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Abstract. W e use the t ransla t ional ly invar iant B o g o l u b o v -
Tyabl ikov me thod to p ropose a po la ron theory . W e present 
calculat ions of auto localised electron states for different 
types of interact ion. The s t ructure of these states is shown 
to be strongly related to the s t ructure and details of the 
local p h o n o n spectrum. W e calculate this spectrum in the 
s t rong-coupl ing limit. Appl ica t ions of the large po la ron 
mode l and possibilities of exper imental tests are considered 
for the s t rong coupling. W e generalise the B o g o l u b o v -
Tyabl ikov t rea tment to the strongly coupled b ipo la ron and 
give criteria of the stability and format ion of the b ipo la ron 
states. 

1. Introduction 
The po la ron theory is the simplest example of a q u a n t u m 
field theory; however , it has significant appl icat ions in 
condensed mat te r physics. The po la ron p rob lem was 
originally formulated as a p rob lem of an autolocal ised 
electron state in an ionic crystal [1]. The po la ron 
descript ion was assumed to cor respond to the s t rong-
coupl ing limit. 

Since the s t rong-coupl ing criterion is no t satisfied for 
most of the ionic crystals [2], the central p rob lem in the 
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po l a ron theory was to generalise the me thod to a rb i t ra ry 
coupling, i.e. to develop var ious approaches to the calcula­
t ion of the dependence of the g round electron state on the 
e l e c t r o n - p h o n o n coupl ing constant a [3, 4], to evaluate the 
effective mass for different values of a [5], to extend the 
t r ea tment to finite t empera tu res [6], and to s tudy the po la ron 
t r anspor t p rob lem [ 4 - 8 ] . 

However , there exist a number of physical examples for 
when the s t rong coupling is realised and the electron can be 
autolocalised. A m o n g such examples are magnetical ly 
ordered crystals, where magnet ic po la ron states are poss i ­
ble [ 9 - 1 1 ] , po lar l iquids, where the autolocalised states are 
the solvated electrons [12, 13], and other systems. 

Moreover , even in ionic crystals, where po la ron states 
are t reated by the weak or in termedia te coupl ing descr ip­
t ion, the s t rong coupling is realised for b ipo la ron states. W e 
also no te tha t , in the impor t an t case of the b o u n d po la ron 
arising in the F-center format ion, the s t rong-coupl ing 
criterion is much weaker and can be satisfied for ionic 
crystals. 

Thus , the s tudy of the strongly coupled po la ron is of 
interest in solid state physics, a l though only as a l imiting 
case. Besides, we show in the review tha t the concept of the 
strongly coupled po l a ron can be successfully used for a 
number of related p rob lems , such as the meson theory of 
nuclei interact ion [14 - 1 6 ] , the theory of the mobil i ty of ions 
implanted into liquid hel ium [17], and so on. 

In most works on the strongly coupled po la ron , 
a t tent ion is focused on the s tudy of the g round state. At 
the same t ime, the quest ion of the possible existence of 
po l a ron states distinct from the g round state is basic to the 
s tudy of processes related to electron excitation in polar 
media , for instance, the photoexc i ta t ion of F-centers and 
other lattice defects. 

At present , the p rob lem of the excited po l a ron states, 
apar t from the fact tha t it is of theoret ical interest, is 
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gaining a t tent ion because of the p rob lem of electron 
excitation transfer in a wide variety of condensed media 
(solut ions [18], b iomacromolecules [ 1 9 - 2 2 ] , etc.). 

W e no te tha t there are two types of strongly coupled 
po la rons : the small po la ron , formed when an electron is 
localised on one molecule of the med ium [4, 23]; and the 
large po la ron , formed when the po l a ron state is ra ther 
diffuse. There are a number of b o o k s and reviews devoted 
to the po la ron p rob lem [ 3 - 7 , 2 4 - 2 9 ] . But in our opinion, 
there has been no unified t r ea tment of the po l a ron states to 
date . 

W e will m a k e an a t tempt at such a unified app roach 
with the use of the B o g o l u b o v - T y a b l i k o v me thod devel­
oped to describe a nonrelat ivist ic part icle interact ing with a 
q u a n t u m field. This will enable us to obta in equa t ions 
asymptot ical ly exact in the s t rong-coupl ing limit for differ­
ent types of q u a n t u m fields, which play an impor t an t role in 
solid state theory. In cases of physical interest, the solut ions 
of these equa t ions give an idea of the complicated s t ructure 
of autolocal ised electron states. 

Recently, the results have a t t rac ted a t tent ion owing to 
the development of a n u m b e r of nonpe r tu rba t i on m e t h o d s in 
the physics of e lementary part icles. This review is devoted to 
the s tudy of the s t ructure of a s trongly coupled large po la ron . 

In the second pa r t of the paper we will present the main 
results of the m e t h o d for a nonrelat ivist ic part icle inter­
acting strongly with a q u a n t u m field. The third pa r t is 
concerned with the investigation of the electron states 
defined by different solut ions of the nonl inear Schrodinger 
equat ion with the self-consistent potent ia l . In the fourth 
pa r t we consider the spectrum and characterist ics of local 
p h o n o n s created by the s t rong e l e c t r o n - p h o n o n coupling. 
In the fifth pa r t we generalise the theory to the b ipo la ron 
case. Conclus ions are presented at the end of the paper . 

2. Theory of a strongly coupled polaron 
2.1 Basic relations 
The star t ing poin t in the description of mot ion of a 
nonrelat ivist ic part icle in a q u a n t u m field is the H a m i l -
ton ian [30, 31] 

+ ^2 iCk e x p ^bk+c*k e x p (~{k?}^ • w 
k 

H e r e fi is the effective mass of the part icle, r is its 
coordina te , b+ and b are the opera to r s of annihi la t ion and 
creat ion of the field quan t a with energy Hcok, ck are the 
cons tan ts for the pa r t i c l e - f i e ld interact ion defined in te rms 
of the macroscopic state of the medium. W e no te tha t they 
are p ropo r t i ona l to y/oi9 where a is the coupl ing constant . 

Hami l t on i an (1) describes the e l e c t r o n - p h o n o n inter­
action and has been investigated actively in q u a n t u m field 
theory [33]. In general , in the presence of impuri t ies , 
Hami l t on i an (1) must contain the poten t ia l of the p a r ­
t i c l e - i m p u r i t y interact ion. 

The following s tudy of the Hami l ton i an depends on the 
presence of small te rms in E q n (1). If the last te rm of E q n (1) 
is small, the p rob lem is reduced to the weak po la ron 
t rea tment [34, 35]. The other l imiting case is tha t of s t rong 
coupling. In this case there is a small pa ramete r 

82 = cok/E oc a - 2 (where Eococ2co is the characteris t ic 
electron energy). 

This p rob lem was originally investigated by Pekar in the 
f ramework of a phenomenolog ica l app roach [1]. The 
presence of a t rans la t iona l invariance gives rise to add i ­
t ional difficulties in the p rob lem. Consis tent s tudy of the 
q u a n t u m prob lem was carried out in Refs [30, 31] (see also 
Ref. [32]) with regard to the t rans la t iona l invariance of 
Eqn (1). 

The first step in this me thod is to in t roduce complex 
lattice coordinates : 

1 S 
(Dk +sQk)=- (bk +btk), Pk = - i - ~ - . (2) 

2 $Qk 
H e r e Dk are the equil ibrium posi t ions of the lattice 
coordinates , and Qk and Pk denote deviat ions from the 
posi t ions and the cor responding impulses. 

Then , we separate the variables related to the mot ion of 
the part icle as a whole: 

r = rc + r, (Dk + sQk) = (Dk + sQk) e x p ( - i * . r c ) . (3) 

H e r e r c is the coord ina te of the rectilinear mo t ion of the 
part icle, and r co r responds to the fluctuating pa r t of the 
mot ion (the t rembl ing caused by the pa r t i c l e - f i e ld inter­
act ion). 

