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Abstract. We use the translationally invariant Bogolubov—
Tyablikov method to propose a polaron theory. We present
calculations of autolocalised electron states for different
types of interaction. The structure of these states is shown
to be strongly related to the structure and details of the
local phonon spectrum. We calculate this spectrum in the
strong-coupling limit. Applications of the large polaron
model and possibilities of experimental tests are considered
for the strong coupling. We generalise the Bogolubov—
Tyablikov treatment to the strongly coupled bipolaron and
give criteria of the stability and formation of the bipolaron
states.

1. Introduction

The polaron theory is the simplest example of a quantum
field theory; however, it has significant applications in
condensed matter physics. The polaron problem was
originally formulated as a problem of an autolocalised
electron state in an ionic crystal [1]. The polaron
description was assumed to correspond to the strong-
coupling limit.

Since the strong-coupling criterion is not satisfied for
most of the ionic crystals [2], the central problem in the
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polaron theory was to generalise the method to arbitrary
coupling, i.e. to develop various approaches to the calcula-
tion of the dependence of the ground electron state on the
electron —phonon coupling constant o [3, 4], to evaluate the
effective mass for different values of a [5], to extend the
treatment to finite temperatures [6], and to study the polaron
transport problem [4—8].

However, there exist a number of physical examples for
when the strong coupling is realised and the electron can be
autolocalised. Among such examples are magnetically
ordered crystals, where magnetic polaron states are possi-
ble [9—11], polar liquids, where the autolocalised states are
the solvated electrons [12, 13], and other systems.

Moreover, even in ionic crystals, where polaron states
are treated by the weak or intermediate coupling descrip-
tion, the strong coupling is realised for bipolaron states. We
also note that, in the important case of the bound polaron
arising in the F-center formation, the strong-coupling
criterion is much weaker and can be satisfied for ionic
crystals.

Thus, the study of the strongly coupled polaron is of
interest in solid state physics, although only as a limiting
case. Besides, we show in the review that the concept of the
strongly coupled polaron can be successfully used for a
number of related problems, such as the meson theory of
nuclei interaction [14—16], the theory of the mobility of ions
implanted into liquid helium [17], and so on.

In most works on the strongly coupled polaron,
attention is focused on the study of the ground state. At
the same time, the question of the possible existence of
polaron states distinct from the ground state is basic to the
study of processes related to electron excitation in polar
media, for instance, the photoexcitation of F-centers and
other lattice defects.

At present, the problem of the excited polaron states,
apart from the fact that it is of theoretical interest, is
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gaining attention because of the problem of electron
excitation transfer in a wide variety of condensed media
(solutions [18], biomacromolecules [19—-22], etc.).

We note that there are two types of strongly coupled
polarons: the small polaron, formed when an electron is
localised on one molecule of the medium [4, 23]; and the
large polaron, formed when the polaron state is rather
diffuse. There are a number of books and reviews devoted
to the polaron problem [3-7, 24—29]. But in our opinion,
there has been no unified treatment of the polaron states to
date.

We will make an attempt at such a unified approach
with the use of the Bogolubov—Tyablikov method devel-
oped to describe a nonrelativistic particle interacting with a
quantum field. This will enable us to obtain equations
asymptotically exact in the strong-coupling limit for differ-
ent types of quantum fields, which play an important role in
solid state theory. In cases of physical interest, the solutions
of these equations give an idea of the complicated structure
of autolocalised electron states.

Recently, the results have attracted attention owing to
the development of a number of nonperturbation methods in
the physics of elementary particles. This review is devoted to
the study of the structure ofa strongly coupled large polaron.

In the second part of the paper we will present the main
results of the method for a nonrelativistic particle inter-
acting strongly with a quantum field. The third part is
concerned with the investigation of the electron states
defined by different solutions of the nonlinear Schrodinger
equation with the selfconsistent potential. In the fourth
part we consider the spectrum and characteristics of local
phonons created by the strong electron—phonon coupling.
In the fifth part we generalise the theory to the bipolaron
case. Conclusions are presented at the end of the paper.

2. Theory of a strongly coupled polaron

2.1 Basic relations

The starting point in the description of motion of a
nonrelativistic particle in a quantum field is the Hamil-
tonian [30, 31]
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Here p is the effective mass of the particle, 7 is its
coordinate, bt and b are the operators of annihilation and
creation of the field quanta with energy 7w, ¢, are the
constants for the particle—field interaction defined in terms
of the macroscopic state of the medium. We note that they
are proportional to y/x, where a is the coupling constant.

Hamiltonian (1) describes the electron —phonon inter-
action and has been investigated actively in quantum  field
theory [33]. In general, in the presence of impurities,
Hamiltonian (1) must contain the potential of the par-
ticle—impurity interaction.

The following study of the Hamiltonian depends on the
presence of small terms in Eqn (1). Ifthe last term of Eqn (1)
is small, the problem is reduced to the weak polaron
treatment [34, 35]. The other limiting case is that of strong
coupling. In this case there is a small parameter

& =wy/E xa”

electron energy).

This problem was originally investigated by Pekar in the
framework of a phenomenological approach [1]. The
presence of a translational invariance gives rise to addi-
tional difficulties in the problem. Consistent study of the
quantum problem was carried out in Refs [30, 31] (see also
Ref. [32]) with regard to the translational invariance of
Eqn (1).

The first step in this method is to introduce complex
lattice coordinates:

2 (where E x o’w is the characteristic
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Here 5k are the equilibrium positions of the lattice
coordinates, and Qk and P, denote deviations from the
positions and the corresponding impulses.

Then, we separate the variables related to the motion of
the particle as a whole:

(Dy +60;) = (Dy +80;) exp(—ik-r.) . (3)

Here r, is the coordinate of the rectilinear motion of the
particle, and r corresponds to the fluctuating part of the
motion (the trembling caused by the particle—field inter-
action).

Eqn (3) determines the canonical Bogolubov—Tyabli-
kov transformation, and introduces new variables r, 7., Oy
instead of 7, Q,, whose number has increased by 3. This
generates a need for some additional restrictions,

Zkv,’;Qk =0, C))
k

r=r.+r,

where v, are complex numbers satisfying the normalisation
conditions

k

Eqns (3)—(5) are a closed set of equations determining the
canonical transformation.

