
Abstract. A state-of-the-art review is given of the
investigations of the Hubbard model, which is the main
model used in the theory of strongly correlated electron
systems. It is shown how the main correlation effects — the
metal – insulator phase transition, the appearance of
localised magnetic moments, and the breakdown of the
Fermi- liquid behaviour — appear in the case of strong
electron correlations when U � W , where U is the
Coulomb repulsion parameter and W is the band width.
Different approaches to the problem, not based on
perturbation theory in terms of the parameter U=W of
W =U, are presented. A new method in the theory of
strongly correlated systems, in which the limit of infinite
number of dimensions of space, d = 11, is the main feature
of the review. The physical results obtained by this
approach are compared with those deduced by traditional
methods. An overview of the behaviour of strongly

correlated systems is given for wide ranges of the model
parameters U and W , and of the electron density n.

1. Introduction

1.1 Hamiltonian of the model
Three papers [1 – 3] appeared almost simultaneously and
independently in the early seventies: they proposed a simple
model of a metal, which has since become the fundamental
model in the theory of strongly correlated electron systems
(SCES). This model deals with a single nondegenerate
energy band of electrons and a local Coulomb interaction.

The Hamiltonian of the model has just two parameters:
the matrix element t of an electron jump from one site to an
adjacent site in the lattice and the parameter U representing
the Coloumb repulsion of two electrons at one site. In the
second-quantisation representation this Hamiltonian can be
written in the form

H = t
X

i; j; s

C
y

isCis + U
X

i

ni"ni# . (1.1)

Here, C
y

is and Cis are the Fermi creation and annihilation
operators for an electron at a site i with a spin s, and
nis = C

y

isCis is the number of electrons at this site.
The model proposed in Refs [1 – 3] has become known

as the Hubbard model and it has made a fundamental
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contribution to the study of the statistical mechanics of such
a system, although the local form of the Coloumb inter-
action had been introduced earlier by Anderson for a model
of an impurity in a metal [4].

It is worth mentioning also that the Hubbard model is a
special case of the Shubin – Vonsovskii (Wonsowsky)
model [5], put forward 30 years earlier than the model
of Refs [1 – 3]. The Shubin – Vonsovskii model takes into
account not only the Coloumb interaction at one site, but
also the interaction of electrons at adjacent sites.

The simplicity and the self-sufficiency of the Hamilton-
ian (1.1) made the Hubbard model very popular and
effective in the description of SCES, for which the
Coloumb repulsion parameter U is greater than or of
the order of the band width W . In the case of a simple
cubic lattice, we have W = 2zt , where z is the number of the
nearest neighbours.

The Hubbard model is the main working model in the
theory of SCES. Among the real objects it best describes
narrow-band transition metals and their compounds. In the
case of these materials the Hubbard model is effective: it
can be used to describe the magnetic and electric properties
of such materials and the relationships between them.

In the Hamiltonian (1.1), written in the site representa-
tion, the Coulomb term is diagonal, whereas in the Fourier
representation the kinetic term is diagonal and it corre-
sponds to the band spectrum

ek = 2t
X

d

a=1

cos ka , (1.2)

where d is the dimension of space.
The diagonality of one or another term in the Hamil-

tonian provides an opportunity of developing perturbation
theory for two limiting cases: U5W and U4W . They are
sometimes called the limits of weak and strong coupling,
respectively.

The intermediate case when

U � W , (1.3)

is naturally most difficult to deal with, although physically
it is the most interesting because it is in this case that the
correlation effects leading to a metal – insulator phase
transition are manifested most strongly, localised magnetic
moments appear, and a strong coupling forms between the
behaviour of charge carriers and magnetic order.

In an earlier review [6] I discussed in detail two limiting
cases and I used perturbation theory in terms of the
parameter U=W or W =U. In this review I shall concentrate
mainly on the intermediate case, but without extrapolation
from the weak or strong coupling limits. These limits will be
discussed briefly before considering the case of intermediate
coupling.

1.2 Weak and strong coupling limits
In the limit U5W our system represents a Fermi liquid in
which a long-range magnetic order may appear; it may be
ferromagnetic (F) or of the spin density wave (SDW) type
with the wave vector Q. This is the case of itinerant
magnetism, without localised magnetic moments. The basic
expression is that for the dynamic magnetic susceptibility
considered in the random phase approximation (RPA) [7],
i.e. taking account of loop diagrams

w(q,o) =

w0(q,o)

1 ÿ Uw0(q,o)

. (1.4)

Here

w0(q,o) =

1
N

X

k

f(ek)ÿ f(ek+q)

o+ ek+q ÿ ek + id
(1.5)

is the ‘bare’ (unrenormalised susceptibility of free (band)
electrons and f(e) is the Fermi distribution function.

The conditions for divergence of w(q, o) at zero
frequency determine the boundaries of the F phase
(when q = 0) and of the SDW phase (when q = Q ). If
nesting occurs, the divergence at q = Q can occur for any U
and the Neel temperature of the antiferromagnetic transi-
tion is

T N � W exp

�

ÿ

1
Ur0(m)

�

, (1.6)

where r0(m) is the density of states on the Fermi surface ( m
is the chemical potential).

In the case of the spectrum described by expression (1.2)
the nesting is complete for Q = (p, p, p)1=a when the band
is half-filled, i.e. when n = 1, where n is the number of
electrons per one lattice site. Deviation from the half-filled
case destroys nesting and the Neel temperature T N falls
rapidly as m is varied.

The boundaries of the ferromagnetic (F) and antiferro-
magnetic (A) phases in the (U, n) plane, which follow from
the condition of divergence of the static magnetic suscepti-
bility, are shown in Fig. 1. This diagram is identical with
that which follows from the mean field approximation
(MFA) [8]. In view of the electron – hole symmetry, the
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Figure 1. Magnetic phase diagram obtained in the mean field approx-
imation [8], taking account of the existence of the paramagnetic (P),
ferromagnetic (F), and antiferromagnetic (A) phases: the continuous
curve represents a second-order phase transition and the dashed curve
corresponds to a first-order phase transition.

386 Yu A Izyumov



pattern is symmetric relative to the point n = 1, so that we
shall in future consider only the section 0 < n < 1.

The problem of appearance of localised magnetic
moments in the Hubbard model requires going beyond
the RPA and MPA approximation.s In the weak coupling
case this problem has been formulated in terms of the
concept of localised spin fluctuations, which has seen rapid
development in the seventies. The framework of what is
known as the self-consistent theory of spin fluctuations
(discussed in Moriya’s monograph [9]) has made it possible
to show that the magnetic susceptibility contains, like the
temperature dependence described by formula (1.4), a
Curie – Weiss type contribution proportional to 1=T , which
is evidence of the appearance of localised magnetic
moments.

The opposite limiting case when U4W corresponds to
a strongly correlated system. When a small parameter W =U
is used, it is possible to go over from the Hamiltonian (1.1)
to the effective Hamiltonian in what is known as the t – J
model [10], which describes the motion of electrons on a
lattice when there is no more than one electron at any one
site and the effective exchange interaction between the
nearest neighbours is described by

J = 2
t 2

U
. (1.7)

Perturbation theory treatment in terms of the parameter
W =U can be developed for the t – J model. In this case the
zeroth approximation deals with single-site atomic states,
whereas the kinetic term and the effective exchange are
regarded formally as perturbations [11]. In the half-filled
case (n = 1) the Hamiltonian of the t – J model reduces to
the exchange Hamiltonian in the Heiesenberg model.

It follows that the Hubbard model describes itinerant
magnetism in the weak coupling limit, and localised
magnetism in the tight coupling limit when n = 1. In the
intermediate range of electron densities there should be a
crossover from one case to the other.

A generalised RPA can be adopted in the t – J model: it
involves the summation of all the loop diagrams in which
the Green lines do not correspond to the electrons, as is true
of the RPA approximation, but to strongly correlated
electrons. The expression for the dynamic magnetic sus-
ceptibility has the structure of expression (1.4), but the
‘bare’ susceptibility now has two components: one of them
(itinerant) is given by a formula of the (1.5) type with a
correlated electron spectrum and the other depends on
temperature in accordance with the 1=T law and takes
localised magnetic moments into account.

The Curie – Weiss contribution rises steeply at some
critical electron density nc � 2=3. Therefore, near the
density nc the system crosses over from itinerant magnet-
ism to magnetism with dual behaviour. If n > nc , the system
apparently is simultaneously an itinerant and localised
magnetic material. Fig. 2 shows the magnetic phase dia-
gram at T = 0 K obtained at the generalised RPA
approximation.

Near the point n = 1 the Neel temperature is [12, 13]

T N =

1
2

zJ ÿ
1
4
(1 ÿ n)zt . (1.8)

The first term represents the Curie temperature of a
Heisenberg antiferromagnet and the second term takes
account of the motion of holes. Since J5 t, the Neel

temperature T N decreases rapidly with deviation from the
case of the half-filled band.

1.3 Problem of the intermediate coupling
Between the two limits U5W and U4W , when the
Hubbard model describes a Fermi liquid in one case and a
strongly correlated system in the other, there is a wide
range of intermediate values of U in which the behaviour of
the system is particularly complex. Here, both terms of the
Hamiltonian (1.1) show opposite tendencies: the kinetic
term corresponds to delocalisation and the Coulomb term
represents localisation of the electron states, so that the
electric and magnetic properties of the system depend on
the fine balance between these tendencies.

A metal – insulator phase transition occurs in the
intermediate range of values of U and the system goes
over from itinerant magnetism to magnetism with localised
magnetic moments. In the last three decades the problem
has been the subject of intensive investigations (particularly
in connection with the high-temperature superconductivity
of copper oxide compounds), but the outlines of the
solution of this problem have become clear only very
recently. It is this circumstance that has provided the
stimulus for writing this review.

We shall first list the methods used in the analysis of the
intermediate case described by formula (1.3) when there is
no formal small parameter. These methods are decoupling
of the equations of motion, the mean field approximation
(d = 1 limit), the functional integral representation, varia-
tional methods, and the method of slave bosons and
fermions.

This list should be supplemented by the numerical
methods, particularly by the quantum Monte Carlo
method, and the exact diagonalisation of small clusters,
and also high-temperature expansions. All of them are used
to monitor various types of analytic approximations.

Hubbard was the first to apply the method of decou-
pling of the retarded Green functions and to show that the
initial electron energy band splits, because of the Coulomb
repulsion at a site, into two subbands: the lower subband
corre-sponds to single-particle states, and the upper to pair
states.

The simplest decoupling, known in the literature as the
‘Hubbard-1’ [1], corresponds to the Shubin – Vonsovskii
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Figure 2. Magnetic phase diagram based on the t – J model and the
general random phase approximation [11].
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result [5]. A more rigorous decoupling based on the ‘alloy
analogy’ (known as the Hubbard-3 approximation [14])
leads to the Mott metal – insulator phase transition [15]
precisely at the critical value of the parameter Uc � W .

The Hubbard approximations [1, 14] are not fully
controlled and have serious shortcomings, discussed in
detail in Section 3 below. However, from the formal point
of view these approximations are very fruitful and they
should be regarded as an interpolation between the limits of
weak and strong coupling or between two types of electron
states in the lattice: band and atomic.

An important breakthrough in the SCES theory had
been made recently by Metzner and Vollhardt [16] by
considering the limit of infinite number of dimensions in
space: d = 1. They found that many approximations used
earlier heuristically in the SCES theory and in tackling
other problems in many-body theories are exact in the limit
d = 1. This is true of the well-known coherent potential
approximation (CPA), which is an integral part of the
approximate methods used in the Hubbard model and is
based on the representation of the partition function by
functional integrals [17, 18].

Moreover, the familiar Gutzwiller approximation [19]
used in the variational approach is also exact in the limit
d = 1. It has been found that in the same limit d = 1 the
Hubbard model is equivalent to certain auxiliary one-
impurity Anderson models and this correspondence under-
lies the mean field approximation used in the Hubbard
model. This approximation provides a correct description
of the metal – insulator transition and of breakdown of the
Fermi liquid behaviour when the parameter U increases.

The limit of infinite-dimensional space, d = 1, is central
in the approach used in the present review. I shall also
consider systematically all other approaches mentioned
above. I shall base this discussion on the methodological
principle, because it is very important to analyse the
capabilities of each approach within the limits of its
validity (none of the approaches is universal) and the
relationship between the various phenomena such as the
states of the electron spectrum and the magnetic ordering. I
shall leave to Section 7 an attempt to outline a general
physical picture of the behaviour of the Hubbard model on
the basis of the information obtained by various methods.

2. Decoupling of the equations of motion

2.1 Equations of motion for retarded Green functions
In his very first investigations of the correlation effects,
Hubbard used the method of two-time Green functions
[20, 21], which is particularly convenient when the inter-
action between the particles is strong and there is no small
parameter associated with this interaction (U � W ). In this
situation the infinite chain of equations for the initial
Green function is frequently decoupled and the many-
particle Green functions (or correlation functions) are
reduced to simpler forms. Such decoupling is usually of
heuristic nature and is supported by the reasonableness of
the physical results.

