is obtained at p = D. When
p < D, the sum is infinite. p = D is the highest p value at
which the sum exceeds zero. This line of reasoning
establishes the relationship between HBD and box
dimension and also provides the basis for HBD evaluation
in physical measurements.

It is worthwhile to note that the definition of the
Hausdorff dimension proper is impossible to use in
physical measurements as it requires taking the limit to
infinitely small volumes. Therefore, taking the limit is
substituted by measuring the slopes of straight curves
which define the above exponents, i.e. mass and box
dimensions. For this reason, the physically meaningful
definition of fractals includes the property of self-similar-
ity. In mathematics, the Hausdorff dimension can also be
evaluated for sets lacking in self-similarity. Naturally, the
property of self-similarity has a statistical sense for real
objects: statistical characteristics of the fractal structure are
conserved during similarity transformation.

In regular fractals (their most widely known examples
are the Sierpinski gasket and the Koch curve), a fragment of
a certain size is composed of a number of similar but
smaller fragments. The self-similarity dimension is an
exponent in the dependence of the number of similar
structural elements (the large element components) on
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their size ratio. On the one hand, the obvious analogue of
the self-similarity dimension for random fractals is mass
dimension. On the other hand, the number of boxes of a
certain size covering the fractal is equivalent to the number
of structural elements of a similar size. Therefore, box
dimension is equal to self-similarity dimension. It may be
concluded that all introduced dimensions for self-similar
fractals are identical. Different dimensions may not
coincide in the case of self-affine fractals (which turn
into themselves on affinity transformation, i.e. on axial
extension with different coefficients) [7].

One of the most striking manifestations of fractal
structure is the existence of solid states of very low
density. Under certain conditions, fractal aggregates can
join together upon contact to form gels and aerogels [11]. In
this situation, fractal properties of the structure are
typically apparent in a scale range limited from below
by the size of particles gy forming the aggregate and from
above by the size of initial fractal clusters £. Such structures
are termed uniform clusters. Particles g, are normally sized
1—10 nm whereas the aggregate size varies from 10 to
1000 nm. As a rule, fractal dimension lies in the range of
D =2-29 depending on the regime of aggregate forma-
tion. Evidently, the density of such material is defined by

D—d
P =po (%) . 3

Therefore, the density of a material at sufficiently large &
values and D <d may be significantly lower than the
density of each constituent particle taken alone. Such
materials are known to be formed by sintering metal
powders.

Another class of materials with uniform fractal structure
is the amorphous polymers. Their fractal properties are
apparent on scales exceeding the size of monomeric
molecules, and are limited from above by a scale of several
tens of Angstroms. The shape of the fractal curve is intrinsic
even in a single linear polymer molecule subject to
accidental link displacements whereas ramified polymeric
molecules give rise to lattices resembling those which
underlie fractal aggregates of gels composed of macro-
scopic particles.

For almost all real fractal materials, it is possible to
evaluate the correlation density function C(R) ~
(p(r +R) p(r)), ie. the possibility (averaged over all
particles and dimensions) of finding a particle at a distance
R from the given one. Clearly, for fractal materials

C(R) ~R"™. @

The principal method for the evaluation of the correla-
tion density function is to measure the angular dependence
of scattering for waves of an appropriate length. Almost all
currently known fractal structures are apparent on scales
below one micrometer. Therefore, sufficiently short waves
beyond the visible wavelength spectrum are suitable for the
evaluation. Usually analysis of x-ray or neutron scattering
is used for the purpose. The expression for density
correlation leads directly to the following expression for
the angular dependence of scattering intensity:

Ig) ~q", ®

where the absolute value of the wave scattering vector is
q =2ksin(6/2). Fig. 2 shows results of determination of
the angular dependence of light or x-ray scattering for a

log1(q)
~
N
N
-1
a
1 1 l I
107 1073 1072 107"
q/A
Figure 2. Angular dependence (dependence on scattering wave

number ¢) of scattering intensity of light (for wave numbers in the
range of 0.0001-0.001 1//0\) and X-rays (for wave numbers 0.01 —
0.1 I/A) in SiO, colloid aggregates [35]. The entire range of wave
numbers is overlapped on scattering for two samples of solutions with
different solvent composition. Crossover from scattering on a fractal
structure with dimension D =2.12 to that on particles with smooth
surfaces (1~q74) occurs when the scattering wave number is 1/a,
where a =27 A is the particle size.

fractal structure formed by SiO, particles in a colloid
solution [35]. According to these data, the fractal
dimension of the system is D = 2.12.

For all that, interpretation of scattering data is some-
what ambiguous and involves additional assumptions
concerning the structure of matter. It is necessary to
distinguish between substances with the mass fractal
structure similar to that of the above aggregates and
porous substances with inner fractal surfaces. Such sub-
stances differ in terms of the relationship between the
exponents of angular dependence of scattering and fractal
dimensions [58] (this issue is discussed at greater length in
Section 4). The angular dependence was also reported to
have a power-like form in the case of power-law distribu-
tion of both pores and particles by size.

The volume—density relationship accounts for the
impossibility of using continuous medium models in which
density for physically infinitesimal volumes can be unam-
biguously determined. The same is true of many other
parameters normally evaluated to describe media in
continuous medium models, e.g. elastic moduli, electrical
conductivity, etc. Therefore, both scattering data and scale
dependences of these parameters are needed to confirm the
validity of structural models of fractal matter. Properties of
fractal aggregates appear to be fairly well explained by
rather a simple aggregation model referred to as diffusion-
limited aggregation (DLA) which was suggested in 1981
[59]. Formation of gels and polymers may be described by
the percolation transition model (see Sections 2.3.2 and
2.3.3). The use of these simple models to study generation
and further growth of structures that in turn give rise to new
ones of appropriate fractal dimension allowed quantitative
characterisation of wvarious properties of real fractal
materials.
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The problem of fractal aggregates of microscopic
particles appears to have direct bearing on the properties
of ball lightning, one of the most enigmatic objects of the
microscopic world [60—62]. The most adequate model of
ball lightning currently available is the fractal ball model
which assumes that the ball is an aggregate of fractal
filaments [62]. Fractal filaments are formed of nanometer
particles in a strong electric field with a distinguishing
direction in the space. This accounts for the difference
between fractal filaments and aggregates formed under
isotropic conditions. In the absence of the electric field,
this is a nonequilibrium system with high surface energy
which may be released during a thermal blow up [62, 63].

Fractal properties of model structures are directly
related to the mode of their generation. Unexpected results
have been obtained in Ref. [64] where rapid experimental
freezing was used to study the geometrical structure of a
composite emulsion obtained by simple vigorous mixing of
two liquids. Fractal droplet distribution in the dispersed
phase has been shown to occur in a certain scale range. The
scale of fractal behaviour is dependent on the fraction of
occupied volume of the dispersed phase. This dependence is
easy to explain on the assumption that droplets in the
dispersed phase join together to form a percolation cluster.
Interestingly, this structure is likely to be preserved in the
case of casual motion of the droplets.

The property of scale invariance of fluctuations of the
order parameter during second order phase transitions
known from statistical physics can also be formulated in
terms of fractal structure. Nevertheless, a consistent
statistical approach to the problem does not necessarily
require fractal concepts to be used. The relationship
between fluctuation structure and fractality have recently
been revealed in Ref. [65].

2.2 Structures of processes

Fractal approaches to the analysis of processes are diverse
because fractal analysis is applicable to a variety of
geometrical objects associated with the process. In a
specific case, the plot for a parameter of the process
may be regarded as fractal. Also, a set of interception
points where a variable takes a given value may be fractal.
The square of the amplitude of the process may be
considered to be the point density with fractal structure on
the time axis. Generally speaking, densities of different
parameters which characterise the process can show fractal
distribution in space and time.

One of the most efficient approaches to fractal analysis
of processes is based on the assumption that the process
originates from a dynamic system of finite dimension
exhibiting chaotic behaviour. The trajectory of such a
system in phase space is a fractal set termed the strange
attractor. Analysis of the process initiated by such a system
is based on the Takens algorithm [66] which allows the trail
of the system in phase space to be reconstructed from the
time-dependence of a single variable associated with the
system. The theoretical and practical aspects of the analysis
of processes which are due to finite-dimensional chaotic
dynamics are described in detail in numerous text-books
and reviews (see for instance Refs [16, 20]). The following is
a brief discussion of this methodology.

In accordance with the Takens algorithm, a point in
phase space is identified by a sequence of readings at n times
separated by a fixed interval. The trajectory in phase space

is formed when the original point moves along the time axis.
The reconstruction algorithm is easy to understand bearing
in mind that for the process originating from a system
described by an ordinary differential equation of the nth
order, coordinates in phase space are defined by a set of
amplitudes and their derivatives of up to the (n— 1)th
order. In the case of discrete time-readings, a set of
amplitudes and their (n — 1)th derivatives is related to a
set of n successive readings of the amplitude through simple
nondegenerate transformation.

Evaluation of the fractal dimension of the trajectory in
phase space reconstructed according to the Takens algo-
rithm allows characteristics of the process to be found. In
the first place, it makes possible the determination of the
dimension of the dynamic system. If the number of
successive readings n is below a certain value, then the
measured fractal dimension equals n. At higher n, the
dimension no longer changes with increasing n. This is
the case when n exceeds 2d + 1, where d is the true
dimension of the trajectory. By constructing the depend-
ence of fractal dimension on number n, it is possible to
obtain the lowest value for the dimension of the dynamic
system. A fractional fractal dimension suggests the presence
of a strange attractor in its phase space.

Fractal properties of wave processes are likely to emerge
if the emitting system is governed by chaotic dynamics. The
wave amplitude may be regarded as one of the dynamic
variables, and fractal analysis may be applied to either time
or space-dependent variability using the above algorithms.
Examples of dynamic systems with chaotic dynamics which
emit waves (sound) are cavitation bubbles generated by a
strong sound in water [67, 68] and an electrodynamic
loudspeaker functioning in the nonlinear regime [69].

It should be noted that the evaluation of the fractal
dimension of a trajectory in phase space reconstructed in
compliance with the Takens algorithm is strictly speaking
insufficient for an unambiguous conclusion about the finite
dimensionality of the system giving rise to the process. It is
the case that the fractal dimension of the trajectory remains
constant even in the case of a truly chaotic process with a
power-law power spectrum, provided the number of read-
ings n exceeds a critical value [70]. To distinguish such a
case, one needs to know that the signal is generated by a
dynamic system of finite dimension or have additional
measurements made, e.g. the Lyapunov numbers [16],
which characterise the divergence rate of trajectories
starting from the nearby points in phase space. The
finiteness of the Lyapunov numbers indicates the dynamic
origin of the trajectories. For truly random signals, these
exponents are infinite. In the well-known works [12, 13],
fractal properties of the phase trajectory were first unam-
biguously associated with the presence of a set of positive
Lyapunov’s exponents (the Kaplan—Yorke hypothesis).
Results reported later in Ref. [70] indicate that this
condition is not always satisfied.

More general implications of fractal analysis are
apparent in the examination of random processes of
nondynamic origin. The traditional approach to the
analysis of random processes is based on the measurement
of correlation functions or of power spectra (reciprocal
spectra), which is virtually the same. The fundamental
principles of this approach, i.e. the correlation theory of
random processes, are strictly mathematical. Correlative
measurements allow determination of the second moments
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of one and two-point probability distributions. Beyond the
Gaussian processes, the complete statistical description
requires evaluation of probability distributions or
moments of higher order if there are any, with an ensuing
increase in the volume of measurements. Taking into
account the third moments demands that three-point
correlations (bi-spectra), be determined. If the fourth
moments are considered, it is necessary to determine
four-point correlations (tri-spectra), etc. Evidently, as the
order of moments taken into account grows, there are more
doubts regarding simplification of the description of
random processes by the use of averaged values. More-
over, high moments do not always have explicit physical
meaning, unlike correlation functions or power spectra. In
this context, it is important to evaluate a small number of
variables to which it is possible to assign certain sense. Such
parameters include fractal dimensions of various geometric
objects associated with the signal. This is not a universal
approach, but it may be applied to a broad class of
processes showing the property of scale invariance in a
certain range of parameters. Besides, dispersion and even
the very first moment of a process may be nonexistent in
some cases of practical importance when the process is a
sum of smaller contributions and its probability distribution
is in fact the limit distribution of the sum of random values.
In this sense, the Gaussian processes represent a specific
case for which the finite dispersion exists.

Fractal analysis is equally applicable to Gaussian
processes. Even the simplest of the random processes,
i.e. Brownian motion, simulated by a normal process
with independent increments (the Wiener process) has
fractal characteristics. It is a self-transforming process
provided time and space scales simultaneously undergo a
b-fold and b'/*fold change respectively. The fractal
dimension of the plot for the Wiener process is D =3/2,
while the trajectory of the Brownian motion on the surface
and in space has dimension D = 2. Mandelbrot was the first
to point out a broad class of Gaussian processes exhibiting
fractal properties. They show the following dependence of
increment dispersions on the time interval:

([x(0) =x()]*) ~ 2, (6)

where H # 1/2 and lies in the interval 0 < H < 1. Long
before the discovery of fractals, processes with property (6)
were recorded by Hurst in a study of annual fluctuations of
river flow (see for instance Ref. [9]). The latter author
found that exponent H is the same for different rivers and
equals 0.73. Exponent H is termed the Hurst exponent.
Gaussian processes with the increment dispersion (6) are
referred to as processes of generalised Brownian motion.
The local dimensionality of the plot for process (6) is
D =2 — H whereas the fractal dimension of the trajectory
of motion in space of dimension N, with the coordinates
described by independent processes (6), is given by

D =min(N, 1/H) . (7)

This is precisely the case when the trajectory in phase space
has finite dimension for an infinitely-dimensional system.

Fractal properties of the trajectory for a dynamic system
exhibiting chaotic behaviour are unrelated to the properties
of scale invariance of the signal. Locally self-similar
domains of the attractor may include temporally remote
readings. This is the key difference between dynamic chaos
and true random signals. Fractal properties of the trajectory

for a purely random process are manifested when the
process exhibits self-similarity properties. As a rule, they
occur concurrently with a small inner scale 7, and a higher
outer scale 7. In the range of 1y <t < T, scaling properties
of process increments are apparent on the time interval 7:

([X(t—l—r)—X(t)]z)Nrﬂ. ®)

An example of such processes is provided by random walks
(obeying the stable distribution law) on time and distance
scales exceeding the time step and the elementary step of
the walk respectively. There is a great variety of such
processes with exponent f differing from f =1 and even
exceeding 2 (these processes are referred to as anomalous
diffusion processes). One of the first wave problems
pertaining to anomalous diffusion was examined in
Refs [43, 44]. It concerns excitation transfer in a resonant
medium with a uniformly widened line. The probability
distribution of photon absorption by an atom after it has
been emitted by another (excited) atom has no finite
dispersion. Accordingly, there is no dispersion of the length
of the photon’s free path. In the limit of large distances,
random walks governed by the law of stable distribution
are described by Eqn (8) with > 1.

Various fractal structures are inherent in hydrodynamic
turbulence. In the first place, this is true of the structure of
energy dissipation fields. Marked intermittency of an energy
dissipation field eventually results in the concentration of
dissipation in a negligibly small volume occupied by
turbulent motion. It has been shown that the correlation
function of dissipation density has the power-law form [71,
72]; hence, dissipation concentrates on a fractal set [73]. The
dimension of this set is 2.6—2.8. Later, more accurate
measurements demonstrated that the dissipation energy
field cannot be described by a single fractal dimension,
and is in fact a multifractal [48] (see Section 5 for more
details about multifractals). The impurity concentration in a
turbulent flow has been reported to have a similar structure
[74]. Also, fractality is inherent in the interface separating
turbulent and nonturbulent regions of the stream [75] and
the trajectory of particles in a random flow [76]. The large-
scale structure of turbulent currents in the ocean and
atmosphere (in excess of the inertial interval) appears to
have fractal properties [18].

2.3 Fractal structure models in physics

It should be borne in mind that the fractal structure of
matter is virtually unamenable to theoretical investigation
by conventional methods employed in statistical physics.
An exception is probably fractals in random walk models
and in the structure of polymeric chains (the Flory theory,
see for instance Ref. [21]). Many basic studies on fractal
structures are performed using computer models. From this
viewpoint, a fractal description of structures may be
considered supplementary to the results obtained by
standard statistical methods. On the other hand, advanced
statistical characteristics of fractal structures are unknown.
This problem can in principle be solved by introducing a
number of Renyi dimensions or by the description of
fractal structures in terms of multifractals, which is
virtually the same. The most popular models of fractal
structures in physics are the percolation cluster model, the
model of clusters formed by diffusion-limited aggregation,
and random walks without intersection. Fractal properties
of fields and signals are described using random walk
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models, e.g. summarised Brownian motion and ‘Levi
flight’, leading to processes with fractal time and to
superdiffusion processes.

2.3.1 Random walks. Random walk is a mathematical
model to simulate particle displacements under the effect of
random forces. It is perhaps the simplest and most
advanced model in statistical physics leading to fractal
structures. Plots of particle shifts versus time and
trajectories are fractal curves.

Major applications of the random walk model include
the analysis of fractal properties of random signals and
waves. Also, its application to the description of fractal
forms of material bodies has been reported, in the first
place, to characterise random surface reliefs and shapes of
polymeric molecules. In the latter case, the model of
random self-avoiding walks proved especially useful for
interpreting experimental data.

The broadest class of models currently in use for
random processes showing fractal behaviour is related to
the classical Wiener model of Brownian motion. This model
describes processes for which all parameters are derived
from two postulates: (a) increment of the process during a
given time interval has a normal distribution of probabil-
ities with average zero, (b) increments on nonoverlapping
time intervals are statistically independent. In this case, the
mean square of the displacement x for time ¢ has the form

(x?) = Kpt , ©)]

where Kp is the diffusion coefficient. It is only for this
process out of all the ones with independent displacements
that the trajectory is continuous with unit probability. At
the same time, neither the trajectory nor the plot for the
Wiener process is subject to differentiation. Expression (9)
implies self-similarity of the process and the fractal
properties as described above.

Generalisation of the Wiener process leading to other
fractal events implies cancellation of either the condition of
independent increments on nonintersecting time intervals or
their normal distribution. In the former case, processes with
memory arise, e.g. so—called generalised Brownian motion
and self-avoiding walks. In the latter case, there are the
‘Levy flight’ and superdiffusion processes.

