
Abstract. On the basis of general phenomenological
consideration the contradictions which often arise between
different approaches to the electrodynamics of bounded
media with spatial dispersion are shown to be a result of
incorrect assumptions which have been made by its
supporters. The important problems in the field of optics
of bounded media with spatial dispersion are pointed out.
The different methods of solution are discussed.

1. Introduction

The question of boundary conditions on the surface of
media with spatial dispersion (SD) has a long history (see,
for example, [1 – 5]) and includes two main problems. One of
them arises if the incident wave frequency o is close to an
electron resonance. In this case the dispersion equation can
have three different roots [1] and for unique solution of the
problem the so-called additional boundary conditions are
required [1, 4].

In our opinion, a sufficiently logical presentation of the
reasons underlying this problem and of principal methods
of its solution is given in [1]. We only note that the problem
arises in the region of a strong SD. However, even in the
case of media with a weak SD, that is when the wavelength
l of the incident light is far longer than the spatial scale of

nonlocality d of the optical response of the crystal, very
serious and often fundamental disagreements about the
form of the constitutive relations and boundary conditions
to be used in the electrodynamics of bounded optically
active media remain among the investigators [6 – 12].

While in some cases, despite essentially different initial
assumptions, the results obtained do not generally contra-
dict each other [7 – 11], in other cases they are completely
different [6, 7, 12]. This primarily relates to the question as
to whether [6, 12] or not [7 – 11] the polarisation character-
istics of light should be changed during its reflection (under
the conditions of normal incidence onto the surface) from
linear gyrotropic nonmagnetic (i.e. not having spontaneous
magnetic moment) media.

We also note that in the majority of the experiments
performed ‘on reflection’ polarisation effects have not been
observed under the conditions given above [13, 14]. At the
same time, optical activity measurements ‘on reflection’ (for
example, under the condition of total internal reflection [15]
or in case of nonlinear media [9, 10]) can provide an
effective alternative method of spectroscopy of chiral
materials which in a number of cases (for thin layers or
strongly absorbing media) is much more convenient than
the methods currently used which are based on measuring
the polarisation characteristics of transmitted light.

Attempts to discover polarisation effects during light
reflection from the surface of high-temperature super-
conductors [16 – 18] have been amongst the most
important topics of recent studies. The presence or absence
of polarisation effects during these measurements is directly
dependent on the anion superconductivity theory being true
or false [18 – 20].

It is easy to understand that the degree of justification of
such a point of view largely depends on the answer to the
critical question: which boundary conditions and constitu-
tive relations should be used to interpret the contradictory

A A Golubkov, V A Makarov Physics Department and International
Laser Center, M V Lomonosov Moscow State University, Vorob’evy
gory, 119899 Moscow
Tel. (095) 939-12-25, (095) 939-31-47. Fax: (095) 939-31-13
E-mail: ilc@compnet.msu.su

Received 17 October 1994
Uspekhi Fizicheskikh Nauk 165 (3) 339–346 (1995)
Translated by K A Postnov; edited by H Milligan

PACS numbers: 41.20ÿq; 41.90.+e; 78.20.Wc

Boundary conditions for electromagnetic field
on the surface of media with weak spatial dispersion

A A Golubkov, V A Makarov

Physics – Uspekhi 38 (3) 325 – 332 (1995) ß1995 Jointly Uspekhi Fizicheskikh Nauk and Turpion Ltd

Contents

1. Introduction 325
2. Two basic approaches to electrodynamics of unbounded media with spatial dispersion 326

2.1 General statements; 2.2 ‘Symmetric’ constitutive relations for electric and magnetic field induction;

2.3 Landau – Lifshitz constitutive relation for the electric field induction

3. Boundary conditions on the surface of media with nonlocal optical response 327
3.1 Procedure for obtaining boundary conditions; 3.2 Boundary conditions corresponding to ‘symmetric’

constitutive relations; 3.3 Boundary conditions in Landau – Lifshitz electrodynamics. Constitutive relation for the

surface polarisation current

4. Reflection of light from a linear isotropic gyrotropic medium: comparison of different approaches 330
5. Conclusion 331

References 332



experimental results [13, 14, 16 – 18, 21, 22] on light
reflection from media with nonlocal optical response?

Using the general phenomenological consideration, in
the present paper we show that all contradictions which
arise between different approaches to the electrodynamics
of bounded media with SD are, in fact, a result of certain
insufficiently correct assumptions and statements which
have been made by its supporters.

In our opinion, the main fallacy is the assumption that
the boundary conditions and constitutive relations for
electric and magnetic fields can be considered indepen-
dently of each other [7, 14, 23] and, hence, the ‘correct’
boundary conditions and ‘correct’ constitutive relations
exist separately. Another widespread error is in the
treatment of the influence of the surface polarisation
current on the reflection [1, 9, 10, 24 – 26]. It has been
incorrectly taken into account [12] or completely
ignored [6].

