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Abstract. This is a collection of topical hydro dynamic 
p rob lems of different degrees of complexity, which are no t 
r ipe for ma themat i ca l model l ing or for numer ica l calcula
t ions. H in t s for ob ta in ing solut ions are given. At ten t ion is 
concent ra ted on unexpected analogies between p h e n o m e n a 
of different k inds and on establ ishment of new links 
between what are at first sight unre la ted or isolated facts. 

The feeling of mystery is the most 
beautiful feeling that man can experience. 
It is a source of any true art and science. 

One who has never experienced this feeling, 
who does not know what it is to stop and 

think seized in enthralling rapture, is like a 
dead man and his eyes are closed... 

A Einstein 

1. Introduction 
In the last decades the interest in physics has shifted from 
field theory and from elementary part icles to mechanics . 
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Previously regarded as a fully complete b r an ch of k n o w l 
edge, mechanics has unde rgone p ro found changes. 
Gradua l ly all new surprising proper t ies of the evolut ion 
of dynamic systems have become clear and so has the 
decisive role of such an tagon i sms as s tab i l i ty - ins tab i l i ty , 
r a n d o m n e s s - r e g u l a r i t y , con t inu i ty -d i sc re t eness , symme
t r y - a s y m m e t r y , e v o l u t i o n - r e v o l u t i o n , and r ever sib ility -
irreversibility. 

W e can n o w speak of the establ ishment of a new science 
called synergetics which combines m a n y branches of na tu ra l 
sciences ranging from a s t ronomy to biology, and which 
largely relies on hydrodynamics (for the l i terature, see 
Ref. [1]). Convergence of sciences has led to a s i tuat ion in 
which hydrodynamics is becoming pa r t of synergetics. Only 
two divisions of hydrodynamics have become detached 
from the main body : they are physical and compu ta t iona l 
hydrodynamics . Physical hydrodynamics includes kinetics, 
flow of q u a n t u m liquids, relativistic hydrodynamics , and 
p lasma dynamics . 

C o m p u t a t i o n a l hydrodynamics has reached such a stage 
of development in its 40 years of existence tha t if a correct 
ma themat ica l mode l is formulated, it is no t difficult to find 
a me thod for its numer ica l verification [ 2 - 4 ] . Therefore, 
p r o g r a m m i n g and calculat ion have become technical tools 
and a u t o n o m o u s topics, which n o w represent only the final 
stage of the ma themat ica l model l ing process represented by 
the t r iad: e x p e r i m e n t - p h y s i c a l m o d e l - p e r t u r b a t i o n m e t h 
ods. M a t h e m a t i c a l model l ing or ma themat i ca l formulat ion 
of a p rob lem should no t be confused with compute r 
model l ing or s imulat ion, which represents numer ica l cal
culat ion or s imulat ion (involving the choice of an a lgor i thm 
and p rog ramming) . 
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The most powerful compute r s are being ea rmarked to 
tackle p rob lems directly or indirectly related to h y d r o 
dynamics . F o r example, the IBM computer SP1 installed in 
1993 at the Cornel l Univers i ty is in tended to solve the 
p rob lems in hydrodynamics , p lasma physics, analysis of 
po l lu tan t s in air and g round water , development of new 
medicines, p lo t t ing ozone layer maps , and seismic analysis. 

A l though tha t pa r t of unsolved p rob lems which belongs 
to physical hydrodynamics is incomparab ly smaller t han the 
remain ing p rob lems , the conclusion tha t fluid dynamics has 
become completely ma themat i ca l is unjustified. H y d r o 
dynamics is a surprising science and the approaches 
following from it are effective in fields where at first sight 
the condi t ions are unsui tab le for the appl icat ion of the 
hypothesis of a fluid con t inuum. One example is tha t of 
part icles and antipart icles . In spite of the still unfinished 
search for an t imat te r in the nearest stars, a hypothesis of 
cellular s t ructure in the Ga laxy has become popu la r : 
according to this hypothesis , ma t te r is separated from 
ant imat te r by thin surface layers (known as the Leidenfrost 
layers) which are ho t regions where mat te r is ann ih i 
lated [5]. It is pos tu la ted tha t the rad ia t ion emerging 
from such layers is far too weak to be detected. H o w 
long does an ant imeteor i te fly before it b u r n s up? H o w do 
mat te r and an t imat te r interact? 

The p rob lems can be divided into general and specific. 
Pa raph ra s ing P l anck ' s words on the physics of the n ine
teenth century and two unsolved p rob lems (which were the 
finite velocity of light and the discrete na tu re of the rmal 
rad ia t ion) , we can say tha t hydrodynamics is a lmost 
complete and there are only two clouds on its br ight 
hor izon: Reyno lds turbulence and separat ion of flow 
from a body . These are fundamenta l p rob lems and their 
solut ion is of very great impor tance for further development 
of t r anspor t and power industr ies. These p rob lems touch 
u p o n the content of the whole of theoret ical h y d r o d y 
namics . The general p rob lems are well k n o w n [6, 7] and 
there is no need to discuss them here. 

The his tory of identifying specific unsolved p rob lems in 
hydrodynamics began pe rhaps with M a r k Twain when, well 
before the appearance of the theory of sound, he formulated 
the classical p rob lem in acoustics: "The re ain ' t no way to 
find out why a snorer cannot hear himself sno re" . Since 
then p rominen t ma themat ic ians and physicists have m a d e 
up collections of unsolved p rob lems . 

Soon after Hi lber t formulated, at the tu rn of the 
century, his famous 23 prob lems , it became clear tha t 
they have no t paved the road of progress in ma themat i c s 
tha t has led subsequent ly to a revolu t ionary b r e a k t h r o u g h 
in theoret ical physics. A t t e m p t s to formulate the funda
menta l p rob lems in physics have also suffered a fiasco 
because of unpredic tabi l i ty of the twists of imaginat ion in 
science [8]. 

It is k n o w n tha t Einstein, who on top of everything else 
was also a designer and an inventor , was the au thor of the 
wel l -known p rob lem of tea leaves [9]. M a n y famous 
scientists (Ko lmogorov , Kapi tza , Lavrent ' ev , Sakha rov 
[ 1 0 - 1 3 ] and others) have collected and publ ished inter
esting unsolved prob lems . This paper deals with tens of 
unsolved p rob lems in hydrodynamics [14]. 

The unsolved p rob lems no t only help in m a k i n g science 
m o r e systematic or act as a collection of pa radoxes , bu t 
they also are a p r o g r a m m e for act ion. Unso lved p rob lems 
are identified mos t readily in ma themat i c s because they can 

be formulated clearly as theorems. F o r example, the famous 
Kourovka Notebooks, publ ished from 1962 onwards , con
tain abou t 800 such p rob lems on the group theory and some 
of them have a l ready been solved. In hydrodynamics , as in 
physics, the selection of unsolved p rob lems is subjective and 
depends on the adop ted scale of values, which makes it 
difficult to follow a systematic app roach . F o r example, 
Fr i tz Ursell , professor at Manches te r Universi ty, lists ten 
unsolved p rob lems on the theory of waves [15]. 

Only one me thod , tha t of pe r tu rba t ion theory, is 
suitable for analyt ic solut ion of h y d ro d y n ami c prob lems . 
The development of the pe r tu rba t ion me thod and its 
appl icat ions are major recent achievements [16]. Numer i ca l 
m e t h o d s are something special. Their capabili t ies are 
extremely wide. Twenty p rob lems in astrophysics , p lasma 
physics, oceanology, turbulence theory, solid state physics, 
etc. are collected in Ref. [17]. 

Hydrodynamics , like any other b r anch of physics, can 
be divided into five par t s : 

(1) ma themat i ca l model l ing of laminar flow; 
(2) physical and mathemat ica l model l ing of turbulent 

flow; 
(3) theory of flow separat ion; 
(4) theory of stability; 
(5) development of rheological models . 
P rob lems which be long to all these pa r t s are listed in 

Ref. [14]. 
Ou t s t and ing solved p rob lems have usually appeared 

spontaneously . In hydrodynamics they are the following 
discoveries: (1) shock waves, by B R i e m a n n (1860) and 
E M a c h (1987); (2) chaos, by O Reyno lds (1883); (3) the 
b o u n d a r y layer, by L P rand t l (1904); (4) s t range a t t rac tor , 
by E Lorenz (1963); (5) soliton, by M K r u s k a l and 
N Z a b u s k y (1965); (6) fractals, by B M a n d e l b r o t (1967); 
(7) ca tas t rophes , by R Thorn (1970). N o t very r igorously, 
one should include here the development of synergetics by 
H H a k e n , professor at Stut tgar t Univers i ty (1977), and by I 
Prigogine, N o b e l Prize Laurea te . 

H y d r o d y n a m i c s is n o w un th inkab le wi thout the F o k -
k e r - P l a n c k (Planck 1917), var ia t ional averaging (Whi tham 
1965), inverse scattering (Gardne r et al. 1967) and renor -
mal isat ion group (Wilson 1971) me thods . 

All these m e t h o d s and discoveries, enriched with 
phi losophical content , are n o w pa r t of all na tu ra l sciences 
and no t only of physics. These m e t h o d s in conjunct ion with 
the pe r tu rba t ion theory concepts comprise wha t is n o w 
k n o w n as the culture of hydrodynamics. 

There are dangers of reaching two extremal posi t ions in 
selecting unsolved prob lems: one can become a fermatist or 
a provider of p rob lems for doc tora l theses. In contras t to a 
mathemat ic ian or a physicist, who can focus a n a r r o w 
' cone ' of interests on the solution of just one p rob lem, a 
hydrodynamic is t has to master an extremely wide range of 
knowledge in his science and become an encyclopedist . This 
is in fact the mean ing of the p i thy saying: hydrodynamics is 
a humani s t science. 

The aim is not to obta in a solution, bu t to expose the 
p rob lem. If somebody can predict in advance the results of 
a study, then tha t s tudy is no longer a p rob lem. 

Those who h o p e to grasp the N a v i e r - S t o k e s equat ion 
and use it in numer ica l calculat ions, so as to ob ta in results 
ins tantaneously , will be greatly d isappointed . The p a t h to 
the solution of a complex technical p rob lem (such as the 
flow a r o u n d turb ine b lades or an aircraft, flow in a wind 
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tunne l or in a chemical reactor , etc.) is difficult and involves 
m a n y stages: the complete p rob lem is split into several 
par t ia l bu t no less difficult subprob lems and if these are no t 
solved the s tudy s t ra ightaway becomes incorrect . 

The collection of subprob lems presented be low is 
in tended for inquisitive minds of w h o m R e n e Descar tes 
said: "A curious person seeks rare events only to wonder at 
them, an inquisitive person seeks them in order to learn 
abou t them and cease wonde r ing" . 

The in termedia te stage between the solved and unsolved 
p rob lems is occupied by p rob lems for which a ma themat i ca l 
mode l has been constructed and which await their tu rn for 
calculat ions. A con t empora ry collection of such prob lems , 
very interest ing in their content , can be found in Ref. [18]. 
" In exact sciences, as in art , beau ty is the major source of 
light and c lar i ty" (W Heisenberg) . 

2. Construction of models 
One of the sources for new formulat ions of p rob lems is the 
improvement of the existing ma themat i ca l models . F o r 
example, the equat ion of mo t ion of a ma themat i ca l 
pendu lum, represent ing a mater ia l po in t at the end of a 
weightless string, 

d2x{t) 

dt2 
- + x(t) = 0 (2.1) 

where x is the angle by which the string is tilted from the 
vertical, can be ' improved ' by a variety of me thods . The 
range of validity of the ma themat i ca l mode l in te rms of the 
values of x (0) is widened slightly by inclusion of the 
following nonl inear term: 

d2x 

~d^ 
1 * 

+ x - - x = 0 

A much m o r e fundamenta l change to 

- + sin x = 0 
d2x 

~d? 

(2.2) 

(2.3) 

makes it possible to extend the range of validity of the 
above equat ion to all values of x (0 ) . 

The ma themat i ca l mode l represents simplification of a 
real s i tuat ion. I ts validity depends on the targets which are 
set. F o r example, the oscillation per iod can be found from 
any one of Eqns (2 .1 ) - (2 .3 ) . However , the number of 
oscillations unt i l the pendu lum stops cannot be found at 
all from these equat ions and one has to consider friction. In 
the linear approx imat ion , we then have 

d2x dx 
——y + k — + x 
dt2 dt 

0 . (2.4) 

The roll ing and sliding friction in a jo in t is p ropor t iona l , 
apar t from the sign, to the load, i.e. (dx/dt)2. W h e n the 
values of | d x / d / | are large, m o r e exactly, when the 
Reyno lds number Re is large, the ae rodynamic resistance 
force is also large and p ropo r t i ona l to the square of the 
velocity (dx/dt)2. However , it is m o r e correct to consider 
the coefficient k in E q n (2.4) as dependent on |cbc/df|. But 
this mode l also does no t cor respond fully to reality. 

A pendu lum does no t move in a med ium at rest, bu t in a 
pe r tu rbed med ium, i.e. in a wake . Therefore, a m o r e 
r igorous mode l should t ake account of the memory , i.e. 
of the dependence on the prehis tory of a process . This 
i l lustrates the t ransi t ion from a simple oscillator to m o r e 

complex unsolved p rob lems in hydrodynamics . The specific 
ma themat i ca l mode l becomes m o r e complex if a new 
hi ther to ignored effect is included. 

One can t ry to include stretching of the string, 
p ropo r t i ona l to (dx/dt)2, the weight of the string, etc., 
bu t one must recall here the familiar aphor i sm tha t " a n y 
equat ion longer t han 5 cm is mos t likely w r o n g " . 

There are control led and uncont ro l led processes. If the 
strain (effect) / depends on the force (cause) F in such a way 
tha t dl/dF = 0 ( 1 ) , the process is control led (Fig. l a ) . If the 
derivative dl/dF is large, then the process is uncont ro l led 
(Fig. lb ) . Unso lved p rob lems usual ly represent u n c o n 
trolled processes. The simplest familiar example of such 
a process is the growth of a tear in a newspaper sheet. W h e n 
the force is applied to the edges of an initially formed tear 
(Fig. 2a), the process is control led, bu t when the force is 
applied to the edges of the sheet (Fig. 2b), the process is 
uncontro l led . 

1(0) 

0 F 0 F* 

Figure 1. Controlled (a) and uncontrolled (b) processes. 

Figure 2. Evolution of a tear in a sheet of paper, showing examples of 
controlled (a) and uncontrolled (b) processes. 

H y d r o d y n a m i c s s tands out from the whole of physics 
by the nonl inear i ty of its p rob lems . Even the simplest 
approx ima t ions such as the mode l of an incompressible 
N e w t o n i a n fluid includes nonlineari t ies of the following 
types: 

(1) convective — the term (w«V)w in the N a v i e r - S t o k e s 
equat ion governs the acceleration of a part icle, (u is the 
part icle velocity); 

(2) rheological — the t r anspor t coefficients are functions 
of pressure and t empera tu re ; 

(3) covar ia t ional , which represents the degree of correla
t ion between the velocity of a fluid in different pa r t s of 
space. 

2.1 Modell ing principles 
H y d r o d y n a m i c s is a science of modell ing. The whole of its 
history, beginning from He lmhol t z and even N e w t o n , 
confirms this. There are three mutua l ly related types of 
modell ing: experimental , physical , and mathemat ica l . 
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Experience is the foundat ion stone of any science, even 
as abst ract as mathemat ics . The exper iments of F a r a d a y , 
Michelson, Her tz , and Mende l have been the seeds for such 
sciences as e lectrodynamics, theory of relativity, q u a n t u m 
mechanics , and genetics. 

One can distinguish between several types of scientific 
experiments . If there is no hypothesis abou t the na tu re of 
the investigated p h e n o m e n o n , then one would speak of an 
exploratory experiment . If there is a hypothesis , then an 
experiment is carried out in order to verify it and it can be 
called a control experiment . Finally, if there are several 
hypotheses , an experiment is performed to select one of 
them and it is called a conclusive experiments. 

In addi t ion to dividing experiments in accordance with 
their aim, in hydrodynamics one can divide them into 
quantitative and qualitative. Quant i ta t ive experiments yield 
numer ica l da ta , whereas qual i ta t ive exper iments are used to 
determine the 'flow geomet ry ' , for example, the field of the 
p a t h s of mo t ion of fluid part icles. The results of quan t i 
tat ive experiments are presented in the form of g raphs or 
tables and those of qual i ta t ive experiments are i l lustrated by 
p h o t o g r a p h s or drawings . A quant i ta t ive experiment is 
usual ly of the 'black b o x ' type: only the echo signal of a 
certain action on an object is recorded bu t the na tu re of the 
object remains u n k n o w n . Qual i ta t ive experiments are of 
great impor tance for hydrodynamics as a science. 

The latter include wha t are k n o w n as 'experiments in a 
bath". They are unpre ten t ious and inexpensive, and they can 
be carried out at h o m e or in the physical l abora to ry of one 's 
insti tute. As one p rominen t Amer ican experimentalist 
R W o o d said, they can be done with a stick, string, sealing 
wax, and mica. However , the scientific impor tance of the 
experiments in a ba th , which are represented extensively in 
this paper , is difficult to overest imate. 

A collection of ou t s t and ing scientific experiments on 
fluid flow, which could be regarded as a ca ta logue of the 
gold t reasure of hydrodynamics was m a d e by Mi l ton Van -
Dyke , professor at Stanford Universi ty . H e asked famous 
experimental is ts all over the wor ld to send p h o t o g r a p h s of 
the most interest ing cases of flow. This enabled him to 
publ ish, in 1982, An Album of Fluid Motions [19], a 
masterpiece of b o t h scientific and popu la r l i terature on 
hydrodynamics . 

Industrial experiments are m o r e widely k n o w n than 
scientific ones. They are carried out in wind tunnels , on 
benches , in t anks , and in channels at the request of a design 
depar tment . Usua l ly industr ia l experiments are quant i ta t ive 
and their aim is to establish the op t imal shape of an aircraft, 
a rocket , a ship, or a tu rb ine b lade . 

A ma themat i ca l mode l is based on a physical mode l 
(deduced from first principles of physics) and a qual i ta t ive 
experiment . The simplest s t ructure of scientific and technical 
re la t ionships in hydrodynamics is shown schematically in 
Fig. 3. The link between qual i tat ive experiment and m a t h 
ematical mode l represents the t ransi t ion from contempla t ion 
to scientific unde r s t and ing of a p h e n o m e n o n . Cons t ruc t ion 
of a ma themat i ca l mode l represents the strategy of a 
numer ica l calculat ion, bu t no t its per formance [20]. 

Like the theory of relativity, the theory of ma themat ica l 
model l ing is the cut t ing edge of phi losophical p rob lems in 
hydrodynamics and can be divided into general and special. 
Rheologica l models of a n o n - N e w t o n i a n fluid are devel
oped on the basis of the general theory. The special theory 
deals with con t inuous N e w t o n i a n media . U n d e r the 

Qualitative Physical 
experiment model 

\ 
Asymptotic Mathematical 

analysis model 

/ 
Topological Numerical 

analysis experiment 

Quantitative 
experiment ADS 

Numerical 
calculation D D 

Empirical 
methods 

Figure 3. Structure of scientific and technical relationships. Here, ADS 
is an automated design system and DD is a design department or 
bureau. 

condi t ions no t very different from those on the Ea r th , 
i.e. those dealing with the pract ical requi rements of aircraft 
const ruct ion and shipbuilding, the flow of a con t inuous 
med ium obeys the N a v i e r - S t o k e s (NS) equat ion . In the 
case of an incompressible fluid which is no t subject any 
external forces, this equat ion is 

— = — V p + v V V 
at p 

V-u = 0 (2.5) 

where p is the pressure , p is the density, v is the k inemat ic 
viscosity, and t is t ime. 

The Euler (E) equat ion is obta ined if we assume 
formally v = 0. W h e n the N S equat ion is converted to 
its canonic form, we go over from physical to ma themat ica l 
model l ing and we meet immediately the familiar difficulties: 
the solut ion of the N S equat ion cannot be obta ined for 
sufficiently large Reyno lds n u m b e r s Re and the E equat ion 
has an infinite set of solut ions, whereas the P rand t l 
boundary- layer equat ion does no t always have a solution. 

