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Abstract. On the basis of general phenomenological 
consideration the contradictions which often arise between 
different approaches to the electrodynamics of bounded 
media with spatial dispersion are shown to be a result of 
incorrect assumptions which have been made by its 
supporters. The important problems in the field of optics 
of bounded media with spatial dispersion are pointed out. 
The different methods of solution are discussed. 

1. Introduction 
The question of boundary conditions on the surface of 
media with spatial dispersion (SD) has a long history (see, 
for example, [1-5]) and includes two main problems. One of 
them arises if the incident wave frequency co is close to an 
electron resonance. In this case the dispersion equation can 
have three different roots [1] and for unique solution of the 
problem the so-called additional boundary conditions are 
required [1, 4]. 

In our opinion, a sufficiently logical presentation of the 
reasons underlying this problem and of principal methods 
of its solution is given in [1]. We only note that the problem 
arises in the region of a strong SD. However, even in the 
case of media with a weak SD, that is when the wavelength 
X of the incident light is far longer than the spatial scale of 
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nonlocality d of the optical response of the crystal, very 
serious and often fundamental disagreements about the 
form of the constitutive relations and boundary conditions 
to be used in the electrodynamics of bounded optically 
active media remain among the investigators [6-12]. 

While in some cases, despite essentially different initial 
assumptions, the results obtained do not generally contra­
dict each other [7-11], in other cases they are completely 
different [6, 7, 12]. This primarily relates to the question as 
to whether [6, 12] or not [7-11] the polarisation character­
istics of light should be changed during its reflection (under 
the conditions of normal incidence onto the surface) from 
linear gyrotropic nonmagnetic (i.e. not having spontaneous 
magnetic moment) media. 

We also note that in the majority of the experiments 
performed 'on reflection' polarisation effects have not been 
observed under the conditions given above [13, 14]. At the 
same time, optical activity measurements 'on reflection' (for 
example, under the condition of total internal reflection [15] 
or in case of nonlinear media [9, 10]) can provide an 
effective alternative method of spectroscopy of chiral 
materials which in a number of cases (for thin layers or 
strongly absorbing media) is much more convenient than 
the methods currently used which are based on measuring 
the polarisation characteristics of transmitted light. 

Attempts to discover polarisation effects during light 
reflection from the surface of high-temperature super­
conductors [16-18] have been amongst the most 
important topics of recent studies. The presence or absence 
of polarisation effects during these measurements is directly 
dependent on the anion superconductivity theory being true 
or false [18-20]. 

It is easy to understand that the degree of justification of 
such a point of view largely depends on the answer to the 
critical question: which boundary conditions and constitu­
tive relations should be used to interpret the contradictory 
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experimental results [13, 14, 16-18, 21, 22] on light 
reflection from media with nonlocal optical response? 

Using the general phenomenological consideration, in 
the present paper we show that all contradictions which 
arise between different approaches to the electrodynamics 
of bounded media with SD are, in fact, a result of certain 
insufficiently correct assumptions and statements which 
have been made by its supporters. 

In our opinion, the main fallacy is the assumption that 
the boundary conditions and constitutive relations for 
electric and magnetic fields can be considered indepen­
dently of each other [7, 14, 23] and, hence, the 'correct' 
boundary conditions and 'correct' constitutive relations 
exist separately. Another widespread error is in the 
treatment of the influence of the surface polarisation 
current on the reflection [1, 9, 10, 24-26] . It has been 
incorrectly taken into account [12] or completely 
ignored [6]. 

Below we also present a short review of positive results 
obtained by different authors, formulate current problems 
in the optics of bounded (mostly linear) media with SD, and 
discuss possible methods of their solution. 

2. Two basic approaches to electrodynamics 
of unbounded media with spatial dispersion 
2.1 General statements 
For the analysis of the interaction of radiation with matter 
we (in common with all authors) start from the Maxwell 
system of equations for electromagnetic field in a medium, 
which directly follows from the traditional averaging of the 
microscopic equations [24, 27]: 

1 dB 
cur\E = - - — , 

c dt 
(la) 

curltf = i ^ + — j 9 d iv£ = 47tp, divB = 0 , (lb) 
c ct c 

where j = pv is the density of current induced in the 
medium (polarisation current), p is the density of bound 
charge, v is velocity of its motion (dp/dt + divj = 0). Here 
and below we assume no charge density or density of 
current from external sources. 

We emphasise that a physical sense of the electric field 
strength E and of magnetic induction B entering into 
Eqns (1) is uniquely determined by the expression for 
Lorentz force acting on a test point charge q moving 
with a velocity u [24]: 

E + ^-(uxB) . (2) 

Obviously, the system of Eqns (1) is not a closed one, as 
one assumes the p and j to be dependent on E and B, but the 
form of this dependence (the so-called constitutive rela­
tions) is not used and is not specified here. 