The normal distribution of the increments on the
assumption that an increment of the process on the time
interval ¢ satisfies condition (6) (with exponent H differing
from 1/2) leads to random walks with memory.

A simple model displaying such behaviour does not lead
beyond the Gaussian processes. This is the generalised
Brownian motion model Xy(#) obtained by linear trans-
formation of the Wiener process Xl/z(t) of the form [9]:

!
Xu(t) — Xu(0) :J K(i — 1) dX1a(t") . (10)
—00
where the kernel has the following power dependence on
the interval + —¢':

K(t—t")y~ (1 —1")712 (1

(with the condition that measures are taken to ensure
convergence of integral (10), for example by restricting the
lower bound). It is clear that the contribution of different
temporally separated portions of the initial process to the
generalised Brownian motion may be either great or small
depending on the H value. On the assumption that

Xy(0) =0, it immediately follows from expression (6)
that for the long-term correlation of the process [9]

(=Xu(=)Xu(t)) _ 22H-1 _ |
i e 1.
(X3 ()

At H =1/2 (the Wiener process), correlation is absent.
There is positive correlation at H > 1/2 and negative at
H < 1/2. Therefore, the aim of generalisation is to neglect
the assumption of independent increments on self-avoiding
intervals; in such a case, the process has memory. At
H > 1/2, the process is persistent whereas at H < 1/2, it is
antipersistent.

The property of memory for a generalised Brownian
process has another useful formulation [77]. This study
examined correlation between the sums of signal levels on a
sequence of two adjacent time intervals in relation to the
number of separating intervals. At H < 1/2, the correlation
was low even for neighbouring intervals whereas at
H>1/2, it was r; = 22H=1 _ 1 for the adjacent intervals
and slowly lowered according to the power law with an
increase in the number of separating intervals. It should be
emphasised that this property showed no dependence
whatever on the summation interval. Such a behaviour
of the sums suggests the possibility of a situation in which it
is impossible to obtain reliable data on average parameters
of the process within a limited period of measurements. In
such a case, determination of exponent H is an indispens-
able element of the evaluation in the statistical properties of
the process.

Random self-avoiding walks retain property (6) with
H < 1, but they are not Gaussian processes. Such walks
have memory of a more complex structure as compared
with (10), and their increments are not independent.
However, their fractal characteristics are the same as in
generalised Brownian motion. The fractal dimension of the
trajectory is 1/H, and the plot dimension is 2 —H.
Numerical values of H depend on the dimension of space
d in which the process occurs. Accordingly, for d <4
H =3/(d+2), the fractal dimension of the trajectory is
D = (d +2)/3. The most meaningful physical interpretation
of such a process is long polymeric molecule randomly
located in the medium. The dependence of the molecular
size on the number of links with due regard for their
repulsion (absence of intersection) was first derived by
Flory (see Ref. [21]) by the methods of statistical physics
using free energy minimisation which included the energy of
link interaction. A similar result was obtained using the
random self-avoiding walk model. This is one of few cases
where statistical physics explicitly leads to fractal structures.

Anomalous diffusion processes with increments satisfy-
ing Eqn (8), with f > 1 (superdiffusion processes), cannot
be described using the Gaussian model (10). Formally, such
processes are subject to the diffusion equation with the
displacement-dependent diffusion coefficient. However, this
leads to smooth non-fractal trajectories. On the other hand,
observations of turbulent diffusion revealed fractal proper-
ties of the particles’ trajectory [76] which is in conflict with
the traditional description of diffusion. Ref. [76] contains
numerical analysis of the model of particle motion in a
stream with the fractal flow function which leads to
fractality of the particles’ trajectory. Another approach
using anomalous diffusion models has been developed in
Ref. [78]; it is based on the theory of processes with
stationary independent but non-Gaussian increments.

(12)
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It has already been mentioned that the Wiener process is
distinguished from processes with independent increments.
The plot (and the trajectory) of this process is continuous
with unit probability. This condition is fulfilled if and only
if the process is normal [79]. Neglect of normality of
increments inevitably results in broken trajectories. Never-
theless, processes with non-Gaussian increments may have
useful applications. Generally speaking, the assumption of
the Gaussian nature of the processes under investigation is
normally based on the use of the central limiting theorem. A
random process is considered to be a sum of contributions
of a number of random items. Owing to this, the Gaussian
nature of the process follows from the central limiting
theorem. However, this is true when random items are
distributed with finite dispersion.

Otherwise, the resulting process is not necessarily a
Gaussian one. Levy-type stable distributions [79] constitute
a generic class of limiting distributions (i.e. distributions of
sums of a large number of independent random items)
showing self-similar properties. Such distributions possess
the following similarity property:

tx 451X, Lt 45) X (13)
where X, X, X, are independent variables with similar
stable distribution, ¢, s are any positive numbers, and the
label £ means that random values have similar distribu-
tions.

Exponent « lies in the range 0 < a < 2. At o =2, the
normal Gaussian process with finite dispersion occurs; then,
property (13) states the dispersion summation rule and is
equivalent to Eqn (9). At a < 2, there is a variable with
infinite dispersion, and only moments of the order of less
than o exist. A random walk process with independent
displacements subject to the Levy distribution law with
exponent o < 2 is called the ‘Levy flight’ [78, 80]. Due to the
infinite displacement dispersion, measurement of this
variable during a finite time interval may give any result
(an analogue is the sum of a divergent series on permutation
of its terms) and is therefore unsuitable to characterise the
process. In this situation, measurement of fractal dimension
is crucial. The trail of the Levy flight may be represented as
a set of turning points connected by rectilinear jumps. In
two-dimensional phase space, the trajectory of a particle
with the coordinates described by stable processes with
exponent o has fractal dimension of the turning points
a < 2. When a = 2, the usual Brownian process takes place
in which all the points are turning points since the process is
continuous and the derivative is absent.

The Levy flight may give rise to a model of anomalous
diffusion processes with finite dispersions of increments for
a given time interval. Fractal properties of the trajectories
of these processes coincide with those of the Levy flight
trails [78, 80]. Suppose for example that a process is built up
of independent jumps, with the jump length having Levy-
type distribution, with jump duration dependent on the
jump length and growing with it. Then, the increment
dispersion within a given time interval becomes finite [78],
the trajectory in phase space preserves its shape, and a new
fractal object appears: temporal break-points of the
derivative of the process. This provides an example of a
process with fractal time [80]. For processes of this type, the
exponent in Eqn (8) may exceed unity.

2.3.2 Percolation clusters. The term percolation (permea-
tion, leakage, filtering) is currently adopted in physics to
denote a certain class of phenomena investigated by the
theory of percolation.

The theory of percolation is actually a mathematical
theory pertaining to stochastic geometry. Major problems
of the theory of percolation are lattice problems of bonds
and nodes. Consider a regular (periodic, with symmetry)
spatial or flat lattice of nodes each bound to its immediate
neghbours. A typical physical model is a lattice of
resistors [81]. When all the resistors are intact, each
node is electrically connected with an infinite number of
other nodes, and the lattice possesses finite conductance.
Suppose that a fraction (concentration) 1 —p of random
bonds are broken and the intact bond fraction is small.
Then, lattice conductivity is zero, that is the probability for
a node to be connected with an infinite number of other
nodes (i.e. to belong to an infinite cluster) is vanishing. This
probability will remain zero until the fraction of intact
bonds 1 — p amounts to a critical value p, referred to as the
percolation threshold. At p > p,, there is the nonvanishing
probability that a node belongs to the infinite cluster
associated with the finite conductance of the lattice. The
problem of determining the threshold number of intact
bonds is the problem of bonding. In the node problem, all
the bonds are considered intact while the nodes are
‘damaged’, that is a number of randomly located nodes
are nonfunctioning (i.e. bonds arising from such nodes are
disconnected). Percolation thresholds in the problems of
bonds and nodes are different. Also, the percolation
threshold depends on lattice dimension, the number of
nearest neighbour elements, and, in a broader context, the
structure of elementary cells in the lattice.

Nevertheless, different values approaching the percola-
tion threshold exhibit surprisingly universal patterns of
behaviour. To begin with, a fraction of nodes p,, belonging
to an infinite cluster above the percolation threshold shows
a universal dependence on the difference between the intact
bond (node) concentration and the threshold concentration:

Poo ™~ (p _pc)ﬂ P (14)

or, after introduction of 7= (p —p.)/p., it is possible to
write down py, ~ 1°. Exponent f does not depend on the
lattice structure and is determined by the space dimension
alone. For two-dimensional lattices f = 5/36 and for three-
dimensional ones f =0.4.

It turns out that the infinite cluster above the percola-
tion threshold has fractal structure on scales not greater
than a certain value &. This scale shows a universal
dependence on the difference between the concentration
of intact bonds (nodes) p and the threshold value p.:

o™, (15)

where exponent v, similar to B, depends only on lattice
dimension: v=4/3 for a two-dimensional lattice and
v=0.88 for three-dimensional one. Expression (15) is
equally meaningful for concentrations below the threshold
value. In such cases, & is the characteristic size of finite
clusters. Scale ¢ is infinite on precisely the percolation
threshold, where the concentration of bonds (nodes)
belonging to the infinite cluster is vanishing. In other
words, the infinite cluster density is zero as should be
expected for fractal clusters in agreement with formula (2).
Above the percolation threshold, scale & is finite, and



Fractals in wave processes

357

infinite cluster density is determined by the density of
constituent fractal fragments of this cluster on scale &:

p~EPTY, (16)

where D is the fractal dimension of the cluster on scales
below &. On the other hand, expression of ¢ from Eqn (15)
through & and substitution into Eqn (14) yields

P~ Po ™~ éiﬁ/v B
while comparison of the last expression with Eqn (16)
allows the equation for fractal dimension of cluster D to be
found in terms of the universal exponents v and f:

D=d- E . a7

v

Therefore, fractal dimension is also determined by
lattice dimension alone and equals 1.89 and 2.54 for
two-dimensional and three-dimensional lattices respec-
tively. Fig. 1b presents an example of the computer
model for a percolation cluster obtained for the problem
of nodes on a square lattice.

Applications of the percolation cluster model for the
description of fractal structures of matter are diverse. The
first application was suggested by De Gennes [82].

De Gennes proposed a simple lattice model of polymer-
isation in solutions. He considered monomers randomly
located in the nodes of a lattice. The reaction between
monomers in the adjacent nodes resulted in bond forma-
tion. Polymer synthesis was exactly analogous to
percolation transition in the problem of nodes and
occurred when the concentration of monomers reached a
certain threshold value. Monomers that did not react
during the preparation of the polymer were washed out.
Therefore, the resulting polymer molecule had fractal
structure. This model has provided the basis for the
development of further lattice models simulating properties
of fractal materials.

The percolation cluster model is universal owing to the
fact that a percolation cluster inevitably arises from
randomly distributed particles provided their concentra-
tion is sufficiently high. However, the relative number of
particles that stick together to form the cluster, which can
be found from expression (14), is not very large at threshold
concentration or near it. Removal of particles that do not
adhere to the cluster results in a true fractal structure.
Another outcome of percolation transition in a nonpercola-
tion situation is percolation in a concentration gradient.
The agent level in the diffusion front changes from zero at a
distance from the source to unity close to it. At a certain site
in the front, the concentration of the diffusing agent equals
the threshold concentration of percolation. Near this site,
the agent gives rise to fractal clusters [83].

2.3.3 Fractal aggregates. Aggregation is one more mecha-
nism for generating fractals in matter which involves all
available particles in the formation of a fractal structure.

Real fractal aggregates are formed by adhesion of solid
particles which arise under appropriate conditions in
solutions and vapours of certain substances. The most
illustrative examples are gel formation in silicon dioxide
solutions and formation of particulate soot in a flame [11].

The simplest model of fractal aggregate growth is
diffusion-limited aggregation (DLA) [59]. The model is
as follows. Suppose that a primer cluster (or even an

isolated particle) is placed in a certain volume and that
other particles are injected into the same volume one after
another to move randomly along the Brownian trajectories.
Particles which collide with the cluster adhere to it, and in
this way the cluster grows. Fig. la shows a cluster thus
grown on a surface in a computer model.

Another model, i.e. cluster—cluster aggregation, postu-
lates simultaneous diffusion of many particles in a volume.
The particles stick together upon touch to form numerous
clusters. The clusters thus formed are also involved in
diffusion and give rise to bigger structures by adhesion.
Generally speaking, there are a lot of aggregation models
differing in the motion patterns, the likelihood of adhesion,
and the interaction radius. These models have been
reviewed in Refs [11, 84]. The common feature of all
such models is that the resulting clusters are fractals,
that is statistically self-similar aggregates with noninteger
fractal dimension. Mass M (R) of a fractal aggregate in a
volume with radius R is defined by Eqn (1).

Aggregation models are categorised on two criteria: the
shape of trajectories of travelling particles and the number
of clusters involved in the process [11].

Using the first criterion, aggregation is classified as
arising from rectilinear motion of particles and from their
random walks. Also, it is possible to introduce many
trajectories with different fractal dimensions in the range
1—-2. Dimension 1 corresponds to straight trajectories and
dimension 2 to Brownian trajectories.

Based on the second criterion, two extreme cases can be
distinguished: particle-cluster aggregation and cluster—clus-
ter aggregation. In the former case, an isolated growing
cluster is surrounded by a number of travelling particles
that adhere to it on collision. In the latter case, the volume
contains many clusters that stick together to form bigger
ones.

Apart from these differences, the probability of adhesion
on touch in all the above processes may also differ. Unlike
percolation models, aggregation models do not imply
universal dimensionality. Fractal dimensions of clusters in
different types of aggregation are variable. Moreover, in
particle-cluster aggregation with rectilinear motion of
particles, the resulting clusters are not fractal, and fractal
dimensions in two-dimensional and three-dimensional
spaces are 2 and 3. The smallest fractal dimensions occur
in cluster—cluster aggregation with Brownian motion of the
resulting clusters: 1.44 in the two-dimensional and 1.77 in
the three-dimensional case [11].

3. Waves in fractal structures. Fractons

In the case of real fractal materials, dispersion relations
and expressions for elastic oscillation density in the fracton
region ensue from scale dependences of elastic moduli and
density of the materials. Both early studies of the fracton
region of the spectrum and many ongoing numerical
analyses are based on the examination of the model
equation for oscillations on fractal node lattices.

A simple model expression for the wave amplitude on
the nodes of a fractal lattice has the form:

al:ii = ZKU(MJ — Lti) .
J

where K; = 1 if internode bonds in the lattice remain intact
(otherwise K;; = 0) and a is a dimensional constant with the

(18)
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sense of the inverted square of resonant frequency for a
single bond. Eqn (18) has been used in many wave studies
of fractal clusters (using lattice models).

In a one-dimensional case, Eqn (18) corresponds to the
known equation for longitudinal chain oscillations

ocii,» = Ui — 214[ +ui_q,

where the right-hand side is the finite-difference expression
for the Laplacian. Certainly, in two-dimensional and three-
dimensional cases, the scalar equation (18) cannot describe
lattice oscillations for the general model of elastic forces.
Discussed below is a model of isotropic elastic forces that
allows Eqn (18) to be used for the description of elastic
oscillations for the Cartesian components of node displace-
ments.

In the two-dimensional case, physical meaning may be
assigned to Eqn (18) by assuming that masses m are located
in the nodes of a lattice and each bond is a stretched spring
(string) of length [, and tensile stress 7. If u; is the normal
mass displacement with respect to the plane, then Eqn (18)
describes transverse oscillations and the constant is
o =Iym/T. Such a situation may become real when all
the bonds are intact, but it is not so for fractal clusters.
Nevertheless, model (18) is widely used to study the
structure of fractal oscillation states and appears to
provide qualitatively relevant results.

3.1 Oscillations and diffusion on fractals
The very first data to characterise eigenoscillations of
fractals were obtained by Alexander and Orbach in 1982
[24]. Their study was based on the analogy between
Eqn (18) for elastic oscillations of fractals and the equation
for random walks, and on the fact that diffusion of fractals
is subject to condition (8) with the exponent f < 1.
Suppose that p;(f) is the probability of finding a
randomly walking particle in node i at time ¢. V;; is the
likelihood of transition from node i to j for a given time
interval (V = const, if the bond is intact and V =0, if it is
broken). Then, the following equation can be deduced for

pi(1):
pi = Z Vii(pj — pi)

Eigenvalues and eigenvectors of operators acting on p;
and u; in the right-hand sides of Eqns (18) and (19)
coincide. In the case of oscillations, the eigenvalues
correspond to the squares of fractal oscillation. The
distribution of the eigenvalues yields the frequency dis-
tribution of oscillation states, and the above analogy with
diffusion allows this distribution to be found without
solving the problem of eigenvalues. This approach has
long been known regardless of fractal studies [85].

Let us express the solution of Eqn (19) for a walk
starting from the ith node (with initial condition
pr(0) = 0y) in terms of the eigenvalues 4, and eigenvectors

"= (¢]...@}...) of the operator in the right-hand part.
Let us further represent the probability of returning back to
the original node after time 7 in the following form:

Zexp( —At)a ,,qo, Zexp( —nt) ((01) >

(19)

(20)

where a}, = > 0u@r = @} are coefficients of expansion of
the initial condition over eigenvectors. On the other hand,
it is known (see for instance Ref. [10]) that walking on a

fractal is associated with a mean displacement from the
original node r~t'/%0) \where ©® >0 is the anomalous
diffusion exponent (in the case of an ordinary lattice,
O =0and r~ tl/2) A fractal cluster of radius r contains
nodes. At any r after sufficiently long time ¢, the
probability for a particle to occur in any node at a distance
r from the original one becomes the same. Hence,

-D tfu/(2+@) )

~r

pilt) ~r e2))

Summation of Eqn (20) over all nodes of the cluster and
comparison with Eqn (21) yields (¢" are normalised):

Z exp(—A4,t) ~ Nt
n=1

With the use of one of the Tauber theorems [79],
immediately follows from expression (22) for the dlstrlbu—
tion density of eigenvalues at 4 — 0 that v(4) ~ ~ AP/2+6)-]
For oscillations, 4 =’ and dA=2wdw. Then, t he
distribution density of oscillation modes versus frequency is

2D/(2+0)-1 (23)

-D/(2+6) (22)

v(w) ~
Alexander and Orbach found the fractal dimension to
equal

2D
240
Fractal dimension plays the role of space dimensionality in
a low-frequency asymptote of the density of oscillation
states. Indeed, from Eqn (24) a known equality @ = 0 for the

density of normal phonon states on a d-dimensional lattice
follows:

df:d .

di = (24)

As regards real fractal materials, there is a maximum
scale & which limits the region of fractal behaviour. On
scales exceeding &, hence at low frequencies [below a certain
crossover frequency @.(&)], there is the usual phonon
spectrum. At higher frequencies, transition (crossover)
to the fracton spectrum occurs. Taking into account the
fact that the number of oscillation modes must be equal to
the number of particles in the material, the following
expressions can be written for the density of states vy,
and vg of the phonon and fracton spectra respectively, in a
unit volume [24]:

-1
I
Vo, =Npd ——, 25
ph F wg ( )
a1 ol
vir (@) = Np diNy —— =Ny dp ——, (26)
d W

where Ny = (1/&)? is the number of fractal fragments in a
volume unit participating, without deformation, in oscilla-
tions of the phonon spectrum in the capacity of rigid
particles, @, is the crossover frequency, N, = (¢/a)” is the
number of atoms (particles) of size a in a fractal fragment
of size &, and wd:(i/a)D/d"wc is the fracton Debye
frequency, by definition. The latter equation in (26)
explicitly follows from expressions for N, and wy.