E q n (3) determines the canonical B o g o l u b o v - T y a b l i ­
kov t ransformat ion , and in t roduces new variables r, r c , Qk 

instead of r, Qk, whose number has increased by 3. This 
generates a need for some addi t iona l restr ict ions, 

$ > v * 6 * = o , (4) 
k 

where vk are complex n u m b e r s satisfying the normal i sa t ion 
condi t ions 

J^kikjvtD^Sy . (5) 
k 

E q n s ( 3 ) - ( 5 ) are a closed set of equa t ions determining the 
canonical t r ans format ion . 

After per forming the canonical t r ans format ion and 
separat ing the rectilinear mot ion , we use a s t andard 
per tu rba- t ion technique over pa ramete r e, which enables 
us to obta in the cor responding wave equa t ions for 
Hami l t on i an (1): 

(H0 + eff l + ^ H 2 + • • • - E0 - sEl - s2E2 )<2> = 0 . (6) 

Then , we present the wave function 0 of the system as 

<P(r, Qk9 ...)=<po(r)0(Qk9 . . . ) + e p i ( r , Qk9 . . . ) . (7) 

The equil ibrium lattice coord ina tes are defined by the 
condi t ion Ex = 0 (which means nullifying of a form linear 
over displacements (Hi) = 0 ) , and have the form 

D-k = ~ ( exp( i* . /? ) ) 
co2

k ~ (v'k) 

- ~ 24T^2 \<Po(*) e x p ( i * . / 0 dR . (8) 

CQ2

k-(vk) J 
The canonical t r ans format ion of E q n s ( 3 ) - ( 5 ) elimi­

na tes the t rans la t iona l degeneracy of the initial 
Hami l ton ian , which enables us to employ the pe r tu rba t ion 
theory. Us ing the s tandard pe r tu rba t ion me thod for the 
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wave function cp0(r), we obta in the wave equat ion deter­
mining the state of the q u a n t u m part icle: 

2\i 

U{r) = 

V 2 + U{r) - W0 

- 2 E 
col - ( v * ) -

•<exp[i*.(r-r')]), 

W, cok + 
2 i 

(9) 

H ere Eq and are the to ta l and electron energies of the 
system in the zero approx imat ion , and U(r) is the self-
consistent po l a ron potent ia l . 

In the slow-velocity limit we can evaluate the effective 
mass of the part icle by expanding E q n (9) over the velocity 
v: 

M = I Z ) 75" I M W exp(ifc-r) dr 3 ^ K J 
(10) 

Thus , in the s t rong-coupl ing limit there arises an 
autolocal ised electron state with the energy E0, the 
effective mass M , and the wave function defined by the 
solut ion of E q n (9). 

In turn , the state of the p h o n o n subsystem in an 
adiabat ic approx ima t ion cor responds to h a r m o n i c v ibra­
t ions of the nuclei moving in a parabo l ic well: 

(\^2p-kpk ~ n™k + ^ g ^ M h Q i Q , - E^j G0 = 0 . (11) 

H e r e Mk! is the quadra t i c mat r ix defined by the electron 
density dis t r ibut ion. In the fourth pa r t we obta in a relat ion 
to describe the mat r ix in te rms of the states of the electron 
subsystem. 

E q n s ( 8 ) - ( l l ) de termine completely the p rob lem of a 
slow (nonrelativistic) mo t ion of a part icle in a q u a n t u m 
field in the s t rong-coupl ing limit. W e no te tha t the 
formulat ion of the p rob lem implies tha t the med ium, 
with which the electron interacts , is of a con t inuum n a t u r e 
(we t reat the effective mass , the dependence of the coupling 
constant on the macroscopic med ium paramete r s , and so 
on). This assumpt ion is valid when a characteris t ic 
dimension of the electron density dis t r ibut ion described 
by E q n (9) is much greater t han the lattice constant . 
Otherwise it is necessary to use the small po l a ron t rea tment 
[23]. 

In the general case, the characterist ic dimension of the 
po l a ron is specified by the type of the e l e c t r o n - m e d i u m 
interact ion. In the case of the local shor t - range interact ion, 
when ckock1^2 and cokock, the po l a ron state is uns tab le in 
the s t rong-coupl ing limit [36, 37], and if we do no t impose 
special l imitat ions because of the discrete s t ructure of the 
med ium, the dimension of the po l a ron state will tend to 
zero. In the case of a long-range cou lomb interact ion, when 
ck oc k~l and co oc co0, the characterist ic po l a ron dimension 
r p oc ( / i c o ) ^ 2 a _ 1 can exceed greatly the lattice constant . 

Thus , if the pa r t i c l e - f i e ld interact ion can be a p p r o x ­
imated in te rms of the s t rong coupling, E q n (9) is 
fundamenta l in the descript ion of the behaviour of 
electrons in the med ium. 

2.2 Polaron Hamiltonian for different types of interaction 
Hami l ton i an (1) encompasses m a n y examples of the 
coupl ing of a q u a n t u m part icle with a condensed 
med ium. F o r instance, it describes the mo t ion of an 
electron in an ionic crystal, if (see Refs [1, 34]) 

|*| V v 
cok = co0 , 

U(r) 
J V-r'\ ' 

(12) 

where e is the electron charge, V is the volume, and 

The F-center mode l describing the interact ion between 
an electron and an ion vacancy is practically impor tan t . In 
this case we must add the cou lomb vacancy a t t rac t ion to the 
interact ion potent ia l 

U(r) = -ce2 | 
\r-r'\ e0\r\ 

(13) 

H e r e z is the charge of the vacancy. 
In a piezoelectric semiconductor [ 3 8 - 4 1 ] , 

k1'2 \ V fi2s/ne2 2sc 
(14) 

where s is the velocity of sound, c is the elastic constant , 
and (e2jk) is the averaged square of the piezoelectric tensor . 
It leads to the same poten t ia l as in ionic crystals. 

In a h o m o p o l a r crystal [42, 43], 

ck = Gk 

U{r) = 

,1/2 

2pVcok) 
<*>k 

1/2 

3GZ 

3 ^ + 4/i -MY* (15) 

where K and \i are the Y o u n g ' s and the shear modul i , 
respectively, and G is the constant of the deformat ion 
potent ia l . 

In the case of nuclear mat te r [14, 44], 

/ 2 4 \ l / 2 
ck= « , c o k = ( ^ + c2k2 

w 471J \r-r'\ \ He 
(16) 

where g is the cons tant of the n u c l e o n - m e s o n coupling, jh0 

is the meson mass , and c is the velocity of light. 
In the case of the con t inuum exciton [29, 45], 

W 2 

Ck 
f 2iuope(k) \> 

\Ve0[e(k)-\]J 

t/(r) = - ^ J d r / l ^ [ l - e x p ( - i c D | r - r / | ) ] , (17) 

where cop is the p lasma frequency, s(k) is the dielectric 
cons tant of a doped semiconductor , and kd is the inverse 
D e b ye radius . 

In a number of cases, Hami l t on i an (1) describes the 
behav iour of electrons in magnet ical ly ordered media [24, 
46]. 
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3. States of the electron subsystem 

3.1 The ground state 
E q n (9) is the nonl inear Schrodinger equat ion . It has been 
investigated repeatedly for the g round electron state with 
var ious self-consistent potent ia ls . F o r the po la ron [Eqn (12)] 
and the F-center [Eqn (13)], the g round spherically sym­
metr ic state cp0(r) was determined in Ref. [1] by the 
var ia t ion me thod . The best numer ica l solut ion for the 
g round state was obta ined in Ref. [47]. The results of these 
calculat ions were confirmed in Ref. [48]. 

The solution of the equat ion with the shor t - range 
poten t ia l [Eqn (15)], cor responding to the g round state, 
was actively investigated in nonl inear optics [49, 50], in the 
physics of disordered systems [ 5 1 - 5 3 ] , in nonl inear field 
theory [54] either by different var ia t ion m e t h o d s or by 
numer ica l i terative calculat ions [55]. In Ref. [42] it was 
investigated by the var ia t ion me thod as applied to the 
p rob lem of an autolocal ised electron state. The results were 
revised in Ref. [56] by the direct numer ica l calculat ion of 
the p rob lem described by E q n (15). The numer ica l calcula­
t ions of the g round state for the self-consistent po ten t ia l 
[Eqn (17)] are given in Refs [57, 58]. 