Below we also present a short review of positive results
obtained by different authors, formulate current problems
in the optics of bounded (mostly linear) media with SD, and
discuss possible methods of their solution.

2. Two basic approaches to electrodynamics
of unbounded media with spatial dispersion

2.1 General statements
For the analysis of the interaction of radiation with matter
we (in common with all authors) start from the Maxwell
system of equations for electromagnetic field in a medium,
which directly follows from the traditional averaging of the
microscopic equations [24, 27]:

curl E = ÿ

1
c
qB
qt

, (1a)

curl B =

1
c
qE
qt

+

4p
c

j , div E = 4pr , div B = 0 , (1b)

where j = rv is the density of current induced in the
medium (polarisation current), r is the density of bound
charge, v is velocity of its motion (qr=qt + div j = 0). Here
and below we assume no charge density or density of
current from external sources.

We emphasise that a physical sense of the electric field
strength E and of magnetic induction B entering into
Eqns (1) is uniquely determined by the expression for
Lorentz force acting on a test point charge q moving
with a velocity u [24]:

F = q

�

E +

1
c
(u� B)

�

. (2)

Obviously, the system of Eqns (1) is not a closed one, as
one assumes the r and j to be dependent on E and B, but the
form of this dependence (the so-called constitutive rela-
tions) is not used and is not specified here.

2.2 ‘Symmetric’ constitutive relations for electric and
magnetic field induction
In the subsequent analysis of the system of Eqns (1) one
often represents the current j by a sum of two components:

j =
qP 0

qt
+ c curl M , (3)

and introduces vectors of electric field induction D 0 and
magnetic field strength H:

D 0

= E + 4pP 0 , H = Bÿ 4pM , (4)

where the primes are used for clarity in the further
presentation{. In that case the Maxwell Eqns (1) take a
symmetric form

curl E = ÿ

1
c
qB
qt

, (5a)

curl H =

1
c
qD 0

qt
, div D 0

= 0 , div B = 0 . (5b)

The constitutive equations can also be transformed to a
symmetric form by using temporal and spatial Fourier
components (k = 2p=l) [1, 28]:

D0

i(o, k) = e
0

ij(o, k)Ej(o, k) + aij(o, k)Hj(o, k) ,

Bi(o, k) = bij(o, k)Ej(o, k) + mij(o, k)Hj(o, k) . (6)

We note that one often writes down the relations (6) in a
somewhat different way: by expressing D 0 and H in terms
of E and B (and then using (5a) only in terms of E [12]) or
by expressing D 0 in terms of E and B in terms of H [8].

Sometimes the approach depicted above is called
symmetric [7]. In our opinion, it has a number of sig-
nificant shortcomings. First, the relations (3) and (4), and,
hence, (6) are not unique since they introduce four new
quantities (P 0, M , D 0 and H ) using only three relationships.

Sometimes by writing (3) one says that P 0 and M are
connected with the electric and magnetic moments of the
medium, respectively. This, however, is not quite correct, as
it remains unclear to what degree these quantitative
definitions of P 0 and M determine them qualitatively,
because in the optical frequency range the notion of the
magnetic moment of the medium loses its physical meaning
[4, 27].

Frequently encountered references to the possibility of
quantum mechanical calculations of P 0 and M are also
poorly justified, as unique quantum mechanical calculation
is possible only for the total density of the polarisation
current j [29, 30] and not for its separate parts. Therefore,
the question will arise: how can the expressions obtained be
separated into two parts?

This problem is practically unsolved because of the
artificiality of the representation in Eqn (3) which is not
based upon deep physical considerations. Moreover, as
follows from Eqns (3) – (5) and is even more obvious from
Eqns (1), the wave equation for E in a homogeneous
medium has the form

n

k [k .E(o, k)]
o

+

o
2

c2 E(o, k) =
4pio

c
j(o, k) . (7)

Knowing E, it is easy to find B.
Thus, from the point of view of the electrodynamics of

unbounded media, we are ultimately interested only in the
dependence of j(o, k) on E(o, k). When using Eqns (3), (4)
and (6), it is often quite difficult to find this dependence in
case of linear homogeneous media. If the medium is
inhomogeneous [12, 31] or nonlinear [32], the computa-
tional procedure becomes very complicated although, of

{We will denote the medium polarisation and electric field induction
used in Landau – Lifshitz approach by P and D without primes,
respectively, to avoid ambiguity.

326 A A Golubkov, V A Makarov



course, it can be done, especially if one introduces various
simplifying assumptions [32].

In our opinion, it is this complexity of consistent
generalisation to the case of inhomogeneous and nonlinear
media that is the most significant defect of the ‘symmetric’
approach to electrodynamics. Moreover, at the phenom-
enological level of consideration, this problem is quite
artificial: first, the expression for j is split into a few terms
in an arbitrary way, then one writes down the constitutive
relation for each term, and finally one finds the dependence
of the total polarisation current j on the electric field
strength E.