2.2 'Symmetric' constitutive relations for electric and 
magnetic field induction 
In the subsequent analysis of the system of Eqns (1) one 
often represents the current j by a sum of two components: 

dP' 
./ = — + ccurlM , (3) 

and introduces vectors of electric field induction DF and 
magnetic field strength H: 

Df=E + 4nPf, H = B- 4KM , (4) 

where the primes are used for clarity in the further 
presentation!. In that case the Maxwell Eqns (1) take a 
symmetric form 

1 dB 
cm\E = - - — , (5a) 

c dt v J 

curltf = - , divD' = 0, divB = 0 . (5b) 
c dt v J 

The constitutive equations can also be transformed to a 
symmetric form by using temporal and spatial Fourier 
components (k = 2K/X) [1, 28]: 

Dfi(cQ, k) = sfij(cQ, k)Ej(cQ, k) + a^ro, k)Hj(co, k) , 

Bt(cQ, k) = ^(co, k) EJ(CQ, k) + /^(co, k) HJ(CQ, k) . (6) 

We note that one often writes down the relations (6) in a 
somewhat different way: by expressing D' and H in terms 
of E and B (and then using (5a) only in terms of E [12]) or 
by expressing D' in terms of E and B in terms of H [8]. 

Sometimes the approach depicted above is called 
symmetric [7]. In our opinion, it has a number of sig­
nificant shortcomings. First, the relations (3) and (4), and, 
hence, (6) are not unique since they introduce four new 
quantities (P f,M,Df and H) using only three relationships. 

Sometimes by writing (3) one says that P' and M are 
connected with the electric and magnetic moments of the 
medium, respectively. This, however, is not quite correct, as 
it remains unclear to what degree these quantitative 
definitions of P' and M determine them qualitatively, 
because in the optical frequency range the notion of the 
magnetic moment of the medium loses its physical meaning 
[4, 27]. 

Frequently encountered references to the possibility of 
quantum mechanical calculations of P' and M are also 
poorly justified, as unique quantum mechanical calculation 
is possible only for the total density of the polarisation 
current j [29, 30] and not for its separate parts. Therefore, 
the question will arise: how can the expressions obtained be 
separated into two parts? 

This problem is practically unsolved because of the 
artificiality of the representation in Eqn (3) which is not 
based upon deep physical considerations. Moreover, as 
follows from Eqns (3)-(5) and is even more obvious from 
Eqns (1), the wave equation for £ in a homogeneous 
medium has the form 

{* [k-E(G>, * ) ] } + ^ E(G), k) = ^ J(G>9 k) . (7) 

Knowing E, it is easy to find B. 
Thus, from the point of view of the electrodynamics of 

unbounded media, we are ultimately interested only in the 
dependence ofy(co, k) on E(co, k). When using Eqns (3), (4) 
and (6), it is often quite difficult to find this dependence in 
case of linear homogeneous media. If the medium is 
inhomogeneous [12, 31] or nonlinear [32], the computa­
tional procedure becomes very complicated although, of 

fWe will denote the medium polarisation and electric field induction 
used in Landau-L i f sh i t z approach by P and D without primes, 
respectively, to avoid ambiguity. 
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course, it can be done, especially if one introduces various 
simplifying assumptions [32]. 

In our opinion, it is this complexity of consistent 
generalisation to the case of inhomogeneous and nonlinear 
media that is the most significant defect of the 'symmetric' 
approach to electrodynamics. Moreover, at the phenom-
enological level of consideration, this problem is quite 
artificial: first, the expression for j is split into a few terms 
in an arbitrary way, then one writes down the constitutive 
relation for each term, and finally one finds the dependence 
of the total polarisation current j on the electric field 
strength E. 

Clearly, it is much simpler to proceed from system (1) 
directly and to write down the constitutive relation 
immediately for the total polarisation current j , or (which 
is practically the same thing), to consider that M = 0, and 
j = dP/dt. 

2.3 Landau-Lifshitz constitutive relation for the electric 
field induction 
As we pointed out above, in electrodynamics of unbounded 
media it is most natural to introduce the total polarisation 
of the medium P (and the corresponding electric field 
induction D) which includes the total polarisation current j 
[27]: 

dP 
— =j, D=E + 4nP. (8) 

Note that j(r0, t) and hence P(r0, t), D(r0, t) can, in 
general, depend on the fields E and B not only at the point 
r 0 , but at the adjacent points as well. On the other hand, 
the field B(r, t) is related to the field E(r, t) by Eqn (la). 
This allows one to consider, in phenomenological treat­
ment, that P(r0, t) and D(r0, t) depend only on the field 
E(r, t) in the entire space. 