In the limiting case when the Reyno lds number 
Re = u^l/v (WQO is the velocity of h o m o g e n e o u s free-stream 
flow and / is a typical dimension of the b o d y in the s t ream) 
is small, the N S equat ion reduces to the Stokes (S) equat ion . 
In the other limiting case when Re > 1, the N S equat ion 
reduces to the E equat ion . The reality is no t as simple: there 
is a large number of differential, integral , and in tegro-
differential equa t ions which cor respond to asymptot ic 
submodels of hyd rodynamic p h e n o m e n a . Fig. 4 shows 
only some of these equat ions . The designat ions used in 
this figure are as follows: P s tands for the P r a n d t l 
boundary- layer equat ions , N S are the averaged N S equa
t ions, N S ' are the reduced (parabol ised, hyperbolised, etc.) 
N S equat ions , A T are the asymptot ic theory equa t ions 
(linearised N S equat ions , equa t ions of interact ion, equa 
t ions of marg ina l separat ion, etc.), L is used for the Laplace 
equat ions , L ( D ) is the Laplace equat ion with discontinuit ies 
(slip surfaces), EVS, E C D , and E F S are integrodifferential 
equa t ions for the evolut ion of a vor tex sheet, of a contact 
discontinuity, and of a free surface. 

Figure 4. Equations of fluid dynamics (explanations in text). 
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The points , lines, and surfaces on which the solution is 
no t smooth are called folds. It is par t icular ly impor t an t to 
mon i to r the correctness of a ma themat i ca l mode l in the 
vicinity of folds where the nonl inear i ty is ' concent ra ted ' . A 
correct ma themat i ca l mode l should have local asymptot ic 
expansions near all the folds. 

Unfor tuna te ly , these expansions are not always k n o w n . 
This is, in par t icular , the reason why var ious empirical 
principles are used widely in hydrodynamics . The principles 
of indeterminacy p rohib i t s the use of determinist ic calcula
t ion m e t h o d s in regions where the flow is chaotic; this 
principle justifies in t roduct ion of such 'fuzzy' no t ions as 
separat ion, turbulence, etc. The principle of maximal 
simplicity pos tu la tes the m i n i m u m n u m b e r of separa t ions 
on a smooth surface, boundedness of the solut ion (the 
K u t t a and B r i l l o u i n - Villat condi t ions) and the min imal 
singularity in the solution of the p rob lem by the m e t h o d 
of deformed coordina tes (the Lighthil l rule). The principle 
of convergence implies tha t bo th experiments and numer ica l 
calculat ions are repeatable and reproducible . The principle 
of forbiddenness imposes familiar physical limits from above 
and be low on hyd rodynamic quant i t ies and on the s p a c e -
t ime scale of flow; for example, the concept of a con t inuous 
med ium, i.e. the N S equat ion , b reaks down at distances of 
the order of 0(Re~l) and after t ime intervals O ( T ) , where T 
is the mean free t ime. The principle of extremal correspon
dence implies tha t a ma themat ica l mode l should be reduced 
to a k n o w n mode l for the limiting values of the pa rame te r s 
0, 1, or oo; this can be used as a criterion in selection of 
models suitable in pract ice and its effectiveness has been 
demons t ra ted in the selection of quan tum-mechan ica l 
theories . 

2.2 Perturbation methods 
Asympto t i c analysis of the correctness of a ma themat ica l 
mode l is based on pe r tu rba t ion m e t h o d s suitable for the 
solut ion of the equat ion f(x; s) = 0 when the pa ramete r s 
can be regarded as small (e —> 0) or large (e —> oo). One 
case goes over to the other by, for example, the subst i tut ion 
5 = l / e . 

Pe r tu rba t ion m e t h o d s are the founda t ions of any theory 
( those of Euclid, N e w t o n , Da rwin , Smith, M a r x , Einstein, 
Vernadski i , etc.) because each of them represents ideal
isation of an actual p h e n o m e n o n , p roposed on the 
assumpt ion tha t some of the determining pa rame te r s go 
to their l imiting values (e = 0). Pe r tu rba t ion m e t h o d s are 
no t a t r ibute to fashion and they do no t represent abs t ract 
ma themat i ca l appa ra tus , bu t they are the tools of a na tu ra l 
scientist. They have the dominan t posi t ion bo th in 
fundamenta l research and in appl icat ions , and they com
pete quite successfully with calculat ion me thods . 

The correctness of pe r tu rba t ion me thods , which first 
appeared at the beginning of the nineteenth century, has 
never been proved. This is the d r a m a of ideas: physicists 
employ m e t h o d s which are no t accepted by ' pu re ' m a t h 
ematic ians (purists). 

Pe r tu rba t ion m e t h o d s were no t the result of a sudden 
discovery of one mathemat ic ian . A m o n g the m a n y scientists 
who worked on these m e t h o d s one should ment ion three 
p rominen t cont r ibu tors . 

The F rench as t ronomer , mathemat ic ian , and physicist 
Pierre Simon Laplace ( 1 7 4 9 - 1 8 2 7 ) used extensively series 
in his work . H e solved the p rob lem of equil ibrium of a large 
weightless d rop on a p lane and he was the first to use 

pe r tu rba t ion me thods . This was an intuit ive b r e a k t h r o u g h 
into the u n k n o w n . Laplace gave an amazingly rich 
descript ion of pe r tu rba t ion me thods : " a ma themat ica l 
me thod is the m o r e precise the greater is the need for i t " . 

The F rench mathemat ic ian Augus t in Louis Cauchy 
( 1 7 8 9 - 1 8 5 7 ) , one of the founders of ma themat ica l a n a 
lysis, p roposed a clear theory of convergent series indicat ing 
the criteria for their convergence. Na tu ra l ly , divergent series 
were at tha t t ime of no interest to Cauchy . His au thor i ty was 
so great tha t pract ical appl icat ions of asymptot ic expansions 
were delayed for a long t ime. At present the asymptot ic (and 
as a rule) divergent series are an impor t an t investigative tool . 

The idea of deformed coordina tes dates back to the 
ou t s t and ing F rench mathemat ic ian Jules H e n r i Po incare 
( 1 8 5 4 - 1 9 1 2 ) . H e obta ined a uniformly applicable a s y m p 
tot ic expansion by al tering slightly the coord ina te x and 
also by expanding it as an asymptot ic series. Thus , together 
with an expansion for an independent variable, 

fix; e) =f0(s) + eft (s) + s2f2(s) + ... , 

he constructed a series for the coord ina te 

x(s; s) = s + sxi(s) + s2x2(s) + ... , 

where s is a new coord ina te replacing x. The functions 
xn(s) represent ing the deformat ion of the coord ina te x , are 
no t a pr ior i k n o w n and have to be found successively in the 
course of solut ion of the p rob lem. 

The his tory of pe r tu rba t ion m e t h o d s is marked by two 
t r i umpha l mo men t s . 

In 1846 the F rench as t ronomer , a Fore ign Cor r e spond 
ing M e m b e r of the St Pe te rsburg Academy of Sciences, 
U r b a i n Leverrier discovered a planet , later called N e p t u n e . 
The discovery was unusua l : Leverrier did no t use a 
telescope, as was done always by his predecessors in 
similar discoveries. H e found a new planet 'at the tip of 
a p e n ' by investigating perturbations which this myster ious 
invisible object caused in the mo t ion of ano ther planet — 
U r a n u s . In the same year 1846 the coord ina tes calculated by 
Leverrier were used by the G e r m a n as t ronomer J o h a n n -
Gal le to discover (with a telescope!) the hi ther to u n k n o w n 
planet . 

This was the first t r i umph of pe r tu rba t ion me thods . The 
second was the discovery in 1905 (once again 'at the tip 
of a pen'!) by the p rominen t G e r m a n hydrodynamic is t 
Ludwig P rand t l ( 1 8 7 5 - 1 9 5 3 ) of wha t we k n o w as the 
b o u n d a r y layer — a thin region adjoining the surface where 
the velocity of flow of a low-viscosity fluid changes very 
rapidly. This discovery was of very great impor tance for the 
subsequent development of the t r anspor t and power 
industr ies. 

T o d a y not only physicists, bu t also mathemat ic ians 
denote by b o u n d a r y layer a n a r r o w region or a small 
interval where a function undergoes rapid changes. 

M a n y pe r tu rba t ion m e t h o d s have been developed: they 
include the me thod of ma tch ing asymptot ic expansions , the 
me thod of mult iple scales, the m e t h o d of deformed coor 
dinates , etc. There are so m a n y of them tha t physicists j o k e 
tha t " there are as m a n y pe r tu rba t ion m e t h o d s as there are 
p r o b l e m s " . 

A m o n g all the possible pe r tu rba t ion m e t h o d s the first 
place in hydrodynamics is occupied by the me thod of 
ma tch ing asymptot ic expansions , which has changed 
from a pure ly ma themat i ca l too l to a category of physical 
th inking. The me thod of ma tch ing asymptot ic expansions is 
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effective when there are at least two different, in order of 
magni tude , scale lengths which define two regions: outer 
and inner, and in each of them a specific asymptot ic 
expansion is valid. 

Imagine tha t you have a p h o t o g r a p h (outer region) with 
an unclear bu t impor t an t detail, which because of its small 
size looks like a singular poin t (inner region). If this region 
is viewed with a magnifying glass, i.e. under mult iple 
magnif icat ion (stretching of coordinates) , then somewhere 
at its per iphery we can see the details which are hard ly 
dist inguishable in the vicinity of this singular poin t in the 
unenlarged p h o t o g r a p h . This is the essence of the m e t h o d of 
ma tch ing asymptot ic expansions. 

2.3 The Prandtl paradigm 
The limit Re —> o o is special. P r and tPs concept of a 
b o u n d a r y layer, valid for nonsepara ted flow pas t a 
body , can be generalised in a na tu ra l m a n n e r to separated 
flow. Fig. 5 shows schematically the pa t t e rn of l imiting 
flow past a schematic b o d y with a spike. There are three 
characterist ic regions: (1) thin viscous layers where the P 
equa t ions are valid (1A are b o u n d a r y layers; IB are mixing 
layers; 1C is a wake) ; (2) vicinities of folds, where the P and 
E equa t ions are no t valid and a m o r e careful appl icat ion of 
the N S equat ion is necessary (2A and 2B are the vicinities 
of the lines of separat ion from a smooth surface and of a 
corner edge; 2C and 2D are the vicinities of a line of 
r ea t t achment to a smooth surface and to a corner edge; 2E 
is the vicinity of the tip of a cavity or a closed circulation 
zone; 2F is the vicinity of a spiral core of a tangent ia l 
discontinuity, a line where discontinuit ies cross, etc.); (3) a 
region of ideal fluid flow (3A is a region of vortex-free 
flow; 3B is a region of vor tex flow). Since in the limit 
Re —> o o the thicknesses of regions 1 (where small a m o u n t s 
of mass , m o m e n t u m , and energy are concent ra ted) and the 
dimensions of local zones 2 vanish, it follows tha t the 
b o u n d a r y layers become coincident with the surface of a 
b o d y and the mixing layers contrac t into vor tex surfaces of 
discont inui ty of the tangent ia l componen t of the velocity. 
Therefore, in a certain range of scales, which are no t too 
small, so as no t to include viscous layers, and not too large, 
so tha t the diffusion of the wake is still u n i m p o r t a n t (for 
example, on the scale of the b o d y which is considered here), 
the flow cor responding to the limit Re —> o o can be 
regarded as in viscid. The E equa t ions apply in regions 3. 
F l o w subregions are separated by tangent ia l discont inui ty 
surfaces: a contact discontinuity, which separates l iquids 
with different densities and which appear in media 
consist ing of two or m o r e phases ; a vortex sheet, 
separa t ing pa r t s of the same liquid (which is a special 

Figure 5. Pattern of flow of a low-viscosity fluid past a schematic 
body. 

case of a contact discontinui ty); zfree surface, separat ing a 
region of flow from a region at the b o u n d a r y of which the 
pressure is assumed to be given. At a contact discont inui ty 
we have zero flow velocity on b o t h sides and the pressure 
j u m p is equal to the effective pressure represent ing the 
action of the surface tension forces. The pressure is 
con t inuous across a vor tex sheet. On a free b o u n d a r y 
the flow velocity is zero on the mov ing fluid side and also 
there is a given pressure which is generally a function of the 
surface coordina tes and t ime. In a special case a free 
surface is a b o u n d a r y of an isobaric region. Surface forces 
m a y act on a free b o u n d a r y . 

A vortex sheet and a free b o u n d a r y are defined for a 
compressible fluid also as surfaces of discont inui ty of the 
tangent ia l componen t of the velocity. The density of a gas 
has a discont inui ty at a vor tex sheet. 

The solution of the E equat ion is piecewise analytic: 
pa r t s of space are separated by piecewise analytic surfaces 
of discont inui ty of the velocity (slip surfaces, weak 
discontinuit ies, and shock waves) and functions or their 
derivatives suffer a j u m p of the first k ind when they cross 
these surfaces. Fo lds are those lines on which the surfaces of 
discont inui ty are nonanaly t ic . The folds form as inter
sections of discont inui ty surfaces with one ano ther and 
with the b o d y past which the flow occurs. In their tu rn , the 
folds are also piecewise analytic. The poin ts at which they 
are nonana ly t ic are singularities. The folds and the 
singularities m a y appear , merge, or escape to infinity as 
t ime passes. It is no t yet clear which singularities of 
functions and surfaces can exist at the folds. These 
quest ions are being investigated by coord ina te expansions 
within the f ramework of the E equat ion , and by the 
m e t h o d s of ma tch ing asymptot ic expansions on the basis 
of the N S equat ion . There is a close relat ionship between 
these two theories: the internal limit of an expansion in the 
theory of flow of an ideal fluid is equal to the external limit 
of an expansion in the theory of a viscous fluid. 

2.4 Hierarchy of models 
Three main requi rements have to be satisfied by a 
ma themat i ca l model : it mus t agree with experiments , it 
mus t also agree with the initial physical model , and the 
p rob lem mus t be well-posed. A p a r t for a qual i ta t ive 
similarity between the ma themat i ca l mode l and the flow 
pa t t e rns observed in wind and water tunnels , a quant i ta t ive 
agreement is necessary (within the limits of a certain error) 
between the calculated and real characterist ics: the mode l 
must satisfy pract ical requi rements . At present , the demand 
tha t a p rob lem be well-posed is much weakened by the 
absence of suitable theorems. It is pos tu la ted tha t a 
(piecewise analytic) solut ion does exist. The solution 
need not be un ique , since this can be checked exper imen
tally, and it need no t be correctly posed in the H a d a m a r d 
sense. 

It would seem tha t when the full p rob lem of flow past a 
b o d y is split into a n u m b e r of auxiliary p rob lems in 
accordance with the N S — > E + P + N S r scheme, we can 
solve the E equat ion and thus find the b o u n d a r y condi t ions 
for the P equat ion , which can then be solved, and the 
solution can be considered in specific regions on the basis of 
the reduced N S ' equat ions . However , this simplistic p r o 
g r a m m e would fail: a mode l of an ideal fluid ( 'dry wa te r ' 
model ) is no t logically closed. The difficulty is as follows: in 
the course of formal pass ing to the limit Re —> o o the higher 
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derivative is lost from the N S equat ion and this means the 
loss of informat ion abou t flow: abou t smoothness , u n i q u e 
ness, asymptot ic behaviour at large distances or after a long 
t ime, and sometimes even abou t the existence of a solution. 
The 'dry wa te r ' mode l does no t have a un ique solution even 
when it is supplemented by reasonable condi t ions (the 
K u t t a condi t ions tha t the pressure should be finite at 
the corner edge of a b o d y in a flowing fluid, the 
Br i l l ou in -Vi l l a t condi t ion tha t the pressure gradient 
should be finite on the line of separat ion of a tangent ia l 
discont inui ty surface from the smooth surface of a body , 
and the Batchelor condi t ion, which represents an equat ion 
for de terminat ion of the vorticity in a closed circulation 
region). W e thus find tha t in the 'dry wa te r ' mode l we 
cannot obta in a un ique solution a pr ior i , because wi thout 
diagnosis of the b o u n d a r y layer the posi t ions and n u m b e r s 
of po in ts of separat ion, i.e. of slip surfaces s tar t ing at a 
body , remain u n k n o w n . The two prob lems , i.e. the solution 
of the E and P equat ions , are so closely related tha t the 
formal ( though correct from the poin t of view of the 
pe r tu rba t ion me thod ) separa t ion of them has to be 
empirical . The solution of the E equat ion requires add i 
t ional assumpt ions abou t the number and sometimes also 
abou t the shape of the discont inui ty surfaces, and also 
abou t the presence of closed vor tex zones adjoining the 
surface of a b o d y in a flowing fluid. 

However , separat ion of the p rob lem results in a 
fundamenta l simplification: turbulence typical of low-
viscosity flow is concent ra ted in thin layers. In h y d r o 
dynamics a stochast ic layer coincides with a b o u n d a r y layer 
and a mixing layer [21]. This is the physical reason for the 
instabili ty of discont inui ty surfaces. In the absence of 
stabilising factors the slip p lanes have a He lmhol t z 
instabili ty or, in other words , a L y a p u n o v instability. 
The ' instability in the smal l ' changes the 'dry wa te r ' 
flow pa t t e rn if the frequency of f luctuat ions is high or if 
their ampl i tude reaches finite values. The thin viscous layer 
concept becomes invalid even earlier, when the ampl i tude of 
displacements of a discont inui ty becomes of the same order 
of magn i tude as the thickness of a mixing layer. 

Essentially ill-posed and condi t ional ly ill-posed p r o b 
lems are very different from the ma themat ica l po in t of view. 
The absence of a solution of an ill-posed p rob lem is 
evidence tha t the mode l is no t selected correctly and 
tha t the p rob lem has to be reformulated. However , this 
classification is speculative unt i l a criterion is found h o w to 
distinguish between these two types of ill-posed prob lems . 

A specific mode l can be improved by in t roducing a new 
effect ignored at the preceding stage. The most striking 
example of such an improvement is the hierarchical series of 
ma themat i ca l models used in the theory of a low-aspect-
rat io wing, k n o w n as a small-elongation wing in Russ ian 
terminology, where e longat ion is a pa rame te r tha t deter
mines the extent of the wing in the direction of free-stream 
flow [22]. A mode l wi thout flow separa t ion (Fig. 6a; here 
and later the cross sections of a wing are shown) leads to 
infinite velocities at the wing edges (v = 0, z = ± 1 ) , since 
the K u t t a condi t ion is not satisfied. The Legendre mode l 
(Fig. 6b) resolves this conflict, bu t it leads to an ambiguous 
solution because of a pressure discont inui ty on the AF line 
which jo ins a poin t vor tex at a poin t F to the wing 
edge A [23]. The ' v o r t e x - c u t ' scheme (Fig. 6c) avoids this 
ambigui ty , bu t there is then an indeterminacy in respect of 
the shape of A F [24]. A separat ion mode l with spiral vor tex 

Figure 6. Patterns of flow past a low-aspect-ratio wing, deduced on 
the basis of nonstat ionary flow analogy. 

sheets s tar t ing at the edges [25] is free of this indeterminacy 
(Fig. 6d) bu t it predicts an infinite pressure gradient on 
app roach to the edge a long the top surface of the wing. 

Numer i ca l experiments , which represent the ' head-on ' 
solut ion of the E or N S equat ions , occupy a special place in 
the h ierarchy of m e t h o d s used to solve h y d rodynamic 
p rob lems . In the p re -compute r era such numer ica l experi
men t s were pioneered by giants such as M a s a u [26], 
Rosenhead [27], Westwater [28], K a d e n [29], and 
F e r m i [30]. Numer i ca l experiments should be considered 
no t only as a means for ob ta in ing quant i ta t ive results, bu t 
also of determining whether the p rob lem is well-posed. Such 
'brute force ' m e t h o d s can only give qual i ta t ive results. The 
range of appl icat ions of numer ica l exper iments in h y d r o 
dynamics has shrunk under the influence of our expanding 
knowledge of the proper t ies of flow of low-viscosity fluids. 

2.5 Paradoxes 
A p a r a d o x is an unexpected conclusion tha t is in s tark 
contras t to wha t is generally accepted. The pract ical value 
of pa radoxes , which are the driving engines of progress , is 
tha t they force one to t ake a fresh look at the foundat ions 
of an older theory and to develop a new improved theory 
and sometimes a new science. The special theory of 
relativity represents the resolut ion of the p a r a d o x of the 
finite ra te of informat ion transfer and q u a n t u m mechanics 
is a resolut ion of the p a r a d o x of discont inui ty of signals in 
the microscopic world . Pa radoxes have given rise to the 
physics of e lementary part icles and to m o d e r n cosmology, 
and have s t imulated the development of m o d e r n m a t h e 
matics . 