Clearly, it is much simpler to proceed from system (1)
directly and to write down the constitutive relation
immediately for the total polarisation current j, or (which
is practically the same thing), to consider that M = 0, and
j = qP=qt.

2.3 Landau– Lifshitz constitutive relation for the electric
field induction
As we pointed out above, in electrodynamics of unbounded
media it is most natural to introduce the total polarisation
of the medium P (and the corresponding electric field
induction D) which includes the total polarisation current j
[27]:

qP
qt

= j , D = E + 4pP . (8)

Note that j(r0, t) and hence P(r0, t), D(r0, t) can, in
general, depend on the fields E and B not only at the point
r0, but at the adjacent points as well. On the other hand,
the field B(r, t) is related to the field E(r, t) by Eqn (1a).
This allows one to consider, in phenomenological treat-
ment, that P(r0, t) and D(r0, t) depend only on the field
E(r, t) in the entire space.

In the approach presented, the Maxwell system of
equations and the constitutive relation (the latter is written
for linear media for brevity) take the form, respectively
[1, 27]

curl E = ÿ

1
c
qB
qt

, div D = 0, div B = 0 , (9a)

curl B =

1
c
qD
qt

, (9b)

D(t, r) =
�t

ÿ1

dt 0
�

ê(t, t 0; r, r 0) E(t 0, r 0) dr 0 . (10)

Eqn (10) for homogeneous unbounded media can be
written as follows{:

Di(o, k) = eij(o, k) Ej(o, k) . (11)

We stress once more that by assuming B = H in Eqn
(9b), one does not neglect by any magnetic effects at all. All
are taken into account by the constitutive relation (10),
which, in particular, can be reflected in symmetry properties
of the tensor eij(o; k). For example, use of the symmetry
principle for kinetic coefficients [33] leads to the relation-
ship [1, 24, 27]

eij(o, k, Bext) = eji(o, ÿ k, ÿ Bext) , (12)

where Bext is the magnetic field induction which is a
constant in time and is not zero under the influence of an
external magnetic field or a magnetic structure (ferro-
magnetics and antiferromagnetics).

3. Boundary conditions on the surface of media
with nonlocal optical response

3.1 Procedure for obtaining boundary conditions
It should be stressed that all the analyses given above
indicate only a higher or lower degree of formalism, as well
as the convenience or inconvenience, of phenomenological
introduction of various characteristics of the medium, and
cannot be in any way taken as pro or contra arguments
for one or another approach to the electrodynamics of
unbounded media. It is also clear that both approaches
considered will give similar (within the accuracy of the
notation) results [1].

Differences usually arise when considering the inter-
action of electromagnetic waves with the surface (cf. for
example [6, 7, 12]). Apparently, habit plays a major role
here. While working mainly with media without SD, many
people became used to assuming the tangent components of
the fields E and H (or E and B in the Landau – Lifshitz
approach) to be continuous at the interface between two
media, without considering the applicability of this state-
ment.

Meanwhile, it is well known and even quoted in
textbooks in general physics [34] that small violations of
the Fresnel formula exist during reflection through angles
close to the Brewster angle [34, 35]. In particular, the
reflection coefficient does not vanish for any incident
angle, although for the Brewster angle it is very small.

The deviations from the Fresnel formula are explained
by the presence of a thin transition layer near the surface of
the reflecting medium (including the medium not showing
natural optical activity) of a size d05 l. The properties of
the layer (including optical ones) differ from those of the
bulk medium itself.

The transition layers can arise due to external reasons
(impurity, processing, gas adsorption etc.) or peculiarities in
the molecular structure of the reflecting medium itself near
the surface [34, 35]. The latter, in fact, is a manifestation of
a ‘hidden’, extremely weak nonlocality of the optical
response of the medium, which is unavoidably present
(at least due to discreteness) in any medium.

Existence of a more noticeable SD can lead to a very
much increased influence of the transition layers on the
reflection of light than in media with a practically local
response. This is due, in particular, to the space scale of the
transition layers d0 being not less than the nonlocality scale
optical response d of the medium.

In this connection it comes into question how one
should phenomenologically take into account the influence
of the transition layers on light reflection. As a matter of
fact, the boundary conditions are traditionally obtained
from the Maxwell equations as a result of extrapolation to
the limit, that is by assuming that a sharp interface exists
between homogeneous media.

One can solve this problem by assuming that by passing
from one medium to another, all properties of matter and,
hence, electromagnetic field characteristics vary continu-
ously although sufficiently fast. Then, by approximately
solving the Maxwell equations in the narrow transition

{All questions arising from the introduction of the tensor eij(o, k) are
discussed in detail in Ref. [1].
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region, one can obtain a relationship between the fields at
its opposite boundaries to the required approximation in
terms of the small parameter kd0.

By comparing this relationship with that which would
pertain between the fields at the same points in case of a
sharp interface between homogeneous media, one can easily
find the form of the altered boundary conditions by using
conditions which in the sharp interface model would allow
one, nevertheless, to take into account the influence of the
transition layer on the reflection and refraction of light.

