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Abstract. A systematic comprehensive account is given of 
the methods and results of theoretical simulation of the 
dynamics of the processes of collective electromagnetic 
interaction in a nonequilibrium system formed by an 
electron beam and an undulator. The physical mechanisms 
of the phenomena responsible for the emission of stimulated 
(coherent) radiation are identified for specific nonequilib­
rium systems belonging to the class of free-electron lasers. 

1. Introduction 
Studies of the physical nature of the mechanisms 
responsible for the dynamics of growth of collective 
radiative instabilities of charged particle fluxes in material 
media (and in external fields) have been an inherent part of 
the whole history of modern theoretical microwave 
electronics right from its foundation (see, for example, 
Refs [1 -57] | ) . The foundation stone of the relevant 
physical theory was laid down in the forties by the 
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classical papers of Ginzburg [1-3] in which the main 
features of the theory have been formulated and which 
have retained their essential validity even today. They 
include primarily the following: 
— the dominant role of the elementary effects of the 
emission of radiation by charges moving in material media 
and in external fields as primary electromagnetic field 
sources in the investigated collective radiative instabilities 
(including those used in microwave electronics); 
— the feasibility of a significant increase in the peak power 
of the radiation emitted by moving charges when use is 
made of the coherence of elementary radiators; 
— a method for the generation of quasimonochromatic 
bremsstrahlung, based on the use of a spatially periodic 
external field as the material medium; 
— a proposal for a device for realisation of this method of 
bremsstrahlung generation, called later an undulator (see 
Refs [3] and [76]). 

The possibility of existence of quantitative relationships 
between the characteristics of elementary effects of the 
emission of radiation by moving charges and the para­
meters of collective radiative instabilities of charged particle 
fluxes in the same material media has been mooted in the 
very first original papers on a self-consistent theory of 
instabilities (see, for example, Refs [4-13]). 

Moreover, some of these and later investigations of this 
subject have provided a direct quantitative proof of the 

fHere and later we shall cite mainly those communications in which the 
elementary effects of the emission of radiation by moving charges are 
used to calculate and interpret collective radiative instabilities of 
charged particle fluxes. More detailed information on the self-consistent 
theory of these instabilities can be found in monographs [58-75] . 

http://75.Fr
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existence of such interactions. In particular, an increment in 
the kinetic cyclotron instability of an electron flux, rotating 
out of phase in a homogeneous external magnetic field, was 
first deduced [6] by direct summation of the intensities of 
noncoherent spontaneous! cyclotron radiation of electron 
(for details see monographs [14, 26, 29, 32]). 

A similar method has since been used to calculate the 
kinetic increments for a number of other instabilities of 
nonmonoenergetic electron fluxes, including those due to 
elementary effects of the Cherenkov excitation of long­
itudinal waves in an isotropic plasma [11] and also those 
due to synchrotron (undulator) radiation emitted by 
electrons in a spatially periodic magnetic field [16, 28]. 

In the last three and a half decades the same funda­
mental ideas of Ginzburg [1 - 3 ] have led to the discovery of 
physical mechanisms and quantitative relationships between 
the parameters of a number of key collective hydrodynamic 
radiative instabilities of high-intensity monoenergetic fluxes 
of point-like electrons (and of their coherent bunches), on 
the one hand, and the characteristics of the corresponding 
elementary effects of the emission of radiation, on the other. 
For example, a corpuscular approach [12, 17, 25, 42, 52] 
(see also monographs [18, 74]) has made it possible to 
account for the physical nature of a transverse instability 
in resonant linear electron accelerators. 

The same method has made it possible to establish a 
functional relationship between the spectra of spontaneous 
and stimulated undulator radiation emitted by monoener­
getic electron beams in an undulator free-electron laser 
(FEL) self-oscillator when the gain achieved in the undu­
lator length is relatively low (see Refs [9, 20, 30, 31]). The 
same method is used in Ref. [23] to explain for the first time 
the physical nature of a hydrodynamic polarisation instabil­
ity of a monoenergetic electron beam in an isotropic plasma 
predicted theoretically earlier [4, 77]. 

The search for the physical mechanisms responsible for 
the development of absolute instabilities of travelling free-
electron fluxes in resonant electrodynamic structures has 
not only established the dominant role of spontaneous 
transition radiation in the development of these instabili­
ties [23, 38, 42, 52, 55], but has also resulted in detection of 
the hitherto unknown stimulated transition interaction of a 
uniformly moving charge with the field of a regular 
(monochromatic) wave [38-40, 45, 78]. 

Finally, the work done in the last few years (see 
Refs [47-49, 53, 54, 56, 57]) has revealed physical mecha­
nisms and quantitative relationships governing the forma­
tion of high-intensity coherent radiation in ultrarelativistic 
undulator FELs operating in the regime of amplification of 
the undulator radiation emitted by the beam electrons 
themselves. The need to include the effects of coherence 
of elementary radiators and of the reaction of the emitted 
field on the motion of these radiators (resulting in the 
formation of coherently emitting bunches) has made it 
necessary to use unconventional methods, first proposed in 
Ref. [24]. 

The chief aim and the main final practical results of 
these investigations [47-49, 56, 57] has been the solution of 
the problem of finding the minimum wavelength of the 

fThe spontaneous radiation of moving charges is the name given in 
classical radioelectronics to those induced, by given current of these 
charges, solutions of the Maxwell equations which satisfy the radiation 
conditions at infinity. 

coherent radiation generated in ultrarelativistic FELs. The 
physical aspects of this problem are as follows. 

An increase in the electron energy E = m0c2y (y is the 
relativistic factor) can reduce the undulator radiation 
wavelength Xux=D/2y2 down to tens of picometres 
(when the length of the undulator period D is of the order 
of a few centimetres and the energy of the beam electrons is 
£ m a x w 50 GeV, which corresponds to the highest Stanford 
electron linac energy [79]). However, in view of the absence 
of mirrors capable of sufficiently strong reflection of these 
wavelengths, the only acceptable way of generating coher­
ent microwave radiation by a high-intensity ultrarelativistic 
electron beam is to create conditions enabling collective 
amplification, by an electron beam of the undulator 
radiation emitted by the beam electrons themselves 
(SASE modej). 

In the SASE mode the collective undulator radiation 
field of the individual electrons groups these electrons into 
coherently emitting bunches. The resultant coherent radia­
tion of these bunches is called stimulated (see Refs [13, 44]) 
because, in the linear stage of the development of the 
corresponding radiative instability, the intensity of the 
radiation emitted by the bunches is proportional to the 
square of the amplitude of the radiated field (as in the 
classical Einstein theory). 

The SASE mode has been proposed [80] as a way of 
generating high-intensity coherent radiation of wavelengths 
from VUV to soft x-rays. This mode has been described in 
detail theoretically in the high-gain approximation [81 -84] . 

However, the approach used in the formalised theory of 
FELs [81-84] does not make it possible to estimate the 
range of validity of this approximation, or to find how far 
one can reduce the wavelength of stimulated (coherent) 
radiation emitted by FELs in the SASE mode and what are 
the means for reducing the wavelength. 

In fact in accordance with external qualitative criteria a 
nonequilibrium system formed by an electron beam and an 
undulator in the SASE mode does not differ in any way 
from a classical source of incoherent undulator radiation or 
(which is equivalent) a second-generation source of syn­
chrotron radiation. Under these conditions we naturally 
face the following question. What parameters, in which 
direction, and to what extent should they be altered to make 
this system operate optimally as an FEL in which the actual 
field of undulator radiation of the beam electrons causes 
these electrons to form coherently emitting bunches? 

In the last few years this question has been tackled by 
detailed theoretical investigations carried out by two 
mutually complementary methods (not used hitherto in 
the FEL theory). The first of them involves a fully scalable 
analytic simulation (in the dipole approximation) of the 
dynamics of longitudinal motion of a monoenergetic flux of 
point-like electrons in the collective field of undulator 
radiation of each of the individual electrons in the flux. 
This situation is considered in the laboratory reference 
system on the basis of the solution of a self-consistent 
system of the Maxwell equations for the microwave field and 
the Klimontovich kinetic equation for the beam particles 
(solved by the method of characteristics; see Refs [56, 57]). 

The essence of the second method is analytic and 
numerical simulation of the quantitative relationships 
governing the Thomson scattering of electromagnetic 

JSASE stands for self-amplification of spontaneous emission. 
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waves by bunches of charged particles with a given idealised 
profile. This method has revealed the physical nature of the 
mechanisms responsible for the generation of coherent 
radiation by electrons in a monoenergetic beam (in its 
own reference system; see Refs [53, 54, 85-87]). 

The results obtained in this way and the conclusions 
that follow from a corpuscular theory of undulator FELs 
agree sufficiently well not only with the corresponding 
results of the classical formalised theory of strong ampli­
fication in FELs in the appropriate limiting cases (see, for 
example, Refs 73, 88]), but also with analogous results of 
theoretical quantum electronics (see Refs [89, 90]), and also 
with an analysis of the available data of experimental 
investigations, which we reported in Ref. [49]. 

There are many reasons why a systematic account of the 
methods and results of the corpuscular theory of FELs is 
needed, the most important of which are the following: 
— as pointed out earlier, only such a theory provides the 
methodology for a fully scalable theoretical simulation of 
the processes of radiative interaction of a beam of electrons 
with an undulator throughout the full range of values of 
the external parameters of such a nonequilibrium system, 
ranging from the emission of stimulated coherent radiation, 
typical of FELs, to that of a classical source of second-
generation incoherent undulator radiation; 
— only this theory can reveal the contribution made to 
these processes by the effects of coherence of the undulator 
radiation emitted by the individual sources (beam 
electrons), which is the physically dominant contribution 
to an increase in the rate of radiative deceleration of a 
high-intensity monoenergetic electron beam in an undu­
lator, compared with the rate of radiative deceleration of 
each electron of the same energy in the same undulator; 
— the reviews and monographs on the theory of FELs 
published so far have not given sufficient attention to the 
physical nature and qualitative relationships governing the 
mechanisms by which stimulated coherent undulator 
radiation is generated in FELs; 
— the relevant scientific data on the key aspects of these 
relationships have been published only in scattered 
communications, not specially devoted to FELs, and in 
monographs of a number of related branches of modern 
theoretical physics, such as classical electrodynamics [91], 
quantum electronics [89-90], plasma theory [14, 26, 29, 
32, 58, 59, 61-67, 69], theory of charged-particle acceler­
ators [18, 72, 74, 92, 93], and theoretical microwave 
electronics [60, 68, 94]. 

In view of the considerable scientific, methodological, 
and practical interest in the problem of minimisation of the 
wavelength of coherent radiation emitted by undulator 
FELs, both in the task of construction of efficient 
radiation sources and in the identification of the physical 
mechanisms of the formation of such radiation, we shall 
provide a systematic general account of all the currently 
known results of theoretical investigations of this subject. 
For the sake of maximum clarity in the description of the 
main physical and methodological aspects of the problem, 
we shall consider only the simplest model of a non-
equilibrium system of this type: 

(1) we shall assume that a beam of electrons is 
monoenergetic, unbounded, and spatially homogeneous, 
and that its volume density is not too high, so that it is 
possible to confine the analysis to the limiting case of the 
Thomson scattering; 

(2) we shall also assume that the undulator is 
unbounded and that its magnetic field is perfectly peri­
odic, circularly polarised, and not too strong, so that the 
dipole approximation can be used in the description of the 
dynamics of transverse motion and of the undulator 
radiation emitted by electrons; 

(3) we shall study the radiative instability of a flux of 
electrons in an undulator only under amplification condi­
tions. 

We shall use these assumptions to describe first the 
classical formalised hydrodynamic theory of an FEL 
amplifier, based on the simulation of an electron beam 
by a flux of a charged liquid (Section 2). We shall then 
present the corpuscular (kinetic) theory of amplification of 
a regular signal in the same nonequilibrium system, based 
on simulation of an electron beam by a flux of point-like 
charged particles (Section 3). 