Following Hubbard’s classical treatments [1, 4], let us
consider the one-particle retarded Green function of
electrons

Gs
ij (o) =





CisjC
y

js

��

o
. (2.1)

The standard notation [21] is used here and later: the
symbol hhA jBii is the two-time Green function constructed
from two operators A and B, which depend on times t and
t 0, respectively; the index o corresponds to the Fourier
components in terms of the variable t ÿ t 0.

Differentiation with respect to time t gives a chain of
equations for the Fourier transform of the function hhA jBii
and the first of these equations is

ohhA jBiio =




A , B[ ]

�

Z
+





A ;H[ ] jB
��

o
. (2.2)

Here [A , B]Z = AB ÿ ZBA (where Z can be equal to 1 or ÿ1;
h. . .i is the symbol for statistical averaging with the
Hamiltonian H ; A , H ] is the commutator of A and H .

The procedure of decoupling a chain of equations must
be based on some physical considerations. Hubbard has
proposed that in the U � W case one should take into
account exactly the electron correlations at one site and to
treat the correlations at different sites in the single-site
approximation.

Another methodological aspect involves the use of the
‘alloy analogy’ in which one considers the lattice motion of
a given electron from one site to another, which may be
either occupied by another electron (but with the opposite
spin!) or may be free, as the motion of an electron in a
disordered alloy consisting of two types of atoms a and b.
The probability of occupancy na and nb for atoms of a given
kind is introduced and the electron Green function is
averaged over all the configurations.

In the Hubbard model it is necessary to introduce
similar quantities:

nais =

nis , a = 1 ,
1 ÿ nis , a = 2 ,

�

(2.3)

where nis is the electron number operator for a site i with a
spin s. These quantities satisfy the conditions

nais nbis = dab nais ,
X

a

nais = 1 . (2.4)

The second relationship in formula (2.4) can be used to
rewrite the definition of the Green function (2.1) in the
form [14]

Gs
ij (o) =

X

a





nai;ÿsCisjC
y

js

��

o
. (2.5)

We can see here the advantages of the site representation in
the case of the problem of a lattice with a local interaction:
this representation makes it possible to include directly the
correlation of electrons with opposite spins at a site.

The equation of motion for each of the components in
the function (2.5) is

(oÿ ea)




nai;ÿsCisjC
y

js

��

o

= na
ÿs

�

dij +
X

k

tik





CksjC
y

js

��

o

�

+

X

k

tik





(nai;ÿs ÿ na
ÿs)CisjC

y

js

��

o
+ xa

X

k

tik

�

n





C
y

iÿsCkÿsCisjC
y

js

��

o
+





C
y

kÿsCiÿsCisjC
y

js

��

o

o

.

(2.6)

Here ea is the energy of an electron at one atom for two
states, i.e. one when the atom has an electron (with the
opposite spin) and the other when the atom has a free level:
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e
+

= U ÿ m , e
ÿ

= ÿm (2.7)

(these energies are measured from the chemical potential m)
and x

�

= �1.
The quantity nas in Eqn (2.6) is the average value of an

electron at a site i, i.e. hna
ÿsi. It is assumed that hna

ÿsi is
independent of i, i.e. that the paramagnetic or ferromag-
netic states are considered. The last two terms in Eqn (2.6)
take account of the correlation at different sites.

At this stage Eqn (2.6) is exact. The two approximations
are used widely and they are known in the literature as
Hubbard-1 and Hubbard-3 (the models are numbered in the
same way as the first and third papers [1, 14] in Hubbard’s
series).

2.2 Hubbard-1 approximation
The last two terms are dropped from Eqn (2.6) in this
approximation, i.e. the correlations at different sites are
ignored. This gives the following closed equation:





CisjC
y

js

��

o
=

1
Fs

0 (o)

�

dij +
X

k

tik





CksjC
y

js

��

o

�

,

which after Fourier transformation has the solution

Gs
0 (k,o) =

1
Fs

0 (o)ÿ ek
, (2.8)

where Fs
0 (o) is given by the relationship

1
Fs

0 (o)

=

X

a

na
ÿs

oÿ ea
=

1 ÿ n
ÿs

o+ m
+

n
ÿs

oÿ U + m
. (2.9)

The quantity ek in the solution (2.8) describes the
hopping of an electron from one lattice site to another
and Fs

0 (o) takes account of the resonant properties of the
atom. It follows from the definition (2.9) that the first term
describes a resonance at a free atomic level and the second
term represents a resonance at an atom which already
contains an electron.

The relative weight of the contributions of these
resonances is given by the probability ns of finding an
electron at a given site. The Hubbard-I approximation
corresponding to the solution (2.8) thus describes the
motion of an electron on a lattice characterised by some
average distribution of all the other electrons at its sites.
This is an approximation of the mean field type.

The solution (2.8) can be rewritten in the form

Gs
0(k; o) =

P1s(k)
oÿ E1s(k) + m

+

P2s(k)
oÿ E2s(k) + m

, (2.10)

where

E1;2s(k) =
1
2

�

ek + U �

�����������������������������������������������������

e2
k ÿ 2ekU(1 ÿ 2n

ÿs) + U2
q

�

,

(2.11)

P1;2s(k) =
1
2

"

1 �
ek ÿ U(1 ÿ 2n

ÿs)
�����������������������������������������������������

e2
k ÿ 2ekU(1 ÿ 2n

ÿs) + U2
q

#

, (2.12)

i.e. when the Hubbard-1 approximation yields two
branches of the spectrum (Hubbard subbands) split by
an amount of the order of U. This splitting remains finite
for any Coulomb interaction, no matter how weak, and
this is an important shortcoming of the Hubbard-1
approximation. In fact, for a half-filled band in the
paramagnetic state the density of states

r(o) = ÿ

1
pN

Im
X

k

G(k,o) (2.13)

is a symmetric function. Both subbands are shifted
symmetrically relative to the Fermi level and, therefore,
the system is an insulator. It remains an insulator for any
value of the parameter U. Therefore, the Hubbard-1
approximation does not describe the metal – insulator
phase transition. These shortcomings are removed in the
approximation considered below.

2.3 Hubbard-3 approximation
The correlation effects at different sites are described by the
last two terms of Eqn (2.6), but these terms play a
somewhat different role. In accordance with Hubbard’s
terminology, they represent the corrections due to the
scattering by spin disorder and due to resonance broad-
ening, caused by the motion of electrons with spin s

[represented by terms with xa in Eqn (2.6)].
We shall first consider the scattering correction. We

shall use again the second equality in formula (2.4). This
gives the relationship





(nai;ÿs ÿ na
ÿs)CksjC

y

js

��

o

=

X

b





(nai;ÿs ÿ na
ÿs) n b

k ;ÿsCksjC
y

js

��

o
,

which makes it possible to include the single-site correla-
tions. We shall now write down the equations for the
Green function on the right-hand side of the above
relationship. If i 6= k , this relationship can yield an
expression in terms of the Green function, containing
the single-band correlations:





(nai;ÿs ÿ na
ÿs)CksjC

y

js

��

o
=

X

l

�

G0s
kl ÿ

G 0s
ki G 0s

il

G 0s
ii

�

�tli





(nai;ÿs ÿ na
ÿs)CisjC

y

js

��

o
. (2.14)

Here,

G0
ij(o) =

1
N

X

k

exp
�

ik .
(Ri ÿ Rj)

�

F s
0 (o)ÿ ek

is the Green function used in the site approximation in
Hubbard-1.

The scattering correction in Eqn (2.6), found with the
aid of expression (2.14), yields the term

l
0

s(o)





(nai;ÿs ÿ na
ÿs)CisjC

y

js

��

o
,

where

l
0

s(o) =

X

k ; l

tik

�

G 0s
kl ÿ

G 0s
ki G 0s

il

G 0s
ii

�

= F 0
s (o)ÿ

1

G 0s
ii (o)

. (2.15)

We can treat similarly also the last (resonance) con-
tribution to Eqn (2.6). The result is a closed equation,
which can be written in the form

(oÿ ea)




nai;ÿsCisjC
y

js

��

o

= na
ÿs

�

dij +
X

k

tik





CksjC
y

js

��

o

�

ÿ xan
+

ÿsOs(o)





nÿi;ÿsCisjC
y

js

��

o

+ xan
ÿ

ÿsOs(o)





n+

i;ÿsCisjC
y

js

��

o
. (2.16)
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The quantity Os(o), introduced above, has three compo-
nents:

Os(o) = O
0

s(o) + O
0

ÿs(o) + O
00

ÿs(o) , (2.17)

where

O
00

ÿs(o) = ÿO
0

ÿs(e+ + e
ÿ

ÿ o) . (2.18)

The quantity O
0

s(o) is obtained from the component
l
0

s(o), defined by formula (2.15), if we make the substitu-
tions

Fs
0 ! Fs , G 0

ii ! Gii , (2.19)

where F s and Gii are found in a self-consistent manner by
solving Eqn (2.16). We then have

O
0

ÿs(o) = Fs
(o)ÿ

1
Gs

ii(o)

, (2.20)

where

Gs
ii (o) =

1
N

X

k

G(k,o) , (2.21)

Gs
(k,o) =

1
Fs

(o)ÿ ek
, (2.22)

1
Fs

(o)

=

oÿ (n+

ÿseÿ + nÿ
ÿse+)ÿ Os(o)

(oÿ e
ÿ

ÿ n+

ÿsOs)(oÿ e
+

ÿ nÿ
ÿsOs)ÿ n+

ÿsnÿ
ÿsO

2
s

.

(2.23)

Expressions (2.22) and (2.23) represent the Hubbard-3
approximation. The function Os is found by a self-
consistent procedure from expressions (2.17) – (2.21).

The self-consistent procedure, involving the substitution
described by formula (2.19), has not been even partly
justified, but it does lead to the metal – insulator phase
transition. We shall consider later the physical conse-
quences which follow from the Hubbard-3
approximation, but at this stage we shall reformulate
our equations.

We shall write down the main expression (2.22) for the
Green function in its usual form by introducing the self-
energy part S(o) with the aid of the following relationship
(we shall omit the spin index of all the quantities and thus
consider the paramagnetic phase):

F(o) � oÿ S(o) + m . (2.24)

Then expression (2.20) – (2.22) can be represented in the
form

Gs
ii (o) =

1
N

X

k

1
oÿ ek ÿ S(o) + m

, (2.25)

S(o) = G

ÿ1
(o)ÿ Gÿ1

ii (o) . (2.26)

The above expression contains a formally introduced
auxiliary function

G

ÿ1
(o) =

1

oÿ O
0

(o) + m
, (2.27)

which is governed entirely by the quantity O
0

(o). This
quantity is found from the system of self-consistent
equations (2.20) in which use is made of expres-
sions (2.23) and (2.17).

The equations for the Hubbard model in the limit of
infinite dimensionality of space have the same form as
Eqns (2.25) and (2.26). The Hubbard-3 approximation

leads to the function S(o), independent of the wave
vector, which in the site space corresponds to the local
form Sij = dijS. This is strictly true in the limit d = 1 (see
Section 3). The nature of the function (2.27) is the same as
that of the Green function of an auxiliary single-site
problem characterised by the self-energy O

0

(o). In the
Hubbard-3 approximation the self-energy O

0

(o) is found
from the above self-consistent equations.

We shall show later, however, that the complete system
of equations (2.25) – (2.27), in which the definitions (2.23)
and (2.20) are used, does not correspond fully to the exact
equations for the model in the limit d = 1, although it has
many features in common. Since the d = 1 limit corre-
sponds approximately to the mean field approach, we can
say that the Hubbard-3 theory [14] is simply a variant of a
theory of the mean field type. We shall see later how reliable
is the Hubbard-3 theory [14] and what are its shortcomings.

Hubbard investigated a special case with one electron
per atom, i.e. the half-filled case (n = 1). In the para-
magnetic phase characterised by n

"

= n #= n=2 and when
the model density of states is

r0(o) =

1
pW

���������������������������

1 ÿ

�

o

W =2

�2
s

, joj <
W
2

, (2.28)

the main equations (2.20) – (2.23) can be solved analyt-
ically. In particular, the quantities Gii(o) and O

0

(o) can be
found in terms of F(o):

Gii(o) =

1

pW 2 F(o)ÿ

������������������������������

F(o)ÿ

�

W
2

�2
s

2

4

3

5 . (2.29)

Substituting the solution (2.29) in Eqn (2.20) and then
combining it with Eqn (2.23), we obtain a cubic equation
for the quantity F(o). Depending on the value of the
parameter W =U, there are ranges of o where the solution
for F(o) has either three real roots or one real and two
complex. In the former case the quasiparticle density of
states r(o) vanishes, but in the second case it is finite
(Fig. 3).