Everything indicates that the appearance of additional
terms in the boundary conditions is a result of the existence
of a surface (that is, existing only on the interface
boundary) polarisation current i and bounded charge s

at the sharp interface between two media.
In the case of an interface between two homogeneous

media which is smooth, plane and homogeneous in the
transverse direction, the constitutive relation for temporal
Fourier components of the electromagnetic field in the
Landau –Lifshitz approach (E, B, D / exp(ÿiot)) can be
written as

D(z, E) =

D
(1)(E) , z 4 z1 ,

D
(s)(z, E) , z1 4 z 4 z2

,

D
(2)(E) , z 5 z2

.

8

>

<

>

:

(13)

Here and in what follows the z axis is directed
perpendicular to the interface from the first medium to
the second one; z1;2 are the boundaries of the
inhomogeneity region (z2 ÿ z1 � d0).

A particular form of the functionals D
(1), D

(2) and D
(s) is

defined by optical and symmetry properties of the homo-
geneous media 1, 2 (far away from their boundaries) and,
accordingly, of the inhomogeneous layer between them. For
media with SD they contain differentiation operators. For
example, for homogeneous nonlinear media with SD [9, 10,
36, 37]

D
(m)

(E) = êmE + 4p
n

ĝ
(1)
m
~HE + ŵ

(2)
m EE + ĝ

(2)
m E~HE

+ ŵ
(3)
m EEE + ĝ

(3)
m EE~HE + . . .

o

. (14)

In the smooth interface model an explicit dependence of
D on z given by expression (13) is continuous

D
(s)(zm , E) = D

(m)

(E) , m = 1, 2 ,

and sufficiently differentiable. It is clear from here that the
fields E and B satisfying the Maxwell equations (9) and the
constitutive relation (13) are continuous and differentiable,
and, hence, no boundary conditions (excluding, of course,
conditions at infinity) are required to solve the problem of
radiation passage from the first into the second medium.

In the sharp interface boundary model the functional
relation (13) takes the form

D
(0)(z, E) =

D
(1)(E) , z < z0

D
(2)(E) , z > z0

,

(

(15)

where z0 is an arbitrarily chosen location of the interface
boundary (z1 4 z0 4 z2) of the model. It is clear that D

(0)

has a discontinuity at z = z0, and hence, the fields E(0)
(z)

and B(0)
(z), which are the solutions to the equations (9)

and (15) in the entire space, can have a discontinuity at the
point z = z0.

Our task is to find boundary conditions for the fields at
the point z = z0, such that in the approximation given by
the parameter kd0 the fields E(0) and E, as well as B(0) and
B, are equal at the point z = zm provided that they are equal
at z = zl, where m = 1, 2 and l = 1 + d1m .

In the framework of the ‘symmetric’ approach relation-
ships similar to Eqns (13) and (15) must be constructed for
D 0

(z, E) and D 0

(0)(z, E) (with the help of the corresponding
function D 0

(1), D 0

(2) and D 0

(s)), and for B(z, H) and
B

(0)(z; H) (through B
(1), B

(2), and B
(s)) as well.

Naturally, the procedure described can be performed
with equivalent (within the accuracy of the notation) results
for any incident angles in the framework of any of the
approaches to the electrodynamics of unbounded media
considered in Section 2. However, for simplicity below we
will restrict ourselves to the consideration of normal light
falling onto the interface in the first approximation in terms
of the parameter kd0.

3.2 Boundary conditions corresponding to ‘symmetric’
constitutive relations
One of the significant differences of the ‘symmetric’
approach is that in fact it explicitly assumes the possible
existence of a surface current of bounded charges at the
sharp interface between the homogeneous layer (the second
term in Eqn (3) becomes a d-function in this case). This, in
fact, allows one to obtain from Eqns (5), without any
difficulty, sufficiently correct boundary conditions which,
as far as we know, are used by all supporters of the
‘symmetric’ approach. In the notation of Section 3.1 these
conditions have the form

E(0)
1t = E(0)

2t ; D0

(1)n(E
(0)
1 ) = D0

(2)n(E
(0)
2 ) ,

B
(1)n(H

(0)
1 ) = B

(2)n(H
(0)
2 ) , (16)

n� (H(0)
2 ÿH(0)

1 ) = 0 . (17)

Here and in what follows n is normal to the interface
boundary directed from the medium 1 to the medium 2,
indices ‘n’ and ‘t’ correspond to the normal and tangent
vector components, respectively, and the notation
E(0)

1 = E(0)
(z0ÿ), E(0)

2 = E(0)
(z0+) etc. is used.

However, as we pointed out above, introducing quan-
tities M and P 0, strictly speaking, is not fully unique and
hence the boundary condition (17) is not fully correct (the
vector Ht = Bt ÿ 4pM t cannot be continuous for arbitrary
choice of M{). The cause of this problem is not only that
the ‘symmetric’ approach has defects. It is primarily
connected with an error made in deriving Eqn (17).