In the approach presented, the Maxwell system of 
equations and the constitutive relation (the latter is written 
for linear media for brevity) take the form, respectively 
[1,27] 

cur l£ : 

curl B • 

D(t, r) 

1 dB 

1 6Z> 
' c "87' 

dt' 

divZ) = 0, divB = 0 , 

s(t, t'; r,r') E{t',r') Ar' . 

(9a) 

(9b) 

(10) 

Eqn (10) for homogeneous unbounded media can be 
written as followsf: 

Dt(co, k) = eyico, k) Ej(co, k) . (11) 

We stress once more that by assuming B = H in Eqn 
(9b), one does not neglect by any magnetic effects at all. All 
are taken into account by the constitutive relation (10), 
which, in particular, can be reflected in symmetry properties 
of the tensor 8^(co, k). For example, use of the symmetry 
principle for kinetic coefficients [33] leads to the relation­
ship [1, 24, 27] 

e^G), k, Bext) = Sjiico, —k, -Bext) , (12) 

f All questions arising from the introduction of the tensor S^(CL) , A:) are 
discussed in detail inRef. [1]. 

where Bext is the magnetic field induction which is a 
constant in time and is not zero under the influence of an 
external magnetic field or a magnetic structure (ferro­
magnetics and antiferromagnetics). 

3. Boundary conditions on the surface of media 
with nonlocal optical response 
3.1 Procedure for obtaining boundary conditions 
It should be stressed that all the analyses given above 
indicate only a higher or lower degree of formalism, as well 
as the convenience or inconvenience, of phenomenological 
introduction of various characteristics of the medium, and 
cannot be in any way taken as pro or contra arguments 
for one or another approach to the electrodynamics of 
unbounded media. It is also clear that both approaches 
considered will give similar (within the accuracy of the 
notation) results [1]. 

Differences usually arise when considering the inter­
action of electromagnetic waves with the surface (cf. for 
example [6, 7, 12]). Apparently, habit plays a major role 
here. While working mainly with media without SD, many 
people became used to assuming the tangent components of 
the fields E and H (or E and B in the Landau-Lifshitz 
approach) to be continuous at the interface between two 
media, without considering the applicability of this state­
ment. 

Meanwhile, it is well known and even quoted in 
textbooks in general physics [34] that small violations of 
the Fresnel formula exist during reflection through angles 
close to the Brewster angle [34, 35]. In particular, the 
reflection coefficient does not vanish for any incident 
angle, although for the Brewster angle it is very small. 

The deviations from the Fresnel formula are explained 
by the presence of a thin transition layer near the surface of 
the reflecting medium (including the medium not showing 
natural optical activity) of a size d0 <̂  X. The properties of 
the layer (including optical ones) differ from those of the 
bulk medium itself. 

The transition layers can arise due to external reasons 
(impurity, processing, gas adsorption etc.) or peculiarities in 
the molecular structure of the reflecting medium itself near 
the surface [34, 35]. The latter, in fact, is a manifestation of 
a 'hidden', extremely weak nonlocality of the optical 
response of the medium, which is unavoidably present 
(at least due to discreteness) in any medium. 

Existence of a more noticeable SD can lead to a very 
much increased influence of the transition layers on the 
reflection of light than in media with a practically local 
response. This is due, in particular, to the space scale of the 
transition layers d0 being not less than the nonlocality scale 
optical response d of the medium. 

In this connection it comes into question how one 
should phenomenologically take into account the influence 
of the transition layers on light reflection. As a matter of 
fact, the boundary conditions are traditionally obtained 
from the Maxwell equations as a result of extrapolation to 
the limit, that is by assuming that a sharp interface exists 
between homogeneous media. 

One can solve this problem by assuming that by passing 
from one medium to another, all properties of matter and, 
hence, electromagnetic field characteristics vary continu­
ously although sufficiently fast. Then, by approximately 
solving the Maxwell equations in the narrow transition 
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region, one can obtain a relationship between the fields at 
its opposite boundaries to the required approximation in 
terms of the small parameter kd0. 

By comparing this relationship with that which would 
pertain between the fields at the same points in case of a 
sharp interface between homogeneous media, one can easily 
find the form of the altered boundary conditions by using 
conditions which in the sharp interface model would allow 
one, nevertheless, to take into account the influence of the 
transition layer on the reflection and refraction of light. 

Everything indicates that the appearance of additional 
terms in the boundary conditions is a result of the existence 
of a surface (that is, existing only on the interface 
boundary) polarisation current i and bounded charge fl­
at the sharp interface between two media. 