3.2 Exci ted states 
The detailed s tudy of the nonl inear Schrodinger equat ion 
shows tha t in the general case its solution is not un ique ; it 
has a discrete set of solut ions, each with its own self-
consistent potent ia l . This is s t ra ightforward in the case of a 
F-center, where the solut ions can be pu t into corre­
spondence to solut ions of the linear p rob lem with the 
hydrogen-l ike potent ia l . Here , the g round state cor re ­
sponds to the ls - type solution, the first excited state with 
spherical symmetry cor responds to the 2^-type, and the 
state asymmetr ic abou t the ro ta t ion cor responds to the 2p-
type, and so on. 

W e no te tha t the excited states are less well unde r s tood 
when compared with the g round state. It was proved in 
Refs [ 5 9 - 6 1 ] tha t there is a countab le n u m b e r of solut ions 
(modes) for the self-consistent po l a ron poten t ia l [Eqn (12)] 

and for the poten t ia l [Eqn (15)]. The spherically symmetr ic 
po la ron states were numerical ly determined in Ref. [62], 
and the ones for the F-center were determined in Ref. [63]. 
In Refs [50, 56] the excited states were calculated for a 
h o m o p o l a r crystal with the shor t - range poten t ia l 
[Eqn (15)]. 

Some of the first solut ions and cor responding self-
consistent potent ia ls are shown in Fig. 1. General ly, for 
the (n+\) spherically symmetr ic m o d e the solution inter­
sects the x axis n t imes. Table 1 lists the numer ica l values of 
the radii , the effective masses, and the to ta l energies for 
var ious spherically symmetric po l a ron states. 

N o t e tha t in Ref. [66] the quasi-classical asymptot ic 
behav iour (when n —> oo) was found for the electron energy 
of the po la ron , such that : 

Wncc 
fie4c2 

9 TT 2 ( 0 . 4 8 6 ) 2 r ( n + l ) 2 

(18) 

The da ta in Table 1 suggest tha t the radius of the state 
grows rapidly with the n u m b e r of the solution, while the 
energy and the effective mass decrease. 

Thus , to observe self-consistent states with the energy 
higher than the g round state energy, one mus t use the 
crystals with a coupl ing constant much greater t han a = 10 
(a = e2cTTlyj'fi/lUco). Typical values of the coupling 
cons tan ts for the major i ty of crystals are in the range 
a « 2 - 3 . So, a = 3.97 in KC1, a = 2.0 in AgCl , a = 1.69 in 
AgBr, and a = 0.85 in Z n O [2]. F o r this reason the 

Table 1. E n e r g i e s ( in u n i t s o f e4fic2/H2), r a d i i (in u n i t s o f H2/fice2) a n d 
effect ive m a s s e s ( in u n i t s o f a4fi) for d i f fe ren t s e l f - c o n s i s t e n t p o l a r o n 
s t a t e s . 

0 

Rn 

Mn 

- 0 . 0 5 4 2 6 

9.29 

0 .0227 

- 0 . 0 1 0 3 

48 .4 

3 . 0 x 1 0 " 

- 0 . 0 0 4 1 6 

120 

2 . 9 x 1 0 " 

- 0 . 0 0 2 2 3 

2 1 6 

5 . 0 x 1 0 " 

Figure 1. W a v e f u n c t i o n s y(x) — A<f)(Bx) a n d t h e s e l f - c o n s i s t e n t p o t e n t i a l z(x) — \ W\ 1U(Bx) for t h e g r o u n d [ y 0 ( x ) , Z o ( * ) ] > ^ r s t ^ i ( x ) ] ' 
s e c o n d [ y 2 ( x ) , z2{x)], a n d t h i r d [y3(x), z3(x)] exc i t ed p o l a r o n s t a t e s . A = \W\~l(en)fi-l/2(2nc)1/2, B = H(2fi\W\)-1/2. 
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calculat ion of self-consistent states of b o u n d po la rons is 
m o r e interest ing for compar i son with the exper imental da ta . 

The self-consistent states have the same origin for 
different types of in teract ions considered in pa r t 2, bu t 
their physical characterist ics can be distinct for var ious 
types of interact ions. F o r instance, the to ta l and the 
electron energies are negative in the case of the po la ron 
in an ionic crystal, so they are be low the b o t t o m of the 
conduct ion band . In the case of an electron in a h o m o p o l a r 
crystal [Eqn (15)], the to ta l energy of each self-consistent 
state is positive, while the electron energy (equal in absolute 
value to the to ta l energy) is negative. 

Hence , in h o m o p o l a r crystals the electron energy of the 
excited state is lower t han the energy of the g round state 
(nodeless state). There is also a great difference between 
effective masses of self-consistent states for the two cases 
considered. In the case of an ionic crystal, the effective mass 
decreases rapidly with n. On the contrary , for a h o m o p o l a r 
crystal the effective mass increases rapidly with n. 

In the case of the nonloca l screened poten t ia l ( the 
deuteron prob lem) , the existence of solut ions to the 
nonl inear Schrodinger equat ion (16) depends on the value 
of the coupl ing constant g. The nodeless solution exists if 
values of g are greater t han some critical value gcr; 
moreover , the value of gcr increases with n. Then, b o t h 
cases are possible, i.e. the po la ron case, where the to ta l and 
electron energies are negative, and the case of the h o m o -
polar crystal, where the to ta l energy is posit ive and the 
nucleon energy is negative. (In the latter case metas tab le 
states are formed [14].) 

Less evidence is accumula ted abou t the nonspher ica l 
solut ions of E q n (9). Some such solut ions for self-consistent 
po ten t ia l [Eqn (15)] were found in Ref. [64]. W e do no t 
k n o w of any works in which the existence of nonspher ica l 
polaron- l ike solut ions was determined. As a rule, the first 
step in finding such solut ions is to choose the symmetry of 
the solut ions. 

F o r the po la ron , an a t t empt to calculate the 2p state was 
m a d e in Ref. [65] by the var ia t ion me thod . The n o n ­
spherical solut ions of the 2p- and 3/?-types, and a 
number of other solut ions were obta ined for the F-center 
in Ref. [67] by the direct var ia t ion me thod . The number and 
the b ranch ing condi t ions of the solut ions were investigated 
in Ref. [68] in the limiting case of a very large F-center 
charge. A modified Galerk in me thod was used in Ref. [69] 
to calculate nonspher ica l solut ions of the po la ron p rob lem 
(however, the calculat ions were p robab ly numerical ly 
incorrect) . 

Recently, nonspher ica l solut ions of the po l a ron and the 
F-center p rob lem have been found numerical ly in Refs [ 7 0 -
72]. F o r this purpose , the nonl inear differential Eqn (9) was 
reduced to the infinite chain of o rd inary differential 
equat ions . D u r i n g the calculat ion, the chain was b roken 
down into a finite number of the equat ions . The condi t ion 
of the chain b reak ing was the convergence of the solution. 

As a result, the numer ica l solut ions were obta ined in a 
series form: 

<P(r) = 5 > f \E\«2+V Ynl(#,9) exp(-52r) , 
nlk 

Table 2 . T o t a l e n e r g i e s ( in u n i t s o f a Hco) for d i f fe ren t p o l a r o n s t a t e s . 

Is 2s 3s 2p 

- 0 . 1 0 8 5 [47] - 0 . 0 2 0 6 [62] - 0 . 0 0 8 3 2 [62] - 0 . 0 4 5 7 [71] 

- 0 . 0 2 0 4 8 [69] - 0 . 0 0 8 0 4 [69] - 0 . 0 5 2 4 8 [69] 

- 0 . 0 1 6 9 [67] - 0 . 0 3 8 2 9 [5] 

- 0 . 0 4 7 2 [67] 

3p 3d 2s -3d 2s + 3d 

- 0 . 0 1 6 8 [71] - 0 . 0 2 0 7 [71] - 0 . 0 2 4 0 [71] - 0 . 0 3 0 [71] 

- 0 . 0 1 3 6 [69] - 0 . 0 2 6 0 [69] 

(19) 

where 9) are spherical ha rmonics . 