The main quantitative relationships governing the 
coherent radiative interaction of electrons in a monoener­
getic beam, considered in its own reference system, will be 
revealed by the methods of analytic and numerical simula­
tion of the Thomson scattering of plane electromagnetic 
waves by bunches of charged particles with a given idealised 
profile, characterised by just one parameter with the 
dimensions of length (Section 4). 

Finally, in the last part of this review (Section 5), we 
shall consider the results of the two alternative approaches 
from which we shall formulate appropriate conclusions. 

2. Hydrodynamic theory of undulator radiation 
from a free-electron laser amplifier 
2.1 Physical formulation and initial equations of the 
problem 
We shall consider a monoenergetic beam of electrons of 
energy E = m0c2y with a spatially homogeneous equilib­
rium density n 0 . We shall assume that this beam is 
travelling along the Oz axis of a helical undulator where 
the magnetic field is 

Hw(z) = H0- [ex cos(£wz) + ey sin(£wz)] . (1) 

Here ex and ey are unit vectors along the Ox and Oy axes 
of a Cartesian coordinate system; kw = 2K/D (where D is 
the length of an undulator period). 

We shall also assume that the amplitude H0 of the 
magnetic field in the undulator is not too high: the relevant 
condition is the strong inequality 

27im0c 

In this approximation we need to determine the explicit 
analytic dependence on the external parameters of the 
investigated nonequilibrium system, of its main collective 
characteristic, which is the complex gain experienced by a 
slow charge space wave in the beam and of the wave of the 
electromagnetic radiation emitted by the beam at a 
frequency co close to the undulator radiation frequency 
of individual beam electron coUY = 2nc/AUY = Ancy2/D. 

We shall now describe the methodology used in a 
self-consistent linear hydrodynamic theory of an undula-
tor-radiation FEL amplifier. We must stress here that this 
theory simulates an electron beam by a continuous charged 
liquid moving in the combined field of an undulator 
described by expression (7 ) and that of amplified electro-
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magnetic radiation which has the electric and magnetic field 
components E and / / , respectively. 

The initial system of equations describing the physical 
problem under consideration consists of the hydrodynamic 
equations of motion and continuity for the Euler velocity v 
and the Euler volume density n of the beam (liquid): 

dp 
dt 

dn 

E+l-vx(Hw+H) 

- + d i v j = 0 , 
8; 

j = env, p : : m0vy, 
- 1 / 2 

(2) 

(2b) 

and the Maxwell equations for the corresponding micro­
wave fields E and H: 

curl£ : 
i m 

~c~dF curl H : 
\dE 4TI . 

~c 87 + T J 

We shall consider only one-dimensional collective 
oscillations (independent of the transverse coordinates x 
and y) of the system and adopt the linear approximation. 
We shall represent the velocity v and the beam density n by 
sums of appropriate equilibrium time-independent quan­
tities and small hf corrections, which vary harmonically 
with the Euler time t (frequency co) and have amplitudes 
that depend only on the longitudinal coordinate z: 

vz(z, t)=v0+ vii(z) 0 (t) , n(z, t)=n0+ h(z) ® (t) , 

The following notation is used above: 

D = —ico + v0 - 7 - , E± = Ex ± \EV , 
dz 

o _ ^ ± ™y 
P± = : 

k() = - (3b) 

The periodic dependence of the coefficients of the 
system of equations (3a) on the longitudinal coordinate 
is a consequence of the periodic structure of the magnetic 
field in the undulator and it disappears in the limit H0 —> 0. 
It is this inhomogeneity of the medium (of the field Hw) that 
ensures the interaction of normal waves of the nonequi­
librium beam-undulator system that correspond to this 
limit. We shall now classify these waves and calculate the 
gain for small but finite values of the parameter p . 

2.2 Spectrum of normal waves of the system and analytic 
asymptotes of the gain 
In classification of the spectrum of normal waves of the 
system of equations (3) we shall consider the case H0 = 0 
when all the coefficients of this system become constant. 
The system then splits into two independent groups of 
equations corresponding to two types of waves. The first 
two equations yield the spectrum of transverse circularly 
polarised electromagnetic waves with the dispersion 
described by 

PC HW(Z) , _ / \ -m- / \ 

y Mo 

E(z, t)=[E±(z)+Eu(z)]*(t), 

H(z, t) = H±(z) & (t) , 0 (t) = e x p ( - i G t f ) , 

where the subscripts || and J_ represent the vector 
components which are, respectively, parallel and perpen­
dicular to the undulator axis. 

Substitution of the above functions in the system of 
equations (2), retention of terms linear in the amplitudes of 
the hf corrections, and exclusion of the field H±(z) gives a 
system of linear homogeneous differential equations in 
terms of the total derivatives (with respect to the long­
itudinal coordinate z) and with coefficients which depend 
periodically on this coordinate: 

d z
 2 1 

^ 2 + £ 0 ] E± = -4neik0 

noP±(z) - n— exp(±i£wz) 
yo 

m±Dp± = f)E± ± i/?||H0 exp(±i£wz) 

£ 2 _ k2 _ 
K t — K0 0 cL 

2 4TC£ n0 

coh± = (4a) 

and the last three equations give the spectrum of 
longitudinal charge density waves with the dispersion 

_ CO G)b|| 2 _col± 
K] = —± , C O b i i = ^ -

v 0 v 0

 11 yl 
(4b) 

On the right of expressions (4a) and (4b) we have 
retained only the leading terms of the relevant expansions 
in terms of the volume density of the beam, which here and 
later we shall regard as relatively small. 

In the case of finite values of the amplitude H0 of the 
undulator field, which acts as the pump wave (see 
Refs [62, 32]), the transverse (t) and longitudinal (1) waves 
in this nonequilibrium system are no longer independent 
and begin to interact with one another. 

The interaction of the transverse and longitudinal waves 
becomes strongest under the condition of a resonance which 
corresponds to the law of conservation of the momentum of 
the interacting waves: 

do) (4c) 

^=ec{Wofo 
dE+ * . x dE_ * . x exp(- i£ w z) + - ^ r exp(+i£wz) 

+^|| + ^H0 [p+ exp(- i£ w z) - p_ exp(+i£wz) 

djSii 
Dn + cn0 = 0 . 

dz 

(3a) 

In this case, if the particle flux density in the beam is 
relatively low, the wave number of space charge waves 
kf^ = co^/v0 is exactly equal to the sum of the wave 
numbers k[0^ = co^/c and kw = 2%/D of a transverse 
electromag-netic wave E_ and the undulator field. The 
frequency co*, which satisfies this law, is exactly equal to 
the frequency co u r of the undulator radiation in the same 
undulator: co* = co u r = Ancyl/D. 
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The intensity of this collective three-wave interaction 
can be estimated directly from the initial system of 
equations (3) by the substitutions 

K(z)=b4z)exp(ik{(>)z) 

p\\(z)=g(z)aq?(ik\0)z), 

n(z) = n0h(z)exp(ikf\) . 

(5) 

The resultant system of equations for the required 
dimensionless amplitudes <z_(£), h(£), and g(g) becomes 

da_ 

Ah _ 

2 j t r 0 « 0 Z ) p 

To 

i i , ( 0 ) O 8 ( f l , 

Hi), (6a) 

(6b) 

(6c) 

; e /m0c is the classical electron radius and where r 0 

i = z/D. 
The system of equations (6) is equivalent to one differ­

ential equation in terms of the third-order total derivatives. 
We shall rewrite this system in terms of the depth of 
modulation h{^) of the beam density, which represents 
the grouping of the particles into coherently emitting 
bunches (see, for example, Refs [83-88]): 

i ! — 3 - i K 3 U ( 0 = o 
3 _ 4n2r0n0D2p2 

(7a) 

Eqn (7a) has a solution which arises exponentially with 
the coordinate 

h(£) = const exp ̂  exp 

where the gain is 

V3 

(7b) 

(7c) 

It is this solution that describes the amplification of a slow 
space charge wave in the beam. The phase velocity of this 
wave is less than the equilibrium beam velocity v0: 

V - , (o) 
v 0 

k[0) + K/2D 1 + K/Wq 
(Id) 

It follows from Eqn (6a) that the same exponential law 
is obeyed not only by this space charge wave, but also by 
the rise of the amplitude a_ of the transverse electromag­
netic wave. It is this feature that distinguishes decisively the 
parametric amplifier with distributed parameters discussed 
above, from a spatially homogeneous amplifier such as a 
travelling-wave tube in which the exponential rise of the 
ampli-tude is observed only for a slow space charge 
wave [94]. 

If the law of conservation of the momentum (4c) is not 
obeyed, so that the working frequency of the investigated 
FEL amplifier is not equal to the frequency of the 
undulator radiation of the beam electrons (co = cou r + A , 
where \A \ <̂  fccou.r), the gain r is less than the maximum 

value described by formula (7c) and it falls as the modulus 
\A\ increases. 

In fact, if \A \ fccour, the first equation of the system (3) 
yields not a differential but an algebraic relationship 
between the beam modulation depth h and the amplitude 
E_ of the electromagnetic field: 

4neik0n0ph 

(*,(0) To 
exV[i(k[0)-kw)z] . (8a) 

Substitution of expression (8a) on the right of the third 
equation in the system (3) and simple algebraic transforma­
tions give a system, analogous to the system (6), of two 
homogeneous second-order differential equations for the 
depths of modulation of the beam in respect of the velocity 
(g) and density (h)\ 

d | _ 2Tze2in0p2k[0)D 
•h, 

7o 

dh 
-ikf]Dg . (8b) 

The condition of absence of the trivial (zeroth) solution of 
this system yields an analytic formula for the gain in one 
period (see Ref. [88]): 

1 / 2 

COu r > A^> KCOUR 8c) 

2.3 Analysis of the physical meaning of the results 
Expressions (7) and (8) represent the essence of the familiar 
(see, for example, Refs [70, 71, 75, 88]) results of the self-
consistent linear hydrodynamic theory of an undulator-
radiation FEL amplifier. However, the results given above 
are obtained by a formalised method of weakly coupled 
parametrically interacting normal waves in the nonequi­
librium beam-undulator system. Therefore, they do not 
give direct answers to a number of questions of method­
ological importance, which relate to the physical nature of 
the mechanism of collective amplification of coherent 
undulator radiation emitted by individual electrons. This is 
not surprising, because our liquid model does not deal with 
the contribution of each individual radiator and the final 
theoretical results contain only the collective parameters of 
these radiators, which are the volume particle density n, the 
charge p e = ne, and the mass p m = nm0. 

In the case of microwave undulator-radiation FEL 
amplifiers operating in the SASE regime, which are con­
sidered here, the most important are the following two 
questions: 

(1) What are the mechanisms and the conditions in the 
investigated nonequilibrium system which can ensure the 
emission of stimulated coherent undulator radiation by 
elementary radiators? 

(2) What is the role of the undulator radiation emitted 
by individual radiators in the transfer of kinetic energy of 
the beam to the field by the emitted electromagnetic 
radiation in an FEL amplifier? 

The arguments used in answering these two questions 
relate them. Nevertheless, separate consideration of the 
questions makes it possible to understand better the 
physical content of the questions and to suggest ways of 
finding the appropriate quantitatively justified answers. 

The first of these questions is of methodological 
importance because the answer to this question makes it 
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possible to identify the conditions and limits of the validity 
of the formalised hydrodynamic linear self-consistent 
theory of an FEL amplifier or, which is equivalent, the 
conditions for a transition of our nonequilibrium system 
from a source of incoherent undulator radiation to the 
SASE mode (see Section 1). We can intuitively assume that, 
in the space of the external parameters of the system, the 
range of validity of the method and of the results of the 
hydrodynamic theory is limited from below by the volume 
density of the beam particles n0 and from above by the 
electron energy y0. 

This hypothesis is based mainly on the fact that 
simulation of a beam by a liquid can be justified physically 
only if the number of the beam particles (in a region with 
the characteristic size of the order of the undulator 
radiation wavelength in the beam rest frame), 
Qf = Hq2^t = n0D3/^yl, is sufficiently large compared 
with unity: Qf 1. The last condition was formulated in 
Refs [47-48] and can be argued additionally by comparing 
the dependences, on the beam energy y0, of the total energy 
fluxes of the stimulated (coherent) radiation generated in 
the SASE mode and of the incoherent undulator radiation 
emitted by the beam. 