In the case of an interface between two homogeneous 
media which is smooth, plane and homogeneous in the 
transverse direction, the constitutive relation for temporal 
Fourier components of the electromagnetic field in the 
Landau-Lifshitz approach (E, B , D oc exp(—icot)) can be 
written as 

(D{1)(E), z < Zi 
D(z, E)= (D(s)(z, E), Zl^z^z2> 

D{2)(E), z>z2 

(13) 

Here and in what follows the z axis is directed 
perpendicular to the interface from the first medium to 
the second one; z 1 2 are the boundaries of the 
inhomogeneity region (z2 — Z\ ~ d0). 

A particular form of the functionals D(2) and is 
defined by optical and symmetry properties of the homo­
geneous media 1, 2 (far away from their boundaries) and, 
accordingly, of the inhomogeneous layer between them. For 
media with SD they contain differentiation operators. For 
example, for homogeneous nonlinear media with SD [9, 10, 
36, 37] 

D{M) (E) = smE + 4tc{)&> WE + x®EE + y^E WE 

+ $>EEE + f*>EEVE + (3) i . (14) 

In the smooth interface model an explicit dependence of 
D on z given by expression (13) is continuous 

#(s)fon, E) =£>(m)(#), m = 1, 2 , 

and sufficiently differentiable. It is clear from here that the 
fields E and B satisfying the Maxwell equations (9) and the 
constitutive relation (13) are continuous and differentiable, 
and, hence, no boundary conditions (excluding, of course, 
conditions at infinity) are required to solve the problem of 
radiation passage from the first into the second medium. 

In the sharp interface boundary model the functional 
relation (13) takes the form 

n f w\ fDwW> z < z ° 
D ^ E ) = \D{2)(E), z > z 0 ' 

(15) 

where z 0 is an arbitrarily chosen location of the interface 
boundary (z\ ^ z$ ^ z2) of the model. It is clear that Z>(0) 
has a discontinuity at z = Zo, and hence, the fields E^°\z) 
and B^°\z), which are the solutions to the equations (9) 
and (15) in the entire space, can have a discontinuity at the 
point z = z0. 

Our task is to find boundary conditions for the fields at 
the point z = Zo, such that in the approximation given by 
the parameter kd0 the fields E^ and E, as well as B ^ and 
B , are equal at the point z = zm provided that they are equal 
at z = Zi, where m = 1, 2 and / = 1 + bXm. 

In the framework of the 'symmetric' approach relation­
ships similar to Eqns (13) and (15) must be constructed for 
D '(z, E) and D (0)(z, E) (with the help of the corresponding 
function D'^, D'{2) a n < ^ ^(s))> a n < ^ f ° r B(z, H) and 
2?(0)(z, H) (through B^9 B(2), and B^) as well. 

Naturally, the procedure described can be performed 
with equivalent (within the accuracy of the notation) results 
for any incident angles in the framework of any of the 
approaches to the electrodynamics of unbounded media 
considered in Section 2. However, for simplicity below we 
will restrict ourselves to the consideration of normal light 
falling onto the interface in the first approximation in terms 
of the parameter kd0. 

3.2 Boundary conditions corresponding to 'symmetric' 
constitutive relations 
One of the significant differences of the 'symmetric' 
approach is that in fact it explicitly assumes the possible 
existence of a surface current of bounded charges at the 
sharp interface between the homogeneous layer (the second 
term in Eqn (3) becomes a ^-function in this case). This, in 
fact, allows one to obtain from Eqns (5), without any 
difficulty, sufficiently correct boundary conditions which, 
as far as we know, are used by all supporters of the 
'symmetric' approach. In the notation of Section 3.1 these 
conditions have the form 

E (o) E 

AO) 

(o) D{L)N(E^)=D{2)N(E^) 

(oh B{L)N(H^)=B{2)N(H^)9 

n x (Hi (0) :0 . 

(16) 

(17) 

Here and in what follows n is normal to the interface 
boundary directed from the medium 1 to the medium 2, 
indices 'n' and 't' correspond to the normal and tangent 
vector components, respectively, and the notation 
£|0) =E<-°\Zo_), Ef] = £ < ° W ) etc is used. 

However, as we pointed out above, introducing quan­
tities M and P1\ strictly speaking, is not fully unique and 
hence the boundary condition (17) is not fully correct (the 
vector HT = BT — 4%Mt cannot be continuous for arbitrary 
choice of M | ) . The cause of this problem is not only that 
the 'symmetric' approach has defects. It is primarily 
connected with an error made in deriving Eqn (17). 