Figure 2 . P o l a r o n w a v e f u n c t i o n s for t h e s e l f - c o n s i s t e n t exc i t ed s t a t e s 
o f t h e 2p- a n d 3/?-type. 

Table 2 lists the to ta l energies of the excited po la ron 
states obta ined by some au thors . Fig . 2 presents the self-
consistent po l a ron states of the 2p- and 3/?-type, calculated 
numerical ly in Refs [71, 72]. As is seen from Fig. 2, the 
electron density dis t r ibut ion has a ' peanu t ' shape typical of 
the p-s ta tes . Some of the solut ions were tabu la ted in 
Ref. [70]. 

The calculat ions also revealed a surprising fact: tha t the 
solut ions to the F-center p rob lem b ranch , and there exist 
the excited states with mixed symmetry. (Below we will 
show tha t the format ion of these states relates to p h o n o n 
instability.) The new solut ions m a y be classified in te rms of 
s- and d-states. 

Fig. 3 presents the electron density dis t r ibut ion for the s 
and d states. The sign ' + ' (|i/f2| > 10 3 ) indicates regions of 
density condensat ion , and the sign '—' (|i/f2| < 10 3 ) indicates 
regions with a low electron density. The hybrid states of the 
(2s + 3d)- or (2s — 3d)-type (depending on the sign of the 
combina t ion) result from the combina t ion of these two 
states. 

These nonspher ica l states are similar in shape to the 
hybr id (2s ± 3d) states of the linear Schrodinger equat ion 
with a cou lomb potent ia l . The nonl inear i ty of E q n (9) leads 
to the solut ions, which are quali tat ively different from 
solut ions to a linear p rob lem, especially for r —> 0. H o w ­
ever, the similarity to the linear p rob lem in te rms of shape 
and the asymptot ic behaviour for r —> oo remains , since 
asymptot ics of linear and nonl inear p rob lems differ only in 
constant . 
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Figure 3 . T h e e l e c t r o n d e n s i t y d i s t r i b u t i o n for t h e s e l f - cons i s t en t 
e x c i t e d s t a t e s w i t h m i x e d s y m m e t r y 2s ± 3d. 

3.3 Application of the large polaron model 
The mode l of the strongly coupled po la ron was the s tar t ing 
poin t in the explanat ion of the absorp t ion spectrum in the 
F-center p rob lem [1]. F o r a long t ime, the mode l was very 
at t ract ive, as it allowed us to account for the qual i ta t ive 
correlat ion between spectrum pa rame te r s and dielectric 
cons tan ts of crystals. However , subsequent cyclot ron-
resonance experiments revealed tha t the measured effective 
masses do not agree with the strongly coupled po la ron 
mode l [2]. 

Besides, according to the experiments on electron spin 
resonance [74], in the majori ty of ionic crystals the electron 
g round state has a characterist ic dimension comparab le 
with the lattice constant , and the large po l a ron mode l 
cannot be used in this case. As a rule, to s tudy the electron 
g round state in the F-center, quan tum-chemica l calculat ions 
are used (for example, see Refs [75, 76]). 

At the same t ime, mos t objections against the large 
po l a ron mode l d isappear if we consider excited electron 
states in the F-center. The effect of the relaxed excited state 
on the absorp t ion process in F-centers has been discussed in 
m a n y reviews [73, 7 7 - 7 9 ] . 

The approx ima te solut ions of E q n (13), cor responding 
to the relaxed excited states of the 2/?-type obta ined in 
Ref. [67], were used by Pekar [80] to describe the p h o t o -
excitation of F-centers, by Perlin [81] to evaluate the 
lifetime of excited states, and by M o s k a l e n k o [82] to 
describe heat excitation. The exact solut ions of Eqn (13), 
cor responding to the extended excited 2^-like states, were 
used in Ref. [83] to calculate the lifetime of photoexci ted 
states of the F-center and to evaluate the pho toconduc t iv i ty 
in crystals with color centers. 

The discussion of the na tu re of the relaxed excited state 
is still unde rway [78, 79]. This is due to the fact tha t in m a n y 
cases exper iments on p h o t o a b s o r p t i o n can be described 

wi thout any knowledge of the re laxat ion state itself. Thus , 
to explain the t empera tu re dependence of the m a x i m u m of 
the F-center pho toabso rp t i on , one does no t require the 
electron wave functions, and the da ta on the so-called S-
factors, which can be used as fitting cons tan ts [84], are 
sufficient. 

Ano the r p rob lem which occurs in the appl icat ion of the 
excited states is tha t there are a number of absorp t ion lines 
cor responding to t rans i t ions between var ious self-consistent 
states; these lines are usually wide and therefore they over lap. 
Each line can have a complicated shape owing to the 
mu l t i phonon na tu re of the t ransi t ion. Besides, the main 
cont r ibut ion in the t ransi t ion m a y be m a d e by the local 
p h o n o n s (see the fourth section). It follows tha t the quest ion 
of whether the large po la ron mode l can be applied to the 
descript ion of the relaxed excited state in the F-center is yet 
to be answered. 

The large po la ron can also be used to t reat an 
autolocal ised electron state in a polar liquid (solvated 
electron). The absorp t ion spectrum of the solvated electron 
is simpler t han tha t of the F-center, and consists of one or 
several b roadened lines. 

Init ial a t t empts to consider the spectrum by means of 
the large po l a ron mode l [85] revealed details of the 
spectrum. However , subsequent experiments and calcula­
t ions have shown tha t the mode l should be modified to 
consider shor t - range forces, with regard to the chemical 
s t ructure of the envi ronment (the size of the adjacent 
molecules, the coord ina t ion number , etc.). 

At present , there are well-developed semiphenomeno-
logical m e t h o d s based on the semicont inual po l a ron mode l 
(see Ref. [86]), which treat the effect of the cavity format ion 
by shor t - range interact ions and the influence of po la ron 
tails. These models enable one to explain a lot of the 
exper imental da ta on the absorp t ion spectrum (the effects 
of t empera tu re , density and pressure on the width and 
m a x i m u m of an absorp t ion line, and so on) . 

N o t e tha t , a l though it is simple, the cont inual mode l of 
the s t rong coupled po la ron is used to account for a number 
of solvated electron p h e n o m e n a . The effect of salt concen­
t ra t ions on the absorp t ion line has been investigated by 
means of this mode l in Ref. [87]. The general isat ion of the 
large po la ron mode l to disordered systems is used in 
Ref. [88]. This mode l also enables us to explain a lot of 
exper imental da ta on correla t ions between the t h e r m o d y ­
namic behaviour of the med ium (density, pressure, and the 
K i r k w o o d effect) and the shape of the absorp t ion spectrum. 

A specific p rob lem is the use of the large po la ron mode l 
for long-range transfer. W e emphasise tha t the large 
po la ron mode l is the s tar t ing poin t for the theoret ical 
s tudy [89]. A vast a m o u n t of work has been devoted 
devoted to this quest ion (see, for instance, Refs [90-92] ) . 
In recent years this quest ion has taken on great significance 
owing to the ' superexchange ' p rob lem. 

Avai lable exper imental da ta reveal tha t the ra te of 
electron transfer is anomalous ly great for globular pro te ins 
and for a n u m b e r of organic molecules. As assumed, 
electron transfer is realised by excited electron states (see 
Ref. [92]). The na tu re of these states remains to be explored 
[93]. In Refs [20, 22] an a t t empt was m a d e to explain the 
high ra te of electron transfer with the use of the large 
po la ron mode l modified for the prote in globule [19]. 
Accord ing to the model , results of the calculat ions agree 
with exper imental da ta . 
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As a rule, the appl icat ion of the po la ron theory in 
semiconductors is limited by a weak e l e c t r o n - p h o n o n 
coupl ing region (a ^ 1). The experimental ly observed 
double t s t ructure results from the fact tha t the po la ron 
effect is accounted for in the absorp t ion spectrum, when 
frequencies are in resonance with the optical v ibra t ions of 
the semiconductor . The po la ron effect is also very impor ­
tan t in explaining the behaviour of charge carriers and other 
p h e n o m e n a . 