After performing the canonical transformation and
separating the rectilinear motion, we use a standard
perturba-tion technique over parameter & which enables
us to obtain the corresponding wave equations for
Hamiltonian (1):

(H0+8H1+82H2+..._E0_8E] —82E2_"‘)¢:O. (6)

Then, we present the wave function @ of the system as

D(r, Qps ---) = @o(r) O(Qy, -..) + 80y (r, Qs -..) . (D)

The equilibrium lattice coordinates are defined by the
condition E; = 0 (which means nullifying of a form linear
over displacements (H;) =0), and have the form

_*
Cr W

D =—-——2%_
C 0 — (k)

(exp(ik-R))

mic_}—c((zf_k)zj‘P%(R) exp(ik-R) dR . (8)

The canonical transformation of Eqns (3)—(5) elimi-
nates the translational degeneracy of the initial

Hamiltonian, which enables us to employ the perturbation
theory. Using the standard perturbation method for the
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wave function @q(r), we obtain the wave equation deter-
mining the state of the quantum particle:

2
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Here E, and W are the total and electron energies of the
system in the zero approximation, and U(r) is the self-
consistent polaron potential.

In the slow-velocity limit we can evaluate the effective
mass of the particle by expanding Eqn (9) over the velocity
v

M=% ik’ (10)

T3 o}

Thus, in the strong-coupling limit there arises an
autolocalised electron state with the energy E,, the
effective mass M, and the wave function defined by the
solution of Eqn (9).

In turn, the state of the phonon subsystem in an
adiabatic approximation corresponds to harmonic vibra-
tions of the nuclei moving in a parabolic well:

1
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Here My, is the quadratic matrix defined by the electron
density distribution. In the fourth part we obtain a relation
to describe the matrix in terms of the states of the electron
subsystem.

Eqns (8)—(11) determine completely the problem of a
slow (nonrelativistic) motion of a particle in a quantum
field in the strong-coupling limit. We note that the
formulation of the problem implies that the medium,
with which the electron interacts, is of a continuum nature
(we treat the effective mass, the dependence of the coupling
constant on the macroscopic medium parameters, and so
on). This assumption is valid when a characteristic
dimension of the electron density distribution described
by Eqn (9) is much greater than the lattice constant.
Otherwise it is necessary to use the small polaron treatment
[23]

In the general case, the characteristic dimension of the
polaron is specified by the type of the electron —medium
interaction. In the case of the local short-range interaction,
when ¢ ock'/? and w; xk, the polaron state is unstable in
the strong-coupling limit [36, 37], and if we do not impose
special limitations because of the discrete structure of the
medium, the dimension of the polaron state will tend to
zero. In the case of a long-range coulomb interaction, when
¢, < k=" and o w,, the characteristic polaron dimension

x (ua))l/za*] can exceed greatly the lattice constant.

Thus, if the particle—field interaction can be approx-
imated in terms of the strong coupling, Eqn (9) is
fundamental in the description of the behaviour of
electrons in the medium.

2.2 Polaron Hamiltonian for different types of interaction
Hamiltonian (1) encompasses many examples of the
coupling of a quantum particle with a condensed
medium. For instance, it describes the motion of an
electron in an ionic crystal, if (see Refs [1, 34])
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where e is the electron charge, V is the volume, and
c=¢8"= s;,] —g !

The F-center model describing the interaction between
an electron and an ion vacancy is practically important. In
this case we must add the coulomb vacancy attraction to the
interaction potential

2
u(r) = Jd OUOF_ 2 (13)
="l elr]
Here z is the charge of the vacancy.
In a piezoelectric semiconductor [38—41],
1 [4n h/us <e,,k>
Cp = k]/z (V hzs/lue2 2ec s (U SK ( )

where s is the velocity of sound, c is the elastic constant,
and (e,zjk) is the averaged square of the piezoelectric tensor.
It leads to the same potential as in ionic crystals.

In a homopolar crystal [42, 43],
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where K and [t are the Young’s and the shear moduli,
respectively, and G is the constant of the deformation
potential.

In the case of nuclear matter [14, 44],

X 24 1/2
Ck :;]/2 N W, = <u0—§+6'2k2) N
2w V) h
2 N2
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U(r) = 4njdr ] exp = lr=r'l],

where g is the constant of the nucleon —meson coupling, u,
is the meson mass, and ¢ is the velocity of light.
In the case of the continuum exciton [29, 45],

o 2mw,&(k) 12 ¢
= { Veo[a(k) —1] } Kk’

00 =~ [ ar 1 —exp(rple ).

where @, is the plasma frequency, &(k) is the dielectric
constant of a doped semiconductor, and «p, is the inverse
Debye radius.

In a number of cases, Hamiltonian (1) describes the
behaviour of electrons in magnetically ordered media [24,
46].

(16)

a7
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3. States of the electron subsystem

3.1 The ground state

Eqn (9) is the nonlinear Schrodinger equation. It has been
investigated repeatedly for the ground electron state with
various self-consistent potentials. For the polaron [Eqn (12)]
and the F-center [Eqn (13)], the ground spherically sym-
metric state @y(r) was determined in Ref. [1] by the
variation method. The best numerical solution for the
ground state was obtained in Ref. [47]. The results of these
calculations were confirmed in Ref. [48].

The solution of the equation with the short-range
potential [Eqn (15)], corresponding to the ground state,
was actively investigated in nonlinear optics [49, 50], in the
physics of disordered systems [51—53], in nonlinear field
theory [54] either by different variation methods or by
numerical iterative calculations [55]. In Ref. [42] it was
investigated by the variation method as applied to the
problem of an autolocalised electron state. The results were
revised in Ref. [56] by the direct numerical calculation of
the problem described by Eqn (15). The numerical calcula-
tions of the ground state for the self-consistent potential
[Eqn (17)] are given in Refs [57, 58].