It is the case that in obtaining Eqn (17), we take into
account, in fact, only a near-surface inhomogeneity of the
‘magnetic moment of the medium’ M (the arbitrary nature
of this notion has already been pointed out in Section 2.2),
and a possible inhomogeneity of its ‘electric moment’ P 0 is
ignored completely.

Taking account of the latter (in accordance with
Section 3.1) changes the right-hand side of Eqn (17):

n�
�

H(0)
2 ÿH(0)

1

�

=

4p
c

(i 01, 2)t , (18)

{Let us recall that unlike M and P 0, the electric field strength E and
magnetic induction B are uniquely defined [see Eqn (2)].
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where

i 01, 2 = ÿ

io
4p

�z0ÿ

z1

DD 0 dlÿ
io
4p

�z2

z0+

DD 0 dl , (19)

and DD 0

= D 0

(z, E)ÿ D 0

(0)(z, E(0)
) characterises the differ-

ence of the real electric field induction D 0 near the surface
from the induction D 0

(0) from the sharp interface boundary
model.

Integration of Eqn (19) is carried out over the surface
(transition) layer depth (excluding the point z = z0 where
the vector D 0

(0) is undetermined), and z0 is defined by the
chosen model (sharp) interface between two media. Use of
Eqn (18) instead of Eqn (17) for the normal incidence of
light onto a linear isotropic gyrotropic medium (i.e. such
media as are considered in the majority of papers) for the
traditional [2, 8, 13, 31, 38] choice of constitutive rela-
tions (6):

D 0

= e
0Eÿ igH , B = mH + igE , (20)

satisfying the symmetry principle for kinetic coefficients
[33] and molecular models [3], will only lead to a phase
change of the reflected and transmitted waves.

In this simplest case taking account of i01, 2 is equivalent,
in fact, to a small shift (by an amount smaller than d0) of
the model interface boundary between the media. That is, it
is equivalent to a small correction to the optical depth of the
medium, which takes into account the inhomogeneity of its
optical properties near the surface [see the end of Section 4
after Eqns (35) and (36)].

Nevertheless, use of Eqn (17) instead of Eqn (18) is
potentially dangerous, as this can lead, in particular, to
recurrent new ‘contradictions’ between different approaches
to the electrodynamics of anisotropic media with SD.

Now we turn to the analysis of boundary conditions
arising in the Landau – Lifshitz approach.

3.3 Boundary conditions in Landau– Lifshitz
electrodynamics. Constitutive relation for the surface
polarisation current
If one uses the Maxwell equations in the form (1) or (9)
and carries out the procedure described in Section 3.1, then
in case of the normal incident of light the corresponding
boundary conditions take the form [1, 24]

E(0)
1t = E(0)

2t , B(0)
1n = B(0)

2n , D
(1)n(E

(0)
1 ) = D

(2)n(E
(0)
2 ) , (21a)

n�
�

B(0)
2 ÿ B(0)

1

�

=

4p
c

(i1, 2)t , (21b)

where the surface current of bound charge i1, 2 is expressed
in terms of DD in just the same manner as i 01, 2 was
expressed by DD 0 in Eqn (19), and
DD = D(z, E)ÿ D

(0)(z, E(0)
) characterises the difference

between the real electric field induction D near the surface
and the induction D

(0) occurring in the sharp interface
boundary model.

It should be noted that by taking into account the
relationship of D with j [see Eqn (8)], as well as the fact that
in the zero approximation with the parameter kd0 the field
E(0)

t (z) = Et(z), i1, 2 can be expressed as

i1, 2 =

�z0ÿ

z1

Dj(z) dz+
�z2

z0+

Dj(z) dz , (21c)

where Dj(z) = j(z, E(z))ÿ j
(0)(z, E(0)

(z)) characterises the
difference of the real density of polarisation current near
the surface j = ÿ(io=4p)(D ÿ E) from the density of
polarisation current j

(0) = ÿ(io=4p)(D
(0) ÿ E(0)

) occurring
in the sharp interface boundary model.

The expressions (21b) and (21c) in particular demon-
strate that the quantity i1, 2 has indeed the sense of a
‘surface’ polarisation current which should be assumed
present if we want to consider the interface between the
media 1 and 2 as sharp.

In order to convince ourselves of the full equivalence of
the boundary conditions (18) and (21b), we note that due to
Eqns (3), (4), (8) and (19)

i1, 2 = c
n

n�
�

M
(2)(H

(0)
2 )ÿM

(1)(H
(0)
1 )

�

o

+ i 01, 2 , (22)

where M
(m)

(H) = B
(m)

(H)ÿH
ÿ �

=4p, m = 1, 2. Thus, the
boundary conditions (18) and (21b) for H(0) and B(0)

express the same thing with different notation.
As a result, the question naturally arises as to why the

‘symmetric’ and ‘asymmetric’ approaches often yield essen-
tially different results. It is easy to show that either the
surface current has been completely ignored [6], or it has
been wrongly calculated [12].