As with the usual Debye frequency for the phonon
spectrum, the choice of the fracton Debye frequency as the
integration limit ensures that the number of oscillations
coincides with the number of particles. Integration of
densities (25) and (26) from 0 to w, and from ®, to wy
respectively yields Ny, = Ng for the total number of
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Figure 3. Density of oscillation states deduced from formulas (25),
(26) (dashed line) and from the formula which approximates smooth
curve transition (solid line). Density is given in arbitrary units, but the
full number of states is the same for both curves. Frequencies are
normalised with respect to crossover frequency.

Figure 4. Triangular Sierpinski gasket. Figures denote nodes used in
the decimation procedure.

phonon states and Ng = Ng(N, — 1) for fractons. The
number of all oscillation states N = Ny, +Ng = NNy,
i.e. it is the same as the total number of atoms, as
anticipated. It should be borne in mind that according
to expressions (25) and (26), the density of phonon states at
crossover frequency w, exceeds the fracton density of states:

vph :NFd>Vfr :dif,

because d > d;. This may result in a peak in the density of
states near the crossover frequency as shown in Fig. 3. The
presence of such a peak is not always possible to confirm in
experiment, nor does it appear in numerical calculations of
the state density using Eqn (18). However, analysis of
experimental findings based on the temperature depend-
ence of aerogel thermal capacity [86] indicates that the peak
must be present.

The absence of the peak suggests smooth transition
from phonon density (25) to fracton density (26) within a
certain frequency range. The transition approximation
commonly used has the form

v(w) o

= (w% +w2)(3—dr)/2 ’

The approximate behaviour of the density of states
unevenly replacing one another at the crossover frequency
as deduced from this formula and formulas (25) and (26) is
shown in Fig. 3. It appears that both possibilities are
attained for different materials.

3.2 Fractons on regular fractals. Localisation

Further progress in the understanding of eigenstates of
Eqn (18) on fractals is ensured by the analysis of the
solutions of this equation on a regular fractal, the
triangular ‘Sierpinski gasket’ (Fig. 4) [87, 88]. The authors
used a kind of decimation proceduret which enabled them
to find analytically the solution of Eqn (18) for the case of
self-similar fractal lattices.

fDecimation in old Rome was the punishment of each tenth soldier in
a cohort that betrayed cowardice in the battle.

Consider Eqn (18) for oscillations with frequency w:

aw’u; = ZKU(“I‘ —u) . 27)
J

Assume that u,ﬂ, u;, i=1,2,3 are the oscillation ampli-
tudes in the nodes labelled 1, 2, 3, 1/, 2’, 3" in Fig. 4. Based
on a portion of Eqn (27), the amplitudes uj/ , 3 may be
expressed in terms of amplitudes u; ,, ;. Substitution of the
solution into the remaining Eqn (27) leads to a system of
equations containing only amplitudes wu; > 3 with the
renormalised frequency value aw'? = 5aw” —o’w®. Due
to self-similarity, equations for amplitudes u; , 3 describe
oscillations on precisely the same lattice as the original one.
For an analogue of the Sierpinski gasket in a space of d-
dimensions (such a figure is composed of d-dimensional
tetrahedrons), it is possible to obtain a general expression
for renormalised frequency

2 4

aw'? = (d + 3)aw’ — Lo’ . (28)

Evidently, the decimation procedure may be repeated on
larger scales. In the end, one comes to the following
conclusion: if there is eigenoscillation with frequency o,
there must be eigenoscillation with frequency ’. Concur-
rently, the number of cluster elements involved in
oscillations undergoes a (d+ 1)-fold change, and the
following expression [88] is available for spectral dimension:

_2In(d+1)

@) @)

The spectrum structure defined by the parametrisation
equation (28) is very complicated in itself and shows scaling
properties on the frequency axis. The spectrum consists of
o-like peaks which give rise to a complex self-similar
structure on the frequency axis [87]. Expression (29) is
fulfilled only for the density of states averaged over
frequency bands.

Structural analysis of eigenmodes of Eqn (27) on the
Sierpinski carpet accomplished in Ref. [88] demonstrated
that all eigenstates are localised. There are two classes of
localised states. One includes molecular states with a strictly
limited small number of structural elements. The other
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Figure 5. (a, b) Eigenfunctions of Eqn (27) for the cluster shown in
Fig. 5d. Three-dimensional plot: the square of amplitude modulus.
Top right: cigenfunction level lines on a cluster to be compared with
the cluster contour. (a—c) Different frequencies of eigenoscillations:
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(a) 2.5261 (b) 1.237 (c¢) 0.6571. (d) Contours of the cluster obtained by
computer simulation of DLA on a plane and used to calculate
eigenoscillations.

comprises states with the amplitudes differing from zero on
all the scales and the well-defined localisation length. The
relative numbers of states belonging to the two classes for a
d-dimensional Sierpinski gasket are d/(d+ 1) and 1/(d + 1)
respectively.

Qualitatively, such a situation takes place in the case of
irregular fractals as well. Figs 5—7 show results of numer-
ical evaluation of eigenmodes on a fractal cluster obtained
by computer simulation of DLA. Figs 5a—5c are diagram-
matic representations of the shape of eigenoscillations for
different frequencies. It can be seen that the size of the
region of localised oscillations increases with decreasing
frequency. At the same time, there is marked variability of
the localisation size for close frequencies. Fig. 6 shows states
with similar frequencies which are strikingly different in

terms of the localisation region size and appear to belong to
the above two classes of states. Two classes of states in
numerically determined eigenoscillations of a percolation
cluster have also been distinguished in [89]. Fig. 7 shows the
frequency distribution function of cluster eigenoscillations
and the corresponding distribution density for the case in
question. Broken and irregular density is typical of any
specific example of the cluster, and expression (24) naturally
refers to averaged density.

3.3 Elastic properties of fractal materials

In the general case, elastic oscillations of fractal clusters
cannot be described by Eqn (18). However, the properties
of the fracton region of the spectrum defined by spectral
dimension may be preserved although the fracton dimen-
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Figure 6. Same as

in Fig. 5.
oscillation states for very close frequencies. Top right: location of
their centres on the cluster.

(a) ‘molecular’ and (b) ‘extensive’

sion is not specified by expression (24) but is instead
derived from various models of fractal elastic properties.
The elastic properties of fractals are important by
themselves, and the theory provides a good example of
the macroscopic description of scale-invariant disordered
media.

3.3.1 Scale dependence of elastic models. The principal
difference between the elastic behaviour of fractal materials
and that described by the theory of continuous elastic
media can be accounted for by the dependence of elastic
moduli on the deformation scale. Measurements of elastic
moduli using fragments of differently-sized fractal struc-
tures are likely to produce different results. However, in
such a general formulation as this, it may be regarded as a
distinctive feature of both fractals proper and a broad class
of natural and artificial materials and devices with
hierarchical structure [90]. Such a structure is inherent in
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Figure 7. Eigenoscillation distribution function for the cluster in
Fig. 5d plotted against frequencies (a) and corresponding distribution
density of cigenstates (b).

natural and technological composite materials, open-work
metallic constructions like the Eiffel tower or natural
constructions (honeycomb). On the whole, a hierarchical
structure such as that of composite materials is made up of
elements of smaller scale (e.g. layers) which in turn consist
of even smaller structures (e.g. fibres), etc. Therefore,
different hierarchical levels may have different structure
(fibres, layers) while the number of levels is not necessarily
very large (three in the case of the Eiffel tower).

Fractal materials differ from the general case by the
structural similarity of levels on different scales in a certain
scale range. Fragments of a material with sizes lying within
this range are made up, according to a certain rule, of
elements of a smaller scale which in turn consist, following
the same rule, of even smaller fragments, etc. Of course,
self-similarity of real materials should be understood in the
statistical sense. The statistical characteristics of the
location of similarly-sized elements in a fragment of a
greater scale are independent of the absolute scale values
and determined only by their ratio.

Suppose that E(I) is the elastic modulus for a fragment
of a fractal structure with length / in the fractal range of
scales. Due to self-similarity of the structure, the ratio of
elastic moduli for different scales I, I’ is dependent on the
scale ratio alone:
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For three diffferent scales [, I, and [”, equations
E(W/EW) =fU/1"), EQ)/EQ") =f1"/1"), EQWQ/EQ") =
f(/1") are fulfilled. Therefore, the scale ratio function
f(x) must satisfy the following functional equation:
f(xy) =f(x)f(y). The general solution of the latter
equation has the form of f(x):x_c, where { is an
arbitrary number. Hence, the equation for scale depend-
ence of the elastic modulus E is

E(M) =2"CE(l) , (31)

if scales Al and [ belong to the self-similarity interval. The
scale dependence of fractal elastic properties is defined by
the exponent { which is often termed the geometric
exponent of elasticity. Exponent { characterises the scale
dependence of the elastic modulus, i.e. the relative
deformation to strain ratio. Rigidity of the fragment (the
force to displacement ratio) also has scale dependence of
the form of Eqn (31) but with a different exponent (g. It is
easy to establish the relationship between exponents { and
{g for a fractal located (embedded) in a space of dimension
d. Consider the rigidity of a d-dimensional cube made up of
cubes smaller by a factor of two. At a constant stress, the
force increases 29" '-fold, in proportion to the area of the
side faces. The displacement is proportional to the size and
increases two-fold while rigidity shows a 297>-fold rise. It is
evident that

(exponents { and (g are identical in a two-dimensional
case).

Exponents { and (g are determined by the structure of
the fractal material and the nature of the interaction forces
between their elements. These exponents may differ even for
materials with similar fractal dimensions.

The power-law dependence of elasticity on the size has
long been known for polymeric chains. This is the so-called
entropic elasticity unrelated to the interaction between
chain links. Due to the fractal structure of polymer
chains, the line of reasoning followed in the previous
paragraphs equally applies to the present case. Further
discussion does not concern entropic elasticity but is
focused on elasticity of fractal lattices resulting from the
specified bond elasticity. (See Refs [91, 92] for information
on the theory of entropic elasticity of polymer lattices).

Real materials with fractal structure consist of coupled
fractal aggregates of size . The scale of £ depends on the
regime of the material formation and the nature of its
constituent particles (see Section 2).

Elastic properties of materials on scales exceeding & are
described in the continuous medium approximation and the
corresponding elastic moduli are defined by elastic moduli
of constituent fractal aggregates of the maximum size &.

Computer simulation of fractal structure formation
proved crucial for the development of lattice models for
elastic fractal properties [93, 94]. Lattice models examine
periodic lattices with nodes of definite symmetry (square,
cubic, triangular, etc.). A fractal cluster is obtained as a
percolation cluster, i.e. an infinite cluster derived from the
theory of percolation on such a lattice (see Section 2,
Fig. 1b). Bonds between constituent nodes of the cluster
are believed to possess elastic properties. Using the results
of the theory of percolation, it is easy to obtain character-
istics of the elastic behaviour of fractal clusters. These data
may be useful in the analysis of both percolation clusters

and fractal clusters of different nature if their fractal
dimensions coincide. It is worthy of note that fractal
clusters of equal dimension may differ in other character-
istics, e.g. ramification or the number of nearest neighbour
elements, which sometimes influence their elastic properties.

If elastic forces in a cluster are active only between
neighbouring nodes and exhibit linear dependence on their
relative displacement, the potential energy of the deformed
cluster may be expressed in the form of the quadratic
combination of the displacement components for all pairs
of adjoining nodes. Elastic properties of fractals were first
investigated in Ref. [93] where the following variant of such
an expression was used for potential energy:

1
U= EZK'/ [oe(u; — u_,)ﬁ + Blu; —w)7] . (32)
u

where u; is the displacement vector of the ith node in the
lattice, @ and B are constants, symbols | and L denote
displacement components along and across the nonper-
turbed direction of an internode bond, K; =1 if nodes i
and j are connected and K; =0 if there is no connection
between them.

At o # 0 and f =0, expression (32) leads to the model
of central forces; if « = B, it yields an isotropic model used
in the theory of elasticity of crystal solids (the so-called
Born approximation).

The energy minimum condition (32) gives the system of
equations for the evaluation of the displacement. Effects on
the system from the outside are taken into account in the
boundary conditions, and its solutions allow elastic cluster
constants to be determined.

In the case of a percolation cluster, the geometrical
exponent { introduced in the previous section can be found
from the dependence of elastic properties on the relative
concentration of intact bonds p near the threshold concen-
tration p, (in fact, relative concentration p is the likelihood
that the bond is intact). Clearly, elastic constants vanish at
p <p.. When o= f=1/2, elastic constants at p > p. for
model (32) are described by a scaling law of the following
form (see Section 2):

E(p)~(p—p)" .
Exponent T unambiguously defines the geometric exponent
{. Consider a percolation cluster above the percolation
threshold (a uniform fractal) of size L > & where £ is the
earlier deduced size restricting the region of fractal
behaviour. Rigidity of a cluster of size L is expressed in

terms of that of another cluster of size & (see derivation of
the relation between exponents { and {g):

K(L) =K () (%) .

On the other hand, K(L) = 1" where 7 = p — p,; since ¢ is
expressed through t in the form of & =1’ where v is the
critical component for &, it is possible to have

K(é) — éd—Zi—T/v — 6—7'/V+d—2 — é—{,; ) (35)

The relation between { and T following from Eqns (34) and
(35) has the form:

(33)

(34)

T T
CE:;+2—d; C=€E+d—2=;. (36)

In an isotropic model, the equilibrium equations
[minimum energy Eqns (32)] are the same for all Cartesian



Fractals in wave processes

363

displacement components and coincide with the system of
Kirchhoff equations for electric currents in a lattice
provided shift components are understood as node poten-
tials and electrical resistances of bonds are assumed to be
equal [82]. It is known that for the resistance of a random
resistant lattice near the percolation threshold the following
rule holds: R ~ (p — p.)~", where ¢ is the critical exponent.
Therefore, T =t¢. For two-dimensional and three-dimen-
sional lattices ¢ is 1.29 and 1.7 respectively, v=4/3 and
0.88, and {g =0.97 and 0.93.

The isotropic force model is hardly realistic and cannot
be verified by the results of experiments on the direct
measurement of elastic moduli for many real fractal
materials. On the other hand, the data below concerning
spectral dimension and obtained in neutron emission
experiments indicate the possibility of using this model
in selected situations.

The central force model, seemingly a more realistic one,
leads to disturbance of the elastic coupling, which causes
the rigidity of an infinite cluster near the percolation
threshold to vanish [93]. Nonzero elasticity is manifested
at p =p, where the value of p, > p. is higher than the
threshold concentration. However, even in this case, the
dependence of elastic models on intact bond density has a
form analogous to Eqn (30), with substitution of p, by p;
[93]:

E(p)~(p—p)" .
where 7' =24 and T'=4.4 for two-dimensional and
three-dimensional cases respectively. For a triangular flat
lattice, p; = 0.58 (p. = 0.3473) while for a face-centred
cubic lattice, p;=10.42 (p. =0.119). For the case of an
ordinary cubic lattice, expression (37) has no sense at all and
p;=1. In qualitative terms, the central force model
corresponds to a lattice of connected springs which can
pivot freely while zero elasticity at the percolation
threshold is possible only due to the relative rotation of
bonds, without a change in their length.

The elastic connectivity condition is fulfilled if elasticity
is taken into consideration when the angle between bonds is
changed (the so-called bond-bending model). Such a model
has been suggested in Ref. [94]. The expression for potential
energy in this model has the form

2 Q 2
! )

where 6¢;; is the change of the angle between bonds ji and
ki belonging to the common node i, duy; is the difference
between displacements of nodes i and j parallel to bonds
(i, )), G, Q are elasticity constants, and «a is the lattice
constant. In the case of a tortous chain of bonds with a
large number of links N but without loops, the contribu-
tion of central forces [the second term in expression (38)]
becomes negligibly small, and elastic stiffness of the chain
is described by a simple expression obtained in Ref. [94]:

G
~NS?

@37

(38)

(39

Here, S| is the radius of gyration for the chain in the
direction perpendicular to the force that acts on it. Its value
is derived from expression

1 N
2 2
ST=§2 Ry —Ri)L,

where (Ry —R;_1), is the projection of the radius vector
connecting the beginning of the ith link of the chain with
the end of the last one on the direction perpendicular to the
acting force.

The transition from the elastic properties of a one-
dimensional chain to those of fractal clusters in Ref. [94] is
based on the intuitively explicit suggestion that the cluster’s
softness is dependent only on the contribution of singly
connected channels containing bonds. It is shown that for
percolation clusters on lattices in Ref. [94], T = 3.6 and
T =3.55 for two-dimensional and three-dimensional lat-
tices respectively. Using Eqn (36), the values of {i are found
to be 2.75 and 3.13 respectively.

One of the first experiments to measure elasticity of
fractal materials in a broad range of scales was reported in
Ref. [95]. In this study, the authors used materials obtained
by sintering submicron silver powder. The resulting
materials differed in terms of the occupied volume fraction
of the powder (f) in the range from 0.06 to 0.291.
Evaluation of their elasticity £ and electric conductance
o gave respective scaling dependencies:

o~ (f=f) E~(f=f)" .
where f, = 0.062 is the critical occupied volume fraction.
Exponents ¢t =2.15£0.25 and T =3.8£0.5 are signifi-
cantly different which indicates the inapplicability of the
isotropic force model. On the other hand, the threshold
equality suggests disparity between the experimental results
and those predicted by the model. At the same time, the
numerical values of 7 are in agreement with the model [94].