3.2 Excited states

The detailed study of the nonlinear Schrodinger equation
shows that in the general case its solution is not unique; it
has a discrete set of solutions, each with its own self-
consistent potential. This is straightforward in the case of a
F-center, where the solutions can be put into corre-
spondence to solutions of the linear problem with the
hydrogen-like potential. Here, the ground state corre-
sponds to the ls-type solution, the first excited state with
spherical symmetry corresponds to the 2s-type, and the
state asymmetric about the rotation corresponds to the 2p-
type, and so on.

We note that the excited states are less well understood
when compared with the ground state. It was proved in
Refs [59—61] that there is a countable number of solutions
(modes) for the self-consistent polaron potential [Eqn (12)]

and for the potential [Eqn (15)]. The spherically symmetric
polaron states were numerically determined in Ref. [62],
and the ones for the F-center were determined in Ref. [63].
In Refs [50, 56] the excited states were calculated for a
homopolar crystal with the short-range potential
[Eqn (15)].

Some of the first solutions and corresponding self-
consistent potentials are shown in Fig. 1. Generally, for
the (n+ 1) spherically symmetric mode the solution inter-
sects the x axis n times. Table 1 lists the numerical values of
the radii, the effective masses, and the total energies for
various spherically symmetric polaron states.

Note that in Ref. [66] the quasi-classical asymptotic
behaviour (when n — oo) was found for the electron energy
of the polaron, such that:

2 /,te4c2
9n2(0.486)” 7P (n+1)*

(18)

n

The data in Table 1 suggest that the radius of the state
grows rapidly with the number of the solution, while the
energy and the effective mass decrease.

Thus, to observe self-consistent states with the energy
higher than the ground state energy, one must use the
crystals with a coupling constant much greater than o = 10
(o =e*ch™'\/u/2fiw). Typical values of the coupling
constants for the majority of crystals are in the range
oa=2-3.850,a=3.97in KCl, « =2.0 in AgCl, a = 1.69 in
AgBr, and «=0.85 in ZnO [2]. For this reason the

Table 1. Energies (in units of e4,uc2/h2), radii (in units of hz/ucez) and
effective masses (in units of a'p) for different self-consistent polaron
states.

0 1 2 3
E, —0.05426 —0.0103 —0.00416 —0.00223
R, 9.29 48.4 120 216

M, 0.0227 3.0x107* 2.9%x107° 5.0%x107°

Figure 1. Wave functions y(x) = A¢(Bx) and the self-consistent potential z(x) = |W|™' U(Bx) for the ground [yo(x), zo(x)], first [yi(x), z1(x)],
second [y,(x), z2(x)], and third [y;(x), z3(x)] excited polaron states. A = |W|~!(e)u~'/2(2nc)'/?, B = R2u|W|)~'/2.
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calculation of self-consistent states of bound polarons is
more interesting for comparison with the experimental data.

The self-consistent states have the same origin for
different types of interactions considered in part 2, but
their physical characteristics can be distinct for various
types of interactions. For instance, the total and the
electron energies are negative in the case of the polaron
in an ionic crystal, so they are below the bottom of the
conduction band. In the case of an electron in a homopolar
crystal [Eqn (15)], the total energy of each self-consistent
state is positive, while the electron energy (equal in absolute
value to the total energy) is negative.

Hence, in homopolar crystals the electron energy of the
excited state is lower than the energy of the ground state
(nodeless state). There is also a great difference between
effective masses of self-consistent states for the two cases
considered. In the case of an ionic crystal, the effective mass
decreases rapidly with n. On the contrary, for a homopolar
crystal the effective mass increases rapidly with n.

In the case of the nonlocal screened potential (the
deuteron problem), the existence of solutions to the
nonlinear Schrodinger equation (16) depends on the value
of the coupling constant g. The nodeless solution exists if
values of g are greater than some critical value gg;
moreover, the value of g, increases with n. Then, both
cases are possible, i.e. the polaron case, where the total and
electron energies are negative, and the case of the homo-
polar crystal, where the total energy is positive and the
nucleon energy is negative. (In the latter case metastable
states are formed [14].)

Less evidence is accumulated about the nonspherical
solutions of Eqn (9). Some such solutions for self-consistent
potential [Eqn (15)] were found in Ref. [64]. We do not
know of any works in which the existence of nonspherical
polaron-like solutions was determined. As a rule, the first
step in finding such solutions is to choose the symmetry of
the solutions.

For the polaron, an attempt to calculate the 2p state was
made in Ref. [65] by the variation method. The non-
spherical solutions of the 2p- and 3p-types, and a
number of other solutions were obtained for the F-center
in Ref. [67] by the direct variation method. The number and
the branching conditions of the solutions were investigated
in Ref. [68] in the limiting case of a very large F-center
charge. A modified Galerkin method was used in Ref. [69]
to calculate nonspherical solutions of the polaron problem
(however, the calculations were probably numerically
incorrect).

Recently, nonspherical solutions of the polaron and the
F-center problem have been found numerically in Refs [70—
72]. For this purpose, the nonlinear differential Eqn (9) was
reduced to the infinite chain of ordinary differential
equations. During the calculation, the chain was broken
down into a finite number of the equations. The condition
of the chain breaking was the convergence of the solution.

As a result, the numerical solutions were obtained in a
series form:

o(r) =D E[PH A Y 4 (9,0) exp(—ar)
nl, k
oUWl

&=t (19)

where Y ,;(¢,0) are spherical harmonics.

Table 2. Total energics (in units of o’fiw) for different polaron states.

ls 2s 3s 2p

—0.1085 [47] —0.0206 [62] —0.00832 [62] —0.0457 [71]
—0.02048 [69] —0.00804 [69] —0.05248 [69]
—0.0169 [67] —0.03829 [5]

—0.0472 [67]

3p 3d 2s —3d 2s+3d

—0.0168 [71] —0.0207 [71] —0.0240 [71] —0.030 [71]

—0.0136 [69] —0.0260 [69]

AN
MNE
N

2
%

3p

Figure 2. Polaron wave functions for the self-consistent excited states
of the 2p- and 3p-type.

Table 2 lists the total energies of the excited polaron
states obtained by some authors. Fig. 2 presents the self-
consistent polaron states of the 2p- and 3p-type, calculated
numerically in Refs [71, 72]. As is seen from Fig. 2, the
electron density distribution has a ‘peanut’ shape typical of
the p-states. Some of the solutions were tabulated in
Ref. [70].