Numerical calculations show that at the critical value
�

W
U

�

c

= 1:15 (2.30)

there is a change in the topology of the r(o) curve at the
Fermi level m = U=2, which corresponds to the metal –
insulator transition. This transition is continuous. In the

o
0

Ur(o)

0.2

0.4

0.6

W =U = 0:5

1.151.41

Figure 3. Quasiparticle density of states calculated for different values
of W =U when n = 1 [14].
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metal phase the density of states at the Fermi level obeys
the law

U r(o) /

��

W
U

�

c

ÿ

W
U

�3=2

. (2.31)

It therefore follows that the Hubbard-3 approximation
describes the phase transition from the metal to the
insulator phase, predicted by Mott [15] when the Coulomb
parameter has the value U � W , which undoubtedly is the
major success of this approximation. However, certain
difficulties are encountered in the Hubbard-3 and similar
approximations [22 – 24]. They are related primarily to the
breakdown of the fundamental properties of the Green
function [25, 26].

2.4 Analysis of the simplest approximations
The correlation-induced band splitting, predicted even by
the Hubbard-1 approximation, is a very interesting result,
but it is unsatisfactory from the physical point of view,
because such splitting occurs for any value of U, no matter
how small. Therefore, this splitting does not provide a
correct transition of the Fermi-liquid theory. Other
shortcomings of this approximation have been reported
later (breakdown of the sum rule and dynamic instability of
the quasiparticle spectrum), so that it cannot be used to
calculate the thermodynamic properties of the model. The
Hubbard-1 approximation is thermodynamically unstable
even near the half-filled configuration. Another short-
coming is the absence of quasiparticle decay.

The Hubbard-3 approximation is physically more
attractive, because it leads to the band splitting only if
U is sufficiently large. Moreover, quasiparticles decay.
However, we can easily see that the decay is proportional
to Im Gii and, therefore, it is finite over the whole spectrum,
including the Fermi level. This means that there is no jump
in the distribution of the particle number on the ‘Fermi
surface’, i.e. there is no Fermi surface.

In other words, the Hubbard-3 approximation describes
non-Fermi-liquid behaviour of the system throughout the
full range of the parameters. Therefore, as in Hubbard-1,
there is no going to the limit when the values of U are small.
It is also found that the theory of the Hubbard-3
approximation is not fully self-consistent and the results
of a determination of the thermodynamic quantities depend
on the calculation method [27, 28].

The analytic properties of the Green functions are
different for Hubbard-1 and Hubbard-3. In fact, in the
former case the Green function has poles on the real axis
(corresponding to two Hubbard subbands), whereas in the
latter case (Hubbard-3) there is a cut on this axis. The
analytic behaviour of the retarded Green function has not
yet been proved for the upper half-plane, but it can be
postulated because the approximation itself is analogous to
the coherent potential approximation in the theory of
binary alloys and the Green function in this theory is
analytic [29].

In any case, the published investigations of the Hub-
bard-3 approximation, including numerical calculations,
have not revealed breakdown of the analytic properties.
However, in a related problem of the s – d model, in which
the technique of decoupling of the Green functions is used
in the spirit of the self-consistent Hubbard approximation,
it has been found [27, 28] that such breakdown may occur
for some types of self-consistency which are simpler than

those used in the Hubbard-3 approximation. In particular,
a cut may appear on the imaginary axis in the upper half-
plane and this unavoidably leads to breakdown of the sum
rule. Therefore, caution is necessary when self-consistent
procedures are used in the technique of decoupling of the
Green functions.

The structure of the density of states r(o) correspond-
ing to the Hubbard-3 approximation consists of just two
smoothed-out peaks free of the Van Hove singularities.
This occurs because Hubbard-3 ignores the corrections that
depend on the Fermi distribution functions and can thus
result in the failure of the rigid band pattern, i.e. it may lead
to a singularity of r(o) of, for example, Kondo effect type.
In Section 3 we shall show that a consistent mean field
theory (i.e. the limit d = 1) makes it possible to take
account of such effects and then the density of states r(o)

has a more complex structure which reflects Kondo
singularities on the Fermi surface.

3. Limit of infinite-dimensional space

3.1 Hubbard model in the limit d = 11

A few years ago Metzner and Vollhardt [16] introduced the
limit of infinite dimensionality of space d = 1 for a
strongly correlated electron lattice. They demonstrated that
in the limit d = 1 all the calculations based on the
Hubbard model are greatly simplified and yet all the
essential features of the model are retained. This has
stimulated an enormous number of investigations that have
led, in particular, to the development of rigorous mean
field approximation (MFA) for different models of strongly
correlated systems.

Calculations are simplified in the d = 1 limit because
the self-energy of an electron becomes diagonal in the site
representation:

Sij(o) = S(o) dij . (3.1)

In other words, we can assume that the function S is
independent of the quasimomentum and is only the
function of the frequency. It is also found that in all the
vertex parts of diagrams we can ignore the law of
conservation of quasimomentum, i.e. we can replace the
relevant d function with unity [30].

In the limit d = 1 we need to scale appropriately the
parameters of the Hamiltonian. The idea of using the limit
d = 1 in the SCES theory goes back to the statistical
mechanics in the Ising model, in which it proposed — in the
case of many-dimensional space — to scale up the exchange
parameter J = J�=z (here J� = const and z is the number of
nearest neighbours, which tends to the limit z !1, if
d !1). It is only this scaling that ensures a finite exchange
energy density.

In the Hubbard Hamiltonian (1.1) the quantity U is a
local parameter, which is independent of its environment
and, therefore, it should not be scaled up. However, the
matrix element of an electron jump must be scaled up in the
following way [16]:

t =
t �

2
���

d
p , t � = const . (3.2)

In the case of a d-dimensional hypercubic lattice with
the electron spectrum

ek =

t �
���

d
p

X

d

a=1

cos ka , (3.3)

Hubbard model of strong correlations 391



the density of states r0(o) obtained in the limit d = 1 is
Gaussian [16]:

r0(o) =

1
���

p
p

t �
exp

�

ÿ

o
2

t �2

�

. (3.4)

The mean-square value of the energy e
2
k , averaged for this

density, is t�2, i.e. it is finite in the limit d !1, which
justifies the selection of scaling described by formula (3.2).
It also agrees with the circumstance that if U4 t, the
effective exchange integral for the nearest neighbours obeys
J � t2

=U � 1=z, as expected for the exchange Hamiltonian.
Therefore, in the limit d = 1, all the Van Hove

singularities of the density of states disappear, which
distinguishes this limit from the finite number of dimen-
sions d = 2 or 3. Another difference is that the spectrum
described by expression (3.4) is not bounded, in contrast to
the band spectrum for a lattice of finite dimensions. These
two circumstances are unimportant from the theoretical
point of view. The most important characteristic of the limit
d = 1 is the local nature of the self-energy.

It follows from the scaling of the hopping parameter,
described by formula (3.2) that the dependence, on d, of the
single-particle Green function for a lattice G 0

ij (z) is
governed, in the limit d = 1, by the ‘distance’ between
the sites i and j :

G0
ij �

�

1
���

d
p

�

jiÿjj

, jiÿ jj =
X

d

a=1

jia ÿ jaj , (3.5)

where the coordinates of the sites are expressed in terms of
the lattice parameter. In particular, for the nearest
neighbours we have G 0

ij � dÿ1=2.
In accordance with the general concept of statistical

mechanics, the limit d = 1 corresponds to the mean field
theory, which is not trivial in the Hubbard model. We shall
now consider several versions of this theory. Its formulation
is closely related to the coherent potential approximation,
which we shall now consider. This makes it possible to
relate the Hubbard-3 approximation to the limit d = 1.

3.2 Coherent potential approximation for disordered
systems
In some approaches employed in the SCES theory
(decoupling of the Green functions and functional
integration), successful use has been made of the ‘alloy
analogy’ between the motion of an electron over the lattice
sites, which are occupied by electrons with one or the other
spin orientation, and the motion of an electron in a
disordered binary alloy. In the latter case the Green
function of an electron can be calculated in the coherent
potential approximation (CPA).

The central feature of this method is the assumption
that the self-energy of an electron can be regarded as
diagonal in the site representation [32, 35], i.e.

Sij = Sdij . (3.6)

This relationship applies specifically in the limit d = 1. It
therefore becomes clear that the CPA is exact in the
infinite-dimensional limit. Recognition of this fact has
made it possible to develop the mean field approximation
for the Hubbard model, which is exact in the limit d = 1.

We can understand better the meaning of the limit
d = 1 in the theory of interacting electrons if we consider
first the corresponding limit for a system of noninteracting

electrons moving on a lattice with a random atomic
potential:

H = t
X

i; j

C
y

i Cj +
X

i

V i ni (3.7)

(the spin indices are omitted, because V i is independent of
spin).

We shall denote the configurational averaging of
random quantities by h. . .iav . The task is to calculate
the quantity hG iav, where G is the one-electron Green
function corresponding to the Hamiltonian (1.1). In the site
represent-ation the Green function G obeys the equation

G = G 0
+ G 0VG . (3.8)

We shall introduce the self-energy S of an electron in an
effective medium described by the average Green function,
using the relationship

hG iav = (Gÿ1
0 ÿ S)

ÿ1 . (3.9)

We now have to find self-consistently the energy S.
If we combine expressions (3.8) and (3.9), we can

represent G in the form

G = hG iav + hG iavThG iav , (3.10)

where

T =

V ÿ S

1 ÿ (V ÿ S)hG i

av

(3.11)

is the T matrix. Expression (3.10) is not self-contradictory
if we assume that hT iav = 0.

In the limit d = 1, the self-energy part Sij is diagonal in
the site representation and it is independent of k in the
momentum representation. Therefore, it follows from
relationship (3.9) that




G(o)

�

av
= G0

ii(oÿ S) , (3.12)

where

G 0
ii =

1
N

X

k

1
oÿ ek

=

�

de
r0(e)

eÿ o
(3.13)

is the single-site Green function of an ideal lattice and r0(e)

is the density of electron states in this lattice.
We shall now write down the final equation for the

effective self-energy part:

�

V i ÿ S(o)

1 ÿ
ÿ

V i ÿ S(o)

�

G 0
ii

ÿ

oÿ S(o)

�

�

av

= 0 . (3.14)

This is the main equation in the CPA approach. It is exact
in the limit d = 1.

The free energy F can be written as a sum of three
contributions: the free energy Fmed of an effective homo-
geneous medium, from which it is necessary to subtract the
self-energy Fi at a site i, and to replace it with the energy
characterised by the total potential V i at a site i, which is
averaged over the configurations. The sum is thus

F = Fmed ÿ Fi + hF 0

i iav , (3.15)

where

Fmed = ÿT
X

k

�

G0
(k, iok )ÿ S

�

ÿ1
, (3.16)
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Fi = ÿT Tr lnhGiii
ÿ1
av , (3.17)

F 0

i = ÿT Tr ln
�

hGiii
ÿ1
av ÿ V i ÿ S

�

. (3.18)

Introduction of a local effective propagator,

G

ÿ1
� hGiii

ÿ1
av + S , (3.19)

makes it possible to represent the free energy in the form

F = ÿT Tr

�

�

de r0(e) ln(iok + mÿ Sÿ e)

ÿ ln(Gÿ1
ÿ S) +




ln(Gÿ1
ÿ V i)

�

av

�

. (3.20)

Minimisation of the functional (3.20) by means of the
condition dF=dGÿ1

= 0 yields the equation

1
G ÿ S

=

�

1
G ÿ V i

�

av

, (3.21)

which together with Eqn (3.19) determines the value of S.
Eqn (3.21) is identical with the equation (3.14) identified
earlier. Eqns (3.19) and (3.21) have to be solved by
iteration. Eqn (3.21) is used to find S for a given value
of G. Then Eqn (3.19) is applied to obtain a new value of
G

ÿ1. This value is then substituted in Eqn (3.21) and so on,
until self-consistent solutions are obtained. Eqns (3.19) and
(3.21) are equations of the mean field theory for the
Hamiltonian (3.7). They are exact in the limit d = 1.

The corresponding equations for the Hubbard model
can be obtained by the same scheme. Complete analogy
between the model represented by Eqn (3.7) and the
Hubbard model requires a somewhat different (and fairly
formal) representation of the contribution F 0

i to the free
energy [33]:

F 0

i = ÿT ln Z 0

i . (3.22)

Here, Z 0

i is the partition function, defined with the aid of
the action S 0

i :

Z 0

i =

�

DcDc
� exp

�

S 0

i (c; c
�

)

�

, (3.23)

S 0

i = Trc�nhGiii
ÿ1
av cn ÿ Trc�n(V i ÿ S)cn , (3.24)

where c and c
� are the Grassmann variables.