In connection with the above, we stress that although
from the formal point of view in the Landau – Lifshitz
approach it is sufficient to use only one constitutive relation
such as Eqn (10) relating vectors D and E, it turns out to be
very inconvenient in practice.

In the case above, two physically different phenomena,
the polarisation current inside the homogeneous medium
and that arising close to the boundary, are combined into
one constitutive relation. They differ not only in ‘place of
appearance’, but also in having different causes and
symmetric properties.

In particular, as we pointed out above, an inhomoge-
neity intrinsic to interfaces between media with
SD [9, 10, 25] has a significant influence on the polarisa-
tion current near the surface. The symmetric properties
inside and on the surface of the media can differ even for
ideal surfaces [9, 10, 25, 26, 39], let alone for surfaces with
possible crystal lattice defects, oxides, coatings and so on.

This emphasises the need for two constitutive relations{:
one for D inside the medium (assuming homogeneity or, if
necessary, a weak inhomogeneity of the properties of the
medium with a scale much greater than that of the
nonlocality of the optical response of the medium), and
another for the surface polarisation current i1, 2 [9, 10, 25]:

i1, 2 = k̂
(1)S + k̂

(2)SS + k̂
(3)SSS + . . . , (23)

where vector S = E + 4p(P .n)n, in contrast to vectors E
and P, changes only gradually within the transition layer
and thus is more convenient for writing down the
constitutive relation for the surface polarisation current.
In the expression (23) and below index ‘0’, the notation for
the sharp interface model, is omitted for brevity.

It is then convenient to separate the contributions into
i1, 2 caused by specific surface mechanisms (primarily
inhomogeneity near the surface and symmetric features

{The situation often arises in the case of bounded media with a strong
SD, when changing from (10) to (11) introduces the need for
additional boundary conditions [1].
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of the surface), and the contributions caused by the
properties of the adjacent media as a whole{. For the
latter, the corresponding constitutive tensors can be related
to those characterising the optical properties of the
homogeneous medium.

Establishing relationships between these tensors and
their forms for different media is one of the most important
tasks in electrodynamics of bounded media. Presently, such
relationships can be considered partially established only
for linear (not necessarily isotropic) nonmagnetic media
which the symmetry principle for kinetic coefficients can be
applied to:

k
(1)
jp (o) = ÿio

�

w
(s)
jp ÿ

1
2
g
(1)
1, jpz +

1
2
g
(1)
2, jpz

�

, j, p = x , y . (24)

The symmetric tensor ŵ(s) in expression (24) character-
ises near-surface inhomogeneity of the dielectric
permittivity of the medium ê, and antisymmetric (by
permutation of the first two indices) tensors ĝ

(1)
1 and ĝ

(1)
2

describe gyrotropic bulk properties of the homogeneous
media 1 and 2, respectively [see Eqn (14)]. Note that the
relationship E = E(o) exp(ÿiot) was used in Eqn (24).

The relationship (24) can be obtained by substituting
the expression for electric field induction in a homogeneous
linear medium, which satisfies the symmetry principle for
kinetic coefficients, into the formula for the surface
polarisation current (see, e.g., [40]){.

A result similar to relationship (24) was obtained for the
first time in Refs [9, 10] for the interface between gyrotropic
and nongyrotropic media (g

(1)
1 = 0). The symmetric

approach was used and subsequently (with the help of
the symmetry principle for kinetic coefficients) a relation-
ship between the constitutive tensors arising with those
known from the Landau – Lifshitz approach was estab-
lished.

Using the notation from [9, 10] we have

w
(s)
jp =

~Lw(1)s, jp +

ÿ

fqj eqzp + fqp eqzj

�

,

where ~L is the effective size of the near-surface inhomo-
geneity ( ~L � d0), ŵ(1)s is a symmetric tensor characterising
the near-surface inhomogeneity of the tensor ê

0 arising in
the symmetric approach by writing down the constitutive
relation for D 0 [see Eqn (6)], ^f is a gyration pseudotensor
(g(1)2, jpr = ejpq fqr), and ejpr is the Levi – Civita symbol [41].

We note that in Refs [9, 10] nonlinear media were also
considered. According to Eqn (22), tensors k̂

(n) that are
contained in expression (23) were separated into two parts:

k
(n)
j p1 ...pn

= ÿio
�

ejzq b
(n)
q p1 ...pn

+

~Lw(n)s, j p1 ...pn

�

, (25)

which are connected with a ‘magnetic moment’ of the
medium M and a near-surface inhomogeneity P 0, respec-
tively.