The calculations also revealed a surprising fact: that the
solutions to the F-center problem branch, and there exist
the excited states with mixed symmetry. (Below we will
show that the formation of these states relates to phonon
instability.) The new solutions may be classified in terms of
s- and d-states.

Fig. 3 presents the electron density distribution for the s
and d states. The sign ‘4 (Jy*| > 10°) indicates regions of
density condensation, and the sign ‘=’ (|| < 10°) indicates
regions with a low electron density. The hybrid states of the
(25 + 3d)- or (2s — 3d)-type (depending on the sign of the
combination) result from the combination of these two
states.

These nonspherical states are similar in shape to the
hybrid (2s =+ 3d) states of the linear Schrodinger equation
with a coulomb potential. The nonlinearity of Eqn (9) leads
to the solutions, which are qualitatively different from
solutions to a linear problem, especially for » — 0. How-
ever, the similarity to the linear problem in terms of shape
and the asymptotic behaviour for r — oo remains, since
asymptotics of linear and nonlinear problems differ only in
constant.
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25+ 3d

Figure 3. The clectron density distribution for the self-consistent
excited states with mixed symmetry 2s + 3d.

3.3 Application of the large polaron model

The model of the strongly coupled polaron was the starting
point in the explanation of the absorption spectrum in the
F-center problem [1]. For a long time, the model was very
attractive, as it allowed us to account for the qualitative
correlation between spectrum parameters and dielectric
constants of crystals. However, subsequent cyclotron-
resonance experiments revealed that the measured effective
masses do not agree with the strongly coupled polaron
model [2].

Besides, according to the experiments on electron spin
resonance [74], in the majority of ionic crystals the electron
ground state has a characteristic dimension comparable
with the lattice constant, and the large polaron model
cannot be used in this case. As a rule, to study the electron
ground state in the F-center, quantum-chemical calculations
are used (for example, see Refs [75, 76]).

At the same time, most objections against the large
polaron model disappear if we consider excited electron
states in the F-center. The effect of the relaxed excited state
on the absorption process in F-centers has been discussed in
many reviews [73, 77-79].

The approximate solutions of Eqn (13), corresponding
to the relaxed excited states of the 2p-type obtained in
Ref. [67], were used by Pekar [80] to describe the photo-
excitation of F-centers, by Perlin [81] to evaluate the
lifetime of excited states, and by Moskalenko [82] to
describe heat excitation. The exact solutions of Eqn (13),
corresponding to the extended excited 2s-like states, were
used in Ref. [83] to calculate the lifetime of photoexcited
states of the F-center and to evaluate the photoconductivity
in crystals with color centers.

The discussion of the nature of the relaxed excited state
is still underway [78, 79]. This is due to the fact that in many
cases experiments on photoabsorption can be described

without any knowledge of the relaxation state itself. Thus,
to explain the temperature dependence of the maximum of
the F-center photoabsorption, one does not require the
electron wave functions, and the data on the so-called S-
factors, which can be used as fitting constants [84], are
sufficient.

Another problem which occurs in the application of the
excited states is that there are a number of absorption lines
corresponding to transitions between various self-consistent
states; these lines are usually wide and therefore they overlap.
Each line can have a complicated shape owing to the
multiphonon nature of the transition. Besides, the main
contribution in the transition may be made by the local
phonons (see the fourth section). It follows that the question
of whether the large polaron model can be applied to the
description of the relaxed excited state in the F—center is yet
to be answered.

The large polaron can also be used to treat an
autolocalised electron state in a polar liquid (solvated
electron). The absorption spectrum of the solvated electron
is simpler than that of the F-center, and consists of one or
several broadened lines.

Initial attempts to consider the spectrum by means of
the large polaron model [85] revealed details of the
spectrum. However, subsequent experiments and calcula-
tions have shown that the model should be modified to
consider short-range forces, with regard to the chemical
structure of the environment (the size of the adjacent
molecules, the coordination number, etc.).

At present, there are well-developed semiphenomeno-
logical methods based on the semicontinual polaron model
(see Ref. [86]), which treat the effect of the cavity formation
by short-range interactions and the influence of polaron
tails. These models enable one to explain a lot of the
experimental data on the absorption spectrum (the effects
of temperature, density and pressure on the width and
maximum of an absorption line, and so on).

Note that, although it is simple, the continual model of
the strong coupled polaron is used to account for a number
of solvated electron phenomena. The effect of salt concen-
trations on the absorption line has been investigated by
means of this model in Ref. [8§7]. The generalisation of the
large polaron model to disordered systems is used in
Ref. [88]. This model also enables us to explain a lot of
experimental data on correlations between the thermody-
namic behaviour of the medium (density, pressure, and the
Kirkwood effect) and the shape of the absorption spectrum.

A specific problem is the use of the large polaron model
for long-range transfer. We emphasise that the large
polaron model is the starting point for the theoretical
study [89]. A vast amount of work has been devoted
devoted to this question (see, for instance, Refs [90—-92]).
In recent years this question has taken on great significance
owing to the ‘superexchange’ problem.

Available experimental data reveal that the rate of
electron transfer is anomalously great for globular proteins
and for a number of organic molecules. As assumed,
electron transfer is realised by excited electron states (see
Ref. [92]). The nature of these states remains to be explored
[93]. In Refs [20, 22] an attempt was made to explain the
high rate of electron transfer with the use of the large
polaron model modified for the protein globule [19].
According to the model, results of the calculations agree
with experimental data.
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As a rule, the application of the polaron theory in
semiconductors is limited by a weak electron—phonon
coupling region (a < 1). The experimentally observed
doublet structure results from the fact that the polaron
effect is accounted for in the absorption spectrum, when
frequencies are in resonance with the optical vibrations of
the semiconductor. The polaron effect is also very impor-
tant in explaining the behaviour of charge carriers and other
phenomena.

The strong coupling case can be realised in heavily
doped semiconductors [29, 45]. In a heavily doped semi-
conductor of the hole-type, an electron is surrounded by
holes; much as a polaron in an ionic crystal. Similar
phenomena occur in the case of a hole in a semiconductor
of the n-type. The states of this type, with the total charge
equal to zero, were called continuum excitons [45].