In Refs [96, 97], elastic properties of two-dimensional
percolation clusters were studied using a simple physical
model of a perforated metal plate. In Ref. [96], the authors
made use of randomly distributed holes in the nodes of a
periodic square lattice and their totally random location
(continual percolation). In these cases, the exponents 7 of
the scaling dependence of plate rigidity on concentration
differed. For lattice percolation, 7 = 3.5, in accordance
with the prediction in Ref. [94], while for continual
percolation the same exponent was higher than 7T =5. A
similar value of 7 =4.95 was obtained in Ref. [97] where
holes were also randomly distributed. The value of
exponent T for continual percolation may be theoretically
predicted based on the model (38) [98]. In Ref. [99], the
elasticity of a wire lattice with randomly cut bonds was
measured from the resonant frequency of torsional oscilla-
tions of the cylindrical screen obtained by folding the
lattice. Unlike percolation models greatly restricted in
terms of the node number as used in Refs [96, 97], the
wire lattice model contained several thousands of bonds.
The value of T =3.640.2 measured in Ref. [99] is in
excellent agreement with the theoretical value predicted
in Ref. [94].

Thus, these models may be in a sense useful for the
quantitative description of elastic properties of percolation
fractal clusters and serve as a basis for determining the
parameters of elastic oscillations, at least for the systems
similar to those investigated in the experiment.

Results of the investigations into elastic properties of
fractals using percolation models cannot be directly applied
to aerogels. In the case of aerogels, density dependence
takes the place of the dependence of elastic properties on a
rise in concentration above the threshold level. Aerogels are
formed by the aggregation of submicron particles of the
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solid phase which precipitate from solutions of certain
substances (e.g. Al>03, SiO») if conditions permit. Aggrega-
tion results in fractal clusters whose density p is related to
the cluster size r by (see Section 2)

D=3
— o[
P = Po (ro) >

where D is the cluster fractal dimension (for the known
aerogels, D =1.7-2.2) and p, and r, are the density and
the radius of cluster particles respectively. After a certain
cluster size R is reached, depending on growth conditions,
the clusters join together upon contact to form an aerogel
having density p ~ R?™3. Typical cluster size values in
aerogels lie in the range of tens and hundreds of
nanometers whereas aerogel density ranges from units to
tens of grams per litre [100]. Therefore, an aerogel with
density p comprises clusters of the size

1/(D=3)
R = r0(£> .
Po

Hence, its Young’s modulus has the form

~{/(D-3) B
_ p _ p ¢
E(p) _EO(_po> —Eo(—p0> , ﬁ——D_3 . (41)

Experimental data on density dependence of Young’s
modulus for aerogels are reported in Refs [100]. According
to these data, Ey) = 10838018\ =1, p=28+02, p,=
0.13 g em~'. Substitution into Eqn (41) of { values
obtained in lattice models and fractal dimension measured
for aerogels (D =1.77) yields f=1.57 in the isotropic
model ({=1.93) and f=3.35 for the model of one-
dimensional chains with energy given by Eqn (38)
({ = 4.13). The latter value is closer to that obtained in
experiment although there are no grounds to believe that
the theory in Ref. [77] ensures accurate quantitation of
aerogel elastic behaviour.

Evidently, acoustic velocity in aerogels also shows a
power-law dependence on density:

(p) ~ [@] QNS

Fig. 8 presents experimental findings of sound velocity with
respect to density dependence in aerogels [100, 101].

The percolation cluster elasticity models discussed
above evidently can be generalised. Broken bonds may
have non-zero elasticity values differing from those attrib-
uted to intact bonds. In the limit, it is possible to consider a
lattice with absolutely rigid intact bonds. A more detailed
numerical analysis of the elastic properties of percolation
clusters in the framework of such models and the compar-
ison of its results with experimental findings have recently
been reported in Ref [102]. This study indicates that
physical gels (i.e. gels composed of solid macroparticles)
are well-described by the Webman—Kantor model [94]
whereas chemical gels (polymers) are better described by
the central force model. At the same time, experiments to
measure the scaling of the oscillation spectrum of fractal
materials by the neutron scattering technique as a rule give
the { value at variance with that predicted by any of the
above models.

It should be emphasised that the theory of elasticity as
described in this section may serve as a basis for practical
development of artificial materials with unusual oscillation
properties.
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Figure 8. The relationship between sound velocity in aerogel and its
density (o from Ref. [83], + from Ref. [84]). Slopes of the straight lines
are in the range 0.8—1.3.

3.3.2 Nonlinear-elastic properties of fractal clusters. Non-
linear-elastic properties of fractals are poorly known except
where fractal features of collapse are concerned. Extensive
studies have recently been devoted to the latter case [103 —
105]. Nonlinear characteristics at weak deformation are
important primarily for the understanding of nonlinear
wave effects in fractal materials. It should be emphasised
that nonlinear wave effects in fractals are due not only to
nonlinear elasticity but also to fractal structure. The fact is
that the spatial distribution of fractal oscillation amplitudes
is not uniform. Therefore, locally, the square of the
oscillation amplitude may significantly exceed the square
of the average amplitude used for the evaluation of
nonlinear effects in homogeneous models of nonuniform
media [106]. The structure factor also influences the static
nonlinear elasticity of fractals.

The simplest approach to studying nonlinear-elastic
properties of fractals in the framework of lattice models
may be based on the introduction of terms with higher
powers of du and d¢ in expressions (32) and (38). For the
case of the central force model (neglecting J¢), this
approach has recently been employed in Ref [107] to
simulate percolation on a flat triangular lattice. It has
been shown in a study on elasticity moduli of the second
and the third orders [107] that power-law dependence of the
form (37) is also fulfilled, with the exponent T/ ~ 3.3 £ 0.7
for the second order modulus and T’ ~ 4.3 & 1 for the third
order one.

Nonlinear-elastic properties of fractal clusters may be
equally apparent in the absence of nonlinearity. This is
purely geometric bond nonlinearity similar to the Hertz
nonlinearity of contacts in solid bodies. Webman analysed
geometric nonlinearity for a model with elastic energy
described by expression (38) on the assumption that the
most important contribution was of single chains of bonds
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[108]. In this case, geometric nonlinearity can be easily
understood from the following example. Suppose that a
spring with a large radius R is made of another spring with
a smaller radius r rather than of wire. Then, the large spring
has low rigidity, but when it is stretched to a straight line, its
stiffness is determined by that of the smaller spring, i.e. by
the degree of deformation. There is a continuous scale range
of ‘coils’ in random fractal bond chains which results in the
power-law dependence of rigidity on extension.

The following expression for the dependence of fractal
chain rigidity K on extension F in excess of a threshold level
F was obtained in Ref. [108]:

K(F) ~ F(D+2)/(1)+l) , (43)

where D is the lattice fractal dimension. The threshold F
depends on the cluster size as

ﬁN l—(1)+l) )

For a percolation cluster with scale £ of fractal behaviour
decreasing with the distance from the threshold concen-
tration p,:

Envlp—pl =1,

the threshold tension appears to grow whereas nonlinearity
decreases at a given strain. The nonmonotonic dependence
of the second-order relative nonlinear modulus on the
intact bond concentration when it is significantly higher
than the threshold one (as obtained in Ref. [107])
qualitatively corresponds to such nonlinear behaviour.

Nonlinear elastic properties of aerogels have been
experimentally investigated in Ref. [101]. The above exam-
ple of a spring is equally applicable to this case. This model
turned out to be valid not only for spreading but also for
compression, i.e. the hardness of undeformed aerogel was
greater than that of the compressed one.

3.4 Eigenoscillations of fractal materials

Dispersion properties of oscillation states of fractal
materials follow from expression (31) for the scale
dependence of elastic moduli and from the power-law
relation between the size and the mass of a fractal cluster
fragment. Consider a fragment of a fractal cluster with size
. Its rigidity K(I) (the force to displacement ratio)
undergoes transformation on a change of scale by analogy
with (31):

K(AM) = A7%K()) . (44)

The cluster mass, by definition of fractal dimension D,
behaves as

M Al = PM(I) . (45)

For the lowest eigenoscillation frequency of the cluster, it
may be regarded as concentrated mass and elasticity. Then,
it follows from Eqns (44) and (45) that the scale dependence
of the oscillation frequency has the form

(i) = 2~ EF 26y (46)

Clearly, oscillation frequencies of a cluster with the
characteristic scale (wavelength) / smaller than the cluster
size show similar behaviour. Roughly speaking, the disper-
sion law for fractal oscillations has the form
1

ko~

(k) ~ kG2, z (47)

which makes fractal oscillations significantly different from
oscillations of continuous elastic media. Indeed, for
ordinary media, the scale dependence of elastic moduli is
absent, i.e. {g = —d + 2, and fractal dimension equals space
dimension D = d while Eqn (47) gives the known expres-
sion for acoustic phonons: w(k) ~ k. Density v,, of the
phonon mode distribution by frequency below the Debye
frequency for the case of a continuous medium is
determined by space dimension d in the usual way, i.e.
vph ~ (Ddi] .

In the case of fractal materials, the situation is quite
different. Suppose that N(w) is the number of oscillation
states with frequencies below w. It follows from Eqn (46)
that fragments of a cluster with size

[ ~ 2/ Ce+D) (48)

participate in such oscillations without deformation; rather
they shift as a whole. Then, the number of oscillation
modes at frequencies below w equals the number of such
fragments in cluster Ny while the latter is explicitly

described by relation
Np ~177 . (49)

Expression (49) is nothing other than the definition of box
fractal dimension. It follows from Eqns (48) and (49) that

N(w) ~ ?P/&+D) (50)
The density of states is
v(w) ~ @ 2P/ CetD)=1 _ di=] , (51

where dy =2D/({g + D) is the spectral or fracton dimen-
sion.

It is worth noting that comparison of Eqns (51) and (24)
establishes an explicit relationship between anomalous
diffusion and geometric exponents for elastic moduli.
However, this relation holds only for the isotropic model
of elasticity forces and is obscure in a general case. It is in
terms of the characteristics of random walks that the
definition of fracton dimension is given in many published
sources. It should be borne in mind that such a dimension is
not always associated with the real fractal oscillation states.

It follows from relation (51) that d; is totally determined
by exponent (g and the fractal cluster dimension. This
relation is inherent in all models of fractal elastic behaviour,
but different numerical values of d; tend to characterise
qualitatively different behaviour. Indeed, the density of
states diverges at dr < 1. This means [108] that a cluster
loses stability with respect to thermal fluctuations provided
its size is sufficiently large (i.e. the lowest mode frequency is
small). At the same time, the density of states tends to zero
at dy > 1, precisely as it does in the case of ordinary
materials. Exponents (g reported in Refs [94, 108] as
derived from the Eqn (38) model correspond to fracton
dimensions below unity. In this case, there is divergence in
the density of oscillation states in the low frequency range.

It is now well known that all eigenoscillation states of a
fractal material in the fracton spectrum region are localised.
This agrees with the general effect of wave localisation
(frequently referred to as the Anderson localisation) in
inhomogeneous media with the sole difference that inho-
mogeneities associated with the fractal structure are
characterised by a wide range of scales and correlation
at greater distances. This should probably make the
problem of determining localisation conditions and the
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spectrum of localised states on fractals much more difficult
than the problem of localisation in a medium with non-
correlated inhomogeneities. However, the intrinsic property
of self-similarity of fractals considerably facilitates the
solution of this problem.

Simple behaviour determined by crossover frequency
and spectral dimension is inherent in elastic waves not only
in fractal lattices but also in continuous inhomogeneous
solids containing mixed portions with different elastic
properties. Such a situation is the case for instance in
solid bodies undergoing percolation phase transitions [109].
In this case, the fractal structure may appear in bound
clusters of those portions of the medium which exhibit
similar elasticity. Ref. [110] reports the fracton spectrum in
an artificial longitudinally nonuniform waveguide for Lamb
waves in which inhomogenceities display fractal distribution.

Generally speaking, the shape of localised wave func-
tions in the case of strong localisation is determined by
three scales, viz. wavelength, free path of the wave when
scattered on inhomogeneities, and the localisation scale
itself. Due to scale invariance of fractals for fracton wave
functions, all these scales are identical and may be reduced
to one for which frequency dependence is described by
expression (47) [111]. The following model of the super-
localised wave function y is suggested for the wave function
shape in Ref. [111]:

wol~ ool (7)].

where [ is the frequency-dependent localisation length, D is
the fractal dimension, and d, is referred to as the
superlocalised exponent. The frequency dependence of
the localisation length is defined by expression (47).
Taking into account Eqn (51) one obtains
—dy/D

(52)

I~ (53)

The expression for the wave function in the form of (52)
follows from the supposition of ordinary exponential
dependence of the wave function on the internal length
l,, on a fractal; for one-dimensional chains of bonds,
exponent d is related to the exponent of anomalous
diffusion in the following way:

2D

dy=2+0 = 4
where d; is the fracton dimension estimated from the
analogy of oscillations and diffusion of fractals. It is
evident that in a general case, the last expression is not
fulfilled. However, the fracton wave function model (52) is
widely used for parametrisation of the results of experi-
mental and numerical studies of localised states of fractals.

3.5 Experimental studies of fractons

It can be inferred from the above that computer models of
fractal clusters allowed the solution of the problem of wave
localisation in inhomogeneous media with fractal structure
of inhomogeneities. The localisation condition is fulfilled if
the wave frequency exceeds a certain threshold level, i.e. the
frequency of crossover, which depends both on the
maximum size of the fractal aggregates of which the
medium is composed and the speed of longer waves. The
density of localised states is the power-law function of
frequency, with the exponent determined by fracton
dimension. The spatial scale of localisation always shows

power dependence on frequency, with the exponent
equivalent to the ratio of spectral dimension to mass
fractal dimension.

The objective of experimental studies is to verify these
inferences with respect to real materials. First experimental
evidence of the existence of a fracton region in the
oscillation spectrum with localised states appears to have
been obtained in Ref. [24] by the analysis of data on
temperature dependence of heat conductivity and thermal
capacity of amorphous solids. Specifically, these properties
were examined in the temperature range of units to several
tens of degrees Kelvin at oscillation frequencies 10°—
10" Hz.

A rise in thermal capacity with temperature was found
to be directly related to the frequency dependence of
oscillation states. Analysis of the thermal capacity of
epoxy resin performed in Ref. [24] demonstrated that the
density of states is proportional to ” for frequencies in the
range of hw/ky < 8 K (this is the normal phonon density of
states) and to w for the 8 K < hw/kg < 50 K range (this
corresponds to the fracton spectrum with fracton dimension
dy =2). Estimation of the respective maximal scale of
fracton clusters yielded & =30 A. In Ref. [24], this scale
was found to be related to the distance between cross-links
formed by the hardener to connect the parent molecules of
the epoxy resin. Increasing the amount of hardener may be
expected to diminish the scale and raise the crossover
frequency, in agreement with experimental findings.

Thermal conductance of solid dielectrics is attributable
to heat transfer by a stream of phonons and is known to
depend on both the thermal capacity of phonon gas and the
length of the phonon free path. The length of the free path
is restricted by the nonlinear interaction between phonons.
In a crystalline solid body, heat conductivity at a tem-
perature below several tens of degrees Kelvin grows due to a
rise in thermal capacity of the phonon gas but thereafter
drops precipitously as a result of excitation of high-
frequency phonons and a decrease in their free path caused
by enhanced nonlinear scattering on high-frequency pho-
nons. The temperature dependence of heat conductivity in
amorphous solids is strikingly different from that in
crystals. Following a temperature rise of a few degrees
Kelvin, heat conductivity attains a ‘plateau’ level and
remains practically constant until the temperature rises
further to several tens of degrees Kelvin. This causes
heat conductivity to grow anew. Fig. 9 presents an example
of temperature dependences of heat conductivity in crys-
talline quartz and quartz glass [112].

The presence of the plateau is easy to explain by the fact
that thermal capacity over this temperature range grows
due to the involvement of localised modes of the fracton
region of the spectrum [24]. In other words, Ref. [24]
indicates that data on heat conductivity and thermal
capacity of amorphous solids can be understood on the
assumption of the presence of a fracton portion of the
oscillation spectrum and the localisation of fractons. It
should be noted from the very beginning that this is not the
sole possible explanation. The fractal structure of gels and
polymers is not questioned and it is only natural to apply
the theory of fractons to the analysis of their thermal
properties. However, structural studies of glasses failed to
reveal signs of fractality. A variety of models have been
suggested to account for the thermal characteristics of
glasses [30]. At present, it is universally accepted [2, 113]



Fractals in wave processes

367

kg /Vt (uK)™!
3000
19 27
2500 /\ / 1.25 A
/\ /
/A /
2000 /o / 1.00
/A /
/N /
1500 |- / \ / 0.75
\ +
/ \ /
1000 | / \ A 0.50 |
/ s
/ \ /
500 |- A NG’ 0.25
p ¥
sotm T So
0 1 ool 1 T e T
10° 10' 107 T/ 10’

Figure 9. Temperature dependences of heat conductivity for

crystalline quartz (curve /) and quartz glass (curve 2). Data from
tables of Ref. [112] were used. Experimental points are denoted by
labels o and +. The heat conductivity of glass is significantly lower
than that of crystals which accounts for the different scales of the
curves. Left and right-hand vertical axes give values for crystals and
glass respectively.

that glasses also have a region in the oscillation spectrum
which contains localised oscillations with scales of the order
of ten interatomic distances. The appearance of such a
region is believed to be due to the presence of the median
order in the glass structure. In this context, the fracton
model of oscillation spectra may be considered as a specific
model of the median order structure of amorphous bodies
which uses the fractal approach.

Direct measurements of the shape and the distribution
density versus frequency of oscillation states have been
made in a recent study on an artificial one-dimensional
fractal structure [110]. This structure was a segment of a
one-dimensional waveguide for Lamb waves made up of
rubber and ceramic layers alternating along the direction of
travelling waves. The centres of the rubber layers were
located on a straight line as points of a self-similar fractal
set, Cantor dust (Fig. 10). This set had fractal dimension
0.63 and was obtained in the following way. The segment
was divided into three equal parts, the middle part was
removed, and the remaining ones were again each divided
into two. This procedure was repeated till the infinite
number of steps resulted in a fractal set of points self-
similar on all scales smaller than the initial length of the
segment. The experiment described in Ref. [110] used the
structure which was obtained after the above procedure was
repeated 4 times. As a result, self-similarity was observable
on scales greater than 3% of the initial length of the
segment. The thickness of the rubber layer was less than
this size and chosen in such a way as to ensure equality of
distribution times in the thinnest layers of rubber and
ceramics [110].