One should, however, bear in mind that, as we have
repeatedly pointed out, such partition is not unique (due to
the ambiguity of introducing P 0 and M in the symmetric
approach), and hence, tensors ^b

(n) and ŵ
(n)
s taken separately

have no certain physical meaning. Tensor k̂
(n) alone is

uniquely defined.
It should be emphasised that it is due to the relation-

ship (24) that polarisation effects during reflection from
linear nonmagnetic media are prohibited (in the first
approximation by the SD parameter kd in the case of
normal incidence of light) [9, 10].

4. Reflection of light from a linear isotropic
gyrotropic medium: comparison of different
approaches

As an example of our point of view we consider a
particular problem of reflection (under normal incidence)
of a plane wave from an optical system consisting of an
isotropic gyrotropic nonmagnetic medium without absorp-
tion and a mirror behind it with a reflection coefficient
R = 1.

The electric field in vacuum in front of the medium
(z < 0) is

E(1)
= Ei exp(ÿiot + ikz ) + Er exp(ÿiot ÿ ikz ) , (26)

where Ei and Er are amplitudes of the incident and
reflected waves, respectively, and k = o=c.

The constitutive relations for isotropic gyrotropic media
in the ‘symmetric’ and Landau – Lifshitz approaches are
written, respectively, as [2, 8, 11, 27]

D 0

= e
0Eÿ igH , B = mH + igE , (27)

D = eEÿ 4pf0 curl E , (28)

with e = e
0

mÿ g2, g = 2pof0=c, and m = 1 (we consider a
nonmagnetic medium in the present case).

The eigenwaves in isotropic gyrotropic media are known
to be circularly polarised and have different wave vec-
tors [10, 12]:

q(1)
�

= kn (1)
�

, q(ÿ1)
�

= kn (ÿ1)
�

, n(Z)

�
= �g + Z e

1=2 ,

where Z = ÿ1, 1.
The electric field can be written as follows:

E(2)
= e

+

Et+ exp[ÿiot + iq(1)
+

z] + e
ÿ

Etÿ exp[ÿiot + iq(1)
ÿ

z]

+e
+

~E
+

exp[ÿiot + iq(ÿ1)
+

z] + e
ÿ

~E
ÿ

exp[ÿiot + iq(ÿ1)
ÿ

z] .

(29)

In Eqn (29) e
�
= (i� i j)=

���

2
p

are unit vectors with
different polarisation (i and j are unit vectors aligned
with axes x and y, respectively, and axis z is normal to
the interface boundary); Et and ~E are amplitudes of the
waves expanding in the medium toward and away from the
mirror, respectively.

Naturally, the boundary conditions at the front surface
of the medium (z = 0) for different angles of approach will
be different. However, for brevity we write them down in a
unified form:

{The relationships (22), in particular, clearly demonstrate that
introducing ‘magnetic moment of the medium’ in the ‘symmetric’
approach framework selects, in fact, the surface current fraction that
is essentially caused by the bulk properties of the medium. This is not
too bad on its own, but it is important to bear in mind the possibility
of the existence of surface currents i 01; 2 of a purely near-surface origin
(which are not directly and uniquely connected with the bulk
properties of the medium).

{One can show that the series of integrals arising will converge,
although the series for D obtained in [40] can diverge under our
conditions (inhomogeneity scale d0 � d). Physically, this is because the
surface polarisation current is always limited.
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Ei� + Er� = Et� +

~E
�

, Ei� ÿ Er� = n0(Et� ÿ
~E
�
)

ÿ

4pio
c

bw
(s)
0 (Et� +

~E
�
)� ag(Et� +

~E
�
) . (30)

Here n0 = e
1=2 and E i, r� = (e�

�
Ei, r) are amplitudes of

proper waves. The values of parameters a and b in
expression (30), a = 0 and b = 0, correspond to the
boundary conditions obtained in the ‘symmetric’ approach
framework from Eqns (16) and (17) using Eqns (26), (27)
and (29) [8].

If one does use Landau – Lifshitz approach and Eqns
(21) and (23), then taking into account Eqns (26), (28), (29)
and equality (24), which for the interface between the
isotropic and isotropic gyrotropic media (where ĝ

(1)
1 = 0,

g
(1)
2, jpr = f0 ejpr, and w

(s)
jp = w

(s)
0 djp + Dw

(s)
djzdzp) takes the form

k
(1)
jp (o) = ÿio

�

w
(s)
0 djp + Dw

(s)
djzdzp +

1
2

f0 ejpz

�

,

we get the boundary conditions (30) with a = 0 and b = 1
[9, 10]. In this case they differ from the previous ones in
having an additional term describing the influence of the
near-surface inhomogeneity of the electric permittivity of
the medium, e.

The case of b = 0 and a = 1 corresponds to completely
ignoring the surface polarisation current effect [6], and that
of b = 0 and a = ÿ1 to the boundary conditions proposed
in Ref. [12].