" T h e facts tha t we come up against seem at first 
completely pa radoxica l from the ma themat ica l poin t of 
view, an can only be examined on the basis of purely 
physical cons ide ra t i ons" (J H a d a m a r d ) . 

If we can distinguish a tentat ive judgement based on 
experiments from a theoret ical one based on ma themat ica l 
model l ing of a p h e n o m e n o n , we can classify pa radoxes into 
three types. 

Firs t , there are the conflicts between the generally 
accepted and new theoret ical p ropos i t ions . These are 
pe rhaps the simplest pa radoxes (of the ' t h e o r y - t h e o r y ' 
type) and they arise as a result of improvement of a 
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ma themat i ca l mode l and calculat ion me thods . The p a r a 
doxes of n o n u n i q u e solut ions and of infinity are a m o n g 
them. 

The second type of p a r a d o x involves a conflict between 
wha t is generally accepted and new exper imental evidence 
( ' exper ience-exper ience ' ) . Examples of such pa radoxes are 
those tha t concern symmetry. Symmetry b reak ing or 
appearance , considered from the poin t of view of syner
getics, is a t ransi t ion to a different (stable) level of 
organisa t ion which occurs under the act ion of all small 
asymmetr ic pe r tu rba t ions present in flow. This is, of course, 
a far too general explanat ion and each specific p rob lem 
requires a detailed analysis. Ano the r example is the Eiffel 
p a r a d o x : the drag of a sphere decreases abrup t ly (by a 
factor of 4 - 5 ! ) with increase in the velocity near the 
'crit ical ' Reyno lds number , which is approximate ly 
150 000. This observat ion, which is in conflict with our 
expectat ions, is also associated with a t ransi t ion of flow to a 
different level of self-organisation, namely from laminar to 
turbulent flow. 

Pa radoxes of the thi rd type ( ' t h e o r y - e x p e r i e n c e ' or 
' e x p e r i e n c e - t h e o r y ' ) are characterised by a conflict 
between the theoret ical results and what we call experi
ence, intui t ion, or simply c o m m o n sense. The most famous 
of the pa radoxes of this type is the E u l e r - d ' A l e m b e r t 
p a r a d o x of zero resistance of a b o d y moving in a frictionless 
fluid. It can be regarded as one of the symmetry pa radoxes : 
if the flow well ahead of a b o d y is the same as far behind it, 
it follows from the law of conservat ion of m o m e n t u m tha t 
the resistance force vanishes. In real flow (in accordance 
with our experience) the symmetry is always b roken : a wake 
forms behind a b o d y and it represents a s tagnant ' s t ream' of 
a fluid. 

Con templa t ion is a pr imit ive form of cognit ion, whereas 
identification of cont radic t ions of pa radoxes is a complex 
gnosiological process . Everyone facing a discrepancy asks 
the quest ion " W h y ? " " W h y does an apple fall d o w n ? " was 
the quest ion asked by N e w t o n and the answer was the law 
of universal gravity. 

Unreso lved p rob lems are unsolved pa radoxes . Unl ike 
solved pa radoxes , which are n o w par t of history, the 
unsolved ones still excite the minds of scientists. A p a r a d o x 
is wha t is bo rn as a p a r a d o x bu t dies of banal i ty . 

3. Self-similar flow 
'Self-similarity' is called ' au to-model l ing ' in Russ ian . The 
Russ ian phrase is poor ly m a d e up . The first par t , ' a u t o ' , 
t hough of foreign origin, does reflect correctly the n a t u r e of 
the p h e n o m e n o n , whereas the second pa r t is completely out 
of place. It is bet ter to follow the English te rminology and 
speak of 'self-similarity'. Unfor tuna te ly , ' au to-model l ing ' is 
n o w cus tomary in Russ ian and it would be impossible 
(rather than difficult) to alter it. 

Self-similar flow is vir tually an in termedia te a sympto te 
of real flow [31 - 3 3 ] . One can say tha t real flow a t ta ins the 
self-similar regime in a certain s p a c e - t i m e interval only in 
the sense tha t real flow is described by the self-similar 
approx ima t ion subject to a certain error . The influence of 
non-self-similar factors (counterpressure , asymmetry , vis
cosity, other real proper t ies of a gas, etc.) is impor t an t over 
short and long t imes and par t icular ly near singularities of 
flow and at infinity. If the b a c k g r o u n d of non-self-similar 
factors is small, the hypothesis of self-similar flow is on the 

whole valid, subject to the addi t iona l assumpt ion tha t the 
flow is laminar , bu t this has to be checked experimentally. 

Self-similar solut ions are exceptionally impor t an t 
because they are a lmost the only type of initial da ta in 
the Cauchy p rob lem describing evolut ionary processes in 
the dynamics of l iquids and gases. F o r example, at the 
m o m e n t of appea rance of d iscont inuous flow the number of 
determining pa rame te r s is minimised and this means tha t 
the hypothes is of self-similarity can be used. The existence 
of a self-similar solution is crucial for the existence of 
solut ions of complete non-self-similar p rob lems , which can 
be obta ined readily by numer ica l m e t h o d s under the 
familiar condi t ions of the C a u c h y - K o v a l e v s k a y a theorem. 

Self-similarity implies tha t in the four-dimensional space 
t there are quasiconical coordina tes r = ri/btn,t 

(0 ^ f < oo) and tha t the dependence on t is expressed in 
an explicit (power law) form. The vector r describes the 
velocity of mo t ion of a po in t under considerat ion. There 
fore, the relative velocity vector w = u — r becomes 
impor tan t ; here, 

nuir) = —-—r^- , 
V ; btn~l 

where ux is the viscosity vector of part icles in a liquid. 
Therefore, the Euler equa t ions for a compressible gas are 
found to be elliptic in the range where \w\2 < a2 = yp/p (y 
is the ad iaba t ic exponent of a perfect gas and a is the 
velocity of sound) and hyperbol ic in the range where 
|w| > a. 

The pa ramet r i c family of the vector lines w x dr = 0 
defines a field of self-similar pa ths . Let us n o w consider h o w 
these lines are selected for the same fluid particles at the 
initial m o m e n t t = 0. If we adop t physical variables, we find 
in the limit t —> 0 tha t 

(tu\ — nrx) x drx = r] x dr, = 0 . 

It therefore follows tha t each self-similar p a t h is initially a 
straight line pass ing th rough the origin of the coord ina te 
system. The field of self-similar p a t h s is not solenoidal, 
V*w = —2, even in the case of flow of an incompressible 
fluid. 

The topological proper t ies of self-similar flow are 
determined by the na tu re and posi t ions of singularities 
of a field of self-similar pa th s defined by w = 0. There are 
n u m e r o u s types of singularities. A singularity of the ' focus ' 
type occurs at the core of spiral discont inui ty or in the 
vicinity of a poin t vortex, and its presence indicates tha t the 
flow has separated. Singularities of the 'cent re ' type cannot 
appear in flow if there are no fluid sources, whereas a 
singularity of the ' n o d e ' type is associated with self-similar 
p a t h s even in the absence of sources, because a field of such 
p a t h s is no t solenoidal. If l inearisat ion in the vicinity of a 
singularity is invalid, m o r e complex types of singularities 
appear , for example, a saddle + n o d e singularity. Such a 
s i tuat ion occurs when singularities merge and the p a r a 
meters reach their critical values. All the singularities are 
located in a region where equa t ions of the elliptic type are 
valid or on the b o u n d a r y of this region, which is a pa rabo l ic 
surface. 
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3.1 Classification 
Let us assume tha t uns teady flow of a perfect gas or an 
incompressible liquid is governed by two pa rame te r s p 0 and 
b with independent dimensions: 

[p 0 ] =ML-3T~kn, [b}=LT~n . 

The self-similarity index n is characteris t ic of the law of 
expansion or cont rac t ion of a flow region. The exponent k 
vanishes for an incompressible fluid. 

Firs t , we have to identify the t ime interval tx ^ t ^ t2 

where a self-similar solut ion exists. Two forms of self-
similar flow can be dist inguished [34]. If this flow has 
appeared 'recently' , i.e. if t\ = 0(t), it follows from the 
invariance of the solut ion with respect to a t ime shift tha t 
we can always assume t\ = 0 and tha t a self-similar solution 
exists for posit ive t imes [t2 = oo). If this flow has started 
' long ago ' , i.e. if tx = —oo, a self-similar solution exists for 
negative t imes: —oo < t < 0 (t2 = 0). 

The influence of non-self-similar factors responsible for 
the appea rance of self-similar flow is impor t an t at the initial 
m o m e n t t = t\. The influence of non-self-similar factors 
responsible for suppression of self-similar flow is impor t an t 
at the final m o m e n t t = t2. The quest ion of the role of these 
factors is usual ly resolved a pr ior i from considera t ions of 
the dimensions. 

Let us consider this in detail by t ak ing as our example 
the viscosity force act ing in a N e w t o n i a n liquid with a 
cons tant k inemat ic viscosity v. The influence of this factor 
can be described by the Reyno lds number 

R e = ^ = 0[{±t)2n-x} 

where and / are the velocity and length scales, and the 
upper or lower sign is selected for the posit ive and negative 
t ime intervals, respectively. Such flow is strictly self-similar 
if n = \ (Birkhoff flow [35]). If n ^ \ , we can only speak of 
the mo t ion of an ideal gas, i.e. of a self-similar solution of 
the E equat ion . However , will the influence of the viscosity 
force be so low or localised tha t the flow as a whole can be 
regarded as inviscid? This central p rob lem in h y d r o 
dynamics of low viscosity fluids has no t been resolved in 
general . 

If the Reyno lds n u m b e r Re decreases with t ime from 
infinity to zero, there must come a m o m e n t when the 
influence of the viscosity force becomes the dominan t one. 
Therefore, a necessary condi t ion for the existence of a self-
similar solution in the case when n ^ \ is an increase in Re 
with t ime from zero to infinity, i.e. the condi t ion Re{t\) = 0. 
Consequent ly , the solution is physically r e a l | in the half-
interval 0 < £ < o o i f f t > ^ , and it is also real in the interval 
—oo < t < 0 if n <\. The full circulation of each vortex 
zone of physically real flow increases from zero to infinity, 
like the Reyno lds number Re. 

If we begin with the condi t ion of physical reality of self-
similar flow, we can immediately reject the possibili ty tha t 
the solution on the semiaxis o < t < oo can be cont inued to 
negative values t. In contras t , the solut ion in the interval 
—oo < t < 0 sets the initial condi t ions at t = 0 for con
t inua t ion of this solut ion to posit ive values of t. If such a 
cont inua t ion exists, it follows form the considerat ion of the 

fThe term 'physically unreal ' or meaningless is not the same as in 
mathematics. The existence of a physically unreal solution can only 
stimulate an investigator to broaden the formulation of the problem. 

d imensions tha t it should have the same self-similarity index 
as the initial solut ion and tha t this is lost with t ime under 
the influence of the viscosity force. 

The solution of the semiaxis —oo < t < 0 describes 
collapse (a contact discontinuity, a free b o u n d a r y , or a 
shock wave) if n > 0 and it cor responds to expansion if 
n < 0. 

Who le classes of self-similar flow are k n o w n in h y d r o 
dynamics of an ideal fluid and they are listed below. 

(1) Incompressible fluid. The self-similarity index is 
arbi t rary . It is possible to distinguish [34] pseudos teady 
flow (n = 0), Birkhoff flow (n = ±), K a d e n flow (n = \), 
exponent ia l self-similar flow (n —> =boo), and uns teady 
conical flow [n —> ± 1 0 0 ) . A one-dimensional example is 
symmetr ic collapse of a cavity. 

(2) Compressible fluid. The presence of a d imensional 
pa ramete r , which is the velocity of sound in free-stream 
flow, determines the un ique value of the self-similarity 
index, which is uni ty. Each fixed poin t in a self-similar 
p lane moves at a cons tant velocity; a coord ina te system 
linked to the moving surface is inertial; the quan t i ty b has 
the d imensions of velocity; the pressure of an unpe r tu rbed 
gas, which is of cons tant density, can be t aken into account 
within the f ramework of the self-similarity hypothesis . One 
of the determining pa rame te r s is the M a c h number M^ for 
free-stream flow. One-dimens ional examples are decay of an 
a rb i t ra ry discont inui ty and the mot ion of a flat p is ton. 

(3) Hypersonic flow. The self-similarity index is a rb i 
t r a ry again. It is pos tu la ted tha t in nonun i fo rm (n ^ 1) free-
s tream flow the velocity of sound a0 is negligible compared 
with the velocity of a shock wave. Therefore, only 
compressive flow with a s t rong shock wave {M OQ = oo) 
is possible. The mode l defined in a posit ive t ime interval is 
self-similar for t > t0 in the case of accelerated flow (n > 1) 
and for t <^ t0 in the case of re tarded flow (n < 1); here, 
h{ajb)l,{n-l\ 0<t<oo. 

Accelerated self-similar flow of a gas is preceded by an 
acoust ic stage of evolut ion of weak discontinuit ies for t <^ t0 

and by a t ransi t ion stage of format ion of hypersonic flow 
when t = O(t0). A n ' en t ropy layer ' of a s tagnant gas with 
the characteris t ic thickness btn forms at the t ransi t ion stage. 

One-dimens ional examples of a hypersonic self-similar 
flow are the mo t ion of a p is ton, a s t rong explosion, and 
collapse of a shock wave. 

(4) Conical flow is an example of steady self-similarity 
[23, 36]. The solution is independent of the linear coor 
dinate , bu t it depends only on two angular coordinates . The 
p rob lem is then two-dimensional . A one-dimensional 
example is the flow pas t a circular cone oriented at zero 
angle of a t tack. 

In hydrodynamics of a N e w t o n i a n fluid the self-
similarity index of flow of an incompressible fluid is, as 
ment ioned before, \ for the complete N S equat ions . A 
steady self-similar flow can be represented as follows in a 
spherical system of coordina tes r, 9, X: 

v v2 

u(r, 0,X)=- U(0, X), p(r, 0,2)=^ P(0, X) . 
r r1 

In a nonidea l med ium with a cons tant P rand t l number 
Pr and with its k inemat ic viscosity depending on t empera 
ture in accordance with the power law (v = aTk) the self-
similarity index is fixed: 
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and the steady self-similar solut ion becomes 

u(r, 9, X) = barmU(9, X), p(r, 9, X) = b2ar2mP(9, X) 

where b = alZ 
gas constant . 

\ a = 1/(1 - 2k), m = 1 - l/n, and K is the 

3.2 Ideal fluid 
Nikol ' sk i i [37, 38] was the first to investigate the solution 
describing the mot ion of a po in t vor tex of s trength T 0 or 
several po in t s vortices, which is physically meaningful in 
the case of uns teady self-similar flow when the flow-
similarity index n approaches \ + 0. This solut ion is 
applicable to the flow past an infinite wedge (Fig. 7a) 
and flow past a finite b o d y (plate, Fig. 7b), which is 
considered in Ref. [39]. The Nikol ' sk i i flow is characterised 
by an increase in all the d imensions of the b o d y and the 
p a t h travelled by it p ropor t iona l ly to \ft. This type of flow 
includes tha t inside a wedge at a cons tant ra te (Fig. 7c). 

The Nikol ' sk i i theory can be applied to separated flow if 
certain quant i t ies are selected a pr ior i , for example the 
number of po in t vortices which simulate a vor tex tha t has 
become separated from the investigated body . The si tuat ion 
is suitable for model l ing separa t ion of flow from a wedge-
shaped edge of a b o d y when the p rob lem satisfies add i 
t ionally the K u t t a condi t ion. 

The Nikol ' sk i i flow represents a special case of the 
Birkhoff flow (Re = o o ) . Some examples of the Nikol ' sk i i 
flow, which can be used to s tudy the existence, bifurcat ion, 
topology, and asymmetry of self-similar solut ions can be 
found in Ref. [14]. 

One of the surprising p h e n o m e n a which occur in a 
system of three or m o r e poin t vortices is collapse, which is 
essentially the Nikol ' sk i i flow in a ro ta t ing coord ina te 
system [40]. Vort ices with complex coordina tes Zj(t) t ravel 
a long spiral p a t h s to a po in t where they collapse after a 
finite t ime (Fig. 7d). 

Consider a cluster of three vortices which evolve in 
accordance with the law 

dt 
1 

27ci 
j =h293 

and ro ta te abou t the 'centre of gravi ty ' z = 0. It follows 
from dimensional analysis tha t the angular velocity of 
ro ta t ion of the vortices is inversely p ropo r t i ona l to the 
square roo t of t ime. Consequent ly , the solut ion can be 
represented in the form 

1 2 

Zj = by—t fa exp ( ico In t ) , 1} = -b Gj , 

\ij = £j + vrij, - o o < f < 0 . 

The equa t ions describing evolut ion can be converted to 
the algebraic form: 

( 2 i G ) + 1 ) ^ = 5̂  

Figure 7. Examples of the Nikol 'skii flow. 

There are six real equa t ions for eight real cons tants , which 
are obta ined when ten u n k n o w n s £7, rjj, / } , and co are 
reduced to the dimensionless form. There is, however , a 
solut ion to this underde te rmined p rob lem. 

F u r t h e r cont inua t ion of this solution in the direction of 
posit ive values of t can be regarded as unravel l ing 
(unroll ing) of a vortex. In this case the direct ions of the 
a r rows in Fig . 7d should be reversed. In contras t to collapse 
of vortices, which can be checked experimentally, such 
unravel l ing is no t a na tu ra l causal process . Irreversibility is 
created in the dynamics of systems of po in t vortices when 
unravel l ing is impossible. This mechanism of the appea r 
ance of a ' t ime a r r o w ' has no ana logue in the dynamics of 
part icles. 

It seems almost self-evident tha t merging of vortices is 
uns table . Nevertheless , it would be of interest to determine 
the condi t ions of 'minimal instabil i ty ' within the f ramework 
of a na r rower definition of stability, such as tha t used by 
von K a r m a n in an investigation of chains of poin t vortices 
[41, 42]. 

Is the collapse of two poin t vortices possible? The 
answer is yes [43]! This happens if po in t vortices s imu
late, as shown in Fig. 7b, separated flow, control led by the 
K u t t a condi t ions , from sharp or b lunt edges of a b o d y and 
the b o d y collapses to form a poin t (—oo < t < 0). The 
stability of such vor tex merging seems to be almost self-
evident. 

Let us consider one m o r e example of self-similar flow of 
an ideal fluid which is coevolut ion of a vor tex sheet and a 
free b o u n d a r y . 

A l though in the case of s imul taneous evolut ion of 
different types of surfaces of tangent ia l discontinuit ies of 
the velocity of an incompressible fluid the me thod of 
b o u n d a r y integrodifferential equa t ions allows superposi 
t ion, studies of such p rob lems meet with considerable 
numer ica l difficulties. A n impor t an t pract ical example is 
the self-similar p rob lem of obl ique entry of a wedge into a 
water-filled lower half-space in accordance with a power -
law t ime dependence. A free b o u n d a r y 1 is adjacent to the 
sides of the wedge and a spiral vor tex sheet 2 s tar t ing from 
the edge ensures tha t the K u t t a condi t ion of finite velocity is 
satisfied (Fig. 8a). 

The me thod of ma tch ing asymptot ic expansions leads, 
in the case of weak asymmetry , to separat ion of the 
p h e n o m e n o n into two pa r t s and each of them is char 
acterised by jus t one type of discontinuity: in the outer 
region there is a free b o u n d a r y and in the inner region, 
located near the wedge edge, there is a vor tex sheet [44]. 
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Figure 8. Entry of a wedge into water: (a) weak asymmetry; 
(b) strong asymmetry. 

W h e n the asymmetry pa rame te r s (which are the angle a 
between the vertical and the bisector of the wedge and the 
angle between the bisector and the direction of the entry 
velocity w0) a r e sufficiently large, the flow pa t t e rn changes: 
a free b o u n d a r y depar t s from the wedge edge O and it rolls 
up to a double spiral (3) because of a shock interact ion 
with the wedge edge at the m o m e n t when the edge touches 
the water surface (Fig. 8b). Bo th flow pa t t e rns have to be 
checked experimental ly as well as numerical ly. 

3.3 Compressible fluid 
The flow in the vicinity of the edge of a wedge or of the 
vertex of a cone can be self-similar also in the case of a 
compressible ideal med ium. Three p rob lems of this kind 
are known: diffraction of a shock wave by a wedge 
(Section 4.5), sudden acceleration of a wedge [45], and 
decay of an a rb i t ra ry wedge-shaped discont inui ty [46]. F a r 
from the wedge edge the flow is one-dimensional . As in the 
p rob lem of obl ique entry of a wedge into water , in 
asymmetr ic diffraction of a shock wave by a sufficiently 
thick wedge the K u t t a condi t ion can be satisfied within the 
f ramework of slip lines converging at the wedge edge and 
with their free lines rolled up to form a spiral. 