It follows in fact from the nonlinear theory of an FEL 
amplifier (see, for example, Refs [73, 83, 84]) that the 
electron efficiency rje is of the order of the maximum 
gain T m a x of this amplifier: 

i/e ~ T m a x ~ ^ . (9a) 

It follows from formula (9a) that, in the case of a beam 
of given volume density in an undulator with a given period 
D and a fixed amplitude H0 of the magnetic field, the power 
of the coherent radiation emitted in the SASE mode is 
independent of the beam energy y0: 

^coh(yo) ~Jom0c2r0 , (9b) 

where J0 is the total flux of the beam particles crossing the 
undulator {[J0] = s _ 1 ) and the calculated undulator length 
L o p t ~D/rmax) increases proportionately to y0. 

On the other hand, for the same optimal undulator length 
L o p t , the power P i n c o h of the incoherent undulator radiation 
emitted by this beam increases proportionately to yl: 

4TT 
^ i n c o h = A)\Fz

r a dIi^opt =JoT- e2p2kl

wy3

0 , (9c) 
i o 

because the force | 7 7 / a d | 1 of the radiative deceleration of an 
electron by the field of its undulator radiation is 
proportional to yl [91]. 

The two main conclusions follow from the dependence 
plotted in Fig. 1: 

(1) neglect of the contribution of the incoherent undu­
lator radiation to the dynamics of the processes of motion 
and emission of radiation by the beam particles in an 
undulator is permissible only in the range of beam energies, 
limited from above, where the strong inequality 
r incoh (7o) < pcoh is obeyed; 

(2) a satisfactory fully scalable theoretical simulation of 
these processes requires dropping the main initial assump­
tion in the hydrodynamic theory of an FEL amplifier, 
which is that an electron beam can be simulated by a flux of 
a continuous liquid and, instead, this beam should be 
considered as a flux of point-like radiators (see 
Refs [47, 48, 56, 57]). 

n 101 102 103 104 7 0 

10 I 1 1 1 1 
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Figure 1. Logarithmic dependence of the ratio of the coherent and 
incoherent losses Pincoh/PCoh m a n FEL on the beam energy y0 [T0 = 1, 
r 0 = 10"1 3Z), log(87uV /3) = I]-

The last conclusion follows also from the attempts to 
find a reasoned answer to the second of the questions 
formulated above. In fact, the dominant role of the 
undulator radiation of individual electrons in the process 
of collective amplification of coherent electromagnetic 
radiation by these electrons is not in doubt, because in 
the system under consideration the conditions for alter­
native mechanisms of the emission of radiation by moving 
charges are not satisfied. The reasons why these conditions 
are not satisfied are as follows: there is no medium that 
would ensure a reduction in the phase velocity of electro­
magnetic waves, which is essential for the emission of 
spontaneous Vavilov-Cherenkov radiation (and/or the 
appearance of the anomalous Doppler effect); there are 
no electrodynamic inhomogeneities of the medium needed 
for the emission of spontaneous and stimulated transition 
radiation by uniformly moving beam electrons 
[19, 23, 38, 39]. 

On the other hand, the important role of the undulator 
radiation emitted by individual beam electrons in the 
mechanism of the radiative instability of the beam under 
amplification conditions which is considered here, is 
supported also by the existence of a maximum of the 
gain r at the frequency co* = coUY [see expressions (7) 
and (8)]. Nevertheless, the hydrodynamic theory of an 
FEL amplifier does not provide a direct proof, based on 
quantitative results, to the answer just stated. 

We shall conclude this section by mentioning that the 
problem in hand is also of interest because of the familiar 
vanishing at the frequency co* = cou r of the intensity of 
stimulated radiation generated in a relatively short undu-
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lator-radiation FEL oscillator excited by a monoenergetic 
initially unmodulated electron flux. 

The last result has been obtained earlier by several 
methods [20, 30, 31], including summation of the undulator 
radiation losses of individual electrons [30]. However, the 
existence of a difference between the positions of the 
maxima of the intensity of stimulated radiation emitted 
by an FEL amplifier and by an FEL oscillator on the 
frequency axis has not been discussed. This difference will 
be explained later (Section 3.4) on the basis of an analysis 
of the specific features of the mechanisms of the stimulated 
interaction between the beam electrons and the undulator 
radiation fields emitted by them. 

We can summarise the above discussion by concluding 
that complete explanation of the conditions and quantita­
tive relationships for realisation of the mechanisms of 
stimulated coherent radiative interaction of an electron 
beam with an undulator operating in the SASE mode, 
and explanation of the physical nature of these mechanisms, 
requires a change from the simulation of a beam of 
electrons by a flux of a continuous liquid to be simulation 
of an electron beam by a flux of point-like electrons. The 
methodological approach and the analytic results of a self-
consistent corpuscular (kinetic) theory of an undulator-
radiation FEL amplifier given below represents general­
isation of the published work on this subject. 

3. Corpuscular theory of an undulator 
free-electron laser amplifier 
3.1 Physical model and general scheme of the analysis 
method 
The physical model of a nonequilibrium beam-undulator 
system considered below is completely identical with the 
model adopted above. We are still assuming that the 
electron beam is monoenergetic and spatially homogeneous 
and that the magnetic field in the undulator is described by 
expression (1). The final aim is still the same: calculation of 
the functional dependence of the gain on the external 
parameters of the system. The only difference is the method 
used to achieve this aim. Dropping the simulation of a 
beam by a continuous liquid, we shall represent it by a flux 
of point-like electrons moving in the combination of the 
magnetic field in the undulator described by expression (1) 
and of the resulting undulator radiation field of all the 
individual beam electrons. 

We shall follow Refs [56, 57] and use first the dipole 
approximation for the explicit configuration of the field 
emitted by a single electron (see Section 3.2), and we shall 
then find analytic asymptotes of the longitudinal force 
exerted on the beam by the total undulator radiation of 
all the electrons. We shall then obtain and solve analytically 
the equations of motion of the beam electrons experiencing 
this force (Section 3.3), and we shall calculate the gain. 

3.2 Pattern of the field of a relativistic electron in a 
helical undulator 
Let us assume that an electron labelled by the number s 
enters an undulator at z = 0 at an initial moment tS9 and 
travels in the positive direction of the Oz axis in the field 
described by expression (1). The trajectory of this electron is 

Rs(r, t; qs) = rs + aw [ey cos(£wz) - ex sin(£wz)] 

+ ezzs(r> Qs) • (10) 

The following notation is used here for an electron: 
rs = exxs + eyxs is the radius vector in the z = 0 plane 
(at t = ts); qs = (rS9 ts) is the set of the input parameters; 
Rs = exXs + eyYs + eZZS is the Lagrangian trajectory 
[where ZS(T, qs) = V 0 t + A(T, qs), where % = t — ts is the 
Lagrangian time, A(T, qs) is the longitudinal displacement 
of the electron relative to its equilibrium trajectory V 0 t , 
A(0, qs) = 0 ] ; a= cow/k2v0y0 (where cow = \e\H0/m0c, 
y0 = (1 — V Q / C 2 ) - 1 , \e\ and m 0 are the absolute charge and 
rest mass of the electron, respectively). 

We now have to find explicit analytic forms of the 
functional dependences of the pattern of the electron field 
on the external parameters of the system, which are rs, y0, 
p = ^H^D/lnm^c2. 

3.2.1 Configuration of the total field of a relativistic electron 
We shall consider the explicit form of the field created by 
an electron as it moves along the trajectory described by 
formula (10). The initial expression for the field of the 
retarded potential of a point charge, which moves at a 
velocity v(t) and experiences an acceleration v (see 
Ref. [91]): 

E(r, t) = T ( ( 1 - P'2) (R-fifRf) 
V ' {R'-P'-R'f r 

+ i [ / ? , x ( ( / ? , - / ? , / ? , ) x v , ) ] J , ( l l a ) 

H(r9t)=*^*9 ( l ib) 

R' 
t'+ — = t, R' = r-Rs(t\qs) , (11c) 

where the primes identify the functions of the retarded time 
t'. 

The first term in Eqn (11a) in the limit Rf^oc 
decreases inversely proportionately to R2 and remains 
finite in the limit c —> oo. Hence, this term describes the 
quasistatic field of a uniformly moving charge correspond­
ing to the Lienard-Wiechert potential (see Ref. [91]). 

The second term in Eqn (11a), which decreases at 
infinity in proportion to the amplitude of a spherically 
diverging wave and is also proportional to the charge 
acceleration, describes the bremsstrahlung field of the 
charge generated by its accelerated motion [91]. 

In general, the formulas in the system (11) are cumber­
some and not very suitable for practical application because 
of the complexity of the functional dependences of the 
retarded time t' and of the radius vector Rf on the four-
dimensional Euler coordinate of the point of observation 
(r, t). We shall therefore use a number of additional 
assumptions which make it possible to simplify greatly 
these dependences. 

First of all, we shall limit our discussion to ultra­
relativistic energies of a charge (yl > 1). Moreover, we 
shall adopt the dipole approximation (when the strong 
inequality p = \e\H0D/2Tzm0c2 ^ 1 is satisfied) in the inves­
tigation of the configuration of the field described by the 
system (11) and we shall seek explicit dependences of the 
right-hand sides on the coordinates r and rs, and on time t 
by the method of iteration in terms of the small parameter p. 

Under these conditions the main contribution to the 
electromagnetic field, created by a charge in the undulator, 
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contributes terms which are linear in the parameter p. In 
view of the relative smallness of this parameter, we shall 
represent the vector Rf in formulas (11) by two terms. The 
first of these terms will be calculated in the zeroth 
approximation with respect to p9 which corresponds to 
uniform rectilinear motion of a charge along the undulator 
axis. The second (linear in p) term is due to the accelerated 
motion of a charge in the undulator. 

The initial equation now becomes 

R' -fi0R' =R's(t,qs) . (12a) 

Its solution for the parameter R' = \r — Rs(t'9 qs)\9 accu­
rate to terms linear in p9 is 

(12b) 

The following notation is used above: 
^ 2 \ L / 2 

2 1 > (^z)s=Z-Zs(T,qs) , 
ro/ 

X = q>-#, t? = Kz0 = £„{z - y2

0 [(8z), + j8 0 i ? . ] } , 

cp = arctan y-ys 

#oCO =ex(x -xs) + ey(y -ys) + ez(Sz)s . 

Substitution of expressions (4a) and (12b), and of the 
expression for the velocity on the right-hand side of 
formula (11a), followed by an expansion as a series in 
terms of the small parameter p, gives the explicit form of the 
total field of a moving electron in the undulator, which 
consists of two terms. One term describes the radiation field 
of the charge (r) and the second represents its quasistatic 
field (q): 

E{x\r, t; qs) H M P * o 
cosx 

sin^ 
( M . ) 2 

RQ[(ex-iey)Qxp(i$)] 

( « 4 

(M*) ^ ) 2 ) ] } ' 
£ ( Q ) ( R , t; qs) 

MR* 

(13a) 

(13b) 

where fi± = v±/c=p/y09 k0 = kwfi0y2

0. 
In the case of a charge with the initial coordinates t = ts, 

x = xS9 y =yS9 z = 0, injected into a region z > 0, the 
asymptotes of the fields described by expressions (13) are 
valid only in the range of influence of the field of the 
retarded radiation emitted by the charge and governed by 
the inequality c(t - ts) > (z2 + p 2 ) 1 / 2 . 

Therefore, the structure of the field described by 
expressions (13) takes account of the finite propagation 
time of the front of the field of the charge itself, which 
differs from zero only at the points of observation located 

within the region of influence of the field with the boundary 
defined b y | (z2 + p2)1'2 = c(t - ts). 

It follows from expression (13a) that the phase of the 
field radiated by a charge in the direction of its helical 
path in the undulator (z > Zs, p = 0, A = 0), is a linear 
function of the Euler coordinate z of the point of 
observation and of the Euler time t\ 

(14) #(z > ZS9 p = 0) = co+ [t - t. 