It is the case that in obtaining Eqn (17), we take into 
account, in fact, only a near-surface inhomogeneity of the 
'magnetic moment of the medium' M (the arbitrary nature 
of this notion has already been pointed out in Section 2.2), 
and a possible inhomogeneity of its 'electric moment' PR is 
ignored completely. 

Taking account of the latter (in accordance with 
Section 3.1) changes the right-hand side of Eqn (17): 

„ x ( / / f - < > ) = ^ ( i U (18) 

fLet us recall that unlike M and P', the electric field strength E and 
magnetic induction B are uniquely defined [see Eqn (2)]. 
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where 

;( 2 = - ^ C~AD'dl~(2 ADf dl, (19) 
4TT J Z 1 4TUJZ O + 

and AD' = D'(z, E) - D ( ' 0 ) ( z , # ( 0 ) ) characterises the differ­
ence of the real electric field induction D' near the surface 
from the induction D'^ from the sharp interface boundary 
model. 

Integration of Eqn (19) is carried out over the surface 
(transition) layer depth (excluding the point z = Zo where 
the vector is undetermined), and z 0 is defined by the 
chosen model (sharp) interface between two media. Use of 
Eqn (18) instead of Eqn (17) for the normal incidence of 
light onto a linear isotropic gyrotropic medium (i.e. such 
media as are considered in the majority of papers) for the 
traditional [2, 8, 13, 31, 38] choice of constitutive rela­
tions (6): 

D ' = s'E-igH, B = fiH + igE , (20) 

satisfying the symmetry principle for kinetic coefficients 
[33] and molecular models [3], will only lead to a phase 
change of the reflected and transmitted waves. 

In this simplest case taking account of i\ 2 is equivalent, 
in fact, to a small shift (by an amount smaller than d0) of 
the model interface boundary between the media. That is, it 
is equivalent to a small correction to the optical depth of the 
medium, which takes into account the inhomogeneity of its 
optical properties near the surface [see the end of Section 4 
after Eqns (35) and (36)]. 

Nevertheless, use of Eqn (17) instead of Eqn (18) is 
potentially dangerous, as this can lead, in particular, to 
recurrent new 'contradictions' between different approaches 
to the electrodynamics of anisotropic media with SD. 

Now we turn to the analysis of boundary conditions 
arising in the Landau-Lifshitz approach. 

3.3 Boundary conditions in Landau-Lifshitz 
electrodynamics. Constitutive relation for the surface 
polarisation current 
If one uses the Maxwell equations in the form (1) or (9) 
and carries out the procedure described in Section 3.1, then 
in case of the normal incident of light the corresponding 
boundary conditions take the form [1, 24] 

< D ( 1 ) n < ' ) = D ( 2 ) n ( £ f ) ,(21a) 

« x ( < ) - < ) ) = ^ ( / 1 > 2 ) t , (21b) 

where the surface current of bound charge ix 2 is expressed 
in terms of AD in just the same manner as i[ 2 was 
expressed by AD' in Eqn (19), and 
AD = D(z, E) — D(0)(z, E^) characterises the difference 
between the real electric field induction D near the surface 
and the induction D(0) occurring in the sharp interface 
boundary model. 

It should be noted that by taking into account the 
relationship ofD with j [see Eqn (8)], as well as the fact that 
in the zero approximation with the parameter kd$ the field 
Et°\z) =Et(z)> h 2 c a n be expressed as 

h, 2 = f°~ 4/(0 d£ + P A/(C) d£ , (21c) 

where Aj(z) =j(z9 E(z)) —j\o)(z9 E^ \z)) characterises the 
difference of the real density of polarisation current near 
the surface j = — (ico/4n)(p — E) from the density of 
polarisation current = —(ko/47i)(D(0) — E^) occurring 
in the sharp interface boundary model. 

The expressions (21b) and (21c) in particular demon­
strate that the quantity ix 2 has indeed the sense of a 
'surface' polarisation current which should be assumed 
present if we want to consider the interface between the 
media 1 and 2 as sharp. 

In order to convince ourselves of the full equivalence of 
the boundary conditions (18) and (21b), we note that due to 
Eqns (3), (4), (8) and (19) 

i!, 2 = c[n x [M ( 2 ) (Z / f ) - M{l)(Hf)] } + /{, 2 , (22) 

where M{m)(H) = (B{m)(H) -H)/4n, m = 1, 2. Thus, the 
boundary conditions (18) and (21b) for H{0) and B{0) 

express the same thing with different notation. 
As a result, the question naturally arises as to why the 

'symmetric' and 'asymmetric' approaches often yield essen­
tially different results. It is easy to show that either the 
surface current has been completely ignored [6], or it has 
been wrongly calculated [12]. 