The ground and excited states of continuum excitons
have been investigated in Refs [29, 45]. Narrowing of the
gap in the semiconductor results from the generation of the
continuum excitons, which explains the dependence of the
gap on the impurity concentration.

Usual exciton states do not exist in metals because of the
strong screening of an attractive electron—hole potential.
The singularities in the x-ray absorption spectrum (the so-
called edge singularities) can result from the generation of
continuum excitons in metals. The positron annihilation in
metals can also be considered as the annihilation of
continuum excitons, where the positron plays the same
role as a hole.

The connection between ideas underlying many-particle
theory in solid state physics and nuclear physics enable us to
use the underlying methods developed in both cases [14—
16]. The basic problem in nuclear physics, i.e. of a nucleon
in a meson field, is similar to the polaron problem or the
electron —phonon interaction. The divergence between
results in the ultraviolet range when the perturbation
theory is used is the principal difficulty which arises in
the simplest case of an interaction between a nonrelativistic
nucleon and a meson field.

A consistent treatment without any divergences is
carried out in Ref. [14] for a strongly coupled nucleon in
a meson field. In the case of two nucleons, the problem is
shown to be similar to the bipolaron problem, where
coulomb repulsion is absent, (see the details given in
part 5) and is reduced to a one-particle problem
[Eqn (9)]. The solution of nonlinear equation (16) gives
values of the bound energy and the deuteron radius which
are consistent with the experimental results.

4. Localised phonons

4.1 Spectrum of the phonon frequencies

We considered above the electron density behaviour for
polaron-like states in the strong coupling limit. This
distribution can be responsible for a number of important
effects and this has been demonstrated in various
experiments (see part 3). Equally significant is the fact
that, in the case of strong interaction, the electron state is
localised and the phonon subsystem state is fundamentally
changed.

In terms of dynamics of the lattice, the presence of the
localised density distribution of an excess electron can be
considered as the presence of a special defect. As a result of
the strong electron —phonon interaction, the phonon spec-

trum changes significantly and the bound phonon states are
formed [94], as in the case of an imperfect lattice [95]. While
the localisation of the latter is due to the changes in the
atom mass or the lattice force constant, the localisation of
the former is due to changes in the electron state itself.

In the case of translation symmetry, localised phonons
form a cloud which is coupled to an electron and moves
together with it. Note that bound phonon modes can also
occur in the case of weak coupling, and that they were
studied originally and became known as dielectric modes
[96]. In Ref. [94] the earlier theoretical and experimental
works on this theme are reviewed. The strong coupling case
is considered in Ref [97]. Here we present a short
description of the results obtained.

As was noted in part 2, the characteristics of the phonon
spectrum are described in a harmonic approximation and
given by a matrix M. If we introduce eigenvectors Ay and
eigenvalues w,, such that

ZM/(/AA'/( =iy,  Ag =AM,

k

*
E A‘vk th = 531 P
k

then relation (11) for the phonon subsystem takes a
diagonal form:

2
[Z% (66? — w%fg) + 11:2] 0,(&) =0,

where {, =Y, A, Q; are normal vibrations of the lattice.

Thus the state of the phonon subsystem in the adiabatic
approximation is described as a product of wave functions
O() =11, 0,(L,) and is characterised by a set of quantum
numbers [n, ny, ..., ng] for noninteracting phonons with
renormalised frequencies w,, whose squares are eigenvalues
of the matrix My,.

The energy E,, which results from the second-order
correction of the total energy of the system, is expressed as:

E~2 = E2 - %Zhwk = gznxwx + gZ(w\ - 600) . (22)
k

Thus, the state of the phonon subsystem is given by the
matrix My, and its eigenvalues .

In the strong-coupling case the matrix My, is defined by
the state of the electron subsystem. When we express the
electron wave function of the first order in the form
o,(r, ) = >>X,(r) {;, we obtain [97-99] the following
relations for the eigenvectors Ay and the eigenvalues w;,

(20)

@1

* —
sk —

2
m (@olhi|Xi)

hy = cyexp(ik-r)+D_y , (23)

(Hy—E¢)X, = %th(%lhk IX,) . (24)
Wy — 05 4

Eqn (24) defines the local-phonon frequency spectrum
as the eigenvalue spectrum of a linear integro-differential
boundary-value problem. This problem was studied for the
electron ground state [99], where a set of the initial
frequencies was calculated. For the polaron ground
state, Eqn (24) was investigated in Ref. [100] in the
variation form.

In Ref. [101] values of w, were found analytically for a
one-dimensional problem. The influence of dispersion on
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Table 3. Squares of phonon frequencies a)z(n, [) (in units of a)g) for the ground and the first excited self-consistent polaron statess

1/n Ground state First excited self-consistent polaron state
2 3 4 5 2 3 4 5
0 0.412 0.9254 0.9792 0.992 1.538 0.3586 0.8896 0.9574
1 0 0.8932 0.9726 0.9898 2.54 0 0.7992 0.9676
2 0.8158 0.9596 0.9864 —1.62 0.882 0.9254
3 0.9416 0.9816 0.4948 0.9362
4 0.976 0.817
a
1 1 \I 1 1 1
0.9 0.8 0.7 5 0.9 0.8 0.7 wp

Figure 4. An approximation of the local phonon spectrum for the ground (a) and the first (b) excited states of the F-center in KCI. The half-

width of each line is ¢ = 0.0025 wy.

the local phonon spectrum was considered in Ref. [102].
For excited spherically symmetric states of the polaron and
the F-center, Eqn (24) was studied in Refs [102, 103].
Table 3 lists the dimensionless phonon frequencies for
the ground and the first self-consistent polaron states.
Fig. 4 shows the phonon spectrum approximation.

4.2 Phonon instability

If all the eigenvalues of the matrix My, are positive, then
the amplitudes of the phonon oscillations are small
[O(L,) x exp(—w,(?/2)] and the system remains stable. If
any of the eigenvalues is small or negative, the amplitude in
this approximation is of the order of the crystal dimension,
and the system loses its stability. Thus the problem of
stability, with respect to the motion of phonons, requires
the study of the eigenvalues of the matrix M.