Measurements were performed in a frequency range of
10 kHz to 5 MHz. Oscillation patterns were estimated from
the normal displacements of the waveguide surface using a
laser vibrometer. Fig. 11 shows estimated and measured
integral distribution of eigenoscillations by frequency.
Fig. 10 presents measured oscillation forms corresponding
to phonon and fracton regions of the spectrum respectively.
Normally propagating modes were excited at low frequen-
cies whereas the frequency of 200 kHz was associated with a

A (rel. units)

Figure 10. The shape of wave functions for the states of fracton
(a) and phonon (b) regions of the eigenoscillation spectrum in a
segment of one-dimensional waveguide with fractal distribution of
inhomogeneities [110]. Oscillation modes are symmetrical; amplitudes
are shown on half a specimen. The waveguide is ceramic with rubber
interlayers. (c¢) Distribution of interlayers along the waveguide (black
bars).

/.“

10” 10° f/kHz

Figure 11. Integral frequency distribution of
oscillations (see Fig. 10) [110]. Points:
values; solid lines: theoretical values.

waveguide eigen-
experimentally determined

sharp transition to fracton behaviour. Oscillations in this
part of the spectrum became localised, and the measured
spectral dimension was dy = 0.67. A further rise in fre-
quency (to circa 1.5 MHz) was accompanied by backward
transition to the phonon density of states until in the end (at
2 MHz) it again conformed to the initial spectral dimension
of 0.67. The occurrence of two crossover frequencies may be
accounted for by the fact that artificial nonrandom
structures do not exhibit self-similarity at any coefficient
of scale transformation; rather, they possess the property of
self-similarity only in case of a set of discrete coefficient
values.

The very first experimental study of crossover from the
phonon spectrum to the fracton one was reported in
Ref. [114]. In this study, ultrasound propagation experi-
ments were performed in the 1-20 MHz frequency range
on sintered copper powder samples with powder diameters
of 0.5 to 10 pm and occupied volume fraction from 0.3 to
0.6. Measurements were made of the variation with
frequency of the ultrasonic attenuation in copper powder
sinters. There was a rapid increase in attenuation at a
certain frequency ., depending on the occupied volume
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fraction f.. The length of attenuation at the transition
(crossover) frequency satisfied the scaling relation

I~ (f=f)",
where exponent v = 0.88, similar to that for the correlation
length in a percolation cluster, and f, is the critical
occupied volume fraction in the model based on percola-
tion through a three-dimensional lattice of adjoining

spheres [81]. The velocity of ultrasound also showed
scaling dependence on the occupied volume fraction:

o~ (F=f) 2,
where exponent 7 = 3.6, in excellent agreement with the
Webman model for elastic properties of fractals [94].

The maximum scale £ in gels, polymers, and related
materials which restricts the fractal behaviour region does
not exceed the length of visible light waves. For this reason,
the analysis of fracton spectra is most effectively performed
by measuring Raman light scattering (RLS) spectra and
inelastic incoherent neutron scattering (IINS) spectra.

With the IINS technique, the scattered neutron spectra
obtained by either ‘time-of-flight’ spectrometry or the
‘neutron spin echo’ method provide information about
the density of oscillation states. Because the neutron
wavelength is of the order of interatomic distances,
neutrons are independently scattered on nuclei. The differ-
ential section of neutron scattering into a single solid angle
and a single energy interval do is related to the density of
oscillation states v(w) by the following expression:

Onc k' N 5 1 5,50\ (o)
= - J— —7 4
O=Tn ka4 P\ T3 ) ) @), G

where gy, is the section of incoherent neutron scattering on
nuclei, k and k' are the wave vectors of incoming and
scattered neutrons, ¢ =k —k’ is the scattering vector, N
and M are the number and the mass of scattering nuclei
respectively, (u2) is the mean quadratic displacement of
nuclei, and n(w) is the Bose factor

n(w) !

"~ exp(fiw/kgT)
Expression (54) is feasible on the assumption of linearity
and low amplitudes of nuclear oscillations compared with
those of the neutron wavelength.

At least the scaling properties of oscillation spectra are
possible to observe using expression (54) with a minimum
number of a priori postulates pertaining to the scattering
mechanism.

With RLS, the situation is far more complicated. Light
undergoes scattering on polarisability fluctuations where its
interference becomes of greater importance. Although a
formula similar to (54) is fulfilled

() ~ C(w) n(w) v(w) ,

—1.

the frequency dependence for factor C(w) is largely
determined by the shape of wave functions of oscillatory
excitation and the mechanism of Raman scattering. In all
likelihood, this dependence is of scaling nature for fractal
materials even though more reliable data are needed to
support this inference and the problem remains a matter of
ongoing studies [115].

Generally speaking, the main outcome of experimental
studies is that oscillation spectra of amorphous materials

show singularities at frequencies corresponding to scale
oscillations of the order of several intermolecular distances,
in conflict with the postulate of totally chaotic distribution
of molecules. The appearance of such singularities can be
accounted for by the localisation of oscillations leading to
the redistribution of the density of states and its shift to the
low frequency region. In the case of amorphous materials
with nonfractal structure of the nearest order, this results in
the so-called boson peak in the density of oscillation states
[2, 31, 113, 116]. This peak reflects the distribution of
localisation scales near a certain mean scale. Such localised
states have no self-similar structure and may be found in
glasses and molecular amorphics.

Localisation for materials with the structure of ‘mass
fractals’ coincides with the self-similarity interval of the
structure. In this case, the boson peak is replaced by the
power-law density of states with the exponent determined
by spectral dimension. (True, experiments have been
reported which indicate a similar structure in glasses
[117] and the amorphous phase of liquid crystals [31]).

Early studies on the structure of oscillatory states in
fractal materials dealt with silica gels [118, 119]. A direct
analysis of the spectrum of multiple scattering was reported
in Ref. [118] for the fracton frequency range of 600 to 5400
GHz. The authors used hard gel (1.7 g cm~>) with the
properties of a polymer rather than composed of macro-
scopic particles. They obtained the following form of the
power-like spectrum:

(o) ~ " .

The frequency dependence of factor C(w) is assessed in
Ref. [118] on the assumption of incoherent summation of
waves scattered in each point of the medium. For scattering
with frequency shift w, intensities of scattered waves are
summed over volume I(w) =w %P filled by the super-
localised fracton wave function. Finally, expression
C(w) ~w* for the factor C(w) is obtained where the
exponent o = 2dd¢/D — d. This expression is most probably
invalid because summation over volume for each fracton
must be performed for the dissipation amplitude and
followed by the summation of light intensities scattered by
different fractons [120] This and the assumption of the
superlocalised form (52) for the fracton wave function
gives exponent o =2dd¢/D — 1 [120]. For this reason,
estimates of spectral dimension as reported in Ref. [118]
may be questionedf. Nevertheless, the presence of the
scaling component in the scattering spectrum was reported
on the frequency interval of about a decade [101].

The Mandelstamm —Brillouin dissipation spectra in
aerogels with the density of 103 to 407 kg m™ were
analysed in Ref. [119]. The dependence of the frequency
shift of scattered light on the dispersion angle leads to the
dispersion relation for phonons. Experimental findings
reported in Ref. [119] are fairly well described by the
following formula:

2u; . mkl
=—- sin —,
wl 2

FThe use of incoherent summation in Ref. [118] allowed experimental
findings to be used to estimate spectral dimension which proved
coincident with the value of 4/3, in agreement with the hypothesis of
the universal character of spectral dimension widely accepted at that
time.
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Table. Results of experimental fracton studies

Object Method D Frequency range/Hz w./GHz ¢&/nm o/GHzf d; (e Reference
Smoke SiO> IINS 2.5 24x100-2.4 % 10" 48 30 (4 nm 480 1.8 027 [122]
particles time-of-flight particles) 2.1 —0.11
Epoxy resin IINS — 3% 10" —1.9 x 10" 600 2 — 1.5 — [121]
Si0, acrogel IINS 2.4 <10°=2.5 x 10" 1 11 250 1.3 129 [124]
time-of-flight 2.2 10 2.1 —0.1
0.8 7 0.9 2.68
spin echo 3 1.7 0.51
Si0, in different  I1INS 2.4 10 —10" 600 0.16% — 1.54 0.72  [125]
chemical spin echo 2.9 240 0.15 — 1.7 0.51
structures 2.5 1300 0.19 — 1.22 1.6
Si0; aerogel I[INS 2.2 >2x 10" 50+1.2 0.12% — 1.45 0.83  [126]
1.9 10742 0.16 — 1.69 0.35
22 > 17 0.25 — —
PMMA IINS 222 24x10M—24x 10" ~ 480 3 2400 1.8 0.23  [120]
film — —
massive 1.65 0.45
deuterated

fDensity values (g cm_3).
fThe upper limit of the scaling part of fracton density.

where length / and sound velocity v; are related to density p
through the scaling relation

I~p™, y~pt

with exponents z ~ 1.57 and x = 1.397. This result may be
interpreted in terms of localised oscillations with scales
smaller than [ Independent estimates of aerogel fractal
dimension D =2.364 yield the z value coincident with the
measured one whereas the use of relations like (41) and (51)
enabled the authors of Ref. [119] to determine spectral
dimension dy = 1.252. Here, the exponent {; was found to
be 2.41, an intermediate value between the isotropic force
model and the model in Ref. [94].

More direct estimates of the fracton region of oscillation
spectrum were obtained by different methods using aerogels
and polymers in Refs [120—126]. The IINS technique was
employed in Refs [121, 122, 125, 126], RLS in Ref. [123],
and both methods together in Refs [120, 124]. All these
sources report the power-law component of oscillation
states about a decade wide. The exponent differs (being
smaller) from the phonon density spectrum and there is a
transition (crossover) from one type of behaviour to
another at a certain frequency. Fractons in polymers
were studied in Refs [120, 121, 125]. The crossover
frequency was found to be around 100 GHz and corre-
sponded to scale & ~20-30 A. Other authors used SiO,
aerogels and revealed a crossover frequency of 1 to 10 GHz
corresponding to scale &= 100—1000 A. The upper fre-
quency in the fracton region of aerogels was shown to be
dependent on the size of constituent particles in the
aggregate and approximately equivalent to the first long-
itudinal resonance of elastic oscillations of equally-sized
quartz particles.

Thus, the structure of the oscillation spectrum of fractal
materials is qualitatively confirmed in experiments on light
scattering and IINS. Spectral dimensions and the corre-
sponding exponents (g obtained by the IINS method in

different studies are listed in the table above. It is clear that
as a rule the results fail to show quantitative correspon-
dence to any model of fractal elastic properties. The
discrepancy arises for several reasons. First, according to
Ref. [122], it may be anticipated that expression (54) is
inapplicable to the IINS section because of pronounced
anharmonicity of oscillations in the fracton region. Differ-
ent values of spectral dimension (see the Table) have been
obtained in Ref. [122] for different temperatures, i.e.
di=1.8 at 136 K and d; =2.1 at 265 K. The authors of
the study reported in Ref. [124] failed to notice a tem-
perature dependence of spectral dimension but revealed its
dependence on the wave scattering vector ¢. Based on the
analysis of data obtained with significantly different
scattering vectors, the authors of Ref. [124] postulated
the presence of oscillations in aerogels governed by differ-
ent types of elastic forces. At low frequencies associated
with smaller spectral dimensions and higher amplitides of
oscillation displacements, a major contribution to the [INS
spectrum was provided by oscillations with elastic forces,
described by the Webman model [94]. At high frequencies
where displacements were smaller and spectral dimensions
higher, the greatest contribution was made by oscillations
with central elastic forces. On the whole, the IINS spectrum
must be described by the sum of contributions of the form
of Eqn (54) with different average quadratic displacements
and form of density of states. It is also worth noting that
according to Ref. [124], the products of wave scattering
vectors and the displacements are not very small (a few
tenths) and, strictly speaking, formula (54) cannot be
satisfied because it does not take into account terms of
the second order in nuclear oscillation displacements.

To sum up, the fracton spectrum data obtained by the
IINS method only qualitatively support the theory of
elasticity for fractal materials. It was shown above that
the same refers to the RLS method.
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3.6 Numerical fracton studies

As a rule, numerical studies consider equations in the form
of Eqn (18) on a percolation cluster [S1, 89, 127—130]. It is
worthwhile to note that in spite of the simple structure of
Eqn (18), numerical study of it is by no means a simple
task because an investigation into fracton properties,
especially fracton density of states, on random fractal
lattices requires a large number of lattice nodes to be
considered. At the same time, the dimension of the problem
of eigenvalues is equivalent to the number of particles. The
problem of eigenvalues with a dimension of several tens of
thousands is very difficult to solve even if up-to-date
computers are used. For this reason, a roundabout
approach is normally used [128, 129] notwithstanding
several works reporting direct diagonalisation of the
operator matrix in Eqn (18) [130, 51].

Numerical studies confirm the crossover from of the
phonon spectrum to the fracton one. The power-law form
of the density of states has been verified in a frequency
range of at least two decades and the spectral dimension
proved to be 4/3, in agreement with the prediction in
Ref. [25] for Eqn (18) on a percolation cluster. State
localisation of the fracton spectrum in the form of
Eqn (52) may be just as well obtained in numerical studies
although concrete values of the superlocalised exponent
vary in different papers. For example, a high value of the
superlocalised exponent d, =2.3 has been obtained in
Ref. [127] whereas superlocalisation was altogether absent
in Refs [128, 129]; herein d; = 1. The reason for this is most
likely to be that the amplitude of localised wave functions
on random fractals is characterised by a highly nonuniform
and random distribution within the localisation radius (see
Figs 5 and 6). Therefore, different methods used in
Refs [128 —130] to evaluate its mean distribution in space
might give different results. Form (52) for the wave function
appears to have the sense of a certain averaged quantity.
This problem was partly clarified in Ref. [5S1] where
intermittency of the wave function amplitude in space
was investigated. This work demonstrated that the square
of the fracton wave function amplitude on a percolation
cluster had a multifractal distribution. Therefore, evalu-
ation of the moments of different order may yield different
values of the superlocalisation exponent. Also, Ref. [72]
reports the presence of molecular states on both percolation
clusters and regular fractals (see Section 3.2).

3.7 Nonlinear phonon interactions with fractons
and thermal conductivity of amorphous bodies
It has already been mentioned that the temperature
dependence of heat conductivity of amorphous bodies is
strikingly different from that of crystals. This difference
can be accounted for by the presence of the plateau several
tens of kelvins wide and the growth of thermal conductivity
above the plateau with a rise of temperature (see Fig. 9).
The plateau temperature range precisely corresponds to
excitation of a region of the localised oscillation spectrum.
This is equally true of both fractal materials and glasses.
The arguments that follow are not restricted to the
fracton oscillation spectrum but are also applicable to the
explanation of temperature dependence of thermal con-
ductivity of any amorphous material [29]. However, it was
the theory of fractons that served as a basis for the better
understanding of the heat conductance mechanism in
amorphous bodies.
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Figure 12. Diagrammatic representation of nonlinear interaction
between phonons (—) and fractons (=). (a) Two phonons give rise
to a fracton of summed frequency. (b) A phonon is absorbed by a

fracton which results in fracton formation with summed frequency
[26].
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The presence of the plateau is easy to explain by taking
into account the fact that that localised states (referred to as
fractons below) (1) do not participate in heat transfer and
(2) effectively restrict the length of the phonons’ free path.
The fact is that, due to localisation of oscillations, the
possibility for nonlinear interactions between fractons and
phonons to take place is not limited to the conditions of
spatial synchronism. A phonon is scattered on a fracton
serving in the capacity of a compact scatterer. In a
quadratic approximation, processes of two types are
conceivable [26]: those involving two phonons and one
fracton (two phonons give rise to a fracton with a
generalised frequency) and processes in which only two
fractons participate (a phonon is absorbed by a fracton with
a change in the former’s frequency) (Fig. 12). Both
processes restrict the length of the phonon free path,
and the latter is responsible for the rise in heat conductivity
above the plateau level. The following mechanism for the
heat conductivity growth has been suggested in [26].
Interaction with phonons by the second mechanism results
in energy dissipation over various localised states accom-
panied by its transfer in space. Excitation of an increasingly
number of fractons with rising temperature leads to a rise in
heat conductivity above the plateau. The authors of
Ref. [27] made an accurate calculation of the temperature
dependence of heat conductivity taking into account
interactions between fractons and phonons. Matrix ele-
ments of these interactions were estimated in Ref. [27] using
the expression for the fracton wave function in the form of
Eqn (52). The results of the calculation were expressed in
directly measurable variables and found to be in perfect
agreement with experimental data. It was demonstrated in
Ref. [29] that there is no need to use a specific expression
for the wave function of localised states and their spectral
density. It proves sufficient to assume localisation of
oscillations with the frequency exceeding a certain cross-
over frequency.

Peculiar features of the nonlinear fracton/phonon
interactions can be manifested in a variety of ways not
necessarily associated with thermal properties of amor-
phous bodies. The absence of the requirement for spatial
synchronism is in itself unusual in traditional nonlinear
acoustics and there may be interesting possibilities for its
application. An example of a study in this field may be
found in Ref. [131] where the nonlinear interaction between
fractons and phonons was investigated in the system
previously surveyed in Ref. [110] (see Section 3.5). It was
experimentally found in Ref. [131] that the threshold
parametric generation in such a system was 5-7 times
lower than in either a uniform or a periodiocally nonuni-
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form waveguide. The initial frequency lay in the fracton
range, and the oscillation mode was parametrically excited
in the phonon region of the spectrum. Wave functions
participating in mode interactions are shown in Fig. 10.
Analysis made in Ref. [131] demonstrated that a decrease in
the threshold parametric generation in a fractal system was
attributable to the existence near the half-frequency of
modes with overlap integrals between wave functions of
interacting modes that are higher than overlap integrals in
the case of a homogeneous or periodically inhomogeneous
waveguide.

3.8 Fluctuations of elastic properties in a homogeneous
fractal

It has been shown in the foregoing review that in such
materials as homogeneous fractals, elastic moduli and
hence the elastic wave distribution rate on large scales are
determined by the scale dependent elastic moduli of the
fractal clusters of which the material is composed. Because
cluster formation is a random process, it is clear that both
the cluster size and the elastic characteristics of the material
must undergo random fluctuations in space. To our
knowledge, there have been no comprehensive studies on
cluster size fluctuations in gels. As for percolation clusters
near the percolation threshold, it is known that they
possess the so-called super-lacunarity property [9]. The
number of nodes S in a cluster of size L is defined by
expression

S~LY,

and its dispersion has the form of (S2) — (S)* ~ L%, i.e.
relative fluctuations near the transition point do not
decrease with increasing cluster size.