This means that the radiation field travelling forward along 
this axis is a plane wave of frequency 

whose wavelength is 

and the phase velocity is equal to the velocity of light c: 

*w • (14b) (+) w + r _ A ) 

"v ; — — — c, k4 1 - J»o 
Expressions (13a) and (13b) also give the phase, 

frequency, and phase velocity of the radiation field emitted 
in the backward direction (z < Zs, p = 0): 

(15) 

(15) 

(15b) 

0(z < Z„ p = 0) = co_ ^ - ts+-j , 

_ £ w v 0 co+ 

v H - - — ~-c k = - ^ - k 

Moreover, it is evident from expressions (13) that an 
increase in the distance p from the charge path axis reduces 
the fields generated by the charge at a rate y0 times slower 
than along the axis. Hence, it follows in particular that the 
characteristic size of the region of influence of the field 
(where a charge can emit coherently with its neighbours) in 
the transverse direction is y0 times greater than in the 
longitudinal direction. 

3.2.2 Configuration of the radiation field 
It follows from expression (10) that the trajectory of an 
electron in an undulator is a helix with the radius aw and 
the period D. Therefore, in an analysis of the topography 
of the radiation field of an electron it is convenient to use a 
cylindrical system of coordinates in which the Oz axis 
coincides with the axis of the helical orbit: x = xs + 
pcoscp, y = v ^ + p s i n ^ . According to expression (10), the 
transverse coordinates of an electron in this system become 

<Psfa Qs) = ^ w Z , ( t , qs) +\ vcps (16) 

Transformation of the right-hand sides of expres­
sion (13a) and of the corresponding expression for H 

f Strictly speaking, this is true only when an e lec t ron-pos i t ron pair is 
created at the entry to the undulator and the electron which then 
appears begins to move along the undulator axis. The electromagnetic 
radiation field of the charge and its quasistatic field then have a shared 
boundary of the region of their influence, which is defined by 
c(t-ts)>(z2 + p2f2. 
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[see formula ( l ib)] to the same system of coordinates gives 
expressions for the field components which govern the 
radiative energy losses experienced by the charge: 

e\P± W = -

h(p0 + 

1 

R* 

(84 
R* 

Po + R* 

Po 

7 « \e\Pi 1 (8z) 

\e\P±P N 
— X ( 5 4 

1 (§4 
R* (k0RJ 

smx 

c o s / 

sin x 

(17a) 

cosx 

J ? . 
cosx + k0[ 1 s in^ 

(17b) 

•(17c) 

It should be stressed that expressions (17), like the initial 
formulas (13), are obtained in a linear approximation with 
respect to the parameter p <̂  1, and are valid equally in the 
near-field and far-field zones of the radiation. In particular, 
it follows from these formulas that the longitudinal 
component of the electric field of the radiation 
vanishes at the point z = Zs(r, qs)9 where the charge is 
located [(hz)s = 0 ] . 

The transverse radiation fields can be determined at the 
point z = ZS(T, qs) by calculation of the phase %(z = ZS) = 
n/2 + ylkwR* with the aid of expression (12c). Subsequent 
expansion of the fields E^ and HJf* containing this phase 
in expressions (17) as series in R* for ylkwR* <̂  1 gives, in 
the dipole approximation, explicit expressions for the 
amplitudes of the transverse radiation fields at the point 
where the charge is located: 

E$\z =Zs,p = a w ) = | \e\p±klfiy4

0 = \ \e\p±k2

0 

« ( z = Zs, p = aw) = -p0E$(z = Z „ p = av). 
( 1 8 ) 

It follows from expressions (18) that the rate of change 
of the charge energy, due to its radiative losses, 

f dE \ 
( — ^ - J = -\e\(v-E) = -\e\v9E9(z = ZS9 p = as) 

2 
--c(r0HwP0y0)2 (18a) 

and the corresponding effective amplitude of the radiation 
friction force (longitudinal force of deceleration by 
radiation) acting on the charge 

(*?d)i 
v 0 / dE RAD 

dt 3 e'PlklPht (18b) 

are identical with the corresponding classical results (see, 
for example, Refs [91, 95, 98]). 

3.3 Amplification of the field of undulator radiation of a 
monoenergetic electron beam 
When the structure of the undulator radiation field of an 
individual electron is known, it is possible to find the total 
field due to a flux of electrons, which acts on every 
radiator. In general, the total field depends on the 
parameters of the beam itself and on the selection of a 
specific FEL regime. 

Subject to certain constraints on the beam parameters, 
the total undulator radiation field of a flux of electrons and 
the longitudinal bunching force governed by this field can 
be calculated in an explicit analytic form. In view of the 
complexity of the structure of the longitudinal force 
(discussed below), it is useful to limit our analysis to a 
rigorously monoenergetic nondiverging beam and also to 
investigate separately the limiting cases of high- and low-
intensity beams. 

The relevant dimensionless beam intensity parameter is 
defined above as the number of the beam particles in a cube 
with its side equal to the wavelength of the emitted wave in 
the beam rest frame: Qf = hq2!US9 where n0 is the volume 
density of the beam particles in this system. Since Qr is a 
scalar, it is independent of the selected reference system and 
can be expressed as follows in terms of the beam and 
radiation parameters in the laboratory reference system: 

Q' = Q= fWoVr = n0 

3.3.1 Longitudinal force of the total field of undulator 
radiation emitted by beam electrons 
The total Lorentz force at the point r at a moment t is 
equal to the sum of the force exerted by the fields of the 
individual radiators: 

F^\r, t)^F^(r, t; qs) . ( 1 9 ) 

The summation over s on the right extends only to those 
electrons whose region of influence contains the inves­
tigated point r . 

We shall be interested only in the longitudinal compo­
nent of the total Lorentz force, which is responsible for the 
grouping)felectronantocoherentl}emittin^)unches(when2 >1). 
In terms of the Euler variables, the longitudinal force 
exerted by a radiator with the serial number s on a moving 
electron, which has the coordinate r at the moment t9 is 
given by 

F ^ ( r , t; qs) =-\e\{Ez(r, t; qs) 

-p±Re [Hy(r, t; qs)+\Hx(r, t; qs)] exp(i£ w z) j . (19a) 

The longitudinal electric field Ez in expression (19a) is 
given by formula (13a) and the expression for the transverse 
magnetic field Hy + iHx can be obtained by utilising 
formulas (13a) and ( l ib) : 

< ) ( r , t; q)+iH^\r9 t; q) = -\e\fl± [exp (-10)] 

ikn 
Po + (84 

R± 

+ 
iftoP2fco 

ZRlrl 

i 

(k0R*Y 

3 i 

• + 
3i 

j ^ ) e x P ( - 2 i Z ) ] } , 

H^(r,t;qs)+\H^(r,t;qs) = - ^ . 

where the notation is the same as in Section 3.2. 

(20a) 

e x p ( - i p ) , (20b) 

file:///e/Pi
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It is evident from the above formulas that in general the 
configuration of the longitudinal bunching force exerted by 
a flux of monoenergetic radiators is fairly complex. This is 
why the result of summation on the right-hand side of 
expression (19) depends strongly not only on the average 
volume density of the electron radiators and on the details 
of their spatial distribution (in the case of relatively low 
values of the volume density), but also on the specific 
selection of the FEL operating regime. We shall now 
consider the limiting cases of high- and low-intensity beams. 

(a) High-intensity electron beam (Q 1). In this limit­
ing case the average distance between the beam particles is 
considerably less than the wavelength of the undulator 
radiation field and we can change over from summation to 
integration in expression (19): 

/' /'DC /'DC 

F^t\r,t)=\dtA dxs\ C I V , . / „ ( / • . . O 
J J — oo J—oo 

xFf\r, t;qs)0[z-Zs(x,qs)] . (21) 

If, moreover, the density j 0 of the radiator flux in the 
space of the input parameters of this flux is independent of 
the transverse coordinates xs and ys (the radiators are 
distributed in an axially symmetric manner relative to the 
point of observation of the radiation), it follows that 
integration with respect to the Cartesian coordinates in 
Eqn (21) reduces to integration with respect to the cylindrical 
coordinates p and cp introduced above: 

•oo />oo />oo r2n 

A dys=\ p dp dep... . 
J—oo J—oo Jo Jo 

If this substitution is made in Eqn (21) for the total 
bunching force, subject to formula (19a), and if the nature 
of the fields described by formulas (17c), (20a), and (20b) is 
taken into account, we can show that the total longitudinal 
electric field vanishes, whereas its quasistatic part (q) 
is antisymmetric relative to the longitudinal coordinate of 
the source,! and the radiative part (r) additionally vanishes 
as a result of averaging over the angle cp [see expres­
sion (17c) for £ z

( r ) ] . 
For the same reason, there is no contribution to 

Eqn (21) by the quasistatic part of the transverse compo­
nent of the magnetic field. Hence it follows that the 
grouping of the beam particles into coherent bunches is 
solely due to the magnetic component of the total undulator 
radiation field of the beam electrons. 

It should be noted that the magnetic component of the 
Lorentz force plays the dominant role in grouping the beam 
particles in an undulator into coherent bunches and this is 
well known in the case when the configuration of the 
grouping radiation field is assumed to be given and has the 
form of a plane transverse electromagnetic wave (see, for 
example, Refs [30, 41, 71]). We shall not make this assump­
tion. We shall consider instead the grouping of the beam 
particles by the field of their own undulator radiation and 
create an opportunity for investigating that range of the 
beam parameters in which the electromagnetic radiation 
field is emitted by the beam electrons. 

fHere, we are assuming that the beam intensity is limited from above 
to such an extent that we can ignore the longitudinal polarisation 
fields of the beam oscillations. In terms of the scattering theory (see, 
for example, Refs [44, 70]), we are ignoring here the case of Raman 
scattering. 

In this limiting case of injection of a high-intensity beam 
distributed homogeneously over its cross section, the 
magnetic component of the total undulator radiation field 
of the charges creates the following longitudinal grouping 
force 

F^(r, t) = | * | j 8 ± Re dts p dp \ dq>k{ts) 
J Jo Jo 

x [#y

(r)(r, t; qs)+iHx

x\r, t; qs)] exp(i£wz) 

x Q [z - Z , ( t , qs)] Q [cr - (z2 + p 2 ) 1 / 2 ] .(21a) 

The first and second step functions 0 in expres­
sion (21a) determine respectively the lower (4mm )̂ and 
upper (tlmax^) boundaries of the integration domain in 
terms of the moments at which the beam particles enter 
the undulator when the coordinates of the point of 
observation z and t are given: 

t ^ \ z 9 t) = t - - 9 timax\z9t) = t - - . 
V0 C 

The upper limit of integration with respect to p depends on 
the longitudinal coordinate of the point of observation (z) 
and on the Lagrangian time t = t — ts: 

z) = {c2x2-z2)1'2 . 

Substituting in Eqn (21) the magnetic field of the 
radiation from an elementary source, given by expres­
sions (20), and integrating with respect to p and cp 
(taking account of the finite size of the region of influence 
of the field of the source), we obtain the following analytic 
expression for the longitudinal components of the Lorentz 
force exerted by the coherent radiation of the beam particles: 

F^iz, t) = -4ne2p2

±y2 f ^ dtj0{ts) 
Jt-z/vo 

X cos fcm(z - V 0 T - A)\ , 

CD 
vo 

The right-hand side of expression (21b) can be simpli­
fied further if we specify the nature of the function 
describing the distribution of the time ts at which the 
flux particles enter the undulator. We shall now consider 
the grouping force, described by expression (21b) in the 
regime of amplification of a regular external signal, known 
as the amplification mode. 

In this mode the density of a beam entering the 
undulator is modulated harmonically at a modulation 
frequency com assumed to be equal to the frequency co+ 

of the radiation emitted forward by an electron in the 
undulator [see Eqn (14a)]: 

M*s) = y 0 { l + R e [/*(0)exp(-iovO]) , 
k } (22a) 

0>m = kmV0 = CO+ . 