The s t rong coupl ing case can be realised in heavily 
doped semiconductors [29, 45]. In a heavily doped semi­
conduc tor of the hole-type, an electron is su r rounded by 
holes; much as a po la ron in an ionic crystal. Similar 
p h e n o m e n a occur in the case of a hole in a semiconductor 
of the ft-type. The states of this type, with the to ta l charge 
equal to zero, were called con t inuum excitons [45]. 

The g round and excited states of con t inuum excitons 
have been investigated in Refs [29, 45]. N a r r o w i n g of the 
gap in the semiconductor results from the generat ion of the 
con t inuum excitons, which explains the dependence of the 
gap on the impur i ty concent ra t ion . 

U s u a l exciton states do not exist in metals because of the 
s t rong screening of an at t ract ive e l e c t r o n - h o l e potent ia l . 
The singularities in the x-ray absorp t ion spectrum (the so-
called edge singularities) can result from the generat ion of 
con t inuum excitons in metals . The pos i t ron annihi la t ion in 
metals can also be considered as the annihi la t ion of 
con t inuum excitons, where the pos i t ron plays the same 
role as a hole. 

The connect ion between ideas under ly ing many-par t ic le 
theory in solid state physics and nuclear physics enable us to 
use the under ly ing m e t h o d s developed in b o t h cases [ 1 4 -
16]. The basic p rob lem in nuclear physics, i.e. of a nucleon 
in a meson field, is similar to the po la ron p rob lem or the 
e l e c t r o n - p h o n o n interact ion. The divergence between 
results in the ultraviolet range when the pe r tu rba t ion 
theory is used is the pr incipal difficulty which arises in 
the simplest case of an interact ion between a nonrelat ivist ic 
nucleon and a meson field. 

A consistent t r ea tment wi thou t any divergences is 
carried out in Ref. [14] for a strongly coupled nucleon in 
a meson field. In the case of two nucleons , the p rob lem is 
shown to be similar to the b ipo la ron p rob lem, where 
cou lomb repulsion is absent , (see the details given in 
pa r t 5) and is reduced to a one-part icle p rob lem 
[Eqn (9)]. The solution of nonl inear equat ion (16) gives 
values of the b o u n d energy and the deuteron radius which 
are consistent with the exper imental results. 

4. Localised phonons 
4.1 Spectrum of the phonon frequencies 
W e considered above the electron density behav iour for 
polaron- l ike states in the s t rong coupl ing limit. This 
dis t r ibut ion can be responsible for a n u m b e r of impor t an t 
effects and this has been demons t ra ted in var ious 
experiments (see pa r t 3). Equal ly significant is the fact 
tha t , in the case of s t rong interact ion, the electron state is 
localised and the p h o n o n subsystem state is fundamental ly 
changed. 

In te rms of dynamics of the lattice, the presence of the 
localised density dis t r ibut ion of an excess electron can be 
considered as the presence of a special defect. As a result of 
the s t rong e l e c t r o n - p h o n o n interact ion, the p h o n o n spec­

t rum changes significantly and the b o u n d p h o n o n states are 
formed [94], as in the case of an imperfect lattice [95]. While 
the localisation of the latter is due to the changes in the 
a tom mass or the lattice force constant , the localisation of 
the former is due to changes in the electron state itself. 

In the case of t rans la t ion symmetry, localised p h o n o n s 
form a cloud which is coupled to an electron and moves 
together with it. N o t e tha t b o u n d p h o n o n modes can also 
occur in the case of weak coupling, and tha t they were 
studied originally and became k n o w n as dielectric modes 
[96]. In Ref. [94] the earlier theoret ical and exper imental 
works on this theme are reviewed. The s t rong coupl ing case 
is considered in Ref. [97]. H e r e we present a short 
descript ion of the results obta ined. 

As was noted in pa r t 2, the characterist ics of the p h o n o n 
spectrum are described in a h a r m o n i c approx ima t ion and 
given by a mat r ix M^. If we in t roduce eigenvectors Ask and 
eigenvalues cos, such tha t 

^2 M k i A s k = <o2

sAsl, A s k = A*_k , 
k 

(20) 

then relat ion (11) 
d iagonal form: 

' 2 W 

for the p h o n o n subsystem takes a 

0 , { Q = o (21) 

where ^ = Ylk^skQk a r e n o r m a l v ibra t ions of the lattice. 
T h u s the state of the p h o n o n subsystem in the adiabat ic 

approx ima t ion is described as a p roduc t of wave functions 
0(C) = Y\s @S(CS) and is characterised by a set of q u a n t u m 
n u m b e r s n2,..., ns] for nonin te rac t ing p h o n o n s with 
renormal ised frequencies coS9 whose squares are eigenvalues 
of the mat r ix M^. 

The energy E2, which results from the second-order 
correct ion of the to ta l energy of the system, is expressed as: 

ft 
-2_^nscos 

•(D0) . (22) 

Thus , the state of the p h o n o n subsystem is given by the 
mat r ix Mu and its eigenvalues co2

s. 
In the s t rong-coupl ing case the mat r ix Mkl is defined by 

the state of the electron subsystem. W h e n we express the 
electron wave function of the first order in the form 
<Pi( r>0= T,xs(r) Cs, we obta in [ 9 7 - 9 9 ] the following 
relat ions for the eigenvectors Ask and the eigenvalues cos, 

2 
(<Po\h\Xk) > 

hk = ck exp (Ucr) + D_k 

(H0 - E0)XS = Cf>° ^hk(cpo\hk\Xs) 

(23) 

(24) 

E q n (24) defines the loca l -phonon frequency spectrum 
as the eigenvalue spectrum of a linear integro-differential 
boundary -va lue p rob lem. This p rob lem was studied for the 
electron g round state [99], where a set of the initial 
frequencies was calculated. F o r the po la ron g round 
state, Eqn (24) was investigated in Ref. [100] in the 
var ia t ion form. 

In Ref. [101] values of cos were found analytically for a 
one-dimensional p rob lem. The influence of dispersion on 
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Table 3 . S q u a r e s o f p h o n o n f r e q u e n c i e s co2(n, / ) (in u n i t s o f col) f ° r t h e g r o u n d a n d t h e first exc i t ed s e l f - cons i s t en t p o l a r o n s t a t e s s 

l/n G r o u n d s t a t e F i r s t exc i t ed s e l f - cons i s t en t p o l a r o n s t a t e 

2 3 4 5 2 3 4 5 

0 0 .412 0 .9254 0 .9792 0.992 1.538 0 .3586 0 .8896 0 .9574 

1 0 0 .8932 0 .9726 0 .9898 2.54 0 0 .7992 0 .9676 

2 0 .8158 0 .9596 0 .9864 - 1 . 6 2 0 .882 0 .9254 

3 0 .9416 0 .9816 0 .4948 0 .9362 

4 0 .976 0.817 

Figure 4 . A n a p p r o x i m a t i o n o f t h e l o c a l p h o n o n s p e c t r u m for t h e g r o u n d (a ) a n d t h e first (b ) exc i t ed s t a t e s o f t h e F - c e n t e r in K C 1 . T h e hal f -
w i d t h o f e a c h l ine is a — 0 . 0025 co0. 

the local p h o n o n spectrum was considered in Ref. [102]. 
F o r excited spherically symmetr ic states of the po la ron and 
the F-center, E q n (24) was studied in Refs [102, 103]. 
Table 3 lists the dimensionless p h o n o n frequencies for 
the g round and the first self-consistent po l a ron states. 
Fig. 4 shows the p h o n o n spectrum approx imat ion . 