In connection with the above, we stress that although 
from the formal point of view in the Landau-Lifshitz 
approach it is sufficient to use only one constitutive relation 
such as Eqn (10) relating vectors D and E, it turns out to be 
very inconvenient in practice. 

In the case above, two physically different phenomena, 
the polarisation current inside the homogeneous medium 
and that arising close to the boundary, are combined into 
one constitutive relation. They differ not only in 'place of 
appearance', but also in having different causes and 
symmetric properties. 

In particular, as we pointed out above, an inhomoge­
neity intrinsic to interfaces between media with 
SD [9, 10, 25] has a significant influence on the polarisa­
tion current near the surface. The symmetric properties 
inside and on the surface of the media can differ even for 
ideal surfaces [9, 10, 25, 26, 39], let alone for surfaces with 
possible crystal lattice defects, oxides, coatings and so on. 

This emphasises the need for two constitutive relations!: 
one for D inside the medium (assuming homogeneity or, if 
necessary, a weak inhomogeneity of the properties of the 
medium with a scale much greater than that of the 
nonlocality of the optical response of the medium), and 
another for the surface polarisation current ix 2 [9, 10, 25]: 

iu 2 = k{l)S + k{2)SS + k{3)SSS + . . . , (23) 

where vector S = E + 4n(P'ri)n9 in contrast to vectors E 
and P, changes only gradually within the transition layer 
and thus is more convenient for writing down the 
constitutive relation for the surface polarisation current. 
In the expression (23) and below index '0', the notation for 
the sharp interface model, is omitted for brevity. 

It is then convenient to separate the contributions into 
i\ 2 caused by specific surface mechanisms (primarily 
inhomogeneity near the surface and symmetric features 

fThe situation often arises in the case of bounded media with a strong 
SD, when changing from (10) to (11) introduces the need for 
additional boundary conditions [1]. 



330 A A Golubkov, V A Makarov 

of the surface), and the contributions caused by the 
properties of the adjacent media as a whole| . For the 
latter, the corresponding constitutive tensors can be related 
to those characterising the optical properties of the 
homogeneous medium. 

Establishing relationships between these tensors and 
their forms for different media is one of the most important 
tasks in electrodynamics of bounded media. Presently, such 
relationships can be considered partially established only 
for linear (not necessarily isotropic) nonmagnetic media 
which the symmetry principle for kinetic coefficients can be 
applied to: 

(coi) = —ico (s) 1 (1) 
2 n > J p z 

j,p = x,y .(24) 

The symmetric tensor %® in expression (24) character­
ises near-surface inhomogeneity of the dielectric 
permittivity of the medium e, and antisymmetric 
permutation of the first two indices) tensors and y2 

describe gyrotropic bulk properties of the homogeneous 
media 1 and 2, respectively [see Eqn (14)]. Note that the 
relationship E = E(co) Qxp(-icot) was used in Eqn (24). 

The relationship (24) can be obtained by substituting 
the expression for electric field induction in a homogeneous 
linear medium, which satisfies the symmetry principle for 
kinetic coefficients, into the formula for the surface 
polarisation current (see, e.g., [40])J. 

A result similar to relationship (24) was obtained for the 
first time in Refs [9, 10] for the interface between gyrotropic 
and nongyrotropic media (y^ = 0). The symmetric 
approach was used and subsequently (with the help of 
the symmetry principle for kinetic coefficients) a relation­
ship between the constitutive tensors arising with those 
known from the Landau-Lifshitz approach was estab­
lished. 

Using the notation from [9, 10] we have 

which are connected with a 'magnetic moment' of the 
medium M and a near-surface inhomogeneity Pf, respec­
tively. 

One should, however, bear in mind that, as we have 
repeatedly pointed out, such partition is not unique (due to 
the ambiguity of introducing P' and M in the symmetric 
approach), and hence, tensors and yff* taken separately 
have no certain physical meaning. Tensor k^ alone is 
uniquely defined. 

It should be emphasised that it is due to the relation­
ship (24) that polarisation effects during reflection from 
linear nonmagnetic media are prohibited (in the first 
approximation by the SD parameter kd in the case of 
normal incidence of light) [9, 10]. 

4. Reflection of light from a linear isotropic 
gyrotropic medium: comparison of different 
approaches 
As an example of our point of view we consider a 
particular problem of reflection (under normal incidence) 
of a plane wave from an optical system consisting of an 
isotropic gyrotropic nonmagnetic medium without absorp­
tion and a mirror behind it with a reflection coefficient 
R = 1. 

The electric field in vacuum in front of the medium 
(z < 0) is 

= E{ exp (-icot + ikz) + Ex exp (-icot - ikz) , (26) 

where E-x and ET are amplitudes of the incident and 
reflected waves, respectively, and k = co/c. 