F o r the same reason a spiral vor tex slips off the wedge 
edge as a result of a sudden asymmetr ic mot ion from a state 
of rest in the regime in which a shock wave becomes 
detached. 

The large number of dominan t pa rame te r s has 
prevented so far the establ ishment of a topological 
classification of decay of an a rb i t ra ry wedge-shaped 
discont inui ty even in the symmetr ic case. There are several 
ways of in t roduc ing asymmet ry into the p rob lem of decay 
of a wedge-shaped discontinui ty. One can consider the 
evolut ion of an entity consist ing initially of connected, to a 
c o m m o n edge, N angular regions in each of which the 
pa rame te r s of gas differ. It is no t clear whether in this case 
an A/-turn spiral vor tex is formed. W e can assume tha t , for 
t < 0, supersonic flow with a centred rarefact ion wave takes 
place a r o u n d a 'solid wedge ' and tha t inside the wedge the 
gas is at rest; at the instant t = 0 the wall wedges are 
removed. 

The p rob lem of an incompressible fluid is formulated 
similarly: at t < 0 the coord ina te dependence of the complex 
velocity is represented by a power law. A vor tex sheet, a free 
b o u n d a r y , or a contact discont inui ty can be selected as a 
slip line which coincides initially with the sides of a 
wedge [47]. 

Decay of an initially conical discont inui ty is a difficult 
p rob lem [48] and in the asymmetr ic ( three-dimensional) 
var iant it is hard ly capable of exhaustive analysis. 

3.4 Spiral vortex sheets 
Before we consider self-similar spiral flow, we mus t 
consider helicity in general , digressing far from fluid 
dynamics , in full agreement with the principle tha t one 
who unde r s t ands hydrodynamics a lone does no t unde r 
s tand it fully. The wor ld su r round ing us is spiral. There are 
n u m e r o u s examples of spiral s t ructures in an imate and 
inan imate na tu re . The shells of garden snails, found in 
a b u n d a n c e at the roadside , are spiral. Spiral fossils have 
come to us from prehis tor ic t imes. Sunflower seeds form 
two families of opposi tely twisted spirals. In technology 
there are spiral revolving knives, gears, etc. There is also 
the spiral shape of flowers and ferns, which cannot suppor t 
themselves wi thout rocks, bui lding, or other p lan ts . The 
h o r n s of goats are twisted in opposi te spirals. 

Helicity is the fundamenta l p rope r ty of mat te r , no t only 
in the macrowor ld . In the microworld , we have the helical 
s t ructure of the D N A molecule and in the megawor ld we 
have spiral galaxies. 

Spiral shapes are so frequent in na tu re tha t it is no t 
possible to even list them all. Spiral waves are formed as a 
result of wha t is called spin de tona t ion . They are also 
observed in the wel l -known B e l o u s o v - Z h a b o t i n s k i i reac
t ion. M a n y biologists believe tha t spiral waves account for 
a r rhy thmia in the opera t ion of the hear t muscle and in other 
biological p h e n o m e n a . Spiral shock waves have been found 
in our and other galaxies. Three-d imensional spiral (more 
correctly, helical) s t ructure is found in cyclones, water 
spouts , E k m a n ' s flow above the surfaces of the oceans, 
and Taylor ' s flow in the upper a tmosphere . 

In the scientific sense, the helicity is used in two similar 
and dissimilar meanings . In physics, the helicity means the 
q u a n t u m number of an elementary part icle, equal to the 
project ion of its spin a long the direction of its mot ion . In 
hydrodynamics this term, p roposed by the English scientist 
Moffat t in 1969, denotes the scalar w*curlw or a vo lume 
integral of this quant i ty , where u is the velocity vector of 
fluid part icles. The helicity is conserved in an ideal fluid and 
its changes are due to k inks in the vor tex lines and also due to 
diffusion. The helicity is used to describe cascade t u r b u 
lence. 

In each specific case a spiral s t ructure usual ly represents 
some unsolved p rob lem of na tu ra l science. However , in a 
m o r e general synergetic sense, the spiral symmetry differs 
fundamental ly from the symmetry of a snowflake, an 
a tomic nucleus, or a chess posi t ion, and is a na tu ra l 
general isat ion of the spherical symmetry. In contras t to 
the spherical symmetry, which is characterised by constant 
rad ius dur ing ro ta t ion , the spiral symmetry is associated 
with cont rac t ion or e longat ion of the rad ius as it ro ta tes 
clockwise or anticlockwise. Therefore, the spiral symmetry 
is a law of na tu re , whereas the spherical symmetry is an 
exceptional case. 

W h y the major i ty of the spiral shells and the helical 
D N A molecules are twisted in the same way? There is as yet 
no answer to this quest ion. Since Pas teur , it has been agreed 
tha t such an unba lance of the spiral symmetry is a 
characterist ic feature of life. 

Phi losophers have noticed long ago tha t art and science, 
ba lanc ing t radi t ion against innovat ion , seem to develop 
a long a spiral: the next tu rn of knowledge differs from the 
preceding one and yet they are alike. This analogy is 
symbolic bu t striking. Since it is qual i ta t ive and no t 
r igorous , there are those who oppose it strongly: 
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" I don ' t th ink the scientists have got it right, 
There is a hole, a gap, in their hypothesis . 
The pa th of progress is not a spiral flight, 
But aslant, oblique, spreading, and across it i s . " 

(V Vysotskii , t ransla t ion by J Briggs) 

This indeed m a y be so. 
Let us n o w re turn to self-similar flow with spiral vor tex 

sheets. The free end of a vor tex sheet can roll up to form a 
spiral with an infinite number of tu rns . The asymptot ic 
behav iour of the solution at the centre of a p lane spiral 
vor tex (6 —> oo , r —> 0) m a y be investigated by replacing the 
polar coordina tes r, 6 with r, rj [where rj is the spiral var iable 

0<^n = 0-60(r) < 2 7 C , 

0 o ( r ) is the shape of a vor tex sheet, and r is the self-similar 
coordinate] and expanding the functions as series in powers 
of r. This can be done if the function 90(r) i s mono ton ic . 
A n increase in rj from zero to 2iz for r = const implies a 
circular p a t h from one side of a vor tex sheet to the other . 
Therefore, the spiral per iodic condi t ion is satisfied: the 
pressure and the velocity componen t n o r m a l to a vor tex 
sheet are identical for rj = 0 and rj = 2K. 

A spiral vor tex sheet is logar i thmic if the self-similarity 
index is n < \ [49] and algebraic if n > \ [50]. Numer i ca l 
solut ions of specific p rob lems of separat ion of a vor tex 
sheet from a solid surface [25] have been obta ined only for 
algebraic spirals. The solut ions obta ined are due to the 
uti l isat ion of a for tunate , characteris t ic of the na tu re of the 
p rob lem itself, approx ima t ion of the core of a vor tex sheet 
by a po in t vor tex with a cut. Appl ica t ion of the same 
approx ima t ion to the core of a logar i thmic spiral fails: the 
results of numer ica l calculat ions become uns table . This 
unsolved p rob lem demons t ra tes also tha t fitting the results 
of numer ica l calculat ion to the wel l -known asympto te for a 
fold is one of the difficult p rob lems in compu ta t i ona l 
hydrodynamics . 

It has been found experimental ly tha t at the cores of 
spiral vortices, which become separated from the edges of a 
low-aspect-rat io wing in a water tunnel , cavi tat ion zones 
form tha t are visible to the naked eye. Accord ing to the 
uns teady analogy, this conical flow is equivalent to p lane 
flow [n = 1). 

Cavities do no t appear in a fluid which cannot exist in 
the d rop form (for example, air or any other gas) and, in 
accordance with the asympto te of the flow at the centre of 
the core of a vor tex sheet (r —> 0), the pressure p t ends to 
—oo obeying the following logar i thmic law: 

P - Po + P^o In r , 

where p0 and u0 are the certain characterist ic values of the 
pressure and velocity. 

The order of the size of a cavity in a fluid tha t forms 
d rops (for example, water ) is s m a l l ! if the cavitat ion 
number 

a = 2 Po -Pi 
pu\ 

is large (pi is the pressure in the cavity). The large 
pa ramete r o characterist ic of this unsolved p rob lem means 
tha t an asymptot ic app roach has to be followed. 

fThe region where diffusion is important is of characteristic size 
~(yt)xl2. Therefore, it can be assumed that, for large values of Re, 
the viscous flow region is located near the top of the wing (t <̂  1). 

The p rob lem requires general isat ion to the case of flow 
with the self-similarity index n ^ 1, selected from the range 
0.5 < n < 1, when the pressure in the region external to a 
cavity tends to —oo, obeying a power law, as r is 
reduced [50]. 

If the size of a cavity is comparab le with the size of a 
b o d y immersed in fluid flowing past it, the helicity is no t an 
appropr i a t e concept . The exact solut ion of the p rob lem had 
been obta ined by von K a r m a n for the case of pseudos teady 
(n = 0) symmetr ic flow past a p la te [51]. It is no t clear when 
the poin t of closure of a cavity is located on the symmetry 
line and when it is on the body . 

Can the P rand t l solution for a logar i thmic vor tex 
sheet [49] be generalised to the case of flow of a compres 
sible gas? The answer has no t yet been found. 

The Euler equa t ions 

1 
UT + UUR H VUQ 

R 
1 1 

PR 

vt + U V R + — VVQ +ftUV: 

Rp Pe , 

St + uSR +— Se = 0 

where u and v are the componen t s of the velocity a long the 
directions of R and 6, S = pp~y is the en t ropy function, and 
y is the adiabat ic exponent , have (or do not have!) the 
exact solution 

u(R,0, t)=nj[U0(ri) + l] , 

v(R,0, t)=njV0(ri)9 

p(R,0, t)=n2

Pob2(±tyn-2+2nr%(ri), 

R=b(±t)nr, 0^ri^ri0, 90 = -k\nr. 

Ins tead of U0 and V0, we shall in t roduce n o w the 
componen t s of the relative velocities U and V which are 
equal to the n o r m a l and tangent ia l componen t s on a slip 
line: 

(1 + k2)1'2 U=V0+kU0, (1 + k2)1'2 V = kV0-U0. 

The u n k n o w n functions U, V, p0, and p 0 can be found 
from the Euler equa t ions by deriving a system of o rd inary 
differential equat ions : 

(a2 - U2)U' =A, UVf =B , 

(a2 - U2)p^ = Cp0 , U(a2 - U2)pf

0 = Dp, , 

where a2 =yT, and the functions A, B, C, and D are 
algebraic po lynomia ls which depend on U, V, and 
T =Po/Po-

The following periodici ty condi t ions are satisfied on a 
vor tex sheet (rj0 = 2n): 

p0(0)=p0(2n), U(0) = U(2n) = 0 . 
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There is also a p rob lem of roll ing u p , into a logar i thmic 
spiral, of two free boundar ies : 

9i(r) = — k I n r , 92(r) = rj0 — klnr . 

The following condi t ions of cons tant pressure and zero 
velocity are satisfied on these boundar ies : 

Po(9) = A)(*7o) = p \ U(0) = Ufa) = 0 , rj0 < 2n . 

The system of o rd inary differential equa t ions under 
investigation has two singularities. C o n t i n u o u s passage 
across the singularity rj = rjl (0 < rjl < rj0), where 
a = ±U, is possible only if A = 0. The other singularity, 
U = 0, is located on a slip line. F o r finite values of T(0) the 
derivative U'(0) is finite. 

It is not k n o w n whether there exists a similar solution 
for a vor tex sheet in the shape of an algebraic spiral in a 
compressible gas [52]. 

3.5 Viscous fluid 
The interact ion of a shock wave with a b o u n d a r y layer tha t 
is formed as a result of a s t rong poin t explosion on a p lane 
is a p rob lem with impor t an t appl icat ions and it has been 
completely ignored. Fig. 9 shows the shapes of an explosive 
charge and of a shock wave for the p lane (N = 1), 
cylindrical (N = 2), and spherical (N = 3) symmetries . 
The cylindrical symmetry is possible when the line formed 
by an explosive charge is perpendicular to a p lane P 
(fig. 9b) and when this line lies in the p lane P (Fig. 9c). The 
flow is self-similar if, in accordance with expression (3.1), 
we have k = — \ for N = 1, k = 0 for N = 2, and k = ^ for 
N = 3. The determining pa ramete r is the Reyno lds number 

\PJ v i 

where E is the energy released by such an explosion, p is 
the density of the undis tu rbed gas, and 1Z is the gas 
constant . 

In the limit Re —> oo , a b o u n d a r y layer forms in the 
p lane P. Singular regions where the concept of a b o u n d a r y 
layer b reaks down are located near the epicentre of the 
explosion and in the region of interact ion of the shock wave 

a Plane of an b Line of an 

charge 

Figure 9. Problem of a strong explosion of a charge located on a 
plane (N — 1), on a line (N — 2), and at a point (N — 3); SW is shock 
wave. 

with the b o u n d a r y layer. D o e s this interact ion crate a 
shock-wave precursor? 

One further example of self-similar flow of a viscous 
liquid is the Stewartson p rob lem of the mo t ion of a semi-
infinite p la te paral lel to itself from rest at a velocity 
nbtn~l [53]. If the velocity is no t directed a long the n o r m a l 
to the pla te edge, we are faced with the p rob lem of uns teady 
flow past a sliding plate . 

If the b o u n d a r y layer concept is adop ted (Re —> o o ) , 
any value of the self-similarity index is permissible in the 
Stewartson p rob lem, whereas on the basis of the N a v i e r -
Stokes equat ion only those values of the index are allowed 
which satisfy the condi t ion described by expression (3.1). 
The principle of m a x i m u m simplicity can be applied a pr ior i 
before numer ica l calculat ions are carried out . The simplest 
field of self-similar p a t h s obta ined in this way has five 
singularities (two saddles S and three n o d e N). It is p lo t ted 
in Fig. 10 on the assumpt ion tha t a low-viscosity liquid 
(Re —> oo) runs into the edge (b > 0) [54]. Pe r tu rba t ions do 
no t pene t ra te the limiting line x = btn and the influence of 
the top of the p la te is negligible in the region x > btn: the 
one-dimensional solut ion obta ined a long t ime ago by 
Rayleigh [6] applies here. It is no t clear wha t is the 
topo logy of self-similar pa th s in the p rob lem of the flow 
running off (b < 0) from the edge of a flat p la te and h o w 
does it vary with Re. 

Limit ing lines appear also in a s ta t ionary three-d imen
sional b o u n d a r y layer [55]. The solution near a l imiting line 
has not yet been obta ined. 

Figure 10. Field of self-similar paths in the Stewartson problem. 

3.6 Two comments about self-similar solutions 
W e have considered so far only the self-similar solut ions 
satisfying exactly the Euler, N a v i e r - S t o k e s , or P rand t l 
equat ions . However , there is a whole class of a p p r o x 
imately self-similar solut ions which exist in a certain local 
s p a c e - t i m e region. They are the asymptot ical ly self-similar 
solut ions. 

Let us assume tha t a solut ion 

n(r, t)~^ U(R) , (3.2) 
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where r = bR, a(t) > 0, b(t) > 0, is valid for t —> t0, 
R = 0 ( 1 ) . Then if a = b and \a'\a <̂  1, this solut ion 
satisfies the N a v i e r - S t o k e s equat ion (if \a'\a=\, we 
obta in the exact Birkhoff solut ion). If a <^ b, it satisfies 
the Euler equat ion (for \a'\b = \bf\a we have the exact 
solut ion), and if a b, it satisfies the Stokes equat ion . 

The Stokes equat ion describes, for example, an expo
nent ia l app roach of the solution to the state of rest: 

a = exp (kt), b = \ , k > 0 , £ —> o o . 

Subst i tut ion of the solution represented by expression (3.2) 
into E q n (2.5) and neglect of the quadra t i c te rms gives 

vV2

RU + kU- WRP = 0 , VR.U = 0, (3.3) 

where 

p(r, t) = Qxp(-kt)P(R) + o [ e x p ( - f a ) ] . 

Such a linear system of equa t ions describes the flow of a 
fluid in b o u n d e d and u n b o u n d e d regions, for example, 
ro ta t ion of tea in a glass after stirring, the flow near a b o d y 
when it comes to rest, slowing down of ro ta t ion of a 
wingless rocket , etc. The boundar i e s of solids m a y be at 
rest or they m a y be moving at an exponential ly decreasing 
velocity. In the case of symmetr ic ro ta t ion of a liquid 
relative to the r = 0 axis, the system of equa t ions (3.3) 
reduces to the Bessel equat ion: 

k 
rwo(r) + w'o(r) + - ru0(r) = 0 . 

The second comment applies to u n b o u n d e d solut ions. 
The s p a c e - t i m e singularity of the solution, called by 
physicists the u n b o u n d e d cumula t ion and the peak ing 
regime by mathemat ic ians , can be divided into the three 
types listed below. 

(1) The solution is unbounded in the whole space at t = 0. 
F o r example, E q n (2.5) has (or does no t have?) the solution 

u(r, t) = X- u0(r) + o (jj , p(r, t) = ^ p0(r) + o (^j . 

There is no dissipative term in this approx inmat ion : 

—u0 + (u0-W)u0 = — ^ Vp, W'U0 = 0 . 

The following simple example demons t ra tes tha t the 
nonl inear heat conduct ion equat ion allows the appea rance 
of a singularity in a finite t ime: 

2 
aQ -\- a\X — x 

Lit — UUVV . U — ~ . t 2 f 

(2) The solution is unbounded at any time on a singular 
low-dimensional manifold, representing a surface, a line, or a 
point. Examples of such singularities are a vor tex filament, a 
line of sources, the solution of the N a v i e r - S t o k e s equat ion 
for \u\ = 0(r~l) when r —> 0, and the convective term 
(u'V)u the m o d u l u s of which is of the same order of 
magn i tude as the term v|V2w| = 0(r~3). 

N e a r the centre (r = 0) of a self-similar poin t explosion 
in an ideal gas the velocity u and the density p tend to 
zero [31]: 

r 
u = c\ ~ + o(r), 

p = C2t-2N/[(N+2)(y-l)] rN/(y-l) +0^N/(y-l)j ^ 

where r is the rad ia l coordina te , and c\ and c2 are 
cons tants . The pressure at the centre of the explosion is 
finite, bu t the t empera tu re tends to infinity. Therefore, the 
mode l of a perfect gas becomes invalid and near the 
epicentre of the explosion we have to t ake into account the 
effects of heat conduct ion and viscosity. The simplest 
mode l makes it possible to apply the hypothesis of self-
similarity. If Re 1, the influence of heat conduct ion and 
viscosity is concent ra ted near the epicentre, i.e. in the inner 
region. In the outer region the solution of the p rob lem of a 
poin t explosion in an ideal med ium applies. 

(3) Unbounded solution for r = t = 0. One example is the 
Guder ley p rob lem of the focusing of a cylindrical or 
spherical shock wave at the poin t r = 0 at the instant 
t = 0 [32]. 

The Rayleigh p rob lem of the collapse of bubbles in an 
incompressible fluid is interest ing because at the m o m e n t of 
focusing (t = 0) the velocity is infinite only at the poin t 
r = 0, whereas the pressure is infinite t h r o u g h o u t the region 
of flow. Therefore, this p rob lem can be regarded as of the 
first or thi rd type. In some cases, for example, in the 
p rob lem of a shock wave reaching the upper b o u n d a r y 
a tmosphere [32], the pressure is finite, bu t the t empera tu re 
is infinite. 

These infinity pa radoxes are a consequence of using 
ma themat i ca l models which are far too simplistic, bu t these 
pa radoxes can be resolved if we take account of real 
proper t ies of a fluid such as dissipation, second viscos
ity, compressibili ty, t h e r m o d y n a m i c imperfections of a 
med ium, re laxat ion, emission of radia t ion , etc. There is 
always some, no mat te r h o w small, factor which when 
included makes the solution b o u n d e d : na tu re does no t 
to lera te infinities. F o r example, the collapse of a cylindrical 
bubb le in an incompressible fluid s tops with slow r o t a 
t ion [56]. 

4. 'Dry water' model 
In Fig . 4 the 'wet wa te r ' mode l is represented by the two 
columns on the left and the 'dry wa te r ' mode l by the three 
co lumns on the right. 