Expression (3.24) has the form of a Lagrangian. Since
this expression is bilinear in c and c

�, the functional
integral (3.23) is readily calculated and the result is
expression (3.18) for F 0

i . A simple generalisation of expres-
sions (3.23) and (3.24) gives the free energy for the model of
interacting electrons.

3.3 Reduction of the Hubbard model in the limit d = 11

to the one-impurity Anderson model
The single-site action for the Hamiltonian (1.1) should be
written in the form [33]

S 0

i

�

cs,c�s; Gÿ1
s

	

= Tr c�sn G
ÿ1
s csn

ÿU
�b

0
dt c�

"

(t)c
"

(t)c
�

#

(t)c
#

(t) , (3.25)

where b = 1=kT and k is the Boltzmann constant.

The partition function Z 0

i can be calculated with the aid
of the Hubbard – Stratonovich formula

exp a2
=

�

1

ÿ1

dx exp(ÿpx 2
ÿ 2

���

p
p

ax) , (3.26)

which transforms an exponential function with a quadratic
operator to an exponential function with a linear operator.

The identity

ni"ni# =

1
4

�

(ni" + ni#)
2
ÿ (ni" ÿ ni#)

2�

can be used to transform the exponential function in the
expression for Z 0

i into a functional integral in terms of
classical fields x(t) and Z(t), which describe fluctuations of
the charge and spin densities, respectively:

exp

�

ÿU
�b

0
dt ni"(t) ni#(t)

�

=

�

dZ dx exp

(

ÿ

1
2b

�b

0
dt
�

Z
2
(t) + x

2
(t)
�

ÿ

�������

2U
b

s

�

h

ix(t)
ÿ

n
"

(t) + n
#

(t)
�

+ Z(t)
ÿ

n
"

(t)ÿ n
#

(t)
�

i

)

.(3.27)

Expansion of the fields x(t) and Z(t) as a Fourier series
in terms of discrete frequencies ok gives the final expression
for Z 0

i as a functional integral in terms of the fields xn and
Zn:

Z 0

i =

�

dZ dx exp
�

S 0

i (Z, x; Gÿ1
s )

�

, (3.28)

S 0

i = ÿ

1
2

X

1

n=ÿ1

(x
2
n + Z

2
n) + Tr ln

"

^

G

ÿ1
s ÿ

������

U
2b

s

(sẐ+ i^x)

#

.

(3.29)

Here ^x and Ẑ are infinite-series matrices with the elements
^xmn = xmÿn, Ẑmn = Zmÿn, and ^

G

ÿ1
s is the following diagonal

matrix:

(

^

G

ÿ1
s )mn = dmn G

ÿ1
s (ion) .

The total free energy has three contributions, as in
Ref. [59]:

F = ÿT Tr

�

�

de r0(e) ln (ion + mÿ Ss ÿ e)

ÿ ln(Gÿ1
s ÿ Ss)

�

ÿ T ln Z 0

i , (3.30)

where the effective local propagator is

G

ÿ1
s =

1

G 0
ii; s

�

oÿ Ss(o)

�

+ Ss(o) . (3.31)

Differentiation of Eqn (3.31) with respect to G

ÿ1
s gives

the following equation for the self-energy part Ss:

1

G

ÿ1
s (ion)ÿ Ss(ion)

=

��

1

G

ÿ1
s ÿ

������������

U=2b
p

(sẐ+ i^x)

�

nn

�

Zx

.

(3.32)

Here, the symbol h. . .i represents averaging (functional
integration) over the variables Z and x:

h. . .iZx =

1
Z 0

i

�

dZ dx . . . exp
ÿ

S 0

i [Z, x]
�

.
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Eqns (3.31) and (3.32) are self-consistent equations for
determination of the quantities Ss and G

ÿ1
s . They can be

solved by iteration. A given value of G

ÿ1
s is used in

Eqn (3.32) to find Ss. Then, the new value of S is used
in Eqn (3.31) to calculate Gÿ1

s , and the process is repeated.
Eqns (3.31) and (3.32) have similar structures to

Eqns (3.19) and (3.21) used in the model described by
Eqn (3.7). In both models, averaging over S is carried out
on the right-hand sides of the equations: in one case the
averaging is over configurations of the local fields V i with a
certain given distribution function, and in the other case the
averaging is over an infinite set of fluctuation fields Zn and
xn, which are characterised by discrete frequencies on.

There is however an important difference between the
two models: for a system of noninteracting electrons in a
disordered medium all the functions Gÿ1

(o) and S(o) have
the same frequency. In Eqn (3.32) for a system of inter-
acting electrons the frequencies are intermingled. Therefore,
the dynamics of the Hubbard model in the limit d = 1 is
nontrivial even in the static case when Zn = xn = 0 for n 6= 0.

Eqns (3.31) and (3.32) represent the truly thermody-
namically self-consistent mean field theory for the Hubbard
model. It is exact in the zeroth approximation in terms of
the parameter 1=z. The theory is valid for an arbitrary
parameter U and an arbitrary electron density n. It differs
funda-mentally from other self-consistent approaches, for
example those of the Hartree – Fock type which are always
of limited validity in the space of the parameters of the
system.

Two quantities in this theory, Ss and Gs, represent a
homogeneous effective medium. The mean field exerted on
an electron by other electrons is represented by Ss, whereas
Gs determines the exact local propagator:

Gii;s = G

ÿ1
s ÿ Ss

ÿ �

ÿ1
. (3.33)

We can see that in the limit d = 1 we face the problem
of the interaction of electrons at one site immersed in a
system of effectively noninteracting electrons. The solution
of this problem requires calculation of the third-order
contribution to the free energy described by expres-
sion (3.30). Its calculation, i.e. effective averaging of the
right-hand side of Eqn (3.32), presents the greatest diffi-
culty in this theory. It is because of this contribution that
the Hubbard model cannot be solved analytically in the
limit d = 1.

Only the exact equations (3.31) and (3.32) are obtained
in the limit d = 1 and the problem is thus reduced to that
of numerical calculations. However, in practice it is more
convenient to proceed differently. It is possible to reduce
the problem of a lattice with local interactions (Hubbard
model) to the problem of a single impurity immersed in a
specially selected system of noninteracting electrons in the
same lattice. This approach had been suggested simulta-
neously in Refs [34 – 36].

Let us go back to Eqn (3.25) for the single-site action.
The quantity G0 is not yet determined. In the treatment
discussed earlier it has been found by minimisation of the
free energy. However, here we shall proceed differently. We
shall consider Eqn (3.25) as representing the action in the
case of a single-impurity problem in a certain model
(Anderson model [4] or Wolff model [37]). This action
can be used to calculate the electron Green function for an
auxiliary single-impurity problem Gimp(ion, Gÿ1

) and its

self-energy part Simp(ion, Gÿ1
) with a given bare Green

function G.
If we identify Gimp and Simp;s with, respectively, the local

Green function Gii and the self-energy S in the Hubbard
model, we can write down an equation for self-consistent
determination of the quantity G:

1

G

ÿ1
ÿ S

=

�

de
r0(e)

ion + mÿ Sÿ e
. (3.34)

The new refined value of G can be used to solve again the
auxiliary single-impurity problem, i.e. it can be used to find
G and S, and then Eqn (3.4) gives the new value of G. This
iteration procedure has to be repeated until a stable (self-
consistent) result is obtained.

It is possible to adopt also a different approach which
can be used to study the qualitative nature of the solution of
the equations in the Hubbard model when d = 1. This can
be done with the aid of the bare Green function in single-
impurity models. In the Anderson model, we have

G

ÿ1
(o) = oÿ ed + V 2

�

de
D(e)

oÿ e
, (3.35)

where

V 2
D(e) = p

X

k

V 2
k d(eÿ ek) ,

ed is the energy of a level d of an impurity atom, and V k is
the s – d hybridisation parameter. In the Wolff model, we
find that

G

ÿ1
(o) =

�

de
D(e)

oÿ e
. (3.36)

It follows that in the limit d = 1 the Hubbard model
reduces to one of the models for an impurity atom in a
lattice. The bare Green function Gs for the single-impurity
problem takes account of all the effective interactions of an
electron at an impurity site with the rest of the crystal lattice.

The single-impurity Anderson model cannot be solved
exactly, but one can use the results of its renormalisation-
group analysis [38]. Depending on the ratio of the main
parameters Ed and D (Ed is the renormalised energy of the d
level and D is the width of this level), three types of Fermi-
liquid behaviour may be expected in the Anderson model.
They correspond to three types of Fermi-liquid behaviour
in the Hubbard model, described below.

(1) If Ed=D5 ÿ 1, then near the half-filled configura-
tion the density of states r(o) obtained in the Anderson
model has a three-peak structure: a narrow quasistatic peak
(Suhl – Abrikosov resonance) of width T k (Kondo tempera-
ture) and two satellite peaks. In the Hubbard model they
correspond to the second Hubbard subband for particles
(upper satellite) and holes (lower satellite). This is the case
of localised magnetic moments. The spin dynamics involves
fluctuations between the states j"i and j#i at a site.

(2) If jEd=Dj < 1, we are dealing with the mixed-valence
case, when transitions between the following three states are
important: j0i, j"i and j#i. The density of states r(o) has
two peaks: a broadened quasiparticle peak and a satellite; in
the Hubbard model this corresponds to two fairly wide
Hubbard subbands.

(3) Finally, when Ed=D4 1, the density of states r(o)

has one broadened peak. It should correspond to an unsplit
subband in the Hubbard model.
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3.4 Properties of the Hubbard model in the limit d = 11

Numerical calculations based on the algorithm described
by Eqn (3.4), which includes calculations based on an
auxiliary single-impurity problem, confirm the above-
described qualitative pattern of the structure of the
spectrum in the Hubbard model considered in the mean
field approximation [24 – 41, 43, 44]. Figs 4 and 5 illustrate
the three types of the Fermi liquid behaviour, which
appears in the Hubbard model for a half-filled band when
U is increased.

The results presented in Fig. 4 represent the solution of
the single-impurity Anderson model problem by the quan-

tum Monte Carlo method, which is exact but cannot be
used at low temperatures [34]. The results in Fig. 5 were
obtained for T = 0 by combination of the quantum
Monte Carlo method and several series found by perturba-
tion theory in terms of the parameter U [42]. In contrast to
Ref. [34], the solution given in Ref. [42] has a gap
corresponding to the metal – insulator transition and it
also predicts an intermediate case between the metal and
insulator states.

The amplitude of the narrow central peak varies as U
rises to its critical value Uc, when a gap appears in the
spectrum and the central peak disappears abruptly. There-
fore, if d = 1 and T = 0, the Hubbard model predicts a
gradual metal – insulator transition. The numerical results
of Refs [34, 42] had been supplemented by a simple analytic
calculation [41], which helps to understand the physics of
the phenomena. The three peak structure of the local
density of states can be approximated by a bare Green
function of the type

G(o) =

�

oÿ
WD

o+ iD sgno

�

ÿ1

. (3.37)

Then, as D! 0, we find that D! 0 ImG(o) does indeed
describe a d-like peak of width D at the point o = 0 and
two satellite peaks at points o = �o0, where
o

2
0 = WDÿ D

2
=2. In this way the bare Green function G

is renormalised by the quantity D, which should be found
from the self-consistency equation (3.34) by an iteration
process.

If the self-energy Simp(o) is calculated first, the iteration
process can be represented by

Dn+1 =

9W

U 2

�

WDn ÿ
D

2
n

2

�

.

The above system of nonlinear equations has two fixed
points:

D
�

=

2W

�

1 ÿ

�

U
Uc

�2 �

, U < Uc ,

0 , U > Uc .

8

<

:

(3.38)

The regions of stability are separated by the critical
value Uc = 3W . The zero fixed point corresponds to an
insulator and the nonzero point represents a metal. Since it
follows from the definition of the Green function (3.37) that
for o < D, we have

ReS(o) �

W
D
o ,

it follows that for the metal phase the Migdal parameter in
the vicinity of the phase transition is

Z � 1 ÿ

�

U
U

c

�2

. (3.39)

It follows that as the phase transition is approached
from the low-U side, the system remains a Fermi liquid and
it gradually transforms into an insulator. These heuristic
results are confirmed by numerical solutions of the exact
equations in the Hubbard model for d = 1 [42] (Fig. 6).

In the limit d = 1 the magnetic properties of the
Hubbard model for the half-filled case exhibit character-
istics of a localised antiferromagnet, which is to be expected.
A numerical calculation of the static magnetic susceptibility
for the wave vector q = Q at different temperatures reveals
a divergence when a certain point T N is
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Figure 4. Spectral density of the local Green function Gii(o) in the
Hubbard model, obtained in the mean field approximation for various
values of U when n = 1 [34].
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Figure 5. Same as in Fig. 4 [42].
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approached [35, 44]. For U = 1:5, the static magnetic
susceptibility is

w(Q) / (T ÿ T N)

ÿn , (3.40)

where T N = 0:0866 � 0:0003, and n = 0:99 � 0:05. There-
fore, the Curie law is satisfied here, as in the case of the
isotropic Heisenberg model with an infinite number of
nearest neighbours.