The constitutive relations for isotropic gyrotropic media 
in the 'symmetric' and Landau-Lifshitz approaches are 
written, respectively, as [2, 8, 11, 27] 

D' = sfE-igH, B = fiH + igE , 
(s) 

^ X s , \p + {fqj eqzp +fqp eqzj) ' D = eE-4nf0 carl E , 

(27) 

(28) 

where L is the effective size of the near-surface inhomo­
geneity (L ~ d0), xi^ is a symmetric tensor characterising 
the near-surface inhomogeneity of the tensor sf arising in 
the symmetric approach by writing down the constitutive 
relation for Df [see Eqn (6)], / is a gyration pseudotensor 
(y^jpr = ejpqfqr)> a n d ejpr is the Levi-Civita symbol [41]. 

We note that in Refs [9, 10] nonlinear media were also 
considered. According to Eqn (22), tensors k^ that are 
contained in expression (23) were separated into two parts: 

with 8 = 8 fi — g :, g = 2ncof0/c, and \i = 1 (we consider a 
nonmagnetic medium in the present case). 

The eigenwaves in isotropic gyrotropic media are known 
to be circularly polarised and have different wave vec­
tors [10, 12]: 

^ - k n (i) q± ^ = kn± 
(-1) 

where = — 1, 1. 
The electric field can be written as follows: 

1/2 

-ico (e Bto 
ytjzq HqPl...pn 

0 -
(25) 

fThe relationships (22), in particular, clearly demonstrate that 
introducing 'magnetic moment of the medium' in the 'symmetric' 
approach framework selects, in fact, the surface current fraction that 
is essentially caused by the bulk properties of the medium. This is not 
too bad on its own, but it is important to bear in mind the possibility 
of the existence of surface currents i{j2 of a purely near-surface origin 
(which are not directly and uniquely connected with the bulk 
properties of the medium). 

JOne can show that the series of integrals arising will converge, 
although the series for D obtained in [40] can diverge under our 
conditions (inhomogeneity scale D0 ~ D). Physically, this is because the 
surface polarisation current is always limited. 

(2) = e+ET+ exp[—icot + iq+\] + e_ET_ exp[—icot + iq^z] 

-\-e+E+ exp[—icot + iq^l\] + e_E_ exp[—icot + iq^z] 

(29) 

In Eqn (29) e± = (i =F ij)/>/2 are unit vectors with 
different polarisation (i and j are unit vectors aligned 
with axes x and y, respectively, and axis z is normal to 
the interface boundary); Et and E are amplitudes of the 
waves expanding in the medium toward and away from the 
mirror, respectively. 

Naturally, the boundary conditions at the front surface 
of the medium (z = 0) for different angles of approach will 
be different. However, for brevity we write them down in a 
unified form: 
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Ei± + Ex± — Et± + E± , E1± — Ex± — n0(Et± — E±) 

- ^ M 8 ) (£t± +E±)± ag(Et± + E±) . (30) 

Here n0 = s1^2 and Eh r ± = (e±Z?i r ) are amplitudes of 
proper waves. The values of parameters a and P in 
expression (30), a = 0 and P = 0, correspond to the 
boundary conditions obtained in the 'symmetric' approach 
framework from Eqns (16) and (17) using Eqns (26), (27) 
and (29) [8]. 

If one does use Landau-Lifshitz approach and Eqns 
(21) and (23), then taking into account Eqns (26), (28), (29) 
and equality (24), which for the interface between the 
isotropic and isotropic gyrotropic media (where y^ = 0, 
ii]jPr = / o tjpr, and Xjp = $Sjp + Ax{s)Sjz3zp) takes the form 

-ico 

we get the boundary conditions (30) with a = 0 and P = 1 
[9, 10]. In this case they differ from the previous ones in 
having an additional term describing the influence of the 
near-surface inhomogeneity of the electric permittivity of 
the medium, e. 

The case of P = 0 and a = 1 corresponds to completely 
ignoring the surface polarisation current effect [6], and that 
of P = 0 and a = — 1 to the boundary conditions proposed 
in Ref. [12]. 