The 'dry wa te r ' mode l ha s been studied actively 
t h r o u g h o u t the whole his tory of hydrodynamics . H o w 
ever, the flow of a zero-viscosity fluid differs 
significantly from tha t of a real fluid. The two types of 
flow are identical only in cases which are an exception to 
this rule: the 'dry wa te r ' mode l does not explain the main 
p rob lem which is the appea rance of vortices in an 
incompressible fluid in the presence of external po ten t ia l 
forces. The reason for this is tha t , as the viscosity 
approaches zero, its effect does no t vanish completely 
and remains in small subregions (bounda ry and mixing 
layers), t hus influencing significantly the flow as a whole. 

4.1 Three-dimensional vortices 
Vortices in a viscous fluid merge because of diffusion. 
There is no diffusion in an ideal fluid. Therefore, merging 
of vortices in such a fluid is one of the surprising proper t ies 
of vor tex clusters. A numer ica l calculat ion has been 
m a d e [57] of the evolut ion of two vortices with the same 
sign in an incompressible liquid. Each of these vortices is 
initially in the shape of a circle of rad ius r and has a 
constant angular velocity co0. W h e n the dimensionless 
initial dis tance l/r between vortices is sufficiently large, 
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they expand into ovals and ro ta te separately, like poin t 
vortices (this ana logy is valid for / > r), a round a geometr ic 
centre. W h e n the initial dis tance between the vortices is 
small, they merge to form a single tangle in a finite t ime. In 
the critical case cor responding to l/r w 3.2 the vortices are 
in per iodic mot ion : par t ly merging and then diverging. 

Deta i ls of h o w vortices merge are not clear. It is 
assumed tha t it is a contact process: in a finite t ime the 
m i n i m u m distance between vortex regions vanishes, as 
shown in Fig. 11a, where the vortices are shown shaded. 

a b 

Figure 11. Patterns of merging of two three-dimensional vortices. 

Two-spira l cap ture is also a pr ior i self-consistent: 
regions occupied by vortices a l ternate with those which 
are free of vortices and the connectivity of space is 
conserved (Fig. l i b ) . 

W h e n the number of poin t vortices exceeds three, a 
t rans i t ion to chaos takes place [58]. This means tha t chaos 
is definitely possible in a system of distr ibuted vortices if the 
connectivity of a vortex-free po ten t ia l region exceeds four. 
Examples of steadily ro ta t ing vortices are the Ki rchhof f 
elliptical vortex, as well as its var ious one-parameter 
general isat ions in the form of single and double vor tex 
s t ructures k n o w n as Burbea ' s pa tches [59, 60]. The search 
for other vort ices is cont inuing. 

It seems likely tha t the connectivi ty of a vort ical region 
can increase or decrease in the course of its evolut ion. 

The critical value of l/r for a compressible perfect gas 
depends on the adiabat ic exponent and on the 'Mach 
n u m b e r ' c o 0 r / a 0 , where a0 is the velocity of sound at 
infinity. P rob lems of this kind can no t only provide tests 
of numer ica l m e t h o d s dealing with inviscid flow, bu t they 
m a y be also a source of new knowledge abou t the 
appearance of acoust ic lines and shock waves dur ing 
evolut ion of vortices. 

Ano the r simple example is tha t of a thin vort ical jet . It 
would seem tha t the solut ion is no t difficult to obta in : the 
flow in such a jet should be described by the thin-layer 
equat ion: 

UUX + VUy = p (X) , 

where the pressure p(x) is cons tant over a t ransverse 
section across the layer [u(x, y), v(x, y) are the velocity 
componen t s a long the jet axis x and a long the n o r m a l y to 
the jet] . A l though this equat ion has a q u a d r a t u r e in the 
form of an ana logue of the Bernoull i integral 

where —f'(\jj) = —^yy is the vorticity and 6 is the s t ream 
function (u = \j/ , v = — \j/x), this asymptot ic app roach is 

invalid in singular flow regions where the initial a s s u m p 
t ions of a small thickness of the flow region are no t obeyed. 
This is t rue in the vicinity of the s tagnat ion poin ts A on a 
body , sharp edges B of a body , and poin ts of separat ion 
and rea t t achment C (Fig. 12). The b o u n d a r y of a jet m a y 
also be the subject to surface tension forces. 

Figure 12. Jet flow patterns. 

It follows tha t the thin-layer theory of an ideal fluid is 
far from complete b o t h in p lanar and three-dimensional 
cases [61]. It would be of interest to consider the separat ion 
of a thin jet from a body . Two different formula t ions of the 
p rob lem are possible. If this jet is immersed in a liquid at 
rest ( immersed jet) , its b o u n d a r y is free. If the jet is 
su r rounded by a moving liquid, its b o u n d a r y is a contact 
discontinuity. 

F o r m a t i o n of a bubble , which is a closed circulation 
zone, in the flow of an inviscid liquid is p roblemat ic . 
Nevertheless , it is possible to est imate quite simply the 
shape of a thin bubb le in the flow of an inviscid liquid 
which is no t subject to surface tension forces (Fig. 12f). The 
thin-layer approx ima t ion is valid: 

\j/(x9 yu s) = e*F(x, y) + o(s), yx = sy , 

where s <̂  1 is the flatness coefficient of the bubble . 
It follows from the Batchelor theorem [6] tha t the 

vorticity is cons tant inside the bubble : 

1 2 

W = yu$(x) —-y Q9 Q = sco9 

1 2 

P&) =Po ~ o Puo(x)> Po = c o n s t • 
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W e shall assume tha t the bubb le b o u n d a r y is described by 
the equat ion yx = sf(x). Outs ide the bubb le the flow is 
vortex-free: 

[y - / (*)]"1 (*), P{x)+]^pu\{x) = const . 

The pressure dis t r ibut ion p(x) is assumed to be given and it 
is created by external factors. It follows from the condi t ion 
Y(x,f) = 0 tha t the bubb le shape is 

,/ x 2 U Po ~P 
f { x ) = - Q f — -

Since f{x\) =f{x2) = 0, the pressure p(x) has a m a x i m u m 
in the region where the bubb le is located x2). 

4.2 Vortex sheets 
If a p rob lem can be reduced to a b o u n d a r y equat ion , its 
dimension decreases by uni ty and the equa t ions become 
two-dimensional . Therefore, m o d e r n compute r s can be 
used to solve m o r e complex p rob lems than those tha t are 
soluble directly by the difference me thods , finite element 
me thods , etc. The me thod of b o u n d a r y integral equat ions , 
which is a m o d e r n version of the poten t ia l me thod , has 
become popu la r in the solution of s teady-state p rob lems in 
the mechanics of con t inuous media . It is no t always 
possible to reduce equa t ions describing uns teady mo t ion to 
integral equat ions , because the former conta in a t ime 
derivative. Therefore, there is a chance to obta in b o u n d a r y 
integrodifferential equat ions . This is used in the case of 
flow of incompressible fluids. 

The cont r ibu t ions to the velocity u m a d e by vortices 
dis tr ibuted in space and by those concent ra ted on a 
tangent ia l discont inui ty surface add up together . W e shall 
consider only the latter. Let us assume tha t a single vor tex 
sheet, described by the equat ion r = T, t), evolves in a 
vortex-free potent ia l ; here r is the circulation measured 
from a certain centre and { is a coord ina te a long the 
r = const vor tex line. The physical mean ing of a vor tex 
sheet is tha t it is vor tex a> of infinite s trength and 
concent ra ted on a r = R° surface. It follows from the 
B i o t - S a v a r t formula 

1 nr°-r)x(o° 
dT° 

where d r = drjdS is an element of vo lume and dS is an 
element of the area of a surface vortex, tha t if 

lim (coArj) = y , 
co—•oo, At]—>0 

then 

u(r, t) 
1 

' 471 

(R°-r)xy° 
dS{ (4.1) 

where u+ —u~ = y x n is a discont inui ty of the velocity 
vector on a vor tex sheet and n is a uni t n o r m a l to this 
sheet. 

W h a t is the velocity of a vor tex line characterised by 
r = const? It follows from the condi t ion of cont inui ty of 
the pressure on a vor tex sheet and from the Bernoull i 
equat ion tha t 

dAcp 
- + -

u+ + u 
V(A<p) = 0 , 

where Acp = cp+ — cp~ = T is the difference between the 
potent ia ls on a vor tex sheet. It therefore follows tha t a 
vor tex line is travell ing at a velocity (u+ + u~)/2. 

Accord ing to the Sokhotski i formula, the pr incipal value 
of the singular integral described by Eqn (4.1), found for 
the case when the poin t at which the velocity is calculated is 
located on the vor tex sheet itself, is equal to the half-sum of 
the velocities on opposi te sides of the sheet. Therefore, the 
equat ion of evolut ion is 

dR(Z,r,t) 1 nR°-R)xy° 
4K I \R°-Rl-

dS0 (4.2) 

The shape of a p lane vor tex sheet can be represented in 
the form z = z{T, t), where z = x + iy is a complex 
coordina te . It follows from E q n (4.2) tha t 

j _ r d r ° 
2ni 

6 z ( r , t) 
z ( r ° , o - z ( r , 0 ' 

The term 'singular in tegra l ' is unde r s tood to be here the 
Cauchy pr incipal value and the ba r in the above expression 
represents complex conjugat ion. The presence of a b o d y in 
a flowing fluid is par t icular ly easy to take into account 
when the region of flow is t ransformed into a half-plane or 
a circle by conformal m a p p i n g £ = £(z, t). Conjugate 
vor tex sheets are included in this m o r e general case and 
the equat ion of evolut ion becomes 

W, t) 
dt ^ KCk, t) + 

1 

2ni 
, (4.3) 

where a = | 8z /8£ | 2 is the square of the m o d u l u s of the 
stretching of the coordina tes and b is the complex velocity 
of flow in the absence of vor tex sheets. 

E q n s (4.2) and (4.3) have no t yet been studied by 
mathemat ic ians . 

W e can go over to flow characterised by poin t vortices if 
the solution can be represented in the form of the 3 
function: 

n0 d r 

In this case the Cauchy integral can be replaced with 
an algebraic expression and the integro differential equa 
t ion (4.3) reduces to differential. 

The equat ion of evolut ion of tangent ia l discontinuit ies 
leads in a na tu ra l manne r to an a u t o n o m o u s p rob lem with 
initial da ta , i.e. it is no t related directly to the viscosity 
effects, and it is formulated as follows: it is necessary to find 
the geometry and intensity of a discont inui ty for t > 0 
provided they are k n o w n for t = 0. The p rob lem whether 
this formulat ion is ill-posed is fundamenta l . A vor tex sheet 
is always uns table , whereas a contact discont inui ty and a 
free b o u n d a r y are uns tab le in the absence of stabilising 
factors. A ma themat i ca l manifes ta t ion of this instabili ty is 
an ill-posed p rob lem. In fact, small short -wavelength 
pe r tu rba t ions such as a travell ing wave 

>'0 = exp I cot — icq — 
u0 

[where y =y0(x, t) is the shape of the discontinuity and ±u0 

is the velocity of the fluid on its opposi te sides] satisfy the 
Laplace equat ion 

yo 
dt 2 + U° SW2 dx2 

o , 
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when the p rob lem with the initial condi t ions is ill-posed in 
the H a d a m a r d sense [62]. 

It is k n o w n tha t i l l-posedness is a constant feature of 
inverse problems. A steady-state inverse p rob lem in h y d r o 
dynamics is de terminat ion of the shape of a b o d y pas t 
which a fluid is flowing, either from the dis t r ibut ion of the 
pressure on this b o d y [63] or from the shape of a shock 
formed ahead of the b o d y [64, 65]. The p rob lem of 
de terminat ion of the shape of the surface of a tangent ia l 
discont inui ty (with a given shape of a body) is direct. 

The necessary condi t ion for a well-posedness (which is 
tha t the solution should depend in a con t inuous m a n n e r on 
the initial da ta and on external factors) of evolut ion 
p rob lems is the requi rement of analyticity of an inter
face. A solution which is condi t ional ly correct, i.e. piecewise 
analytic, can be obta ined by special regular isat ion m e t h o d s 
[22, 66]. A regulariser cuts off the hf ha rmonics of a Four ie r 
series, smoo ths out short -wavelength pe r tu rba t ions , and 
does no t reduce a given precision of a numer ica l calculat ion 
procedure . Let us consider the effect of one of the 
regularisers on the H a d a m a r d example: 

utt + uxx = 0 , 0) = 0 , ut(x, 0) = 3sin(nx) . 

The solution 

t) =- s i n h ( ^ ) sin(ftx) , 
n 

defined in the finite t ime interval 0 < t < 1, increases 
exponential ly in the limit n —> oo . Let us add to the 
equat ion a regulariser in the form a four th-order derivative 
of the required function: 

Mft ^xx £ ^xxxx = 0 • 

The task is to determine a value of s(3) which would satisfy 
the condi t ions 

lim 8 = 0 , lim t) = 0 . 

F o r the solution given by 

u(x, t) = — s i n h ( ^ ) sin(ftx), k = ny/1 — s2n2 

K 

the est imate looks as follows: 

S 1 1 
\u(x, t)| ^ s i n h k m a x = 2s3 sinh — , kmax = — 

Kmax ZS ZS 

(in the H a d a m a r d example, we have kmax = oo) . Therefore 

lim u(x, t) = 0 , if lim (s3 exp — | = 0 . 
a-o v ' s^o\ v 2s) 

Here , we can select s(3) e.g. in the form of the function 

1 
S~~2fa3' 

This example of regular isat ion, based on in t roduc t ion of 
an even high-order derivative, is just the simplest i l lustra
t ion of the mechanism of action of a linear regulariser [62] 
based on addit ive in t roduct ion , into the equat ion of 
evolut ion of a vor tex sheet [Eqn (4.3)], of the term 

dr2 ' 
There is an uncoun tab l e number of regular isat ion 

me thods . A p a r t from the linear regular isat ion me thod , 

the me thod of an artificial vor tex layer [67] and the m e t h o d 
of rediscretisat ion [68] have proved themselves in pract ice. 
It is suggested in Ref. [69] tha t the surface tension be used 
as a regulariser. It seems tha t such a regulariser would not 
be very effective: when the surface tension is low, no 
stabil isation takes place. The choice of the op t imal 
regulariser is a topical p rob lem in compu ta t iona l h y d r o 
dynamics . 

The me thod of b o u n d a r y integro differential equa t ions 
has to be generalised to the cases of axisymmetr ic flow of an 
incompressible fluid [70] and of p lane flow of a compres 
sible fluid [71]. 

4.3 Free boundaries 
The equat ion for a p lane contact discont inui ty can be 
represented in the form z = z (cr , t), where the constant 
value of the pa ramete r o is conserved across this 
discont inui ty and identifies a poin t moving at a velocity 
(u+ +u~)/2. The poin t r = const does no t move at the 
same velocity. Therefore, a system of two equa t ions is 
needed for the de terminat ion of two functions z ( cr , t) and 
r ( c r , t) defined at the discontinuity. These equa t ions have 
been derived with account t aken of the surface tension, the 
forces due to gravity, and the difference between the 
densities p± and between the Bernoul l i cons tan ts of the 
fluids in contact b o t h in the case of per iodic waves [69] and 
for a closed contact discont inui ty [22]. Pre l iminary 
a t t empts have been m a d e to obta in a numer ica l solution 
of the system of equa t ions of evolut ion of a contact 
discontinuity. 

This system of equa t ions is valid if p+p~ ^ 0 and, in 
principle, it does no t differ from the system of equa t ions of 
evolut ion of a free b o u n d a r y . The latter cannot be obta ined 
by going to the limit p+ —> 0 or p~ —> 0 because the area 
b o u n d e d by a contact discont inui ty — in contras t to the 
area b o u n d e d by a free b o u n d a r y , i.e. the area of a cavity 
— is invar iant in a solenoidal field of flow. A n in tegro-
differential equa t ion of evolut ion of a free b o u n d a r y , 
regarded as a line of vor tex sources on a plane , was 
in t roduced in Ref. [22] and integral equa t ions are discussed 
in Ref. [72]. 

There are m a n y unsolved p rob lems relat ing to the 
format ion of steady separated flow. F o r example, we 
can imagine the following scenarios of steady flow with 
two free bounda r i e s s tar t ing from a b o d y in flow: expansion 
of a closed cavity, expansion of two closed cavities followed 
by their merging into one, growth of two accelerating 
P r a n d t l vortices and their merging at infinity. At the final 
stage (t 5> 1) of evolu-t ion of cavi ta t ional flow a cavity 
shrinks into a section of a straight line and the b o d y in 
a flowing fluid shrinks to a poin t where the singularity is 
determined by the drag coefficient. 

Let us n o w consider some specific p rob lems . 
In 1910 an aircraft of unusua l design was test-flown 

successfully not far from Paris . It did no t have an 
obl igatory (at the t ime) propeller and instead its nose 
conta ined a compress ion engine, which was the p ro to type 
of a m o d e r n a i r -brea th ing jet engine! The young R u m a n i a n 
designer of this aircraft, by the n a m e of C o a n d a , placed 
metall ic shields to protec t the p lywood fuselage from the 
flames shoot ing out from the jet nozzles. H o w surprised he 
must have been when the jet became sucked towards the 
fuselage instead of being deflected from it. 
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The p h e n o m e n o n of a slow jet deviat ing greatly from its 
direction which at a high flow ra te is k n o w n as the C o a n d a 
effect and also as the teapot effect. W e encounter this effect 
every day: at low angles of tilt of the teapot the tea 
emerging from it follows the shape of the spout and its 
flow assumes var ious forms. 

The C o a n d a effect can be observed in p lanar flow in an 
open t rough . It is hard ly possible to realise p lanar flow in its 
pu re form (is this no t typical of hyd rodynamic p h e n o m 
ena?), bu t a pr ior i we can assume tha t , apar t from the case 
of a layer which becomes a t tached to the outer surface of a 
p la te (Fig. 13a) and the case of a free jet (Fig. 13b), there is 
an in termedia te regime in a wide range of flow rates in 
which a p lanar jet splits, like an axisymmetr ic one, into wall 
and free pa r t s (Fig. 13 c). The solution of the Euler equat ion 
for the first two cases does exist, bu t nor for the case shown 
in Fig. 13c. 

a b 

Figure 13. The Coanda effect. WL is a wall layer and FJ is a free jet. 

All types of flow past a b o d y can be observed 
s imultaneously (shown in Fig. 13d) if a rec tangular p la te 
is inserted into a s tream of water coming from a t ap . 

It is t radi t ional ly assumed tha t the p rob lem of a p lane 
s t ream flowing pas t a sharp edge can be formulated on the 
basis of the 'dry wa te r ' theory [73, 74]: the difference 
between the a tmospher ic pressure at the free b o u n d a r y 
of the s t ream and the theoret ical infinite rarefact ion at the 
edge of the pla te (O in Fig. 13a) presses the s t ream against 
the plate . However , if Re = q/v > 1 (q is the ra te of flow in 
the jet) , a b o u n d a r y layer can separate under the action of 
an unfavourab le (decelerating) pressure gradient on the 
lower surface of a plate . Therefore, the influence of viscosity 
is impor tan t . 

N e a r the edge of a p la te there is always a region where 
the complete N a v i e r - S t o k e s equat ion cannot be simplified. 
The s i tuat ion resembles the familiar unsolved p rob lem of 
the flow of a fluid near the front and rear edges of the p la te 
at which a P r a n d t l - B l a s i u s b o u n d a r y layer is formed [75]. 
In the latter case there is a coord ina te expansion which is 
valid in the vicinity of the edge [75, 76] and which does no t 
overlap the solution in a region where the N a v i e r - S t o k e s 
equat ion is valid and even less so where the P r a n d t l 
equat ion applies. A na tu r a l general isat ion of this p rob lem 
is the flow past a corner edge. 

A free film of a fluid which is accelerating, for example 
under the action of the force of gravity, becomes thinner 

and eventually b reaks u p . One of the ways in which this can 
happen is the roll ing up of a film into a system of s t reams. 
The solution in the vicinity of the edge of a free film, like 
tha t near the 'po in t ' of format ion of the s t reams, is no t 
k n o w n . The number of s t reams is no t k n o w n either. It is 
claimed in Ref. [14] tha t the system can consist of one, two, 
or three s t reams. 

Since there is no folding criterion, it is no t possible to 
calculate the pa rame te r s of a t rans i t ion from sheet to s t ream 
flow and the changeover between topological ly different 
regimes. Therefore, it is of p r imary impor tance to determine 
experimental ly the pa ramet r i c limits of the existence of such 
regimes and to detect new ones. 