4.2 Phonon instability 
If all the eigenvalues of the mat r ix Mkl are positive, then 
the ampl i tudes of the p h o n o n oscillations are small 
[@(Cs) oc exp(—co£2

s/2)] and the system remains stable. If 
any of the eigenvalues is small or negative, the ampl i tude in 
this approx ima t ion is of the order of the crystal dimension, 
and the system loses its stability. T h u s the p rob lem of 
stability, with respect to the mo t ion of p h o n o n s , requires 
the s tudy of the eigenvalues of the mat r ix M^. 

In Refs [102, 103] we found numerical ly tha t , for excited 
states of the po la ron and the F-center, there are critical 
values of the effective F-center charge v c r = Z / ( e 0 c ) = 0.21, 
when the square of the renormal ised frequency becomes 
negative for one or several modes and the p h o n o n 
instabili ty of the system occurs. As shown in Ref. [98] 
this p h o n o n instabili ty is due to the b ranch ing of solut ions 
to the nonl inear p rob lem given by Eqn (13). 

In Ref. [72] Gabdou l l ine found the critical values v at 
which the self-consistent states of the (2s =p 3d)-type appear 
in addi t ion to the excited self-consistent 2s state. Fig. 5 
shows the dependences of co2

ni for the p h o n o n m o d e n = 2, 

- 0 . 0 2 1 -

- 0 . 0 2 5 -

Figure 5 . D e p e n d e n c e s o f t h e s q u a r e o f t h e l o c a l p h o n o n f r e q u e n c y 
^ 3 2 = ^ 3 2 / % ( a ) a n d t h e e l e c t r o n e n e r g y E — W/(oc2Hco0) (b) o n 
v = Z / ( Z + e 0 c ) . 
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/ = 3, and the electron energy of self-consistent states E on 
the effective F-center charge. 

The occurence of the p h o n o n instabili ty is similar to the 
J a h n - T e l l e r effect. F o r the po la ron , in addi t ion to self-
consistent states, each cor responding to its own poten t ia l 
well, there is an infinite set of non-self-consistent electron 
levels available for each poten t ia l well. Each of these levels is 
characterised by its own wave function cpn and energy En\ 

- v 2 + + —E„ r <Pn(r) = 0 (25) 

where cp(r') is the self-consistent solution defined by 
E q n (8). 

If non-self-consistent electron levels are nondegenera te , 
then, according to the s t andard pe r tu rba t ion theory, the 
first-order correct ion Xs can be obta ined by expanding over 
these functions: 

X,(r) = C,q>s(r), (X,(r) <ps(r)) = 0 . (26) 

Subst i tut ing E q n (26) into the frequency Eqn (24), we 
obta in a relat ion between the renormal ised p h o n o n fre­
quencies and the spectrum of the electron states: 

1 
2ez 

(27) 

W h e n Es — E0 ^ 2((ps(p0((ps(p0e2\r — r ' p 1 ) ) , i.e. the electron 
levels are sufficiently close, the square of the frequency 
becomes negative; co2/col < 0. This entails instability, which 
leads to b ranch ing of the solut ions. In this way the self-
consistent electron state has a mixed symmetry of these two 
levels. Fig. 3 presents schematically the 2s- and 3d-states, 
and the result ing states of the 2s ± 3d-type. 

The s tudy of the p h o n o n instabili ty of excited po la ron 
states makes it clear tha t the b ranch ing of solut ions to 
E q n (8) takes place at a loss of stability, which gives rise to 
new self-consistent states with mixed symmetry. This effect 
has two main causes. 

The po la ron state is given by nonl inear E q n (9), which 
includes two types of potent ia ls : a self-consistent polar i sa­
t ion poten t ia l and a cou lomb one. Symmetr ies of these two 
potent ia ls are different. As the cont r ibu t ion of these two 
interact ions changes quanti tat ively, the symmetry of some 
solut ions changes. This effect is characterist ic no t only of 
the F-center, bu t also of some other similar quasipart icles 
(p iezopolaron, f luctuon, etc.) b o u n d e d on impuri t ies . 

N o t e some impor t an t consequences of this p h e n o m ­
enon. Unl ike the p rob lem given by Eqn (8), the stability 
p rob lem [Eqn (24)] is linear. T h u s it can be expected tha t it 
is easier in te rms of calculat ions. F r o m this s tandpoin t it 
would be reasonable , first, to s tudy the linear p rob lem, find 
the symmetry of solut ions and b ranch ing poin ts ; and, 
second, to analyse the self-consistent solut ions of Eqn (8). 

The described instabili ty m a y be observed exper imen­
tally. It will lead to decay of excited states for t ime \co~l\. 
N o t e tha t , for LiCl (v = 0.35), LiBr (v = 0.29), and 
fluorides of alkal i-earth metals , the effective charge 
V = Z/SQC is a lmost equal to the critical charge 
v c r = 0.21. This explains the absence of luminescence 
[104] in experiments on photoexc i ta t ion in these crystals. 

5. Strongly coupled bipolaron 

5.1 History of the bipolaron problem 
In the in t roduct ion we noted tha t b ipo la rons provide 
ano ther example of when the s t rong coupl ing occurs. The 
intensive s tudy of b ipo la rons in recent years is not only 
because of general theoret ical interest in the p rob lem, bu t 
also because of its impor t an t appl icat ions , such as in the 
s tudy of h igh- tempera ture superconduct ivi ty [105, 106]. 

The his tory of b ipo la ron s tudy is ra ther d ramat ic . F o r a 
long t ime, errors in calculat ion have called into quest ion the 
existence of the b ipo la ron . The p rob lem was first recognised 
by Ogg [107], who suggested the occurence of supercon­
ductivity at t empera tu res above the boi l ing poin t of 
ni t rogen, when he observed abnormal ly high conduct ivi ty 
in m e t a l - a m m o n i a solut ions (as early as forty years before 
the discovery of h igh- tempera ture superconduct ivi ty in 
metal-oxide ceramics [108]). 

At present there is reliable exper imental evidence tha t 
electron spin-pair ing states are dominan t in m e t a l - a m m o ­
nia solut ions at concent ra t ions of abou t 0.1 promil le [109, 
110]. Some au tho r s relate this to b ipo la ron format ion. But 
the mechanism of the p h e n o m e n o n is still no t fully 
unde r s tood . 

In recent years , research has been conducted [111-114] , 
which has revealed the b ipo la ron states at this concent ra ­
t ion with the use of the K o h n - S h a m theory and molecular 
dynamics me thods , and where the characterist ics of these 
states were also determined (electron density dis t r ibut ion, 
effective potent ia l , etc.). 

The b ipo la ron p rob lem was first considered theore t ­
ically in 1951 [115]. In the descript ion of the b ipo la ron state, 
the s tar t ing poin t is the P e k a r - F r o l i c h Hami l ton i an of two 
electrons interact ing with a p h o n o n field: 

H = ~YS + U(\n - r2\) 
^ k 

+ ^2{ck exp [ik(rx - r0)] bk + c\ exp \-\k{rx - r0)] b£ 
k 

+ ck exp [ik(r2 - r0)] bk + c\ exp [-ik(r2 - r0)] , (28) 

where rx and r2 are the coordina tes of the first and the 
second electrons, respectively; r 0 is an arb i t ra ry reference 
poin t ; U(r) is the electron interact ion potent ia l . It is usual ly 
assumed tha t r 0 = 0, and in this form the Hami l ton i an of 
E q n (28) is the initial equat ion in the b ipo la ron study. 

M o s t au tho r s tu rn to var ia t ional calculat ions of 
b ipo la ron wave functions. In semiclassical b ipo la ron 
theory [1] wave functions were selected in the multiplicative 
form. Wi th this approx imat ion one does no t determine the 
presence of the b o u n d b ipo la ron state. It was Vinetsky and 
Gi t t e rman [116] who first ob ta ined the b o u n d b ipo la ron 
state in the f ramework of the semiclassical t rea tment . 