The behaviour of the Neel temperature T N is plotted as
a function of the parameter U in Fig. 7. At low values of U
the Neel temperature T N is exponentially small, which
agrees with the perturbation theory results [45]. At very
high values of U the Neel temperature obeys T N / 1=U,
which is in agreement with the well-known results [45].
Fig. 7 includes also the results of a numerical calculation of
the case when d = 3, which show that the limit of infinite
dimensions of space d = 1 is very close to the real
dimensions.

Fig. 7 gives also the dependence on U of the rms
localised moment

ÿ

hm2
i

�1=2
=

ÿ


(n
"

ÿ n
#

)

2��1=2
=

ÿ

1 ÿ 2hn
"

n
#

i

�1=2
. (3.41)

When the parameter U is varied from 0 to infinity, the
localised moment (hm2

i)

1=2 varies from 0.5 to 1. The
behaviour of (hm2

i)

1=2 is correlated with the dependence of
T N on U: the Neel temperature passes through a maximum
exactly where the localised moment begins to saturate.

The Neel temperature T N begins to fall steeply away
from the half-filled case. The critical values of the para-
meter U corresponding to the appearance of a divergence in
the antiferromagnetic susceptibility are plotted in Fig. 8.
However, in the case of the ferromagnetic susceptibility no
divergence has been found for any of the parameters used in
the calculations.

The change in the spectral or density of states r(o) as a
result of deviation from the half-band filling is plotted in
Fig. 9 for U = 4, which corresponds to the insulator state

when n = 1. The insulator gap in the spectrum disappears
away from n = 1 and it is replaced by a central peak of
amplitude which increases at the expense of the amplitudes
of the satellites. The same peak arises as a result of cooling
(Fig. 10). In this range of temperatures the amplitude of the
peak is a function of ln T .

On the other hand, the large satellite peaks correspond-
ing to transitions accompanied by a reduction in the charge
(transitions to a site and from a site) change little with
temperature. The quasiparticle peak associated with the
scattering of an electron on the Fermi surface by spin
fluctuations increases considerably in amplitude as a result
of cooling, exactly as in the Kondo effect. A Kondo-like
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Figure 7. Local magnetic moment and the Neel temperature, plotted
as a function of the parameter U for n = 1 [44].
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Figure 8. Critical values of U at which a divergence appears in the
magnetic susceptibility, plotted as a function of the electron density n
( b = 16) in units of the band width [44].
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Figure 6. Band filling nc as a function of e near the Fermi energy,
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resonance on the Fermi surface of such a system should give
rise to significant anomalies of thermodynamic and trans-
port properties, such as the specific heat, electric resistance,
optical conductivity, etc. [43].

In this section we have thus demonstrated that in the
limit of infinite dimensionality of space the Hubbard model
is equivalent to the single-impurity Anderson model with
specially selected characteristics. The behaviour of the
Hubbard model is governed by the physical properties
of the single-impurity Anderson model, which have been
investigated quite thoroughly.

We have found that in the limit d = 1 the Hubbard
model predicts the metal – insulator phase transition near
the half-filling of the relevant band. If U is sufficiently large,
antiferromagnetic ordering with localised magnetic
moments appears in the insulator phase. The metal phase

exhibits Fermi-liquid behaviour of heavy electrons, the
mass of which increases on approach to the boundary of
the insulator phase.

The expected phase diagram for the half-filled case is
presented in Fig. 11 where the roughly estimated region of
the transition from the metal (M) to the insulator (I) phase
is shown shaded. This region represents evidently a semi-
metallic state with thermodynamically excited carriers.

Deviation from the high-filled case results in rapid
replacement of the insulator by the metal phase with
enhanced Fermi-liquid parameters. In particular, low-
temperature narrow resonances appear on the Fermi
surface and they correspond to the Kondo screening of
localised magnetic moments. The antiferromagnetic order-
ing is suppressed on deviation from n = 1. If n4 0:8, such a
system behaves as an ordinary Fermi liquid.

It should be stressed that in the limit d = 1 we can
derive the exact equation for the Hubbard model, although
in the derivation of the solution it is necessary to solve
numerically the auxiliary problem of the single-impurity
Anderson model. If this is done, then the result is the exact
mean field theory for the Hubbard model. It follows that, at
least in principle, we know the exact solutions of the model
in two limiting cases: d = 1 [46, 47] and d = 1.

This gives rise to a natural question: how close is the
behaviour of the model for d = 3 to the case when d = 1?
There is as yet no complete answer to this question, but the
experience accumulated in studies of strongly correlated
systems in the limit d = 1 allows us to conclude that even
the three dimensions of real space (d = 3) can be regarded
as a very high number of such dimensions. Some compar-
isons of the results of calculations for d = 1 and d = 3
confirm this (see, for example, Fig. 7).

3.5 Breakdown of the Fermi-liquid behaviour of the
model
The quantum Monte Carlo method has been used above in
presentation of the exact, in the limit d = 1, theory needed
in the solution of the effective single-impurity problem.
Since in numerical calculations one deals with discrete
Matsubara frequencies on = 2pnT , this quantum method
has a limit on the low-temperature side. The need to carry
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Figure 10. Evolution of a resonance peak on the Fermi surface
plotted as a function of temperature for U = 4 and n = 0:94 [44].
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Figure 11. Phase diagram in the ( T , U ) plane, obtained in the
Hubbard model for d = 1, n = 1 [43].
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out numerical calculations of continuation from the
imaginary to the real axis increases the calculation
difficulties. Therefore, it is necessary to look for new
approximate calculation schemes.

The Edwards – Hertz approximation (EHA) [48] has
proved very effective. These authors developed an inter-
polation scheme exact in the two limits: in the atomic limit
(t ! 0) and in the limit of free electrons (U ! 0). Edwards
and Hertz used this approximation to reveal breakdown of
the Fermi-liquid behaviour of the electron states at inter-
mediate values of U.

Recently, Wermbter and Czycholl [49] put forward an
improved version of the EHA method and carried out
detailed calculations of r(o), ImS(o), ReS(o) for a wide
range of the parameters U, n and T . As a result of their
investigation the physical picture of the transition of such a
system, due to variation of U or n, from the Fermi-liquid
behaviour to the insulator phase across a region of non-
Fermi-liquid states has become much clearer. We shall now
give the main results of Refs [48, 49].

We shall consider again the limit d = 1. The single-site
Green function of the system Giis(o), which for brevity will
be denoted by Gs(o), can be expressed in terms of the
density of states r0(o) of noninteracting electrons by means
of the relationship

Gs(o) =

�

1

ÿ1

de
r0(e)

oÿ Ss(o)ÿ e
. (3.42)

Following Ref. [49], we shall represent the self-energy
part in the form

Ss(o) =

Un
ÿs

1 ÿ
�

U ÿ Ss(o)

�

~Gs(o)

, (3.43)

ns =

�

1

ÿ1

de r0s(e) f(e) . (3.44)

Here, rs(o) = ÿ(1=p) Im Gs(o) is the density of states
deduced taking into account the interaction of electrons
and the quantity ~Gs(o) should be defined additionally. We
note that if ~Gs(o) is replaced with Gs(o), expression (3.43)
reduces to the equation obtained in the CPA approxima-
tion, corresponding to the ‘alloy analogy’ in the Hubbard
model (Hubbard-3 approximation).

Following the ideas of Edwards and Hertz [48], it is
necessary to select ~Gs(o) so that expression (3.43) reduces
in the atomic limit to the expression obtained by the CPA
method and in the limit U ! 0 it becomes the well-known
expression for the self-energy obtained from standard
perturbation theory.

It is easily shown that both limits are satisfied if ~Gs(o) is
selected in the form

~Gs(o) =

�

1

ÿ1

de
~r0(e)

oÿ Ss(o) + Es ÿ e
, (3.45)

~r0(o) =

1
n
ÿs(1 ÿ n

ÿs)

�

do1 do2 do3

� r
0
ÿs(o1 ÿ E

ÿs) r
0
ÿs(o2 ÿ E

ÿs) r
0
s(o3 ÿ Es)

�

�

f(o1)
�

1 ÿ f(o2)
�

+ f(o3)
�

f(o2)ÿ f(o1)
�	

� d(o+ o1 ÿ o2 ÿ o3) . (3.46)

Here, the shift Es, leading to an effective atomic level for

the s electrons, can be calculated in a self-consistent
manner from the condition

ns =

�

1

ÿ1

dors(o) f(o) =

�

1

ÿ1

dor0
s(oÿ Es) f(o) . (3.47)

Since in the atomic limit the density of states rs(o)

becomes the d function, formula (3.46) reduces to
~rs(o) = r0(oÿ Es) and we then obtain from expres-
sion (3.45) the following:

~Gs(o) = G 0�
oÿ Ss(o)

�

= Gs(o) ,

which gives the CPA result (Hubbard-3 approximation).
On the other hand, if expression (3.43) is expanded in

powers of the parameter U, the result is

Ss(o) = Un
ÿs + U 2n

ÿs(1 ÿ n
ÿs)

~Gs(o) , (3.48)

which — subject to the definitions (3.45) and (3.46) —
reduces to the perturbation theory result. Eqns (3.42) –
(3.47) should be solved by interpolation with the aid of a
Gaussian bare density of states r0(o).

The results of numerical calculations carried out on the
basis of the EHA method are presented in Figs 12 – 14. The
first two figures give the Hubbard model results for the
half-filled case. Fig. 12 shows how the density of states
evolves for different values of the parameter U. At low
values of U, particularly for U = 0:5, the function r(o)

differs little from a Gaussian curve centred at o = 0. As U
increases, the peak r(o) becomes deformed and shifts to the
right, but in such a way that its amplitude [representing the
density of states r(m) at the Fermi level m = U=2] remains
constant right up to U = 2.

The amplitude of the peak decreases in the range U > 2.
A further increase in U results in the replacement of the
peak with a dip and a bell-shape region, corresponding to
the upper Hubbard subband, forming gradually to the right
of the dip. The lower and upper Hubbard subbands move
apart for U > 4. Therefore, variation of U induces the
Fermi transition from the metal to the insulator state.

The inset in Fig. 12 gives the density of states r( m) at
the Fermi level as a function of U. In the range 2 < U < 4
the system remains a metal, but its properties are very
different from those of a Fermi liquid.
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Figure 12. Density of states plotted, plotted as a function of o for
different values of U when n = 1, T = 0 [53]. The inset shows how the
density of states on the Fermi surface depends on U.
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Calculations show that if U > 2, the imaginary part of
the self-energy ImS(o) remains finite at the Fermi level,
increases with increase in U, diverges as U � 4, and then
vanishes (Fig. 13). Since in the Fermi-liquid case we can
expect ImS(o) / (oÿ m)

2 near the Fermi level, such
behaviour implies breakdown of the Fermi-liquid picture.
A calculation of the real part of the self-energy ReS(o)

shows that for U � 4 the quasiparticle mass m�

=m diverges
and an insulator gap appears at the Fermi level.

It follows that the EHA method predicts a continuous
evolution from the metal phase to the insulator via an
intermediate region of a non-Fermi-liquid metallic state. A
comparison of the EHA results with the ‘exact’ calculations
based on the quantum Monte Carlo method in the limit
d = 1 shows that the Edwards – Hertz approximate
approach ensures a semiquantitative agreement in a wide
range of parameters and temperatures.

Very interesting results are obtained by the EHA
method limit when n < 1 (Fig. 14). Deviation from the
half-filled case rapidly deforms the density of states r(o)

from its initial Gaussian profile to a double-peak shape,
corresponding to two Hubbard subbands. When n is
reduced, the density of states at the Fermi level reaches

values expected for an uncorrelated system and we again
have Fermi-liquid behaviour. At high values of U this
occurs at lower electron densities.

It therefore follows that at T = 0 we obtain a phase
diagram shown in the (U, n) plane in Fig. 15. The
continuous curve, calculated in the model of a semielliptic
density of states [48], determines the region of Fermi-liquid
behaviour of the system. The dashed curve in this figure
represents the schematic boundary of the antiferromagnetic
phase.

Magnetic ordering appears at n = 1 for all values of U.
This implies complete nesting. In region I the antiferro-
magnetism appears in the Fermi-liquid phase. Region II
corresponds to a disordered metallic (but not Fermi-liquid)
phase. In the rest of the phase diagram the antiferromagnet-
ism appears partly in the metal and partly in the insulator.

It is work noting the connection between two phenom-
ena: the appearance of localised magnetic moments and
non-Fermi-liquid behaviour. In the Fermi-liquid region
there are no localised magnetic moments. They appear
when U 5 2, grow rapidly with increase in U, and give rise
first to a non-Fermi-liquid metallic state and then (for
U 5 4 ) to an insulating state.