If a meta l disk is placed in a water-filled ba th , it will 
sink. W h a t happens if a jet of water from a tap is directed 
on to this disk (Fig. 14)? One would expect the pressure 
from the jet to cause the disk to sink even faster. However , 
this disk does no t sink? It floats under the act ion of the 
buoyancy force [77, 78]. The clue to the solution of this 
p a r a d o x is tha t a tmospher ic pressure acts on the upper 
surface of the disk, since only a thin s t ream of water passes 
a long this surface. However , the lower surface is acted u p o n 
by the hydros ta t ic pressure, which his higher t han the 
a tmospher ic pressure because the disk is immersed in 
water to a considerably depth . The difference between 
them creates the buoyancy force, similar to the Arch ime
dean force. The same difference between the pressures is 
responsible for a characterist ic hydraul ic water crest (a 
bora- l ike effect) near the disk edge. The solution of the 
p rob lem of such a floating pla te has no t been obta ined in 
the p lane or axisymmetr ic configurat ions. It is not clear 
h o w impor t an t is the role of the viscosity near the edge 
where a contact discont inui ty is formed. 

Figure 14. Incidence of a water jet on a floating disk. 

The dynamics of air bubbles in water has no t been 
studied at all. One of the surprising p h e n o m e n a in h y d r o 
dynamics is asymmetr ic flow of water a r o u n d an air bubb le 
whose typical dimension / is so small tha t the surface 
tension forces are impor t an t [6, 79]. Such a bubble , p r o 
pelled by the buoyancy force, follows an u p w a r d helical 
pa th . The origin of the lateral force which appears in this 
case is assumed to be no t so much the asymmetry of 
separat ion of the flow from the air bubble , as per iodic 
oscillations in the nea rby wake . 

The simplest experiment with a bubb le floating u p w a r d s 
involves placing a control led a m o u n t of air, whose vo lume 
has a characterist ic length /, at the b o t t o m of a water-filled 
sufficiently high and wide glass vessel. If the value of / is 



Hydrodynamics: problems and paradoxes 305 

varied and the other pa rame te r s are kept constant , the 
results give one-parameter dependences of the shape of the 
bubble , of the coefficients represent ing the ae rodynamic 
forces act ing on the bubble , and of the rat io h/r on the 
number Re, where h is the pitch of the helical pa th followed 
by the bubb le and r is the rad ius of this pa th . 

The shape of the bubb le can be calculated on the 
assumpt ion tha t the flow is inviscid, symmetric , and 
nonsepara ted , tha t the air pressure inside the bubb le is 
negligible, and tha t the pressure on its surface is 

a 
p = const — — , 

R 

where a is the surface tension and R is the rad ius of curva
ture of the bubb le surface. However , even if the solut ion to 
this p rob lem does exist, it is of no pract ical use because 
the flow past a bubb le moving a long a helical pa th is 
separated. 

The simplest outf low prob lem is tha t of the shape of a 
free b o u n d a r y at the contact between the finite mass of a 
fluid which is flowing down to the vertex of a cone or a 
wedge at a ra te obeying, for example, a power- law function 
of t ime. D o e s the self-similar regime appear? Which of the 
factors — viscosity, weight, or capillarity — domina tes the 
final stage of flow? The prob lem m a y be converted to one -
dimensional form if it is assumed tha t the vertex angle of 
the cone or wedge is a small pa ramete r . 

4.4 Combined vortices 
A three-dimensional vor tex of finite size is called simple if it 
has no tangent ia l discontinuit ies and combined if there are 
such discontinuit ies. The b o u n d a r y of a combined vortex is 
a slip surface: a contact discontinuity, or a free surface. A n 
example of a combined vortex, b o u n d e d by a contact 
discontinuity, is the Hill spherical vor tex and an example of 
a combined vortex b o u n d e d by a free surface is the 
combined R a n k i n e vortex [80]. 

A combined vor tex of finite size is called hollow if there 
is no three-dimensional vorticity, i.e. if V x u = 0, except 
for the surfaces of a tangent ia l velocity discontinuity. If 
there is no mot ion inside such a hol low vortex, then its 
b o u n d a r y is a free surface. A n example of a hol low vortex, 
b o u n d e d by a vor tex sheet, is a p lanar circular vor tex with a 
poin t vor tex of s trength —T/2 located at its centre; here, r 
is the global circulation of the vor tex sheet. 

The wonderful wor ld of combined vortices has no t been 
investigated at all. It has been found tha t the interact ion of 
two simple p lanar vortices is accompanied by the format ion 
of a cusp poin t and of a vor tex sheet [59]. Such an effect 
(artefact?) has to be reproduced and thoughtful ly analysed. 
N o studies have been m a d e of the dynamics of peak ing of a 
tangent ia l discont inui ty [81] or of spon taneous (without 
external forces) appearance of helicity on its smooth 
surface. 

W e have considered al ready a bubb le in gradient fluid 
flow (Fig. 12f). A completely different s i tuat ion occurs 
when a thin bubb le is in a fluid flowing in the absence 
of a gradient at a constant velocity u^. A pressure gradient 
is induced by the bubb le itself, i.e. 

P(x,yi) =Poo + £Pi(x,yi)+o(s), p^ = const . 

The pressures outs ide the bubb le is found by solving the 
linear p rob lem of poten t ia l flow past a thin b o d y whose 
shape is given by the expression yx = sf(x). This pressure is 

Pi (x,0)=4f t J( 

The bubb le can 'wi ths tand ' this pressure if the velocity 
inside it, described by the Bernoull i law, is of the order of 
y/e. Inside the bubb le we then have 

1 
HxP,yi) = 8^2u^y) + o(s^2), P l \ =-l-Pco2f2, 

Mx,y)=-coy(f-y), co = cons t , yx = sy . 

The qual i ty of the pressures outs ide and inside the bubb le 
together with the act ion of the surface tension can be 
described by the following nonl inear integro differential 
equat ion for the f u n c t i o n / ( x ) : 

oQ-x 8 p 
(4.4) 

where a is the surface tension. It seems tha t there are no 
solut ions for a = 0. 

F o r m u l a t i o n of the p rob lem of a bubb le in supersonic 
flow is too exotic for p roper t rea tment . In accordance with 
the linear supersonic theory, the pressure is p ropo r t i ona l to 
the angle of tilt of the bubb le surface or, m o r e exactly, 

Pi(x, 0) =pu2

00f\x) . 

E q n (4.4) is n o w replaced with the following ord inary 
differential equat ion: 

2 W , 1 „2r2 a nil r\ 
"oof +^cof--f = 0 . 

o P 
It is necessary to confirm tha t the p rob lem of a vor tex 

bubb le is well-posed within the f ramework of the N a v i e r -
Stokes equat ion . 

A combined vor tex can have a spiral s t ructure. The 
equat ion for the t r anspor t of the vortici ty co, derived in 
te rms of a system of polar coordina tes r and 9 is 

dco dco v dco / A N 

+ + - _ = 0 , 4.5 
ot or r 00 

where the s tream function is 

*(r , 9, 0 = ^ J * ( r 0 , 9\ t) 

x In [r 2 - 2rr° cos(0 - 9°) + r 0 2 ] r° dr° d9° , 

: 8 0 ' 8r 

and this equat ion has an exact solut ion with separable 
variables: 

\j/ = r2W(rj, t), co = co(rj, t) , 

p = r2P(r\, t), rj = 9 + k In r . 

The system of coordina tes is n o n o r t h o g o n a l in a physical 
p lane and consists of a family of spirals and a family of 
circles; the solution is sought in a half-strip defined by 
t > 0, 0 ^ r\ ^ 2tc. 

Numer i ca l solut ion of Eqn (4.5) requires specifying the 
initial vor tex co(rj, 0) and the b o u n d a r y condi t ions . The 
latter condi t ions can be the equali ty of the pressures and of 
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the n o r m a l componen t s of the velocity un on the rj = 0 and 
rj = 2% lines, which coincide in a physical p lane: 

p ( 0 , t) = P(2n, t), un(0, t) = un(2n, t) . 

Since the b o u n d a r y condi t ions include the pressure, the 
p rob lem should be supplemented by an equat ion for 
de terminat ion of P(rj, t). 

Two physically distinct formula t ions are possible and 
they are given below. 

(1) Simple vortex. In this case the tangent ia l c o m p o 
nents of the velocity remain con t inuous : 

uT(09 t) = W t ( 2 T T , t) . 

(2) Combined vortex. A spiral characterised by rj = 0 
(or rj = 2K) is a vor tex sheet. Since fluid does no t cross this 
sheet, the n o r m a l componen t of the velocity on the sheet is 
equal to the velocity of the discont inui ty c(t): 

un(0, t) = c(t) . 

There is no certainty tha t this solution describes 
' p s e u d o r a n d o m flow'. However , in analysis of the special 
case of a self-similar solution [82] spon taneous appea rance 
of an infinite singularity in the dis t r ibut ion of the vor tex has 
been confidently predicted [33]. This p h e n o m e n o n has been 
discussed so far for three d imensional flow [84] or for p lane 
vortex sheets evolving in po ten t ia l flow [85]. 

4.5 Coordinate expansions in the vicinity of folds 
A local solut ion near a fold, obta ined on the basis of the 
'dry wa te r ' model , is a coord ina te series in powers of the 
distance from the fold. Such a series expansion represents 
the upper limit of the solution of the p rob lem of the small-
scale s t ructure of flow of a low-viscosity fluid. In te rms of 
spherical coordina tes r, 0, A, the solut ion of the Laplace 
equat ion for the velocity poten t ia l is sought in the form 
rnfn(0, X) +o(rn). In addi t ion to regular ha rmonics , which 
cor respond to integral values of n, there are also 
eigensolutions with fractional values of n. The aim is to 
find the eigensolution with the smallest index n. 

Let us n o w consider some examples. 
The ' three-halves l aw ' (Fig. 15a) for the shape of a 

vor tex sheet near a sharp edge from which this sheet 
originates [86] b reaks down near the edges of a wing. 
Fig. 15b shows the shape of a wing in p lan view. Poin ts 
A, B, and C are the k inks of the wing profile. Different flow 
pa t t e rns are obta ined, depending on the angle of a t tack (the 
angle of tilt of a wing relative to the direction of free-stream 
flow) and on the vertex angle 9 at a kink. The nonsepara ted 
flow pa t t e rn in considered in Ref. [87], bu t for some reason 
this is done only for the case when 6 < n. Linearised 
solut ions have been publ ished [88] and pa t t e rns p roposed 
in Ref. [14] have to be checked. 

Figure 15. (a) 'Three-halves law', (b) Kinks in the wing profile (plan), 
(c) Wing with a longitudinal cut. 

Fig . 15c shows the shape of a wing in p lan view when the 
wing has a longi tudinal cut. Pa t t e rns of flow near folds A 
and B p roposed in Ref. [14] also need to be checked. 

There is a greater variety of pa t t e rns involving separa
t ion from a smooth surface of a body . Topologica l 
classification of such pa t t e rns should be based on the 
type of lines of contact of a vor tex sheet with the body . 
Possible cases of th ree- d imensional separat ion are shown in 
Fig. 16: (a) smooth separa t ion; (b) open separa t ion; 
(c) dipole separa t ion; (d) spiral separa t ion . The th ree-
halves law is valid in sections perpendicular to the line 
of contact (dashed lines in Fig. 16) and the shape result ing 
from smooth separat ion is similar to tha t obta ined for the 
p lanar case. 

a b 

Figure 16. Possible types of lines of contact of vortex sheets with a 
body. 

A coord ina te expansion in the vicinity of a vertex line of 
contact between a vor tex sheet and a b o d y has no t yet been 
obta ined even for a single case. The p rob lem of a contact 
discont inui ty subject to the surface tension forces has no t 
been tackled: a coord ina te expansion has no t been obta ined 
even for p lanar flow; the three-halves law is no t valid in the 
case of separa t ion from a sharp edge or from a smooth 
surface. Closed vort ical regions apparen t ly form in the 
vicinity of a poin t of separat ion, as established exper imen
tally [19]. 

One of the best k n o w n examples of the flow of a 
compressible fluid for which a coord ina te expansion is 
no t k n o w n near a fold is the p rob lem of a triple shock 
p roposed by Rich tmyer [65] and represent ing a simple 
M a c h reflection of a shock wave from a wedge. The 
flow pa t t e rn is shown in Fig. 17a, where a contact 
discont inui ty s tar t ing from a triple po in t is represented 
by a dashed curve and the con t inuous curves represent self-
similar pa ths . It would seem tha t the lines of discont inui ty 
should be analytic curves everywhere with the exception of 
the triple po in t itself and tha t the self-similar solut ions 
should be analyt ic in te rms of the variables x/t and y/t. 
Rich tmyer obta ined a local solution with the aid of a 
fract ional-exponent series and logar i thms. The series 
derived for each of the angular subregions 7, 2, 3, 4 
(Fig. 17a) and satisfying differential equa t ions are matched 
a long the lines of discontinuity. Unfor tuna te ly , a solut ion 
cannot be obta ined in this way. The na tu re of the 
singularity still r emains u n k n o w n . W h a t is the p rob lem? 
Apparen t ly Rich tmyer ignored the special t ransonic n a t u r e 
of flow near the triple poin t . 
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Figure 17. Patterns of reflection of a shock wave from a wedge. 

Before we p ropose a possible explanat ion of the 
unsuccessful a t t empt m a d e by Richtmyer , let us recall 
tha t (as established in Section 3) singular po in ts in the 
field of self-similar p a t h s are located in the region of elliptic 
equat ions . F o r example, under regular reflection condi t ions 
the line of parabol ic i ty (dashed line in Fig . 17b) separates 
' supersonic ' flow in the vicinity of po in t A from ' subsonic ' 
flow su r round ing a node of self-similar pa th s N . 

It is very likely tha t in the case of simple M a c h reflection 
a line of parabol ic i ty divides an angular region (4 in 
Fig. 17a) between a M a c h stem and a contact discont inui ty 
into two corner subregions for which the expansions of the 
solut ions are fundamental ly different. The ellipticity of the 
system of equa t ions is impor t an t right up to the l imiting 
characterist ic. 

Similar considera t ions apply in the case of a steady 
simple M a c h reflection of a shock wave from a solid wall. 

R ich tmyer ' s a t t empt is related also to the following two 
unsolved prob lems . One of them, discussed long ago [89], 
can be solved after the topo logy of flow has been 
determined and checked numerical ly. This is the p rob lem 
of de terminat ion of the criterion of a t rans i t ion from 
regular to simple M a c h reflection. 

The second p rob lem is the behaviour of the end of a 
contact discontinuity. Fig. 17a applies only if the velocity of 
a fluid to the left of the contact discont inui ty is not equal to 
the velocity of a po in t of the saddle + node (SN) type where 
a slip line is a t tached to a wedge. It is na tura l ly unde r s tood 
tha t such a ' separa t ion ' pa t t e rn is no t self-consistent with 
separat ion of a self-similar b o u n d a r y layer from a wedge. 
Equal ly doubtful is the simplest topo logy with just one n o d e 
N (Fig. 17c) when the velocity of a fluid to the left of a 
contact discont inui ty is equal to the velocity of the poin t N , 
i.e. the velocity discont inui ty vanishes at this end of a slip 
line. U n d e r some condi t ions , experiments reveal the end of 
a contact discont inui ty rolled up into a spiral. Such a flow 
pa t te rn , which includes a focus and a saddle S (Fig. 17d), is 
formally self-consistent. 

I shall end this subsection by comment s which should 
finally shatter any illusions tha t we might have abou t the 
ease of const ruct ing expansions in the vicinity of folds. A 
local solut ion does no t always have the simple form of a 
coord ina te series. A n al ternat ive case is tha t when the 

vicinity of a po in t (or a line on a surface) ha s to be split into 
several (three, ten, or more) subregions and in each of them 
the initial complete p rob lem has to be simplified. The 
solut ions for such embedded , like the Russ ian ma t ryoshka 
toys, subregions are asymptot ical ly compac t and mutua l ly 
correlated. This m e t h o d had been used first to tackle the 
p rob lem of flow near a po in t of separat ion of a b o u n d a r y 
layer in a supersonic s t ream: this was done by Nei land [90] 
and also by Stewartson and Will iams [91]. N o w a d a y s such 
expansions are regarded as convent ional tools by inves
t iga tors and the range of their appl icat ions is par t icular ly 
great in the hyd rodynamic stability theory, which is an 
extensive topic we have hard ly touched so far. 

It follows tha t a theory of local solut ions has not yet 
been developed not only for the N a v i e r - S t o k e s equat ion , 
bu t even for the Euler equat ion . 

4.6 Vortex filaments 
A vortex filament, which is a ma themat ica l representa t ion 
of the vort ici ty concent ra ted on a line in the delta-function 
manner , is of little use in model l ing real h y d rodynamic 
processes pr imar i ly because the velocity and deformat ion 
of the filament are generally infinite [6, 92]. 

Curvil inear vor tex filaments are often used in qual i ta t ive 
analysis. Two r ing vortex filaments with a c o m m o n axis 
should pass t h rough each other periodically. This is 
ment ioned in practical ly every tex tbook on h y d r o d y 
namics . In experiments it is found tha t vor tex rings are 
usually ejected t h rough a circular opening as a result of 
pulsed compress ion of a closed vo lume of air. The vortices 
b reak ing away from sharp edges of the opening can easily 
be m a d e visible with smoke. 

U n d e r suitable condi t ions two vor tex rings, ejected one 
after another , merge into one which at first oscillates 
assuming an elliptic shape and then separates into two 
new rings. The related p a r a d o x , which still has to be 
resolved satisfactorily, is tha t dur ing their short interact ion 
these vortices exchange their vorticities. In fact, if initially 
these rings are coloured differently, then each of the new 
rings formed as a result of their interact ion is coloured half 
with one colour and the other hal f with the other colour. 

If you carry out this experiment , t ry to eject several (up 
to ten) vor tex rings following one ano ther at short intervals. 
The rings will t ravel some distance a long their shared axis 
and then they will effectively diverge forming a beautiful 
' bouque t ' . This p h e n o m e n o n demons t ra tes the uni ty of the 
r a n d o m n e s s and regulari ty principles in the mo t ion of 
vortices, which is no t yet possible to mode l mathemat ica l ly . 

Can vortex r ings pass t h rough one ano ther m a n y t imes? 
M a x w o r t h y [93] tried to s imulate leap-frogging of vor tex 
r ings in water . W h e n the initial velocities of the vortices 
were approximate ly the same, two rings merged into one 
which did no t separate later. W h e n the velocity of the 
second vortex was much higher t han tha t of the first, an 
uns tab le composi te r ing was formed and it then separated 
into two . As a result, the second r ing over took the first, bu t 
then the velocities of the two rings became approximate ly 
equal . Therefore, subsequent merging was no t observed. 

If M a x w o r t h y is correct, then the leap-frogging of 
vor tex rings in water is impossible. D o u b l e interact ion of 
vor tex rings in air was detected by Y a m a d a and M a t s u i six 
years later [19]. 

Recti l inear vor tex lines, moving at a finite velocity, are 
m o r e suitable for model l ing than are curvilinear lines. In 
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1913, F o p p l p roposed a pa t t e rn for flow pas t a cylinder, 
characterised by two symmetrically a r ranged vortices. 
These vortices m a y form not only behind a cylinder bu t 
also in front of it [94]. The circulation r of these vortices 
proves to be a free pa ramete r . 

In contras t to the Nikol ' sk i i flow, the F o p p l mode l is 
incorrect: the appea rance and existence of po in t vortices in 
a real viscous liquid is impossible. However , from the 
pract ical po in t of view this mode l is very at t ract ive since 
it predicts zero resistance force. This immediate ly leads to 
an interest ing idea of del iberate format ion of po in t vortices 
in the F o p p l flow by two ro ta t ing cylinders of sufficiently 
small rad ius in order to reduce the d rag and suppress the 
wake . A n est imate of the energy losses expected in such an 
experiment shows tha t it is feasible, bu t technological 
difficulties prevent implementa t ion of this idea. W e no te 
parenthet ical ly tha t a ro ta t ing cylinder on the surface of a 
wing profile is being used to move further the poin t of 
separat ion a long the wing set at an angle of a t tack [95]. 

The F o p p l mode l has ano ther and purely theoret ical 
use: it can be employed to detect unusua l proper t ies of 
separated flow and to carry them over to realistic 
ma themat i ca l models . 

The presence of a free pa rame te r r in the F o p p l mode l 
makes it possible to use this mode l for fluid flow past bodies 
with sharp edges: the value of r can be selected so tha t the 
K u t t a condi t ion is satisfied or, in other words , the poin t of 
separat ion on a wing is fixed. 