We will assume that the mirror is attached tightly to the
medium (z = L , where L is the length of the medium). Then
the boundary conditions at the rear surface of the medium
for all four cases will have the form:

Et� exp[iq(1)
�

L ] +

~E
�

exp[iq(ÿ1)
�

L ] = 0 . (31)

From Eqns (30) and (31) one can easily find the coefficients
of reflection for circular polarised waves R

�
� Er�=Ei�

from the system under consideration:

R
�
=

(1 ÿ n0 ÿ g
�
)ÿ (1 + n0 ÿ g

�
) exp(ic)

(1 + n0 + g
�
)ÿ (1 ÿ n0 + g

�
) exp(ic)

, (32)

where c = 2kL
��

e
p

, and g
�
= ÿ4piobw(s)0 =c� ag.

For a medium with no absorption (Im w
(s)
0 = Im g =

Im e = 0, g
�

�
= ÿg

�
, where the asterisk means complex

conjugation) we obtain in the first approximation by the
small parameter of spatial dispersion kd (g � kw(s)0 � kd)

jR
�
j
2
= 1 � ad , d =

4g(coscÿ 1)
(1 + e)ÿ (1 ÿ e) cosc

. (33)

The intensity of the light reflected by the system is

W r = (1 + adb0)W 0 , (34)

where b0 = (jEi+j
2
ÿ jEiÿj

2
)=2W 0 and W 0 = (jE i+j

2
+

jEiÿj
2
)=2 are the incident light ellipticity and intensity,

respectively. Obviously, b0 can be either positive or
negative. Moreover, the signs of a, d and b0 are fully
independent.

Therefore, if one uses the boundary conditions (30) with
a 6= 0 (i.e. neglects the surface polarisation current [6] or
uses an insufficiently accurate expression for the latter [12]),
in a steady-state regime the intensity W r of the reflected
light can be higher than that of the incident radiation W 0,
which evidently contradicts the energy conservation law.

We compare now the results obtained by using the
‘symmetric’ approach with boundary conditions (16) and
(17) (a = 0 and b = 0) and the correct Landau – Lifshitz
approach (a = 0 and b 6= 0). As is seen from Eqn (33), in
these two cases jR

�
j = 1 and hence Eqn (32) can be

rewritten as

R
�
= exp(iF) . (35)

Here F = F0 + 2bkD characterises phase difference
between the incident and reflected light at the point
z = 0, with D = 4pw(s)0 =(1 ÿ e) and

tan F0 =

2n0 sin ~c

(n2
0 ÿ 1) + (n2

0 + 1) cos ~c
, (36)

where ~c = 2k
��

e
p

~L with ~L = L ÿ bD.
It is seen from Eqns (35) and (36) that the influence of

the inhomogeneity in the near-surface electric permittivity
w
(s)
0 , which is taken into account by the correct Landau –

Lifshitz approach, is reduced for an isotropic medium to a
change (easily explained in physical terms) in the optical
length of the medium. (This is equivalent to a small shift of
its front surface by an amount D).

The change in the optical length of the medium leads to
a phase change for the reflected and transmitted waves
compared with the phases calculated by using the tradi-
tional ‘symmetric’ boundary conditions (16) and (17) [see
Eqns (35) and (36) for b = 0]. This is caused by the fact that,
as was pointed out in Section 3.2, the boundary conditions
(17) do not fully take into account inhomogeneity of the
optical properties of the medium inside the layer near the
surface.

The shortcomings of the ‘symmetric’ approach can
however, be removed if instead of boundary condi-
tion (17), one uses the precise boundary condition (18).
In that case the results obtained by using the correct
‘symmetric’ and Landau – Lifshitz approaches will be
identical.

5. Conclusion

It is clear that the boundary conditions (16) and (18) and
conditions (21) (each in conjunction with the correspond-
ing constitutive relations and Maxwell equations) reflect
the existence of one and the same thing, the surface
polarisation current, and, hence, are essentially equivalent.

A frequently encountered mistake, which is repeated to
one or another extent by many people discussing electro-
dynamics of bounded media with spatial dispersion [2, 7,
14, 23], is reduction of the problem to the question: which
constitutive relations, symmetric or asymmetric, are correct
or ‘the most’ correct? Both are correct, but each of them
requires its own boundary conditions.

The reason is that by the intrinsic logic of electro-
dynamics, first come the Maxwell equations, then the
constitutive relations, and only after that boundary con-
ditions, expressions for energy, Umov – Poynting vector
etc., which are consequences of the Maxwell equations
and the constitutive relations and thus vary with the latter.
Moreover, it proves that when considering the boundary
problems it is convenient and often necessary to introduce a
new constitutive relation — the equation for the surface
polarisation current!

Each of the approaches considered has certain advan-
tages. The ‘symmetric’ constitutive relations appear to be
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convenient for considering electrodynamics of moving or
magnetic media [2, 42]. For solving problems on radiation
interaction with nonlinear crystals without magnetic struc-
tures, the most effective is the Landau – Lifshitz approach
[27, 36, 37, 43] complemented, if necessary, by the corre-
sponding constitutive relation (23) for the surface
polarisation current (see also [9, 10]).
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