We will assume that the mirror is attached tightly to the 
medium (z = L, where L is the length of the medium). Then 
the boundary conditions at the rear surface of the medium 
for all four cases will have the form: 

Et± exp f i ^L] + E± exp[ i^ _ 1 ) L] = 0 . (31) 

From Eqns (30) and (31) one can easily find the coefficients 
of reflection for circular polarised waves R±=Er±/El± 

from the system under consideration: 

(1 - n0 - y±) - (1 + n0 - y±) exp(u/Q 
(1 + n0 + y±) - (1 - n0 + y±) exp(uA) 

(32) 

where \j/ = 2kL y/e, and y± = —AnicoPy^/c ± ong 
For a medium with no absorption (Im = Im # = 

Im 8 = 0, y± = —yT, where the asterisk means complex 
conjugation) we obtain in the first approximation by the 
small parameter of spatial dispersion kd (g ~ ky^ ~ kd) 

4g(cosi/f — 1) 
\R±\=1±OLS, S = - (33) 

(1 + e) — (1 — s) C O S l / f ' 

The intensity of the light reflected by the system is 

Wr = (\+adb0)W0 , (34) 

where B 0 = (\E1+\2 - \E{_\2)/2W0 and W0 = (|£1+|2+ 
\Ei_\2)/2 are the incident light ellipticity and intensity, 
respectively. Obviously, b0 can be either positive or 
negative. Moreover, the signs of a, 3 and b0 are fully 
independent. 

Therefore, if one uses the boundary conditions (30) with 
a ^ 0 (i.e. neglects the surface polarisation current [6] or 
uses an insufficiently accurate expression for the latter [12]), 
in a steady-state regime the intensity WY of the reflected 
light can be higher than that of the incident radiation W0, 
which evidently contradicts the energy conservation law. 

We compare now the results obtained by using the 
'symmetric' approach with boundary conditions (16) and 
(17) (a = 0 and P = 0) and the correct Landau-Lifshitz 
approach (a = 0 and P ^ 0). As is seen from Eqn (33), in 
these two cases \R±\ = 1 and hence Eqn (32) can be 
rewritten as 

R± = exp(i<P) . (35) 

Here <P = <Pq + 2pkA characterises phase difference 
between the incident and reflected light at the point 
z = 0, with A = 471Xq S ) / ( 1 £ ) a n d 

tan 0o = -
2n0 sin \j/ 

(36) 
( n g - l ) + (ng + l ) c o s ^ ' 

where \j/ = 2k>JiL with L = L — PA. 
It is seen from Eqns (35) and (36) that the influence of 

the inhomogeneity in the near-surface electric permittivity 
X q \ which is taken into account by the correct L a n d a u -
Lifshitz approach, is reduced for an isotropic medium to a 
change (easily explained in physical terms) in the optical 
length of the medium. (This is equivalent to a small shift of 
its front surface by an amount A). 

The change in the optical length of the medium leads to 
a phase change for the reflected and transmitted waves 
compared with the phases calculated by using the tradi­
tional 'symmetric' boundary conditions (16) and (17) [see 
Eqns (35) and (36) for P = 0]. This is caused by the fact that, 
as was pointed out in Section 3.2, the boundary conditions 
(17) do not fully take into account inhomogeneity of the 
optical properties of the medium inside the layer near the 
surface. 

The shortcomings of the 'symmetric' approach can 
however, be removed if instead of boundary condi­
tion (17), one uses the precise boundary condition (18). 
In that case the results obtained by using the correct 
'symmetric' and Landau-Lifshitz approaches will be 
identical. 

5. Conclusion 
It is clear that the boundary conditions (16) and (18) and 
conditions (21) (each in conjunction with the correspond­
ing constitutive relations and Maxwell equations) reflect 
the existence of one and the same thing, the surface 
polarisation current, and, hence, are essentially equivalent. 

A frequently encountered mistake, which is repeated to 
one or another extent by many people discussing electro­
dynamics of bounded media with spatial dispersion [2, 7, 
14, 23], is reduction of the problem to the question: which 
constitutive relations, symmetric or asymmetric, are correct 
or 'the most' correct? Both are correct, but each of them 
requires its own boundary conditions. 

The reason is that by the intrinsic logic of electro­
dynamics, first come the Maxwell equations, then the 
constitutive relations, and only after that boundary con­
ditions, expressions for energy, Umov-Poynt ing vector 
etc., which are consequences of the Maxwell equations 
and the constitutive relations and thus vary with the latter. 
Moreover, it proves that when considering the boundary 
problems it is convenient and often necessary to introduce a 
new constitutive relation — the equation for the surface 
polarisation current! 

Each of the approaches considered has certain advan­
tages. The 'symmetric' constitutive relations appear to be 
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convenient for considering electrodynamics of moving or 
magnetic media [2, 42]. For solving problems on radiation 
interaction with nonlinear crystals without magnetic struc­
tures, the most effective is the Landau-Lifshitz approach 
[27, 36, 37, 43] complemented, if necessary, by the corre­
sponding constitutive relation (23) for the surface 
polarisation current (see also [9, 10]). 
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