Let us consider symmetric flow past a p la te with a sharp 
corner at the origin of the coord ina te system (V plate) . Let us 
denote the angles tha t the p la te makes with the x axis by zbarc 
(Fig. 18a). Let us assume tha t po in t vortices of s t rengths 
—r and r are located at po in t s z\ and z\. The conformal 
t rans format ion 

m a p s the exterior of the p la te in the z p lane on to the £ 
plane, in which a section of the axis of abscissae has been 
removed. The complex-conjugate velocity of flow is 

dw _ dC / r 1 r 1 \ 

If under s teady condi t ions (no external force) we go to 
the limit 

Figure 18. Two problems with point vortices. 

we find tha t two algebraic equa t ions are obta ined: 

- f ^ - l ) = 2 ^ , 

( 1 - ^ ( 3 ^ - ^ - ^ - 1 ) = ! - ^ , 

where Inu^ag = /\ k = 1 — 2a, £i = ^ + irjl. 
The K u t t a condi t ion at the sharp edge 

completes the p rob lem of de terminat ion of { j , rjl9 and g by 
the third algebraic equat ion: 

The geometr ic locus of the centre of vortices is p lot ted as 
a function of a in Fig. 18a. At low values of a (or in the 
limit a —> 1) a weak poin t vor tex is located in the vicinity of 
the edge. As a increases to 0.5, which cor responds to flow 
past the plate , the vor tex strength increases wi thout limit 
and the vor tex escapes to infinity a long asympto tes which 
m a k e the angle ± 7 i / 6 with the abscissa. Thus , con t ra ry to 
the current ly held ideas [94], there is no solution to the 
p rob lem of symmetr ic flow past the p la te characterised by 
two poin t vortices. This is the essence of the F o p p l p a r a d o x . 
In a b roade r sense the work , the F o p p l p a r a d o x can be used 
to denote the absence of a steady solution of a p rob lem for 
certain critical values of the determining pa rame te r s c r c r if 
vortices are removed to infinity by going to the limit 
a —> c r c r . 

D o e s bifurcation in the asymmetr ic F o p p l flow pa t t e rn 
occur at a = 0.5? D o e s the F o p p l p a r a d o x apply to other 
configurat ions or to other dis t r ibut ions of the vorticity, 
apar t from those concent ra ted at poin ts? It is interesting to 
no te tha t the solut ion of the p rob lem of flow past such a V 
pla te does exist in the Nikol ' sk i i scheme for any value of a. 

Can the F o p p l mode l be applied to flow inside a wedge-
shaped region? The p rob lem is tha t the flow of a strongly 
viscous liquid (Re —> 0) is characterised by an infinite chain 
of three-dimensional vortices of decreasing al ternating-sign 
strength, located in a wedge-shaped region (Fig. 18b). This 
chain has been observed experimental ly and is k n o w n under 
the n a m e of Moffat t vortices [19, 96]. Such a system of 
vortices is an exact solution of the Stokes equat ion . A 
similar solution of the N a v i e r - S t o k e s or Euler equat ions is 
no t k n o w n . 

One of the possible solut ions of the Euler equat ion is a 
sequence of po in t vortices with the circulation rm, located at 
po in t s xm on the bisector of a wedge. The condi t ion for the 

b 
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absence of a force act ing on each poin t vor tex leads to an 
infinite system of t ranscendenta l equat ions : 

where £m = x^2e° and 0 O is the wedge angle. The simple 
solution Tm = (—1 ) " \ xm = m = 1, 2, 3 , . . . exists only when 
0 O = n. 

Systems of po in t vortices evolving in the absence of solid 
bounda r i e s are being investigated intensively. A n example is 
wha t is k n o w n as a discrete-circular vortex (Fig. 19), which 
is a symmetr ic system of poin t vort ices located on N 
concentr ic circles in such a way tha t the same number 
of k vortices with the same circulation is located on each 
circle. 

2n/k 

Figure 19. Discrete-circular vortex. 

One general comment should be m a d e on the stability of 
symmetr ic clusters: it relates to the m e t h o d s of investigating 
this stability. W e can s tudy symmetry b reak ing in a system 
as a whole on the assumpt ion tha t its componen t s are stable 
entities and, having determined the symmetry as the exact 
solut ion of the p rob lem, we can then s tudy instabili ty of an 
individual componen t . This division of the p rob lem into 
two pa r t s opens up possibly the only way for investigating 
the stability of symmetr ic vor tex s tructures . 

In the case of a discrete-circular vor tex we can s tudy the 
behav iour of all the kN vortices. It is found tha t a ' c loud ' of 
vortices exhibits a symmetry instabili ty [86] similar to the 
He lmhol t z instabili ty of a contact discont inui ty [69], 
whereas a discrete-circular vor tex b reaks down imme
diately. In the other case we can select one vor tex on 
each circle and having determined the symmetry posi t ions 
of the other vortices, we can s tudy instabili ty of N vortices. 
The mechanism of this instabili ty is not known , bu t it is 
fundamental ly different from the He lmhol t z instability. 

Thus , if on each circle we select one vor tex with the 
circulation 7}( j = 1, 2 , . . . , N) and with the complex 
coord ina te 

zj(t) = rj(t)exV[Wj(t)] , 

we find tha t the functions rj(t) and 0j(t) obey a system of 
2N o rd inary differential equat ions . The Ki rchhof f invar
iants are retained [6]. 

In the course of mo t ion a sign of the quan t i ty r J + 1 — ry 
m a y change. If N = 2, this resembles the leap-frogging of 
vortices discussed above. It occurs when initially rx/r2 is less 
t han a certain critical value of cr. It is of interest to consider 
the dependence of o on r 2 / r 1 , which represents the 
b o u n d a r y of the region where such a vor tex leap-frogging 
takes place. This is useful in de terminat ion of the dis
cretisation step in numer ica l calculat ions of mult ispiral 
vor tex sheets. 

If N = 2, flow is determinist ic, bu t for N > 2, we can 
expect chaos . One of the p robab le scenarios of the 
appearance of chaos is the format ion of an s layer on 
the separatr ices in the phase space [97]. 

It is no t k n o w n whether collapse of a discrete-circular 
vor tex is possible. This p rob lem is closely related to the 
p rob lem of stability of convent ional collapse of three poin t 
v o r t i c e s | discussed above because, in the limit t —> 0 (t = 0 
is the collapse t ime), the main cont r ibut ion comes from the 
selected three collapsing vortices and the remain ing k — 1 
vor tex triplets have only a correct ion tha t decreases with 
t ime. 

As poin ted out above, chaos in a system of po in t 
vortices does occur when their n u m b e r exceeds three. 
This conclusion applies to the evolut ion of vortices in 
u n b o u n d e d space. Are the proper t ies of a system of three 
poin t vortices the same in b o u n d e d space? Here , the term 
'bounded space ' means either an internal region (wedge, 
circle) or a region external relative to the b o d y a r o u n d 
which fluid flows. The simplest p rob lem is tha t of the 
evolut ion of three poin t vortices above an impermeable 
plane, which is equivalent to three symmetr ic (relative to 
this plane) pa i rs of po in t vortices in infinite space. 

Can chaos occur in the case of evolut ion of a discrete-
circular vortex, located inside or outs ide a circle, if N = 2? 

Poin t vortices p rov ide good oppor tuni t ies for model l ing 
b o t h small and large pe r tu rba t ions in the dynamics of an 
ideal incompressible fluid. Such pe r tu rba t ions frequently 
no t only deform, bu t also destroy coherent entities. The 
p rob lem is formulated as follows: at t = 0, po in t vortices 
are in t roduced into a moving fluid and these begin to 
interact with one ano ther and with solid boundar i e s . 
Depend ing on the previous his tory of flow and on the 
na tu re of this interact ion, three var ian ts are possible: there 
is no separat ion, vortices initiate separa t ion which has no t 
occurred earlier at t < 0, and vortices interact with a well-
advanced separat ion, which exists when t < 0, and is — for 
example — in the form of free boundar ies . Specific p r o b 
lems are considered in Ref. [14]. 

5. Rotational flow 
R o t a t i o n a l flow refers to three-dimensional mo t ion with a 
specific fluid ro ta t ion axis. Even in the 'dry wa te r ' 
approx ima t ion it is found tha t fast ro t a t iona l mo t ion 
has surprising proper t ies : change of equat ion from elliptic 
to hyperbolic , format ion of P r o u d m a n - T a y l o r columns, 
p ropor t iona l i ty of the d rag of a b o d y no t to the 
acceleration, bu t to the velocity o r . . . t h e pa th (!) travelled 
by a b o d y [6, 99, 100]. However , the general theory of 
ro ta t iona l laminar flow is still far from complete . 

fThe problems of existence and stability of steady and uniformly 
rotating point-vortex clusters is discussed in Ref. [98]. 
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5.1 Flow past bodies 
Axisymmetr ic flow of an ideal incompressible fluid can be 
described by the following pa ramete r s : the m o d u l u s of 
the m a x i m u m angular velocity Q, the characteris t ic 
dimension / of the b o d y past which the fluid is flowing, 
the axial velocity u^ which is cons tant far from this body . 
Then , the influence of ro ta t iona l flow can be described by 
the Rossby number 

Ro 
Ql 

The Euler equat ion is then [6] 

«A« + K - \ * r = Ro'2 [r2H'^) - C^)C'^)] , 

where the var ious quant i t ies are m a d e dimensionless as 
follows: the s t ream function \// is divided by w ^ / 2 , the 
cylindrical coordina tes x and r are divided by /, the to ta l 
pressure H in a s t ream line is divided by pl2Q2, and the 
velocity of circulation a r o u n d the symmetry axis (r = 0) is 
divided by l2Q; the functions H(\j/) and C(\//) are specified 
by the condi t ions at infinity (x = — oo), where \j/ = r2/2. 

If Ro <̂  1 the overall flow is independent of x and the 
s t ream function is found from 

r2H' = CC' . (5.1) 

A change occurs only in a thin inviscid b o u n d a r y layer of 
thickness 0(Ro) adjoining the surface of the body . In the 
simplest case of flow past a disk (Fig. 20a) the s t ream 
function \j/0 in the b o u n d a r y layer is found from the 
equat ion 

9V„(6 r) 
9<f 

with the b o u n d a r y condi t ions (5.1) in the limit £ —> =boo 
and subject to the condi t ion \j/0 = 0 when <*; = 0, where 
x = £Ro. 

If Q = oo, then Ro = u^l/r, where r is the circulation 
of a vor tex filament. The p rob lem of uni form flow of a fluid 
represented by a vor tex filament (r = 0) in the He lmhol t z 
scheme has no t yet been solved (Fig. 20b). 

A very different p rob lem is represented by the case 
when flow tu rns under the action of a ro ta t ing b o d y and 
there is no ro ta t ion at infinity. A ma themat i ca l mode l of the 
P r o u d m a n - T a y l o r columns, which then appear ahead of a 
b o d y and behind it (Fig. 20c), ha s not yet been developed. 
It is also wor th no t ing the d isappearance of a rear co lumn 
on reduct ion in the Reyno lds number Re = u^l/v. The 
P r o u d m a n - T a y l o r co lumns in an ideal fluid extend a long 
the x axis to =boo (dashed lines in Fig. 20c). 

If the axial velocity u is divided by w^, the radia l v and 
circular w velocities are divided by Ql, and the pressure is 
divided by p(Ql)2, the N a v i e r - S t o k e s equa t ions become 

du 1 d(rv) 
ox r or 

0 , 

Free boundary 

,PT columns 

Figure 20. (a) Inviscid boundary layer (IBL) on a disk, (b) Interaction 
of a vortex filament with a body in the Helmholtz model, 
(c) P r o u d m a n - T a y l o r (PT) columns. 

were 

aRe=Ro, V 2 

dx 
d 1 

+ - dr V dr 

The next two nonl inear submodels cor respond to the cases 
of strongly ro ta t ing (Ro <^ 1) and weakly ro ta t ing (Ro 5> 1) 
fluids. 

(1) Ro <̂  1. A b o d y is flattened a long the x axis and its 
shape is described by the equat ion x = Rof(r). The pressure 
is independent of { an and the dependence p(r) is found 
from the condi t ions at infinity —> —oo): 

dp 

dr 
w 
r 

1, 0 . 

The reduced N a v i e r - S t o k e s equa t ions follow from the 
system of equa t ions (5.2): 

du 1 8(rv) 
9{ r dr 

0 , 

8v 8v w dp / 9 v 
Rou— + v- = —£ + <* V 2 v - - ^ 

ox or r or V r1 

dw dw vw / 9 w 
/ t o w — + v — + — = a V 2 w - ^ 

Ox Or r \ r1 

du du 1 dp o 
Rou— + v — =-—1f + V2u , 

ox or Ro dx 

(5.2) 

8v 8v dp 
u — + v = - — + cc —j , 

6£ dr dr 

,2. 

9<r 

dw dw vw i_ .. 
^ -rj + V — | = (X — y 

OC or r d£ 

(2) Ro 1. A theory of a thin b o d y n o w applies and the 
equat ion for the surface is r = Ro~lf(x). The pressure is 
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found separately from the second equat ion by the Navier 
Stokes equa t ions converted to the parabol ic form: 

du 1 d(rjv) = Q 

dx rj drj 

dw dw vw 
u— + v— + — = P 

ox on rj rj drj 
dw\ w 
drj 

du du 
u— + v — = fl 

dx drj 
1 8 / du 
rj drj \ drj 

u 
rj^ 

where rj = rRo, and ft Re = Ro2. 
A numer ica l calculat ion begins at the poin t x = — 1. 

There are singular regions near the front and rear edges. 
It is usua l to distinguish the 'entry p o i n t ' of flow 

(Fig. 21a) and the 'exit po in t ' (Fig. 21b). With in the 
f ramework of the Euler equat ions , these two types of 
flow are indidst inguishable because of the principle of 
reversibility of flow. In the vortex-free case a rectilinear 
vor tex filament, located on the cont inua t ion of the axis of a 
cone, s tarts from the vertex A of this cone. In fact, the 
condi t ions of axial symmetry, wri t ten down for the 
poten t ia l cp in a spherical system of coordina tes r, 0, and X 

d2cp d2cp 
drdX dOdX 

= 0 

determines directly the form of its function: 

<p(r, 0, X) = <?i(r, 0) + <p2(X) . 

It follows from the Laplace equat ion V2cp = 0 tha t 
2nq>2(X) = FX where F is a cons tant . Therefore, the 
cont inua t ion of the a t tached vor tex filament A B is a 
free filament A C with the circulation F (Fig. 21). Such a 
local solution implies dependence on t ime as a pa ramete r . 

In view of linearity of the p rob lem, the loss of the axial 
symmetry can be investigated separately. If the poten t ia l is 
represented by a Four ie r series 

<p(r, 0, X) = ^ 0 k ( r , 0)sinOU) 

and the solution for low values of r is limited to a power 
law 

*k(r,9) = i*Fk(P), 

the Laplace equat ion leads to the Legendre equat ion for 
FK. The condi t ion of zero flow on the cone [F^OQ) = 0] and 
the 'Ku t t a condi t ion ' of a finite velocity on the axis 0 = 0 
[Fk(0) = 0] complete the formulat ion of the n(k) eigenvalue 
problem. 

A vor tex filament is extremely uns table . A slight 
deformat ion of a pa r t of the filament causes it to move, 
theoretically, at infinite velocity. Therefore, the pa t t e rn of 

flow with a vor tex filament can hard ly serve as an external 
expansion for the solution obta ined for the p rob lem of flow 
of a viscous liquid when Re = F/v —> oo, where v is the 
k inemat ic viscosity. The self-similar solution p roposed for 
the 0 O = K/2 case in Ref. [101] is unacceptab le because it 
ignores diffusion of a vor tex filament and it does no t exist 
for sufficiently large values of the number Re. 

The mechanism of appea rance of ro ta t iona l flow can be 
m a d e m o r e specific on the assumpt ion tha t the investigated 
cone ro ta tes uniformly abou t its axis. Then the solution of 
the local p rob lem should be sought in the half-strip r ^ 0, 
0 ^ 6 ^ 0 O subject to the condi t ion of zero velocity on the 
6 = 60 line and the min imal singularity condi t ions on the 
lines 0 = 0 and r = 0. A soliton solution of this p rob lem 
(0 O — n / 2 ) was obta ined by von K a r m a n (see, for example, 
Ref. [102]). 

5.2 Self-rotation of bodies in flow 
If a b o d y is hinged at a poin t or a shaft, it has the freedom 
to ro ta te in a flowing fluid. R o t a t i o n of a b o d y which is no t 
damped out with t ime is called self-rotation. The energy of 
such ro ta t ion is d rawn from the flow outs ide the body . 
Exper iments have shown tha t steady, oscillatory, and 
disordered self-rotation is possible. 

The publ ished invest igations have been concerned 
mainly with self-rotation abou t the axis coinciding with 
the direction of free-stream flow. 

Self-rotation of a rec tangular p la te was discovered by 
Zhukovsk i i in 1906. This ro ta t ion took place in a range of 
a t tack angles cor responding to a negative derivative (with 
respect to the angle of a t tack) of the n o r m a l force [103]. 
Only then an ae rodynamic t o rque ro ta t ing a wing is 
observed. 

Self-rotation of an ellipsoid with the aspect ra t io of 5 
abou t an axis coinciding with its minor axis and with the 
direction of free-stream flow is surprising: in the case of 
such a b o d y the flow past it is independent of the angle of 
a t tack and there is no lift force [104]. A n increase in the 
Reyno lds number Re first does no t alter the frequency of 
ro ta t ion (?) and then (Re = Recr) in the ellipsoid s tops and 
begins to ro ta t e (Re > Recr) in the opposi te direction 
(mystically?) at a higher angular velocity. Self-rotation is 
explained by the asymmetry of Hert ler vortices on the 
ups t r eam and downs t ream pa r t s of the ellipsoid. A n 
experiment of this k ind mus t be repeated and analysed. 

Self-rotation is of pract ical impor tance for m a n o e u v r a 
ble aircraft. Such aircraft have low-aspect-rat io wings (A <̂  1) 
and, therefore, the centre of interest has shifted to studies of 
their ro ta t ion [105]. The topic of first impor tance is then the 
interact ion of the vortices trai l ing off from b o t h side edges, 
their evolut ion, and b r e a k u p . Ma thema t i ca l model l ing of the 
major i ty of these effects is possible on the assumpt ion tha t 
the fluid is ideal. In par t icular , it is necessary to develop the 

Figure 21. Interaction of a vortex filament with a cone: (a) 'entry point ' ; (b) 'exit point ' 
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law of p lanar cross section for a ro ta tab le low-aspect-rat io 
wing. 

Conversely, in ae rodynamics of self-rotating wingless 
rockets the viscosity effects are of p r ime impor tance : 
separat ion of a b o u n d a r y layer on a ro ta t ing wall and 
l a m i n a r - t u r b u l e n t t ransi t ion [106]. 

Even a slight asymmetry can greatly enhance self-
ro ta t ion . This effect is observed if a hole is m a d e in a 
solid sphere placed in an air s t ream. 

Self-rotation pa t t e rns of double configurat ions are 
surprising and varied [107]. Two cylinders, whose axes 
are paral lel to one ano ther bu t perpendicular to the 
direction of free-stream flow, can self-rotate. A child's 
rat t le , which is a configurat ion of several spheres hinged 
to a ring, also self-rotates. 

5.3 Channel flow 
A typical p rob lem of in ternal flow of a fluid can be solved 
if the solution is not based on the N a v i e r - S t o k e s equat ion 
but , for example, on its parabol ised subanalogue . One of 
such ma themat i ca l models is discussed below. 

Let a fluid travel between two concentr ic cylinders 
(Fig. 22). The flow is tu rned by ro ta t ion of the inner 
cylinder at a velocity 3wx and of the outer cylinder at a 
velocity 3w2; here, 3 is a dimensionless pa ramete r such tha t 
(5 = 0 ( 1 ) or 3 = o(\). The width of the annula r channel 
between the cylinders is small: the outer cylinder has the 
rad ius (1 + e) r 0 , where r 0 is the rad ius of the inner cylinder 
and e <̂  1. The dimensionless form of the coord ina te x is 
obta ined if we divide it by r 0 , and instead of r use a 
stretched var iable 

R •r0 

sr0 

O^R ^ \ 

The case can be m a d e m o r e general by assuming tha t the 
fluid is injected or d rawn off at a characterist ic velocity xu^ 
a long the n o r m a l to the surface of b o t h cylinders; here, 
is the characteris t ic velocity of axial mo t ion and T = 0 ( e ) 
or T = o(s). 