This property plays an important role in seismoacous-
tics. A model has been suggested in which the growth of
strain in rocks leading to earthquakes is assumed to be
analogous to percolation transition. Increased concentra-
tion of isolated consolidation foci in the rock leads to the
formation of clusters of increasing size which eventually
results in percolation transition and a subsequent growth of
the scale of a strain focus [52]. Sound velocity fluctuations
in inhomogeneous media with such percolation transition
have been investigated in Ref. [132]. It has been shown
using the model of quasidimensional chains that fluctu-
ations of sound velocity ¢ display critical behaviour and
unlimited growth near the transition point:

2
) o

(o)
Exponent x is expressed in terms of the lattice dimension d
and the critical index v of the transition as

x=dv—1.

On the whole, the nature of fluctuations of elastic
properties of fractal materials is poorly understood, and
we did not find another study dedicated to this problem.

4. Wave emission and scattering by fractal-like
structures

The properties of the fracton region in the elastic
oscillation spectrum pertain either to small scales (several
tens of Angstroms) in real materials or to artificial fractal
structures. Peculiar features of wave emission or scattering

by fractal objects can become manifest under natural
conditions and in the macroscopic scale region. The
fractal structure is intrinsic in the distribution of eddies
and impurities in a turbulent flow [18, 74], the sea surface
[45], front percolation through a random porous fluid
medium [83], and regions of concentrated strain in geologic
rocks [52]. The fractal properties of soot particles have a
marked effect on both absorption and scattering of light in
the atmosphere. One and the same particulate mass causes
low-level scattering and absorption in a compact cluster
and much greater scattering and absorption sections in a
fractal one [133]. The most conspicuous manifestations of
fractality during wave scattering have been reported in the
case of multiple scattering [36, 37] although its selected
features are apparent even in a single scattering episode.

4.1 Wave scattering by fractal surfaces

Angular distribution of wave intensity during scattering by
a large-scale smooth irregular surface is determined by the
surface slope distribution. The fractal surface is not subject
to differentiation and has no well-defined slope. Moreover,
fractality suggests the existence of irregularities on all scales
including some that exceed the length of the wave being
scattered. Therefore, neither the tangential plane approx-
imation nor the low excitation method is applicable to the
evaluation of the scattered field. There is no acceptable
rationale for a general solution of the problem. The very
first work in this field, Ref. [33], used the phase screen
approximation; in other words, it examined diffraction of a
wave that passed through a thin phase screen with the
optical width distribution kh(x) rather than undertook to
solve the problem of wave scattering on a rough surface
h(x).

In the Fresnel approximation, the applicability of which
is confirmed by computation, the expression for the wave
amplitude ¥ at distance z from the phase screen has the
form

-]

X rooo dx’exp {% [2h(x")z — (x — x')Q]} . (55)

Here, k is the wave number and x is the coordinate directed
along the surface.

The study in Ref. [33] considered a surface with one-
dimensional irregularity having the structure of a Gaussian
fractal (the plot of generalised Brownian motion) with the
structure function in the form of Eqn (6). Because such a
surface is self-affine rather than self-similar, it is possible to
derive a characteristic scale as follows:

([hx +L) —h(x)]*y =L1>. (56)
Loosely speaking, scale L (sometimes called topothesy) is
the distance at which surface slopes (Ah/Ax) tend to unity.
In terms of topothesy, the structure function (6) may be
rewritten as

2 _

([M(E+x) = h(E)]) = L2 2 (57)
It follows from expression (57) that at L < x the slopes are
smaller than unity (0 < H < 1) whereas at L > x, they
exceed unity.
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The Gaussian distribution /(x) permits simple calcula-
tion of the amplitude correlation function [33]:

R(x)= (Y (& )Y (x + &, 2))=exp [—% KALAD 4]
(58)

Angular distribution of wave intensity is defined by the
Fourier transformation of the correlation function (58):

I(sin ) = JR(x) exp (ikx) dx

1 1
:Ejdx'exp[—z(kL)z(]_H)x' —ix'sin0] , (59)

where Kk = ksin 8. The last equation in (59) is obtained by
the substitution x’ = kx. It is worthwhile to note that the
angular distribution of intensity as a function of sinf
formally coincides with the density of the Levy-type stable
distribution with parameter o = 2H [79] (see Section 2.3.1).
At large angles, distribution (59) decreases with increasing
angle as (sin 9)_2H_I; at smaller angles, the intensity is
relatively stable. The exponent in the angular dependence
can be expressed through the fractal surface dimension
—2H — 1 =2D —5. The angle separating these extreme
cases is easy to determine from Eqn (59). It is specified by
an explicit condition

(kL) U= Gin g~ 1 (60)

Interpretation of the latter condition is simple. Since
exponent H does not exceed unity, the angle that limits the
region of constancy of angular distribution increases with
growing kL, i.e. as the wavelength decreases with respect to
topothesy. Such behaviour corresponds, according to
Eqn (57), to an increase in the surface slope with
decreasing scale of the surface under examination, which
corresponds to a decrease in the incident wavelength.

The fractal surface is intermediate between an ordinary
smooth surface and a distribution of mass in a volume.
Therefore, another feasible approach to the evaluation of
scattering characteristics on the fractal surface is based on
the theory of volume wave scattering [34].

4.2 Single scattering on fractals and the Fourier
transformation of fractals
The angular dependence of the intensity of single scattering
on inhomogeneities of the refractive index is defined by the
known expression

I(g) ~ J(s(r) e(r+r"))exp(—ig-r')dv, (61)
where the scattering vector |g| is determined by the
scattering angle 6 and the incident wavelength A4

gl = 4m sin 0

q - l 2 E}

while the correlation function of the refractive index
fluctuations is proportional to that of the cluster density:

(&) sl + 1)) ~ (p(r) plr+1)) .

which, in the case of fractal clusters, is directly defined by
its fractal dimension D:

{p@) plr+r")y ~|r'"~, (62)

where d is the embedding space dimension. It follows from
expressions (61) and (62) that for the angular dependence
of scattering intensity

1(g) ~q"

I(q) is the scattering intensity into a single solid angle at an
angle 6 to the direction of the incident wave.

Naturally, for real fractals, relation (62) is fulfilled in a
limited scale range a, < < & accordingly, relation (63) is
fulfilled for 1/¢& < ¢ < 1/ay. The angular dependence I(g) is
more exactly expressed as the product of form factor F(q)
and structure factor S(g): I = FS [134]. The form factor
corresponds to angular dependence of the intensity in
scattering on individual elements, i.e. particles which
produce a fractal cluster when they stick together upon
contact. The form factor turns to zero at ¢ — 1/a, whereas
the structure factor has the form S(g) ~ ¢”. At ¢ < 1/a,
the form factor is approximately constant, and expression
(63) is obtained for scattering intensity.

Generally speaking, the angular dependence character-
ised by expression (63) is not a specific property of
scattering on fractal objects. A similar angular dependence
may be associated with singularities of dielectric permittiv-
ity randomly and independently located in points r; in the
form [135]:

(63)

e(r—r) =g(r—r)". (64)

The angular dependence of scattering intensity on each
diffusor has the form

Ii(q) ~ g7+

This expression also holds for the envelope of angular
dependence of scattering intensity on a randomly located set
of scatterers. It is clear that such a set is not necessarily
fractal for the simple reason that the Poisson law of
distribution over space implies the presence of a scale that
disturbs scale invariance and is determined by the average
difference between the scatterers. The angular dependence of
each individual member of a set of scatterers is broken as a
result of random interference of the fields of isolated
scatterers. The same refers to scatterers in the form of
Eqn (64) and also to scattering on fractals. In such cases, the
differences may be expected to appear in the fine structure of
angular dependence relations. A comprehensive formulation
of these differences remains to be developed. In Ref. [134],
Fourier transformation of regular fractals has been studied.
It has been demonstrated that the fine structure of angular
dependence is scale-invariant with respect to extension along
axis ¢g. In other words, the angular dependence is subject to
the relation

S(vq) =y7"5(q) .

while expression (63) is satisfied for the angular dependence
(S(q)) ~ q7” averaged in certain intervals of ¢ values. At
the same time, for random scales, the scale invariance of
the fine structure is likely to have statistical sense.

It should be emphasised that for a set of scatterers in the
form of Eqn (64), there is a power-law form (63) of the
angular dependence of scattering for each individual
scatterer. In contrast, in the case of scattering on frac-
tals, the dependence (63) occurs as a result of interference of
the fields scattered on the particles of which the cluster is
composed. The correlation is especially pronounced as
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regards characteristics of multiple scattering on fractals and
will be discussed in the following section.

Another example of scattering on a nonfractal object
with angular dependence of intensity Eqn (63) is provided
by the case where the scatterer contains pores or particles
with the power-law size distribution [136]. If the pore or
particle size distribution P(r) in scale ranges comparable
with the scattered wavelength has the form P(r) ~ r?, the
angular dependence of intensity / is also described by the
power law I(g) = ¢ with the exponent x =7 —y.

The relationship between angular dependence and
fractal dimension during scattering on a fractal object
differs from Eqn (63) when the scatterer has a fractal
surface. Suppose that the surface separates bodies with
similar refractive indices, unlike the situation considered in
the previous section. Then, expressions (61) and (62) may be
used to evaluate the angular dependence of scattering.
However, the relationship between the density correlation
function and the fractal structure in this case will be
different from that in the mass fractal case.

Let us estimate the mean probability of finding a filled
volume at a distance r from the occupied point for a body
with a fractal surface of dimension D. It may be expressed
as a sum of a distance-independent part for the points
located at a distance larger than r from the surface and a
distance-dependent part for the points near the surface. The
volume filled up by the latter points can be estimated in
terms of the volume V, of the covering of the r-sized cube
surface. It follows from the definition of fractal dimension
that V, = Nor*™", where N, is a constant. If p(r, x) is the
probability of finding a particle at distance r from another
particle situated at distance x <r from the surface,
averaging this probability over r gives the following
expression for the correlation sought [34]:

V-V, V1 [
: —“—Jp(r,x)dx.

C =
(") % v,

(65)

The average from p(r, x) must not depend on r. Therefore

C(r) =1 —const X P3P
Substitution of this expression into Eqn (61) yields the
angular dependence of scattering intensity in the form
I(q) =q 7.

For surface fractal dimension lying in the range of 2—3,
the angular dependence exponent is in the range 3—4 which
does not overlap the range 0—3 of the exponent for mass
fractals. Therefore, these situations are easy to distinguish
in experiments.

4.3 Multiple scattering on fractals
Specific features of multiple scattering on fractals can be
accounted for by a slowly decreasing correlation of particle
density and its theoretical analysis is based on the property
of self-dependence. Fractal effects in multiple scattering are
apparent even when it occurs on fractal clusters with size
smaller than the wavelength [36]. This can be accounted for
by the effect of correlation of particle positions in the
cluster on fields imposed upon isolated particles on
rescattering of an incident wave by other cluster particles.
Suppose that a wave with the amplitude (po falls on a set
of scatterers situated in a space region which is compact
with respect to the wavelength. In this case, for a set of
responses of individual scatterers x; (e.g. dipole moments,

amplitude of volume fluctuations for monopoles, etc.
depending on the nature of both the waves and the
scatterers), the following system of equations may be
written which takes into account interactions between
scatterers:

X0 =100 + %0 P Fry)x; (66)

i

where y, is the frequency-dependent coefficient of the
scatterer response to the external field, f(r;) is the function
of radius vector r; connecting the ith and the jth scatterers.
This function determines the field imposed by one scatterer
on another ( f~ 1/r; for monopoles; in the case of dipolgs,
x; are the vectors and f is the tensor function ~ 1/r}).
Eqn (66) may be written in the matrix form
x =@ + xWx. For a compacted cluster, matrix W is
really a symmetric matrix diagonalisable by means of
orthogonal transformation in the form of

UWU " = diag(w,), UU"=1.
Then, the solution of Eqn (66) has the form

1
x:UTdiag( — )Ugoo, (67)
or
xp= Y iz —w,)'gf
n, j

where u; are the components of eigenvectors corresponding
to eigenvalues w, and z=A4+id =y, is the variable
inverted with respect to the response of an individual
scatterer. For a resonant diffusor, 4 corresponds to
withdrawal from the resonant frequency and & to the
inverse resonance quality. If an isolated particle (4 > 9) is
far from the resonance, Eqn (67) gives the following
expression for the imaginary component of the averaged
response (polarisability) of a particle in a cluster:

tm ()~ (a4 =)

This means that the frequency dependence of the response
is determined by the distribution of eigenvalues of matrix
W. Since functions f(r) rapidly decrease with growing
distance, the matrix W structure for a fractal cluster
resembles the structure of the operator matrix from
Eqn (18) for elastic oscillations. The distribution of
eigenvalues of this operator has the form of a power
law which is determined by spectral dimension. It may be
supposed that a similar situation also takes place in the
case in question. And this is really true. The study [36]
dealt with polarisability and absorption of a fractal cluster
composed of monomers with the dipole—dipole interaction
on optical frequencies. The authors obtained the power law
form of the distribution of eigenvalues v(w) and of the
proportional to imaginary component of the cluster’s
response to relative tuning 4 of the incident wave
frequency away from the resonant frequency of an
individual particle:

(68)

Im x(4) =§ v(4) ~ 4% (69)
where d; is an analogue of spectral dimension referred to in
[36] as optical spectral dimension. Ref. [36] reports the
numerical value of dy which lies in the range of 0.3-0.6. In
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other words, the frequency dependence of the particle’s
response in a cluster is altogether different from the
resonance curve for an isolated particle in that absorption
of an incident wave remains high at a large distance from
the resonance where it but slowly decreases with further
detuning of resonant frequency, in accordance with the
power law. In such a case, eigenvectors of " correspond to
the collective excited states of particles (fracton analogues)
in the cluster. Their spatial volume exhibits power-law
dependence on the degree of withdrawal [ ~ 4*. However,
the exponent « is related to optical spectral dimension in a
different way compared with the exponent in the dispersion
relation for fractons (53). Ref. [36] reports the following
relation: « =dy — 1/(3 — D).

The most interesting result of multiple scattering on
fractal clusters is the enhanced local field fluctuation
observed in Ref. [36]. Eqns (67) and (69) give the following
expression for the magnification of the field square
averaged over cluster particles:

_<|‘Pi|2> 1 Aot
= |¢0|2 ~5| | .

(70)

This is a high value for large degrees of relative detuning
which may result in a significant increase in nonlinear
effects during the interaction between an incoming wave
and a cluster. This observation agrees with experimental
findings pertinent to photomodificationt of fractal clusters
at intensities of light falling below the threshold level. In
this case, the effect is caused by enhanced local fluctuations
of the field. Evidently, this increment is a universal wave
effect which is certain to have the most conspicuous
manifestation in nonlinear interactions between waves of
different nature.

The analogy of collective excitations of particles during
multiple wave scattering on a compact fractal cluster can be
accounted for by the fact that phase shifts in Eqn (66) are
neglected when particle fields affecting a given particle are
considered. When the phase is taken into account, matrix W
becomes complex and even loses the property of self-
coupling which makes the problem far more complicated
and difficult to solve. The diagrammatic technique developed
in Ref. [137] has been used in Ref. [37] to examine multiple
scattering by a fractal cluster of metal particles with dipole
surface resonance. Scattering was analysed taking into
consideration phase shifts. Calculations were made with
due regard for correlation of the particles’ positions in the
cluster in order to enhance the probability of constructive
interference of waves scattered over different channels and
the appearance of a similar effect of strong local field
fluctuations. The study [37] demonstrated the existence of a
critical cluster fractal dimension 3/2, such that clusters of
lower dimension underwent a huge increase in the scattering
section. In Ref. [37], this effect was termed visibility—
invisibility phase transition. However, the authors did
not offer any qualitative interpretation of such a sharp
transition. Clearly, correlation of the particles’ positions
grows with falling fractal dimension although this growth is
quite smooth. The cause behind the appearance of the
transition at fractal dimension D =3/2 can probably be

fPhotomodification of clusters of small metal particles consists of
burning out some of them by means of heat generation induced by
absorption of an incident wave.

understood from the following considerations. A cluster of
size r contains ° particles and ~ r*” corresponding radius
vectors which connect the particles in pairs. These vectors
originate from one point and occupy a region of size ~ r. At
D > 3/2, the number of radius vectors grows faster than the
cube of the size; actually, they may be considered to occupy
the whole region. The situation is qualitatively different at
D < 3/2 since the number of vectors grows more slowly
than the volume, and they occupy zero volume at large r.
Assuming multiple scattering to be the ray walking from
one particle to another, the case of D < 3/2 is reflected in
marked restriction of possible walk steps (possible steps
occupy a set of zero measure). Obviously, this leads to a
sharp increase in the possibility of constructive interference
of beams that have covered different distances.

The problem of scattering on fractal particles is solved
in Ref. [133] with regard to multiple scattering but in the
self-coordinated field approximation. Fractality is taken
into consideration by means of the power-law alteration of
density with increasing distance from the centre of the
aggregate. Even this approximation indicates the growth of
the scattering amplification factor with decreasing fractal
dimension.

4.4 Wave emission by fractal objects

Radiation fractal effects may take place even in a set of
independent point sources of radiation showing fractal
distribution in the space. Consider their contribution to the
intensity of emission from the sphere of radius R with its
centre at the observation point. In the case of fractal
distribution with dimension D, the number of such sources
on the sphere is described by the expression

N ~R", (71)

each source contributing to the total intensity in proportion
to 1/R2. Hence, the total intensity is

I ~RP2. (72)

Given the uniform distribution of sources, D =2 and the
total intensity does not depend on the distance whereas in
the case of fractal distribution, D < 2 and the intensity falls
with increasing distance.

Expression (72) under the assumption of fractal dis-
tribution of stars and galaxies may be used to find a
solution for the well-known Olbers paradox of night-sky
luminosity [39]. If the Universe is considered infinite,
integration of Eqn (72) over distances yields an infinite
result. On the contrary, distribution over spheres with
sufficiently small fractal dimension gives a finite result
even if the Universe is infinite.