Here, j 0 = %v 0 and h(0) is the dimensionless depth of 
modulation of the beam density at the entry to the 
undulator in the amplification mode when this modulation 
is imposed by an external source [(|/&(0)| <̂  1)]. 

If the particles are initially grouped harmonically into 
coherent bunches, the field of their undulator radiation 
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modulates the longitudinal displacements of electron 
radiators at the same frequency com: 

A(r, ts) = Re \a{z) exp( -ko m ^ ) ] (22b) 

Substitution of expressions (22a) and (22b) into expres­
sion (21b), and neglect of the rapidly oscillating (at the 
frequency com) terms in the integral used in expression (21b) 
gives the total grouping force considered in the linear 
approximation (kma <̂  1): 

Fz<tot>(z, ;) = - ^ 2 £ I % R e 

<Pl = kmZ - CDmt . 

exp Jo d z ' / ( z ' ) 
(23) 

The notation f(z) = h(0) — ikma is used in expres­
sions (23). We can see from the definition of the 
function f(z) that it is equal to the sum of the depths of 
modulation of the beam at the entry to the undulator [h(0)] 
and in the interior of the latter where it is affected by the 
radiation field [(ikma(z), a(0) = 0)]. Hence, it follows that 
the function/(z) is equal to the total depth of modulation 
of the beam density: f(z) = h(z). 

It follows that, in the investigated limiting case of a 
beam with a sufficiently high intensity when the rms 
distance between its particles is much less than the 
wavelength of the emitted wave, the total grouping force 
of the coherent undulator radiation emitted by the beam 
particles is a plane wave travelling at the phase velocity 
equal to the unperturbed velocity of the beam (compare 
with Refs [47, 48]): 

F z

( t o t ) (x , t) = A (z) cos ^ ( z , t) , (23a) 

A(z)=-(F^%[Z/D dCKOQ • (23b) 
K Jo 

For simplicity of a physical analysis of the results, we shall 
express the amplitude of the grouping force A(z) in terms 
of the force of the radiative friction exerted by the dipole 
undulator radiation emitted by a single electron ( ^ r a d ^ ) 1 

[see expression (18b)]. We shall also adopt a dimensionless 
variable £ = z/D in the integral. 

The results make it obvious that it is coherence of the 
undulator radiation of electrons in a high intensity (Q > 1) 
beam that ensures an increase in the rate of their grouping 
into coherently emitting bunches and therefore reduces the 
radiative relaxation length of the beam in the undulator. 

The increase in the amplitude of the grouping force 
because of coherent addition of the radiation fields of the 
individual electrons within each coherent bunch takes into 
account the factor h(QQ on the right-hand side of 
expression (23b). In turn, the increase in the right-hand 
side of this expression, described by an integral with respect 
to the longitudinal coordinate, takes account of the 
coherent addition of the radiation fields of a sequence 
of bunches following the one under investigation [47, 48]. 

The phase cpx of the force described by expressions (23) 
corresponds to a wave which travels along the undulator 
axis at the velocity v p h = com/km9 equal to the longitudinal 
beam velocity v0. Therefore, it is this force that ensures 
grouping of the beam particles into coherent bunches by the 
Veksler-McMillan phase stability mechanism [74, 92, 93], 
justifying the 'grouping force' name. 

(b) Low-intensity beam (Q <̂  1). In this limiting case the 
replacement of the summation on the right-hand side of 

expression (19) by integration is not permissible and, 
moreover, we cannot assume that the function Jo(rS9 ts) 
is independent of the transverse coordinates rs. Then, on the 
right-hand side of expression (20a), we need to retain only 
the terms which decrease at the slowest rate with increase in 
the distance between the beam particles (i.e. inversely 
proportionately to the distance). 

In this limiting case the asymptotic expression for the 
bunching force is 

(Sz), 
F?>\r, t; qs) = -e2fi sin \j/s 

- 2 ^ | [SIN F , + SINFCK + 2<p - 2kwz)] J , 

•0 = * w 7 o [ ( 8 z ) , + / T O K . ] • 
(24a) 

It follows from the general nature of the dependences of 
the function R* on p that, for all the electrons with a serial 
number s moving in a shared coherence t u b e | together with 
the electrons under consideration, we can assume that the 
ratio p/y0 is small compared with the characteristic average 
distance d\\ between the longitudinal coordinates of these 
electrons: 

(p2J-

7o 

1 / 2 

The angular brackets denote here the operation of 
statistical averaging over all possible values of the indices 
s and p; we have introduced also the function 
pPs = [ ( x P - x s ) 2 + (yP-ys)2]l/2-

Under these conditions, the right-hand side of expres­
sion (24a) becomes simplest for the force which an electron 
with a serial number s exerts on an electron with a serial 
number p: 

f?>\rp, rs) = -

(8^)^ = z p - z s 

[fio + SGN (§z)p,] SIN ifc 
(24b) 

In the subsequent analysis the factor of decisive 
influence is the estimated ratio of the modulus of the 
right-hand side of expression (24b) to the amplitude of 
the radiative friction force | ^ r a d ^ ! acting on each electron 
[see expression (18b)]: 

, ^0 

d\\ 
7(RAD) (24) 

It follows from the above definition of the number of 
particles Q in a coherent bunch that Ao/^|| ~ Q- Substitut­
ing this estimate on the right of expressions (24), we readily 
find that in the limiting case of a low-intensity beam, when 
the strong inequality Q <̂  1 is obeyed, the amplitude of the 
radiative interaction force in each electron emitter pair is 
considerably less than the intrinsic force of radiative 
deceleration exerted on each of them because of a 
reduction in the field in inverse proportion to the distance 

fA coherence tube (i.e. a region of coherence in the transverse 
direction) with a given electron is a cylinder of radius of the order of 
X0y0 « D/4ny0 and of height equal to the longitudinal dimension of the 
region of influence of the electron when the cylinder axis is oriented 
along the equilibrium trajectory of this electron. 
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between the radiators in the far-field zone of each of them 
(for details, see Section 4). 

It must be stressed particularly that in the limiting case 
when g <̂  1 the last conclusion remains valid also if we take 
account of the influence of the coherent neighbours of the 
investigated radiator. In fact, the amplitude of the bunching 
force, described by expression (24b), decreases with increase 
in the serial number 5 of a neighbour, whereas the 
corresponding phase \j/s varies in a random manner. 

It therefore follows that each electron radiator exper­
iences the radiation fields of only a limited number of 
neighbours with appropriately small amplitudes, so that its 
motion is governed primarily by the force exerted by its own 
radiative friction (Fz^r a d^)1, as expected from the physical 
nature of the investigated effect (Section 1). 

3.3.2 Dynamics of the longitudinal motion of beam particles 
We shall now describe a collective radiative instability of a 
monoenergetic electron flux in an undulator. 

(a) High values of the volume beam density (Q 1); 
amplification mode. The equation describing the longitu­
dinal motion of the beam particles, corresponding to the 
force described by expression (23a), has the following form 
in terms of the Euler variables: 

where the notation is as follows: 

(25) 

D ~ Ft+ V° 8z ' m ^ z = m o ^ 7 ° ' 
We can find the explicit form of the equation for the 

amplitude by introducing, in expression (25), the Euler 
density nE(z, t) and the Euler velocity vE(z, t) of the 
beam particles: 

nE(z, t) = n0 +n(z , t) 

= n 0 | l + Re ]h{z) exp (i^z, *))] j , (25a) 

vE(z, t) = v0 + vz(z, t) 

= v 0 | l + Re [g(z) exp ( ic^z, * ) ) ] } - (25b) 

Substitution of expressions (25a) and (25b) in expres­
sion (25), and neglect of the rapidly oscillating (at the 
frequency com) terms yields the following integrodifferential 
equation which relates the functions g(z) and h(z) (see 
Refs [45, 47, 48]): 

O ^ t o t = - e ( F z ( r a d ) ) i f dC'/i(C') • (26a) dz 71 Jo 

The relationship between the functions g(z) and h(z), 
which follows from the equation of continuity 

dh 

W | |VO 

dz 
(26b) 

leads to the following equation for h(Q in terms of total 
third-order derivatives: 

-\K3 )h(Q = 0, K = 
(4nzn0r0DY) 

7 o 

(26) 

The system of equations (26) describes the dynamics 
of the growth of the amplitude of a space charge wave due 
to grouping of the beam particles into bunches by the field 

of their stimulated (coherent) radiation in a undulator. We 
can easily see that it agrees fully with the result given by 
formula (7a), obtained in the same approximation 
(p2 <̂  1, y0 1) by the methods of formalised hydro-
dynamic theory of FELs. 

(b) Finite values of the parameter Q (Q > 1); SASE 
mode. In the SASE mode the main sources of the initial 
(amplified) field are fluctuations of the density of the beam 
particles which form coherent bunches [84, 97, 98]. Then 
the radiation field of these bunches aggregates into coherent 
bunches other beam particles which enter the region of 
influence of the field and this finally results in the emission 
of intense stimulated (coherent) radiation. 

The specific feature of the SASE mode is that fluctu­
ations of the beam particle density appear at random and 
are uncorrelated with one another not only between one 
realisation of an electric current pulse to another, but also 
within the limits of each pulse between one coherence tube 
and another. 

It follows from the above that fully scalable quantitative 
simulation of the dynamics of motion of beam particles in 
the SASE mode requires substitution of the radiation field 
described by formula (20a) into the bunching force given by 
expression (19). In particular, only this method can be 
used to describe the SASE mode near the stimulated 
emission threshold (i.e. near the lower wavelength limit 
of coherent undulator radiation), where the rms number of 
particles Q in a coherent bunch is not too large compared 
with unity. 

In view of the statistical nature of the expected results, it 
is necessary to carry out calculations for a sufficiently large 
number of different spatial distributions of the beam 
particles entering an undulator. Such calculations can be 
carried out only numerically and they require selection of 
specific values of the parameters in the simulated experi­
ment. We shall therefore give here only the necessary 
methodological details of the calculations, representing 
the Lagrangian dynamics of the beam particles in the 
field of the bunching force described by formulas (19) 
and (20), and an estimate (given above) of the order of 
magnitude of the ratio of the modulus of the bunching force 
to the modulus of the radiative friction force of an 
individual electron when g <̂  1 [see expression (24)]. 

3.4 Analysis of the physical meaning of the results 
We have thus used a fully scalable analytic simulation of 
the dynamics of self-consistent motion of a monoenergetic 
flux of point-like electrons in the total undulator radiation 
field of each of the electrons, to demonstrate the following 
results. 

(1) The aggregation of the beam electrons by the total 
undulator radiation field into coherently emitting bunches 
occurs only when the strong inequality Q 1 is obeyed, 
because this ensures operation of a nonequilibrium system 
as a source of stimulated coherent electromagnetic radia­
tion, i.e. its operation as an FEL. 

(2) The method of description of a beam by a flux of a 
continuous liquid, used in the formalised classical self-
consistent theory of FELs, is valid only if the condition 
Q > 1 is obeyed. This is indicated in particular by the 
agreement between the gain per one undulator period, given 
by formula (7), and the corresponding result of the 
corpuscular theory, given by expression (26): not only 
the functional dependences on the external parameters of 
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the investigated nonequilibrium system, but also the 
numerical value of the gain are in agreement. 

(3) If the strong inequality Q > 1 is not obeyed, there 
is no mutually coherent amplification of the undulator 
radiation of the individual beam electrons and this non-
equilibrium system operates as a traditional source of 
incoherent undulator radiation. 

Before we discuss the methodological aspects of the 
results given above, we must identify those results that 
provide argued answers to the questions posed in the 
concluding part of Section 2.3. 

First of all, we note that the dominant role of the 
coherence factor in the operation of FELs was first 
postulated on the basis of a semiphenomenological corpus­
cular theory [47] (see also Ref. [48]). It is the requirement of 
a quantitative inclusion of the effects of coherence of the 
undulator radiation of individual electrons (both within the 
bunches formed by the undulator radiation field and 
between these bunches) that guided our selection of the 
initial equations (23) for the description of the dynamics of 
the longitudinal motion, accurate to within a numerical 
coefficient of the order of unity (C = 3n). 