Subst i tut ion of the expansions of the velocity c o m p o 
nents 

•lu(X9R)+o(l 

w = ^LW(x,R)+o(3) 

Ql 
V(x, R)+o(t) 

UWX+VWR=-^WRR, Ux+VR=0, 
Re 

where Re = TEu^r^/v = 0 ( 1 ) . 
The condi t ions which apply on the cylinder surfaces 

U(x, 0) = U(x, 1) = 0 , V(x, 0) = Vx(x) , 

V(x, 1) = V2(x), W(x,0) = l, W(x,,)= — 
(5.3) 

contain the functions V\{x) and V2(x), which are assumed 
to be given. 

Es t imates of the pressure are cont radic tory . It follows 
from the second equat ion of the system (5.2) tha t 

p = 0(s32) + 0(z2) , 

bu t the third equat ion gives 

p = 0 
,2 / ' 

Depend ing on the relat ionships between s32 and T 2 / e 2 , we 
can distinguish the following three cases. 

(1) S t rong ro ta t ion : 

s332 > t 2 , p = s32pw2P(x, R) + 0(s32) . 

The solution is obta ined in a closed form: 

dx dR 

(2) Weak ro ta t ion 

£ 3 ( 5 2 < | T 2 , p = T— pw\P(x, R)+o{ 2 

The b o u n d a r y layer approx imat ion can be used: 

^ = 0 , ^ + ^ = 0 , ^ , + ^ = -P'(x) + J - URR 

Re 

(3) Basic model : 

s332 = T 2 , p = s32pw2 P(x, R) + o(s32) . 

The system of equa t ions 

Ql 

ux + vR=o, p r = W 

uwx + vwR=-^wRR , 
Re 

UUX + VUR=-PX+—URR 

Re 

(5.4) 

into the system of equa t ions (5.2) yields the following 
expressions which are obta ined from the first and thi rd 
equat ions : 

is compat ib le with the b o u n d a r y condi t ions (5.3). M o r e 
over, it is necessary to specify the initial values of the 
functions in a certain section x = 0: U(0, R), V(0, R), 



Hydrodynamics: problems and paradoxes 313 

W(0, R), and P(0, R). In this initial set there are two 
in terdependent functions: 

PR=W2 , 

2VWW R - VUURR + U 2 V R R = ^ (2WWRR - UURR). 

In a numer ica l calculat ion one can use the C r a n k -
Nicholson scheme or an implicit three-layer scheme [ 3 - 4 ] . 

If Re = 0, the solut ion is in quadra tu res : 

U = ReA\x)R^R~1^ , ReA"(x) = \2(V2-Vl) , 

V = V1 + (V1- V2)R2(2R - 3) , 

W = 1 + R ^ - 1^ , P = ^W2dR +A(x) . 

It is of interest to consider to stability of the solution of 
the system of equat ion (5.4). 

The wel l -known prob lem of steady axisymmetr ic ou t 
flow of water from a b a t h under the act ion of the force of 
gravity has no t yet been solved. The mode l of an ideal fluid 
is applicable provided 

Re = > 1 , 
v 

where g is the acceleration due to gravity and d is the 
diameter of the drain hole. The p rob lem is governed by a 
single dimensionless pa ramete r a = h/d, where h is the 
und is tu rbed level of water . 

It is k n o w n from experience tha t in a certain range of 
values of a (p\ < a < a2) the flow begins to ro ta t e spon ta 
neously. Is there only one value of the angular velocity Q of 
the s t ream? Is Q the eigenvalue of the p rob lem or is it found 
from the considera t ions of stability? Is the me thod of 
b o u n d a r y integral equa t ions applicable to this p rob lem? 

The experimental ly observed increase in the ra te of flow 
of water when it is ro ta t ing can obviously be explained by 
an increase in the thickness of the s t ream under the act ion 
of centrifugal forces. 

The p rob lem of an axisymmetr ic fountain can also be 
extended to the case of ro ta t ion of water a r o u n d the x axis 
(Fig. 23). The initial dis t r ibut ion of the vertical velocity u(r) 
is fairly arbi t rary . Is separat ion of sheets and format ion of 
bubbles possible? A th in-s t ream approx imat ion is discussed 
in Ref. [108]. 

r 

Figure 23. Axisymmetric fountain. 

5.4 Once again about spiral flow 
Spiral mo t ion is a special case of ro ta t iona l flow. In 
describing spacial spiral vor tex s tructures, I found to my 
chagrin tha t I do not k n o w the ma themat ica l definition of 
the spiral even as a p lanar curve. I found tha t this is no t a 
simple mat te r ! I cannot accept as this definition the 
following a b r a c a d a b r a s ta tement given in Matematicheskii 
Entsiklopedicheskii Slovar' (Encyclopedic M a t h e m a t i c a l 
Dic t ionary) publ ished by Sovetskaya Ents iklopediya 
(Moscow 1988): " T h e spiral is a p lanar curve, which 
usually ( ? — m y query) passes a r o u n d one (or several) 
poin ts , app roach ing or moving away from i t . " This 
unma thema t i ca l definition fits also, for example, an ellipse. 

In fluid dynamics the spiral is usual ly (!) unde r s tood to 
be a curve with an infinite number of tu rns . Therefore, I 
shall define a spiral as a p lanar curve which makes an 
infinite number of ro ta t ions as it reels in on a simple closed 
curve or on a poin t . In the first case the simple closed curve 
is called the limit cycle. 

In ma themat i ca l models the number of tu rns of a spiral 
is infinite, bu t our experience shows tha t the number of 
t u rns is finite: the na tu re , as po in ted out already, does no t 
to lera te infinities. 

A spiral surface is a surface which has a simple curve as 
its axis. The surface is such tha t its n o r m a l section is a spiral 
with the focus located on the axis. It follows tha t the axis of 
a spiral surface is a focal curve, which is the geometr ic locus 
of the foci of the spirals. The axis of a cylindrical spiral 
surface is a straight line and the spirals are the same in each 
section. 

A spatial spiral line is the p a t h of a part icle mov ing 
a long a spiral surface in such a way tha t a spiral is ob ta ined 
by project ion onto a p lane n o r m a l to the axis. A screw 
(helical) line is a spatial line describing the pa th of a 
part icle which ro ta tes abou t a certain straight line (axis) and 
at the same t ime moves paral lel to this line. 

In the model l ing of spatial spiral flow it is convenient to 
use coord ina te systems with an axis and an az imutha l angle 
X These are, for example, spherical (r, 9, X) and cylindrical 
(x, r, X) coordinates . Ins tead of X a spiral var iable 
rj = X + g is used; here g = g(r, 9, t) in a spherical system 
of coord ina tes and g = g(x, r, X) in a cylindrical one. The 
condi t ions of spiral periodici ty ment ioned earlier apply for 
rj = 0 and rj = 2K. 

The shape of a waterspout- l ike vor tex sheet in the p lane 
of symmetry of flow and also near a smoo th surface where 
sheet begins has not been investigated. Are s teady self-
similar solut ions applicable in this case? 

Spiral flow occurs over ro ta t ing bodies or in ro ta t ing 
containers . N o studies have been m a d e of bifurcation of 
axisymmetr ic flow to spiral flow. Is there an ana logue of the 
Hill vor tex [6] in slowly ro ta t ing spiral flow? 

The self-similar s teady solution of the N a v i e r - S t o k e s 
equat ion in a spherical system of coordina tes is 

v v 2 

u(r, 0, X) =- U(9, rj), p(r, 9,X)=^ P(9, rj) , 
r r1 

g{9, r)=k\nr+f(9) . 

The region where the solution exists is b o u n d e d by the 
rectangle 0 ^ rj ^ 2K, 0 ^ 9 ^ K. In the special case of 
axisymmetr ic flow (d/drj = 0) with (w ^ 0) or wi thout 
(w = 0) ro ta t ion the equat ion can be reduced to the 
o rd inary form and the spiral periodici ty condi t ions are 
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unnecessary. Three formula t ions of this p rob lem are 
known : axisymmetr ic flux of m o m e n t u m from a poin t 
source, flow induced by a vor tex filament located a long the 
axis of a cone, and flow induced by a linear source also 
located on the cone axis. All these three formula t ions need 
to be extended to the case of spiral flow. 

Axisymmetr ic flow can be generalised conveniently to 
this case by adop t ing a cylindrical system of coordinates . 
Interest ing approx ima t ions are those of rapidly convergent 
( ( r |8g /8r | > 1) and slowly convergent ( r |9g /9r | <̂  1) spirals. 
Can the limit cycle appear in the field of streamlines? 

Al though it has long been k n o w n tha t a wa te r spou t has 
a spiral s t ructure, only axisymmetr ic models have been 
investigated. Such a formulat ion is suitable only for the 
model l ing of a waterspout- l ike vor tex which b reaks off 
from the surface of a wing. A real wa te r spou t can be 
model led only if the compressibili ty, the force of gravity, 
and heat conduct ion are t aken into account . 

The exact self-similar solution 

VX V V 
ux=~2 uin), ur = - v(rj), ux = - w(rj) , 

r- r r 
v2 

p = P(rj), rj = A + kin r 

describes spiral flow in the symmetry p lane x = 0. It can be 
t reated as a t runca ted coord ina te expansion in powers of x 
of a non-self-similar solut ion in the vicinity of the 
symmetry p lane x = 0. 

The p lanar H a m el flow, described by the s t ream 
function \jj = \jj(r\), where rj = X + k In r, as well as its 
var ious general isat ions [42, 109] are no t physically realis
able since they do not satisfy the spiral periodici ty 
condi t ions . 

It is no t k n o w n whether a spiral b o u n d a r y layer bui lds 
up on a ro ta t ing b o d y in a s t ream and, in par t icular , 
whether this h a p p e n s on a ro ta t ing disk. 

6. Hydrodynamics in a bath 
Exper iments in a ba th are ment ioned frequently in the 
preceding section, bu t no reference has been m a d e to the 
wel l -known exper iments of M a g n u s , R a n k , Taylor , 
M a r a n g o n i , Toms , and others [9, 110]. However , even a 
superficial examinat ion of any of these experiments reveals 
unsolved p rob lems and incompleteness of the convent ional 
in terpre ta t ion . 

Let us consider, for example, the experiment with tea 
leaves. W h y do they gather at the centre of the b o t t o m of a 
glass after the tea has been stirred with a spoon? The answer 
to this quest ion was publ ished by Einstein himself: tea 
leaves are driven to the centre by flow at the b o t t o m of the 
glass. A l though no r igorous calculat ions of the mo t ion of 
tea leaves has been made , there is evidence tha t the 'wet ' tea 
leaves at the b o t t o m of the glass of density exceeding tha t 
of water ro ta t e no t at the centre of the glass bu t near it and 
form a 'belt of as teroids ' . The width of this 'bel t ' depends 
on the degree of inhomogenei ty of the tea leaves: leaves of 
different sizes and masses ro ta t e a long circles of different 
radii . They collect at the centre only dur ing the final stage 
of their decelerat ion. 

W e perform these ' exper iments ' on tea leaves daily, bu t 
we do no t p a y p roper a t ten t ion to their behaviour . It would 
be necessary to determine h o w not only the 'wet ' tea leaves, 

bu t the also 'd ry ' leaves (i.e. those tha t float in the interior 
and on the surface of water ) behave dur ing mot ion and its 
final stage. Ins tead of tea leaves, we can consider other 
part icles and it is desirable tha t they should be of cal ibrated 
size. In addi t ion to mixing with a spoon, we can use a 
' pure r ' me thod of ro ta t iona l mot ion : we can ro ta te a glass 
of tea by c lamping it in a mixer or placing it at the centre of 
a ro ta t ing disk in a record player. W e can m a k e the 
following experiments with tea leaves: (a) de termine their 
posi t ions dur ing ro ta t ion or after; (2) ro ta t e tea or glass; 
(3) observe b o t t o m , surface, floating leaves. This is a to ta l 
of 2 x 2 x 3 = 12 combina t ions . However , this is not all! 
W e can exclude the influence of deformat ion of the free 
surface by, for example, covering tightly the water in the 
glass with a cover. W e can also do other things, the reader 
can th ink of other ways of carrying these apparen t ly simple 
bu t really extremely complex experiments . 

It is hard ly likely tha t Einstein expected the concent ra 
t ion of tea leaves at the centre of a glass to find an 
appl icat ion in technology. However , this effect has been 
used in a centrifuge designed for industr ia l purif ication of 
tin: mol ten meta l ro ta tes in this centrifuge, impuri t ies are 
collected at the centre, and removed automat ical ly . 

Scientific experiment differs from contempla t ion in tha t 
it is designed for the development , checking, or improve
ment of the ma themat i ca l mode l of the investigated 
p h e n o m e n o n . 

6.1 Evolution of a free surface 
True 'experiments in a b a t h ' involve a free surface. 

In hydrodynamics of capillary l iquids there is an 
unanswered fundamenta l quest ion of the t ime taken by a 
meniscus to rise in a cylindrical tube . Is this t ime finite or 
infinite? The inertial term is ignored in Ref. [111]. Therefore 
the law of mo t ion of a meniscus obta ined there is 
exponent ia l and the t ime taken by the meniscus to 
app roach equil ibrium is infinite. In fact, the inertial te rm 
is of the same order of magn i tude as the other terms: it 
cannot be neglected. It has been shown [14] tha t the 
exponent ia l law is valid only in the case of a highly viscous 
liquid and tha t the co lumn of a low-viscosity liquid will 
oscillate abou t an equil ibr ium posi t ion. These conclusions 
need to be checked experimentally. 

A liquid film remains on the surface of a solid taken out 
from a liquid. If the solid is a plate , d rawn u p w a r d s paral lel 
to itself (Fig. 24a), the liquid becomes entra ined under the 
action of tangent ia l (i.e. viscosity) forces. F l o w can be 
regarded as s teady if the d imensions of the vessel and the 
length of the p la te are sufficiently large (Fig. 24b) and the 
pla te is pulled out at a cons tant velocity u0. The d imen
sional determining pa rame te r s w0, v, g, p and the surface 
tension a can be used to form two dimensionless combina 
t ions: 

Re=^ and We = . 
gv ga 

There are two characterist ic scales in this case: the length 
/visc = v/u0, governed by the viscosity forces, and the length 
4aP — ( a / p g ) ^ 2 > governed by the capillary forces. Their 
ra t io is 
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Figure 24. Format ion of a sheet on a plate drawn out of water. 

Depend ing on the order of magn i tude of the rat io of the 
R e y n o l d s / t e and Weber We n u m b e r s ~ 1 , < 0 ) , there 
are 3 x 3 = 9 asymptot ic flow submode l s ! , which have to be 
checked experimentally. The s t ructure of the film extracted 
with the pla te is described by an internal expansion 
obta ined in the thin-layer approx imat ion . 

One can formulate the p rob lem of immers ion of a p la te 
in a wet t ing liquid. In the cor responding p rob lem of pull ing 
out of a p la te there is a critical value of the number 
Re (We, 0) which distinguishes the regime when the 
entra ined film wets the whole of the p la te from the regime 
when such a film does no t form (Fig. 24c). 

It is of interest to consider uns teady and in par t icular 
self-similar p rob lems of a p la te entering a half-plane of 
liquid at rest and a pla te leaving such a liquid. 

6.2 Sprays and splashes 
A splash represents ejection (usually upwards ) of water in 
the form of a jet or a sheet. Sprays are liquid droplets 
which scatter rapidly after an impact or a splash. Can you 
recall the Russ ian poet Alexander Pushkin : "People were 
herded, admir ing splashes, moun ta in s , and foam of 
enraged wa te r s"? 

Waterfal ls , b reak ing waves, impact of waves on a rock, 
and collisions of meteor i tes with solid surfaces are all 
accompanied by splashes. The relevant unsolved p rob lems 
are collected in Ref. [112], bu t the one-dimensional m a t h 
ematical mode l of a splash used there does no t s tand up 
even to a mildly critical examinat ion . It is no t clear whether 
the M o o r e - R o t t - S i r s splash criterion for the de tachment 
of a b o u n d a r y layer is satisfied. 

Splashes usual ly b reak up into sprays. The spray-
format ion mechanisms are var ious . F o r example, a liquid 
jet m a y break up into drople ts under the influence of 
turbulence, Rayleigh instability, or capillary instabi l
ity [19]. Large masses of a liquid (over 100 g) b reak up 
into sprays because they cannot be held together by the 
surface tension forces. This fact reduces significantly the 
efficiency of fire fighting by large masses of water d ropped 
from aircraft. After the answer has been found h o w the 
surface tension and the me thod by which water is ejected 

fThe model proposed in Ref. [ I l l ] is phenomenological and not 
asymptotic. 

Figure 25. Impact of a milk drop on a flat surface. 

affect spray format ion, the p rob lem should be subject to a 
' b ra ins to rming ' a t tack by inventors . 

A splash in the form of an opposi te jet called the ' su l tan ' 
is formed when a d rop is incident on a free surface of a 
liquid. A drop falling on a solid surface p roduces very 
different effects. The whole wor ld has seen p h o t o g r a p h s of a 
splash consisting of 24 sprays distr ibuted symmetrically on 
a circle (Fig. 25) [107]. Such a ' corone t ' forms when a drop 
of milk hits a solid surface. The drop strikes the p lane 
surface and spreads into a pa tch . Waves with a per iod 
360°/24 = 15° a long the angular coord ina te form at the 
b o u n d a r y of this pa tch . The milk becomes detached from 
the p lane it struck and the separated thin layer splits into 24 
sprays. This was the m o m e n t at which a p h o t o g r a p h was 
taken . The mot ion then becomes chaot ic . W h y precisely 24 
sprays are formed? W h a t is the influence of the viscosity 
and surface tension forces? There is as yet no answer to this 
and other quest ions . 

Exper imenta l invest igations of the f ragmenta t ion of a 
liquid droplet began at the dawn of aviat ion (1904). Such 
invest igations are of great scientific and technological 
impor tance . Appl ica t ions include chemical processes in 
two-phase media , drying of sprays, erosion of tu rb ine 
blades , format ion of aerosols, opera t ion of gas turbines 
and of diesel and rocket engines, and combus t ion chambers 
with liquid injection. 

Six types of f ragmentat ion of an initially spherical liquid 
droplet in a gas s t ream are k n o w n [113]: v ibra t ional , b ag 
type, stamen-like, chaotic , s tr ipping type, and ca tas t rophic . 
The main pa rame te r s which determine the f ragmentat ion 
processes are 

R e = U - ^ , ± , W e = ^ 9 = — , 
p 0 v v 0 a a 

where p is the density of the liquid, p0 is the density of the 
gas in which f ragmentat ion takes place, v is the k inemat ic 
viscosity of the liquid, v 0 is the k inemat ic viscosity of the 
gas, is the flow velocity, d is the initial diameter of the 
droplet , a is the surface tension, and a is the velocity of 
sound in the gas. 

A n a t t empt to construct , on the basis of the available 
exper imental da ta , in a Re-We d iagram the limits of the 
var ious types of f ragmentat ion of a water droplet in slowly 
(MQQ W 0) moving air has proved to be internally incon
sistent. It is no t clear whether the fault lies in the insufficient 
precision of the experiments or whether the p rob lem in 
h a n d has some hidden determining pa ramete r on which the 
f ragmenta t ion mechanism depends . 



316 S K Betyaev 

6.3 Boundary waves 
If a p la te is immersed vertically in a water-filled b a t h to a 
small depth (about 4 m m ) and if this p la te is m a d e to 
vibrate in a hor izon ta l p lane , unusua l ' b o u n d a r y ' waves are 
observed. This is wha t the discoverer of these waves, 
Michae l F a r a d a y , founder of e lectromagnet ism, had to say: 
" Immedia te ly waves, p ro tuberances , and folds of very 
unusua l kind began to form in water . Waves p ropaga t ing 
from the pla te to the walls of the vessel were a lmost 
unnot iceable while whole swellings of a height from one -
third to one-half inch and m o r e were incessantly appear ing 
near the pla te perpendicular ly to it; they were alike very 
short teeth of a coarse c o m b " . The frequency of these 
waves was equal to half the frequency of the p la te 
v ibra t ions [107, 114]. 

Two k inds of b o u n d a r y waves should be dist inguished. 
The existence of waves of one type, which form near a 
v ibra t ing sharp edge of a plate , is due to flow separat ion 
from the edge. 

The second type of b o u n d a r y waves is observed when 
there is no separat ion from the sharp edge. They appear , for 
example, in a water-filled glass if its edge is rubbed carefully 
with a wet finger and vibra t ions of the glass are thus 
excited. N o t h i n g is k n o w n abou t the na tu re of these waves, 
observed by the inquisitive F a r a d a y . 
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