In Refs [102, 103] we found numerically that, for excited
states of the polaron and the F-center, there are critical
values of the effective F-center charge v, = Z /(gyc) = 0.21,
when the square of the renormalised frequency becomes
negative for one or several modes and the phonon
instability of the system occurs. As shown in Ref. [98]
this phonon instability is due to the branching of solutions
to the nonlinear problem given by Eqn (13).

In Ref. [72] Gabdoulline found the critical values v at
which the self-consistent states of the (2s F 3d)-type appear
in addition to the excited self-consistent 2s state. Fig. 5
shows the dependences of w? for the phonon mode n =2,

—0.021

—0.025 |-

1 ]
0.7 0.8 0.9 1

Figure 5. Dependences of the square of the local phonon frequency
(I)§2=a)§2/w0 (a) and the eclectron energy E=W/(<xzhwo) (b) on
§=2/(Z +ec).
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[ =3, and the electron energy of self-consistent states £ on
the effective F-center charge.

The occurence of the phonon instability is similar to the
Jahn —Teller effect. For the polaron, in addition to self-
consistent states, each corresponding to its own potential
well, there is an infinite set of non-self-consistent electron
levels available for each potential well. Each of these levels is
characterised by its own wave function ¢, and energy E,:

v [arlet” r

where ¢(r’) is the selfconsistent solution defined by
Eqn (8).

If non-self-consistent electron levels are nondegenerate,
then, according to the standard perturbation theory, the
first-order correction X can be obtained by expanding over
these functions:

X (r) = Co,(r), (X,(r)o,r)=0. (26)

Substituting Eqn (26) into the frequency Eqn (24), we
obtain a relation between the renormalised phonon fre-
quencies and the spectrum of the electron states:

(o2

When E; — Ey < 2(@,00(@,@0¢*|r —r'| ")), i.e. the electron
levels are sufficiently close, the square of the frequency
becomes negative; @? /wj < 0. This entails instability, which
leads to branching of the solutions. In this way the self-
consistent electron state has a mixed symmetry of these two
levels. Fig. 3 presents schematically the 2s- and 3d-states,
and the resulting states of the 2s & 3d-type.

The study of the phonon instability of excited polaron
states makes it clear that the branching of solutions to
Eqn (8) takes place at a loss of stability, which gives rise to
new self-consistent states with mixed symmetry. This effect
has two main causes.

The polaron state is given by nonlinear Eqn (9), which
includes two types of potentials: a self-consistent polarisa-
tion potential and a coulomb one. Symmetries of these two
potentials are different. As the contribution of these two
interactions changes quantitatively, the symmetry of some
solutions changes. This effect is characteristic not only of
the F-center, but also of some other similar quasiparticles
(piezopolaron, fluctuon, etc.) bounded on impurities.

Note some important consequences of this phenom-
enon. Unlike the problem given by Eqn (8), the stability
problem [Eqn (24)] is linear. Thus it can be expected that it
is easier in terms of calculations. From this standpoint it
would be reasonable, first, to study the linear problem, find
the symmetry of solutions and branching points; and,
second, to analyse the self-consistent solutions of Eqn (8).

The described instability may be observed experimen-
tally. It will lead to decay of excited states for time |w™'|.
Note that, for LiCl (v=0.35), LiBr (v=0.29), and
fluorides of alkali-earth metals, the effective charge
v=Z/gc is almost equal to the critical charge
v, = 0.21. This explains the absence of luminescence
[104] in experiments on photoexcitation in these crystals.

+——E

@,(r) =0, (25)

w; 26
r=1————
wy E.\' - EO

@7)

5. Strongly coupled bipolaron

5.1 History of the bipolaron problem

In the introduction we noted that bipolarons provide
another example of when the strong coupling occurs. The
intensive study of bipolarons in recent years is not only
because of general theoretical interest in the problem, but
also because of its important applications, such as in the
study of high-temperature superconductivity [105, 106].

The history of bipolaron study is rather dramatic. For a
long time, errors in calculation have called into question the
existence of the bipolaron. The problem was first recognised
by Ogg [107], who suggested the occurence of supercon-
ductivity at temperatures above the boiling point of
nitrogen, when he observed abnormally high conductivity
in metal —ammonia solutions (as early as forty years before
the discovery of high-temperature superconductivity in
metal-oxide ceramics [108]).

At present there is reliable experimental evidence that
electron spin-pairing states are dominant in metal—ammo-
nia solutions at concentrations of about 0.1 promille [109,
110]. Some authors relate this to bipolaron formation. But
the mechanism of the phenomenon is still not fully
understood.

In recent years, research has been conducted [111—114],
which has revealed the bipolaron states at this concentra-
tion with the use of the Kohn—Sham theory and molecular
dynamics methods, and where the characteristics of these
states were also determined (electron density distribution,
effective potential, etc.).

The bipolaron problem was first considered theoret-
ically in 1951 [115]. In the description of the bipolaron state,
the starting point is the Pekar—Frolich Hamiltonian of two
electrons interacting with a phonon field:

e
H=

2u +Zﬁwkb [9k+U(|V| —r2|)

+ Z{ck exp [ik(r — ro)] by + cf exp [=ik(r1 — ro)] b
k

—+ckexpﬁk(m-—)b)]bk—%cZexp[—dk(Q<—)b)]b:} . (28)

where r; and r, are the coordinates of the first and the
second electrons, respectively; ry is an arbitrary reference
point; U(r) is the electron interaction potential. It is usually
assumed that ry =0, and in this form the Hamiltonian of
Eqn (28) is the initial equation in the bipolaron study.
Most authors turn to variational calculations of
bipolaron wave functions. In semiclassical bipolaron
theory [1] wave functions were selected in the multiplicative
form. With this approximation one does not determine the
presence of the bound bipolaron state. It was Vinetsky and
Gitterman [116] who first obtained the bound bipolaron
state in the framework of the semiclassical treatment.
The best evaluations of the bound bipolaron energy
were obtained in Ref. [117], where trial wave functions were
chosen with regard to the electron correlation. In particular,
the condition of the bipolaron state formation was obtained
(n > 0.14, where n = &, /¢, is the ion coupling parameter).
The current state of research is presented in reviews [118,
119]. The treatment extended to the case of the presence of
short-range interactions is given in Refs [120, 121].
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Note that in the bipolaron theory no exact solutions
have been obtained. This is in contrast with the polaron
theory, where asymptotically exact solutions are known in
the limits of both weak and strong coupling. Moreover, in
the bipolaron case there are no solutions at all for small and
intermediate values of the coupling constant «.