Since the system of equations (23) was derived by us by 
a more general method of direct summation of analytic 
asymptotes of the undulator radiation fields of the indi­
vidual electrons for the case when Q > 1, it follows that in 
this limiting case the above physical aspects are not only 
valid qualitatively, but are also included correctly — in the 
quantitative sense — in Refs [47, 48]. 

It thus follows that the coherence of elementary 
radiators plays the key role in ensuring a significant rise 
of the amplitude of the bunching force, described by 
expression (23b), compared with the force of radiative 
deceleration of individual electrons in the same undula­
tor, which is necessary for the aggregation of electron 
radiators to form coherently emitting bunches in the 
relatively short length of the undulator and for the 
operation of the nonequilibrium system as an FEL. 

Since there is no bunching of electron radiators if Q <̂  1, 
the equality formulated first in Ref. [47] 

n0D5 

1 

does indeed divide the ranges of the external parameters of 
the electron-undulator system in which the system either 
emits stimulated coherent undulator radiation ( g ' > 1, FEL 
mode) or incoherent undulator radiation (Qf <̂  1, second-
generation source of cyclotron and undulator radiation). 

The following comments should be made about the role 
of the undulator radiation of individual electrons in the 
mechanism of collective amplification of electromagnetic 
waves in the FEL mode. 

The dominant continuation of the undulator radiation 
to the formation of coherently emitting bunches can be seen 
directly from an analysis given above, where there are no 
other sources of the longitudinal bunching force [described 
by expression (23)] apart from the undulator radiation of 
the individual electrons when Therefore, the 
position of the gain maximum on the frequency axis 
[compare expressions (7) and (8), and also (26)] corre­
sponds exactly to the frequency of the undulator 
radiation of an individual electron. 

The physical reasons for vanishing, at a certain 
frequency of the intensity maximum of stimulated coherent 

radiation from an FEL oscillator, mentioned in Section 2.3, 
are due to the specific realisation in this oscillator of the 
mechanism of stimulated interaction between a beam of 
electrons with an electromagnetic field emitted by this beam 
by a stimulated process. We shall discuss in detail this point 
because, to the best of our knowledge, it has been ignored in 
the literature. 

Oscillators loaded by monoenergetic transit electron 
fluxes of relatively low intensity have been investigated 
thoroughly in theoretical microwave electronics (including 
calculations of the threshold currents and electron efficien­
cies) for all the elementary effects resulting in the emission 
of radiation by moving charges, including the Vavilov-
Cherenkov radiation [60], synchrotron radiation [20, 30, 
46, 68], and transition radiation [19, 23, 38, 39]. 

Common distinguishing features of oscillators, loaded 
with monoenergetic initially unmodulated electron fluxes, 
are: 
— the presence of a cavity where the energy of the 
stimulated (coherent) radiation field of the beam particles 
accumulates at one of the normal frequencies of the 
resonator (QQ=RQQ0); 
— the linear dependence of the growth increment of the 
amplitude of the field of normal cavity oscillations 
(3ff = lmQ0) on the total beam current passing through 
the cavity; 
— the nonmonotonic dependence of this increment in the 
case of Cherenkov, transition, and FEL oscillators on the 
angle 6 of the phase slip of the beam particles relative to the 
field of a normal cavity oscillation excited by these particles: 

2>i 
' c . (27) 

d 
To 

sin(0/2)" 
6/2 

The following notation is introduced in expression (27): 
6 = QQL/VQ — %s; L is the length of the interaction region; v0 

is the velocity of the beam particles; s is the serial number of 
a longitudinal harmonic of the oscillations; G is a well-
known parameter, equal to the gain at the selected 
wavelength (in the case of systems with local emission of 
radiation by moving charges in the interaction region, 
which can be, for example, the Cherenkov or undulator 
radiation). In our case of an undulator-radiation FEL 
oscillator, the parameter G is equal to the product of 
the number of the undulator periods N0 <^ Nmax

 a n d the 
maximum gain T m a x : G = N0rmax. 

The factor G on the right of expression (27) represents a 
dimensionless normalised constant, which depends on the 
radial profile of the beam particle density and on the actual 
nature of the elementary effect resulting in the emission of 
radiation by the beam electrons in the interior of a cavity. 

In accordance with the initial physical assumptions 
adopted in the theory of oscillators of this type, which 
leads to expressions such as (27), under the conditions 
considered here the parameter G is small compared with 
unity: G <̂  1. Two conclusions follow from this inequality 
and they relate to the principal physical properties of the 
process of stimulated collective radiative interaction 
between the beam electrons and the field of their electro­
magnetic radiation in the investigated nonequilibrium 
system (electron beam + cavity + medium ensuring slow­
ing down of the concurrent wave representing normal 
oscillations in the resonator: 

(1) It follows directly from expression (27) that in the 
limiting case G <̂  1 the increment 6" is much less than the 
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characteristic spacing A£2 = 7t |v g | /L between the normal 
frequencies of the cavity, corresponding to the nearest 
adjacent values of the serial number s of the longitudinal 
harmonic (vg is the group velocity of the concurrent wave at 
the frequency Q0, which is vg w v0): 

8" QQL 
G5 <| 1 . (27a) 

It follows from inequality (27a) that it should be 
possible to generate quasimonochromatic electromagnetic 
oscillations in devices of this type. (For this reason such 
devices are called monotrons in the literature on theoretical 
microwave electronics [19, 60].) 

(2) It also follows from expression (27) that in this 
system the characteristic transit time of the beam electrons 
T p = L / v 0 across the interaction region is considerably less 
than the rise time Tr = \/d" of the amplitude of the field 
representing the normal cavity oscillations: 

: G < 1 (27b) 

It follows from this inequality that the main part of the 
working duration of a pulse of the beam electrons in 
oscillators of this type interacts in a stimulated manner 
not with the field of the coherent radiation emitted by these 
electrons (as in the case of the FEL amplifier discussed 
above), but with the radiation field of the preceding pulses 
stored in the cavity. Under these conditions the cavity locks 
the phases of the stimulated radiation of the portions of the 
previously unmodulated beam entering the cavity and thus 
ensures the radiation coherence even in the case of those 
beam portions which are separated from one another by a 
distance considerably greater than the length L of the 
interaction region. However, such phase locking occurs 
only under special conditions. 

This is because the Veksler-McMillan phase stability 
mechanism, ensuring the grouping of beam particles to 
form coherently emitting bunches by the field of the 
concurrent wave, results in the formation of bunches at 
zero phase of this wave when the beam particles are 
synchronised exactly with the radiation they emit 
( v ^ = QoL/ns = v0). It should be noted that the square 
of the frequency of the phase oscillations is posi­
tive [45, 74, 92, 93]. At zero phase the particles cannot 
exchange energy with the field. This is the reason why, 
in particular, the increment described by expressions (27) 
vanishes at the point 6 = 0. 

The bunches formed in this way can transfer their 
kinetic energy to the radiation field only if they overtake 
slightly the wave representing the bunching force of their 
undulator radiation [see expressions (23)], which is accu­
mulated inside the cavity, and the bunches should be 
displaced from zero phase of the wave field to the 
decelerating phase [45]. These bunches can emit in a 
stimulated manner (and in coherence with their predeces­
sors) only in the decelerating phase and this ensures an 
increase in the amplitude of the field of the concurrent 
electromagnetic wave necessary for the development of the 
instability. Such an increase in turn enhances the depth of 
modulation of the subsequent portions of the beam and 
thus provides a positive feedback in the investigated 
nonequilibrium system. 

In the undulator-radiation FEL amplifier discussed 
above (as in the case of the Cherenkov free-electron 

microwave amplifiers of the travelling-wave tube type; 
see Ref. [94]) the reduction in the phase velocity of the 
amplified slow space charge wave, needed for the above-
mentioned phase slip of the electron bunches, is ensured 
automatically by the corresponding positive beam shift of 
the wave number of the space charge wave: Ak = K/2D [see 
formula (7d)]. 

In the case of FEL oscillators with a relatively low 
current, of the kind described by expressions (27), the main 
source of the phase slip of the bunches, necessary for a shift 
to the decelerating phase of the field of the concurrent wave 
of normal cavity oscillations, is breakdown of the law of 
conservation of the momentum of the interacting waves, 
described by expression (4c), and the deviation of the 
appropriate frequency QQ from co u r . 

If the velocity of the beam particles v0 exceeds the phase 
velocity vp^ of the beats of the concurrent electromagnetic 
wave (t) and the pump wave (w) 

00 
(28a) 

the corresponding phase shift 6 during the time taken by 
an electron to pass through the undulator is positive: 
0 < 6 < 2K. In this range of the values of 6, near the entry 
to the undulator, coherent electron bunches form at zero 
phase of the field of the bunching force, described by 
expression (23). When these bunches approach the undu­
lator exit, they shift to the range of the decelerating phases 
of this force. 

Naturally, very small and very large displacements of 
the bunches make small contributions to the resultant 
increment given by formula (27). For this reason, the 
stimulated undulator radiation of the beam electrons 
reaches its highest effectiveness as a result of bunch 
displacement when 6 = 6* w 2.65 and the right-hand side 
of formula (27) is maximal [30, 71, 74]. 

In this case the optimal frequency Q+ of an FEL 
oscillator exceeds the frequency co u r by an amount which 
increases on reduction in the undulator length: 

£2, 1 + 0*D 
2nL 

(28b) 

and in the distance equal to the length of the interaction 
region a bunch can overtake the travelling bunching-force 
wave by a distance which is almost half the wavelength of 
this wave. 

It follows that the difference between the optimal 
frequencies of an FEL amplifier and an oscillator is not 
in any way in conflict with the dominant role of the 
undulator radiation of individual electrons in the amplifier 
and this is physically justified by the specific nature of the 
mechanism of generation of stimulated (coherent) undu­
lator radiation by a long-pulse beam ( r r > T p ) in the 
oscillator cavity. 

4. Nature of coherent amplification of undulator 
radiation 
The results of the preceding section indicate a considerable 
weakening of the undulator radiation field of the beam 
electrons when the conditions are changed from those 
corresponding to Q 1 to Q <̂  1. However, it is not clear 
from these results how the undulator radiation field of the 
individual emitters is amplified when Q > 1 and what is the 
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law governing the fall of the amplification efficiency with 
reduction in the parameter Q. 

The explanation of the reason for the fall of the 
amplification efficiency, given in Section 3.4, is based on 
reduc-tion in the degree of coherence of elementary 
radiators. In fact, this explanation is supported only by 
the phenomenological theory [47, 48]. We shall describe the 
physical nature and the quantitative relationships governing 
the mechanism of the coherent radiative interaction of the 
beam electrons with one another both within the bunches 
formed by the force described by Eqn (23), and between the 
bunches. 

4.1 Physical model and method of analysis of the problem 
The purpose of this section is to justify the selection of the 
physical model representing the process under considera­
tion and the method used in the theoretical description of 
this process. 

We shall adopt a reference system in which a mono­
energetic electron flux is at rest. The field of a plane 
undulator in the ultrarelativistic case (y0 5> 1) considered 
here is close to the field of a plane electromagnetic wave. 
Therefore, radiative interaction of the beam bunches with 
the undulator field reduces in this system to the Thomson 
scattering of a plane electromagnetic wave by a periodic 
sequence of immobile charged particle bunches. 

The strength of this interaction can be described in a 
natural manner by the degree of coherence of the Thomson 
scattering, which is defined by the ratio of the total intensity 
of the radiation scattered by a system of charge scatterers to 
the total intensity of the scattering of the same wave 
considered independently for each individual charge form­
ing the investigated system. 

The final aim of this analysis is to determine the 
functional dependences of the degree of coherence both 
on the total number of scatterers in a beam, on the distances 
between them within the individual bunches, and on the 
repetition period of such bunches. 