An attempt has recently been made to justify the EHA
in terms of the standard diagram technique [50]. The main
task has been to derive a functional S[G ], the existence of
which would imply that this approximation is of the
‘conserving’ type [51, 52]. However, such a function has
not been found and the problem of justification of the EHA
method or of correcting it requires a separate investigation.
Some aspects of the theory considered in the limit d = 1

and a comparison with the perturbation theory results can
be found in Refs [54 – 61].

4. Functional integration method

4.1 Static limit and the coherent potential approximation
The first successful theories of the magnetic behaviour of
the Hubbard model in a wide range of the parameters U
and n have been based on the representation of the
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Figure 14. Density of states plotted for different values of n when
U = 3 and T = 0 [53].
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partition function Z by a functional integral and on the use
of the static approximation [62 – 65]. The method is related
to that described in Ref. [66], which is based on the single-
impurity Anderson model [4]. This representation has been
used in the preceding section for the single-site model.

In generalisation of Eqn (3.28) to a complete lattice the
partition function Z can be represented by a functional
integral in terms of Z and x:

Z = Z 0

�

dZ dx exp

�

ÿ

1
2

X

1

n=ÿ1

(x
2
n + Z

2
n) + Tr ln (1 ÿ G0

^V)

�

.

(4.1)

Here, integration is carried out in terms of the fields of Zin
and xin, so that

dZ dx =

Y

i

dZi dxi ,

dZi = dZi0

Y

n

d2
Zin , d2

Zin = d(Re Zin) d(Im Zin)

(and similarly for dxi).
The trace in the argument of the exponential function

in Eqn (4.1) applies to all the states which are characterised
by an index representing the site, frequency, and spin; the
operator ^V is diagonal; here,

V is =

������

U
2b

s

(sẐi +
^xi) (4.2)

(Ẑi and ^xi are matrices of the frequency indices m and n)
and Z 0 is the partition function for electrons in the absence
of the interaction.

The problem of calculation of the partition function Z
can be reduced in fact to calculation of the single-electron
Green function G = (1 ÿ G 0V)G 0 in an arbitrary fluctuat-
ing external field (which is locally inhomogeneous and
depends on time) and to averaging of the Gaussian
distribution function over these fields.

In the static approximation, Eqn (4.1) is simplified by
dropping from the trace all the components of the fields of
Zin and xin, except Zi0 and xi0 corresponding to zero
frequency (we shall denote the last two simply by Zi and
xi ).

In the remaining functional integral the integration with
respect to the charge fields xi is carried out by the stationary
phase method on the assumption that the frequencies of
these fields are higher than fluctuations of the spin field. As
a result, we obtain the partition function in the form of a
functional integral with respect to the field Zi:

Z stat = Z 0

�

Y

i

dZi exp

�

ÿ

1
2

X

i

Z
2
i + Tr ln (1 ÿ G0

^V)

�

,

(4.3)

where V 0

is =

������������

U=2b
p

sZi.
Application of the CPA to the quantity 1 ÿ G 0V 0 makes

it possible to represent the functional integral (4.3) as a
product of simple integrals, each applicable to a single site:

Z � Z 0

Y

i

�

1

ÿ1

dZi P(Zi) .

Here,

P(Zi) =
1
P

exp

�

ÿ

1
2
Z

2
i +

X

o; n

X

s

ln
�

G

ÿ1
s (ion)ÿ V 0

is

�

�

(4.4)

is the distribution function of the fields Zi.
In expression (4.4) the Green function Gs represents the

effective medium and in the CPA method it is found from
expressions (3.19) and (3.21); P is the normalisation vector.
The averages

hZi �

�

dZP(Z) Z , hZ
2
i �

�

dZP(Z) Z
2 (4.5)

determine the spontaneous moment m and the localised
moment at an atom (hm2

i)

1=2.
Therefore, in the static approximation the problem

reduces to calculation of the Green function Gs by the
CPA method and subsequent calculation of the field
distribution function P(Z). This problem should be solved
numerically. We shall see later that the static approximation
links well the two limits: U4W and U5W, i.e. the theory
is in the nature of interpolation between the limit of
localised magnetic moments and that of itinerant magnet-
ism.

The static approximation works well at high tempera-
tures, but gives rise to difficulties at low temperatures. For
example, there are problems with a number of thermo-
dynamic properties at T = 0, since [64]

�

qM
qT

�

T=0

= 0 , (CV )T=0 = 0 ,

�

qV
qT

�

T=0

= 0 .

However, the above relationships are obeyed if the CPA
method is replaced by the RPA [67].

The static approximation does not include spin-wave
excitations and it overestimates the difference between the
energies of the ferromagnetic and paramagnetic states [64]
because correlations are ignored. This shortcoming can be
avoided by including correlations with the aid of the
Gutzwiller variational approach [2, 19]. This leads to the
theory given in Ref. [64] in which the free energy at T = 0
gives rise to a correlated ground state and which in the limit
T !1 yields results identical with those obtained in the
static approximation.

4.2 Numerical calculation for the half-filled band case
Figs 16 – 18 give the results of calculations of the magnetic
properties of the Hubbard model for a simple cubic lattice
with the half-filled band (n = 1). The calculations were
carried out on the basis of the static approximation (dashed
curves) and taking account of the dynamic corrections in
the variational method (continuous curves). Different
symbols are used in these figures to represent the results
of a numerical calculation carried out for small clusters in
accordance with the quantum Monte Carlo method. The
ground state of the system for n = 1 is a Neel antiferro-
magnet.

The sublattice magnetisation and the rms magnetic
moment at a site are plotted as a function of the parameter
U in Fig. 16. We can see that an increase in U increases the
magnetisation from 0 to 1 (in terms of the Bohr magnetons)
and goes over smoothly to a Heisenberg magnetic material
with the atomic spin S = 1=2 in the limit U !1. The
localised moment varies fastest in the range where U � W .
The results obtained by the two calculation methods differ
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only slightly and they are close to the results of calculations
carried out for small clusters (represented by circles) [68]. In
contrast to the magnetisation hmi, the localised moment
(hm2

i)

1=2 depends weakly on U.
The next two figures give the temperature dependences

of the magnetic properties. The phase diagram in the (T , U)

plane is given in Fig. 17. A continuous or dashed curve
separates the antiferromagnetic phase (A) from two para-
magnetic phases: metal (PM) and insulator (PI). The curve
separating the paramagnetic and antiferromagnetic phases
is deduced from calculations of the Neel temperature for
different values of 2U=W and the curve separating the metal
and insulator phases is found from vanishing of the gap in
the electron spectrum. This curve has not been calculated
inside the antiferromagnetic phase region.

The dotted curves separate the boundaries of the
antiferromagnetic phase deduced by the Hartree – Fock

(HF) approximation, for the case of low values U5W ,
and the molecular field (MF) approximation for the case of
high values U4W . A continuous or dashed curve in
Fig. 17 links these two limits. Therefore, the CPA theory
is of the interpolation type. The large discrepancy between
the results of this theory and those obtained by small-cluster
calculations is attributed to the size effects [65].

The temperature dependence of the reciprocal magnetic
susceptibility is linear in a wide range of temperatures. The
Curie – Weiss behaviour of the susceptibility is evidence of
the existence of localised magnetic moments, which depend
weakly on temperature. This is confirmed by a direct
calculation (hm2

i)

1=2 for different values of T .
Fig. 18 gives the results calculated for different values of

the parameter 2U=W . In the limit of high U, these results
agree with those obtained in the molecular field approx-
imation, and for low values of U, they agree with the
Hartree – Fock approximation. The magnetic behaviour of
the model for n = 1 is evidently relatively insensitive to the
bare density of states in the electron spectrum. For example,
in the case of a semielliptic density of states the magnetic
phase diagram remains the same as in Fig. 17 [70].

These results demonstrate that the simple theory relying
on the static approximation and the CPA method is not
very sensitive to the electron correlations. However, this
conclusion may have to be modified greatly away from the
half-filled band case, because the correlations can then be
much more important.

5. Variational methods

5.1 Gutzwiller wave function
The variational methods are particularly effective in
statistical physics problems, when regular perturbation
theory cannot be used. A test wave function c0 can be used
to take account of the correlation effects in a purely
intuitive manner and the ground-state energy can be found
by varying the average energy

10 2 3 4
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0.10

0.05

5

2T=W

PI

MF
HF

PM

A

0.15

Figure 17. Phase diagram in the (T , U) plane, showing antiferro-
magnetic phase (A), the paramagnetic metal phase (PM), and the
paramagnetic insulator phase (PI) [65]. The continuous and dashed
curves have the same meaning as in Fig. 16; the dotted curves are
explained in the text; the circles represent calculations for small
clusters [69].
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Figure 18. Temperature dependences of the reciprocal magnetic
susceptibility of the antiferromagnetic phase, calculated for different
values of 2U=W [65]. The continuous and dashed curves have the same
meaning as in Fig. 16; points of different shapes are the results of
calculations for small clusters [69].
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Figure 16. Sublattice magnetisation hmi and the localised moment
(hm2

i)

1=2 calculated in the Hubbard model for n = 1 and T = 0 [64].
The dashed curve represents the static approximation and the
continuous curve includes the dynamic corrections [65]. The circles
represent calculations carried out for small clusters [68].
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E =

c
�

0Hc0( )

c
�

0c0( )

(5.1)

over the free parameters that occur in c0.
Gutzwiller had suggested [2] that, in the Hubbard

model, c0 should be selected in the form

c0 =

Y

i

�

1 ÿ (1 ÿ g)Di

�

j0i = gD
j0i , (5.2)

where j0i is the ‘vacuum’ wave function; Di = ni"ni#,
D =

P

i ni"ni#, i.e. D is the electron-pair number operator
for the lattice sites; 0 < g < 1 is the variational parameter.
A system of noninteracting electrons corresponds to g = 1.
The value g = 0 corresponds to U = 1 when all the states
with a pair at each site are ignored.

It follows that the intermediate values of the variational
parameter g correspond to states with the finite number of
pairs in the system (which will be denoted by N �d ).
However, we can see from expression (5.2) that the
probability of finding such states decreases rapidly with
increase in their number (d is the average number of sites
occupied by pairs).

The wave function (5.2) takes account globally of the
reduction in the probability of occurrence of states with a
large number of pairs. It has been found (see, for example,
Ref. [71]) that such a simple method of including the
correlation effects gives results, particularly in calculation
of the ground-state energy.

The nature of the ground state determines selection of
the ‘vacuum’ wave function in expression (5.2). In the case
of the paramagnetic phase the function j0i is selected in the
form of the ‘Fermi-sea’ wave function:

j0i =
Y

ks

a
y

ksjvaci . (5.3)

Here, jvaci is the wave function of true vacuum.
If the symmetry of the ground state is broken, j0i is

selected to be the wave function in the Hartree – Fock
approximation. For example, for the antiferromagnetic
state with the wave vector Q the ‘vacuum’ wave function
is

j0i =
Y

ks

h

uk a
y

ks + svk a
y

k+Qs

i

jvaci , (5.4)

where uk and vk are the well-known coefficients of the u – v

transformation.
We shall consider the paramagnetic ground state. The

energy E0 is the function of the average number �d of pairs.
It is represented by a sum of two terms: the potential energy
U �d, which increases with increase in �d, and the kinetic
energy which decreases with increase in �d. There is a certain
optimal value of �d, found by differentiation of the average
energy (5.1) with respect to the parameter �d. The variational
parameter g is then related to �d by [71]

g2
=

�d(1 ÿ n
"

ÿ n
#

+

�d )

(n
"

ÿ

�d )(n
#

ÿ

�d )

. (5.5)

In the paramagnetic phase the average number of electrons
per site is n

"

= n
#

= n=2.
The values of n

"

and n
#

(or of the magnetisation
m = n

"

ÿ n
#

) should be found for the ferromagnetic phase
by variation of the energy (5.1), together with the quantity �d.
The energy of the antiferromagnetic ground state (5.4)
should be varied in terms of the sublattice magnetisation
m and the gap D in the electron spectrum, which occurs in the

coefficients of the u – v transformation. In this case the
quantities g and �d are linked by a relationship of the (5.5)
type [72].

5.2 Gutzwiller approximation
Gutzwiller calculated the ground-state energy [19] with the
aid of the wave function (5.1). The number of the spin
configurations was found by a classical combinatorial
method. This heuristic approach had no justification until
it was shown that the Gutzwiller approximation corre-
sponds exactly to calculation of the energy with the wave
function (5.1) in the limit d = 1 [72, 76]. We can thus see
that one again the limit d = 1 is important in determina-
tion of the relationship between the various approaches
used in the SCES theory.

The results of calculations of the ground-state energy in
the limit d = 1 [72 – 76] will now be discussed briefly. The
quantity hc�0Hc0i was calculated by a diagram technique in
terms of the parameter 1 ÿ g 2. This has proved to be the
standard technique for the Green functions, but without
account for the dynamics.