According to Ref. [122], a bound polaron state is

possible only at sufficiently large values of the coupling
(¢ >5.2). In the adiabatic limit, both the electrons are
believed to move in one and the same potential well,
induced by their fast oscillations. For this reason the
interaction of the electrons with the polarisation ¢(ry,
r,) takes the form:

¢(r1, ) = F(r)) + F(ry) .

As a result, the problem is reduced to the calculation of
a two-particle bipolaron wave function in a self-consistent
potential. Since there are at present no methods to find
asymptotically exact solutions of the problem, some
additional assumptions are needed. As mentioned above,
the form of the approximation of the wave function can
have a significant effect on the result.

(29)

5.2 Adiabatic theory of the bipolaron
An alternative approach is exemplified by Ref. [123], where
we used the Bogolubov—Tyablikov method [30, 31] to
develop a consistent adiabatic translationally invariant
theory. In this approximation the bipolaron motion is
separated in the adiabatic limit, and the motion of the
centre of the bipolaron mass is presented as a plane wave.
Relative electron coordinates describe fast oscillations in
a potential well, which has the form of the electron-effective
interaction:

¢("1”’2):¢(”1—”2) . (30)

The potential well is not fixed in space, but follows
adiabatically the centre of the electron mass.

The interaction [Eqn (30)] is clearly translationally
invariant unlike the usual phenomenological approach
[Eqn (29)], which does not possess translational invariance
with a spatially fixed potential well.

Within this approach we can treat the problem in a way
similar to the treatment described in the second part of the
paper. As a result, the problem becomes one-particle and is
reduced to the study of a Schrodinger equation for the
relative motion of the electron pair:

2
[—%V%Jrn(r) +U(r) - wo] @o(r) =0, 31)
() = —ZZ e[ osk—r
— (vk)? 2
k
X J dR c057R|qoo(R)|2 (32)

Then, we can determine the bipolaron mass as in the case
of Eqn (10):

2 cik2
M*== 3
3; w)

k

2

(33)

kR
J dR c0S == |(p0(R)|2

5.3 Results of calculations
In Ref. [123] calculations were performed for an ion crystal
(0 =, ¢, < k™), and the interaction U(r) between two

] 1
8 12 X

Figure 6. Quasiparticle-like xolutlons y(x) =A¢(Bx) of Eqn (32) for
different value of %. A = |W|~ (eh),u_'/z(Zm)'/2 B= h(2u|W|_I 7

electrons was the Coulomb repulsion screened by the high-
frequency dielectric permittivity:

2
e

soolr] - r2| -
The solutions obtained depend on the
% =0.125(1 — &y /&)-

Fig. 6 shows particle-like solutions of the boundary
problem [Eqns (31), (32)] for some % values. It is evident
from the figure, that the probability of the electrons being
present at the same point decreases as » grows, while the
maximum of the electron density distribution moves to the
right and goes to infinity at the critical value », = 0.5. This
is because of the fact that, at sufficiently large values of r,
the asymptote of the potential [Eqns (31), (32)] has the
form:

U(r] —}’2) = (34)

parameter

& 4 1
r[eH(r)——] ~ 4 (35)
Eool | r00 € €y
The localised solution of Eqn (31) exists only when the
right-hand side of Eqn (35) is positive, i.e. for x» <0.5.
Accordingly, we have n, =0.75 for the ion-coupling
parameter 7 = &, /& = (8% — 1)/8%x, i.e. it exceeds greatly
the value of this parameter obtained in phenomenological
theory.
The critical value of the parameter #5,, at which the
bipolaron is stable, is energetically advantageous to the
bipolaron state with respect to its decay into two inde-

pendent polaron states:

E <2E (36)

pol »

where E is the energy of a single polaron state.
Calculations show that inequality (366) is valid if g < n,,
where n, = 0.31. Table 4 lists the values of parameters for
crystals satisfying the condition n <, with calculated
values of bipolaron energies, radii, and effective masses.
When the experimental data on the effective electron mass
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Table 4. Valuest of energies W, total energies E, radii R, and the effective masses of bipolarons M*.

Crystal} n o /eV a W/CV E/CV Ié/A M*
LiF 0.213 0.082 5.24 10.7 2.13 2.3 31.6§
LiCl 0.235 0.052 443 4.6 0.93 3.7 40.3
LiBr 0.243 0.079 5.25 32 0.62 4.5 71.7
LiH 0.279 0.140 1.98 2.2 0.42 5.5 1.3
TIBr 0.176 0.014 4.54 1.56 0.317 6.3 0.47
TICI 0.202 0.020 4.46 2.15 0.45 53 0.61
T 0.315 0.012 34 0.54 0.1 11.3 0.6
CsF 0.269 0.030 7.13 6.3 1.2 33 222
RbF 0.299 0.036 7.03 7 1.25 3 186
SrTiO3 0.016 0.0153 1.84 2.9 0.67 4.4 1.98

to = &(u/mo) 2, W = —Wi/mo, E = —Ejt/mg, R = Rring/ps, and M* =M

u = my. JExperimental values are given from Ref. [2].
§The effective mass of electron LiF is given in Ref. [124].

1*(u/mg)” for all crystals, except LiF, TIBr, TICI It is assumed that

m are not available, we present results depending only on
the ratio m/my, where my is the free electron mass.

The condition for adiabatically strong coupling is that
the frequency of the electron oscillations in the polaron well
should be much greater than the frequency of lattice
oscillations. It follows from Table 4 that this condition
is met for reasonable values of the effective electron mass.

Thus, while a single polaron meets the condition of
weak or intermediate coupling, a bipolaron follows the
strong coupling condition in the case of the studied crystals.
This enables us to evaluate critical values of electron—
phonon coupling constants o, when the bound bipolaron
state is possible.