We shall consider a bunch consisting of N identical 
point-like charged particles, each of which has a charge q 
and a mass m. The equilibrium position of this particle in 
space is represented by the vector rs = exxs + eyys + ezzs, 
where s is the particle number (1 We shall 
assume that a plane linearly polarised electromagnetic wave 
of frequency co0 is propagating along the Oz axis and that 
the electric field of this wave is parallel to the Ox axis: 

Ex (z, t) = E0 cos(co0t ^o^) > = &>o/c • 

We shall find the functional dependences of the total 
intensity of the radiation scattered by a bunch on the 
number of scatterers N and on the geometric dimensions of 
a bunch, normalised to the scattered wavelength A0 = c/COQ. 

4.2 Coherence factor for the total radiation intensity 
We shall define the coherence factor for the total radiation 
intensity as the ratio of the total intensity of the 
bremsstrahlung of a bunch iffl at a frequency co = co0 

to the sum of the intensities of the incoherent bremsstrah­
lung I^}oh emitted by the charged particles forming this 
bunch: 

KM 

AN) 
i t o t 
j(N) 

incoh 

(29) 

where the following notation is used: 

tn _ m (I) _ N Q2C°Y „ _ qE0 

' i n coh incoh ~ N ' 3c5 

The total bremsstrahlung power iffl for a bunch will be 
defined as the sum of the radiation losses experienced by 
each of the scattering charges in a bunch in the combined 
field decelerating radiatively all its neighbours: 

N N 
AN) rip) (29a) 

s=l p=l 

In formula (29a) the scatterer numbers s and p assume 
the values 1,2, ...,N, and the symbol 1^ denotes the 
intensity of the radiation emitted by a charge with the serial 
number s in a field created, at the point of equilibrium rs of 
this charge, by its neighbour labelled by the number p: 

lM = -q(V,(tyEW(r„t)). (29b) 

The angular brackets in expression (29b) denote aver­
aging over one period of the field of the scattered wave 
TQ = 2 T C / C O 0 , Vs(t) is the oscillatory velocity of a charge with 
the number s in the field of the electromagnetic wave 
scattered by this charge: 

Vs(t) = CQ0ocsm(cQ0t — k0z) , (29c) 

and E^p\r, t) is the field created by a scatterer with the 
number p at the point of observation r at the moment t. 

The intensity of the bremsstrahlung emitted by a single 
charge in its own field of radiative deceleration (s = p), 
described by formulas (29), represents the intensity of the 
dipole bremsstrahlung under the Thomson scattering 
conditions, which is well-known in classical electrody­
namics (see, for example, Ref. [91]): 

{ s ) = ( 1 ) _q2GC2CQ4

0 

1 3c3 ' 

It follows from expression (11a) for the field of an 
accelerating charge that under the investigated conditions 
the right-hand side of expression (29) is determined 
uniquely by the total number of scatterers N and by 
their relative positions in a bunch: 

N N 

^ 1 
(N) _ *fsp_ — I Gsp(s ^ P) 

s=l p=l s=l p=l N 
(30) 

The following notation is used above:: 

t(p) _ l t(p) 
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4.3 Analytic asymptotes and numerical calculations of the 
coherence factor 
In general, formula (30) is too complex not only for 
analytic investigation but even for numerical calculations 
(because of the cumbersome nature of the procedure for 
numbering the scatterers, particularly when their number is 
large: N 5> 1). Therefore, it is of interest to consider a 
bunch which has the shape of a parallelepiped with a 
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rigorously periodic array of scatterers along the directions 
of each of the parallelepiped edges parallel to the Cartesian 
coordinate axes. 

We shall denote the total number of scatterers on an 
edge i = x, y, and z by the symbol nt and the period of 
these scatterers along a chain parallel to a given edge by the 
symbol d2^\ The total length of the edge in question is then 
^ t o t — (ni ~ a n < ^ the total number of scatterers N in a 
bunch is equal to the product of the numbers nt: 
N = nxnynz. 

This shape and structure of a bunch simplifies greatly 
not only the general form of the right-hand side of 
expression (30), but also has a number of advantages in 
analytic and numerical studies of the dependences of this 
side on the number of scatterers in a bunch and on the 
distances between them. 

In fact, when a bunch is selected in this form, the 
procedure for numbering the scatterers in numerical 
calculations is greatly simplified. Moreover, the use of 
the periodicity of a sequence of scatterers in each chain 
parallel to the edge of a bunch makes it possible to replace 
the summation of the contributions of the individual pairs 
(differing in the values of the number s and p) on the right-
hand side of expression (30) with the summation of the 
contributions of pairs differing in respect of the distances 
between them. 

The distance between two scatterers occupying arbitrary 
positions in one of the chains is du = (lt — \)d%\ where 
0 ^ /; ^ nt. We can easily show that the total number Mt of 
pairs in a chain is 

(31a) 

The number of pairs differing in respect of the fixed 
distance between them is governed by the values of the 
scalar s lX9 ly9 lZ9 and it is equal to the product of the numbers 
M{. 

M{N,L) = \{Mi{nh /,-) . (31b) 
i 

The total number of such pairs 
l=n 

Af t o t (N) = ^ M ( N 9 I) = N[N — (nxny + nynz + nznx) 
1=0 

— \+nx+ny+nz] (31c) 

is then found to be less than the number of terms on the 
right-hand side of expression (30a), which is equal to 
N(N- 1). 

The contribution of each of the pairs is determined by 
the corresponding tensor GS^Q. Therefore, the final formula 
for the coherence factor of the adopted model bunch is 

^^J2Mx(nX9lx)My(ny9ly)Mz(nZ9lz) G(Z,d2) , 

(31) 7 = 0 7 = 0 /7=0 

where 

G(Z, d2) = 3 1 — 3 - | ) vt cos v, 

+ v ? - v ^ - l + 3 - M sinv, 
2v3 ' 

: exvx + eyvy + ezvz, vt = Ifodi , v? = (v„ vt) . 

Finally, one of the important advantages of the selected 
bunch structure is that it includes, as the special limiting 
cases, those bunches which can be described by just one 
length parameter. This makes it much easier to identify and 
analyse the functional dependence of the right-hand side of 
expression (31c) on this parameter. 

Among these bunches we are primarily interested (when 
dealing with an undulator-radiation FEL amplifier) in a 
cubic array of scatterers (nx = ny = nz = n = M 1 / 3 , 

= d^ = d^ = d) and also in a linear chain of 
scatterers (nx = ny = 1, nz= n = N9 = d). The former 
can be used to investigate the effect of coherence within one 
bunch and the latter can be used in a study of the effect of 
coherence between the bunches. 

We shall now consider these two models of a cubic array 
and a linear chain, and we shall find explicit expressions for 
the coherence factors and their analytic asymptotes. We 
shall also give the results of numerical calculations of the 
dependences of these factors on the parameter d9 carried out 
for different values of the number of scatterers. 

4.3.1 Analytic representations and their asymptotes 
(a) Cubic array (N = n3

9 d^ = d^ = d^ = d). In the 
case of this array the functional dependence of the right-
hand side of expression (31a) on the minimum distance 
within a pair of adjacent scatterers 9 = k^d and on the total 
number N becomes 

, .2n 
K\VJ(N, 6) = 3 3-^- )vt cos vt 

+ vl + v2

y - 1 + 3 |)sinv(} 
2(nv,y 

(32) 

Formula (32) leads to simple analytic representations of 
its left-hand side in the case of small and large dimensions 
of a bunch: 

Q2l 
N 1 _ ( ^ 2 / 3 _ 1) ^ 

6 
12 

(n- 1 ) M L 

x s i n ( ^ V 1 / 3 ^ ) c o s ( ^ V 1 / 3 % ) 

(32a) 

X I I - J T I A I , 0 > 1. (32b) 

The first terms on the right-hand sides of formulas (32a) 
and (32b) represent well-known asymptotic results of the 
classical Thomson scattering theory, corresponding to 
infinitesimally small [see formula (32a)] and infinitely large 
[see formula (32b)] distances between the individual 
scatterers [91]. When the right-hand side of for­
mula (32a) is equal to the number of scatterers N, this 
corresponds physically to the maximum degree of coherence 
and when the right-hand side of formula (32b) is equal to 
unity, this means physically complete absence of the 
coherence. 

The second terms on the right-hand sides of formu­
las (32a) and (32b) then include corrections due to the finite 
values of the parameter 9 (equal to the shortest distance 
between two adjacent scatterers, normalised to the scattered 
wavelength). 

(b) Linear chain. If on the right-hand side of expres­
sion (31) we substitute nx = ny = 0, nt = nz = N9 
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0 = k0d2 = k0d9 we obtain an explicit analytic representa­
tion of the coherence factor for a linear chain of scatterers 
with its axis parallel to the direction of propagation of the 
scattered electromagnetic wave: 

n 
K[LJ(/i, 0) = 1 + 3 £ [2(/i - / ) ] U cos 

i=i 

+ (vf - 1) sinv /j 
COS V/ 

2nv] 
10 (33) 

Hence we can obtain analytic asymptotes of this factor for 
relatively short and long chains: 

l - 7 ( « 2 - l ) 
60 ( n - 1 ) 0 ^ 1 , (33a) 

! + 3 £ 1 
A sin (210) 
nj 210 

0 > 1 . (33b) 

0.4 0.6 
(n-\)0/n 

Figure 2. Dependence of the coherence factor Kt 

0.8 1.0 

(v) on the length 
(n — \)6/n of an edge of a cube, plotted for three values of n. 

It is evident from formulas (33a) and (33b) that in this 
case again the correction due to the finite size of a bunch is 
negative and proportional to the square of the size [compare 
formulas (32a) and (33a)]. This is also true for a large 
distance between two adjacent scatterers when the coher­
ence factor differs from unity only by a small correction 
inversely proportional to this distance. The only difference 
between formulas (33b) and (32b) is that this correction for 
a cubic array is inversely proportional to the number of 
scatterers on an edge of a cube, whereas for a linear chain it 
depends weakly on the number of scatterers. 

4.3.2 Numerical calculations 
(a) Cubic array. Numerical calculations of the functional 
dependences of the right-hand side of formula (32) on the 
shortest distance between two adjacent scatterers in the 
array (0 = k^d) and on the total number of the scatterers 
on an edge of the cube (n = N1^3) were carried out for the 
range nO ̂  K and the values of n in the interval 2 ^ n ^ 10. 
The results of these calculations are represented by the 
graphs in Figs 2 and 3. 

It is evident from these graphs that, in the selected range 
of values of 0, the coherence factor is a monotonically 
decreasing function of the argument (n — 1)0/K and a 
monotonically rising function of the number of scatterers 
N = n3

 ( F i g . 2). 
If n ^ 3, the reduced coherence factor K^iN;, 0)/N 

[representing the ratio of the coherence factor K^ot\N9 0) 
to its maximum value K^(Ni90)=N] is a universal 
function of n0/%9 which is independent of the total number 
of scatterers (Fig. 3). In particular, at the point nO = n this 
function is approximately one-third its maximum value, 
equal to unity. Hence, it follows that a significant 
(approximately threefold) reduction in the degree of 
coherence of the scatterers in a bunch occurs when the 
dimensions of the bunch are increased to half the scattered 
wavelength: 

Figure 3. Dependence of the reduced coherence factor /N on the 
length n6/n of an edge of a cube. 

K(L) 
30 

25 

20 

15 

10 

5 

^ 3 0 

^ 20 

^ ^ = 1 0 

0.2 0.4 0.6 0.8 1.0 

{n-l)6/n 

Figure 4. Dependence of the coherence factor on the length 
(n — \)Q/n of a chain, plotted for three values of n. 

(b) Linear chain. Numerical calculations of the factor 
K^((n9 0) for a linear chain were carried out on the basis of 
formula (33) in a wider range of n (3 ^ n ^ 120) for finite 
values of the chain length defined by the inequalities 

0 < (n — 1)0 ^ 7i. The results of some of these calculations 
are presented in Figs 4 and 5 and demonstrate that: 
— in the investigated range of the bunch lengths the 
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0.5 1.0 1.5 2.0 

n6/n 

Figure 5. Dependence of the reduced coherence factor K£L'/n on the 
length nO/n of a chain. 

coherence factor decreases monotonically on increase in 
this length (n— \)6/% and it rises monotonically with 
increase in the number of scatterers n (Fig. 4); 
— in the range n ^ 4 the reduced coherence factor, i.e., the 
ratio /n, is a monotonically decreasing function of the 
argument nO/n, which is independent of the number n 
(compare Figs 3 and 5); 
— when the length of the chain is equal to half the 
scattered wavelength, the ratio K^/n is approximately 
1/2, i.e. the reduced coherence factor is larger than in the 
case of a cubic array (compare Figs 3 and 5). 