It is worthwhile to note that the presently available data
suggest a fractal distribution of galaxies on scales of up to
100 Mpec, with the mass fractal dimension D = 1.2 [138].
Corresponding to such patterns is distribution over spheres
with dimension D, =D — 1. This results in the following
distance dependence for the total intensity: 7 ~ R™%; its
integral over distances is fldR ~ RT3, Therefore, fractal-
ity may well be supposed to contribute to the luminosity of
the night sky.

There are more aspects as regards fractal effects in wave
emission. Heat radiation by fractal aggregates has been
investigated in Ref. [38]. Localised collective states dis-
cussed in the previous section are responsible for
abnormally high absorption if calculated per aggregate
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particle. Hence, anomalous heat emission per unit mass of
the aggregate.

This result has been obtained in Ref. [38] based on more
trivial considerations. The author suggested that the
boundary conditions for the waves emitted from the cluster
surface are coincident with the conditions for a continuous
particle when its heat radiation is not different from that of
the cluster containing (r/r,)°> > times fewer particles (r, r,
being the size of the cluster and its constituent elements
respectively and D is the fractal dimension). Radiation of
the cluster per particle is higher.

Another manifestation of fractal structure participation
in radiation is associated with its fluctuations when
produced by fractal systems. Such phenomena have been
examined in the context of seismology in Refs [40, 52]
which are concerned with the role of acoustic emission
fluctuations in the processes of rock restructuring. One of
the models used in Ref. [40] is related to the percolation
model of front diffusion. Concentration of an agent in the
diffusion front changes from zero at a distance from the
source to unity near it. There is a front region where the
diffusing agent concentration is equivalent to the threshold
percolation level. In proximity to this site, the diffusing
agent tends to form fractal clusters [83]. This results in a
change of the coherent volume filled by the agent due to
differently sized mature clusters joining the front and
leaving it rather than the motion of individual particles.
This process is accompanied by the so-called geometric
noise general characteristics of which have been investigated
in Ref. [83].

It is important that this is an universal effect which does
not require special conditions for the formation of fractal
objects. It is due solely to diffusion and may be noticed on
examining waves of different nature. For example, the
authors of Ref [139] studied pressure fluctuations during
the slow invasion of a random porous medium by a heavy
fluid. This percolation was of a diffusive nature which
favoured conditions for the production of fractal geometric
noise.

5. Fractal structures in wave fields

There is no well-developed methodology in this area of
research. A great variety of geometric objects may be
associated with wave fields, viz. spatial distribution of field
intensity, wave shape, radiation patterns, etc. A study of
fractal structures in wave fields as well as in random
processes (see Section 2.2) may be useful for the concise
description of fields with the complicated structure
necessary to understand nonlinear wave processes oOr
charac-teristics of natural noise.

The presence of the distinguished scale (wavelength) in
wave fields is an important limitation on the manifestation
of fractal properties. Given a broad wave spectrum, they are
apparent as fractal structure of the wave shape in the self-
similar region of the spectrum. In the general case, fractality
may be observed on scales exceeding the characteristic
wavelength, that is in the ray structure or the large-scale
distribution of field intensity.

This section presents a description of results obtained in
different studies concerning fractal structures in wave fields
and discusses a promising general approach to the analysis
of signals and waves based on the use of the multifractal
model.

5.1 Multifractals and analysis of signals
A multifractal is a union of fractal sets having different
dimensions. A detailed description of multifractals and
relevant notions is given in Ref. [9] and Ref. [48].
Multifractal analysis may provide nontrivial data
applicable to a wide range of objects not restricted to
self-similar ones or even to fractals. The most important
component of the analysis is the examination of the Renyi
D, dimensions of different orders. For objects regarded as
self-similar in the narrow sense of the word, all these
dimensions are similar and equivalent to the fractal
dimension D,. Consider moments of point distribution
density at an object:

M, =" p0]""

N(D)

(73)

as related to the breaking scale of object /. Then, it follows
from the definition of the Renyi dimensions that

M (1) ~ 179 = [Pt = |90 (74)

where the last equation is fulfilled for self-similar objects.
In other words, function ¢(g) for self-similar objects is
linear. This inference does not hold for a general case.
However, an object can be described in terms of the
multifractal model provided scaling (74) with a certain
function ¢(gq) still exists. Suppose that an object can be
broken up into complexes of fractal sets with dimension

f(a) near which densities exhibit a power-law dependence

on the cell size in the form of (/) ~{* Then, moments of
distribution density may be expressed in the following way:
M,y (1) ~ Jz‘f“*f(“) dar . (75)

The integral at small / may be obtained by the ‘pass’
method. At the saddle point @,

df

—_— = o N 76

da|,_. q(@) (76)
and the integral is given by expression 195/@ Hence,

functions f(«) and D, are related through the Legendre
transformation (¢ — 1)D, = q& — f ().

The multifractal model has the most explicit sense when
applied to the analysis of signals (fields) in the quantitative
description of distribution of singularities of signals non-
differentiable in an infinite number of points. An example
of such a signal is provided by the Wiener process with no
derivative at any point. Naturally, the notion of non-
differentiability in application to real physical signals
may be discussed only with respect to a certain range of
scales which exceed a selected minimal scale. For instance,
in the case of spatial dependence of turbulent flow velocity,
such scales are those in excess of the internal Kolmogorov
turbulence scale.

Suppose there is a discontinuous process x(¢) with
singularities of the derivative. Also suppose that the square
of the difference between signal values in adjacent points
near the singularities shows power-law behaviour when
distances between the points are changed:

() —x(t + 1) ~ . (77)

This relation corresponds to the presence of a point of
singularity of the Hoelder derivative of the o order [8]. At
the points where the derivative is discontinuous, ¢ =1,
while the quantity o > 1 corresponds to the points with
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zero derivative, although the second derivative may have a
break. Specifically, o = 1/2 for all points of the Wiener
process. Further suppose that the points with a definite
exponent a constitute a fractal set with dimension f(a);
then, the following expression can be written for the
structure function of the process of order ¢, by analogy
with (75):

<|x (1) —x(t+ 1’-)|q> _ J_L,qoc—f(a) dot o I

where
ar|
do oc:E_

Therefore, if structure functions of the study process of
different orders show power dependence on the interval in
the form of 1:"’("), the multifractal model for the distribution
of singularities of the signal derivative may be adopted.
Function f(a) is obtained in the form of the Legendre
transformation of the derivative ¢(q).

Function f(a), commonly referred to as the singularity
spectrum, has recently been used by many authors. Unlike
the power spectrum and correlation functions of the process,
the singularity spectrum bears information about its local
structure useful for distinguishing between signals of differ-
ent origin. Also, it is worth noting that multifractal analysis
gives a meaningful summary of data on different order
moments of the two-point distribution of process
probabilities.

The multifractal model appears to have been applied
first to the description of the structure of turbulent flow
velocity in the inertial scale interval [140, 141]. The
spectrum of velocity singularities thus obtained permits
one more important interpretation. In agreement with the
Kolmogorov theory, the velocity difference in points
located at distance r is related to energy dissipation (g,)
averaged over the volume of size r by the following
expression:

Av, = ((1»;,)r)1/3 .

Assuming (&) to be independent of the averaging volume,
it is possible to obtain for structure velocity functions

{|Av,|Py ~ P,

with the singularity spectrum being degenerate to a point.
Experimental studies indicate that this relation is not
fulfilled. Hence, energy dissipation is not uniformly
distributed in space; its distribution may be described
using the multifractal model, similar to the distribution of
velocity singularities. In other words, multifractals may be
useful to characterise an intermittency of energy dissipation
fields which was previously described in terms of a
logonormal distribution. It is clear that the multifractal
model is applicable to the analysis of intermittent patterns
of any density distribution both in space and time. In this
case, the integral of such density is regarded as a
multifractal measure. With this measure being taken as a
nondifferentiable function, its singularity spectrum coin-
cides with that of the corresponding density. Any signal or
its instantaneous power may be viewed as a density on the
time axis suitable for multifractal analysis.

Such an approach has been employed in Ref. [50] to
analyse periwall pressure pulses that are known to occur in
a turbulent flow in a pipe. The analysis of the process in
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Figure 13. (a) Multifractal process obtained with the model described
in Ref. [140]. (b) The square of periwall pressure pulses in a turbulent
flow averaged over intervals 1.6 x 10~ s [50]. Probe size 1 cm, flow
velocity 10 m s™'. (¢) The square of white noise with normal amplitude
distribution. The horizontal axis gives reading numbers, and the

vertical axis represents conventional units.

Ref. [S0] was performed on times exceeding its correlation
scale; it is on such scales that intermittence of the process
acquires multifractal structure. It was also essential that
direct measurements demonstrated that the energy singu-
larity spectrum of the process was independent of flow
velocity. Indeed, the singularity spectrum reflects the
structure rather than energy characteristics of the process.

A simple multifractal model has been proposed in
Ref. [142]. Suppose that a segment of the amplitude is
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initially equal to a. Divide the segment into two new ones
and randomly ascribe amplitudes pa and (1 — p)a to either
half. Repeat the procedure over and over an infinite number
of times. The resultant density has the multifractal
singularity spectrum. The process simulated by this model
is illustrated in Fig. 13a. Fig. 13b shows the change with
time of the pressure squared during near-wall turbulent
pulsation. For comparison, the square of Gaussian white
noise is presented in Fig. 13c. Fig. 14 demonstrates
singularity spectra for these processes. It can be seen
that the singularity spectrum for the Gaussian noise
concentrates near the point f=1, o = 1. Experimentally
measured points of the singularity spectrum for pressure
pulses were found to fit the curve well for the singularity
spectrum of the simulated process with p =0.7. Also,
similar intermittent patterns of simulated and real proc-
esses are directly apparent from the figures (Fig. 13a,b).
The application of multifractal analysis to the amplitude
distribution of fracton wave functions on a percolation
cluster is described in Ref. [51]. The authors used multi-
fractal analysis to examine the density equivalent to the
squared amplitude of the eigenfunction for Eqn (18) on a
percolation cluster. The cluster was obtained by simulating
percolation at the threshold node concentration on a
64 x 64 square lattice. Wave functions were derived by
means of direct numerical evaluation of eigenvectors of the
equation. The study revealed the power-law behaviour of
values M, obtained with formula (73) in the range ¢ = 5—
10. For eigenfunctions on the full square lattice, the
exponent ¢(g) from Eqn (74) had the simple form of
¢(q) =2q. This dependence changed for fractons, first,
because wave functions were fixed on a fractal, second,
because the wave functions had highly irregular structure.
At g =—1, ¢(q) = —1.9 was obtained and reported to be
equal to the fractal dimension of a percolation cluster, as
expected [43]. For other g values, equality ¢(q) = gD, is no
longer fulfilled which can be accounted for by the marked
intermittency of wave functions within a cluster. The
distribution of wave function amplitudes is characterised
by the nontrivial singularity spectrum f(a). This spectrum
displays weak frequency dependence, but its general
structure is the same regardless of frequency (Fig. 15).
To begin with, f(a) is smaller than the cluster dimension
fle) =1.5-1.6 at a =2 corresponding to the points on a
cluster with the normal smooth amplitude distribution. This
means that the points with smooth behaviour of the wave
function occupy only a small portion of cluster nodes, the
smaller the higher characteristic localisation scale. Never-
theless, spectrum f(a) is rapidly diminished at « < 2, that is
the number of points where the amplitude shows abnor-
mally fast growth undergoes a further decrease. However,
the majority of the points occur at o > 2. In the range of
o = 2-35, the singularity spectrum approaches the constant
value f(a) = 1.9 equal to the cluster dimension D,. There-
fore, the wave function amplitude is subnormally small for
almost all points of the cluster. It should be noted that M,
at ¢ =0 is directly related to the process of nonlinear
excitation of fractons with double frequency. The singu-
larity spectrum indicates that the nonlinear source of
fractons with double frequency is largely located in that
portion of the cluster where fractal dimension is smaller
than that of the whole cluster. This is supposed to have a
marked effect on the generation of harmonics by fractons.

08 |-

0.6 -

02

Figure 14. Singularity spectra of processes shown in Figs 13a—13c.
The solid line is the singularity spectrum of the model process, crosses
show the experimental spectrum of pressure pulsation [50], and the
dotted line represents white noise with normal amplitude distribution.

Figure 15. Fracton singularity spectrum on a percolation cluster [51].

5.2 Fractal ray structure

Fractal structures are known to associate with rays which
propagate in a longitudinally nonuniform waveguide.
Fractal structures arise due to nonlinearity of ray
equations. Studies on the effects of nonlinear ray dynamics
are based on the representation of ray equations in the
Hamiltonian form and the analogy with the results of
nonlinear Hamiltonian dynamics [143, 41].

In longitudinally homogeneous waveguides, rays
undergo periodic oscillations relative to the axis but do
not leave the waveguide. Ray capture is due either to the
effect of the reflecting walls or to the nonuniform cross
distribution of the refractive index. The length of a ray cycle
is determined by the initial angle of slope relative to the
waveguide axis. Ray trapping in nonlinear resonances is
possible in the presence of longitudinal inhomogeneities



378

V V Zosimov, L M Lyamshev

(wall roughness, axial oscillations, changes of refractive
index). There are two types of ray behaviour which lead to
fractal structures. In the absence of overlapping nonlinear
resonances, ray dynamics are not chaotic, and fractality is a
property of the resonance structure.

It has been shown using the model of an acoustic
waveguide in a shallow sea with a periodically irregular
bottom [144] that ray propagation in a longitudinally
inhomogeneous waveguide may result in the situation
when the dependence of spatial ray frequency (inverse
cycle length) on the angle of departure is a fractal
measure. This curve has zero derivative almost throughout
its length with the exception of the fractal set of points.
Fractality is also manifest in the dependence of propagation
time on the angle of departure which is obviously respon-
sible for the fractal nature of an impulse signal during its
propagation in the waveguide.

A uniformly occupied waveguide with absolutely reflect-
ing walls has been examined in Ref. [144]. One of its walls
was flat whereas the other had periodic irregularities of the
form

oy =e0 -9,

where b and L are the amplitude and the irregularity period
respectively while & =z/L is the fractional part of the
longitudinal coordinate z normalised on the period. The
depth of the waveguide at b = 0 is 4. In such a waveguide,
travelling rays are alternately reflected from the walls. Ray
propagation may be described by a nonlinear representa-
tion which defines both the angle and the longitudinal
coordinate of ray reflection from the flat wall via the angle
and the coordinate of the previous reflection from the flat
wall. Assuming that the amplitude of irregularities
vanishes, the ray cycle length D, i.e. the distance between
two subsequent reflections from the wall, is constant and
equals D = 2h cot 6, where 0, is the initial outlet angle of
the ray. Irregularities have marked effect on the rays in
nonlinear resonance with the period of irregularity. For
certain integers m and n, this means the fulfillment of
equality 2nm/D = 2nm/L or
m 2h

tan 0(()'"’ " = 7
n

(78)
which maintains resonance between irregularity harmonics
and ray trajectory. The rays with angle of departure near
one of the resonance angles 0(()'"’") are involved in the
resonance and have similar average periods of reflection
and propagation times. Fig. 16a illustrates the dependence
of the ray oscillation spatial frequency x on the angle of
departure 6, [144]. This curve consists of steps with a
constant k value which are located near the resonant angle
of departures. The step distribution with respect to the
angle of departure is fractal in that the number of intervals
between steps N(r) shows the power-law dependence on
resolution » when the resolution over the angle increases.
This implies fractal distribution of singularities of a
derivative curve (see Section 5.1). Fractality is also
illustrated by two inserts in Fig. 16 which represent an
enlarged portion of the curve and the plot of N(r)
dependence. Fig. 16b shows a similar stepwise dependence
of the ray length (time of signal propagation along the ray).

The fractal structure of nonlinear ray resonance follows
from Eqn (78). Fig. 17 demonstrates the distribution of
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Figure 16. (a) Dependence of ray oscillation spatial frequency on the
angle of the ray leaving the source [144]. Angle step 0.01. The insertion
shows the enlarged portion of the plot inside the rectangle; angular
step 0.001. Characteristics of the waveguide: h/L =1/3, b/L = 0.001.
(b) Dependence of ray length (excepting the distance along the wave-
guide z) on the angle of departure [144]. Characteristics of the
waveguide: h/L =1/3, b/L = 0.005.

© Z

]_
HII‘I. (il I‘IIII HI‘I. il
0 0.2 0.4 1.0 12 1

N 0 /rad
35

. ||||‘| il
6 0:8

0. 4

30

25 -

20 |-

0 02 04 06 08 1.0 12 14 16
Bo/rad

Figure 17. Distribution of resonance angles of departure derived from
Eqn (78) taking into consideration the first eight harmonics (a) and the
first 32 harmonics (b).




Fractals in wave processes

379

solutions of the second equation in (78) with respect to the
angle of departure. Fig. 17a presents solutions with regard
for resonances up to the eighth harmonic (m <8, n < 8).
Solutions taking into consideration resonances up to the
32nd harmonic are shown in Fig. 17b. Comparison of
Figs 17 and 16a indicates that the broadest ranges of
nonlinear resonance capture correspond to the angle of
departure in which a few resonances coincide. Comparison
of Figs 17a and 17b reveals the self-similar structure of
resonances. The number of resonances grows with increas-
ing harmonic number equivalent to increasing resolution
over the angle. The distribution of separate resonance
groups for a large number of harmonics is similar to the
resonance distribution in the entire range of angles for a
smaller number of harmonics.

Resonance overlapping results in chaotic ray dynamics
with the resulting fractal properties of the phase picture
typical of chaos. So far as rays in a waveguide are
concerned, this may be reflected in the ray distribution
density in the ‘angle of slope relative to the axis—transverse
coordinate’ plane. Chaotic behaviour of rays in an acoustic
waveguide in a shallow sea with periodically rough bottom
was investigated in Ref. [144]; it was shown to arise at
sufficiently small angles of departure of rays. Conditions for
the formation of chaotic ray dynamics in deep-water ocean
waveguides appear to have been examined first in
Ref. [145]. This situation is of special interest from the
viewpoint of the theory of wave propagation in natural
media, and it seems appropriate to discuss it at greater
length proceeding from a recent study [146]. Studies of
chaotic ray dynamics are based on eikonal equations in the
Hamiltonian form, e.g.

dz = 6_H , dp = _ a_H , (79)

dr Op dr 0z
where z is the depth, r is the distance, and p is the slip angle
tangent

H(z, p.r) =05p" +V(z, 1) ;

V(s r) = 0.5{1 - L‘(—E)r} +e(a 7).