It follows that the energetic requirement for the

bipolaron formation is that
|E| > 2ahic . (37)

Since E « o2, condition (37) allows us to estimate values of
the critical coupling constants a,. Table 5 lists these values.

Table 5. Critical values of electron-phonon coupling constants o for
different values of 5

The simplest model, used to describe polarons in two-
dimensional space, is obtained from Eqn (12) with ¢

replaced by
7 1/2 Dot D—1 1/2
= lw [W (% ) (2v/r) F(T)] . (38)

The physical parameters (frequencies, dielectric constants,
effective masses) were assumed to be the same as in the
three-dimensional case.

The dependence of ¢, p on the wave vector is chosen
from the requirement that the electron —polarisation inter-
action should be of the Coulomb form, 1/r, in the D-
dimensional case. The numerical factor in Eqn (38) is given
by the condition that ¢; , corresponds to ¢, at D =3.

To evaluate the energy and critical constants in the two-
dimensional case, the estimates obtained in Eqn [125] with a
Gauss approximation can be used. These estimates relate
bipolaron energies in three- and two-dimensional cases.

As a result, in the two-dimensional case we express the
bipolaron energy as

2 (3n\
Esp . bipol = 3 (7) E3p bipol »

Ck,D

(39

0 0.053 0.094 0.132 0.166 0.199 0.228 0.256 0.282 0.305 0.317

o, 1.54 1.64 1.74 185 197 210 225 240 258 277 290

Note that the critical values of coupling constants,
obtained from the exact solutions of the bipolaron equa-
tions, are much smaller than those evaluated by trial
variational functions. Thus, according to Ref. [124], the
critical values are a, ~ 5.4 for n =0, oy = 7.2 for n =0.1,
i.e. they appear to be three times as large as those obtained
from the exact solution to the bipolaron problem.

Note also that in the transition from the polaron to the
bipolaron state, the symmetry of the solution changes,
which can lead to significant rearrangement of the local
phonon spectrum near the critical value of the parameter #,
because of the phonon instability of the solution, in the
same way as in polaron excited states (see part 4).

Some of the results obtained can be easily extended to
the two-dimensional case. The two-dimensional bipolaron
problem has attracted much interest with the discovery of
high-temperature superconductivity.

where Ejp pipor 18 the bipolaron energy in the three-
dimensional case. Accordingly, »%,p = %3p and #,, = #3p.

The critical value of the electron—phonon coupling
constant is derived similarly and in the two-dimensional
case takes the form:

1 = o - (40)
where values of o are listed in Table 5.

The translationally invariant bipolaron theory presented
above yields results qualitatively different from those
obtained with the standard adiabatic method. According
to Ref. [123], the situation is as follows. In bipolaron
formation the electrons are localised in a deep potential
well with the electron excitation energy W ~ 1 eV. This
energy remains the same up to the critical value of the
parameter n, = 0.31, at which point the bipolaron state
decays into independent polaron ones.

Up to the critical value # =7, the frequency of the
electron oscillations in the bipolaron potential well greatly
exceeds the frequency of the lattice oscillations, and we can
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use the adiabatic approximation. The criterion of adiaba-
ticity fails only for crystals with very small electron—
phonon coupling constants, such as PbSe (x=0.215)
and PbS (o =0.317), where 5 <17, ie. bipolaron states
are conceptually possible.

Bipolaron characteristics are best observed in crystals
TIBr and TICI. In these crystals continual approximations
produce good agreement with results; the radii of the states
are 20 A and 16 A, respectively. The adiabaticity condition
is also met with a great reserve, despite a relatively small
constant o = 2.5.

It is significant that, in all the cases listed in Table 4,
there is a great difference between the electron energy of
bipolaron W and the total energy E. The modulus of the
electron energy of the bipolaron is approximately 5 times as
great as that of the total energy, while for a single polaron
in the strong coupling limit this ratio is equal to 3. This
distinction can lead to a great difference between the
energies of photodissociation and thermodissociation.

In some crystals the criterion of stable bipolaron
formation is at the limit of accuracy. Thus, in RbF the
bipolaron is stable at room temperature (n=0.3) and
unstable at liquid helium temperature (= 0.32 > ).
Therefore, in RbF the cooling from room temperature
to that of liquid helium leads to the bipolaron dissociation.
This phenomenon could be observed on absorption spectra,
changes in mobility and cyclotron frequency, etc.

Note also that this method for separating out the
translationally invariant part of the motion and reducing
a two-particle problem to a nonlinear Schrodinger equation
is universal and can be applied to any other two-particle
problem in the strong-coupling limit, such as excitons,
electron —hole pairs, and so on.

6. Conclusions

Despite the long history of bipolaron study, the interest in
the problem of the strongly coupled polaron has not
diminished. This is probably because of the role which the
polaron plays in the physics of particle—field interaction.

Unlike many other quasiparticles (phonons, magnons,
plasmons, etc.) described by the spectrum and type of linear
excitations of the system, the strongly coupled polaron is a
‘nonlinear’ quasiparticle formed as a result of a nonlinear
self-consistent interaction. This, in turn, requires the use of
nonstandard mathematics [66, 128].

In our view, the potential of modern mathematical
methods has not been exploited in the polaron problem.
The above example demonstrates that even the general-
isation of the well-known Bogolubov—Tyablikov method to
the case of two-particle self-consistent states yields new
results which differ significantly from the usual variational
calculations.

The above results show that a strongly coupled large
polaron possesses a complicated internal structure which
manifests itself in a wide variety of self-consistent states for
the electron subsystem and in the local phonon spectrum.
The peculiar behaviour of the local phonon spectrum is
closely related to the topology of self-consistent states of the
electron subsystem and is given by the symmetry of the self-
consistent potential in the nonlinear Schrodinger equation.

Note that the investigation of such equations has much
to do with the development of numerical methods for the
solution of nonlinear boundary problems. It seems likely

that new interesting results in this field can be obtained with
the active use of high-performance parallel computers.

The above discussion proves that the experimental test
of the possible existence of strongly coupled large polaron
and bipolaron states is rather ambiguous. However, in our
opinion, dramatic qualitative results of the theory (such as
the availability of excited self-consistent states, or phonon
instability) can be revealed in specially designed experi-
ments.
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