The best evaluat ions of the b o u n d b ipo la ron energy 
were obta ined in Ref. [117], where tr ial wave functions were 
chosen with regard to the electron correlat ion. In par t icular , 
the condi t ion of the b ipo la ron state format ion was obta ined 
(rj > 0.14, where rj = S^/SQ is the ion coupl ing pa ramete r ) . 
The current state of research is presented in reviews [118, 
119]. The t rea tment extended to the case of the presence of 
shor t - range interact ions is given in Refs [120, 121]. 
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N o t e tha t in the b ipo la ron theory no exact solut ions 
have been obta ined. This is in contras t with the po la ron 
theory, where asymptot ical ly exact solut ions are k n o w n in 
the limits of b o t h weak and s t rong coupling. Moreover , in 
the b ipo la ron case there are no solut ions at all for small and 
in termedia te values of the coupl ing cons tant a. 

Accord ing to Ref. [122], a b o u n d po l a ron state is 
possible only at sufficiently large values of the coupling 
(a > 5.2). In the adiabat ic limit, b o t h the electrons are 

believed to move in one and the same poten t ia l well, 
induced by their fast oscillations. F o r this reason the 
interact ion of the electrons with the polar isa t ion (j)(rx, 
r2) takes the form: 

<Kru r2) = F(ri) + F(r2) (29) 

As a result, the p rob lem is reduced to the calculat ion of 
a two-part ic le b ipo la ron wave function in a self-consistent 
potent ia l . Since there are at present no m e t h o d s to find 
asymptot ical ly exact solut ions of the p rob lem, some 
addi t iona l assumpt ions are needed. As ment ioned above, 
the form of the approx ima t ion of the wave function can 
have a significant effect on the result. 

5.2 Adiabatic theory of the bipolaron 
A n al ternat ive app roach is exemplified by Ref. [123], where 
we used the B o g o l u b o v - T y a b l i k o v me thod [30, 31] to 
develop a consistent ad iabat ic t ransla t ional ly invar iant 
theory. In this approx imat ion the b ipo la ron mot ion is 
separated in the adiabat ic limit, and the mot ion of the 
centre of the b ipo la ron mass is presented as a p lane wave. 

Relat ive electron coordina tes describe fast oscillations in 
a poten t ia l well, which has the form of the electron-effective 
interact ion: 

(30) 

The poten t ia l well is no t fixed in space, bu t follows 
adiabat ical ly the centre of the electron mass . 

The interact ion [Eqn (30)] is clearly t ransla t ional ly 
invar iant unl ike the usua l phenomenolog ica l app roach 
[Eqn (29)], which does no t possess t rans la t iona l invar iance 
with a spatially fixed poten t ia l well. 

Wi th in this app roach we can t reat the p rob lem in a way 
similar to the t rea tment described in the second par t of the 
paper . As a result, the p rob lem becomes one-part icle and is 
reduced to the s tudy of a Schrodinger equat ion for the 
relative mot ion of the electron pair : 

V? + n{r) + U{r) - W0 

ft 

iI(r) = - 2 £ -

<Po(r) = 0 , 

kr 

(31) 

T cos — 
" K (V*)2 2 

kR 2 
dR c o s — - \ ( p 0 ( R ) \ (32) 

Then , we can determine the b ipo la ron mass as in the case 
of Eqn (10): 

3 V « U 

kR 
dRcos—\cp0(R)\2 

5.3 Results of calculations 
In Ref. [123] calculat ions were performed for an ion crystal 
(cok = co, ck oc & _ 1 ) , and the interact ion U(r) between two 
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Figure 6. Q u a s i p a r t i c l e - l i k e s o l u t i o n s y{x) — A(j){Bx) o f E q n (32) for 
d i f fe ren t v a l u e ofx.A — \W\~l(e%"1/2(27ic)1/2, B Ti(2ii\W\ - 1 / 2 

e lectrons was the C o u l o m b repulsion screened by the h igh-
frequency dielectric permit t ivi ty: 

U{n-r2)= f (34) 
£ o o l r l - r2\ 

The solut ions obta ined depend on the pa rame te r 
x = 0.125(1 - eoo/eo). 

Fig. 6 shows particle-like solut ions of the b o u n d a r y 
p rob lem [Eqns (31), (32)] for some x values. It is evident 
from the figure, tha t the probabi l i ty of the electrons being 
present at the same poin t decreases as x grows, while the 
m a x i m u m of the electron density dis t r ibut ion moves to the 
right and goes to infinity at the critical value xcx = 0.5. This 
is because of the fact tha t , at sufficiently large values of r, 
the asympto te of the poten t ia l [Eqns (31), (32)] has the 
form: 

en(r)- — 
1 

r—>oo S 
(35) 

The localised solution of E q n (31) exists only when the 
r ight -hand side of Eqn (35) is positive, i.e. for x < 0.5. 
Accordingly, we have rjCY = 0.75 for the ion-coupl ing 
pa ramete r rj = S^/SQ = (8% — l ) /8%, i.e. it exceeds greatly 
the value of this pa ramete r obta ined in phenomenolog ica l 
theory. 

The critical value of the pa ramete r rjs, at which the 
b ipo la ron is stable, is energetically advan tageous to the 
b ipo la ron state with respect to its decay into two inde­
penden t po l a ron states: 

E ^ IE p o l (36) 

(33) where £ p o l is the energy of a single po la ron state. 
Calcula t ions show tha t inequali ty (366) is valid if rj < rjs, 

where rjs = 0.31. Table 4 lists the values of pa rame te r s for 
crystals satisfying the condi t ion rj < rjs, with calculated 
values of b ipo la ron energies, radii , and effective masses. 
W h e n the exper imental da ta on the effective electron mass 
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Table 4 . V a l u e s f o f e n e r g i e s W, t o t a l e n e r g i e s E, r a d i i R, a n d t h e effect ive m a s s e s o f b i p o l a r o n s M*. 

C r y s t a l rj Hco/oV a W/qV E/qV R/A M * 

L i F 0.213 0.082 5.24 10.7 2 .13 2.3 31.6§ 

L i C l 0 .235 0.052 4 .43 4 .6 0.93 3.7 40 .3 

L i B r 0 .243 0 .079 5.25 3.2 0.62 4.5 71.7 

L i H 0 .279 0.140 1.98 2.2 0.42 5.5 1.3 

T I B r 0 .176 0 .014 4 .54 1.56 0 .317 6.3 0.47 

T1C1 0.202 0 .020 4 .46 2 .15 0.45 5.3 0.61 

T i l 0 .315 0.012 3.4 0.54 0.1 11.3 0.6 

C s F 0 .269 0 .030 7.13 6.3 1.2 3.3 222 

R b F 0 .299 0 .036 7.03 7 1.25 3 186 

S r T i 0 3 0 .016 0 .0153 1.84 2 .9 0 .67 4.4 1.98 

^(x — a(fi/mQ)l^2,W — —W(i/mQ,E — —Efi/mQ,R—Rm0/fi, a n d M* = M*(fi/m0)2 for a l l c r y s t a l s , e x c e p t L i F , T I B r , T1C1. I t is a s s u m e d t h a t 

fi = m0. { E x p e r i m e n t a l v a l u e s a r e g iven f r o m Ref . [2]. 

§ T h e effect ive m a s s o f e l e c t r o n L i F is g iven in Ref . [124]. 

m are not available, we present results depending only on 
the rat io m / m 0 , where m 0 is the free electron mass . 

The condi t ion for adiabat ical ly s t rong coupl ing is tha t 
the frequency of the electron oscillations in the po la ron well 
should be much greater t han the frequency of lattice 
oscillations. It follows from Table 4 tha t this condi t ion 
is met for reasonable values of the effective electron mass . 

Thus , while a single po l a ron meets the condi t ion of 
weak or in termedia te coupling, a b ipo la ron follows the 
s t rong coupl ing condi t ion in the case of the studied crystals. 
This enables us to evaluate critical values of e l e c t r o n -
p h o n o n coupl ing cons tan ts a s , when the b o u n d b ipo la ron 
state is possible. 