Here, ¢, is the basic acoustic velocity at a selected level, ¢(z)
is the unperturbed acoustic speed profile, and g(z, r) is the
excitation describing the longitudinal nonuniformity of the
wave-guide. A necessary condition for the chaotic ray
behaviour is local instability of the solutions of Eqns (79).
According to Ref. [146], the criterion of such instability has
the form

62c(z) 3c(2)\’ L)
[4)][() <6>} G

Analysis of condition (81) as performed in Ref. [146]
indicates that it is readily fulfilled in the case of a small
longitudinal perturbation (caused, for instance, by inner
waves in the ocean) provided the underwater acoustic
channel has two axes. This inference is confirmed by the
numerical solution of Eqns (79) for a typical acoustic
channel in the North Atlantic. Therefore, both ray chaos
and fractal signal properties may prove typical of sea
acoustics at least.

The above results characterise two-dimensional wave-
guides with one-dimensional longitudinal inhomogeneity.

(80)

81)

The situation is strikingly different in three-dimensional
problems if two-dimensional inhomogeneities are taken into
consideration. Specifically, diffusion in the phase space
becomes possible, i.e. the so-called Arnold diffusion.
Three-dimensional effects have recently been examined in
Ref. [147] based on the model of the near-bottom ocean
waveguide on a rough bottom. Ray diffusion is qualitatively
reflected in random changes of ray propagation directed
along the trail in the horizontal plane, any direction being
possible including the reverse one.

It should be emphasised that fractal ray dynamics
(including chaos) do not arise in randomly inhomogeneous
media. Longitudinal perturbations may have a quite regular
character. The following section reviews selected statistical
wave problems in which fractal structures may appear.

5.3 Wave superdiffusion

It should in the first place be noted that the diffusion
approximation for the description of ray propagation in a
random medium obtainable from Eqn (79) with the short-
range correlated random index of refraction V(z, r) [148]
does not yield fractal ray trajectories. It explicitly ensues
from the first equation of (79) which describes differ-
entiable trajectories.

Wave diffusion also occurs in the general case of
distribution in randomly nonuniform media with small-
scale inhomogeneities. A diffusive nature is reported to be
inherent in both the shift and the widening of a wave beam
in such a medium, with inhomogeneities smoothly changing
longitudinally and short-range correlated transversally
relative to the direction of wave propagation. In this
case, a parabolic equation may be used to describe the
wave field. A numerical study of transverse displacements
and widening of a wave beam propagating in such a
medium has been reported in Ref. [44]. The authors
analysed the following model equation for changes of
wave amplitude ¥ along the discrete longitudinal coordi-
nate f:

Vi (0) = =i 5 A () + rle, Do ()| +0,(x)
where x are the transverse coordinates, r(x, ) is a random
quantity which adopts equiprobable values 1 and —1, v has
the sense of inhomogeneity amplitude. The study evaluated
the displacement of the centre of the transmitted beam x,
and beam widening Ax.

In the three-dimensional case at v <2, dependencies
x.~t', Ax ~t¥ are fulfilled where v=v'=1/2. At v > 2,
there is a qualitative change in the behaviour of these
variables. Specifically, a simple diffuse displacement of the
beam is replaced by superdiffusion with exponent v = 0.67.
Conversely, the beam widening becomes slower (v/ = 0.45).
In the two-dimensional case, superdiffusion occurs at any
amplitude of inhomogeneities, with v =0.75, vi= 1/2. v
values suggest the fractal character of the beam trajectory
(see Section 2). However, to the best of our knowledge,
there have been no studies in which wave propagation in a
random medium was considered from this point of view. It
is worthwhile to note that the fractal wave structure in a
random medium may lead to fractal structures arising as a
result of wave effects on the medium. Although the current
theory of wave propagation in random media works well
without fractal notions, the fractal analysis of resulting
fields may be expected to provide novel information.
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Another statistical wave problem which is likely to lead
to fractal structure pertains to excitation transfer in a two-
level resonant medium with a uniformly widened transition
[42, 43]. Excitation of such medium from an external source
F(r) results in a distribution n(r) of the excited level
concentration which is induced due to excitation transfer
by photons emitted during transition. The emitted photons
are distributed in a certain frequency range as a conse-
quence of level widening and have different distributions of
free path times until they are captured by another resonance
centre. It has been shown that the resulting distribution of
the excitation transfer distance has no finite dispersion,
which accounts for its Levy-type stable distribution in the
limit of large distances [43]. In this work, the process of
excitation transfer is described by the following equation:

n(r) = F(r) +JK(r— r') n(r')dV' R

where the kernel K has, at large distances, asymptotics

1

K(r) ~ pmrl
The probabilistic interpretation of the transfer equation
gives an asymptotic for the probability distribution of
excitation transfer distances in the form of 1//'7%
corresponding to the stable distribution with exponent
o = 2y (see Section 2.3). Intrinsic trajectory fractal proper-
ties of the ‘Levy flight’ must be equally apparent in the
described process.

There are far more examples of statistical wave
problems with a possibility of fractal structure manifesta-
tion, besides the two above, and further studies in this field
are certain to provide new and interesting results.

5.4 Dynamic chaos in nonlinear wave fields

The examples of fractal structure formation in wave fields
examined in the two previous sections illustrate linear wave
processes in inhomogeneous media. Nonlinear wave
interactions may equally result in the appearance of
fractal structures in a homogeneous medium. Here, the
most extensive studies were carried out to investigate
dynamic chaos and the associated fractal structure of phase
trajectories. Detailed reviews of these problems may be
found in Refs [17, 149, 150]. Some processes leading to
dynamic chaos in nonlinear wave fields are examined
below.

Infinite-dimensional wave systems may be reduced to
finite-dimensional dynamic systems by introducing envel-
ope amplitudes of a small number of interacting quasi-
monochromatic waves. A rather general mechanism under-
lying the dynamic chaotic behaviour of the amplitudes of
interacting waves is related to decay instability. It includes
parametric excitation of low-frequency waves in the field of
a high-frequency wave. One of the signs of such instability
appears to be directly related to turbulent transition in the
boundary layer [151—-153]. It is known that turbulent
transition in the boundary layer originates as the formation
of Tolmin—Schlichting (TS) waves. As soon as the
Reynolds number exceeds a critical excitation level of
the flow (TS wave), wave numbers within a certain range
start increasing downstream. This process involves wave
numbers larger than a certain fixed value. An experimental
study of the nonlinear evolution of an artificially excited
increasing TS wave [151] revealed early excitation of

subharmonics followed by the induction of a wide spec-
trum of low-frequency perturbation components showing
stability in a linear approximation. These events precede
turbulent transition.

Calculations reported in Ref. [152] confirmed the
feasibility of subharmonic instability. A later study [153]
demonstrated the possibility of cascade excitation of
subharmonics. This indicates that the process of lami-
nar—turbulent transition in the boundary layer may be
analogous to a transition to chaos through doubling the
period.

Experimental measurements of trajectory dimension for
the motion in the boundary layer using the Takens
algorithm [154] showed that at the early stochastic
stages, the motion may be described by the finite-dimen-
sional dynamic system.

Certain phenomena associated with interaction between
waves and parametric excitation of subharmonics are
described by equations for slow amplitudes reminiscent
of the well-known Lorentz model [149]. These phenomena
include, among others, the effect of second harmonic
generation in a disequilibrated medium which amplifies
the harmonic and the interaction between ion sound and
plasma waves following parametric excitation.

Chaotic behaviour is also manifested in the case of
forced high-frequency wave scattering on a low-frequency
wave (Mandelstamm —Brillouin scattering) [155]. Here, the
chaotic regime is due to the nonlocal interaction at weak
attenuation of the acoustic wave when its amplitude may be
so large that the sound self-effect causes phase disturbance
of resonance.

The general approach to distributed systems with
chaotic dynamics is based on equations for perturbation
amplitudes in the medium resembling the Ginzburg—
Landau equation and may be applied to a broad class
of wave and nonwave problems [17, 150]. This approach is
based on the possibility of identifying rather weakly inter-
acting nonlinear structures distributed in space or their
defects. Their collective dynamics are described by a discrete
analogue of the Ginzburg—Landau equation and result in
finite-dimensional spatial chaos.

An example of such behaviour of the wave field is
examined both experimentally and theoretically in
Refs [156, 157] These studies made use of the Faraday
ripple, i.e. the system of parametrically excited capillary
waves generated on the water surface in a vessel with an
oscillating bottom. When the vibration amplitude of the
bottom was small, it was possible to observe generation of a
regular wave structure with square cells formed by pairs of
waves propagating in opposite directions. An increase in the
vibration amplitude resulted in modulatory instability and
formation of the regular periodic structure of a modulation
wave of the primary lattice. Further growth of the vibration
amplitude caused defects in the modulation structure and
chaotic patterns in its motion.

5.5 Fractal structures in wind waves on the sea surface

Wind waves in the sea provide additional examples of
fractal structures in wave fields. They may also be
associated with ray chaos [158]. Fractal characteristics
are intrinsic in the shape of the rough sea surface with both
directed [159] and random [45] waves. The latter work
studied power-law flow spectra of wind waves with
exponents f=11/3 and 4 for gravity waves and
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B =17/6 for capillary ones. The authors evaluated fractal
dimensions of the curves describing the change with time of
elevations in a point and the curves that describe rises
along the surface section by a vertical plane. The curve that
described the time-course of elevations for gravity waves
was not fractal in itself, but its derivative possessed the
property of fractality and had dimensions 5/3 and 3/2 for
exponents f = 11/3 and f =4 respectively. The curve with
respect to time for capillary waves turned out to be fractal
and had dimension 13/12. The surface sectioned by the
vertical plane was represented by a fractal curve for both
exponents in the gravity wave spectrum, the respective
dimensions being 4/3 and 5/4. The spatial curve for
capillary waves was lacking in fractality while its derivative
(surface slope) was a fractal with dimension 13/8. The
range of fractal behaviour scales was naturally restricted by
the correlation radius of the troubled surface. It should be
noted in this context that wave dispersion over the sea
surface is actually scattering on a fractal.

Another approach to the analysis of fractal properties of
sea-surface elevation has been reported in Ref. [160]. Using
the Takens algorithm, the authors measured the attractor
dimension in phase space. The dimension of the attractor
showed a tendency towards a decreased growth rate with
increasing space dimension. However, the numerical model
of random signal with the spectrum derived from measured
values exhibited similar behaviour. It was concluded that
the sea surface elevation was not controlled by a finite-
dimensional dynamic system with a strange attractor.

Fractal properties of the sea surface on scales exceeding
the ripple correlation radius have been examined in
Refs [46, 47]. Analysis of aerial photographs in Ref. [46]
revealed a fractal distribution of wave collapse zones over
the surface with fractal dimension 1/2. Studies using a
scanning laser locator [47] demonstrated fractality of a
mirror-point distribution along the time—space line pro-
duced by the ship when underway. The fractal dimension
was found to be 0.8. Both papers report manifestation of
fractal properties on scales of at least up to ten times the
correlation radius of the troubled surface. Measurements
were made in the tropical areas of the open ocean in the
Atlantic where the trade-wind maintained stationary agita-
tion during a few successive days. Capillary ripple intensity
was recorded for many hours along the vessel’s course using
a scanning laser locator.

Fig. 18 demonstrates the sampled spatial spectrum of
the parameter measured in the above study. The analysis
was performed by averaging over frequency bands as
described in Ref. [134] (see Section 4.2). The results
obtained in different study areas and under different
wind conditions are shown in Fig. 19. All the records
revealed power-law averaged spectra with practically the
same exponent in the range of scales from 40 m to 1.6 km
which lay beyond the limits of ripple correlation scales.
Such universal behaviour suggests that large-scale fractal
variability of the ripple is characteristic of weak wave
turbulence for waves with a nondecaying spectrum, a
model describing the growth and the stationary spectra
of wind agitation.

5.6 Fractal analysis of signals in seismology

A variety of similarity laws in seismology are known to be
fulfilled in a wide range of scales. They include the
Gutenberg—Richter law [161] for the scaling dependence of
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Figure 18. Sampled spectrum of large-scale variability of the intensity
of a capillary-gravity ripple obtained by laser scanning [47]. The
number of reflections was measured by surface scanning with a thin
laser beam. Spectra were measured on board a ship underway at 8
m s~ frequency of 1 Hz corresponds to the spatial scale of 8 m.

recurrence frequency on the earthquake energy class and
the Knopoff—Kagan law [162] for the distribution of time
intervals between events. These laws are reported to be
fulfilled for disintegration processes even if their scale is
smaller than that of earthquakes. A recent work [163]
investigated acoustic emission during breakdown of a
hydrogen-saturated metal sample. The sample was sat-
urated at high temperature and destroyed (microcracking)
after cooling. The study produced information about the
distribution of the amplitudes of acoustic emission
impulses in the form of N(A’>A)=A""" and showed
that this dependence was fulfilled on the interval of
amplitudes over two orders of magnitude. This is one of
the ways to represent the Gutenberg—Richter law.

The Gutenberg—Richter law may be explained in terms
of lattice models for elastic bodies [103, 164]. Such models
make use of an expression for elastic forces in a lattice [e.g.
Eqns (32), (38)] and introduce the rule to select and destroy
lattice sites when their deformation exceeds a certain critical
level. Also, these models simulate fractal distribution of the
damaged parts.

Distribution analysis of earthquake hypocentrest based
on the results of a field study [156] revealed fractal patterns,
with fractal dimension of —1.9. Similar results were
obtained by simulation on a lattice using the elasticity
model (38) [165] in which values of elastic constants were
random and exhibited a power-law distribution.

Fractal properties are also inherent in signals of
seismoacoustic emission during periods between earth-
quakes. Such signals were examined in detail in Refs [40,
52]. Fig. 20 shows results of fractal analysis of envelopes of
seismoacoustic emission signals in different frequency
bands. It illustrates the dependence of the Hurst exponent
H and fractal dimension of the curve D_ on interval lengths
being examined (expressed through the number of readings
k). The relation between the Hurst exponent and the fractal

fEarthquake epicentres are distributed over the surface while
hypocentres are located in the crust. Hypocentres lic at some depth
beneath epicentres.
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Figure 19. Spectra of ripple variability averaged over frequency bands 4 x 1072 Hz. Labels denote different experiments. Scaling takes place on

the spatial interval 40—400 m (0.2-0.02 Hz).

dimension is fulfilled, that is the process may be simulated
by generalised Brownian motion. The measurements
indicate the occurrence of crossover from the behaviour
with the Hurst exponent H = 0.4-0.6, at a certain interval
length. Refs [40, 52] offer the following interpretation of
this phenomenon. Sources of seismoacoustic emission are
supposed to be rock repacking fronts, i.e. sites where
transition from the loose rock structure to the compact
one occurs under the effect of strain. The pore concentra-
tion in such sites undergoes spatial alteration until it reaches
the percolation threshold in a certain place. Therefore, the
repacking front structure may be described by the model of
percolation in a concentration gradient [83]. In this model,
clusters of different size are formed at those sites of the
front where concentration is close to the critical level such
that the number of particles in the front is subject to
fluctuations as a result of cluster attachment and detach-
ment. For this reason, fluctuations on a certain time
interval behave like a Brownian process with the Hurst
exponent 1/2; the Hurst exponent vanishes at larger
intervals.

For the purpose of comparison with Fig. 20, Fig. 21
presents the results of numerical evaluation of the structure
function for particle number fluctuations in the diffusion
front for different concentration gradients [83]. Evidently,
plots in Figs 20 and 21 qualitatively coincide.

Rock restructuring is completed with the approaching
earthquake which must result in qualitative changes in the
structure of signals of seismoacoustic emission. These

changes can be identified by measuring the fractal dimen-
sion. Dramatic changes in signal fractal dimension with the
approach of an earthquake were confirmed by experiment
[52].

6. Conclusions

There is hardly a field in physics where wave theory is not
exploited for one or another purpose. This statement refers
to basic and even more so to applied physical research.
Physics owes to wave theory many important results and
advanced methodology. However, basic concepts of the
wave theory are based on the models for continuous media
and use the mathematical apparatus largely intended for
operations with smooth functions of time and space. This
explains why fractal models introduce qualitative changes
in the methods employed in wave studies. The use of fractal
models in this area is by no means confined to exposition
of known facts in a new fashion.

The theory of fractons on which the present review has
largely focused has actually been designed to solve the
problem of wave propagation in inhomogeneous and
disordered media which cannot be described by models
for continuous media. The concepts of effective refractive
index and effective compression make no sense if applied to
such media. In principle, the notion of fractons ensures an
identical approach to the problem of elastic wave propaga-
tion in the fractal lattice and that of multiple scattering on
fractal aggregates. Both problems deal with the scale-
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Figure 20. Structure function and envelope plot length of the signal of
seismoacoustic emission in different frequency bands depending on the
interval length [40, 52]. The plot length is assessed by measuring the
length of the broken line with different link lengths. Dependence of the
measured line length on the length of links suggests fractality of the
plot while the slope of this dependence gives the fractal dimension.

invariant spectrum of excitations of a medium which is
believed to be responsible for wave processes.

A more specific problem of concrete spectral dimension
values has not until now been completely solved. In the first
place, there is a discrepancy between experimental data on
neutron scattering and values predicted by elastic fractal
models which are fairly well confirmed in experiments with
larger-scale objects.

An important aspect of findings available in the frame-
work of the theory of fractons concerns prospects of their
practical application, primarily the development of materi-
als with unusual wave characteristics. The intuitive
approach evolved in traditional wave theory sometimes
fails to serve the purpose, and applied studies using it may
bring about quite unexpected results.

Studies of fractal structures in wave fields do not always
yield such new results as the theory of fractons. Never-
theless, considerable progress has been made in this field. In
the first place, multifractal analysis allows for the descrip-
tion of intermittent field structures. Unlike the power

® 800
10° 1 1 1 1

107 107 10° 10° 1
Figure 21. Structure functions 2> = {[N(r) — N(O)]2> for fluctuations
of the particle number in the diffusion front for different values of the

inverted concentration gradient. Results of numerical calculations
reported in Ref. [83].

spectrum or correl-ation function of the process, the
singularity spectrum bears information about the local
structure of the process which facilitates differentiation
between signals of different origin. Also, multifractal
analysis provides concise meaningful characteristics of
moments of different order for the two-point distributions
of process probabilities. Fractal properties of ray dynamics
are equally important for the understanding of wave
distribution in natural media. Fractals are believed to
allow the most natural approach to the description of
such a variable and intriguing phenomenon as wind-
generated waves. Moreover, the application of fractal
analysis to seismoacoustics may prove useful for the
development of new methods for earthquake prognostica-
tion.
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