The perturbation-theory series can be expressed in terms
of the zeroth-approximation functions:

P 0
ijs �




c
�

0C
y

isCjsc0

�

. (5.6)

In the case of high dimensions d of space the behaviour of
the series (as functions of the distance between the sites) is
determined by an asymptotic expression of the type (3.5). It
then follows that in the limit d = 1 the irreducible self-
energy part is local, i.e.

S �ijs = dijS
�

iis . (5.7)

The sum of all the irreducible diagrams obtained in the
limit d = 1 can be expressed in terms of the exact
correlation function Piis:

S �

iis = ÿ

1
2Piis

�

1 ÿ
����������������������������������������������

1 + 4(1 ÿ g2
)PiisPii;ÿs

q

�

. (5.8)

The matrices Ps and P 0
s are then related by

Ps = P 0
s + P 0

s SsP 0
s , (5.9)

Ss =

1
1 ÿ S �

sPs
S �

s . (5.10)

In the case of a translationally invariant system the
quantity S �

iis = S �

s is found from Eqns (5.8) – (5.10) and it
can be expressed in terms of the average number (per site)
ns of electrons with the spin s:

S �s =

Es ÿ

���������������������������������������������������

E2
s ÿ 4(1 ÿ g2

)(1 ÿ ns)ns

q

2(1 ÿ ns)
, (5.11)

where

Es = 1 ÿ (1 ÿ g2
)(ns ÿ n

ÿs) .

Calculation of the average energy (5.1) gives

E
N

=

X

s

qs�e0s + U �d . (5.12)

Here,

qs = 1 ÿ
S �s

(1 + g)2

�

1 ÿ
g2

1 ÿ S �s

�

, (5.13)
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�d =

g2ns
1 ÿ g2

S �

1 ÿ S �
, (5.14)

where �e0s is the kinetic energy (per one lattice site) of
noninteracting electrons.

Expression (5.12), together with formulas (5.13) and
(5.14), gives the energy of the investigated system as a
function of the parameters n

"

, n
#

, and g. Minimisation in
terms of these parameters can give the ground-state energy
E0.

In the Fourier space the quantity P 0
s represents the

number n0
ks of particles with the momentum k . Therefore, it

follows from Eqn (5.10) that in the ground state the
quantity Ss is a discontinuous function of the momentum:

Ss =

S �s
1 ÿ S�s

, k < kFs ,

S �s , k > kFs .

8

<

:

(5.15)

Consequently, the distribution function of the particle
momenta has a jump of the quantity qs at k = kFs, which is
given by formula (5.13). Therefore, in the limit d = 1, the
Hubbard model energy is expressed in terms of the average
number of pairs and the jump of the momentum on the
Fermi surface.

It is remarkable that expression (5.12) is identical with
the result obtained in the Gutzwiller approximation, i.e. this
approximation is exact in the limit d = 1. In the general
case (without assumption of translational invariance), we
find that expression (5.12) becomes [74]

E =

X

i; j;s

�����������

qisqjs
p

P 0
ijs + U

X

i

�di , (5.16)

which contains the local quantities di and qis, given by
formulas (5.14) and (5.13) with the local quantities nis and
S �

is. The theory can be generalised so as to yield corrections
in the form of an expansion in the powers near the limit
d = 1 [76].

A calculation in accordance with the theoretical for-
mulas gives, in the limit d = 1, results which are in
excellent agreement with those calculated for d = 2 by
the quantum Monte Carlo method. The agreement is

even better for d = 3. It is evident from Fig. 19 that
even for d = 2 the corrections proportional to 1=d are
very small, i.e. the Gutzwiller approximation gives a very
accurate value of the ground-state energy and this energy is
not very sensitive to the dimensionality d of space.

A comparison of the energies of the paramagnetic,
ferromagnetic, and antiferromagnetic phases makes it
possible to construct the phase diagram in the (U, n)
plane (Fig. 20). The dashed curves represent the bounda-
ries of the phases deduced on the assumption that both
magnetically ordered phases are homogeneous. If we
assume the possibility of the existence of inhomogeneous
phases, then these boundaries change to the continuous
curves in Fig. 20.

It is found that the appearance of an antiferromagnetic
phase with small ferromagnetic inclusions is favoured by
energy considerations. The possibility of the appearance of
such mixed phases has been studied in detail on the basis of
the Hubbard model [78 – 82].

The magnetic phase diagram shown in Fig. 20 was
determined [77] making use of the Gaussian density of
states in the bare spectrum (3.4) corresponding to the limit
d = 1. Therefore, the quantity U in Fig. 20 is in units of t�.
Variational approaches have been used also in the inves-
tigations of the ferromagnetic state in the Hubbard
model [83, 84].

6. Method of slave bosons and fermions

6.1 X operators
Under the conditions of a strong Coulomb interaction
(U4 t) the Coulomb term can be used as the zeroth-
approximation Hamiltonian. Since the interaction of
electrons is considered in the Hubbard model for just
one site, the zeroth-approximation problem reduces to the
single-site problem and it can be solved exactly quite
readily. In this situation it is convenient to use the basis

P
ÿ

ji0i, ji+i, jiÿi, ji2i
�

(6.1)
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Figure 19. Comparison of the calculations, carried out in the
Gutzwiller approximation (dashed curve) and taking account of the
1=d corrections (continuous curves), with the calculations carried out
by the quantum Monte Carlo method (crosses) for: (a) the average
number of pairs; (b) the ground-state energy in the two-dimensional
Hubbard model [76].
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Figure 20. Magnetic phase diagram (continuous curves) at
T = 0 K [77]. The dashed curves represent the phase diagram in
which only the homogeneous states are considered.
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of localised atomic functions at a site describing states free
of electrons, those with one electron, and with an electron
pair, respectively.

The transitions between various states are described by
4 � 4 matrices corresponding to the Hubbard X opera-
tors [85]

X pq
i = jipihiqj .

All the elements of such a matrix vanish, apart from one
which is at the point of intersection of the pth row and the
qth column, and which is equal to 1.

The transition from a state jiqi the a state jipi can alter
the number of electrons at a site by one or two, or it may
leave this number unchanged. This means that some of the
independent X _pq operators are Fermi-like ( f operators) and
some are Bose-like ( b operators):

f (X 0s, Xs0, Xs2, X 2s
) , b (X+ÿ, Xÿ+, X 20, X 02

) , (6.2)

whereas four operators are diagonal:

X 00, X++, Xÿÿ, X 22 .

Obviously, a product of two X operators is also an X
operator or it vanishes in accordance with the rule

X rsX pq
= dspX rq . (6.3)

The above rule can be used to form a commutator or an
anticommutator of two X operators:

�

X rs
i , X pq

j

�

�

= dij

�

dspX rq
i � drqX ps

i

�

. (6.4)

It is understood that a commutator is used in the case of
the b operators and an anticommutator for the f operators.

The X operators obey the following identity:

X 00
i +

X

s

X ss
i + X 22

i = 1 , (6.5)

which represents completeness of the single-site states
described by the basis (6.1). The X operators can be
expressed in terms of the Fermi operators by the following
relationships:

X 00
i = (1 ÿ ni")(1 ÿ ni#) , X ss

i = nis(1 ÿ niÿs) ,

X 22
i = ni"ni# , X s0

i = a
y

is(1 ÿ niÿs) , X 2s
i = sa

y

iÿsnis ,

X s;ÿs

i = a
y

isai;ÿs , X 20
i = sa

y

i;ÿsa
y

is . (6.6)

[The conjugate operators are found from the rule
(X pq

)

y

= X qp .]
It follows from the relationships (6.6) that X s0

i and X 2s
i

are Fermi-like operators. Their linear combination can be
used to describe the Fermi operators themselves:

a
y

is = Xs0
i + sX 2;ÿs

i . (6.7)

The Hamiltonian (1.1) of the SCES model (including
the chemical potential m) expressed in terms of the X
operators is

H =

X

i

�

ÿmX ++

i ÿ mX ÿÿ

i + (U ÿ 2m)X 22
i

	

+ t
X

i; j

�

(X +0
i + X 2ÿ

i )(X 0+
j + X ÿ2

j )

+ (X ÿ0
i ÿ X 2+

i )(X 0ÿ
j ÿ X +2

j )

	

. (6.8)

It is remarkable that in this representation the Coulomb
term, which is quartic in terms of the Fermi operators,
becomes linear in the X operators and the kinetic energy
becomes a quadratic form of these operators. All the
advantages of the X operators follow from this linearisa-
tion of the Coulomb term.

The Hamiltonian (6.8) can be used to develop a regular
theory of perturbations in powers of t=U in the form of a
diagram technique for the X operators [24, 86]. This is
described briefly in my earlier review [6] and we shall not
deal with the subject here. Since the algebra of the X
operators is fairly complex, the diagram technique involving
them is far from simple, although it has certain advantages.

Here, other approaches will be considered and in these
approaches the X operators are expressed in terms of
products of the usual Fermi and Bose operators. Such
representations comprise the technique of slave bosons and
fermions, first presented in Refs [87, 88] for other models.

6.2 Boson and fermion representation of X operators
There are many different representations of this kind. They
can be obtained making use of the following general
relationship between the X pq

i operators and the correspond-
ing X pq matrix:

X pq
i = c

y

i X pq
ci , (6.9)

where ci is a four-component column composed of the
Fermi and Bose annihilation operators.

Let us consider first the limiting case of the Hubbard
model, which is the t – J model in which only three states at
a site are taken into account: ji0i, ji+i, jiÿi. Selecting ci in
the form

c
y

i =

ÿ

b
y

i , f
y

i", f
y

i#

�

,

where b
y

i is a Bose operator and f
y

is is a Fermi operator,
we find from the relationship (6.9) that

X 0s
i = b

y

i fis , X +ÿ

i = f
y

i" fi# , (6.10)

which satisfies the transposition relationships for the X
operators subject to the additional condition:

b
y

i bi +
X

s

f
y

is fis = 1 . (6.11)

This is known as the slave boson representation.
If ci is selected in the form

c
y

i =

ÿ

f
y

i , b
y

i" , b
y

i#

�

,

the result is the slave fermion representation

X 0s
i = f

y

i bis , X +ÿ

i = b
y

i"bi# (6.12)

subject to the additional condition
X

s

b
y

isbis + f
y

i fi = 1 . (6.13)

In both cases a slave particle (boson or fermion) has no
other index, apart from that identifying the site.

In the Hubbard model we can use, for example, the
following representation in terms of slave bosons [89]:

X 0s
i = e

y

i fis , X 00
i = e

y

i ei ,

X 2s
i = d

y

i fis , X ss
i = f

y

is fis , (6.14)

X 02
i = e

y

i di , X 22
i = d

y

i di
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subject to the additional condition

e
y

i ei + d
y

i di +
X

s

f
y

is fis = 1 . (6.15)

Here, the Bose operators e
y

i and d
y

i create states ji0i with
an empty site and ji2i with a pair, and the Fermi operator
f
y

is creates a state jisi with one electron per site:

ji0i = e
y

i jvaci , jisi = f
y

isjvaci , ji2i = d
y

i jvaci , (6.16)

where jvaci is the wave function of complete vacuum.
It is suggested in Ref. [90] that the basis functions can be

written down with the aid of four slave bosons:

ji0i = e
y

i jvaci , jisi = f
y

isp
y

isjvaci , ji2i = f
y

i" f
y

i#d
y

i jvaci .
(6.17)

This selection of the basis functions leads to a more complex
(and not bilinear) X operator representation. The following
conditions should then be satisfied to guarantee the absence
of nonphysical states:

e
y

i ei +
X

s

p
y

ispis + d
y

i di = 1 ,

f
y

is fis = p
y

ispis + d
y

i di = 0 .
(6.18)

The Hamiltonian (1.1) in the (6.17) representation is

H = t
X

i; j; s

f
y

is fisZ
y

isZ is + U
X

i

d
y

i di , (6.19)

where

Z is = e
y

i pis + p
y

i;ÿsdi .

It follows that the Coulomb part of the Hamiltonian
is diagonal, but all the difficulties are transferred to the
kinetic part, which now has the form of the fermion – boson
interaction. This situation is typical when different repre-
sentations of the X operators are used, although the kinetic
energy can assume a variety of forms.

There is an extensive literature on the use of the
technique of slave bosons and fermions in the Hubbard
and t – J models (see, for example, Refs [91 – 98]), partic-
ularly near the half-filled configuration. A comparison of
the results obtained with the aid of slave bosons and
fermions in the t – J model is made in Ref. [96]. There is
no general prescription for selection of a specific representa-
tion.

6.3 Effect of constraints
When the X operators are expressed in terms of the
fermion Bose operators, the problem is reduced to the
methods of standard perturbation theory for the Fermi and
Bose systems, but a new difficulty then arises: it is
necessary to take account of additional conditions or
constraints of the type described by representations of the
(6.14) and (6.18) type, which remove nonphysical states, i.e.
which return the extended Hilbert space to its initial state.