4.3.3 Coherence between bunches 
Calculations of the functional dependences of the right-
hand sides of formulas (32) and (33) on the distance 0 
between the adjacent scatterers were carried out in the 
vicinity of 0 ^ 2 . The results of those calculations which 
yield the efficiency or strength of the coherent interaction 
between the bunches are plotted in Fig. 6. 

It follows from the graphs in Fig. 6 that for a linear 
chain of bunches the relative enhancement of the intensity 

\ 3 0 

\ n = 10 

V 
V ^ J 

0.5 1.0 1.5 2.0 2.5 

6/n 

Figure 6. Dependence of the coherence factor on the distance 6/n 
between segments of a linear chain, plotted for two values of n. 

of the scattered radiation, which is due to the coherent 
interaction between the bunches, depends weakly on the 
total number of bunches in a chain and even for n = 30 it 
does not exceed 40% : 

d{P(Q) = K$(n, 0) - 1 < 0, 4 , n ^ 30, 0 « 2n . 

4.4 Discussion of the physical meaning of the results 
Before we discuss the results mentioned above, we must 
consider first the details of the physical nature of the 
mechanism responsible for the generation of coherent 
bremsstrah-lung by scattering charges. 

It follows from our procedure for the calculation of the 
coherence factor, given by expression (30), that the radia­
tive interaction of each pair of scatterers represents an 
element of the matrix GSP. Physically, this element takes 
account of the mutual influence of the bremsstrahlung fields 
of charges with the numbers s and p. It is the specific spatial 
structure of the field that makes it possible to explain the 
reasons for the increase in the coherence factor when the 
distance between the scatterers in a bunch is reduced, as 
well as the rapid fall of this factor when the distance in 
question is increased. 

In fact, in the case of a small bunch when all the 
scatterers are located in the near-field zones of the dipole 
bremsstrahlung of their neighbours, the field amplitudes are 
equal. In our case the phases of these fields are identical 
because the phases of oscillations of each of the scatterers 
are imposed by the shared field of the electromagnetic wave 
scattered by them. It is therefore clear that in the limiting 
case when 0 —> 0 the coherent addition of the radiative 
deceleration fields is most effective [91] for all the individual 
charges in the bunch: Gsp(0 —> 0) —> 1. It is this addition 
that gives rise to the maximum of the coherence factor 
[compare formulas (32a) and (33a)]. 

In the other limiting case of a relatively large bunch 
(0 > 1) each scatterer is located in the far-field zones of the 
dipole bremsstrahlung of all its neighbours. The field 
amplitudes then decrease in inverse proportion to the 
shortest distance within each pair of the nearest neigh­
bours. This is supported in particular by the law describing 
the fall of the off-diagonal elements of the matrix GSP: 

G S M P • i ) « 3 + (v(;>) 2 ] H ^ ! ^ „ o (£) . 

In this limiting case the scattering of the incident 
electromagnetic wave by a bunch is almost completely 
incoherent because of the fall of the strength of the 
exchange radiative interaction of scatterers when the 
distance between them increases: 

4 > ) = 4 > , 0 ) - i = o ( ^ ) . 

We must stress particularly the fairly rapid fall of the 
coherence factor with increase in 0 when the dimensions of a 
bunch are comparable with half the scattered wavelength 
(see Figs 3 and 5), which is mentioned above. In the range 
0 ^ 2TC this fall is so strong that it excludes almost 
completely the possibility of coherent amplification of the 
intensity of the bremsstrahlung of the neighbours (Fig. 6) 
even if the number of such neighbours is fairly large. 

We shall conclude this section with the following 
comments. We have described above the relationships 
governing the coherence in a total energy flux of the 
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scattered radiation, but we have ignored the angular 
distribution of the flux. 

It is shown in Ref. [53] that in general the process of 
coherent amplification of the energy flux of the brems­
strahlung field can occur along certain directions even when 
the distances between the individual scatterers are relatively 
large (6 > 1). This is particularly true of bunches with a 
periodic spatial structure. However, the coherence ensuring 
only local maxima in the angular spectrum of the radiation 
does not increase the total radiation intensity, but is simply 
evidence of a spatial redistribution of the energy flux of the 
incoherent bremsstrahlung of charged particles forming the 
investigated bunch. 

For this reason the local maxima of the energy flux of 
the bremsstrahlung are of no interest in the case of 
undulator-radiation FELs, in which the considerable 
reduction in the length of the collective radiative beam 
deceleration by the field of its stimulated (coherent) 
undulator radiation, which is needed to reduce the undu­
lator length, can be realised only by an increase in the total 
radiation intensity. 

5. Conclusions 
We shall summarise the results and conclusions of the 
analysis presented above by formulating the key stages of 
the process of development of a collective radiative 
instability of a monoenergetic relativistic beam of elec­
trons in an undulator (an FEL amplifier operating in the 
SASE mode). 

The primary source of an electromagnetic field in the 
investigated nonequilibrium system is the spontaneous 
undulator radiation emitted by individual beam electrons. 

Moreover, if the volume density of the beam particles n0 

is sufficiently high and the energy of these particles y0 is not 
too high, so that the strong inequality Q = n0D3/8}>o > 1 is 
obeyed (thus ensuring a sufficiently large number of 
electrons in a cube whose edge is of the order of the 
undulator radiation wavelength in the beam rest frame), the 
individual radiators emit coherent undulator radiation. At 
least the electrons inside the bunches with dimensions not 
exceeding the undulator radiation wavelength (in a refer­
ence system in which the beam is at rest), when the bunches 
are formed by perturbations of the beam particle density, 
are coherent. The resultant field of the coherent undulator 
radiation of such a bunch is a wave travelling forward from 
the bunch at the velocity of light. 

Finally, beats between the field of the coherent undu­
lator radiation emitted by a bunch and a wave of periodic 
modulation of the transverse velocity of the beam particles 
in the undulator field create a longitudinal component of 
the Lorentz force, the phase velocity of which is equal to the 
unperturbed velocity of the beam. It is this force that causes 
aggregation of the beam particles which reach the region of 
influence of the force, producing coherent bunches as a 
result of the Veksler-McMillan phase stability mechanism. 

It therefore follows that in our nonequilibrium system 
there is a positive feedback, which is necessary for the 
development of a collective radiation instability: an increase 
in the amplitude of the field of the coherent undulator 
radiation strengthens the modulation of the beam in respect 
of its density, which thus increases the degree of coherence 
of the undulator radiation emitted by individual electrons. 
The nonequilibrium system composed of a relativistic 

electron beam and an undulator then functions as an 
undulator-radiation FEL operating in the SASE mode. 

However, if the beam intensity is low, but its energy is 
sufficiently high, the average distance between elementary 
radiators in the beam rest frame [((Ar)2)1/ 2 w ^o^ 3 ) ] P r o v e s 

to be considerably greater than the wavelength of their 
undulator radiation X[S in this system. This is why the 
coherence of the undulator radiation of the beam electrons 
cannot be achieved in this limiting case (this is due to the 
relatively rapid fall of the amplitudes of the undulator 
radiation fields of the individual electrons as the distance 
increases in their far-field zones, where the majority of the 
radiating neighbours is located). The nonequilibrium 
system then functions as the source of incoherent undu­
lator radiation. 

It therefore follows that a necessary condition for a 
qualitative change of the system from a source of incoherent 
undulator radiation to a source of stimulated (coherent) 
radiation is an increase in the number Q of elementary 
radiators in the interior of the undulator. The characteristic 
linear size is now of the order of the undulator radiation 
wavelength (in the beam rest frame) and Q increases up to 
values much greater than unity (Q > 1). 

The corresponding minimum wavelength of the stimu­
lated (coherent) undulator radiation emitted by a 
monoenergetic beam with a given density n 0 and with 
the maximum beam energy y^ is given by the formulas 

/ 9 \ l / 2 
min 4 C

r ° h ) = ) , (34) \n0DJ 

EE max y0 = ( — 1 . (35) 

It should be stressed particularly that the theoretical 
value of the minimum wavelength of the coherent undulator 
radiation of an FEL amplifier is of purely methodological 
interest, because the limit is most probably unattainable in 
experiments. This is because this limit corresponds phys­
ically to the minimum degree of coherence of the undulator 
radiation (it corresponds to the boundary at which an FEL 
amplifier begins to act as a source of incoherent undulator 
radiation). 

Under actual experimental conditions when consider­
able losses occur (for details see, for example, Refs [79, 9 9 -
103]), the absence or a low level of the coherence of the 
undulator radiation of the individual beam electrons does 
not result in a reduction of the collective deceleration length 
of the beam by the field of its undulator radiation, and, 
consequently, there is no reduction in the undulator length, 
which is always limited from above by finite values of the 
thermal velocity and the divergence of a beam. 

For these reasons, the best parameters for experimental 
simulation are those which ensure the optimal compromise 
between the greatest possible reduction in the radiation 
wavelength, on the one hand, and the corresponding loss of 
the degree of its coherence (i.e. a reduction of the electron 
efficiency of an FEL and an increase in the undulator length 
and the degree to which a beam is monoenergetic), on the 
other. 

In other words, the optimally shortest wavelength of the 
coherent radiation emitted by an electron beam in an FEL 
must necessarily be greater than the absolute minimum 
described by formula (34) and the difference should be the 
same as the extent to which this is permissible by the loss of 
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the radiation coherence (including that due to an increase in 
the contributions of a departure from the monoenergetic 
state of an electron beam and its divergence). 

We shall end this review by noting the aspects relating to 
the degree of reliability and generality of our results and 
conclusions. 

First of all, an analysis of a set of experimental results 
reported in Ref. [49] confirms the conclusion of the 
occurrence of a correlation between the degree of coher­
ence of the undulator radiation and the parameter Q. In 
fact, the maximum values of the coherence factor Ktot are 
obtained with the long-wavelength undulator radiation. The 
measured factor Ktot is, as expected, less than the value 
predicted by the theory of an idealised model of an FEL 
amplifier, because the real experimental conditions (finite 
width of the energy spectrum of the beam, nonzero 
divergence, and presence of radial beam density gradi­
ents) do not agree with the initial assumptions of the theory. 

A reduction in the parameter Q reduces the measured 
values of the factor Ktot. However, when the gain is small 
(G <̂  1) within the limits of the undulator length, where an 
FEL oscillator is to be realised, these values are found to be 
larger than those calculated theoretically for an FEL 
amplifier. The reason is the accumulation of the energy 
of the stimulated undulator radiation in the cavity, 
responsible for a considerable increase in the degree of 
coherence of the beam electrons (Section 3.4). 

It then follows from Refs [89, 90] that the mechanisms 
of coherent amplification of the radiation emitted by 
elementary radiators, similar to those described in Sec­
tion 4, apply also to quantum electronics. 

Finally, in the case of the Cherenkov instability of a 
monoenergetic flux of charged discs in a waveguide (for 
example, in the case of formal application of the results of 
the hydrodynamic theory in the range <2 <̂  1, where Q is the 
number of discs in one wavelength), we reach a paradoxical 
conclusion that it is possible to realise such an instability 
within the length of an amplifier lR w Q - 1 ^ 3 , which is 
considerably less than the average distance 
( (Az) 2 ) 1 / 2 w QTl between the discs. 

It follows from the above that, in particular, in the range 
of finite values of the parameter Q (which do not satisfy the 
strong inequality Q > 1) the methods of the corpuscular 
theory of radiative instabilities are preferable, but this is 
true not only in the case of theoretical simulation of the 
SASE mode of undulator-radiation FEL amplifiers. 
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