It follows tha t the energetic requi rement for the 
b ipo la ron format ion is tha t 

The simplest model , used to describe po l a rons in t w o -
dimensional space, is obta ined from E q n (12) with ck 

replaced by 

(XD 

VkL 2m co 

1/2 D - 1 
(38) 

\E\ > 2ahco (37) 

Since E oc a , condi t ion (37) allows us to est imate values of 
the critical coupl ing cons tan ts a s . Table 5 lists these values. 

Table 5 . C r i t i c a l v a l u e s o f e l e c t r o n - p h o n o n c o u p l i n g c o n s t a n t s a s for 
d i f fe ren t v a l u e s o f rj 

The physical pa rame te r s (frequencies, dielectric constants , 
effective masses) were assumed to be the same as in the 
three-dimensional case. 

The dependence of ck^D on the wave vector is chosen 
from the requi rement tha t the e l e c t r o n - p o l a r i s a t i o n inter­
action should be of the C o u l o m b form, 1/r, in the D-
dimensional case. The numer ica l factor in Eqn (38) is given 
by the condi t ion tha t c k D cor responds to ck at D = 3. 

To evaluate the energy and critical cons tants in the t w o -
dimensional case, the est imates obta ined in E q n [125] with a 
Gauss approx ima t ion can be used. These est imates relate 
b ipo la ron energies in th ree- and two-dimens iona l cases. 

As a result, in the two-dimens ional case we express the 
b ipo la ron energy as 

2 / 3 T T 
- 2 D , b i p o l 3 V 4 ^ 3 D , b i p o l (39) 

0 0.053 0.094 0.132 0 .166 0.199 0 .228 0 .256 0.282 0.305 0.317 

a s 1.54 1.64 1.74 1.85 1.97 2 .10 2 .25 2 .40 2 .58 2 .77 2 .90 

N o t e tha t the critical values of coupl ing constants , 
obta ined from the exact solut ions of the b ipo la ron equa ­
t ions, are much smaller t han those evaluated by trial 
var ia t ional functions. Thus , according to Ref. [124], the 
critical values are a s w 5.4 for rj = 0, a s w 7.2 for rj = 0.1, 
i.e. they appear to be three t imes as large as those obta ined 
from the exact solut ion to the b ipo la ron p rob lem. 

N o t e also tha t in the t rans i t ion from the po la ron to the 
b ipo la ron state, the symmetry of the solution changes, 
which can lead to significant r ea r rangement of the local 
p h o n o n spectrum near the critical value of the pa rame te r rjs 

because of the p h o n o n instabili ty of the solut ion, in the 
same way as in po la ron excited states (see pa r t 4). 

Some of the results obta ined can be easily extended to 
the two-dimens iona l case. The two-dimens iona l b ipo la ron 
p rob lem has a t t rac ted much interest with the discovery of 
h igh- tempera ture superconduct ivi ty . 

where ^ 3 D , b i p o i is the b ipo la ron energy in the three-
dimensional case. Accordingly, x2D = x3D and rj2D = rj3D. 

The critical value of the e l e c t r o n - p h o n o n coupl ing 
constant is derived similarly and in the two-dimens iona l 
case takes the form: 

a s , 2 D 471 
(40) 

where values of a s are listed in Table 5. 
The t ransla t ional ly invar iant b ipo la ron theory presented 

above yields results quali tat ively different from those 
obta ined with the s t andard adiabat ic me thod . Accord ing 
to Ref. [123], the s i tuat ion is as follows. In b ipo la ron 
format ion the electrons are localised in a deep poten t ia l 
well with the electron excitation energy W ~ 1 eV. This 
energy remains the same up to the critical value of the 
pa ramete r ?/s = 0.31, at which poin t the b ipo la ron state 
decays into independent po la ron ones. 

U p to the critical value rj = rjs, the frequency of the 
electron oscillations in the b ipo la ron poten t ia l well greatly 
exceeds the frequency of the lattice oscillations, and we can 
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use the adiabat ic approx imat ion . The criterion of ad i aba -
ticity fails only for crystals with very small e l e c t r o n -
p h o n o n coupl ing constants , such as PbSe (a = 0.215) 
and P b S (a = 0.317), where r\<r\^ i-e- b ipo la ron states 
are conceptual ly possible. 

Bipolaron characterist ics are best observed in crystals 
TIBr and T1C1. In these crystals cont inual approx ima t ions 
p roduce good agreement with results; the radi i of the states 
are 20 A and 16 A, respectively. The adiabat ic i ty condi t ion 
is also met with a great reserve, despite a relatively small 
cons tant a w 2.5. 

It is significant tha t , in all the cases listed in Table 4, 
there is a great difference between the electron energy of 
b ipo la ron W and the to ta l energy E. The m o d u l u s of the 
electron energy of the b ipo la ron is approximate ly 5 t imes as 
great as tha t of the to ta l energy, while for a single po la ron 
in the s t rong coupling limit this rat io is equal to 3. This 
dist inction can lead to a great difference between the 
energies of photodissoc ia t ion and thermodissocia t ion . 

In some crystals the criterion of stable b ipo la ron 
format ion is at the limit of accuracy. Thus , in R b F the 
b ipo la ron is stable at r o o m tempera tu re (rj = 0.3) and 
uns tab le at liquid hel ium t empera tu re (rj = 0.32 > rjs). 
Therefore, in R b F the cooling from r o o m t empera tu re 
to tha t of liquid hel ium leads to the b ipo la ron dissociation. 
This p h e n o m e n o n could be observed on absorp t ion spectra, 
changes in mobil i ty and cyclotron frequency, etc. 

N o t e also tha t this me thod for separat ing out the 
t ransla t ional ly invar iant pa r t of the mo t ion and reducing 
a two-part ic le p rob lem to a nonl inear Schrodinger equat ion 
is universal and can be applied to any other two-par t ic le 
p rob lem in the s t rong-coupl ing limit, such as excitons, 
e l e c t r o n - h o l e pairs , and so on. 

6. Conclusions 

Despi te the long his tory of b ipo la ron study, the interest in 
the p rob lem of the strongly coupled po la ron has no t 
diminished. This is p robab ly because of the role which the 
po l a ron plays in the physics of pa r t i c l e - f i e ld interact ion. 

Unl ike m a n y other quasipart icles (phonons , m a g n o n s , 
p lasmons , etc.) described by the spectrum and type of linear 
excitat ions of the system, the strongly coupled po la ron is a 
'nonl inear ' quasipart ic le formed as a result of a nonl inear 
self-consistent interact ion. This, in tu rn , requires the use of 
n o n s t a n d a r d mathemat ics [66, 128]. 

In our view, the poten t ia l of m o d e r n ma themat ica l 
m e t h o d s has no t been exploited in the po l a ron p rob lem. 
The above example demons t ra tes tha t even the general­
isation of the wel l -known B o g o l u b o v - T y a b l i k o v me thod to 
the case of two-par t ic le self-consistent states yields new 
results which differ significantly from the usua l var ia t ional 
calculat ions. 

The above results show tha t a s trongly coupled large 
po l a ron possesses a complicated internal s t ructure which 
manifests itself in a wide variety of self-consistent states for 
the electron subsystem and in the local p h o n o n spectrum. 
The peculiar behaviour of the local p h o n o n spectrum is 
closely related to the topo logy of self-consistent states of the 
electron subsystem and is given by the symmetry of the self-
consistent po ten t ia l in the nonl inear Schrodinger equat ion . 

N o t e tha t the investigation of such equa t ions has much 
to do with the development of numer ica l m e t h o d s for the 
solut ion of nonl inear b o u n d a r y prob lems . It seems likely 

tha t new interest ing results in this field can be obta ined with 
the active use of h igh-performance paral lel computers . 

The above discussion proves tha t the exper imental test 
of the possible existence of s trongly coupled large po la ron 
and b ipo la ron states is ra ther ambiguous . However , in our 
opinion, d ramat i c qual i ta t ive results of the theory (such as 
the availabili ty of excited self-consistent states, or p h o n o n 
instability) can be revealed in specially designed experi­
ments . 
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