Constraints are usually taken into account by means of
Lagrangian multipliers, which are used to write down the
expressions for the partition function representing a
functional integral in terms of the Fermi and Bose
fields. For example, in the case of the Hamiltonian in
the form (6.19) the integration with respect to the Grass-
man variables yields the following functional integral in
terms of the Bose fields ei, pi", pi#, and di [90]:

Z =

�

de dp
"

dp
#

dd
Y

is

dli dl
0

is exp

�

ÿ

�b

0
dt S(t)

�

, (6.20)

where

S(t) =
X

i

e
y

i

�

q

qt
+ li

�

ei +
X

i; s

p
y

is

�

q

qt
+ li ÿ l

0

is

�

pis

+

X

i

d
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i

�

q

qt
+ U + li ÿ l

0

is

�

di ÿ li

+Tr ln

�

dij

�

q

qt
ÿ m+ l

0

is

�

+ tijZ
y

isZ js

�

. (6.21)

Here, li and lis are the Lagrangian multipliers for the first
and second equations in the system (6.18). The constraints
of the system (6.18) are local and, therefore, li and lis

depend on the site number i. However,they are independent
of the second variable t, because both constraints (6.18)
commute with the Hamiltonian (6.19).

In work with the functional integral (6.20) the first
approximation can be the saddle point approximation, in
which it is assumed that the Bose fields and the Lagrangian
multipliers are independent of the site and time. This
implies the static approximation in terms of the Bose
fields and the replacement of local constraints with global
ones, i.e. those which are satisfied only on the average.

The static approximation leads to the following expres-
sion for the free energy f = ÿkT ln Z =N :

f = Ud 2
ÿ T

X

s

�

de r0(e) ln
�

1 + exp
�

ÿb(qseÿ m+ l
0

s

�	

+ l

�

X

s

p2
s + e2

+ d 2
ÿ 1

�

ÿ

X

s

l
0

s(p
2
+ d 2

) , (6.22)

where qs = hZ
y

isZ isi. In the paramagnetic case when the
band is half-filled (n = 1, m = U=2), minimisation with
respect to l and l

0

s gives the free energy as a function of
just one parameter d. At T = 0, we find that

f = 2q
�

de r0(e) e f(qe) + Ud 2 , (6.23)

where

q = 8d 2
(1 ÿ 2d 2

) . (6.24)

The integral with respect to e in Eqn (6.23) represents
the average kinetic energy of electrons. Therefore,
Eqn (6.23) is identical with expression (5.12) if the pair
density d 2

=

�d is introduced. We thus obtain a remarkable
result: the saddle point approximation in a functional
integral representing the partition function in the Hubbard
model with the aid of slave bosons at T = 0, equivalent to
the Gutzwiller approximation known to be exact in the limit
d = 1.

Inclusion of the mean field fluctuations in a functional
integral makes it possible to provide a theoretical treatment
in which a strongly correlated system is described by boson
and fermion fields coupled to one another by gauge fields,
which take constraints into account [82, 92]. This approach
has been used intensively in recent years in the study of the
transport properties of SCES, the stimulus being provided
by the anomalous behaviour of high-temperature super-
conductors in the normal metallic phase, particularly by the
linear dependence of the electric resistance on T .
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7. Main correlation effects

Several methods for investigating the Hubbard model in
the strong correlation case (U 5W ) are described above.
They should be supplemented by methods relying exclu-
sively on computer calculations (high-temperature
expansions, diagonalisation of small clusters), the results
of which can be used to check approximate analytic
approaches.

All the listed approaches (with the exception of the
d = 1 limit, which is discussed separately later) yield
limited information on the physical properties of the
main model in the SCES theory. A comparison of
individual, frequently mosaic-like, results makes it possible
to reconstruct the pattern of the most important correlation
effects in the behaviour of the model.

7.1 Metal – insulator phase transition
The metal – insulator phase transition, predicted intuitively
by Mott, was first confirmed by Hubbard over thirty years
ago on the basis of the ‘alloy analogy’, i.e. in the spirit of
the CPA method. Hubbard demonstrated that at some
critical value Uc � W a gap appears in the middle of a
band in the initial electron spectrum, so that in the half-
filled case the system becomes an insulator.

A consistent mean field theory, based on consideration
of the limit d = 1, shows that the pattern predicted by
Hubbard is far too simplistic. In fact, in the half-filled case
an increase in U gradually gives rise to a gap, but there is
another effect: a sharp quasiparticle peak appears at the
Fermi level and it corresponds to the Suhl – Anderson
resonance due to the scattering of electrons by localised
spin fluctuations. The effect of temperature on this peak is
similar to that in the Kondo effect.

The existence of a sharp quasiparticle peak governs the
transport properties of the system in the metallic phase.
Under these conditions such behaviour of the Hubbard
model corresponds to the behaviour of an effective single-
impurity Anderson model to which the Hubbard model
reduces in the limit d = 1.

The latest investigations [105] show that the metal –
insulator phase transition should be of the first order.
Fig. 21 shows the Hubbard-model phase diagram obtained
in the limit d = 1 for the half-filled band case. This
diagram is based on calculations carried out for a model

density of states in the initial band described by a semicircle.
This is known to correspond to the Bethe lattice in which
each atom has z nearest neighbours which are in no way
coupled to one another.

In the case of the Bethe lattice it is possible to transform
analytically the self-consistency equations (3.33) – (3.35) of
the mean field theory. This simplifies greatly the subsequent
numerical solution. As a result, the application of the
quantum Monte Carlo method to the corresponding one-
dimensional Anderson problem makes it possible to deal
with lower temperatures.

It is found that at T = 0 the self-consistency equations
have two different solutions, which coexist in the interval
Uc1 < U < Uc2. One of them corresponds to the metal
phase and the other to the insulator phase; the points
Uc1 and Uc2 correspond to the absolute loss of stability by
the insulator and metal phases. At a finite temperature this
interval becomes narrower and contracts to a point
(represented by the square in Fig. 21).

Inside the triangle formed by the two dotted lines and
the abscissa there is a line of the first-order phase
transitions which is found by equating the energies of
the metal and insulator phases. In the shaded regions (at
higher temperatures) the two phases coexist and this makes
possible a continuous crossover from one phase to the
other. The boundaries of this region correspond to second-
order phase transitions. The curve representing the anti-
ferromagnetic phase transition lies above the metal –
insulator phase transition line.

On the whole, the phase diagram shown in Fig. 21
resembles that predicted earlier [43] and shown in Fig. 11.
Although the metal – insulator phase transition is well
understood in the specific half-filled case, there are
relatively few results for the more general case when the
band is not half-filled.

7.2 Breakdown of the Fermi-liquid behaviour
The question of evolution of the nature of single-particle
states of the metal phase has not yet been answered
unambiguously. A complete pattern would identify the
nature of the quasiparticle spectrum at each point in the
three-dimensional space of the parameters (U, n, T ). At
present, we know only some sections formed by the (U, n)
planes at T = 0 or by the (U, T ) planes at n = 1. The
majority of the results have been obtained in the mean field
approximation (d = 1).

Fig. 6 shows the change in the quasiparticle distribution
function near the Fermi level in the half-filled case. An
increase in U reduces continuously the jump at the Fermi
level to zero, which is evidence of a continuous reduction in
the amplitude Z of the coherent state and of the divergence
of the effective mass m�. However, the Fermi-liquid
behaviour is retained right up to a certain critical value
Uc, at which the insulator state appears as a result of a
second-order phase transition.

The same conclusion follows from a qualitative analysis
of the self-consistency equations [41] presented above. On
the other hand, according to the Edwards – Hertz inter-
polation approach [48, 49], which is not based on the
d = 1 limit, the imaginary part of the quasiparticle self-
energy does not vanish on the Fermi surface in a certain
interval of the values of U, indicating breakdown of the
Fermi-liquid behaviour in the metal phase (see Fig. 13).

20 4 6
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Figure 21. Phase diagram in the (T , U ) plane calculated for the Bethe
lattice on the assumption that d = 1 and n = 1 [105].
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A deviation from the half-filled band case reduces the
region with the non-Fermi-liquid behaviour and the proper-
ties of the Fermi liquid are quite rapidly restored (Fig. 15).
The problem of crossover from the Fermi-liquid behaviour
to strong electron correlations in a metal as U is increased
or as the half-filled band case is approached, is only
outlined above and undoubtedly should be investigated
further.

7.3 Crossover from itinerant magnetism to magnetism
with localised magnetic moments
This problem has been discussed first in the literature in
terms of localised spin fluctuations, starting from the weak
coupling limit [9]. The next stage has been the use of the
static approximation in the functional integration tech-
nique (Section 4 in this review).

Figs 16 – 18 show the pattern of the magnetic behaviour
of the model in the half-filled band case, obtained in the
static approximation by slow variation of (hm2

i)

1=2 in
Fig. 16 and by the Curie – Weiss contribution to the
magnetic susceptibility (Fig. 18). It follows from Fig. 17
that the Neel temperature T N, considered as a function of
the Coulomb interaction U, has a minimum at U � W . The
T N(U) curve links expressions (1.6) and (1.7) representing
T N in the weak and strong coupling limits.

The results of the static approximation are thus of
interpolation nature. These results are supported qualita-
tively by a more rigorous approach corresponding to the
d = 1 limit in which the dynamics of the system is taken
into account (Figs 7 and 8).

Two problems are the most pressing:
(1) How does the crossover from itinerant to localised

magnetism occur when the electron density n is varied?
(2) How is the magnetic behaviour crossover related to

the crossover of the electronic properties from the Fermi-
liquid to the non-Fermi-liquid behaviour?

A clear solution has not yet been obtained to either of
the problems. In the first case this is because the attention
of researchers has been concentrated mainly on the
behaviour of the model near the half-filled state (in
connection with the problem of high-temperature super-
conductors).

The second problem is intrinsically complex and
investigations of the quasiparticle spectrum model itself
have just begun. One of the latest results is the phase
diagram presented in Fig. 15. Phase diagrams of this type
should be supplemented by identifying the regions where
the magnetic-behaviour crossover takes place.

An attempt has been made to establish the magnetic
crossover when the electron density is varied and to
discover the relationship between the magnetic and elec-
tron crossovers in the limit of strong electron correlation
(U4W ) within the framework of the t – J model [11 – 13].

8. Conclusions

The overall conclusion of this review can be stated as
follows. The d = 1 limit provides the most universal and
effective method for investigating the Hubbard model. It
makes it possible to formulate the mean field approxima-
tion for strongly interacting fermions, which is correct from
the point of view of requirements of statistical mechanics.

The main equations in this approximation yield the
correct results in the limits U5W and U4W . These

equations are valid for any values of the parameters U, W ,
and the electron density n. In the d = 1 limit the statistical
mechanics of the Hubbard model on a lattice reduces to the
statistical mechanics of an auxiliary single-impurity Ander-
son model (with specially selected parameters), which has
well-known solutions.

In the d = 1 limit the Hubbard model describes the
most important among the correlation effects: the metal –
insulator transition, the crossover from itinerant magnetism
to localised magnetic moments, the breakdown of the
Fermi-liquid behaviour near the boundaries of the
metal – insulator phase transition.

In a comparison of the results of the theory in the limit
d = 1 with numerical calculations, carried out for d = 3
and d = 2 by the quantum Monte Carlo method or by the
method of exact diagonalisation of small clusters, it was
demonstrated that in many cases the agreement between the
results is not only qualitative, but even quantitative.
Naturally, the d = 1 limit, corresponding to the mean
field approximation, cannot describe the dynamics of
fluctuations such as spin waves in a magnetically ordered
phase. However, there are ways for including corrections of
the order of 1=d, which make it possible to solve problems
of this kind.

Unfortunately, in the d = 1 limit the mean field theory
deals with consistency equations requiring a large volume of
computer calculations. Further investigations of this type
should be accompanied by development of approximate
analytic methods for solving these equations, which need to
be only qualitative. A recent paper [106] reports an
investigation of this type.

The d = 1 limit has been used also in other models
employed in the theory of strongly correlated systems, for
example, in the t – J model [107, 108], in the Anderson
lattice [109], and in the extended Hubbard models [11, 110,
112]. It has recently been applied to models with disorder.
For example, interference of the effects of the strong
Coulomb interaction and of disorder in the metal – insu-
lator phase transition, i.e. the relationship between the Mott
and Anderson electron localisation mechanisms, has been
studied in the Hubbard model with disorder.

Introduction of the d = 1 limit into the theory of
strongly correlated systems has given a new impetus to
the physics of this system. The situation now resembles the
familiar state twenty years ago, when the important role of
the d = 4 dimensionality in the theory of second-order
phase transitions has become understood and the e

expansion has been proposed, providing a universal
method for investigating systems with strongly interacting
fluctuations.
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